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ABSTRACT
We develop a 2D inclined rotating disc model, which we apply to the stellar velocity maps of 1862 galaxies taken from the
MaNGA survey (SDSS public Data Release 15). We use a random forest classifier to identify the kinematic parameters that
are most connected to galaxy quenching. We find that kinematic parameters that relate predominantly to the disc (such as the
mean rotational velocity) and parameters that characterise whether a galaxy is rotation- or dispersion-dominated (such as the
ratio of rotational velocity to velocity dispersion) are not fundamentally linked to the quenching of star formation. Instead,
we find overwhelmingly that it is the absolute level of velocity dispersion (a property that relates primarily to a galaxy’s
bulge/spheroidal component) that is most important for separating star forming and quenched galaxies. Furthermore, a partial
correlation analysis shows that many commonly discussed correlations between galaxy properties and quenching are spurious,
and that the fundamental correlation is between quenching and velocity dispersion. In particular, we find that at fixed velocity
dispersion, there is only a very weak dependence of quenching on the disc properties, whereby more discy galaxies are slightly
more likely to be forming stars. By invoking the tight relationship between black hole mass and velocity dispersion, and noting
that black hole mass traces the total energy released by AGN, we argue that these data support a scenario in which quenching
occurs by preventive feedback from AGN. The kinematic measurements from this work are publicly available.
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1 INTRODUCTION

Many galaxy properties are bimodally distributed (e.g. Strateva et al.
2001; Baldry et al. 2004; Brinchmann et al. 2004; Driver et al. 2006;
Cameron et al. 2009; Wuyts et al. 2011). This bimodality can be
summarised in terms of two broad fundamental galaxy features: 1)
star formation activity and 2) morphological and kinematic structure.
In terms of star formation activity, observations of the local Universe
reveal ‘star forming’ blue galaxies that have relatively large specific
star formation rates (sSFR = SFR/M★), as well as ‘quenched’ red
galaxies that have suppressed sSFR. In terms of morphological and
kinematic structure, there exists both ‘rotation-dominated’ galaxies
that have small bulge-to-total mass ratios (𝐵/𝑇) and large ordered to
disordered kinematic ratios (𝑉/𝜎); as well as ‘dispersion-dominated’
galaxies that have large 𝐵/𝑇 and small 𝑉/𝜎.
There appears to be a deep connection between these two bimodal-

ities (e.g. Cameron & Driver 2009; Gadotti 2009; Cappellari et al.
2011a; Bell et al. 2012; Lang et al. 2014; Omand et al. 2014; Bluck
et al. 2014, 2016). This is succinctly expressed by the ‘morphology-
colour’ relation, which claims that star-forming galaxies are generally
rotation-dominated or ‘disc-dominated’, and quenched galaxies are
generally dispersion-dominated or ‘bulge-dominated’. Despite the
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wealth of observational support for a morphology-colour relation,
understanding the physical mechanisms responsible for its existence
remains an important outstanding question in the field of galaxy
evolution.

The goal of this work is to understand why galaxies quench.
Given the observed morphology-colour relation, it is reasonable, and
tempting, to look for mechanisms that are simultaneously capable of
quenching galaxies 𝑎𝑛𝑑 transforming them from being rotation- to
dispersion-dominated. For example, galaxy mergers provide a plau-
sible pathway for triggering the morphological transition, and si-
multaneously feeding the growth of the central supermassive black
hole, which could quench the galaxy through feedback from an ac-
tive galactic nucleus (AGN, e.g. Di Matteo et al. 2005; Springel et al.
2005; Croton et al. 2006; Bower et al. 2008; Hopkins et al. 2008;
Maiolino et al. 2012). For the sake of completeness, we note that
mergers could also quench galaxies through alternative pathways.
These include elevated star formation and supernovae feedback (e.g.
Cole et al. 2000; Henriques et al. 2019), halo growth and virial shock
heating (e.g. Dekel & Birnboim 2006; Woo et al. 2013), and in-
creased kinematic stabilisation of the galaxy disc by the galaxy bulge
in the morphological quenching scenario (e.g. Martig et al. 2009;
Gensior et al. 2020).

We must be clear about what we mean by galaxy quenching before
introducing common quenching mechanisms. Indeed, there are two
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common definitions of galaxy quenching. First, there is the trigger
event that initially shuts off star formation within a galaxy, causing
a galaxy to depart the star forming main sequence. Second, there
is the maintenance mode which keeps a galaxy quenched and does
not allow star formation to rejuvenate over many billions of years of
cosmic history.
In this workwe are primarily concernedwith the second definition.

To appreciate why, it is important to recognise that galaxies are not
closed box systems, and that the vast majority of baryons in massive
systems reside in hot (𝑇 & 107 K) gas halos (Lin et al. 2003; Fabian
et al. 2006; McNamara & Nulsen 2007). These baryons are expected
to cool via thermal bremsstrahlung emission on timescales shorter
than 1Gyr, form a cooling flow, and thereby trigger dramatic late-
time star formation within the galaxy (Fabian 2012). In other words,
naively one would expect star formation to rejuvenate within once-
quenched galaxies. This theoretical expectation is inconsistent with
the observed suppression of star formation, and hence ultimately
stellar mass to halo mass ratios in massive galaxies (e.g. Baldry et al.
2006; Peng et al. 2010; Moster et al. 2010). It is also inconsistent
with the observation that 90 per cent of baryonic matter remains
unprocessed through stars (Fukugita & Peebles 2004; Shull et al.
2012). These inconsistencies remain the key theoretical challenge of
galaxy quenching, commonly referred to as the ‘cooling catastrophe’
(e.g. Binney & Tabor 1995; Ruszkowski & Begelman 2002).
Solutions to the cooling catastrophe invoke an additional heating

mechanism to offset the cooling. Three proposed mechanisms are as
follows: 1) heating from supernovae feedback (e.g. Cole et al. 2000;
Henriques et al. 2019), which offers a natural explanation for the
strong correlation between stellar mass (which is a tracer of previous
star formation and number of supernovae) and quenching, in the
‘mass-quenching’ paradigm (e.g. Baldry et al. 2006; Peng et al. 2010,
2012); 2) virial shock heating (e.g. Dekel & Birnboim 2006; Woo
et al. 2013), which is supported by the observation that quenching
is more closely related to halo mass than stellar mass (Woo et al.
2013; Bluck et al. 2016); and 3) heating from AGN feedback both in
the high Eddington ratio ‘quasar mode’ (e.g. Di Matteo et al. 2005;
Hopkins et al. 2008; Maiolino et al. 2012; Bischetti et al. 2019) and
the low Eddington ratio ‘preventative mode’ (e.g. Croton et al. 2006;
Bower et al. 2008; Fabian et al. 2006; Sĳacki et al. 2007; Zinger et al.
2020), which is supported by the observation that quenching is most
strongly related to parameters that probe the mass of the black hole
(e.g. Wake et al. 2012; Bluck et al. 2016; Terrazas et al. 2016, 2017;
Bluck et al. 2020a,b).
On the structural side, previous studies have used a range of mor-

phological parameters derived from photometric/spectroscopic ob-
servations to constrain different quenching mechanisms (e.g. Peng
et al. 2010, 2012;Wuyts et al. 2011; Bell et al. 2012; Bluck et al. 2016,
2021). This approach faces a number of critical challenges. Firstly,
morphological parameters are waveband dependent (e.g. Bluck et al.
2019). Spectral energy distribution (SED) fitting is often used to
overcome this waveband dependence, but this approach is highly
dependent on key assumptions, such as the adopted initial mass
function (IMF), the simple stellar population (SSP) library, and the
star formation history (e.g. Conroy 2013; Lower et al. 2020). Sec-
ondly, photometric/spectroscopic measurements are not sensitive to
all phases of matter in the galaxy (i.e. stellar, gas, dust and dark
matter). Moreover, it is only economically feasible to observe the
gas in all its phases for small galaxy samples (e.g. Saintonge et al.
2016; Piotrowska et al. 2020; Brownson et al. 2020; Lin et al. 2020).
Finally, and most importantly, galaxy morphology only indirectly
traces the fundamental structure of galaxies. For example, low 𝐵/𝑇
disc-dominated galaxies are often assumed to be rotation-dominated.

In reality 𝐵/𝑇 is a mere proxy of galaxy kinematics that simply quan-
tifies the light or mass associated with a disc or bulge structure, not
revealing the kinematics and hence true dynamics of the system.
Kinematic studies of galaxies, on the other hand, directly probe

the motion of gas/stars and are sensitive to the fundamental physics
of gas/stellar orbits. Indeed, the kinematics of any single compo-
nent (stellar, gas or dark matter) traces the total mass budget and
is therefore a probe of the galaxy’s gravitational potential in viri-
alised systems. Moreover, kinematic measurements provide a more
accurate quantification of galaxy structure, which could be used to
refine the morphology-colour relation. For example, the dimension-
less spin parameter, 𝜆, which is a proxy of the angular momentum,
has been particularly effective at identifying and cleanly separat-
ing rotation-dominated (or ‘fast rotator’) and dispersion-dominated
(‘slow rotator’) galaxies (e.g. Emsellem et al. 2007, 2011; Fogarty
et al. 2015; Cappellari 2016; Graham et al. 2018; Wang et al. 2020).
Moreover, Cappellari et al. (2011b) show that two thirds of face-on
fast rotator early-type galaxies are wrongly classified as photometric
spheroids.
These advantages of galaxy kinematics motivate an update of pre-

viousmorphological studies of galaxy quenchingwith new kinematic
studies of galaxy quenching. We note that there is already evidence
for galaxy kinematics being more predictive of quenching than mor-
phology. In particular, the best morphological predictor of galaxy
quenching is the mass of the bulge (Bluck et al. 2014; Lang et al.
2014), but its kinematic counterpart, the velocity dispersion, is even
more effective at separating the star forming and quenched popula-
tions (Wake et al. 2012; Teimoorinia et al. 2016; Bluck et al. 2016,
2020a,b, 2021). The natural extension of these works is a full kine-
matic study that replaces all morphological galaxy properties with
their kinematic counterparts.
The advent of large integral field unit (IFU) galaxy surveys is pro-

viding astronomers with invaluable spatially resolved spectroscopic
information of galaxies (Cappellari et al. 2011a; Sánchez et al. 2012;
Bundy et al. 2015; Cappellari 2016). The Mapping Nearby Galaxies
at Apache Point Observatory survey (MaNGA) is the largest survey
of this kind to date (Bundy et al. 2015). MaNGA can be used to
estimate many galaxy properties on kpc scales, but in this paper we
focus on its estimates of the line-of-sight velocity and line-of-sight
velocity dispersion, which can be used to model galaxy kinematics.
In this work we develop our own 2D kinematic code (i.e. sepa-

rately modelling integrated light [moment-0], line-of-sight velocity
[moment-1] and line-of-sight velocity dispersion [moment-2]) which
models fast rotators as inclined rotating discs. We choose to develop
a 2D code (i.e. rather than a 3D code) since it is suitable for mod-
elling stellar kinematics, which is essential for the study of quenched
galaxies that generally do not have strong emission lines. However,
our 2D code incorporates the most important features of the latest
3D fitting codes. In particular, it carefully incorporates the effect of
beam smearing both to model the moment-1 maps and to correct
the observed moment-2 maps for the observed velocity dispersion
artificially induced by differential disc rotation (e.g. Bosma 1978;
Begeman 1987; Lelli et al. 2010; Di Teodoro & Fraternali 2015).
We use the model to update common morphological parameters

and derive kinematic estimates that are fundamentally connected to
the physics of stellar orbits, such as the mean specific angular mo-
mentum and the mean specific kinetic energy. We exploit the size
of the MaNGA survey to achieve these estimates for 1862 galaxies,
which is the largest homogeneous kinematic sample to date. We val-
idate our kinematic estimates against traditional kinematic scaling
relations such as the Tully-Fisher (Tully & Fisher 1977) and Faber-
Jackson scaling relations (Faber & Jackson 1976), as well as against
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their traditional morphological counterparts. We then exploit rigor-
ous statistical techniques, combining a random forest analysis with
a partial correlation analysis, to identify the kinematic parameters
which are most fundamentally effective at separating star forming
and quenched galaxies. We thereby place powerful new constraints
on theoretically motivated quenching mechanisms.
This paper is structured as follows. In Section 2, we introduce the

data used in this work. In Section 3, we describe and validate our 2D
kinematic model. In Section 4, we perform a statistical analysis to
identify the kinematic parameters that are important for quenching.
In Section 5, we interpret our results and discuss the importance
of the kinematic parameters in the context of different quenching
mechanisms. Finally, in Section 6, we summarise our key findings.
We also include various appendices which show additional examples
of our kinematic modelling and test the stability of our results. We
assume a ΛCDM cosmology throughout this paper, with H0 = 70
km s−1 Mpc−1, ΩM = 0.3 and ΩΛ = 0.7.

2 DATA

2.1 MaNGA, DAP and Pipe3D

MaNGA is an IFU galaxy survey targeting 10,000 galaxies in the
redshift range 0.01 < 𝑧 < 0.15 (Bundy et al. 2015; Yan et al. 2016)1.
We briefly review the survey selection criteria, and refer the inter-
ested reader to Wake et al. (2017) for a full discussion. MaNGA
survey galaxies are drawn from the SDSS legacy parent sample and
are chosen to have a flat number density distribution in stellar mass
with log(M★/M�) > 9.0. The survey consists of the following two
samples: the primary sample, which observes galaxies out to 1.5Re
and contains two thirds of MaNGA galaxies, and the secondary sam-
ple, which observes galaxies out to 2.5Re and contains the remaining
one third of MaNGA galaxies. In this work, we utilise the publicly
available data release 15 (Aguado et al. 2019), which contains∼ 4500
galaxies. This is the largest spatially resolved spectroscopic sample of
local galaxies, which offers an unprecedented opportunity to conduct
a statistical study of galaxy kinematics and quenching.
The MaNGA IFU system is mounted on the SDSS 2.5m telescope

at the Apache Point Observatory (Gunn et al. 2006) and contains 17
IFUs on a single plate. The IFUs vary in size, but they each contain
spectroscopic fibres arranged in a hexagonal configuration. The field
of view (FOV) diameter of the IFUs depends on the IFU size, and
ranges from 12 arcsec for IFUs composed of 19 fibres, to 32 arcsec
for IFUs composed of 127 fibres. This range of diameters enables the
MaNGA survey to map a large sample of galaxies, with a wide range
of sizes and redshifts, out to at least 1.5Re. The fibres are fed to
the Baryon Oscillation Spectroscopic Survey (BOSS) spectrographs,
which span the wavelength range 3600 − 10000Å with an average
spectral resolution of ∼ 2000. Reduced data cubes have 0.5 arcsec
spaxels (spectroscopic pixels) and a spatial resolution of 2.5 arcsec
(Law et al. 2016; Yan et al. 2016). The MaNGA survey thus provides
spatially resolved information about the stellar and gas properties of
local galaxies.
In this paper, we use two publicly available MaNGA catalogues:

the data analysis pipeline (dap) v2.2.1 (Westfall et al. 2019; Belfiore
et al. 2019)2 and pipe3d v2.4.3 (Sánchez et al. 2016)3. Both cata-

1 https://www.sdss.org/dr15/manga/
2 https://www.sdss.org/dr15/manga/manga-analysis-pipeline/
3 https://www.sdss.org/dr15/manga/manga-data/manga-pipe3d-value-
added-catalog/

logues provide spatially resolved estimates of the line-of-sight (LOS)
stellar velocity and velocity dispersion, but we choose the dap as our
primary source because it employs a binning scheme that is more ap-
propriate for this work. More specifically, the dap uses the Voronoi-
binning algorithm to achieve a signal-to-noise threshold required
for spectral fitting (Westfall et al. 2019). This algorithm enforces a
roundness criterion which prevents spatial bins, commonly referred
to as voxels, from becoming elongated (Cappellari & Copin 2003).
pipe3d similarly bins spaxels to achieve a signal-to-noise threshold,
but it deliberately omits the roundness criterion, so that voxels are
elongated along isophotes, preserving the shape of the underlying
galaxy (Sánchez et al. 2016). In this work, we model the LOS stellar
velocity of rotating galaxies, which is a strong function of azimuthal
angle in the galaxy plane (see Section 3.1). Binning along isophotes
blurs the azimuthal structure of the stellar velocity, making it more
difficult to accurately model the kinematics. Indeed, our kinematic
model described in the next section regularly fails to fit the pipe3d
kinematics of galaxies that are clearly rotating and have dap kine-
matics that are consistent with the model. The dap is therefore more
suited to this kinematic study.
A number of the dap maps have point spread function (PSF) sized

‘holes’ towards the galaxy centre that lack estimates of the stellar
velocity dispersion. These central regions, where the stellar velocity
dispersion peaks, are critical for this work, so we fill the holes with
estimates taken frompipe3d.Wehave checked that the dap and pipe3d
are consistent by comparing their estimates of the average velocity
dispersion measured within 1Re for all galaxies in our sample. The
two estimates are well correlated (𝜌Pearson = 0.91), and a linear fit
comparing the velocity dispersions measured by dap against pipe3d
(gradient m = 1.08±0.01, intercept c = 25.1±2.2 km s−1 and scatter
about the relation RMSE = 33.9 km s−1) is broadly consistent with
the 1-1 relation. We note that ∼95 per cent of galaxies do not contain
a hole, and when present, the holes represent only a small fraction of
the spaxels in a single map. We are therefore confident that our use
of pipe3d in these regions does not introduce a bias or affect our key
results.
We also use pipe3d for its estimates of the stellar mass surface

density, Σ★, which is not provided in the dap data release. pipe3d
assumes a Salpeter (Salpeter 1955) IMF so we convert the estimates
to the Chabrier (Chabrier 2003) IMF assumed in this work by using
the standard conversion logΣSalpeter★ = logΣChabrier★ − 0.22.

2.2 SDSS ancillary data

MaNGA galaxies are drawn from the SDSS parent sample, so they
have awealth of ancillary data.We use the following data in thiswork.
First, we use the NSA-Sloan catalogue (Blanton et al. 2011) for its
estimates of Sérsic index (nSérsic), photometric axis ratio ((𝑏/𝑎)phot),
photometric position angle (PAphot), and global stellar mass (𝑀★)
for a Chabrier (2003) IMF. The stellar masses are found via SED
fitting to SDSS photometry. Second, we use the MPA-JHU catalogue
for its estimates of the global star formation rate (SFR). These are
calculated using emission lines where possible, and via the strength
of the 4000Å break (D4000) otherwise (Brinchmann et al. 2004).We
convert the SFR estimates to the Chabrier (2003) IMF. Finally, we
identify and exclude galaxies with a spectroscopic companion closer
than 100 kpc in projection and 500 km s−1 in the LOS (Patton et al.
2016), post-merger galaxies (Thorp et al. 2019), as well as galaxies
with a companion in the IFU and galaxies that are visually interact-
ing with a companion that does not have spectroscopic information
(private communication from M. D. Thorp). We restrict our focus
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to isolated galaxies in this work, since interactions disturb galaxy
kinematics and contradict the assumption of virialisation (which is
important for many of our subsequent analyses).
We require that the MaNGA galaxies in this work are present in

each of the above catalogues with good measurements of the rele-
vant parameters. Additionally, we restrict our focus to galaxies with
log(M★/M�) > 9.8. This cut is chosen for two reasons: first, our
focus is on intrinsic galaxy quenching which dominates at high mass,
rather than environmental quenching which dominates at low mass;
second, the kinematics of low mass galaxies are more difficult to
model since they have lower stellar velocity and velocity dispersion,
as prescribed by the virial theorem. Moreover, the stellar continuum
in low mass galaxies is much weaker and therefore the stellar kine-
matics are much more difficult to trace. These cuts, together with
our removal of mergers and close encounters, return a sample of
2637 galaxies, which is the largest homogeneous sample used in a
joint study of kinematics and quenching. 1862 of these have data of
sufficient quality for effective kinematic modelling as we show in the
next section.

3 GALAXY KINEMATICS

The dap catalogue contains estimates of the spatially resolved LOS
stellar velocity (moment-1) and LOS stellar velocity dispersion
(moment-2).
In this section, we use these estimates to derive and validate a set of

physically motivated global kinematic parameters, before assessing
their relevance for predicting galaxy quenching in Section 4.

3.1 2D Kinematic Model

In this sub-section, we fit the moment-1 maps taken from the dap
with a 2D idealised inclined rotating disc model, which assumes that
galaxies are rotators and that their stellar orbits are axisymmetric.
We briefly discuss the following key advantages of the inclined disc
model for our work: it is effective at modelling rotators and is able to
identify non-rotators; it is the most simple model capable of describ-
ing galaxy rotation; it can be used tomodel stellar kinematics; and it is
consistent with previous kinematic and photometric measurements.
We are not suggesting that all galaxies display kinematics that can

be modelled as inclined rotating discs. We simply attempt to fit all
galaxies with the inclined rotating disc model, understanding fully
that it will fail for galaxies that are not rotating. Hence, the spirit
of our approach is to ask the following question: which galaxies are
kinematically consistent with the inclined disc model?
There exists alternative, more complex models with many more

model parameters that are commonly used to describe galaxy kine-
matics, such as those that account for the finite thickness of the
kinematic disc (e.g. van der Hulst et al. 1992; Krajnovic et al. 2006;
Davis et al. 2013; Sellwood & Spekkens 2015; Di Teodoro & Fra-
ternali 2015; Neeleman et al. 2021). The advantage of the inclined
rotating disc model is that it is the simplest conceivable model which
accounts for the dominant observational effect (i.e. beam smearing)
and is capable of describing galaxy rotation, with the fewest free pa-
rameters. Despite this simplicity, we will demonstrate that it achieves
a successful fit for the vast majority of our galaxy sample, and hence
we select the inclined rotating disc model on the basis of Occam’s
razor.
The inclined rotating disc model is a 2D kinematic model. We

cannot use 3D fitting codes that model data cubes containing gas
emission lines (e.g. Davis et al. 2013; Di Teodoro & Fraternali 2015;

Neeleman et al. 2021), since quenched galaxies do not have strong
emission lines. We are therefore forced to use stellar kinematic maps
to model the kinematic properties of both star forming and quenched
galaxies in this quenching study. To our knowledge, there does not yet
exist a 3D kinematic fitting code that analyses data cubes containing
the stellar continuum and absorption features, and simultaneously
fits a simple stellar population library as well as a kinematic model.
Developing such a code is beyond the scope of this work, so we adopt
the next best option, which is a 2D kinematic model that accounts
for the most significant challenge in kinematic modelling - namely,
the effect of beam smearing (e.g. Bosma 1978; Begeman 1987; Lelli
et al. 2010; Di Teodoro & Fraternali 2015).
Previous works have successfully modelled the moment-1 maps

of IFU data with inclined rotating disc models. Indeed, Barrera-
Ballesteros et al. (2018) use an even simpler inclined rotating disc
model with fewer free parameters than that introduced in the next sec-
tion. More specifically, they do not fit the inclination of the disc (they
simply adopt the photometric inclination) and they do not correct
for the dominant observational effect of beam smearing. Nonethe-
less, they are able to derive estimates consistent with the Tully-Fisher
relationship (Tully & Fisher 1977). In sub-section 3.4, we similarly
cross-validate our kinematic model against alternative kinematic es-
timates and photometric measurements, as well as against well es-
tablished scaling relations.

3.1.1 Inclined rotating disc model

We briefly orient the reader with the inclined rotating disc model
geometry. The disc is assumed to be infinitesimally thin, but we
note that to first order, the finite thickness of a disc (or its non-zero
velocity dispersion) does not influence its moment-1 map. The disc
is circular by construction, but its projection in the sky plane is an
ellipse, with semi-major axis (𝑎) semi-minor axis (𝑏) and ellipticity
(𝜖 = 1 − 𝑏/𝑎). The geometry of this projection is determined by
the disc’s inclination angle (inc = arccos(𝑏/𝑎)) and position angle
(PA), which we define as the angle between the north-south axis
and the semi-major axis, increasing anticlockwise. Face-on discs
have inc = 0◦ and appear circular in the sky plane, whilst edge-on
discs have inc = 90◦ and appear as infinitesimally thin straight lines
oriented along the semi-major axis.
It is easiest to describe inclined disc rotation in the plane of the

disc (𝑥disc, 𝑦disc), where 𝑦disc is the disc-plane coordinate along
the major axis and 𝑥disc is the disc-plane coordinate along the mi-
nor axis. For convenience we introduce the sky-plane coordinate
system (𝑥sky, 𝑦sky), which has the same orientation as the familiar
(R.A.,Dec) coordinate system. The coordinates (𝑥disc, 𝑦disc) and
(𝑥sky, 𝑦sky) are related using the 2D transformation matrix:(
𝑥disc
𝑦disc

)
=

(
cos(PA)/cos(inc) − sin(PA)/cos(inc)

sin(PA) cos(PA)

) (
𝑥sky
𝑦sky

)
. (1)

The 1/cos(inc) term in the transformation matrix deprojects the
coordinates from the face-on sky-plane to the inclined disc-plane,
and the remaining terms correspond to the standard rotation matrix
in 2D.
The disc is axisymmetric by design, so we adopt the familiar plane

polar coordinate system (𝑟, 𝜃):

𝑟 =

√︃
(𝑥disc − 𝑥disc,𝑐)2 + (𝑦disc − 𝑦disc,𝑐)2 (2)

𝜃 = arctan
(
𝑥disc − 𝑥disc,𝑐
𝑦disc − 𝑦disc,𝑐

)
(3)

MNRAS 000, 1–29 (2022)
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where (𝑥disc,𝑐 , 𝑦disc,𝑐) are the coordinates of the disc centre in the
disc plane. The key insight from equations 1, 2 and 3 is that the
(𝑟, 𝜃) coordinates are strong functions of inc and PA. The radial and
azimuthal variance of the disc properties can therefore be used to
determine the disc geometry.
We now use the inclined disc geometry to describe galaxy rota-

tion. We seek a rotation curve in which the circular speed of stars
increases linearly with galactocentric distance out from the galaxy
centre and plateaus at larger radii, which is consistent with the first-
order behaviour of orbits distributed on spatial scales probed by the
MaNGA survey (e.g. Puech et al. 2008; Andersen &Bershady 2013).
The hyperbolic tangent (tanh) function is one example of a function
that increases and subsequently flattens. We note that there are other
functions, such as arctan, that exhibit similar behaviour, but the exact
parameterisation is not important. We merely require a function that
captures the behaviour of the rotation which, as we will show, the
tanh model achieves.
MaNGA is sensitive only to the LOS component of the circular

velocity vector. The LOS component of a hyperbolic rotation curve
is given by

𝑉LOS (𝑟, 𝜃) = 𝑉sys +𝑉max × tanh
(
𝑟

𝑟𝑐

)
cos(𝜃) sin(inc) (4)

where𝑉sys is the systemic velocity,𝑉max is the amplitude of the rota-
tion curve, and 𝑟𝑐 is a kinematic lengthscale describing the steepness
of the rotation curve. This equation has a relatively simple form, but
it is important to stress that the 𝑟 and 𝜃 coordinates are functions
of four observed geometric parameters: the coordinates of the disc
centre (two coordinates), the inclination angle, and the position an-
gle. The LOS velocity is thus a complex non-linear function whose
radial and azimuthal structure is mathematically related to, and can
therefore be used to determine, the disc geometry.
Equation 4 describes the true LOS stellar velocity structure of

an inclined rotating disc, referred to as the intrinsic LOS velocity
hereafter. However, we must account for two observational effects
introduced by MaNGA and the dap before the model can be used to
effectively analyse real galaxy data.
The first observational effect is beam smearing, caused by

MaNGA’s modest, 2.5 arcsec spatial resolution. MaNGA does not
measure a galaxy’s true surface brightness, 𝐼 (𝑥sky, 𝑦sky), also re-
ferred to as the moment-0 map. Instead, it measures the convolution
of 𝐼 (𝑥sky, 𝑦sky) and the PSF. The dap’s moment-1 maps are derived
from this PSF convolved brightness, hence they correspond to the
typical intrinsic LOS stellar velocity within PSF sized regions, rather
than within individual spaxels. We model this effect as follows:

𝑉
model,spaxel
LOS (𝑥sky, 𝑦sky) =

(𝑉LOS (𝑥sky, 𝑦sky)𝐼 (𝑥sky, 𝑦sky)) ∗ PSF
𝐼 (𝑥sky, 𝑦sky) ∗ PSF

(5)

where ∗ represents a convolution. We now use the (𝑥sky, 𝑦sky) coor-
dinate system since we are discussing observed, rather than intrinsic,
properties. We take empirical, reconstructed PSF models from the
drp (v2.4.3 Law et al. 2016). To describe equation 5 in words, the
model LOS velocity in spaxel X is given by the average LOS velocity
of all other spaxels in the map, with each spaxel weighted by its sur-
face brightness and the amplitude of the PSF. The PSF thus blurs the
LOS velocity structure, such that neighbouring spaxels have similar
values.
One could treat the surface brightness adopted during PSF con-

volution as a free parameter in the model, and simultaneously fit
the moment-0 and moment-1 maps. We choose not to adopt this

approach since beam smearing is a second order effect. Instead we
adopt two reasonable prior measurements of the moment-0 maps:
model photometric 𝑟-band Sérsic profiles taken from the NSA cat-
alogue (Blanton et al. 2011), and 𝑔-band flux maps taken from the
dap. We generally favour the Sérsic models since they estimate a
galaxy’s intrinsic light profile, whereas the dap flux maps are PSF
convolved and Voronoi binned. Nonetheless, as we discuss later in
this section, we do adopt the dap moment-0 maps for a number of
fits, which exhibit clear problems in the moment-1 models.
The second observational effect is Voronoi binning, first dis-

cussed in Section 2, which causes all spaxels within a voxel to
share the same estimates, including that of the LOS stellar veloc-
ity, 𝑉obs,voxelLOS . Throughout this paper, the superscript ‘obs’ refers
to observed data, in this case taken from the dap. Voronoi bin-
ning thus sacrifices spatial resolution for increased sensitivity. In
order to account for the impact of the data being Voronoi binned,
we Voronoi bin the model by calculating the light-weighted aver-
age of 𝑉model,spaxelLOS within each voxel. Voxels composed of only

a single spaxel thus have 𝑉model,voxelLOS = 𝑉
model,spaxel
LOS . The Voronoi

binned model, Vmodel,voxelLOS , is now in a form consistent with the
dap (𝑉obs,voxelLOS ), so we can compare Vmodel,voxelLOS and 𝑉obs,voxelLOS to
determine the best-fitting values of the seven inclined rotating disc
model parameter. These are the disc centre (xsky,c, ysky,c), inclina-
tion (inc), position angle (PA), maximum rotation velocity (𝑉max),
systemic velocity (𝑉sys), and kinematic lengthscale (𝑟𝑐).

3.1.2 Kinematic fitting

The model we have introduced is highly non-linear, so we use a non-
linear least squares minimisation python package, lmfit (Newville
et al. 2014)4, to fit the dapmoment-1 maps.We adopt the trust region
reflective algorithm tominimise the 𝜒2 statistic.We improve the time
efficiency of fitting by bounding the parameters within reasonable
limits and using photometric parameters from the NSA catalogue to
motivate an initial guess of their kinematic counterparts. In particular,
we use the photometric position angle, PAphot, and the photometric
major and minor axis lengths for our initial guess of PA and inc
(via arccos((𝑏/𝑎)phot)), respectively, and we use our alternative,
simplistic kinematic model for an initial guess of 𝑉max (see Section
3.2).
We have tested the model performance on mock galaxy data. In

particular, we have investigated the dependence of our model accu-
racy on data quality by taking a mock galaxy with known kinematic
parameters and creating 10000 realisations of the observed data,
where we vary the number of PSF beams along the major axis, the
number of voxels along the major axis, and the inclination. These
tests demonstrate the model’s ability to recover𝑉max of true inclined
rotating discs, with accuracy better than 25 per cent, provided the
data passes the following ‘data quality cuts’: more than five PSF
beams along the kinematic major axis; more than 25 voxels along the
kinematic major axis; and inc ∈ [25, 80]◦. The typical performance,
however, is far better than this 25 per cent upper limit. Indeed, the
model accuracy for a simulated galaxy with the average data quality
of the galaxies in our sample (which is ∼ 9 PSF beams along the
major axis, ∼ 55 voxels along the major axis, and an inclination of
∼ 55◦) is ∼ 3 per cent.
Data passing these cuts can meaningfully be tested for their con-

sistency with the inclined rotating disc model. The model should

4 https://doi.org/10.5281/zenodo.11813
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recover the kinematics of a genuine inclined rotating disc in this
regime, so a failed fit would evidence true inconsistency with the
model. It is more difficult to interpret the fits of data failing the data
quality cuts. The model is unable to accurately recover the kinemat-
ics of a genuine inclined rotating disc in this regime, so a failed fit
cannot be uniquely attributed to a lack of disc rotation, and could
equally be the result of inadequate data quality.
MaNGA galaxies with dap maps failing the data quality cuts must

therefore be removed from the sample. The kinematic properties are
unknown prior to a successful fit, so we rely on the photometric
properties as a crude proxy, removing all galaxies with less than five
PSF beams and/or 25 voxels along the photometricmajor axis, as well
as all galaxies with arccos((𝑏/𝑎)phot) > 80◦ or arccos((𝑏/𝑎)phot) <
25◦. These constitute our final cuts, reducing the sample size by ∼30
per cent, and leaving a kinematic sample of 1862 galaxies that can
meaningfully be tested for their consistencywith the inclined rotating
disc model.
A galaxy’s observed photometric axis ratio, (𝑏/𝑎)phot, depends

on both its inclination angle and intrinsic axial ratio (see Cappellari
2016). At fixed inclination angle, a galaxywith a bulge and/or a finite,
non-zero thicknesswill appearmore round (i.e. have larger (𝑏/𝑎)phot)
than a galaxy that is perfectly thin. Hence, arccos((𝑏/𝑎)phot) is really
a lower limit of the true inclination angle, with equality only in the
case of an infinitesimally thin disc. The arccos((𝑏/𝑎)phot) < 25◦
cut therefore removes a greater fraction of spheroids than discs.
We have tested the effect of this bias by repeating our analysis
with arccos((𝑏/𝑎)phot) < 25◦ spheroids kept in the sample, on the
grounds that their large (𝑏/𝑎)phot is more likely a consequence of
their large intrinsic axial ratios than their being genuinely face-on.
We confirm that the key results of this paper are stable to this test.

3.1.3 Assessment of quality of fits

We attempt to fit all 1862 galaxies that pass the data quality cuts,
and adopt a two stage approach for assessing the quality of each fit.
The first stage imposes a set of quantitative cuts. We require all of
the parameters to be estimated within their limits (i.e. not to have
reached their bounds) and their uncertainties to be well determined
(i.e. not NaN). We also define the following statistic to quantify the
success of a fit:

𝜂residual =

∑ |
(
Vmodel,voxelLOS − Vobs,voxelLOS

)
/ 𝛿Vobs,voxelLOS |∑ |Vobs,voxelLOS / 𝛿Vobs,voxelLOS |

(6)

In words, 𝜂residual is the weighted average absolute deviation between
the data and model, normalised by the weighted average value of the
data, such that low values of 𝜂residual are associated with good fits.
The weighting is given by the inverse of 𝛿Vobs,voxelLOS , which imposes
a greater penalty on discrepancies between the data and the model in
regions where the data are measured with high confidence.
We compare the residual statistic with our visual assessment of

the fits (see next paragraph) and identify 𝜂residual = 0.15 as the value
above which a fit is more likely to be visually classified as ‘failed’
than ‘passed’. The 𝜂residual statisitc is not rigorous, however, and we
place a greater emphasis on the visual classification. We therefore
choose a slightly larger value of 𝜂residual = 0.2 for the quantitative cut,
which is the value above which fits are more than twice as likely to be
visually classified as ‘failed’ than as ‘passed’. We stress that we have
visually examined every fit to ensure that failed fits are identified.
The 𝜂residual cut is only included as an extra layer of quality assurance
and has a minimal effect on our sample, failing just ∼ 5 per cent of
the fits that we visually classified as ‘passed’.

We visually inspect the fits in the second stage of quality assur-
ance. We describe this process with reference to Fig. 1, which shows
four example galaxies whose kinematics are well fit by the inclined
rotating disc model. For each fit, we show six panels: the SDSS
𝑔, 𝑟, 𝑖 composite image; the moment-2 map from the dap (𝜎obsLOS);
the moment-1 map from the dap (Vobs,voxelLOS ); the best fitting in-
clined rotating disc moment-1 model (Vmodel,voxelLOS ); the residuals
map (Vobs,voxelLOS − Vmodel,voxelLOS ); and the position-velocity (PV) dia-
gram,which plots the circular velocity (rather thanLOS) as a function
of galactocentric radius. All four of these well fit galaxies exhibit the
following features: the Vobs,voxelLOS map clearly shows ordered rota-
tion, with redshifted stars on one side of the kinematic centre and
blueshifted stars on the other; the Vmodel,voxelLOS and Vobs,voxelLOS maps
are visually consistent; and the residual map shows no evidence
of excess structure missed by our kinematic model. We verify the
quality of the fit in the PV diagram, where all four galaxies show
rotation profiles that are consistent with the smooth ‘S’-shape typi-
cal of rotation-dominated systems (see equation 4). Furthermore, we
show the residuals normalised by 𝛿Vobs,voxelLOS in the lower panel and
confirm that they lack radial structure and are consistent with random
noise. The three lead authors independently assessed the quality of
250 fits against these visual requirements (rating them ‘pass’ or ‘fail’)
and unanimously agreed on the verdict in over 90 per cent of cases.
The lead author subsequently reviewed the remaining ∼ 1600 fits.
Fig. 1 demonstrates the model’s success over a wide range of

galaxy types (see Appendix A for more examples). In particular,
the model is able to fit both low Sérsic index photometric discs (as
expected) as well as high Sérsic index photometric spheroids in some
cases. This result is striking given the simplicity of our kinematic
model. We especially highlight the low residuals and note that this
is likely because we are using stellar (rather than gas) velocity maps,
which are less affected by non-virialised motions such as inflows
and outflows. In other words, the stellar systems are highly relaxed.
Of course, the model fails for galaxies that are not rotating, but its
success in describing fast rotator photometric spheroids validates our
methodology of attempting to fit the kinematics of all galaxies (i.e.
not only photometric discs). We further validate this success against
alternative methods in Appendix B1.
We primarily use Sérsic profile moment-0 maps from the NSA

catalogue during PSF convolution and Voronoi binning since they
model the intrinsic brightness profiles. However, there are a number
of high Sérsic index galaxies (typically nSérsic > 4) whose kinematic
fits are visually improved by adopting the dap moment-0 maps (see
Fig. A4, for example). We choose to adopt the dap moment-0 maps
for these galaxies, but we recognise that they are PSF convolved and
are shallower than the true intrinsic brightness profiles. We therefore
repeat the analysis in this paper, adopting the simplistic kinematic
model introduced in the next section for the ∼ 400 galaxies for which
we adopt dap moment-0 maps in the fiducial analysis, and confirm
that the key results are stable to this test in Appendix B1.

3.1.4 Corrected velocity dispersions

Artificial velocity dispersion is induced when a galaxy exhibiting
differential disc rotation is observed with a finite PSF. We simulate
this effect for a mock galaxy in Fig. 2. In panel a we show the in-
trinsic LOS velocity map, which is the inclined rotating disc model
by design, and in panel b we show the galaxy’s surface brightness
map, which is arbitrarily chosen to have a Sérsic profile. We demon-
strate the effect of differential disc rotation by considering the central
spaxel, but note that the following discussion applies equally to every
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Figure 1. Four examples of successful kinematic modelling, showing low Sérsic index galaxies in the top two rows and high Sérsic index galaxies in the
bottom two rows. In each row, from left to right, panel a: The SDSS 𝑔, 𝑟 , 𝑖 composite image with the MaNGA hexagonal FoV overlaid in magenta. Panel b:
The observed (LOS) stellar velocity dispersion map taken from the DAP. The red ellipse represents the MaNGA PSF. Panel c: The observed moment-1 map
taken from the DAP. Panel d: The model moment-1 map, shown as observed (i.e. in sky coordinates, and with PSF convolution and voxel binning). The black
iso-velocity contours represent the estimated intrinsic LOS velocity - i.e. without convolution by the PSF and binning into voxels. Panel e: The model residuals,
defined as the difference between the data and the model. Panel f, upper: The data (black points) and model (solid red line) now shown in the PV plane - i.e.
circular stellar velocity versus galactocentric distance from the kinematic centre. The estimated intrinsic circular stellar velocity (i.e. without convolution) is
shown in blue. Panel f, lower: The residuals (Data −Model, as before) in the PV plane, normalised by the uncertainties on the observed LOS stellar velocity
estimates from the DAP. The dashed red lines indicate ±1 𝜎 deviations. For each galaxy, we report the MaNGA PlateIFU, nSérsic, stellar mass, 𝑉max, which
has a typical error of ∼ 3 per cent, and 𝜂residual, which is small (less than 0.2) for these well fit galaxies. These examples demonstrate the inclined rotating disc
model’s success in fitting the kinematics of a range of galaxy types, both in terms of Sérsic index and 𝑀★.

spaxel in the map. The central spaxel receives flux not only from stars
at the galaxy centre, which have LOS velocity 𝑉LOS = 0, but also
from stars offset from the galaxy centre, which have non-zero 𝑉LOS.
In panel c of Fig. 2 we show the distribution of stellar velocities in
this set up, with the stellar velocity of each region weighted by the
product of the brightness and the PSF amplitude. This distribution
is known as the line of sight velocity distribution (LOSVD). The
observed LOS velocity, VobsLOS, is given by the mean of the LOSVD,
which is ∼zero, as expected. In panel d we show the VobsLOS map, and

note the blurring of this map relative to the intrinsic 𝑉LOS map. This
blurring is commonly referred to as beam smearing.

Our focus here is on the non-zero width of the LOSVD. The or-
dered rotation of the galaxy has thus induced a non-zero velocity
dispersion. For MaNGA observations, this effect will broaden the
gas emission lines and stellar absorption features, leading to over-
estimates of the intrinsic velocity dispersion. In the right panel of
Fig. 2, we parameterise this broadening via the standard deviation of
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Figure 2. Inducing velocity dispersion from differential disc rotation. From left to right, panel a:) The LOS velocity map for a mock galaxy with a large kinematic
inclination (60◦), a short kinematic lengthscale relative to the MaNGA PSF (𝑟𝑐 = 2.5 arcsec), and a relatively large Vmax (350 km s−1) . The mock galaxy
properties are deliberately chosen to induce a large velocity dispersion. Panel b: The assumed light profile, with nSérsic = 1. Panel c: The central spaxel LOS
velocity distribution (LOSVD). This is the distribution of the LOS velocities of all stars, weighted by their surface brightness and PSF response, with the PSF
centred on the central spaxel. The LOSVD corresponds to the emission/absorption line profile expected for spaxels with zero intrinsic velocity dispersion. Panel
d: The observed LOS velocity map, found by calculating the mean of the LOSVD in each spaxel. This map is blurry relative to panel a, which is a well-known
consequence of beam smearing. Panel e: The induced velocity dispersion map, found by calculating the standard deviation of the LOSVD in each spaxel. The
induced dispersion is largest in regions with large velocity gradients, as expected. The red ellipse in all maps represents the MaNGA PSF centred on the central
spaxel, shown for scale.

the LOSVD in each spaxel, 𝜎inducedLOS - i.e. the induced LOS velocity
dispersion.
As expected, 𝜎inducedLOS is large in regions that have a significant

𝑉LOS gradient, such as the galaxy centre. Similarly, galaxies with
large𝑉max, steep rotation curves (i.e. small 𝑟𝑐), and small inclination
angles have steep 𝑉LOS gradients and consequently have 𝜎inducedLOS
as large as 150 km s−1 in the central regions. This demonstrates the
need to correct the observed 𝜎obsLOS estimates from the dap, but we
note that these extreme galaxies are rare in practice. Indeed, we find
that the induced velocity dispersion typically results in only a small
(∼ 10 per cent) overestimation of 𝜎inducedLOS .
Nonetheless, we rigorously correct for the effect of differential

disc rotation. We use the kinematic model to estimate 𝜎inducedLOS , and
we calculate 𝜎intrinsicLOS as follows:

𝜎intrinsicLOS =

√︂(
𝜎obsLOS

)2
−
(
𝜎inducedLOS

)2
(7)

where 𝜎obsLOS is the LOS velocity dispersion estimate reported by the
dap.
Estimating 𝜎inducedLOS requires a reliable kinematic fit of the ordered

rotation, so equation 7 cannot be used to correct the moment-2 maps
of galaxies that are inconsistent with the inclined rotating disc model.
We note that 𝜎inducedLOS is likely to be small in these galaxies since they
generally lack strong velocity gradients (i.e. they do not appear to
be rotating). Furthermore, they tend to be spheroidal galaxies with
large 𝜎obsLOS, and the difference between the 𝜎

intrinsic
LOS and 𝜎obsLOS at

fixed 𝜎inducedLOS decreases with increasing 𝜎obsLOS, as shown in equation
7. These compounding effects ensure that any overestimation of the
velocity dispersion in galaxies that we fail to fit is likely to be small
and to have little influence on our key results.
The velocity dispersion correction completes our detailed kine-

matic model, so we take a moment to summarise the methodology
as follows:

(i) First, we take preexisting estimates of moment-0.
(ii) Second, we usemoment-0, the observed PSF and the observed

LOS velocity map to determine moment-1 via an inclined rotating
disc model.
(iii) Last, we use moment-0, moment-1 and the observed PSF to

correct moment-2 for the induced effect of differential disc rotation.

This approach ignores any backward steps in which higher order
moments are used to constrain lower order moments, such as the
simultaneous use of moment-1 and moment-2 to constrain the kine-
matic centre. However, we note that these steps are second order
effects, and emphasise that our model includes the dominant, first
order dependencies between moment-0, moment-1 and moment-2,
as outlined above.

3.2 Simplistic kinematic model

We find that ∼ 30 per cent of galaxies passing the data quality cuts
have kinematics that are inconsistent with inclined disc rotation. In
this section, we present an alternative, simplistic method for estimat-
ing their kinematics.
The goal of the simple method is to achieve approximate con-

straints on the rotation of galaxies that are inconsistent with the in-
clined rotating disc model. The majority of these galaxies are slowly
rotating, and knowledge of this alone is sufficient for our study of
galaxy quenching. Thus, the simple method is designed not to give a
precise estimate of 𝑉max, but to constrain 𝑉max sufficiently such that
it can be compared with the velocity dispersion to identify a galaxy
as a slow rotator or fast rotator. Indeed, we will show that different
formulations of the simple method achieve relatively tight bounds on
the rotational state of galaxies, even in the absence of full kinematic
fitting.
Previous works have adopted the ‘histogram technique’, typically

used to determine kinematics from HI linewidths (Catinella et al.
2012), to measure the maximum rotational velocity in IFU data (e.g.
Cortese et al. 2014; Barat et al. 2019;Oh et al. 2020). In this approach,
𝑉
Simple
max is given by

𝑉
Simple
max =

𝑉95 −𝑉5
2 sin(inc) (8)
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where V95 and V5 are the 95th and 5th percentiles of the histogram
of voxel LOS stellar velocities within 1.5Re. Note, we use the 95th
and 5th percentiles, rather than the 90th and 10th that are typically
used, since we consider the histogram of voxel LOS velocities, which
are less noisy than their spaxel counterparts.
The denominator in equation 8 requires an estimate of the kine-

matic inclination angle. Previous works have approximated this angle
using the photometric axis ratio (i.e. taking inc = arccos((𝑏/𝑎)phot)),
but the finite thickness of galaxies ensures that arccos((𝑏/𝑎)phot) is
in fact a lower limit of the true inclination. Adopting this estimate
in equation 8 therefore achieves an effective upper limit on 𝑉Simplemax .
This effect is more significant for galaxies with large intrinsic ax-
ial ratios, so we treat photometric discs and photometric spheroids
separately in the simple method.
Disc galaxies have low intrinsic axial ratios (Catinella et al.

2012; Bluck et al. 2014; Cortese et al. 2014; Oh et al. 2020), so
arccos((𝑏/𝑎)phot) is a reasonable proxy of their inclination angles.
We compare the simple method and the full kinematic model for
galaxies that have a disc (nSérsic < 3) and are well modelled as in-
clined disc rotators. This corresponds to 85 per cent of the discs in
our sample. We find that 𝑉Simplemax found using arccos((𝑏/𝑎)phot) to
approximate inc underestimates VFitmax taken from the full kinematic
model, with Bias = −25.3 km s−1.
We correct for this small bias and in the left panel of Fig. 3 we

show the bias-corrected estimate of 𝑉Simplemax on the y-axis and VFitmax
on the x-axis. The consistency between the two estimates is striking;
they are highly correlated with low scatter. We emphasise that the
inclined rotating disc model is far more complex than the simple
method, most notably in its accounting for the effect of beam smear-
ing and explicitly fitting the kinematic inclination (rather than merely
assuming it via photometry). This good agreement between the two
methodologies thus acts as an important check on our kinematic
modelling and builds confidence in our approach.
We adopt the bias-corrected simple method for the 15 per cent of

discs that do no have a good fit, on the grounds that they are not
systematically different to the discs shown in Fig. 3. This assumption
may be overly simplistic, but it impacts only 15 per cent of discs and
hence it is unlikely to have a significant influence on our results. We
also test restricting our analysis to galaxies that are well fit by the
inclined rotating disc model, and we confirm in Appendix B that our
key results are robust.
The treatment of photometric spheroids (nSérsic > 3) is more

challenging since they have large intrinsic axial ratios. Adopting
inc = arccos((𝑏/𝑎)phot) in equation 8 for these galaxies could there-
fore return a significant overestimate of 𝑉max. Instead, we explore
four different estimates of inc and examine their influence on our key
results.

(i) First, we use arccos((𝑏/𝑎)phot), which provides an upper limit
on 𝑉Simplemax .
(ii) Second, we assume the galaxies are perfectly edge-on with

inc = 90◦, which provides a lower limit on 𝑉Simplemax . Given our re-
stricted focus to galaxies with arccos((𝑏/𝑎)phot) > 25◦, these first
two approaches bound 𝑉Simplemax to within a factor of ∼ 2.5.
(iii) Third, we adopt inc = 60◦, which is expectation value for

the viewing angle of galaxies when distributed isotropically in 3D
space. If the galaxy has arccos((b/a)phot) > 60◦, however, we em-
ploy inc = arccos((𝑏/𝑎)phot) as a known lower limit.
(iv) Finally, and most precisely, we estimate inc in a Bayesian

fashion. We model the distribution of the intrinsic axial ratios
((𝑏/𝑎)modelint ) of photometric spheroids as a Gaussian with mean

Figure 3. A direct comparison of 𝑉max estimated using the full kinematic
model on the x-axis and the bias-corrected simple method on the y-axis for
discs that have good kinematic fits. Linearly spaced density contours are
shown with blue shading and magenta lines, and we display the bias, which is
zero by design, and the root mean square error (RMSE) of residuals from the
black 1-1 line. The estimates are highly correlated with low scatter. The red
error bars represent the 1𝜎err uncertainties. Note, the uncertainty on 𝑉 Fitmax is
estimated from our tests of the inclined rotating disc on mock galaxy data.
The uncertainties on all other kinematic parameters presented in this paper
are estimated by propagating the uncertainties on the the LOS stellar velocity
and LOS stellar velocity dispersion taken from the DAP. The uncertainty on
𝑉max Note, the best fit line does not perfectly intersect the peak of the density
contours since the distribution is not symmetric.

value 𝜇 and standard deviation 𝜎. We then transform this distribu-
tion into a model distribution of observed photometric axial ratios
((𝑏/𝑎)modelphot ) by randomly drawing objects from the distribution of

(𝑏/𝑎)modelint , viewing each object with random angles drawn form
the isotropic distribution of viewing angles in 3D space, and calcu-
lating the corresponding observed photometric axis ratios using the
following equation equation taken from Cappellari (2016):

sin(inc) =

√√√√√√√√√1 − (
𝑏
𝑎

)2
phot

1 −
(
𝑏
𝑎

)2
int

. (9)

We compare the model distribution of (𝑏/𝑎)modelphot with the observed
distribution of (𝑏/𝑎)phot for SDSS spheroids, and use lmfit and 𝜒2
minimisation to find the following best-fitting parameters: 𝜇 = 0.71
and 𝜎 = 0.16.
We then calculate inc for each spheroid in our sample by comparing

the mean (𝑏/𝑎)modelint with (𝑏/𝑎)phot (using equation 9). We assume
the galaxy is viewed edge-on (i.e. inc=90◦) if (𝑏/𝑎)phot is less than
the mean (𝑏/𝑎)modelint . Of course, not all galaxies have intrinsic axial
ratios equal to the mean of the distribution, but this approach gives
the correct inclination angle on average across the sample.
We estimate the typical error, from the Bayesian approach, on inc

by experimenting with three values of (𝑏/𝑎)int: first, we adopt the
value 𝜇 − 𝜎 and label the corresponding value of the inclination
inc𝜇−𝜎 ; second, we adopt the value 𝜇 and label the corresponding
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value of the inclination inc𝜇; and last, we adopt the value 𝜇 + 𝜎

and label the corresponding value of the inclination, inc𝜇+𝜎 . We
note that the correct value of the inclination, inctrue, will lie in the
range [inc𝜇−𝜎 , inc𝜇+𝜎] 68 per cent of the time. By considering
equation 9 with fixed (𝑏/𝑎)phot, it is straightforward to show that
sin(inc𝜇+𝜎) ∼ 0.85 sin(inc𝜇) and sin(inc𝜇−𝜎) ∼ 1.37 sin(inc𝜇),
where we have used 𝜇 = 0.71 and 𝜎 = 0.16. The maximum velocity
in the simple method is inversely related to the sine of the inclination
angle (see equation 8), and hence we estimate a typical uncertainty
on 𝑉Simplemax of only 20-30 per cent.

We adopt the Bayesian approach in our fiducial sample since it gives
the most accurate constraints. Nonetheless, we have also rigorously
tested using the other three approaches, just to see how sensitive our
results are to this issue. Happily, all methods yield identical final
conclusions and so our results are incredibly stable to our ignorance
of kinematic inclination angle in spheroids.
We extend the methodology of equation 8 to derive spatially re-

solved circular velocity estimates by rearranging equations 4 as fol-
lows:

𝑉
Simple
c (𝑟) =

𝑉LOS (𝑟, 𝜃) −𝑉sys
cos(𝜃) sin(inc) (10)

where 𝜃 is the angle measured anticlockwise from PAphot in the
plane with inclination angle, inc, and we estimate 𝑉sys as the median
LOS stellar velocity within 1Re. Voxels close to the photometric
minor axis have 𝜃 ∼ 90◦. The function cos(𝜃)−1 is steep in this
regime and tends asymptotically to infinity, so even small errors on
𝜃 can cause very large errors on 𝑉Simplec . We therefore only calculate
𝑉
Simple
c in voxels that are more than 30◦ offset from the minor axes,
and rely on our assumption of axisymmetry when deriving global
parameters in the next section. As in equation 8, we adopt inc =

arccos((𝑏/𝑎)phot) for discs. We adopt the Bayesian approach for
spheroids and have also tested against the following three alternatives:
inc = arccos((𝑏/𝑎)phot), edge-on (inc = 80◦), inc = 60◦. We define
edge-on here as inc = 80◦, rather than inc = 90◦, since 𝜃 is not
defined for true edge-on systems5.

3.3 Kinematic parameters

We study the global quenching of galaxies in this work. We do not
examine the relationship between spatially resolved kinematics and
quenching, since previous works have found that the shutdown of
star formation is governed primarily by processes that affect galaxies
as a whole, rather than processes that operate on local scales within
galaxies (Bluck et al. 2020a,b). Moreover, it is natural and sensible
to start with the more simple problem of global quenching before
examining quenching on spatially resolved scales. In this section,
we define and estimate seven global kinematic parameters that we
use in later sections to study quenching. We also include an eighth
parameter, the global stellar mass (𝑀★), given its prominence in the
quenching literature (e.g. Baldry et al. (2006); Peng et al. (2010,
2012)).
Although the MaNGA survey is designed to map galaxies out to

1.5Re, we find a number of galaxies whose annuli beyond 1Re are
only partially mapped. We therefore measure the global parameters

5 The values of sin(90◦) and sin(80◦) differ by only ∼ 1 per cent, so we
make this pragamatic choice to achieve a well defined lower limit for𝑉 Simplec .
Though somewhat arbitrary, 80◦ is chosen for consistency with our removal
of arccos( (𝑏/𝑎)phot) > 80◦ galaxies in the previous section.

over spaxels within 1Re,kin to ensure that all galaxies have data
measured on the same spatial scales, where 1Re,kin is the locus of
points separated by 1Re from the kinematic centre, measured in the
plane of the kinematic disc. We adopt the 1Re,kin radius rather than
its photometric counterpart to measure the global parameters, since
it reflects the assumed axisymmetry of galaxy kinematics.
The average circular velocity is defined as follows:

𝑉 =

∑(Σ★ · 𝑉c)∑(Σ★)
(11)

whereΣ★ is the stellarmass surface density taken from pipe3d, and𝑉c
is the estimated circular velocity of a given spaxel. Unless otherwise
stated, the sums in this section are defined over all spaxels within
1Re,kin. Large values of 𝑉 relate to galaxies in which the stars orbit
at high speed. This occurs in galaxy discs, where young stars form,
so it is reasonable to expect a relationship between𝑉 and the level of
star formation within galaxies, and perhaps with galaxy quenching.
The average velocity dispersion is similarly defined:

𝜎 =

∑(Σ★ ·
√
3𝜎LOS)∑(Σ★)

(12)

As discussed, we use 𝜎LOS = 𝜎intrinsicLOS when we have a good kine-
matic fit, and 𝜎LOS = 𝜎obsLOS otherwise. The factor of

√
3 converts the

LOS velocity dispersion to the total dispersion in 3D space, with the
implicit assumption that the velocity dispersion vector is isotropic.
This assumption is invalid for individual galaxies (Cappellari 2016),
but it does not introduce a systematic bias and is reasonable on av-
erage since our sample contains ∼ 2000 galaxies with a wide range
of orientations. Previous works have identified a strong relationship
between galaxy quenching and velocity dispersion measured in the
central kpc (Wake et al. 2012; Bluck et al. 2016, 2020a,b). We define
𝜎 within 1Re,kin for consistency with the other parameters in our
set, but we have confirmed that our results hold for both definitions.
We quantify the ratio of ordered to disordered velocity, 𝑉 /𝜎,

which is the kinematic analogue of the disc to bulge mass ratio
(𝐷/𝐵). Prominent spheroidal structures have frequently been asso-
ciated with galaxy quenching (Wuyts et al. 2011; Bell et al. 2012;
Bluck et al. 2014; Omand et al. 2014; Morselli et al. 2017; Pandya
et al. 2017), not least because of the common understanding that
discs are mostly blue whilst spheroids are mostly red (e.g. Cameron
& Driver 2009; Gadotti 2009; Cappellari et al. 2011a; Bell et al.
2012; Lang et al. 2014; Omand et al. 2014; Bluck et al. 2014, 2016).
Nonetheless, 𝐷/𝐵 is a crude descriptor of a how spheroidal a par-
ticular galaxy is. Indeed, Lilly & Carollo (2016) show that a ‘bulge’
can be reproduced in a model of pure disc galaxies in which the disc
scale length increases with time. The kinematic ratio 𝑉 /𝜎, on the
other hand, cleanly separates spheroidal and disc galaxies through
their fundamental difference: discs are rotation-dominated, whilst
spheroids are dispersion-dominated.
We define two parameters that are fundamentally connected to the

physics of stellar orbits: the average specific kinetic energy and the
average specific angular momentum of the stars. The average specific
kinetic energy is defined as follows:

E𝑘 =
KE
𝑀★

=
1
2
· 𝑉2rms (13)

where KE is the total kinetic energy of the stars within 1Re,kin, and
𝑉rms is the root mean square total velocity of the stars within 1Re,kin
(Cappellari 2016), defined as follows:

𝑉rms =

√√√∑ (
Σ★ ·

(
𝑉2c + 3𝜎2LOS

))∑ (Σ★)
. (14)
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A kinematic study of quenching 11

The galaxies in our sample do not show signs of a recent merger
or interaction with a companion galaxy, so we assume that they
are virialised. Invoking the virial theorem, the specific gravitational
potential energy is given by

𝜙G = −2E𝑘 . (15)

The specific gravitational potential energy is technically the mean
mass-weighted gravitational potential experienced by the stellar sys-
tem, and it depends on a galaxy’s dynamical mass. We choose not to
estimate the dynamical mass this way, since the gravitational radius
and virial parameter are largely unknown.
The average specific angular momentum is defined as follows:

𝑗 =

∑(Σ★ · 𝑟 · 𝑉c)∑(Σ★)
(16)

where 𝑟 is the distance of a spaxel (in kpc) from the kinematic centre
in the galaxy plane. The specific angular momentum builds on 𝑉
by accounting for the spatial distribution of the rotation, such that
it distinguishes between galaxies with rotation on large and small
spatial scales.
We include the dimensionless spin parameter, 𝜆, since it is com-

monly used in the literature as a crude classifier of a galaxy’s kine-
matic state. The advantage of this parameter is that it does not rely on
a parametric model of the ordered rotation, and is measured directly
using the observed LOS velocity as follows:

𝜆 =

∑(𝐹 · 𝑟 · |𝑉obs,voxelLOS |)∑ (
𝐹 · 𝑟 ·

√︃
𝑉LOS

2 + 𝜎2LOS

) (17)

where we take F as the 𝑔-band flux of a particular voxel from the
dap. Unlike equations 11-16, the sums in equation 17 are defined
over voxels (rather than spaxels) within 1Re (rather than 1Re,kin)
for consistency with the literature (Emsellem et al. 2007; Cappellari
2016; Graham et al. 2018).We have implicitly corrected for the effect
of beam smearing on velocity dispersion by using 𝜎LOS = 𝜎intrinsicLOS
in the denominator of equation 17 where possible. Similar to the
relationship between 𝑗 and 𝑉 , 𝜆 builds on 𝑉 /𝜎 by accounting for
the spatial distribution of the kinematics.
We briefly mentioned the challenges of measuring the dynamical

mass via the virial theorem. We circumvent these issues by consider-
ing galactic dynamics, rather than energetics. Stellar orbits trace the
total mass within the orbital radius under the assumption of a sim-
ple spherical geometry, by Newton’s first Theorem. We balance the
gravitational force at 1 Re,kin with the centrifugal force and estimate
the dynamical mass within 1Re,kin as follows:

𝑀D = 𝑉2rms,1Re ·
𝑅𝑒

𝐺
=

(
𝑉2c,1Re

+ 3𝜎2LOS,1Re
)
· 𝑅𝑒
𝐺

(18)

where G is the gravitational constant, and the subscript 1 Re makes
explicit that the average is taken over spaxels in a thin elliptical
annulus at 1 Re,kin with total width 0.25Re,kin, rather than over all
the spaxels within 1Re,kin.
Unlike mass estimates from spectroscopy or photometry which

often track only a single phase of mass, 𝑀D tracks all components of
mass, including baryonic (stellar as well as gas in all phases) and dark
matter. This highlights one of the key advantages of a kinematic study
of quenching. Nonetheless, we also include in our parameter set an
estimate of the total stellar mass, 𝑀★, taken from the NSA catalogue.
We adopt the total mass, rather than the mass within 1Re,kin, given
its frequent use in the literature. In the next section, however, we do
briefly consider the total stellar mass within 1Re,kin, which is simply
found by summing Σ★ estimates from pipe3d within an aperture of
the same size.

3.4 Tests: Kinematic scaling relations and connection to
morphology

The ultimate goal of this work is to study the relationship between
the parameters derived in the previous section and galaxy quenching.
Before deploying them in this novel context, we first validate the
parameter set against well established scaling relations, as well as
traditional estimates of galaxy kinematics and morphology.

3.4.1 The (𝜆, 𝜖) plane

In Fig. 4 we show the (𝜆, 𝜖) plane, which has traditionally been used
to separate galaxies by kinematic type (Emsellem et al. 2007, 2011;
Fogarty et al. 2015; Cappellari 2016; Graham et al. 2018;Wang et al.
2020). In each panel we show𝜆 on the y-axis and 𝜖 = 1 − (b/a)phot on
the x-axis. The colour coding, which varies from panel-to-panel, will
be discussed later in this section. We first focus on the distribution
of our galaxy sample in the plane shown with brown density con-
tours, and examine its relation to theoretical predictions and previous
observations.
The (𝜆, 𝜖) plane reveals two kinematic populations. First, we iden-

tify the population of fast rotators. These galaxies have large 𝜆 and
the brown density contours show that they are distributed consistently
with the theoretical prediction for rotators with anisotropy parameter
𝛿 < 0.7𝜖intr, where 𝜖intr is the intrinsic ellipticity (Cappellari et al.
2007). To see this, we include themagenta linewhich is the prediction
for a 𝛿 = 0.7𝜖intr rotator viewed edge-on, and the black dotted lines
which are the tracks of these same galaxies with fixed 𝜖intr as they
are viewed at decreasing inclination angle, reaching (𝜆, 𝜖) = (0, 0)
for face-on systems. For comparison, we show in lime green the the-
oretical prediction for edge-on isotropic rotators (Binney 2005) and
note that many galaxies have 𝜆 below this line, which shows that their
flattening cannot be entirely explained by rotation and that it must be
due partially to velocity anisotropy. Second, we identify the popula-
tion of slow rotators. These galaxies have small 𝜆 and 𝜖 and lie in the
slow rotator region parameterised by Emsellem et al. (2011), which
is bounded by two red lines in the lower left corner of each panel in
Fig. 4. The key point is that our sample includes both fast rotators
and slow rotators, thus spanning the full range of kinematic states.
We note the lack of galaxies with 𝜖 < 0.1, which is a direct conse-
quence of our removing all galaxies with arccos((𝑏/𝑎)phot) < 25◦
in Section 3.1.
In the left and central panels of Fig. 4 we compare the dimen-

sionless spin parameter with two alternative kinematic classifiers of
galaxy type. In the left panel, we colour code the (𝜆, 𝜖) plane by the
fraction of galaxies with velocity maps that are visually suggestive of
rotation. This classification is different to our inspection of the fits in
Section 3.1. Here, we are not concerned with the quality of the fit per
se, but with answering the following question: which of the dap LOS
velocity maps exhibit velocity gradients that are typical of galaxy
rotation? Answering this question for a specific galaxy is somewhat
subjective, but the general distribution of these galaxies in the (𝜆, 𝜖)
plane is striking. Almost all galaxies in the fast rotator region show
clear visual evidence of rotation, whilst those in the slow rotator re-
gion often do not appear to be rotating. This consistency check is not
surprising, since the dimensionless spin parameter and our visual in-
spection are both measurements made directly on the observed data,
but it does demonstrate the dimensionless spin parameter’s success
as a scalar, non-parametric quantity capable of classifying galaxies.
In the central panel, we colour code the (𝜆, 𝜖) plane by the good fit

fraction, which is the fraction of galaxies whose kinematics are con-
sistent with the inclined rotating disc model. This parameter varies
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Figure 4. The (𝜆, 𝜖 ) plane. For all panels, the green line is the prediction for an edge-on isotropic rotator (Binney 2005), and the magenta line is the prediction
for an edge-on rotator with anisotropy parameter 𝛿 = 0.7𝜖intr (Cappellari et al. 2007). The black dotted lines show how galaxies lying on the magenta line
with a fixed intrinsic ellipticity appear as they are viewed at decreasing inclination angle - i.e. from edge-on to face-on. The red lines in the lower-left corner of
each panel mark the slow rotator region (Emsellem et al. 2011), and linearly spaced brown contours depict the density of galaxies in the plane. Left panel: The
hexagons are colour coded by the fraction of galaxies that are visually determined to show ordered rotation. Slow rotator-classified galaxies often don’t appear to
be rotating, whilst almost all fast rotator-classified galaxies show visual evidence of rotation. The red error bars represent the 1𝜎err uncertainties. Central panel:
The hexagons are colour coded by the fraction of galaxies that are well fit by our kinematic model. We are able to fit fast rotators but not slow rotators, and our
ability to fit fast rotators increases with 𝜆. This good agreement between our kinematic model and the (𝜆, 𝜖 ) plane is a clear success of our method. Right panel:
The hexagons are colour coded by the mean Sérsic index. This panel highlights the connection between kinematics and morphology: high Sérsic index galaxies
are generally slow rotators and low Sersic index are fast rotators. Yet there is a considerable population of high Sérsic index fast rotators, rendering the Sérsic
index parameter an imperfect proxy of galaxy kinematics.

Figure 5. Kinematic scaling relations. Left panel: The TF relation for disc galaxies (i.e. Sérsic index less than two).Middle panel: The FJ relation for spheroidal
galaxies (i.e. Sérsic index greater than three). Fast rotator spheroidal galaxies lie above the FJ relation and skew the contours, further highlighting the limitations
of Sérsic index as a proxy of galaxy kinematics. Right panel: The new Mass-Velocity (MV) relation, which is shown for all morphological galaxy types (i.e. all
Sérsic indices). In each panel, we display the gradient (m), intercept (c) and root mean square error (RMSE) of linear regression fits (ODR) to the relations, and
show the best fit and ±1 𝜎 scatter lines with solid and dashed black lines respectively. We also report the Pearson correlation coefficient (𝜌). The red error bars
represent the 1𝜎err uncertainties. Linearly spaced density contours are shown in all panels. The MV relation is tighter (i.e. it has lower RMSE) and has a higher
Pearson correlation strength than either of the TF and FJ relations.
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significantly in the plane, such that galaxies in the slow rotator region
are inconsistent with the inclined disc rotation model, whilst those
in the fast rotator region show good consistency, with the fraction
of well fit fast rotators increasing with 𝜆. In other words, our model
is able to describe the kinematics of fast rotators, but not of slow
rotators. Consistency (or lack thereof) with the inclined rotating disc
model is therefore a powerful way to constrain a galaxy’s kinematic
type. We stress that the (𝜆, 𝜖) method for classifying galaxies is inde-
pendent of our kinematic modelling. The good agreement between
the two approaches is thus a clear success of our method.
In the right panel, we colour code the (𝜆, 𝜖) plane by nSérsic to

directly compare galaxy kinematics and morphology. The Sérsic
index probes the concentration of a galaxy’s brightness profile, such
that galaxies with a prominent bulge typically have nSérsic > 3,
whilst disc galaxies typically have nSérsic < 2, with intermediate
bulge plus disc systems occupying the range 2 < nSérsic < 3. To
first order, Fig. 4 shows good agreement between nSérsic and galaxy
kinematics. Galaxies with high nSérsic are mostly located in the slow
rotator region, whilst those with low nSérsic are mostly located in
the fast rotator region. In other words, photometric discs tend to
be fast rotators and photometric spheroids tend to be slow rotators.
This result supports the extensive use of nSérsic to separate the two
galaxy types. The relationship is imperfect, however, and we find a
significant population of high nSérsic photometric spheroids in the
fast rotator region of the (𝜆, 𝜖) plane. This second order effect is
one of the key motivations of this work, where we attempt to study
galaxy evolution through direct probes of galaxy kinematics, without
relying on imperfect morphological proxies such as nSérsic.
Overall, we stress the good consistency between crude non-

parametric kinematics (𝜆), detailed kinematic modelling, and mor-
phology (nSérsic), where slow rotators generally have low 𝜆, low
𝑉 /𝜎 and large nSérsic, whilst fast rotators generally have large 𝜆,
large 𝑉 /𝜎 and low nSérsic. Sérsic index and 𝜆 are well established
classifiers of galaxy type, so we highlight this result as a major suc-
cess of our kinematic modelling.

3.4.2 Stellar mass-kinematics scaling relations

There are a number of kinematic scaling relations that have a long
precedent in the literature (Tully & Fisher 1977; Faber & Jackson
1976) and it is important to test that they are consistent with our kine-
matic estimates. In Fig. 5 we show galaxy kinematics as a function of
stellar mass. In each panel we report gradients and intercepts of the
scaling relations, as well as the scatter about the best fit lines, with all
of the best fit lines determined using orthogonal distance regression
(ODR).We compare our gradients to results fromAquino-Ortíz et al.
(2020), which were also calibrated using IFU data from the MaNGA
and CALIFA surveys (Aquino-Ortíz et al. 2018), though we do not
compare intercepts, since these are highly dependent on a number of
assumptions, such as the IMF, the assumed templates used in SED
fitting, and the spatial scale over which 𝑀★ is determined.
In the left panel we show the M★ − Vmax relation, commonly

known as the Tully-Fisher (TF) relation (Tully & Fisher 1977), with
𝑀★ on the y-axis and𝑉max on the x-axis. The TF relation is generally
associatedwith disc galaxies, sowe only consider thosewith nSérsic <
2. There is a strong positive correlation between 𝑉max and 𝑀★, with
low scatter. The gradient of the best fit line is in relatively good
agreement with those of Aquino-Ortíz et al. (2018) (m = 3.3) and
Aquino-Ortíz et al. (2020) (m = 3.2), and is consistent with Avila-
Reese et al. (2008) within the scatter (m = 3.7), with whom Aquino-
Ortíz et al. (2020) compare. In the middle panel, we examine the

M★ − 𝜎obsLOS relation for nSérsic > 3 photometric spheroids, with 𝑀★

on the y-axis and𝜎obsLOS on the x-axis, where𝜎
obs
LOS is the linear average

of the observed LOS velocity dispersion. This relationship is referred
to as the Faber-Jackson (FJ) relation (Faber & Jackson 1976). Note,
we do not mass-weight the average or correct the velocity dispersion
for the effect of differential disc rotation to enable a fair comparison
with Aquino-Ortíz et al. (2018, 2020). We observe a strong positive
correlation between 𝑀★ and 𝜎obsLOS, with scatter similar to the TF.
The slight offset between the peak of the density contours and the
best fit line is caused by a population of high 𝑉 /𝜎 galaxies lying
above the FJ relationship. Once again, we find good consistency
with Aquino-Ortíz et al. (2018) (m = 3.2) and (Aquino-Ortíz et al.
2020) (m = 3.1). We emphasise that the good agreement between
our kinematic estimates and these well established TF and FJ scaling
relations is an important check on our method, and builds confidence
in our kinematic parameter set.
We seek an extension of the TF and FJ relations that includes

both photometric discs and spheroids. The underlying physics of
the TF and FJ is the virial theorem, so a natural progression is the
relationship between the total velocity (both disordered and ordered,
i.e. 𝑉rms, recall its definition in equation 14) and stellar mass, which
we call the Mass-Velocity (MV) relation. In the right panel of Fig.
5, we compare stellar mass on the y-axis with 𝑉rms on the x-axis.
In this diagram, photometric spheroids and photometric discs form
a single population, in which 𝑀★ is highly dependent on 𝑉rms, with
low scatter.
We note that there is a slight offset between spheroids and discs in

theMV relation, such that discs have larger𝑀★ /𝑉rms than spheroids,
which is likely a consequence of spheroids being more compact than
discs at fixed mass (van der Wel et al. 2014). We have neglected this
effect in our first order application of the virial theorem, and do not
consider the gravitational radii or the virial parameters of individual
galaxies. Nonetheless, this offset is small, and we find that the MV
relation is tighter, and has a higher Pearson correlation strength,
than either the TF and FJ, which is particularly impressive given its
application to the full range of galaxy types.
Summarising, the analysis in this section confirm that our kine-

matic measurements are reliable and indeed even more effective than
the simpler alternatives from the literature.

3.4.3 Dynamical mass vs stellar mass

In Fig. 6 we show the relationship between dynamical mass derived
via equation 18 and stellar mass measured within 1Re,kin by inte-
gratingΣ★ from pipe3d,M★(< Re,kin). As expected, we find a strong
positive correlation between the two mass estimates (𝜌 = 0.83) and
low scatter about the linear best fit line (RMSE = 0.21 dex). Dy-
namical mass traces all components of mass, including stellar, gas
(molecular, neutral and ionised) and dark matter, so we expect 𝑀D to
exceed M★(< Re,kin). Indeed, 𝑀D exceeds M★(< Re,kin) by more
than 0.5 dex, which is an important success of our kinematic mod-
elling.

4 RESULTS

In this section, we explore the connection between galaxy kinematics
and quenching using the global kinematic parameter set derived and
validated for 1862 MaNGA galaxies in the previous section.
We comment at the outset that our galaxy sample contains both

centrals (∼ 75 per cent) and satellites (∼ 25 per cent), as classified
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Figure 6. A comparison of our dynamical mass estimates, calculated within
1Re,kin, and stellar mass estimates within 1Re,kin, calculated by integrating
the Pipe3D stellar mass surface density maps. The two mass estimates are
therefore compared on the same spatial scales. The estimates are strongly
correlated with low scatter, and the dynamical mass consistently exceeds the
stellar mass, as expected. We display the gradient (m), intercept (c) and root
mean square error (RMSE) of linear regression fits (ODR) to the relations.
We also report the Pearson correlation coefficient (𝜌). We show the best fit
and ±1 𝜎 scatter lines with solid and dashed black lines respectively, and we
show the 1:1 relationship in solid red. The red error bars represent the 1𝜎err
uncertainties.

by Yang et al. (2007). It is commonly thought that internal processes
quench centrals and environmental processes quench satellites (Peng
et al. 2010, 2012), and hence it would be best to analyse the two
galaxy types separately. Consequently, we have applied the analysis
in this section to a pure sample of centrals, and we confirm that our
key results are robust to this test. However, there are too few galaxies
to perform a statistically robust analysis of a pure sample of satellites.
We therefore analyse centrals and satellites together and leave a full
separate analysis of both galaxy types for later work. This decision
is supported by Bluck et al. (2020b), who show that environmental
effects dominate galaxy quenching only in low mass satellites. In the
high mass regime analysed in this work, they find that centrals and
satellites quench similarly, which implies that they can be analysed
together.

4.1 Star forming and quenched classification

We must first define the star forming and quenched populations. The
most common approach is to consider the distribution of galaxies in
the local SFR − 𝑀★ plane, and to define galaxies that lie on the star
forming main sequence (SFMS) as star forming and those that have
SFR considerably offset below the SFMS as quenched or passive.
We construct the classification scheme using a statistically robust

and representative sample of SFR and 𝑀★ estimates for galaxies
drawn from the SDSS, which is the parent sample of MaNGA. In
the left panel of Fig. 7 we show the distribution in the SFR − 𝑀★

plane of ∼ 250, 000 SDSS galaxies with redshift 𝑧 < 0.085. We
apply the redshift cut for consistency with Renzini & Peng (2015),
who used these data to characterise the SFMS, but we note that this

cut is approximately the same as the redshift range in our sample.
The black linearly spaced density contours are strongly bimodal; star
forming galaxies reside in the upper density peak, whilst quenched
galaxies reside in the lower density peak. We show the best fit to the
SFMS from Renzini & Peng (2015) in solid magenta and note its
explicit form:

log
(
SFRMS
M� yr−1

)
= 0.76 × log

(
𝑀★

M�

)
− 7.64. (19)

The uncertainty on the linear coefficients is ∼1-2 per cent (Renzini
& Peng 2015). As expected, the best fit line tracks the ridge of the
star forming density contours.
We define a galaxy’s logarithmic offset from the SFMS as follows,

as in Bluck et al. (2014, 2016):

ΔSFR = log(SFR) − log(SFRMS). (20)

We colour code hexagonal bins in the SFR − 𝑀★ plane by ΔSFR
and note that all star forming galaxies in the upper density peak have
ΔSFR ∼ 0 (coloured blue), whilst all quenched galaxies in the lower
density peak have ΔSFR < −1 dex (coloured red). The offset from
the main sequence thus unambiguously separates star forming and
quenched galaxies.
The 1D distribution of ΔSFR shown in the right panel of Fig.

7 emphasises the bimodalidy of star forming and quenched galaxy
properties.We observe peaks atΔSFR = 0 dex andΔSFR = −1.8 dex
corresponding to star forming and quenched galaxies, respectively.
It is important to note that Brinchmann et al. (2004) calculate SFR
using a combination of emission line diagnostics and D4000 where
possible, but that they fix sSFR of quenched galaxies with low SNR
emission lines at log(sSFR / [yr−1]) = −12, which is strictly an
upper limit. The peak at ΔSFR = −1.8 dex is therefore slightly
misleading, and the true distribution is more accurately thought of
as a long tail tending to SFR=0, or ΔSFR = −∞ dex.
We use the distribution of ΔSFR to build a quantitative classifica-

tion of star forming and quenched systems. The dotted magenta line
in the right panel of Fig. 7 marks the minimum of the 1D density
distribution, at ΔSFR = −1 dex. This boundary effectively separates
the star forming and quenched peaks. Galaxies with intermediate
ΔSFR ∼ −1 dex are commonly referred to as green valley galax-
ies and are thought to be in the process of quenching (Wyder et al.
2007;Martin et al. 2007; Schawinski et al. 2014). Green valley galax-
ies cannot be uniquely associated with either of the star forming or
quenched populations, so we introduce a 0.6 dex buffer region and
partition the ΔSFR distribution into the following three regimes:

(i) Quenched/Passive (Q/Pa): ΔSFR < −1.3 dex
(ii) Green Valley (GV): −1.3 dex < ΔSFR < −0.7 dex
(iii) Star forming (SF): ΔSFR > −0.7 dex

We have checked that our results are not strongly dependent on the
precise values of these cuts. We mark the star forming, green valley
and quenched regions of the ΔSFR distribution in blue, green and
red, respectively.

4.2 General relationship between star formation and
kinematics

In this sub-section, we visualise the data and present simple quan-
titative analyses, before adopting rigorous statistical techniques in
Sections 4.3 and 4.4.
In Fig. 8, we collapse the SFR − 𝑀★ plane into a 1D problem,

and compare ΔSFR (i.e. star forming state) on the y-axis with the
parameter being investigated on the x-axis. The bimodal distribution
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Figure 7. The star forming/quenched classification scheme. Left panel: The global star forming main sequence for SDSS galaxies (𝑧 < 0.085), with linearly
spaced density contours shown in black. The solid magenta line is the Renzini & Peng (2015) fit to the main sequence, and the dotted magenta line marks the
minimum of the ΔSFR histogram, 1 dex below the main sequence (see right hand panel). The hexagons are colour coded by their logarithmic offset from the
main sequence, ΔSFR, which cleanly separates the star forming galaxies in the upper density peak from the passive galaxies in the lower density peak. Note,
SFR of many passive galaxies is strictly an upper limit set at log(sSFR / [yr−1 ]) = −12. Right panel: The 1D distribution of ΔSFR for SDSS galaxies. The
dotted magenta line marks the minimum of the bimodal distribution at ΔSFR = −1 dex. The star forming, green valley and quenched regions are shown in blue,
green and red, respectively. In the legend, we quote the number of star forming, green valley and quenched MaNGA (i.e. rather than SDSS) galaxies analysed in
this study. In both panels the red error bars represent the 1𝜎err uncertainties.

of galaxies is visible in each panel, where we observe a star forming
(coloured blue) and quenched (coloured red) density peak at high
and low ΔSFR, respectively. We are looking for parameters that are
effective at separating these two peaks along the x-axis. Of course, no
single parameter is able to perfectly predict a galaxy’s star forming
state, but Fig. 8 does show a range of behaviour that can be used to
rank the parameters.
In the upper left panel, for example, we observe the star forming

density peak at low 𝜎 and the quenched density peak at high 𝜎, and
the two density contours show little overlap when compared with
other panels. Contrast this with behaviour of 𝑉 in the lower right
panel, where the star forming and quenched density contours overlap
significantly. This suggests that 𝜎 is more closely related than 𝑉 to
galaxy quenching.
Visually comparing the absolute separation along the x-axis of the

density contours in each panel is flawed since the parameters have
different dynamic ranges. We must first normalise the absolute sepa-
ration of each parameter by its variability to make a fair comparison,
which we achieve by introducing the following parameter (similar to
Bluck et al. (2020a)):

ΔSF |Q =
med(X)Q −med(X)SF

IQR(X) (21)

where med(X)Q and med(X)SF are the median values of parame-
ter 𝑋 for the quenched and star forming populations, respectively,
and IQR(𝑋) is the interquartile range of parameter 𝑋 for the full
population, including both star forming and quenched galaxies.
We report ΔSF |Q in each panel of Fig. 8 and arrange the panels

in order of decreasing ΔSF |Q, from left to right and top to bottom.
Of all the parameters, the star forming and quenched systems differ
most in terms of their average velocity dispersion. This is our first
quantitative evidence of 𝜎’s significant role in galaxy quenching.

The ΔSF |Q statistic shows that other parameters are also effective at
predicting quenching. Indeed, E𝑘 has ΔSF |Q similar to that of 𝜎, and
six of the eight parameters have ΔSF |Q > 0.5. Although these six
parameters separate the star forming and quenched populations, we
stress that both 𝜎 and E𝑘 have larger ΔSF |Q than𝑀★. This shows that
galaxy kinematics are more effective at predicting quenching than a
photometric measurement of stellar mass.
There are two parameters, however, with significantly lower ΔSF |Q

that seem totaly unrelated to quenching: 𝑉 and 𝑗 . Interestingly, these
are the only two parameters that are completely independent of veloc-
ity dispersion; the stellarmass is related to𝜎 by the viral theorem, and
all other parameters have an explicit dependence on velocity disper-
sion, as outlined in Section 3.3. One may naively expect galaxies that
have massive discs (i.e. large 𝑉 and 𝑗) to be star forming since discs
are commonly the site of molecular gas and active star formation.
Nonetheless, we find a number of these galaxies in the quenched pop-
ulation, which shows that quenching is governed not by properties of
the disc, but rather by properties of the bulge/spheroidal component,
as quantified by the average velocity dispersion. Thus, star formation
and quenching appear to be distinct physical phenomenon (see Bluck
et al. (2020a) for further evidence).

4.3 Random forest analysis

The distribution of ΔSFR in Fig. 8 demonstrates that the star form-
ing state of galaxies is bimodal. Moreover, the ΔSFR values in the
quenched population are mostly upper limits, and so there is no infor-
mation in their specific numerical values. Hence the study of galaxy
quenching is more concerned with the classification of a galaxy (i.e.
star forming or quenched) rather than its specific value of ΔSFR. In
this section, we use a random forest classifier, which is a machine
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Figure 8. The relationship between star forming state, as expressed by ΔSFR, and each of our kinematic parameters. In each panel, linearly spaced density
contours are shown in black, and the boundary between the star forming (coloured blue) and quenched (coloured red) populations at ΔSFR = −1 dex is shown
with a dotted magenta line. The red error bars represent the 1𝜎err uncertainties. The panels are arranged from left to right and top to bottom in order of
decreasing ΔSF|Q. Parameters with large ΔSF|Q separate the star forming and passive populations along the x-axis and are likely associated with quenching,
whilst parameters with low ΔSF|Q show degeneracies across the two populations (i.e. both star forming and passive galaxies existing at a given fixed parameter)
and are hence not associated with quenching.

learning algorithm, to quantify the importance of each parameter in
the quenching process.
We repeat the analysis in Appendix B, where we conduct the

following tests: only analysing galaxies that have good fits, without
using the simple method at all; using the simple method for all
galaxies, even for those that have a good kinematic fit; only trusting
fits that are successfulwhen assuming the Sérsic fluxmap; and finally,
testing the role of differential measurement uncertainty, where we
find that no feasible level of uncertainty on our measurement of 𝑉
could havewrongly led to our conclusion that𝜎 is themost important
parameter. We confirm in advance that the key results of this section
are completely stable to all of these tests.

4.3.1 Random forest method

A random forest is a machine learning algorithm that is able to
identify non-linear features in multidimensional data that are use-
ful for classification. The algorithm is trained using data that has
previously been classified with ‘truth’ labels (i.e. ‘training data’),
and in most applications, the trained random forest is then used to
predict the classification state of new, unseen data. In our work,
we train a random forest to identify features in our parameter set
(𝑉, 𝜎, 𝑉 /𝜎, E𝑘 , 𝑗 , 𝜆, 𝑀D, and 𝑀★) that are useful for predicting
the star forming state of a galaxy, i.e. star forming or quenched. Our
goal is not to use the trained algorithm to predict the star forma-
tion state of new galaxies that do no yet have ΔSFR estimates, but

rather to compare the relative importance of each parameter in the
classification scheme.
We briefly review the methodology of the random forest algo-

rithm, and we refer the interested reader to Bluck et al. (2020b) for a
full discussion. A random forest consists of a number of individual
decision trees that ask a series of binary questions to categorise data.
The input data for each decision tree is found by bootstrapped ran-
dom sampling with return, so each decision tree in the random forest
produces subtly different results. This encourages the algorithm to
learn general features of the data, rather than those that are unique to
a particular sample.
Each fork in a decision tree tests the validity of a simple inequality

statement relating to a single parameter. As an example, a decision
fork in our work may ask ‘does the galaxy have 𝜎 > 220 km s−1?’
This fork would split the galaxies into two groups, or nodes: those
that have 𝜎 > 220 km s−1 and those that do not. Starting from the
top of the tree, at the parent node with the full sample of training
data, the random forest algorithm identifies the feature and criterion
that maximises the reduction in impurity, which is quantified using
the Gini coefficient.
The Gini coefficient of a particular node 𝑛 is given by

𝐼G (𝑛) = 1 −
𝑖=2∑︁
𝑖=1

(
𝑝𝑖 (𝑛)2

)
, (22)

where 𝑝𝑖 is the probability of randomly selecting an object with
classification state 𝑖. The summation in equation 22 spans the two
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classification states in thiswork, star forming and quenched. Inwords,
theGini coefficient of a node gives the probability of a random sample
being labelled inaccurately if it is labelled in accordance with the
distribution of samples in the node.
Each decision fork splits the sample into two nodes, where the

process is repeated. This could continue indefinitely until the final
nodes, leaf nodes, contain pure samples of the two classification
states (either all quenched or all star forming in our case), but we
terminate the random forest before it achieves these pure leaf nodes to
prevent overfitting. Impure leaf nodes, containing at least one object
of each classification state, are classified by the modal truth value of
their training data. We can then use the trained algorithm to classify
new data, where the classification of a particular object is given by
the mean classification of its leaf node modal values across all of the
trees in the forest.
There are alternative machine learning algorithms that could be

used for this work, but we choose the random forest algorithm since it
has a transparent and simple methodology for mapping multidimen-
sional features of the data into a classification state. At each node,
the random forest selects the most effective parameter for separating
the two classification states. We can quantify the reduction in Gini
coefficient that is associated with each parameter in a tree and av-
erage across all trees in the forest to find the relative importance of
each parameter in the overall classification scheme. The parameter
with the largest relative importance is responsible for the greatest re-
duction of impurity in the data. The random forest algorithm is thus
not only an effective predictive tool, but also a powerful system for
objectively ranking the importance of features in multidimensional
data.
We perform the random forest classification using the

randomforest-classifier from the scikit-learn6 python package.
We remove green valley galaxies from our sample in this section due
to their ambiguous classification, and randomly select two equally
sized samples of star forming and quenched objects. We note that
keeping the green valley galaxies in the sample, and simply clas-
sifying those with ΔSFR < −1 dex as quenched and those with
ΔSFR > −1 dex as star forming, does not have a significant impact
on our results. It is important that the data have equal numbers of
star forming and quenched galaxies to ensure that the algorithm is
not biased towards learning the features of only one galaxy type. We
construct the largest possible balanced sample of 1494 galaxies, con-
taining 747 star forming and 747 quenched objects, and split it into
two equally sized training and testing samples. Our random forest
has 250 trees per forest, and we allow each tree to have a maximum
of 250 nodes.
We perform the random forest analysis with max-features set to

‘All’7, which allows each fork in the decision tree to consider all of
the parameters when choosing the optimal split to reduce the Gini
coefficient. We fine tune the min-samples-leaf parameter, reducing
it as far as possible to improve the algorithm performance without
inducing overfitting. We use the area under the receiver operating
curve parameter, AUC, to quantify the performance of the algorithm,
and compare the relative performance of the algorithm in classifying
the training and testing data sets via the difference in their respective
AUC values, ΔAUC = AUCTraining − AUCTesting. A large value of
ΔAUCconfirms that themodel is significantly better at describing the
training data, which it has seen, than the testing data, which it has not

6 https://www.scikit-learn.org
7 Formally, this is achieved by setting max-features to ‘None’ within the
randomforest-classifier function.

seen. This suggests that the algorithm is learning pathologies unique
to the training data rather than true features of the galaxy population,
an effect known as overfitting. The likelihood of overfitting increases
as we allow the algorithm to form increasingly small leaf nodes.
We therefore decrease min-samples-leaf as far as possible whilst
ensuring that the algorithm performs similarly for the training and
testing data, as quantified by our constraint ΔAUC < 0.02. We find
an optimal min-samples-leaf value of 40.
The random forest returns a single scalar value quantifying the

relative importance of each parameter. We repeat the analysis 10
times to estimate its uncertainty. In each run, we choose a new
random sample of 1494 galaxies containing equal numbers of star
forming and quenched objects, and redefine the training and testing
sample. We take the mean relative importance of each parameter
across the 10 runs as the typical value, and the standard deviation of
the relative importance as the typical uncertainty. We similarly use
the 10 runs to calculate the typical performance of the model and
its uncertainty. The final trained model has a testing performance
AUCTesting = 0.92 ± 0.01, which is commonly considered to be
outstanding (Teimoorinia et al. 2016). This impressive performance
suggests that the parameters investigated in this paper contain the
vast majority of the information required to predict the star forming
state of a galaxy. In other words, our parameter set is not missing any
measurements that are crucial to predict quenching to a very high
level of accuracy..

4.3.2 Random forest results

In Fig. 9 we show the relative importance of each parameter for
predicting the star forming state of galaxies. We organise the pa-
rameters along the x-axis in order of decreasing relative importance
and include a random variable for scale. The random variable, which
is completely disconnected from galaxy quenching by design, is the
clear loser with relative importance consistent with zero, as expected.
Once again, we find that 𝜎 is the most important parameter for

predicting quenching. Indeed, 𝜎 is at least 10 times more important
than any other parameter in the set, and 𝜎 is classified as the most
important parameter with confidence level greater than 20𝜎err.
The remaining parameters only play a marginal role in predicting

the star forming state of galaxies. One might naively expect parame-
ters that consider both the ordered and disordered components of the
velocity to have the best predictive power. After all, they include the
same information as 𝜎 as well as extra information about the ordered
rotation. The reduced predictive power of E𝑘 , 𝜆 and 𝑉 /𝜎 relative
to 𝜎, however, shows that adding information about the ordered stel-
lar motion actually 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠 the predictive power, and is akin to
adding noise. This is supported by the poor performance of𝑉 and 𝑗 in
the random forest, which have relative importances only marginally
better than the random parameter. This once again demonstrates that
parameters that relate exclusively to the disc properties have little
predictive power over quenching.
The added insight of Fig. 9 is that galaxy quenching is not strongly

dependent on the ratio of ordered to disordered motion either, as
expressed by both 𝜆 and𝑉 /𝜎. We remind the reader that the dimen-
sionless spin parameter is measured independently of our kinematic
modelling. Thus even if our kinematic modelling is unsuccessful, the
enhanced predictive power of 𝜎 relative to 𝜆 conclusively demon-
strates that it is the absolute level of velocity dispersion that is impor-
tant for predicting quenching, not the relative levels of ordered and
disordered velocity.
We recognise that we have allowed the random forest to consider

all of the parameters at each decision fork and that this approach
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Figure 9. A random forest classification to quantify the relative importance
of kinematic parameters for predicting the star forming state of galaxies. We
arrange the parameters along the x-axis in order of decreasing relative im-
portance, and we include the relative importance of a random variable, Rdm,
for scale. The black error bars indicate the scatter in the relative importances
across ten bootstrapped random training sets. The Spearman rank correlation
strength between each parameter and the most important parameter, the av-
erage velocity dispersion, is printed above each bar to highlight the strong
correlations within the parameter set. We report the AUC values for the train-
ing and testing sets, both of which are greater than 0.9, which is commonly
considered to be outstanding. The colour of each bar indicates the category of
the parameter under investigation, as shown in the legend. The ‘Ordered Com-
ponent Only’ category contains 𝜎, the ‘Both Components’ category includes
𝜆, 𝑉 / 𝜎, 𝑀★, E𝑘 and 𝑀D, and the ‘Disordered Component Only’ includes
𝑉 and 𝑗 . We present a pie chart chart showing the combined relative impor-
tance of the parameters in each category. The random forest analysis clearly
shows that 𝜎 is overwhelmingly the most important parameter for predicting
galaxy quenching, and all other parameters are relatively insignificant.

is generally more susceptible to bias than versions of the random
forest algorithm that consider only a subset of the parameters at each
decision fork. The tests of Appendix B are thus an important check,
and they demonstrate that the result in Fig. 9 is not caused by the
random forest interpreting pathologies in our kinematic parameter
set. We have also repeated the random forest analyses with max-
features set to ‘Sqrt’, which allows each fork in the decision trees
to consider only a random sample of the square root of the number
of parameters when choosing the optimal split for reducing the Gini
coefficient. Unlike the analysis in Fig. 9, 𝜎 is often unavailable to
the decision forks, so the random forest gives increased importance
to secondary parameters that are correlated with 𝜎 (Piotrowska et al.
2021). However, the key result is unchanged and 𝜎 is once again
identified as the most important parameter for quenching.
Our kinematic parameters display strong inter-correlations. To see

this, we report the Spearman rank correlation coefficient of each
parameter with 𝜎, the most important parameter in our set, above
each bar in Fig. 9. The power of our random forest analysis with
max-features set to ‘All’ lies in the way it simultaneously compares
all of our kinematic parameters and evaluates their importance for

predicting quenching in a competitive framework. Thus, although
a parameter such as the specific kinetic energy is highly correlated
with the velocity dispersion and therefore is a good predictor of
quenching, the random forest recognises that 𝜎 is the fundamental
parameter and that the additional knowledge of E𝑘 does little to
improve the predictive power.

4.4 Correlation analysis and quenching angle

In this section, we perform a correlation analysis to identify the most
important parameter for quenching. This approach tests the random
forest results, using a simpler (and hence more familiar) technique.
It also contains the potential for a simple visual presentation, which
we take advantage of.
We quantify the degree of correlation using the Spearman rank

correlation coefficient. The Spearman rank correlation coefficient
between two variables, X and Y, is given by the Pearson correlation
coefficient between the rank order statistics of X and Y. We adopt
the Spearman rank correlation rather than the Pearson correlation,
since the Pearson correlation is a measure of the linear relationship
between two variables, which is not appropriate for our highly non-
linear data.
A strong correlation coefficient suggests an association between

two variables, such that Y changes as X changes, but it does not
necessarily imply a fundamental relationship. This is particularly
true in multidimensional data with high degrees of inter-correlations,
such as the data in this work. For example, parameters X and Y may
appear to be highly correlated simply due to their both having strong
correlations with a third, confounding parameter, Z.
We introduce the partial correlation coefficient to assess the influ-

ence of confounding variables. The partial correlation coefficient is
defined as follows:

𝜌𝑋,𝑌 |𝑍 =
𝜌𝑋,𝑌 − 𝜌𝑋,𝑍 𝜌𝑌 ,𝑍√︃
1 − 𝜌2

𝑋,𝑍

√︃
1 − 𝜌2

𝑌 ,𝑍

(23)

where 𝜌𝑋,𝑌 is the Spearman rank correlation coefficient between
parameters X and Y. The partial correlation coefficient, 𝜌𝑋,𝑌 |𝑍 , is
the degree of correlation betweenX andYwhilst a third parameter, Z,
is held constant. A significant 𝜌𝑋,𝑌 |𝑍 thus rules out the possibility
that the confounding parameter Z is the cause of the correlation
between X and Y.
One may worry that there might be a confounding variable that is

not part of our parameter set. Of course, we cannot use the partial
correlation analysis to test for an unknown confounding parameter,
but we note that this issue holds for any parameter set that we may
choose to define, regardless of its size and breadth of quantities. We
thus do not consider it further, and we remind the reader that we have
chosen a broad set of physically motivated kinematic parameters that
have a high AUC value in the random forest, which suggests that
there are no crucial parameters missing from our set.
In Fig. 10 we show the correlation strength between 𝜎 and ΔSFR

in light red shaded bars, and the correlation strength between the
remaining parameters and ΔSFR with light blue shaded bars. The
light red shaded bar is repeated for each of the remaining param-
eters, which will be useful for the partial correlation analysis. The
uncertainty on each bar is given by the standard deviation of 100
estimates of the correlation using bootstrapped random sampling
with return, and the y-axis is oriented with increasingly negative
correlation strength from bottom to top, such that the height of a
bar above the x-axis correlates with the degree of quenching (i.e.
negative ΔSFR). We use 𝜆−1,

(
𝑉
)−1, ( 𝑗 )−1 and 𝜎 /𝑉 , rather than
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Figure 10. Full and partial correlation analysis of galaxy quenching. Correlation strengths are shown on the y-axis, and the parameter set is arranged along the
x-axis in groups of two, comparing the performance of each parameter to that of the average velocity dispersion. The y-axis is inverted such that taller bars
represent stronger positive correlations with quenching. The black error bars indicate the scatter in correlation strengths across 100 bootstrapped random samples.
We show the full correlation strength between each parameter and ΔSFR using light shaded bars. The solid bars show the partial correlation strengths between
the parameter in question and ΔSFR, whilst holding the second parameter in the pair fixed. The pairings are arranged in order of decreasing partial correlation
strength with quenching, at fixed velocity dispersion. Quenching is more correlated with velocity dispersion (both full and partial correlation strengths) than
with any other parameter. Furthermore, the correlation strengths between ΔSFR and the secondary parameters are significantly reduced when 𝜎 is held constant,
showing that the correlations are mostly spurious and do not reflect fundamental relationships. Note, the light shaded bars (i.e. full correlation) are sometimes
hidden (i.e. for 𝑉 and 𝑗). This occurs when the partial correlation is equal to or larger than the full correlation.

𝜆, 𝑉 , 𝑗 and 𝑉 /𝜎, so that all of the light shaded bars have the same
orientation. We note that this does not impact the magnitude of the
correlations.
Focusing only on the light shaded bars, it is clear that 𝜎 is the

parameter that is most correlated with quenching. This is consistent
with our earlier result that velocity dispersion is the most important
parameter for classifying quenched objects, but it is important to
note that the correlation strength between ΔSFR and 𝜎 is only ∼ 30
per cent larger than the correlation strengths between ΔSFR and the
following five parameters: 𝜆, 𝑉 /𝜎, 𝑀★, E𝑘 and 𝑀D.
We therefore perform a partial correlation analysis to check for

the influence of confounding variables. In Fig. 10, we compare the
correlations of each parameter with ΔSFR at fixed 𝜎. We choose
to fix the velocity dispersion since it has the strongest correlation
with ΔSFR and is the most important parameter for quenching in the
random forest analysis. For each parameter, 𝑋 , we show the partial
correlation strength betweenΔSFR and 𝜎 at fixed 𝑋 in solid red bars,
and the partial correlation strength between ΔSFR and 𝑋 at fixed 𝜎
in solid blue bars. We order the parameters along the x-axis in order
of decreasing height of the solid blue bars - i.e. in order of decreasing
positive correlation strength with quenching at fixed 𝜎.
The difference between the full and partial correlations is strik-

ing. Holding a parameter, 𝑋 , fixed has little effect on the correlation
between ΔSFR and 𝜎. This suggests that the strong relationship be-
tween velocity dispersion and ΔSFR is genuine and is not driven by
a confounding variable in our parameter set. The strength of the cor-

relations between the remaining parameters and ΔSFR, on the other
hand, is significantly reduced when 𝜎 is fixed. This shows that the
bulk of the relationship between these parameters and quenching is
not genuine, but is caused by the confounding variable𝜎. Comparing
the heights of the solid red and solid blue bars, the partial correla-
tion between 𝜎 and ΔSFR at fixed 𝑋 exceeds the partial correlation
between 𝑋 and ΔSFR at fixed 𝜎 by at least ∼ 10 times the typi-
cal uncertainty on the correlation strengths. This highly statistically
significant result is clear evidence that the velocity dispersion is the
parameter in our set that is most connected with galaxy quenching,
and that the relationship between the other parameters and quench-
ing is incidental rather than fundamental, which confirms the random
forest result.

4.4.1 Visualising the statistical results

We visualise the partial correlation analysis in Fig. 11. In each panel
we show the distribution of galaxies in the (𝑋 , 𝜎) plane with black
contours, and colour code hexagonal bins by their mean ΔSFR. The
colour gradients run parallel to the y-axis, such that the optimal path
for transitioning from the star forming to the quenched population of
galaxies is in the direction of increasing 𝜎. We formalise this visual
assessment using the ‘quenching angle’ (Bluck et al. 2020a), which
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Figure 11. Visual representation of the correlation analysis. In each panel, the average velocity dispersion is shown on the y-axes and a second variable from the
parameter set is shown on the x-axis. The hexagonal bins are colour coded by ΔSFR, and linearly spaced density contours are shown in black. Colour gradients
generally run parallel to the y-axis, suggesting that this is the optimal direction for quenching galaxies. The quenching angle, 𝜃Q, quantifies this effect, and the
magenta arrows point in the optimal direction. The uncertainty is calculated as the standard deviation of 100 estimates of 𝜃Q using bootstrapped random sampling
with return. All quenching angles are significantly smaller in magnitude than 45◦, demonstrating that the average velocity dispersion is the best predictor of
galaxy quenching, and most quenching angles are ∼ 0◦, demonstrating that the secondary parameters are related to quenching only due to their correlation with
average velocity dispersion. The red error bars represent the 1𝜎err uncertainties.

is given by:

𝜃Q = arctan
(
𝜌ΔSFR,𝑋 |𝜎
𝜌ΔSFR,𝜎 |𝑋

)
. (24)

𝜃Q is the optimal angle to traverse the (𝑋 , 𝜎) plane for decreasing
ΔSFR, or in other words, for quenching galaxies. A value of 𝜃Q = 0◦
suggests that quenching is best achieved by changing 𝜎 and that
quenching is independent of 𝑋 , whilst a value of 𝜃Q = 90◦ suggests
that quenching is best achieved by changing 𝑋 and that quenching is
independent of 𝜎. An intermediate value of 𝜃Q = 45◦ suggests that
the optimal path changes 𝑋 and 𝜎 in equal measure, and hence that
both parameters are equally important for quenching galaxies. We
report 𝜃Q in each panel, and organise the panels from left to right
and top to bottom in order of decreasing |𝜃Q |. The magenta arrow in
each panel points in the optimal direction for quenching. All of the
quenching angles are small and the quenching arrows align closely
with the y-axis direction. This is yet further evidence that the average
velocity dispersion is the most important parameter for quenching.
The largest quenching angle occurs in the top left panel comparing

𝜎 and 𝜆. Nonetheless, the quenching angle is significantly smaller
than 45◦. The (𝜆, 𝜎) plane shows that whilst 𝜆 is good at separating
slow rotators (density peak at small𝜆) from fast rotators (density peak
at large 𝜆), it is ineffective at separating star forming and quenched

galaxies. Indeed, there exists both star forming and quenched fast
rotators that have similar values of 𝜆. These galaxies, however, differ
greatly in terms of 𝜎, where the quenched fast rotators have large
𝜎 and the star forming fast rotators have small 𝜎. The average ve-
locity dispersion is thus more effective than the dimensionless spin
parameter at predicting a galaxy’s star forming state. This result is
consistent with Wang et al. (2020) who found that there exists both
fast rotators and slow rotators below the SFMS, and that one needs to
combine the kinematic classification (i.e. fast rotator or slow rotator)
with 𝑀★ to constrain the star forming state of a galaxy.
The correlation and quenching angle analysis offers further con-

firmation that 𝜎 is the fundamental parameter in the random forest.
We demonstrate this by considering the dependence of quenching
on the specific kinetic energy, the parameter that is most correlated
with 𝜎, but the argument applies to all of the panels in Fig. 11. In
the (E𝑘 , 𝜎) panel, we see that quenched galaxies have both large E𝑘

and large 𝜎, and the black contours emphasise the high degree of
correlation between the two parameters. Nonetheless, the quenching
angle is able to break this degeneracy. Indeed, the quenching angle
is 2◦, which confirms that increasing E𝑘 at fixed 𝜎 has no effect
on the star forming state of a galaxy. In other words, increasing the
specific kinetic energy does increase the likelihood of a galaxy being
quenched, but only because of the corresponding increase in 𝜎. The
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average velocity dispersion is thus the fundamental parameter for
quenching. We highlight that under the assumption of virialisation,
E𝑘 is related to the specific gravitational potential energy and total
specific energy of a galaxy’s stellar system. The success of 𝜎 over E𝑘

thus shows that it is not the total energy of the system that is important
for quenching, but the fraction of this energy that is contained in a
disordered state.
In the bottom row of Fig. 11, we compare the role of 𝜎 and galaxy

mass (as expressed by 𝑀★ and 𝑀D) in determining quenching. We
find quenching angles that are close to zero, showing that at fixed
𝜎, galaxy quenching is almost independent of mass. This result is
striking given the prevalence of the view that mass is responsible for
quenching, in the so called ‘mass-quenching’ paradigm (Baldry et al.
2006; Peng et al. 2010, 2012). We note that mass is highly related to
quenching when 𝜎 is not held fixed, as shown by the full correlations
in Fig. 10. Thus, massive galaxies do tend to be more quenched, but
this result is merely a consequence of the correlation between galaxy
mass and the true predictor of quenching, average velocity dispersion
(see also Wake et al. 2012; Bluck et al. 2016, 2020a,b). We point out
that 𝑀★ is estimated from SDSS photometry (Blanton et al. 2011),
so the poor predictive power of stellar mass for quenching cannot be
attributed to any possible flaws in our kinematic modelling. Indeed,
it is inconceivable that we could have accidentally and erroneously
modelled the kinematics in a way that artificially returns estimates of
𝜎 that are more predictive of galaxy quenching than stellar mass. The
significantly superior predictive power of 𝜎 over 𝑀★ is thus genuine
and points to a new ‘velocity dispersion quenching’ paradigm (see
also Wake et al. 2012; Bluck et al. 2016).
The (𝑉 , 𝜎) plane explicitly compares the importance of ordered

and disordered stellar orbits in galaxy quenching. We consider three
regimes for the quenching angle: 𝜃Q ∼ 0◦ would suggest that quench-
ing is most correlated with the average velocity dispersion, which
relates to the galaxy bulge/spheroidal component; 𝜃Q ∼ 45◦ would
suggest that quenching is determined by𝑉 /𝜎, which quantifies how
discy or spheroidal a galaxy is; 𝜃Q ∼ 0◦ would suggest that quench-
ing is most related to the ordered rotation of stars, which relates
primarily to the galaxy disc. The small quenching angle thus con-
firms that quenching is largely independent of the disc properties or
the size of the disc relative to the bulge. In fact, it is the absolute
value of the velocity dispersion, or properties of the bulge/spheroidal
component, that is important for determining the star forming state
of a galaxy.

5 DISCUSSION - HOW DO GALAXIES QUENCH?

In this section, we discuss the strong performance of 𝜎 and weak
performance of 𝑉, 𝜎, 𝑉 /𝜎, E𝑘 , 𝑗 , 𝜆, 𝑀D, and 𝑀★ in the context
of different quenching mechanisms and previous results. It is impor-
tant to note at the outset that the strong connection between 𝜎 and
quenching does not imply that the velocity dispersion is somehow
the cause of galaxy quenching, but rather that any viable quenching
mechanism must be able to explain the dominance of 𝜎 in our analy-
sis. We also remind the reader of our choice to define quenching with
reference to maintenance mode - i.e. as the processes which prevent
the reaccretion of hot halo gas and the subsequent rejuvenation of
star formation (see the introduction).
Our analysis is consistent with previous morphological studies of

galaxy quenching which show that the mass of the galaxy bulge is
more effective at separating star forming and quenched galaxies than
either the total mass of the galaxy, the mass of the galaxy disc, or the
bulge-to-total mass ratio (𝐵/𝑇) (Lang et al. 2014; Bluck et al. 2014,

2021). We remind the reader of the following advantages of this
kinematic study: the kinematic parameters relate to the fundamental
physics of bulges (i.e. velocity dispersion) and discs (i.e. circular
velocity); the kinematic parameters which describe the stellar orbits
trace all components of mass in a galaxy, unlike the bulge mass and
disc mass which correspond exclusively to the mass of the stellar sys-
tem; and the kinematic estimates are free from a number of assump-
tions, such as the IMF, stellar templates and star formation history
assumed in SED fitting. Nonetheless, the good agreement between
kinematic and morphological studies clearly shows that quenching is
not connected to the galaxy disc.
Together, the weak performance of 𝐵/𝑇 , 𝑉 /𝜎 and 𝜆 challenges

the existence of a deep connection between galaxy morphology and
quenching (e.g. Cameron & Driver (2009); Gadotti (2009); Cap-
pellari et al. (2011a); Bell et al. (2012); Omand et al. (2014)), and
favours a ‘dispersion-colour’ or ‘bulge-colour’ relationship rather
than a ‘morphology-colour’ relationship. In other words, the com-
mon notion that ‘elliptical galaxies are red and spiral galaxies are
blue’ is a little misleading. A more accurate summary is that ‘galax-
ies with a prominent bulge are red and galaxies without a prominent
bulge are blue’, regardless of the existence or extent of any surround-
ing disc structure.
The poor predictive power of parameters relating to galaxy discs

(i.e.𝑉 and 𝑗) may seem surprising since the galaxy disc is where stars
form. It demonstrates that galaxy quenching is not governed by the
same processes that regulate star formation. Quenching is an entirely
different process that is regulated by distinct physical mechanisms
that are largely independent of the galaxy disc. This is consistent
with Bluck et al. (2020a) who demonstrate that star formation is
governed by local processes whilst quenching is fundamentally a
global process, which implies that star formation and quenching are
(counter-intuitively) distinct phenomena.
We begin our focus on the average velocity dispersion by noting

that the virial theorem relates 𝜎 to the mass density of galaxies,
which has long been associated with galaxy quenching (e.g. Kauff-
mann et al. 2003; Brinchmann et al. 2004; Franx et al. 2008; Wuyts
et al. 2011; Wake et al. 2012; Cheung et al. 2012; Fang et al. 2013;
Bluck et al. 2014, 2021). Lilly & Carollo (2016) argue that this close
connection between galaxy quenching may be an artefact of ‘progen-
itor bias’. In this hypothesis, the connection between mass density
and quenching is caused by the fact that the star forming progen-
itors of today’s quenched galaxies stopped forming stars at earlier
times, when galaxies were smaller at fixed mass and therefore more
dense (Trujillo et al. 2007; Buitrago et al. 2008; Newville et al. 2014;
van derWel et al. 2014). In this framework, galaxies are not quenched
because of their high densities in any mechanistic sense, but rather
the connection between galaxy density and quenching is incidental,
i.e. arising out of an a causal link to an independent factor.
The progenitor bias argument is a strong reminder of the potential

risks of extrapolating from a correlation to a causal relationship, but
we do not consider it further as an explanation here for four reasons.
Firstly, galaxies in the green valley region of the SFR − 𝑀★ plane
are thought to be currently transitioning between the star forming
and quenched populations (Wyder et al. 2007; Martin et al. 2007;
Schawinski et al. 2014), so the mass-size relation will have had little
time to evolve since the onset of quenching. The progenitor bias
effect therefore seems incapable of explaining the larger densities of
galaxies in the green valley (Bluck et al. 2016). Secondly, Bluck et al.
(2021) show that the strong relationship between galaxy density and
quenching is stable since at least 𝑧 ∼ 2. The evolution of the mass-
size relation prior to cosmic noon is unknown, but it is likely to
be less significant in the 4Gyr between the Big Bang and cosmic
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noon than the 10Gyr between cosmic noon and the current epoch.
The progenitor bias argument is thus less credible for explaining the
observed importance of galaxy density for the quenching of galaxies
at 𝑧 ∼ 2, which importantly remains invariant to 𝑧 ∼ 0.
Thirdly, andmost importantly, the virial theorem relates the galaxy

density to the total velocity of the stellar orbits, and hence the progen-
itor bias argument cannot by itself explain the observed overwhelm-
ing importance of the disordered component (i.e. 𝜎) over the ordered
component (i.e.𝑉) of the stellar orbits found in this work. Finally, the
progenitor bias argument does not suggest a physical cause of galaxy
quenching and offers no physical solution to the cooling catastrophe.

5.1 Viable Quenching Mechanisms

Morphological quenching is one possible causal quenching mech-
anism that is related to 𝜎, where the presence of a central bulge
stabilises the galaxy disc against gravitational collapse and thereby
reduces the star formation efficiency and quenches the galaxy (Martig
et al. 2009). The strong prediction of the morphological quenching
scenario is that galaxies with larger bulges (or larger 𝜎) are more
likely to be quenched, which our results clearly support. Nonetheless,
there are two independent challenges to the morphological quench-
ing framework. Firstly, galaxies do not exist in isolation, and it is
difficult to see how the morphological quenching scheme could be
stable to galaxy mergers. Galaxy interactions will likely disturb the
stabilising influence of the galaxy bulge and hence rejuvenate star
formation, at least temporarily or periodically (which is not observed
in quenched systems).
Secondly, the morphological quenching mechanism does not re-

duce the amount of molecular gas in a galaxy. One would therefore
expect quenched galaxies to have large gas reservoirs, but this is not
observed and conversely we find that quenched galaxies have gas
fractions significantly lower than galaxies on the main sequence (e.g.
Saintonge et al. 2016, 2017; Piotrowska et al. 2020; Brownson et al.
2020; Ellison et al. 2020, 2021). Thus, morphological quenchingmay
be important for reducing the star formation efficiency within galax-
ies, but we require an additional mechanism that solves the cooling
catastrophe and reduces the gas fraction.
We now consider causal galaxy quenching mechanisms in the

context of the cooling catastrophe. In particular, we examine the
consistency of our analysis with supernovae feedback (e.g. Cole et al.
2000; Henriques et al. 2019), virial heating (e.g. Dekel & Birnboim
2006; Woo et al. 2013), and AGN feedback (e.g. Croton et al. 2006;
Bower et al. 2008; Hopkins et al. 2008).
Supernovae are unlikely to emit sufficient energy to keep massive

halos hot (e.g. Cole et al. 2000; Croton et al. 2006; Bower et al.
2008). This is particularly true in quenched systems, which lack
Type-II supernovae. The total stellar mass records the star formation
rate integrated over the lifetime of a galaxy, and it is therefore related
to the number of, and energy released by, supernovae (Bluck et al.
2020a). Under the supernovae feedback solution to the cooling catas-
trophe, therefore, one would naively expect 𝑀★ to be the strongest
predictor of galaxy quenching. Yet, we find that at fixed velocity
dispersion, stellar mass is not correlated with quenching at all within
the uncertainties, and hence we rule out supernovae feedback as a
viable solution to the cooling catastrophe. This result is remarkable
given the numerous studies focusing on the correlation between 𝑀★

and quenching (Baldry et al. 2006; Peng et al. 2010, 2012).
Alternatively, quenching by virial shock heating depends strongly

on the mass of the halo (Dekel & Birnboim 2006; Woo et al. 2013;
Bluck et al. 2020a). Previous studies show that at fixed stellar mass
quenched galaxies live inmoremassive halos than star forming galax-

ies (Woo et al. 2013; Mandelbaum et al. 2016), and in fact that the
correlation between halo mass and quenching is stronger than the
correlation between stellar mass and quenching (Woo et al. 2013).
The measurements of the central density of galaxies, however, prove
even more effective than halo mass (Bluck et al. 2014; Woo et al.
2015). We have not directly considered halo mass in this work, but
we note that𝑀D is implicitly related to the halo mass for galaxies that
are not in dense groups or clusters, and we highlight the dominance
of 𝜎 over 𝑀D for predicting quenching. More directly, we recall the
dominance of 𝜎 over halo mass in our previous work, where halo
mass is only weakly related to galaxy quenching at fixed stellar ve-
locity dispersion (Bluck et al. 2016, 2020a; Piotrowska et al. 2021).
Thus, we conclude that quenching is caused not by halo shock heat-
ing, but rather by some alternative mechanism connected with the
velocity dispersion.
The success of𝜎 in predicting galaxy quenching begs for a physical

mechanism that is related to the velocity dispersion. The 𝑀BH − 𝜎

relationship is a tight relationship between black holemass and stellar
velocity dispersion (e.g. Ferrarese & Merritt 2000; McConnell et al.
2011; McConnell & Ma 2013; Kormendy & Ho 2013; Saglia et al.
2016).Wenote that different versions of𝜎 are used in the literature for
the 𝑀BH −𝜎 relation (e.g. the average velocity dispersion measured
within the central kpc or within 1Re), but we find that our key result
is not dependent on the precise definition. Combined with our key
result, the𝑀BH−𝜎 relationship shows that galaxies with larger black
holemasses aremore likely to be quenched than galaxieswith smaller
black hole masses. This interpretation is consistent with modern
theoretical simulations of galaxy evolution, which require feedback
fromAGN to quench galaxies (Schaye et al. 2015; Vogelsberger et al.
2014b,a; Weinberger et al. 2017; Henden et al. 2018; Henriques et al.
2019; Zinger et al. 2020; Piotrowska et al. 2021).
Galaxy mergers are a possible cause of the 𝑀BH −𝜎 relationship.

In this scenario, mergers create spheroids from discs (e.g. Toomre &
Toomre 1972), thereby increasing 𝜎, and simultaneously drive gas
inflows towards the galaxy centrewhich can trigger nuclear star bursts
and energetic AGN feedback, thereby increasing𝑀BH (Hopkins et al.
2008). This is 𝑜𝑛𝑒 physical interpretation of the 𝑀BH − 𝜎 relation-
ship, but we remain agnostic about the true origin of the connection
between 𝑀BH and 𝜎 in this work. We simply note the empirical fact
that galaxies with larger 𝜎 host more massive dynamically measured
black holes, and look for quenching mechanisms related to 𝑀BH.
The black hole mass traces the total energy released during the

black hole growth (e.g. Sotan 1982; Silk & Mamon 2012; Bluck
et al. 2011; Fabian 2012) and is therefore related to AGN feedback.
As mentioned in the introduction, there are two modes of AGN
feedback: the high Eddington ratio ‘quasar mode’ (e.g. Di Matteo
et al. 2005; Hopkins et al. 2008; Maiolino et al. 2012; Bischetti et al.
2019) and the low Eddington ratio ‘preventative mode’ (e.g. Croton
et al. 2006; Bower et al. 2008; Fabian et al. 2006; Sĳacki et al. 2007;
Zinger et al. 2020). We now provide three reasons for favouring
preventative-mode AGN feedback over quasar-mode AGN feedback
as the mechanism responsible for quenching galaxies.
Firstly, quasar-mode feedback is a violent event that ismore closely

related to the rate of accretion of gas onto the black hole (i.e. the rate
of growth of the black hole, e.g. Di Matteo et al. 2005; Hopkins et al.
2008;Maiolino et al. 2012). The energy released during preventative-
mode feedback, on the other hand, is related to the integrated black
hole growth rate over time (e.g. Croton et al. 2006; Bower et al. 2008;
Fabian et al. 2006), or in other words, the black hole mass (Bluck
et al. 2020a). The prominence of 𝜎 in our random forest analysis
and the existence of the 𝑀BH − 𝜎 relationship therefore points to
preventative-mode feedback rather than quasar-mode feedback as
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the mechanism driving galaxy quenching. We also note that violent
quasar-mode feedback is a rare event. Preventative-mode feedback,
on the other hand, regularly deposits smaller levels of energy into the
halo. It could therefore keep the halo hot and prevent the reaccretion
of gas onto the galaxy over long timescales.
Secondly, Bluck et al. (2020a, 2021) show that galaxy quenching

depends on global galaxy properties rather than their local counter-
parts, which appears most consistent with preventative-mode feed-
back. This is because quasar-mode feedback drives massive galactic
outflows (e.g.Maiolino et al. 2012; Cicone et al. 2014, 2015; Fluetsch
et al. 2019) which are more likely to influence the central bulge re-
gion rather than the outer disc. The accretion rate is lower in the
preventative-mode feedback paradigm, however, and the energy re-
leased does not significantly influence the galaxy directly. Instead,
it simply heats the halo and prevents the accretion of pristine gas,
which simultaneously starves the bulge and disc components of gas
in equal measure.
Finally, the ejection of gas in the quasar mode is expected to

halt star formation on short timescales, whilst the halo heating from
preventative-mode feedback should not affect extant gas in the galaxy
disc and should therefore allow star formation to continue temporar-
ily, even after the accretion of pristine gas has stopped. It is possible
to differentiate between these rapid and delayed/preventative quench-
ing scenarios by comparing the stellar metallicity of star forming and
quenched galaxies (Peng et al. 2015; Trussler et al. 2020; Bluck et al.
2020b). These studies find that star formation continues whilst the
galaxy is starved of pristine gas, which is in good agreement with the
preventative-mode feedback paradigm.
There is weak direct evidence of preventative feedback in Figs. 10

and 11. At fixed 𝜎, galaxies with more prominent discs (i.e. larger
𝜆, 𝑗 , 𝑉) have less negative ΔSFR and are less quenched. The posi-
tive correlation between the prominence of the disc and ΔSFR could
be because galaxies with a significant disc have a larger extant gas
supply and can therefore continue forming stars after the onset of
galaxy quenching. Galaxies without a disc, on the other hand, which
are likely to have undergone a recent merger, probably do not have
a large extant gas supply and will stop forming stars soon after the
cessation of gas accretion. It is important to recognise that these
secondary partial correlations with 𝜆, 𝑗 , 𝑉 are weak. We cautiously
offer an explanation of their origin, but we reiterate the key result
that these correlations are significantly weaker than the partial cor-
relations with 𝜎 at fixed 𝜆, 𝑗 , or 𝑉 . The true quenching mechanism
is thus overwhelmingly related to 𝜎, for which we have suggested an
explanation via (most probably preventative) AGN feedback.

6 SUMMARY

In this paper we study the connection between galaxy kinematics
and quenching for 1862 galaxies taken from the MaNGA survey.
The galaxies in our sample have log(M★ /M�) > 9.8, show no
evidence of a recent merger or interaction with a companion galaxy,
and pass the data quality cuts established in Section 3.1 as necessary
for effective kinematic modelling.
First, we model the moment-1 maps of 70 per cent of galaxies,

using an inclined rotating disc model, carefully accounting for the
effect of beam smearing where possible. We use an alternative sim-
plistic method, the ‘histogram technique’, for the remaining 30 per
cent of galaxies that are inconsistent with the inclined rotating disc
model. Second, we use the moment-1 model to correct the moment-
2 maps for the effect of differential disc rotation. The estimates of
the intrinsic rotational velocity and velocity dispersion are then used

to define the following kinematic parameters: the mean circular ve-
locity (𝑉), the mean velocity dispersion (𝜎), the ratio of ordered to
disordered stellar orbital velocity (𝑉 /𝜎), the mean specific kinetic
energy (E𝑘 ), which is also an accurate estimate of the gravitational
potential and the total specific energy of the system (under the as-
sumption of virialisation), the mean specific angular momentum ( 𝑗),
the dimensionless spin parameter (𝜆), and the dynamical mass (𝑀D).
All parameters are calculated within 1Re,kin except 𝜆 which is cal-
culated within 1Re. We also add the global stellar mass (𝑀★) to our
sample.
We rigorously validate our kinematic model by testing its per-

formance on synthetic galaxy data, and by comparing its outputs
to more traditional galaxy properties and scaling relations. The key
performance metrics/tests are as follows:

(i) The inclined rotating disc model is able to recover the maxi-
mum rotation velocity with a typical accuracy of 3 per cent for the
data considered in this work, as determined through the analysis of
simulated mock data.
(ii) The success of our inclined rotating disc model is consistent

with a galaxy’s classification as a slow rotator or fast rotator, as
prescribed by its position in the (𝜆, 𝜖) plane. Thus, our model is able
to accurately characterise the kinematic state of a galaxy.
(iii) The kinematic estimates are consistent with the Faber-

Jackson and Tully-Fisher relations. We also define a new scaling
relation, the Mass-Velocity relation, which compares a galaxy’s stel-
lar mass with the total velocity of the stellar orbits (i.e. considering
both ordered and disordered motion). The Mass-Velocity relation
is tighter than both the FJ and TF relations, clearly indicating the
improvement in information content of our generalised approach.

These tests on the accuracy of our kinematic parameters encourage
their use in the study of galaxy quenching.
In Section 4, we study the relationship between the kinematic

parameters and the star forming state of a galaxy, parameterised by
its logarithmic offset from the SFMS, ΔSFR. We perform a random
forest analysis to identify the parameters that are best at separating
star forming and quenched galaxies. Our key findings are as follows:

(i) The average velocity dispersion is the most important param-
eter for determining whether a galaxy is star forming or quenched.
Galaxies with 𝜎 > 220 km s−1 are mostly quenched, whilst galaxies
with 𝜎 < 220 km s−1 are mostly star forming. Note, that these values
of 𝜎 are in 3D space - i.e.

√
3 times the LOS dispersion.

(ii) Parameters that relate exclusively to the disc, i.e. 𝑗 and 𝑉 , are
not important in the random forest. Thus, although disc properties are
related to the SFR of star forming galaxies, we find that quenching
is governed by properties of the bulge/spheroidal component, as
parameterised by 𝜎. This shows that quenching is not simply the
inverse of the process of forming stars. It is an altogether different
phenomenon regulated through radically different galaxy properties.
(iii) Quenching is not constrained by properties that quantify

whether a galaxy is rotation- or dispersion-dominated, such as 𝑉 /𝜎
and 𝜆. Thus, the commonly held view that disc galaxies are star form-
ing and spheroids are quenched is misleading. In fact, the absolute
level of the velocity dispersion is most important for quenching, not
relative levels of velocity dispersion and ordered rotation.
(iv) We complement the random forest analysis with a partial

correlation analysis. This confirms that when 𝜎 is held constant, the
other parameters are only marginally related to quenching.
(v) We emphasise that parameters that related to the totalmass and

morphology of the system (i.e.E𝑘 ,𝑀★,𝑀D,𝑉 /𝜎 and𝜆) show strong
correlationswith quenching, but these correlations are almost entirely
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removedwhen𝜎 is held constant. Thus,we agreewith all prior ‘mass-
quenching’ and ‘morphology-colour’ works that parameters related
to mass andmorphology are phenomenological related to quenching,
but we point out that this connection is merely a proxy of the true
quenching mechanism. What really matters for galaxy quenching is
the absolute level of disordered motion.

We construct an argument for the physical origin of the clear con-
nection between𝜎 and quenching via the paradigmofAGN feedback.
The average velocity dispersion is well correlated with black hole
mass, 𝑀BH (e.g. Ferrarese & Merritt 2000; McConnell et al. 2011;
McConnell & Ma 2013; Saglia et al. 2016), which traces the total
energy released by preventative-mode feedback during the growth
of a black hole. In other words, our analysis supports a scenario in
which galaxies quench due to significant preventative feedback. This
is consistent with theoretical predictions from numerical simulations
(e.g. Bluck et al. 2016; Davies et al. 2019; Terrazas et al. 2020;
Zinger et al. 2020; Bluck et al. 2020a; Piotrowska et al. 2021), and
is explained physically by AGN injecting energy into galaxy halos,
keeping them hot and thereby preventing further accretion of gas and
halting star formation.
The data disfavours the following alternative quenching scenarios:

quenching via supernovae feedback, since 𝑀★ is less predictive of
quenching than 𝜎; morphological quenching, since 𝑉 /𝜎 and 𝜆 are
less predictive of quenching than 𝜎; and halo quenching, since 𝑀D
and 𝑀H (Bluck et al. 2016, 2020a) are less predictive of quenching
than 𝜎.
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APPENDIX A: EXAMPLE FITS

In this appendix we show a number of example fits to demonstrate
the performance of the inclined disc rotation model. All figures in
this section have the same structure as Fig. 1, which we advise the
reader to re-examine prior to reading this section.
In Fig. A1 we show two examples of good fits at low Sérsic

index (nSérsic < 2), which are generally considered to be rotation-
dominated in the local Universe (Wisnioski et al. 2015; Übler et al.
2019). Indeed, both galaxies exhibit clear velocity gradients con-
sistent with simple ordered rotation, and our model is able to re-
cover their kinematics, with low residuals in both the sky plane and
the PV diagram. We also note the high inclination of galaxy 8996-
12701, as shown in the SDSS 𝑔, 𝑟, 𝑖 composite image. This galaxy
has arccos((b/a)phot) ∼ 70◦, yet the model is still able to accurately
fit its kinematics. This is consistent with our tests on simulated data,
where the model is able to accurately constrain the kinematics of
galaxies with inclination lower than 80◦ with accuracy better than 25
per cent.
In Fig. A2 we show two good fits of galaxies with intermediate

Sérsic index (2 < nSérsic < 4), which are generally bulge plus disc
systems. Indeed, both galaxies in Fig. A2 show a disc structure and
a bright central peak in their SDSS 𝑔, 𝑟, 𝑖 composite images, as well
as a clear increase in 𝜎obsLOS towards the galaxy centre. Nonetheless,
both galaxies have stellar velocity maps with strong gradients that
are well modelled by inclined disc rotation. We note that there is
a noticeable increase in the residuals in the PV diagrams for the
nSérsic > 2 systems. This likely reflects the fact that these systems
contain a bulge and have more complex kinematics, which we make
no attempt to model. However, the increase in the PV residuals is
small and the overall characterisation of the rotation curve in the PV
diagram is clearly still excellent.
In Fig. A3, we show two examples of good fits of high Sérsic

index galaxies (nSérsic > 4), which are spheroidal and are gener-
ally dispersion-dominated. Indeed, both galaxies have large velocity
dispersion when contrasted with their maximum circular velocities.
Nonetheless, they still have velocity maps that demonstrate ordered
rotation, and remarkably, our model is able to fit the rotational kine-
matics. This result validates our approach of attempting to fit all
galaxies in our sample with the inclined rotating disc model, includ-
ing dispersion-dominated spheroids. Both galaxies display steeply
rising unconvolved rotation curves shown in blue, which probably
reflect the presence of a significant bulge component (Noordermeer
et al. 2007; Lelli et al. 2016, 2021).
In Fig. A4 we show an example galaxy (9863-3703) whose fit is

improved by using the dap 𝑔-band flux map during PSF convolution
and Voronoi binning, as first mentioned in Section 3.1. In the top row
we show the fit returned when assuming the Sérsic light profile, and
in the bottom row we show the fit returned when assuming the dap
𝑔-band flux map. We highlight the discrepancy between the data and
the model when the Sérsic light profile is assumed, where the model
underestimates |Vobs,voxelLOS | in the central regions and a ‘squiggle’ is
observed in the PV diagram. As with most galaxies showing this
effect, 9863-3703 is a high nSérsic galaxy, with a centrally peaked
surface brightness profile. Any slight error in the Sérsic model will
therefore have a strong influence on the fit, particularly in the central
regions. The dap flux map improves the fit since it is shallower than
the Sérsic profile, which prevents the central region from dominating
the PSF convolution. The dap flux map improves the fit for ∼ 400
galaxies, though we note that the PV squiggle is generally smaller
than that of 9868-3703, which has been chosen to highlight the effect.
We have investigated the possible degeneracy between the Sérsic

and dap fluxmaps in fitting the inclined rotating discmodel. Galaxies
that do not show a squiggle in the PV diagram have 𝑉max estimates
from both models that are consistent within ∼ 10 km s−1 on average.
This suggests that the dap flux map can be taken as a good proxy
of the Sérsic profile for our purposes, even though it is known to
be shallower and less centrally concentrated than the true brightness
profile since it is PSF convolved. However, we recognise that the PV
squiggle could be evidence of genuine inconsistencywith the inclined
rotating disc model, which the dap flux map fits wrongly conceal.
We therefore repeat the analysis in this work using the simple method
for all galaxies such as 9868-3703 that show the PV squiggle, rather
than adopting the dap flux map fit, and confirm that the results are
stable to this test in Appendix B1.

APPENDIX B: TESTS ON THE STABILITY OF THE
RESULTS

In this appendix, we make subtle changes to the random forest anal-
ysis to test the stability of our key result that the average velocity
dispersion is the most important parameter for predicting galaxy
quenching. In Section B1, we test different implementations of the
kinematic model; and in Section B2, we test the effect of differential
measurement uncertainty.

B1 Testing the kinematic model

In Fig. B1 we show the random forest for three alternative formu-
lations of the kinematic model. It is important to note that it is not
possible to know which, if any, of these formulations is truly correct.
The spirit of this section is to try a range of reasonable approaches.
The key point is that the ordering of the parameters is the same for all
three tests, and the average velocity dispersion is consistently found
to be the most important parameter for predicting quenching. Thus,
taken together, these tests provide strong evidence that our key re-
sult is robust and not strongly dependent on the choices outlined in
Section 3. We discuss the three tests in order.
First, in the ‘SimpleMethodOnly’ test,we do not use our kinematic

model at all, but rather we model the kinematics of all galaxies using
the simple method. We remind the reader that the simple method is
entirely independent of the kinematic model estimates, and indeed
it is a far more simplistic, non-parametric method for constraining
kinematics. Nonetheless, the random forest identifies 𝜎 as the most
predictive parameter, thus providing independent support for our key
result. The consistency of this test with the fiducial run demonstrates
that the simple method is sufficiently accurate for studying galaxy
quenching in kinematic parameters.
We note that we do not apply the bias-correction to the simple

method for nSérsic < 3 galaxies (see Section 3.2) here since it could
introduce an additional artificial distinction between nSérsic < 3 and
nSérsic > 3 galaxies. Instead, we treat all galaxies equally and use the
simple method without any bias-correction. We are not as concerned
about introducing an artificial distinction between nSérsic < 3 and
nSérsic > 3 galaxies in the fiducial run, since the bias-correction is
only applied to the 15 per cent of discs that are not well fit by the
inclined rotating disc model and it is therefore unlikely to have a
significant impact on the results.
Second, in the ‘Sérsic Fits Only’ analysis, we estimate the kine-

matics using either the kinematic model with the Sérsic flux map or
the simplistic method. In other words, we do not include any galax-
ies whose kinematics are determined using the kinematic model and
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Figure A1. Examples of two successful fits of low nSérsic galaxies. This figure has the same structure as Fig. 1. Both galaxies show strong velocity gradients, and
the model residuals are small. 8996-12701 has arccos( (b/a)phot) ∼ 70◦, demonstrating our model’s ability to fit the kinematics of relatively inclined systems.

Figure A2. Examples of two successful fits of intermediate nSérsic galaxies. This figure has the same structure as Fig. 1. The SDSS 𝑔, 𝑟 , 𝑖 composite images
show that these galaxies are bulge plus disc systems. Nonetheless, the moment-1 maps still exhibit gradients that are consistent with inclined disc rotation.

adopting the dap 𝑔-band flux as the moment-1 map. Instead, we re-
sort to the simple method when the kinematic model together with
the Sérsic flux map returns a fit that exhibits a squiggle in the PV
diagram, as described in Section 3.1 and Appendix A. We recognise
that the dap 𝑔-band flux map is not an accurate representation of the
true surface brightness since it is PSF convolved. Nonetheless, this
test demonstrates that the 𝑔-band flux is sufficiently representative
of the true surface brightness for the purposes of studying galaxy
quenching.
Finally, in the ‘Good Fits Only’ test, we only consider galaxies that

have a good kinematic fit, and we remove the 30 per cent of galaxies

that are inconsistent with the kinematic model rather than resorting
to the simple method. The ‘Good Fits Only’ test thus constitutes our
sample with the most reliable kinematic estimates. It is important to
recognise that the high accuracy of this sample comes at the cost of
lacking genuine slow rotators, which are fundamentally inconsistent
with inclined disc rotation and consequently have failed fits. Indeed,
the distribution of galaxies for this sample in the (𝑉 , 𝜎) plane is
missing the large 𝜎, small 𝑉 galaxies seen in Fig. 11. Nonetheless,
the random forest analysis of this sample is consistent with the fidu-
cial run. This demonstrates that it is not only slow rotators whose
quenching is dominated by 𝜎, but the quenching of fast rotators is
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Figure A3. Examples of two successful fits of high nSérsic galaxies. This figure has the same structure as Fig. 1. The model is able to fit the ordered rotation
even in these dispersion-dominated systems.

Figure A4. Example of a fit improved by adopting the dap flux map. The figure has the same structure as Fig. 1. The top row shows the best fitting model when
adopting the Sérsic brightness profile, whilst the bottom row shows the best fitting model (of the same galaxy) when adopting the flux map from the dap. The
dap flux map fit removes the suppression of |Vmodel,voxelLOS | caused by the steep, centrally-concentrated Sérsic profile.

also predicted best by velocity dispersion. The dimensionless spin
parameter, by contrast, is effective at identifying quenched slow ro-
tators, but it is not particularly effective at separating star forming
fast rotators and quenched fast rotators, as shown in Fig. 8. This is
the key advantage of 𝜎 over 𝜆 for predicting quenching.

B2 Testing the effect of measurement uncertainty

In this section of the appendix, we investigate the effect of measure-
ment error on the random forest analysis. The predictive power of a

parameter will decrease as its measurement uncertainty increases, so
one may wonder whether the success of velocity dispersion in pre-
dicting quenching is caused by it beingmore precisely measured than
parameters that relate to the ordered velocity. We test this possibil-
ity by adding increasingly significant random noise to our estimates
of 𝜎 in the random forest, essentially to mimic the possibility of
significant differential measurement uncertainty. It is important to
note that the random forest’s tolerance of differential measurement
uncertainty decreases with increased correlation between variables
in the random forest (see Bluck et al. 2021 for a discussion). Indeed
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Figure B1. The random forest analysis for different versions of the kinematic
model. The ‘Fiducial Run’ results are identical to those presented in Fig. 9, and
are included for comparison. The ‘GoodFitsOnly’ test only considers galaxies
that have a successful kinematic fit, the ‘Simple Method Only’ test assumes
the simple method for all galaxies and does not use the kinematic model at
all, and the ‘Sérsic Fits Only’ test does not use the dap 𝑔-band flux map in the
kinematic modelling. The average velocity dispersion is consistently ranked
the most important parameter for quenching, which demonstrates that our key
result is not dependent on the precise prescription of the kinematic model.

when the parameters exhibit no inter-correlations, there is no level of
differential measurement uncertainty that could result in a secondary
parameter (i.e. not the fundamental predictor) being crowned as the
most important parameter, since the secondary parameters are com-
pletely independent of the fundamental parameter and are therefore
akin to random noise.
In Fig. B2 we show the results of a random forest analysis that

considers only 𝜎; (𝑉 /𝜎); 𝑉 ; and a random parameter. The analysis
thus directly compares the ordered and disordered velocity for their
effectiveness at predicting quenching. The colour coding reflects the
standard deviation of Gaussian random noise that has been added to
𝜎, both in the 𝜎 term and 𝑉 /𝜎 term. As the noise increases, the
relative importance of 𝜎 decreases and the relative importance of 𝑉
increases. This is expected, since the addition of noise washes out
some of the information within𝜎 that is useful for predicting quench-
ing. Nonetheless, we find that the average velocity dispersion is the
most important parameter even when its measurement uncertainty
is increased by 150 km s−1, which is approximately six times larger
than the typical total error on𝑉 (∼ 25 km s−1), shown for example in
Fig. 8. We thus rule out the scenario in which𝑉 is the most important
parameter for quenching with 6𝜎err confidence.
It is important to stress that the test in Fig. B2 should not be

interpreted as evidence that the estimates of 𝑉 have measurement
uncertainty 150 km s−1 larger than that of 𝜎. This narrative is en-
tirely inconsistent with our estimates of the uncertainties presented
in figures throughout this paper, where we estimate a typical error on
𝑉 of ∼ 25 km s−1.
One may worry that we have underestimated the typical error on

𝑉 . However, we can use the tightness of the Tully-Fisher and Mass-
Velocity scaling relations shown in Fig. 5 as an independent indicator
on themaximumallowed error on𝑉 , which places a robust upper limit
of∼ 50 km s−1 and still leads to a confidence of > 3𝜎err.We note that
the true confidence using this approach is likely much grater since the
considerable error on 𝑀★ (∼ 0.2 dex) contributes significantly to the
scatter about the Tully-Fisher and Mass-Velocity scaling relations. In
other words, we cannot attribute all of the scatter to uncertainty on
𝑉 . Thus, the two estimates of our confidence (6𝜎err inferred directly
and > 3𝜎err inferred indirectly) are in good agreement.

Figure B2. Testing the effect of measurement uncertainty on the random
forest analyses. We add Gaussian noise to the average velocity dispersion,
both in the 𝜎 term and 𝑉 / 𝜎 term, with standard deviation of the Gaussian
noise distribution specified by the colour coding in the legend. Our result that
average velocity dispersion is the most important parameter for predicting
quenching is robust even when we add measurement uncertainty as large as
150 km s−1 to 𝜎, which is six times the average error on 𝑉 . We thus confirm
that our key results cannot be attributed to the possibility that 𝜎 is measured
with greater precision than the other parameters in this study (which we also
note is unlikely in any case).

The test in Fig. B2 shows that 𝑉 becomes the most important
parameter only when the measurement uncertainty on 𝜎 is increased
by ∼ 150 km s−1. We note, however, that no amount of measurement
uncertainty results in 𝑉 /𝜎 being the most important parameter.
Indeed, 𝜎 has the largest relative importance when low levels of
measurement uncertainty are added to𝜎, and𝑉 has the largest relative
importance when very high levels of measurement uncertainty are
added to 𝜎. These data thus conclusively rule out the scenario in
which 𝑉 /𝜎 is the most important parameter for predicting galaxy
quenching. Finally, we note that although we have chosen 𝑉 /𝜎 as
a specific example in Fig. B2, we have found similar results for the
other parameters that are a function of both 𝑉 and 𝜎. This makes
sense in a scenario in which𝑉 is unimportant for quenching, in which
it would not be possible for a combination of 𝑉 and (𝜎 + noise) to
outperform (𝜎 + noise) alone.
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