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Estimating nitrogen and 
phosphorus concentrations in 
streams and rivers, within a 
machine learning framework
Longzhu Q. Shen1,4,6, Giuseppe Amatulli   2,3,6 ✉, Tushar Sethi4, Peter Raymond2 & 
Sami Domisch   5

Nitrogen (N) and Phosphorus (P) are essential nutritional elements for life processes in water bodies. 
However, in excessive quantities, they may represent a significant source of aquatic pollution. 
Eutrophication has become a widespread issue rising from a chemical nutrient imbalance and is largely 
attributed to anthropogenic activities. In view of this phenomenon, we present a new geo-dataset to 
estimate and map the concentrations of N and P in their various chemical forms at a spatial resolution 
of 30 arc-second (∼1 km) for the conterminous US. The models were built using Random Forest (RF), a 
machine learning algorithm that regressed the seasonally measured N and P concentrations collected 
at 62,495 stations across the US streams for the period of 1994–2018 onto a set of 47 in-house built 
environmental variables that are available at a near-global extent. The seasonal models were validated 
through internal and external validation procedures and the predictive powers measured by Pearson 
Coefficients reached approximately 0.66 on average.

Background & Summary
Nitrogen (N) and phosphorus (P) are key nutritional elements for many important life processes such as protein 
and DNA synthesis, primary production, cellular growth and reproduction. Both have a natural global cycle 
that includes conversion between different inorganic and organic forms, solid and dissolved (and gaseous for 
nitrogen) phases that maintained their pre-industrial concentrations within certain natural bounds. During the 
preindustrial era, the concentrations and fluxes of N and P in rivers were generally small, much less than present 
day levels, and were mainly sourced from erosion and the leakage of dissolved N and P in their organic/inorganic 
forms1,2. However, today anthropogenic production of N and P to support fertilisation and industrial releases3,4 
has dramatically increased the N and P presence in water bodies. This has led to the widespread eutrophication 
of both inland and coastal waters5.

Over the past decades, significant progress has been made towards our understanding of the dynamics of nat-
ural and anthropogenic inputs of N and P to inland waters. Furthermore, the recognition of human impact on the 
N and P cycle has driven much research into the scope for better management of these nutrients5,6. However, our 
current ability to map N and P concentrations across regions or the globe is still limited. Early attempts focused 
on concentrations and fluxes from major rivers3,7 and were implemented through bottom-up approaches, which 
estimated N and P content based on our knowledge of land-use and population influences on river nutrients8–11. 
Other local and regional studies have also featured different combinations of bottom-up, process based, and sta-
tistical models, which link N concentrations in inland water to environmental variables12–15.

Freshwater environmental variables (climate, topography, land cover, surface geology and soil) that account 
for the basin and upstream environment have recently been computed16. This set of stream variables at the 
near-global scale provides a new base for stream-relevant biotic and abiotic modelling, such as variability in 
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biodiversity, nutrient distributions, or water flows. Based on this platform, we present a new method for mapping 
the concentrations of N and P in various chemical forms across continental waters based on a machine learning 
approach. The resulting N and P maps can be used to study nutrient loading and processing in inland waters. 
For instance, fertiliser run-off presents a high load of chemical nutrients in recipient freshwater bodies, and 
can be charted by the aforementioned method17,18. The N and P maps possess information about the location of 
nutrient-enriched streams, which can guide engineered de-nitrification processes19,20. In addition to resource 
recovery, a mitigation strategy can be employed through the improved management of nutrient-rich wastes. In 
this approach as well, the derived N/P ratio map can prove a valuable source of information on where N vs P lim-
itation might be located regionally. Furthermore, this unique N and P modelling can be used in conjunction with 
process-based methods to enhance the understanding of metabolism and recycle of N and P in riverine systems.

In this paper, we present a gridded geo-dataset21 (in form of GeoTIFF raster layers) derived by connecting 
freshwater environmental variables with in situ measurements and map the distribution of various N and P com-
pounds in water bodies across the conterminous US for the period of 1994–2018 recorded in the Water Quality 
Portal (WQP)22. Random Forest (RF)23, a well-established machine learning algorithm was employed in this study 
for its exceptional capability of handling complex and heterogeneous data. We demonstrate in detail below how 
RF has excelled to date at capturing local geographical variations of stream predictors, and produces superior 
predictability for N and P distributions in the US. The mapped resolution of the predicted N and P concentrations 
is at a 30 arc-second (∼1 km) gridded stream network16,24 for four seasons. Moreover, the quality and appeal of 
the proposed geo-dataset21 lies in the rigorous scripting and modelling procedures that was applied to treat sparse 
spatio-temporal observations. Additionally, the computation was performed by employing multi-core processing 
in a super computer which requires advanced geocomputation programming skills. The described geo-dataset21 
is ready for use as input data in various environmental models and analyses. The newly developed geo-dataset21 
and the methodological framework are suitable for large-scale environmental analyses such as N and P emissions 
in small and large rivers at a global scale. To our knowledge, this is the first time that N and P concentrations have 
been estimated at such high spatial resolution for the territory large as the contiguous US.

Methods
The Methods section is divided into two subsections that includes: (i) Data pre-processing, that describes cleaning 
the gauge stations source data (measured N and P concentrations, referred hereafter as observations or response 
variables), spatial/seasonal variability and stream layers (referred hereafter as predictors); (ii) Modelling frame-
work, that concerns data splitting and model training/validation/prediction.

Source datasets and pre-processing.  N and P concentration data source–observations.  The U.S. Geo-logical  
Survey (USGS), the U.S. Environmental Protection Agency (EPA) and the National Water Quality Monitoring 
Council developed the Water Quality Portal (WQP)22, which is so far the largest standardised water quality data-
base25. From WQP22, we retrieved the measured concentration data for N and P nutrients in their various chem-
ical forms for the period from 1994 to 2018 with data spanning US stream networks. Each single observation is 
associated with its sampling geolocation (latitude and longitude) and a USGS Parameter Code (PC) to indicate its 
chemical identity. We selected five nutrients (referred to as “chemical species”) of interest as the response variables 
(see Table 1).

Data transformation and cleaning.  The chemical nutrients recorded in WQP22 were provided by multiple organ-
isations26. Employing such multi-sourced data for the “secondary use”, i.e. beyond the original intention proposed 
by the original data collection agencies26, can result in a number of challenges. For instance, intermittent sampling 
activities and data gaps in time series complicated the temporal analyses for long-term trend. Data records can be 
misinformative owing to instrument failure, missing measurement that are labelled as “0” values and incorrect 
use of physical units25,26. Such errors might produce extreme values beyond the natural value range and trend (for 
example, hypothetically TN could range from 0.002 to 20.5 ppm while values exceeding 200 ppm are considered 
unrealistic), and also large number of “0” values). We removed extreme values by data trimming using certain 
thresholds.

The distribution of the raw observation data at day-level resolution for all nutrients (TN, TP, TDP, TDP, and 
NO3) were highly left-skewed, as quantified by the third standardised moment (Eq. 1)
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where μ is the mean and σ is the standard deviation and E is the expected value.

PC Description Abbreviation

00600 Total Nitrogen TN

00665 Total Phosphorus TP

00602 Total Dissolved Nitrogen TDN

00666 Total Dissolved Phosphorus TDP

00618 Nitrate NO3

Table 1.  Chemical nutrients with their USGS Parameter Code (PC) and abbreviation.
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We reported the computed skewness values on the plots in the Supplementary Figures 1 and 2. We then 
applied the Box–Cox power transformation27 (Eq. 2) on the raw data to improve their symmetry (see better linear 
behaviour in the Q-Q plots). Assuming the transformed data are nearly normal distributed, we retained only the 
data within the non-rejection zone at the α level of 0.05 to reduce the influence of extreme values.
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As another layer of data filtering, we retrieved and retained only the data with the number of observations 
equal or greater than three in a single month, and with a Coefficient of Variation (CV) less than two, determined 
by iterative trials. The data after cleaning are reported in Table 2 and were further used for the analysis.

Spatial and seasonal variation.  We performed spatial and temporal analyses to better inform the design of mod-
elling strategies. Within the current data set, we identified only eight stations with eight or more years of data con-
tinuity for a single chemical species (see Supplementary Fig. 3). The Kwiatkowski Phillips Schmidt Shin (KPSS) 
tests28 rejected the null hypothesis that a temporal trend exists in the time series. Additionally, we plotted the data 
distributions across the continuous US for each year in Supplementary Fig. 4. From these plots, we noticed great 
intra-annual spatial variability in the data and a static trend for the mean through all years. Based on this result, 
we performed seasonal mean aggregations for the full time period (1994–2018). Furthermore, we investigated the 
seasonal spatial variability by examining the aggregated seasonal mean across years with observations and plotted 
the data distributions as shown in Fig. 1 and Supplementary Figures 5–7. For a better visual effect, we computed 
the seasonal difference maps for each nutrient as shown in Supplementary Fig. 8. The colours in the RGB maps 
vary based on the differences between two seasons, where white areas indicate greater similarities between each 
other and black areas indicate no data.

Stream layers - predictors.  To build the predictive models, we used a total of 47 predictors belonging to four 
categories: topography24, soil29, land cover30 and climate31 (Table 3). All predictors are freshwater-specific envi-
ronmental variables16 that have accounted for the upstream characteristics of the watershed and longitudinal 
connectivity across the 30 arc-second HydroSHEDS stream network24. For each grid-cell on the stream network, 
the upstream catchment and stream were delineated, i.e., where each grid-cell served as a virtual pour-point 
overlaid with range-wide environmental layers (Table 3). Subsequently these data were averaged across lakes and 
reservoirs from the Global Lakes and Reservoir dataset32 and smoothed at river in- and outlets16. All primary 
environmental data from the four categories had a native 1 km spatial resolution, and we calculated the upstream 
average (topography, soil, land cover and temperature) and sum (precipitation) across each sub-catchment. Here, 
soil data refers to the soil within the depth of 2.5 cm (0–5 cm thickness)29. This yielded a series of predictors such 
as the upstream average forest cover, upstream sum of precipitation that mimics surface run-off and the average 
upstream temperature16, available at www.earthenv.org/streams.

All predictors except for climate were static, as opposed to being time-updated. Monthly climate data was 
averaged to a seasonal level as described in Table 2. Regarding the temperature layers, we only aggregated the 
upstream air temperature across the stream cells within the sub-catchment, while all other layers were aggregated 
across the entire sub-catchment area16. The unit for each stream variable is derived from an original, spatially con-
tinuous environmental variable across the land surface area. Thus, temperature is expressed in degrees Celsius, 
precipitation in millimetres, and land cover as a percentage of each class (e.g. Urban/built-up class in percentage). 
We refer to16 for further details regarding the calculation of the freshwater-specific predictors.

Snapping gauge station locations to the stream network.  Due to the possible spatial discrepancy between the 
HydroSHEDS stream network and the gauge station locations, the latitude and longitude locations of the gauge 
stations do not consistently fall directly on the stream grids. Hence, we snapped the geolocations (latitude and 
longitude) of the stations to the HydroSHEDS stream network using the r.stream.snap function in GRASS GIS33 
with 3 km as the maximum distance tolerance. After snapping, we computed the seasonal mean for each chem-
ical species by considering all the points that fell in the same snapped location. This led to a unique one-to-one 
association between a geographical identification and an averaged concentration value for each season and each 
chemical species.

Season Winter Spring Summer Autumn

Month 11-12-01 02-03-04 05-06-07 08-09-10

TN 1651 3090 3220 2254

TDN 678 1158 1237 875

NO3 1628 2761 3314 2238

TP 2595 4831 5860 4155

TDP 911 1651 2175 1412

Table 2.  Number of observations of the nutrients for each of the four seasons, remained after the data cleaning.
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Modelling framework.  Data splitting procedure.  We split the full dataset into two sub-datasets, train-
ing and testing respectively. To consider the heterogeneity of the spatial distribution of the gauge stations, we 
employed the spatial density estimation technique in the data splitting step by building a density surface using 
Gaussian kernels with a bandwidth of 50 km (using v.kernel available in GRASS GIS33) for each species and sea-
son. The pixel values of the resultant density surface were used as weighting factors to split the data into training 
and testing subsets that possess identical spatial distributions.

In order to optimise the split ratio between the training and testing subsets, we explored the Mean Root 
Square Error (MRSE =  ∑ − x x n( ) /i

n
i i

2 , where xi represents the observation and xi represents the predicted 
value for data (i) at various proportions of the training-testing subsets (60–40%, 70–30%, 80–20%, 90–10%) with 
50 times independent samplings for each trial. The trial repetition intended to sample different combinations of 
training and testing so as to reduce the bias of the sample estimate. To this end, we labelled the MRSE as MRSEte

or 
for the testing sub-dataset in its original values (ppm) and MRSEte

bc for the testing sub-dataset in its Box-Cox 
transformed values.

As shown in the Supplementary Fig. 9, we noticed a monotonic increase of the MRSEte
bc and MRSEte

or  for all 
models as the splitting ratio increased from 0.5 to 0.9. Given the consistent low MRSEte and its low variability 
(defined as the standard deviation of MRSEte) at the proportion 0.5, we decided to use it as the optimal cut to 
build the final models.

Fig. 1  Spatio-temporal distribution of TN and TP. Spatial and seasonal distribution of the Water Quality 
Portal’s stations. The Total Nitrogen (TN) and Total Phosphorus (TP) seasonal mean for each station is labelled 
by a colour circle which also increase in size in accordance to the value TN and TP values.
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Model training.  We employed the RF regression algorithm implemented in the R-package randomForestSRC34,35 
to train the models. RF regression is an ensemble learning strategy that elevates the collective predictive perfor-
mance of a large group of weaker learners (regression trees). Two key elements contributing to the superiority of 
the RF algorithm are bootstrapping aggregation (bagging) and random selection of variables. Bagging (bootstrap 
sampling from the training sub-dataset) aims at reducing data noise through averaging. Data that is not included 
in the bag is called an out-of-bag (OOB) sample. Random drawing of variables improves variance reduction 
by reducing the intercorrelation between trees. OOB samples can be used to validate the model performance 
(equivalent to cross validation) and evaluate the variable importance. The variable importance is of great value in 
identifying the most influential variables that direct predictive outcomes and thus offer adaptive or intervention 

Variable type Variable name Variable description Variable Alias

elevation dem Average elevation dem_avg

slope slope Average slope slope_ave

topology ord Stream order lentic_lotic01

soil

soil01 Soil organic carbon soil_avg_01

soil02 Soil pH in H2O soil_avg_02

soil03 Sand content mass fraction soil_avg_03

soil04 Silt content mass fraction soil_avg_04

soil05 Clay content mass fraction soil_avg_05

soil06 Coarse fragments (>2 mm fraction) volumetric soil_avg_06

soil07 Cation exchange capacity soil_avg_07

soil08 Bulk density of the fine earth fraction soil_avg_08

soil09 Depth to bedrock (R horizon) up to maximum 240 cm soil_avg_09

land cover

soil10 Probability of occurrence (0–100%) of R horizon soil_avg_10

lc01 Evergreen/deciduous needleleaf trees lu_avg_01

lc02 Evergreen broadleaf trees lu_avg_02

lc03 Deciduous broadleaf trees lu_avg_03

lc04 Mixed/other trees lu_avg_04

lc05 Shrubs lu_avg_05

lc06 Herbaceous vegetation lu_avg_06

lc07 Cultivated and managed vegetation lu_avg_07

lc08 Regularly flooded shrub/herbaceous vegetation lu_avg_08

lc09 Urban/built-up lu_avg_09

lc10 Snow/ice lu_avg_10

lc11 Barren lands/sparse vegetation lu_avg_11

lc12 Open water lu_avg_12

temperature tmin Monthly temperature average min

temperature tmax Monthly temperature average max

precipitation prec Sum of monthly precipitation

hydro01 Annual Mean Upstream Temperature hydro_ave_01

hydro02 Mean Upstream Diurnal Range (Mean of monthly (max temp - min temp)) hydro_ave_02

hydro03 Upstream Isothermality (hydro02 / hydro07) (* 100) hydro_ave_03

hydro04 Upstream Temperature Seasonality (standard deviation *100) hydro_ave_04

hydro05 Maximum Upstream Temperature of Warmest Month hydro_ave_05

hydro06 Minimum Upstream Temperature of Coldest Month hydro_ave_06

hydro07 Upstream Temperature Annual Range (hydro05 - hydro06) hydro_ave_07

hydro08 Mean Upstream Temperature of Wettest Quarter hydro_ave_08

hydro09 Mean Upstream Temperature of Driest Quarter hydro_ave_09

hydroclimate hydro10 Mean Upstream Temperature of Warmest Quarter hydro_ave_10

hydro11 Mean Upstream Temperature of Coldest Quarter hydro_ave_11

hydro12 Annual Upstream Precipitation hydro_ave_12

hydro13 Upstream Precipitation of Wettest Month hydro_ave_13

hydro14 Upstream Precipitation of Driest Month hydro_ave_14

hydro15 Upstream Precipitation Seasonality (Coefficient of Variation) hydro_ave_15

hydro16 Upstream Precipitation of Wettest Quarter hydro_ave_16

hydro17 Upstream Precipitation of Driest Quarter hydro_ave_17

hydro18 Upstream Precipitation of Warmest Quarter hydro_ave_18

hydro19 Upstream Precipitation of Coldest Quarter hydro_ave_19

Table 3.  Stream environmental predictors. Overview of all 47 environmental predictors used in the models.
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strategies in response to the modelled phenomena. One important feature of the RF algorithm is its relative resil-
ience towards data noise due to the two mechanisms mentioned above. This technical advantage of RF directly 
benefits the analysis of environmental data. The attractiveness of the randomForestSRC package was that it allows 
considering the sample distribution density in the bagging step. In the model development, we paid close atten-
tion to the model stability. We noticed that the superparameter as the number of trees had a strong impact on 
the model errors as shown in Supplementary Fig. 10. In the end, we used 6000 trees for each model as all models 
achieved stabilisation by approaching this number.

Model validation.  The predicting performance on the training and testing sets provided complementary infor-
mation for the model validation. Training primarily exhibits model robustness, i.e. stability and balance of model 
predictability in the presence of data shuffling. Testing measures the model performance on the unseen data and 
addresses the model fitness. In this context we used the Pearson correlation coefficient as the statistical metric to 
quantify the predictive performance of the models.

To supplement the Pearson correlation coefficient and provide an in-depth assessment of model accuracy, we 
calculated the Root Mean Square Error (RMSE =  ∑ − x x n( ) /i

n
i i

2 , where xi represents the observation and xi 
represents the predicted value for data i) to numerically quantify model uncertainty, since the it offers a more 
discernible measure of prediction accuracy. Thus, we denote:

(i) RMSEte
or and RMSEtr

or for the testing/training sub-dataset in their original physical unit (ppm); (ii) RMSEte
bc 

and RMSEtr
bc for the testing/training sub-dataset for their Box-Cox transformed values.

RMSE can also be used to obtain a comparison of accuracy across high and low-density gauge station distri-
bution. To this end, we calculated a partial RMSEte

or by sorting the sub-datasets in accordance with density surface 
values, and referring to points below the 20th and above the 80th percentiles, obtaining .RMSEte ld

or  and .RMSEte hd
or  

respectively. Finally, to illustrate the geographic distribution of these errors we plotted the residual maps for the 
conterminous US.

Fig. 2  Bivariate maps for TN and TP. Bivariate maps showing the predicted Total Nitrogen (TN) and Total 
Phosphorus (TP) values in ppm across the four seasons. Streams and rivers on the original 30 arc-second 
resolution maps were aggregated using the mean value of a moving window with 10 × 10 grid-cells for an 
improved visualisation. Red indicates high concentration areas, which mainly coincide with high agriculture 
or grazing activities or urban zones. Blue indicates low nutrient load areas, which are frequently occupied by 
forests or deserts.
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Lastly, after establishment of the predictive models, we investigated the contributions of each variable to the 
predicted outcomes by means of the “variable importance”, an output from RF.

Model prediction.  The final validated RF models were applied to predict each of the 30-arc-second stream grid 
cell within the conterminous US, for all the nutrients (TN, TP, TDP, TDP and NO3). The predictive outcomes 
were then reversely transformed back to recover their original physical values (in ppm).

Data Records
We provide TN, TDN, NO3, TP, and TDP concentrations (ppm) for four seasons (winter, spring, summer and 
autumn) for the gridded stream network at a spatial grain of 30 arc-second (∼1 km). All layers are available for 
download at PANGAEA repository21. The nutrient concentrations, mapped across the conterminous USA, are 
available in a compressed GeoTiff file format in the WGS84 coordinate reference system (EPSG:4326 code). All 
layers are stored as floating points (Float32 data type) to ensure sufficient precision for future use and analysis for 
varied purposes.

The predicted nutrient maps follow the layer name convention:
nutrient abbreviation_resolution_season.format
Below are two examples of the layer names for the two main nutrients product TN and TP

•	 TN_1KM_winter.tif: layer showing the Total Nitrogen for the winter season at 30 arc-second spatial 
resolution.

•	 TP_1KM_summer.tif: layer showing the Total Phosphorus for the summer season at 30 arc-second spatial 
resolution.

For the purpose of visual interpretation of the results, we plotted the TN and TP bivariate maps as shown in 
Fig. 2 and Supplementary Figures 11 and 12. The bivariate TN-TP map representation permits an immediate 
perception of the spatial patterns of these two nutrients in the same map. This visual result was achieved by a 
mean-value aggregation of the original 30 arc-second resolution nutrient distributions using a moving window 
of 10 × 10 grid-cells so that a continuous surface could be easily mapped across the entire conterminous US. 
Figure 2 shows high concentrations of TN and TP (red colour) in intensive agriculture/grazing areas (e.g. of the 
US Midwest) and also close to large urban areas (e.g. New York, Philadelphia, Baltimore, Washington DC). On 
the other hand, low concentrations of TN and TP are located in forestry/mountain areas (e.g. Rocky Mountains, 
Appalachian Mountains). This observation is in line with the anthropogenic eutrophication effect that coincides 
with intensive agricultural activities and urban waste water36.

Fig. 3  Correlation plots for TN and TP in testing. Seasonal correlation plots for TN and TP for the testing data 
sets. Horizontal axes represent the observations and vertical axes represent the predicted values. Ticks labelled 
in black are box-cox transformed values and ticks in blue are original values in ppm. Pearson coefficients (r) and 
RMSE(RMSEte

bc, RMSEte
or) are given in the upper-left corner box.

https://doi.org/10.1038/s41597-020-0478-7


8Scientific Data |           (2020) 7:161  | https://doi.org/10.1038/s41597-020-0478-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

Technical Validation
The Pearson correlations between predicted and observed values for TN and TP are in the range of 0.56–0.81 
across the testing sets as shown in Fig. 3. The red dotted lines represent the 1:1 relationship for each panel. The 
solid blues lines showed the regression of the black data points (predictions vs observations). Similar plots were 
generated for TDN, TDP and NO3 (see Supplementary Fig. 13). The high-level correlation for each plot and over-
all consistency among all species suggested the appropriate fitting for all models. The correlation graphs for the 
training set (TN, TP,TDN, TDP and NO3) are provided in the Supplementary Fig. 14.

In Fig. 4 and Supplementary Fig. 15 we mapped the residual (observation minus prediction) of the testing 
sub-dataset across the conterminous US. We also reported the overall RMSEte

or  and RMSEs in areas with low 
( .RMSEte ld

or ) and high ( .RMSEte hd
or ) station densities. The .RMSEte ld

or  results slightly higher than the .RMSEte hd
or , 

nonetheless they are very close to the overall RMSEte
or. These results show that the model is able to perform rea-

sonably well also in areas with low presence of gauge stations.
From the residual maps we also noticed that the model sometimes underestimates the higher values. Three 

possible causes may have contributed to this result: (i) untrustful observations (ii) anthropogenic actions that are 
not fully included in the current environmental variable layers (such as tile drainage37), which highlighted the 
significance of human influence and suggested the need for further completing the variable list (iii) the original 
highly skeweness of the observation data and the associated box-cox transformation implemented.

As shown in the Supplementary Figures 16 and 17, all predictors have been ranked according to their relative 
importance. We noticed that the predictor lu_avg_07 corresponding to the cultivated vegetation played a domi-
nant role for three seasons in the TN prediction. This observation seems logical since nutrient deposition on the 

Fig. 4  Residual maps for TN and TP. Residuals are computed using the testing sub-dataset (observations minus 
predictions). In each maps is also reported the RMSEte

or for the testing sub-daset in ppm, .RMSEte ld
or  and 

.RMSEte hd
or  using observation in the low/high density, respectively.

https://doi.org/10.1038/s41597-020-0478-7
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cultivated land can run off into nearby streams to influence the local TN concentration. For another example, 
soil_avg_02 corresponding to pH in soil outweighed all other predictors in the TP prediction for three seasons, 
referring to the acidic nature of most phosphorus compounds.

Usage Notes
The newly-developed stream nutrient concentration layers21 have a wide array of potential applications in stream 
ecology, biodiversity research, conservation science, and stream and lake restoration ecology. For instance, the 
layers can be used to quantify the overall mass of of N and P discharged into a specific lake or ocean body, ena-
bling a deeper understanding of global-scale eutrophication38. Furthermore, these statistical estimates of nutrient 
concentration can be used to verify new process-based models that predict nutrient concentrations and trans-
formations in inland waters worldwide39. The estimates can also be combined with maps of soil nutrient levels 
and fertiliser use to obtain information on terrestrial-aquatic coupling40,41. Finally, the stoichiometry of the N/P 
ratio in natural/ecological systems is vital information for studying metabolic and biogeochemical processes. 
These new ratio maps can be used to enhance our knowledge on how coupled biogeochemical cycles impact 
ecosystems42.

Overall, the newly-developed layers provide the basis for a variety of high-resolution, nutrient-related analyses 
across the inland waters in the conterminous US. A global-scale N and P assessment with new stream predictors 
at higher resolution (3-arc-second) is under development by our group. The focus is on creating new geomor-
phometry variables (Geomorpho90m43) based on MERIT-DEM44 by adopting the procedure described in45. The 
MERIT-DEM derived stream network is also under development46. These former described layers will be useful 
in combination with other global maps of irrigated areas47, livestock48, agricultural fertiliser use49, soil types/
properties50 to compute N and P concentrations more accurately on a global scale. We encourage potential users 
of the described geo-dataset to contact the authors for future product updates.

Code availability
We used the following open source software packages to compute the full processing chain:

● Geospatial Data Abstraction Library (GDAL, version number 2.1.2)51,52.
● Geographic Resources Analysis Support System software (GRASS, version number 7.4.0)33,53,54.
● Processing Kernel for geospatial data (PKTOOLS, version number 2.6.3)55,56.
● �R: a language and environment for statistical computing57, with the following libraries: randomFor-

estSRC34,35, geoR58, plyr59,60, moments61, data.table62, reshape63,64, dplyr65, ggplot266,67

All of these tools provide fast and scalable functions for raster-based workflows that are easily automated using 
a scripting language, such as Bash or Python68. They also allow for the processing of very large geo-datasets owing 
to efficient algorithms and optimised memory management.

In the spirit of reproducible research we provide the scripting procedure at the GitLab repository (https://
gitlab.com/Ferdinand18/np_us_streams). The full procedure, starting from the N and P observations treatment 
to the 30-arc-second raster predictions, is provided below.

● 01_Cleaning.sh: cleaning the raw observation data.
● 02_Snapping.sh: snapping the observation data points onto the gridded stream network.
● 03_Extraction.sh: extracting descriptors corresponding to the snapped points.
● 04_Modelling.sh: building predictive models based on the observation data.
● �05_Prediction.sh: making predictions for all the US streams and building gridded GeoTiff maps as the final 

output.
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