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Abstract—Purely data-driven approaches for machine learning present difficulties when data are scarce relative to the complexity of 
the model or when the model is forced to extrapolate. On the other hand, purely mechanistic approaches need to identify and specify 
all the interactions in the problem at hand (which may not be feasible) and still leave the issue of how to parameterize the system. In 
this paper, we present a hybrid approach using Gaussian processes and differential equations to combine data-driven modeling with a 
physical model of the system. We show how different, physically inspired, kernel functions can be developed through sensible, simple, 
mechanistic assumptions about the underlying system. The versatility of our approach is illustrated with three case studies from motion 
capture, computational biology, and geostatistics. 

1 INTRODUCTION 

TRADITIONALLY, the main focus in machine learning has 
been model generation through a data-driven paradigm. 

In this paradigm, the approach is to combine a dataset with 
a (typically fairly flexible) class of models and, through 
judicious use of regularization, make predictions on 
previously unseen data. There are two key problems with 
purely data-driven approaches. First, if data are scarce 
relative to the complexity of the system we may be unable 
to make accurate predictions on test data. Second, if the 
model is forced to extrapolate, i.e., make predictions in a 
regime in which data have not yet been seen, performance 
can be poor. 

In contrast, purely mechanistic models, i.e., models that are 
inspired by the underlying physical knowledge of the 
system, are common in many domains such as chemistry, 
systems biology, climate modeling, and geophysical sciences. 
They normally make use of a fairly well-characterized 
physical process that underpins the system, often repre­
sented with a set of differential equations. The purely 
mechanistic approach leaves us with a different set of 
problems to those from the data driven approach. In 
particular, accurate description of a complex system through 

a mechanistic modeling paradigm may not be possible. Even 
if all the physical processes can be adequately described, the 
resulting model could become extremely complex. Identify­
ing and specifying all the interactions might not be feasible, 
and we would still be faced with the problem of identifying 
the parameters of the system. 

Despite these problems, physically well-characterized 
models retain a major advantage over purely data-driven 
models. A mechanistic model can enable accurate predic­
tions even in regions where there is no available training 
data. For example, space probes can enter different 
extraterrestrial orbits regardless of the availability of data 
for these orbits. 

While data-driven approaches do seem to avoid mechan­
istic assumptions about the data, the regularization which is 
applied normally encodes some kind of physical intuition, 
such as the smoothness of the interpolant. This reflects a 
weak underlying belief about the mechanism that generated 
the data. In this sense, the data-driven approach can be seen 
as weakly mechanistic, whereas models based on more 
detailed mechanistic relationships could be seen as strongly 
mechanistic. 

The observation that weak mechanistic assumptions 
underlie a data driven model inspires our approach. We 
suggest a hybrid system that incorporates a (typically overly 
simplistic) mechanistic model within a data-driven ap­
proach. The key is to retain sufficient flexibility in our 
model to be able to fit the system even w h e n our 
mechanistic assumptions are not rigorously fulfilled. To 
illustrate the framework, we will start by considering 
dynamical systems as latent variable models that incorpo­
rate ordinary differential equations (ODEs). In this we 
follow the work of Lawrence et al. [1], [2], who encoded a 
first order differential equation in a Gaussian process (GP). 
Their aim was to construct an accurate model of transcrip­
tional regulation, whereas ours is to make use of the 
mechanistic model to incorporate salient characteristics of 
the data (e.g., in a mechanical system inertia) without 
necessarily associating the components of our mechanistic 



model with actual physical components of the system. We 
then show how partial differential equations models can 
also be used for systems with spatial inputs, thereby 
extending our framework to multidimensional inputs. 

The latent force modeling framework introduced here is 
related to multiple output Gaussian processes through 
convolution processes [35], and to collocation methods with 
Gaussian processes [48]. In multiple output Gaussian 
processes through convolution processes, the covariance 
functions usually employed are very general, and do not 
include any mechanistic assumptions about the data. In 
collocation methods with Gaussian processes, the interest is 
toward finding a solution to a linear differential equation, 
while ours is to develop probabilistic models that incorpo­
rate mechanistic ideas in data-driven models. An exhaus­
tive comparison with related work is provided in Section 6. 

Part of this work has been previously presented in [10]. 
The main differences of this paper with [10] include an 
extended description of the latent force model (LFM), with 
particular focus on how to obtain the covariance functions 
involved, additional results in motion capture data, and the 
formulation of a new spatiotemporal covariance function 
derived from a partial differential equation. 

The paper is organized as follows: In Section 2, we 
motivate the latent force model starting with a latent 
variable model. Section 3 defines a latent force model in 
terms of ordinary and partial differential operators. In 
Section 4, we provide details for learning a latent force 
model. We then proceed to show three case studies in 
Section 5. We use a latent force model based on a second 
order ordinary differential equation for characterizing 
motion capture datasets. We also present a latent force 
model for spatiotemporal domains applied to representing 
the development of Drosophila Melanogaster, and a latent 
force model inspired by a diffusion process for explaining 
the behavior of pollutant metals in the Swiss Jura. Extensive 
related work is presented in Section 6. Final conclusions are 
given in Section 7. 

2 MOTIVATION: FROM LATENT VARIABLES TO 

LATENT FORCES 

A key challenge in combining the mechanistic and data-
dr iven approaches is how to incorporate the model 
flexibility associated with the data-driven approach within 
the mechanism. We choose to do this through latent 
variables, more precisely, latent functions: unobserved 
functions from the system. To see how this is possible we 
first introduce some well-known data-driven models from a 
mechanistic latent-variable perspective. 

Let us assume we wish to summarize a high-dimensional 
dataset with a reduced dimensional representation. For 
example, if our data consist of -/V points in a D-dimensional 
space we might seek a linear relationship between the data, 
Y = [y 1 ; . . . , yD] € MNxD with yd e MNxl, and a reduced 
dimensional representation, U = [ u i , . . . , UQ] 6 JR,Nx® with 
uq 6 IRArxl, where Q < D. From a probabilistic perspective, 
this involves an assumption that we can represent the data as 

Y = U W T + E, (1) 

where E = [ei,... ,e£i] is a matrix-variate Gaussian noise: 
Each column, e^ 6 IRArxl (1 < d < D), is a multivariate 
Gaussian with zero mean and covariance E , i.e., e^ ~ 
yV(0, Ed). The usual approach, as undertaken in factor 
analysis and principal component analysis (PCA), to deal­
ing with the unknown latent variables in this model is to 
integrate out U under a Gaussian prior and optimize with 
respect to W 6 JRDxCi (although it turns out that for a 
nonlinear variant of the model it can be convenient to do 
this the other way around; see, for example, [3]). If the data 
have a temporal nature, then the prior over the latent space 
could express a relationship between the rows of U, utn = 
Futn j + T/, where T is a transformation matrix, 7/ is a 
Gaussian random noise, and utn is the nth row of U, which 
we associate with time tn. This is known as the Kalman filter/ 
smoother. Normally, the times, tn, are taken to be equally 
spaced, bu t more generally we can consider a joint 
distribution for p(U | t ) , for a vector of time inputs 
t = [ti... ijv] , which has the form of a Gaussian process: 

Q 

p ( u i t ) = n ^ K i o , K U g , U g ) , 
9=1 

where we have assumed zero mean and independence 
across the Q dimensions of the latent space. The GP makes 
explicit the fact that the latent variables are functions, 
{uq(t)}y=1, and we have now described them with a process 
prior. The elements of the vector uq = [uq(ti),... ,uq(t^)] 
represent the values of the function for the gth dimension at 
the times given by t. The matrix K u u is the covariance 
function associated with uq(t) computed at the times given 
in t. 

Such a GP can be readily implemented. Given the 
covariance functions for {uq(t)}^=1, the implied covariance 
functions for {yd(t)}d=i are straightforward to derive. In [4], 
this is known as a semiparametric latent factor model 
(SLFM), although their main focus is not the temporal case. 
If the latent functions uq(t) share the same covariance but 
are sampled independently, this is known as the multitask 
Gaussian process prediction model (MTGP) [5], with a 
similar model introduced in [6]. Historically, the Kalman 
filter approach has been preferred, perhaps because of its 
linear computational complexity in N. However, recent 
advances in sparse approximations have made the general 
GP framework practical (see [7] for a review). 

So far the model described relies on the latent variables to 
provide the dynamic information. Our main contribution is 
to include a further dynamical system with a mechanistic 
inspiration. We will make use of a mechanical analogy to 
introduce it. Consider the following physical interpretation 
of (1): The latent functions, uq(t), are Q forces and we observe 
the displacement of D springs, j/d(t), to the forces. Then, we 
can reinterpret (1) as the force balance equation, Y B = 
U S T + E. Here, we have assumed that the forces are acting, 
for example, through levers, so that we have a matrix of 
sensitivities, S 6 JR,Dx®, and a diagonal matrix of spring 
constants, B € MDxD, with elements {Bd}°=1. The original 
model is recovered by setting W T = S T B x and e^ ~ A/"(0, 
B T EdB) . With appropriate choice of latent density and noise 
model this physical model underlies the Kalman filter, PCA, 



independent component analysis, and the multi-output 
Gaussian process models we mentioned above. 

The use of latent variables means that despite the 
simplicity of the underlying mechanistic model and the 
strong associated physical constraints, these models are still 
powerful enough to be applied to a range of real world 
datasets. In latent force models, we retain this flexibility by 
maintaining the latent variables at the heart of the system 
and introducing richer underlying physical models. For 
example, we could assume that the springs are acting in 
parallel with dampers and that the system has mass, 
allowing us to write 

Y M + Y C + Y B = U S T + E, (2) 

where M and C are diagonal matrices of masses, {Md}d=1, 
and damping coefficients, {Cd}d=i, respectively, Y is the 
first derivative of Y with respect to time (with entries 
{ild(tn)} for d = 1 , . . . , D and n = 1 , . . . , N), Y is the second 
derivative of Y with respect to time (with entries {yd(tn)} 
for d=l,...D and n=l,...,N), and E is once again 
matrix-variate Gaussian noise. Equation (2) specifies a 
particular type of interaction between the outputs Y and 
the set of latent functions U, namely, that a weighted sum of 
the second derivative for yd(t), jjd(t), the first derivative for 
Vd(t), Vd(t), and ys.it) is equal to the weighted sum of 
functions {uqit)}q=1 plus a random noise. The second order 
mechanical system that this model describes will exhibit 
characteristics that cannot be accommodated by the 
standard latent variable set up given in (1), such as inertia 
and resonance. Of course, the model is not only appropriate 
for data from mechanical systems. There are many 
analogous systems that can also be represented by second 
order differential equations, for example, Resistor-Inductor-
Capacitor circuits. A unifying characteristic for all these 
models is that the system is being forced by latent functions, 
iuqit)}q=i- Hence, we refer to these models as latent force 
models. The general framework of the latent force model is 
to combine a mechanistic model with a probabilistic prior 
over some latent variable or function. 

3 LATENT FORCE MODELS 

In the last section, we motivated the latent force model from 
latent variable models. Here, we look at general character­
istics of latent force models. The order of a latent force model 
is given by the differential equation used to describe the 
mapping between the latent force and the output functions. 
A dynamical latent force model of order M employs 
ordinary differential equations, and the input variable 
considered is time. In general, we can consider latent force 
models over multidimensional inputs (e.g., temporospatial 
systems) through partial differential equations. 

3.1 Definition 
In general, a dynamical latent force model of order M can 
be described by the following equation: 

M 

^ 2 ? m [ Y ] A m = U S T + E, (3) 

where Vm is a linear differential operator such that Vm [Y] is 
a matrix with elements given by Vmydit) = d y ' , and Am is 

a diagonal matrix1 with elements Am,d that weight the 
contribution of T>myri-

Each element in expression (3) can be written as 

M Q 

Kvd = J2 Am,dVmydit) = J2 Sd,quqit) + ed(t), (4) 
77i=0 9=1 

where we have introduced a new operator V^f that is 
equivalent to applying the weighted sum of operators Vm. It 
is possible to find a linear integral operator Qd associated 
with V% that can be used to solve the nonhomogeneous 
differential equation in (4). The linear integral operator is 
defined as 

Qd[v]it) = fd(t,v(t)) = J Gd(t,T)v(r)dT, (5) 

where Gd(t,s) is known as the Green's function associated 
with the differential operator Vff, v(t) is the input function 
for the nonhomogeneous differential equation and T is the 
input domain. The particular relation between the differ­
ential operator and the Green's function is given by 

Ttf[Gd(t,s)]=6(t-s), (6) 

with s fixed and 6(t — s) the Dirac delta function [8]. Strictly 
speaking, the differential operator in (6) is the adjoint for 
the differential operator appearing in (4). For a more 
rigorous introduction to Green's functions applied to 
differential equations refer to [9]. In the signal processing 
and control theory literatures, the Green's function is 
known as the impulse response of the system. Without loss 
of generality, we can set all initial conditions to zero and 
write the outputs as 

Q 

Vdit) = fd(t) +Wd(t) = ^2Sd,qfdit,Uq(t)) +Wd(t), 
9=1 

w h e r e fd(t) = £ « = 1 5^ / d ( i ,« , (* ) ) , fd(t,uq(t)) = &[««](*), 
and wdit) is an independent process associated with each 
output. Strictly speaking, the solution of the differential 
equation implies that wd(t) = Gd[ed](t). However, we allow 
the noise model to be a more general process. 

We assume that the latent functions {uqit)}q=i are 
independent and each of them follows a Gaussian process 
prior, that is, uq it) ~ £P(0,fc„„„?(M'))-2 Due to the linearity 
of Qd, {ydit)}d=i corresponds to a joint Gaussian process 
with covariances kydiyd,(t,t') = cov[yd(t), yd'it')] given by 

cov[fdit),fd>it')] +cov[wdit),wd>it')]6d4>, 

where 6d,d is the Kronecker delta3 and cov[/d(i),/j(i ')] is 
given by 

E^,Agcov[/«(i),/«(;')], (7) 
9=1 

1. The matrices Am do not need to be diagonal, but for simplicity of 
derivation we restrict ourselves to this set up in this exposition. 

2. Nonzero prior means or correlations between latent functions are also 
feasible, but again for expositional simplicity we restrict ourselves to these 
simpler cases. 

3. We have used similar notation for the Kronecker delta and the Dirac 
delta. The particular meaning should be understood from the context. 
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where we use fd(t) as shorthand for fd(t,uq(t)). The 
covariance cov[f%(t), fdi{t')] is equal to 

/ / Gd(t - T)Gd,(t' ~ T')kVq(r, r ' )d r 'd r . (8) 

We alternatively denote cov[fd(t), fd'(t')] as kfdjd,(t,t'), 

covt/dWj/K*')] a s kfd,fd, (t > * ' ) / a n d cov[wd(t),wd>(t')] as 
^Wd^wd/ l,£; t J . 

Notice from (8) above that the covariance between fd(t) 
and fd,(t') depends on the covariance ku u (r, r ' ) . The form 
for the covariance ku u (t, t') should be such that we can 
solve both integrals in (8). Two alternatives for ku u (r, r ') 
have been considered before in the context of latent force 
models. In [10], the covariance ku u (r, r ') was considered to 
follow the squared exponential (SQEXP) form [11]: 

kUqtUq(t,t')=exp(-(-^l-\ (9) 

where £q is known as the length-scale. In [12], the covariance 
ku ,u (T, T') was associated with a Gaussian white noise and 
therefore followed the form ku u (r, r ' ) = O^S(T — r ' ) , where 
o2 stands for the variance of the white noise. As long as the 
double integral in (8) can be solved analytically, other forms 
for ku u (T, T') can be taken into account. Possible choices 
include particular forms of the Matern class of covariance 
functions (see the Matern covariance for v = 3/2 and v = 
5/2 [11, p . 85]), and the exponential covariance function. 

Besides computing the covariance between the outputs, 
we can also compute the covariance between the outputs 
and the latent forces. The covariance between fd(t) and 
uq(t), k}rhUq(t,t'), follows: 

Sd,qJ Gd(t-T)kUqtUq(T,t')dT. (10) 

In Section 5.1, we apply a second order dynamical latent 
force model to modeling human motion capture data. 

3.2 Multidimensional Inputs 
In dynamical latent force models, the input variable is one-
dimensional (time). For higher-dimensional inputs, x 6 Mp, 
we can use partial differential equations to establish the 
dependence relat ionships be tween the latent forces, 
{wg(x)}^=1, and the outputs, {j/d(x)}d=1. The initial condi­
tions turn into boundary conditions, specified by a set of 
functions that are linear combinations of j/d(x) and its lower 
derivatives, evaluated at a set of specific points of the input 
space. Once the Green's function associated with the linear 
partial differential operator has been established, we 
employ similar equations to (7), (8), and (10) to compute 
kfdjd, (x, x') and kfdtU (x, x'). Now the covariance for the 
outputs is written as kydM (x, x ') , and is given by kjdjd, (x, 
x') + kWdiWd(x.,x'), where kWdiWd(x.,x') is the covariance for 
the independent process u>d(x). 

In the context of latent force models , choices for 
ku u (x, x') have included the Gaussian covariance form 
[10], and a white noise covariance [12]. Alternatives that 
may be considered include the Matern class of covariance 
functions and the exponential covariance function. 

We apply latent force models with general higher-
dimensional inputs in Section 5.2. 

4 LEARNING LATENT FORCE MODELS 

We have defined latent force models in terms of differential 
operators and developed a method to encode differential 
equations in the covariance function. When the latent forces 
are governed by Gaussian processes, the resulting covar­
iance function can be used for prediction within the GP 
framework. Here, we describe hyperparameter learning in 
LFMs, prediction for test cases, and computational com­
plexity. The description is done in terms of the input space 
x 6 Mp, the dynamical latent force model (where x = t) 
being a special case. 

4.1 Hyperparameter Learning 
Gaussian processes allow us to trivially marginalize the 
effect of the latent forces, {wg(x)}^=1, by focusing only on 
the covariance for the outputs, kydtVd, (x, x'). Given a set of 
inputs X = {x„} n = 1 and the parameters 6 of the covariance 
function,4 the marginal likelihood for the outputs can be 
written as 

p ( y | X , 0 ) = j V ( y | O , K f i f + E) , (11) 

where y = vecY, Kff € 'S\NDxND with each element given 
by cov[/d(x„), fd, (x.'n,)] for n=l,...,N and n' = 1 , . . . , N, 
and £ represents the covariance associated wi th the 
independent processes wd{~£). 

In general, the vector of hyperparameters 0 is unknown, 
so we estimate it by maximizing the logarithm of the 
marginal likelihood of (11). This type of estimation is 
known as type II maximum likelihood, empirical Bayes, or 
the evidence approximation [13]. The maximization is 
performed numerically by using a gradient descent method. 

4.2 Predictive Distribution and Posterior over the 
Latent Forces 

Prediction for a set of test inputs X„ is done using standard 
Gaussian process regression techniques. The predictive 
distribution is given by 

p(y. | y , x , 0 ) = j V ( y , |#f . ,Ky . ,y . ) , 

w i t h /it = Kf tf(Kff + £ ) ~ y a n d Ky t tY t = Kftift — 
Kf„f (Kf,f + S ) _ 1 K j f + £*, where we have used Kft ft to 
represent the evaluation of Kff at the input set X„. The 
same meaning is given to the covariance matrix Kf tf. 

As part of the inference process, we are also interested in 
the posterior distribution for the set of latent forces: 

p(u | y, X, 0) = ./V(u | / i u | y , K u | y ) , 

w i t h /tu |y = KfTu(Kfif + E ) _ 1 y a n d Ku |y = K U j U -
Kf

r
u(Kfjf + E)~ Kfu , where u = vecU, K u u is a block-

diagonal matrix with blocks given by K u u . In turn, the 
elements of KUgiUg are given by fcu?iU?(x,x'). Also, KfjU is a 
matrix with blocks KfdjU , where KfdjU has entries given by 

kfd,U, ( X l X ) ' 

4. Also known as hyperparameters [11, see 20]. 
5. x = vec X is the vectorization operator that transforms the matrix X 

into a vector x. The vector is obtained by stacking the columns of the matrix. 



4.3 Efficient Approximations 
Learning the hyperparameter vector 0 through the max­
imization of the logarithm of the marginal likelihood in (11) 
involves the inversion of the matrix Kf f + E, inversion that 
scales as 0(D3N3). For the single output case, this is D = 1; 
different efficient approximations have been introduced in 
the machine learning literature to reduce computational 
complexity, including [7], [11], [14], [15], [16], [17]. Recently, 
[18] introduced an efficient approximation for the case 
D > 1. It is based on the assumption that if only a few 
number K < N of values of w(x) are known, then the set of 
outputs /d(x, w(x)) are uniquely determined. The approx­
imation obtained shares characteristics with the Partially 
Independent Training Conditional (PITC) approximation 
introduced in [7] and the authors of [18] refer to the 
approximation as the PITC approximation for multiple-
outputs. The set of values {u(zk)}k=1 are known as inducing 
variables, and the corresponding set of inputs, {zk}k=1, are 
known as inducing inputs. This terminology has been used 
before in the case D = 1. 

A different type of approximation was presented in [12] 
based on variational methods. It is a generalization of [17] 
for multiple-output Gaussian processes. The approximation 
establishes a lower bound on the marginal likelihood and 
reduces computat ional complexity to 0{DNK2). The 
authors call this approximation Deterministic Training 
Conditional Variational (DTCVAR) approximation for 
multiple-output GP regression, borrowing ideas from [7] 
and [17]. 

5 APPLICATIONS 

Sections 3 and 4 introduced the basic aspects of latent force 
models required for using them in practice. In this section, 
we will illustrate the performance of latent force models in 
three different real-world applications: modeling time-
course data in human-motion datasets, describing the 
spatiotemporal evolution of gene products in Drosophila, 
and predicting heavy metal concentrations in a geostatistics 
application. For all these applications, we will focus on 
latent force covariances, ku u (x, x ') , that follow the squared 
exponential form. This covariance function leads to latent 
forces that are infinitely differentiable, along with their 
corresponding outputs. 

5.1 Second Order Dynamical System 
One analogy for our model comes through puppetry. A 
marionette is a representation of a human (or animal) 
controlled by a limited number of inputs through strings (or 
rods) attached to the character. In a puppet show, these 
inputs are the unobserved latent functions, while the 
movement of the joints in the marionette is the observed 

6. We can apply the framework for less smooth covariance functions 
(such as the Matern covariance) but when comparisons between 
convolved and nonconvolved approaches were made we would need 
some way of accounting for that smoothness (as measured by the 
differentiability). The latent force model outputs are convolved versions 
of the underlying latent function and would therefore always be 
differentiable one more time than the latent function for the noncon­
volved. The squared exponential gives latent functions that are infinitely 
differentiable. This ensures the smoothness characteristics are the same 
for both the convolved and nonconvolved models. 

output functions. A skilled puppeteer with a well-designed 
puppe t can create a realistic representation of human 
movement through judicious use of the strings. 

Human motion capture data consists of a skeleton and 
multivariate time courses of angles that summarize the 
motion. This motion can be modeled with a set of second 
order differential equations which, due to variations in the 
centers of mass induced by the movement, are nonlinear. 
The simplification we consider for the latent force model is 
to linearize these differential equations, resulting in the 
following second order system: 

Md^^+Cd^+Bdyd(t) = £ S W * ) + ed(t). 
9=1 

While the above equation is not the correct physical model 
for our system, it will still be helpful when extrapolating 
predictions across different motions, as we shall see in the 
experimental results. The dynamic behavior of this system 
can exhibit inertia and resonance. Note that the system is 
overparameterized, and we can assume, without loss of 
generality, that the masses are equal to one. 

For the motion capture data, yd(t) corresponds to a given 
observed angle over time, and its derivatives represent 
angular velocity and acceleration. The system is fully 
charac ter ized by the u n d a m p e d na tu ra l f requency, 
Ôd = \fB~d, and the damping ratio, Q = \Cdj\fB~d. Systems 

with a damping ratio greater than 1 are said to be 
overdamped, whereas underdamped systems exhibit reso­
nance and have a damping ratio less than 1. For critically 
d a m p e d systems, Q = 1. Undamped systems (i.e., no 
friction) have Q = 0. 

Ignoring the initial conditions, the solution of the second 
order differential equation is given by the integral operator 
of (5), with Green's function 

Gd(t, s) = — e x p ( - a y ( i - s)) sin(ujd(t - s)), 
^d 

where LJd = ^ABd - Cj/2 and ad = Cd/2. 
According to the general framework described in 

Section 3, the covariance function between the outputs is 
obtained by solving expression (8), where ku u (t, t') 
follows the SQEXP form in (9). Solution for kf « (t, t') is 
then given by [10] 

KQ [hq(jd;, 7d, t, t') + hq(jd, jd>,t, t) + hq(~/d,, j d , t, t') 

+ hq(jd, jd>, t', t) - hq(jd>,jd, t, t') - hq(jd, jd>,t', t) 

- hq(ld>,Jd,t,t') -hq(jd,jd>,1?,t)], 

where K0 = £q^ii/8ujdujd>, j d = ad + jud, and ^d = ad - jujd 

and the functions /ig(7d',7d, t, t') follow: 

hf ,,,, rq(lr,,t',t)-e-^Tq(ld,t',0) 
nq{^d',ld,t,t) = , , 

Id + Id' 

with yq(jd,,t,t): 

2 e ( — ) e ^ ( ' - 0 _ e A <? >^{]zd,a(t)) 

(_m { ' 
-e{ 'I >e(-^)w(-^d,g(0)), 
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and zaa(t) = (t - t')/£q - (£qjd>)/2. Note that zd,a(t) € C , 
and w(jz) in (12), for z e C , denotes Faddeeva's function 
w(jV) = exp(22)erfc(2;), where erfc(;z) is the complex version 
of the c o m p l e m e n t a r y e r ror funct ion , erfc(;z) = 1 — 
erf(;z) = -T= Jz°° exp(—v2)dv. Faddeeva's function is usually 
considered the complex equivalent of the error function 
because \w(jz)\ is bounded whenever the imaginary part of 
jz is greater or equal than zero. Using Faddeeva's function 
is the key to achieving a good numerical stability when 
computing (12) and its gradients. 

Similarly, the cross covariance between latent functions 
and outputs in (10) is given by kf>q(t,t') = ^f[Tq(^d, 
t,t')-Tq{ld,t,t')]. 

5.1.1 Motion Capture Data 
We use motion capture data to illustrate the performance of 
the second order latent force model. Our motion capture 
dataset is from the CMU motion capture database.7 We 
considered two different categories of movement: golf-
swing and walking. For golf-swing, we take subject 64, mo­
tions 1, 2, 3, and 4, and for walking we take subject 35, 
motions 2 and 3; subject 10, motion 4; subject 12, motions 1, 
2, and 3; subject 16, motions 15 and 21; subject 7, motions 1 
and 2; and subject 8, motions 1 and 2. We refer to the pair 
subject and motion by the notation A(B), where A refers to 
the subject and B to the particular motion. Original capture 
is at 120 frames per second (fps). We downsampled by 4 to 
obtain 30 fps. Although each movement is described by 
time courses of 62 angles, we selected only the outputs 
whose signal-to-noise ratio was over 20 dB. To compute the 
signal-to-noise ratio, we train a GP regressor for each 
output, employing a covariance function that is the sum of a 
squared exponential kernel and a white Gaussian noise, 
er| exp[— ~^' ] + a2

N8(x., x ') , where er| and o2
N are variance 

parameters. For each output, we compute the signal-to-
noise ratio as 101og10(crg/cr^r). After this preprocessing step, 
we end up with 50 outputs for the golf-swing example and 
33 outputs for the walking example. 

For each movement category (walk, golf-swing) the 
subject repeats the motion several times. We refer to each 
repeat as an individual "motion." We train on a subset of 
the motions for each movement and test on a different 
subset of motions for the same movement category to assess 
the model 's ability to extrapolate. For testing, we condition 
on time as an input and the following outputs: the three 
positions associated with the root nodes across all time and 
the initial position and final position of the figure (we used 
five frames from both the initial and final positions). For the 
golf-swing, we use leave-one-out cross-validation, in which 
one of the 64(B) movements is left aside (with B = 1, 2, 3 or 
4) for testing, while we use the other three for training. For 
the walking example, we train using motions 35(2), 10(4), 

7. The CMU Graphics Lab Motion Capture Database was created 
with funding from NSF EIA-0196217 and is available at http:/ /  
mocap.cs.cmu.edu. 

8. We selected specific frame intervals for each motion. For 64(1), frames 
[120,400]; for 64(2), frames [170,420]; for 64(3), frames [100,300]; and for 
64(4), frames [80,315]. For 35(2), frames [55,338]; for 10(4), frames [222,499]; 
for 12(1), frames [22,328]; and for 16(15), frames [62,342]. For all other 
motions, we use all the frames. 

9. We use "to train" or "training" to refer to hyperparameter estimation. 

TABLE 1 
RMSE and R2 for Golf-Swing and Walking 

Movement Method RMSE R2 (%) 

Golf swing 

INDGP 
MTGP 
SLFM 
LFM 

21.55 ±2 .35 
21.19 ±2 .18 
21.52 ± 1 . 9 3 
18.09 ± 1.30 

30.99 ± 9.67 
45.59 ± 7.86 
49.32 ± 3.03 

72.25 ± 3.08 

Walking 

INDGP 
MTGP 
SLFM 
LFM 

8.03 ± 2.55 
7.75 ± 2.05 
7.81 ± 2.00 
7.23 ± 2 . 1 8 

30.55 ± 10.64 
37.77 ± 4.53 
36.84 ± 4.26 

48.15 ± 5.66 

12(1), and 16(15) and validate over all the other motions 
(8 in total). 

We use the above setup to train an LFM, an MTGP, and 
an SLFM. We set Q = 2 for all models for our compar­
isons. We use the DTCVAR efficient approximation with 
K = 30 and fixed inducing-points placed equally spaced in 
the input interval (varying K between 20 and 50 for the 
walking example did not change results significantly). We 
also considered a regression model that directly predicts 
the angles of the body given the orientation of three root 
nodes using s tandard independent GPs wi th SQEXP 
covariance functions. We determined hyperparameters 
through maximum likelihood for each model indepen­
dently. Results for all methods are summarized in Table 1 in 
terms of root-mean-square error (RMSE) and percentage of 
explained variance (R2). In the table, the measure shown is 
the mean of the measure in the validation set, plus and 
minus one standard deviation. 

The LFM outperforms the other methods both in terms of 
RMSE and R2. This is part icularly t rue for the R2 

performance measure, indicating that the LFM generates 
more realistic motions. 

5.2 Partial Differential Equations 
In Section 5.1, we considered dynamical latent force models 
which lead to multi-output Gaussian processes with a 
single input variable: time. We now apply the methodology 
alongside partial differential equations to recover multi-
output Gaussian processes that are functions of several 
inputs. We first show an example of spatiotemporal 
covariance obtained from the latent force model idea and 
then an example of a covariance function that, using a 
simplified version of the diffusion equation, allows an 
expression for higher-dimensional inputs. 

5.2.1 Gap-Gene Network of Drosophila Melanogaster 
The Gap-gene network in Drosophila Melanogaster is 
associated with segmentation in early organism develop­
ment. It is a spatiotemporal system where the expression of 

10. We also ran MTGP and SLFM with higher values of Q and obtained 
similar results. 

11. Such a model does not have a concept of time, so it is not possible to 
augment predictions by including the initial pose and the final pose. 

12. For both examples, golf-swing and walking, values of the damping 
ratios obtained for each output, Q, are sensible. For golf-swing, the range 
of damping-ratio values is (0,0.9), and for walking, the range is (0.1,0.8). 
These values correspond to underdamped systems, that is, systems that 
exhibit oscillations. Oscillations appear naturally both in golf-swings and 
walking. 

http://
http://mocap.cs.cmu.edu


Fig. 1. Drosophila body segmentation genes. Blue stripes correspond to 
hunchback, green stripes to knirps, and red stripes to eve-skipped at 
cleavage cycle 14A, temporal class 3. 

proteins evolves with time. During the blastoderm stage of 
the Drosophila development, different maternal gradients 
determine the polarity of the embryo along its anterior-
posterior (A-P) axis. 

Maternal gradients interact with the so-called trunk gap 
genes, including hunchback (hb), Kriippel (Kr), giant (gt), and 
knirps (kni), and this network of interactions establishes the 
patterns of segmentation of the Drosophila. 

Fig. 1 shows the gene expression of the hunchback, the 
knirps, and the eve-skipped genes in a color-scale intensity 
image. The image corresponds to cleavage cycle 14A, 
temporal class 3.1 3 

The gap-gene network dynamics is usually represented 
us ing a set of coupled nonlinear part ial differential 
equations [22], [23]: 

dyd(x,t) 

dt 
= C(t)Pd(y(x,t)) - Xdyd(x,t) + Drf 

d2yd(x,t) 

dx2 

where yd(x,t) denotes the relative concentration of gap 
protein of the dih gene at the space point x and time point t. 
The term Pd(y(x,t)) accounts for production and it is a 
function, usually nonlinear, of production of all other genes. 
The parameter Â  represents the decay and D^ the diffusion 
rate. The function ((t) accounts for changes occurring 
during the mitosis in which the transcription is off [22]. 

We linearize the equation above by replacing the 
nonl inear te rm ((t)Pd(y(x,t)) w i th the l inear t e rm 
Y^=i^d,qUq(x,t), where Sd,q are sensitivities that account 
for the influence of the latent force uq(x,t) over the quantity 
of production of gene d. In this way, the new diffusion 
equation is given by1 4 

dyd(x,t) ^ d2yd(x,t) 
W, = 2 ^ Sd,qUq(X, t) - Xdyd{X, t) + Drf — . 

This expression corresponds to a second order nonhomoge-
neous partial differential equation. It is also parabolic with 
one space variable and constant coefficients. The exact 
solution of this equation is subject to particular initial and 
boundary conditions. For a first boundary value problem 
with domain 0 < x < I, initial condition yd(x, t = 0) equal to 
zero, and boundary conditions yd{x = 0,t) and yd{x = l,t) 

13. The embryo name is dml2 and the image was taken from http: / /  
urchin.spbcas.ru/flyex/ [19], [20], [21]. 

14. For convenience, we've dropped the noise term, ed(t). However, we 
include the contribution of the independent process wd(x, t) with a separate 
covariance kWdiWl (x, t, x', £'). 

both equal to zero, the solution to this equation is [24], 

[25], [26]: 

Q rt rl V rt pi 
yd(x, t) = y~] Sd,q / / uq(£, r)Gd(x, f, t - r)d£d 

q=1 Jo Jo 

where the Green's function Gd(x,£,t) is 

r 
ra=l 

V l ) I 

We assume that the latent forces uq(x,t) follow a Gaussian 
process with covariance function that factorizes across 
input dimensions, i.e., 

kUqjU(x,t,x',t') = e x p -
(t-f) 

W 
exp -

(<?)' 
where tq represents the length-scale along the time-input 
dimension and ix

q the length-scale along the space input 
dimension. The covariances kf^(x,t,x',t') are computed 
using the expression for the Green's function and the 
expression for the covariance of the latent forces, in a 
similar fashion to (8), leading to 

^ E E k)yq
d, & *')*%,# (X) x')' 

n=l m=l 
•M'V 

(13) 

where kl
fq «, (t,t') and Ar«, fQ (x,x') are also kernel functions 

that depend on the indexes n and m. The kernel function 
kl

fq fq (t, t') is given by 

kf
f f (t,f) =-^[hd>,d(t',t) + hd,d>(t,t')], :M) 

where 

ha,dtf>t)=e3? ,?^exp(-^0< e x p ( ^ t ) 
+ 

erf I —p- - vq4i J + erf I - + vq,d> 

- exp(-/3dt) e r f ( Jt ~ v^d' I + e r f (ui>dl 

where erf(x) is the real valued error function, erf(x) = 
-^f* exp(-y2)dy, (3d = Xd + Ddu)2

n, f3d> = \d> + Dd^
2

m/ un = 
*f,um=!f,andvq,d = et

q(3d/2. 
The covariance kx

fq fq (x, x') is given by 

kx
fqjq (x, x) = C(n, m, tq) sm(ujnx) sin(a;mcc/). 

The term C(n,m,£q) represents a function that depends on 
the indexes n and m and on the length-scale of the space-
input dimension. The expression for C(n,m,£q) is 

A fi r_(izefi 
C(n,m,P)= / / s i n ( ^ ) s i n ( W m O e L ^ J d ^ . 

Jo Jo 

The solution of this double integral depends upon the 
relative values of n and m. If n / m and n and m are both 

http://
http://urchin.spbcas.ru/flyex/


TABLE 2 
RMSE and R2 for Protein Data Prediction 

Gene Method RMSE R2 (%) 

giant 
MTGP 
DROS 

26.56 ± 0.30 
2.00 ± 0.35 

81.12 ±0 .01 
99.78 ± 0.01 

knirps MTGP 
DROS 

16.14 ±8 .44 
3.01 ± 0 . 8 1 

91.18 ±2 .77 
99.60 ± 0 . 0 1 

even or both odd, then the analytical expression for 
C(n,m,£x) is 

txi 

y^7r(m2 — n2) 
{nl[W(m,£x)]- m l [ W ( n , i j ) ] } , 

where T[-] is an operator that takes the imaginary part of the 
argument and W(m, £x) is given by 

W(m,£x) = w(jzf \<%) 0-lml w(jz ?), 
,7m „7m = I + jCU i a n d l m = - ^ being zj"- =^r,z^ - ^ 2 

The term C[n, m,£x) is zero if, for n ^ m, n is even and m 
is odd or vice versa. 

Furthermore, when n = m, the expression for C(n,n,£x) 
follows as 

Rl 
Tl[W(n,£x)]-l[W(n,£x) X% WK 1 

2P h ^ 

+ -
(O e i cos{mr) — 1 

where 1Z[-] is an operator that takes the real part of the 
argument. 

The cross covariance between the outputs and the latent 
functions can be computed using (10). 

Results and Discussion. We want to assess the contribution 
that a simple mechanistic assumption might bring to the 
prediction of gene expression data when compared to a 
covariance function that does not imply mechanistic 
assumptions 

We refer to the covariance function obtained in the 
section before as the Drosophila (DROS) kernel. We use the 
DROS kernel as the covariance of a GP, and compare its 
performance against the mult i task Gaussian process 
(MTGP) framework already mentioned in Section 2. 

We use data from [22], in particular, we have quantita­
tive wi ld- type concentration profiles for the prote in 
products of giant and knirps at nine time points and 
58 spatial locations. Since there are a fixed number of time 
points for each protein, we can build a model with a fixed 
number of outputs and associate each output with a time 
point. This setup is very common in computer emulation of 
multivariate codes (see [6], [27], [28]) in which the MTGP 
model is heavily used. For the DROS kernel, we use 
30 terms in each sum involved in its definition in (13). 

We randomly select 20 spatial points for training the 
models, that is, for finding hyperparameters according to 
the description of Section 4.1. The other 38 spatial points 
are used for validating the predictive performance. Results 
are shown in Table 2 for five repetitions of the same 

experiment. It can be seen that the mechanistic assumption 
included in the GP model considerably outperforms MTGP 
for this particular task. 

5.2.2 Diffusion in the Swiss Jura 

The Jura data are a set of measurements of concentrations of 
several heavy metal pollutants collected from topsoil in a 
14.5 km2 region of the Swiss Jura. We consider a latent 
function that represents how the pollutants were originally 
laid down. As time passes, we assume that the pollutants 
diffuse at different rates, resulting in the concentrations 
observed in the dataset. We use a simplified version of the 
heat equation of p variables. The p-dimensional nonhomo-
geneous heat equation is represented as1 5 

dyd(*,t) Y - d2yd(x,t) 

at 
j = i 

dx2 

where p = 2 is the dimension of x, the measured concentra­
tion of each pollutant over space and time is given by j/d(x, t), 
Kdj is the diffusion constant of output d in direction p, and 
$ (x , t) represents an external force, wi th x = {XJ}P

=v 

Assuming the domain Mp = {—oo < x3 < oo; j = 1 , . . . ,p}, 
and initial condition prescribed by the set of latent forces 
u ( x ) = Ylq=i Sd,qUq{yi), at t = 0, the solution to the system 
[24] is then given by 

j /d (x , i )= / / G d (x ,x ' , t ,T)$(x ' , r )dx 'dT 
Jo Jw ( 1 5 ) 

+ / G d (x ,x ' , t ,0)«(x ' )dx ' , 
Jw 

where Gg(x, x', t, r) is the Green's function given by 

G d (x ,x ' , t , r ) 

Wnti T < 
=exp 

d,j 

•sr-^ (xj xj) 

,=! 4Td j 

with Kn = 2pirp>2 and Tdj(t,r) = Kdj(t — r ) . The covariance 
function we propose here is derived as follows: In (15), we 
assume that the external force $(x , t) is zero, following: 

yd(x, t) = T] Sd,q / Gd(x, x', t, 0)«g(x')dx'. 

We can again write the expression for the Green's function as 

G d (x ,x ' , t ) 

(2*)vn?=i 
= exp 

* d j 

M^-s*) 
2£, d,j 

where £dj = 2Tdj = 2re<zJ-t. The coefficient £,ij is a function of 
time. In our model for the diffusion of the pollutant metals, 
we think of the data as a snapshot of the diffusion process. 
Consequently, we consider the time instant of this snapshot 
as a parameter to be estimated. In other words , the 
measured concentration is given by 

<3 r 
j/d(x) = Y^S'd.g / Gd(x,x')wg(x')dx', 

q=l JW 

15. For simplicity, we again omit the noise term e.d{t). 



TABLE 3 
RMSE for Pollutant Metal Prediction 

Method Cadmium (Cd) Cobalt (Co) Copper (Cu) Lead (Pb) 

INDGP 0.8353 ± 0.0898 2.2997 ±0.1388 18.9616 ± 3.4404 28.1768 ±5.8005 
MTGP (Q = 1) 0.7638 ±0.1016 2.2892 ± 0.1792 14.4179 ± 2.7119 21.5861 ±4.1888 
HEATK (Q = 1) 0.6773 ± 0.0628 2.06 ± 0.0887 13.1788 ± 2.6446 17.9839 ± 2.9450 
MTGP (Q = 2) 0.6980 ± 0.0832 2.1299 ± 0.1983 12.7340 ± 2.2104 17.9399 ± 1.9981 
SLFM (Q = 2) 0.6941 ± 0.0834 2.172 ± 0.1204 12.8935 ± 2.6125 17.9024 ± 2.0966 
HEATK (Q = 2) 0.6759 ± 0.0623 2.0345 ± 0.0943 12.5971 ± 2.4842 17.5571 ± 2.6076 

TABLE 4 
R2 for Pollutant Metal Prediction 

Method Cadmium (Cd) Cobalt (Co) Copper (Cu) Lead (Pb) 

INDGP 15.07 ± 7.43 57.81 ± 7.19 25.84 ± 7.54 23.48 ± 10.40 
MTGP (Q = l) 27.25 ± 5.89 58.45 ± 5.71 58.84 ± 8.35 56.85 ± 11.60 

HEATK (Q = 1) 43.83 ± 8.71 66.19 ± 4.60 65.55 ± 8.21 71.45 ± 5.78 
MTGP (Q = 2) 40.30 ± 5.17 64.13 ±5 .10 67.51 ± 8.36 69.70 ± 6.90 
SLFM (Q = 2) 40.97 ±5 .15 62.49 ± 5.41 67.35 ± 8.29 70.21 ± 6.04 

HEATK (Q = 2) 43.94 ± 6.56 67.17 ± 4.30 68.40 ± 6.46 70.55 ± 6.88 

where Gd(x, x') is the Green's function Gd(x, x ' , t ) that 

considers the variable t as a parameter to be estimated 

through l,ij. The expression for Gd(x, x') corresponds to a 

Gaussian smoothing kernel, with diagonal covariance. 

This is 

Gd(x,x ') = 
11/2 

(2*) 
p/2 exp 

1 
( x - x ' ) x ' ) T P d ( x -

where P^ is a precision matrix, with diagonal form and 
entries {PdtJ = ±-}p

j=1. 
It we take the latent function to be given by a GP with the 

Gaussian covariance function that follows the same form as 
Gd(x, x ') , we can compute the multiple output covariance 
functions analytically. The covariance function between the 
output functions, kf ji (x, x'), is obtained as 

1 

(2*) 
P/2 11/2 exp 

1 
(x- V 

where P9
dd, = P ^ 1 + P ^ 1 + A"1 , and Aq is the precision 

matrix associated with the Gaussian covariance of the latent 
force Gaussian process prior. The covariance function 
between the output and latent functions can be computed 
using (10). 

Results and Discussion. We used our model to replicate the 
experiments described in [29, pp . 248, 249] in which a 
primary variable (cadmium, cobalt, copper, and lead) is 
predicted in conjunction wi th some secondary variables 
(nickel and zinc for cadmium and cobalt; copper, nickel, 
and zinc for copper and lead). For several sample locations, 
we have access to the primary variable, for example, 
cadmium, and the secondary variables, nickel and zinc. 
These sample locations are usually referred to as the 
prediction set. At some other locations, we only have access 
to the secondary variables. In geostatistics, this configuration 

16. Data available at http://www.ai-geostats.org/. 

of sample locations is known as undersampled or heterotopic 
[29], where usually a few expensive measurements of the 
attribute of interest are supplemented by more abundant 
data on correlated attributes that are cheaper to sample. 

By conditioning on the values of the secondary variables 
at the prediction and validation sample locations and the 
primary variables at the prediction sample locations, we can 
improve the prediction of the primary variables at the 
validation locations. We compare results for the heat kernel 
with results from prediction using independent GPs for the 
metals, the multitask Gaussian process, and the semipara-
metric latent factor model. For our experiments, we made 
use of 10 repeats to report standard deviations. For each 
repeat, the data are divided into a different prediction set of 
259 locations and different validation set of 100 locations. 
Root mean square errors and percentage of explained 
variance are shown in Tables 3 and 4, respectively. 

Note from both tables that all methods outperform 
independent Gaussian processes, in terms of RMSE and 
explained variance. For one latent function (Q = 1), the 
Gaussian process with Heat kernel renders better results 
than multitask GPs (in this case, the multitask GP is 
equivalent to the semiparametric latent factor model). 
However, when increasing the value of the latent forces to 
2 (Q = 2), performances for all methods are quite similar. 
There is a still a gain in performance when using the Heat 
kernel, a l though the results are within the s tandard 
deviation. Also, when comparing the performances for the 
GP with Heat kernel using one and two latent forces, 
we notice that both measures are quite similar. In summary, 
the heat kernel provides a simplified explanation for the 
outputs in the sense that, using only one latent force, we 
provide better performances in terms of RMSE and 
explained variance. 

6 RELATED WORK 

When a Gaussian process is used to represent the latent 
forces and the mechanistic models are linear differential 

http://www.ai-geostats.org/


equations, our framework results in a multiple output 
Gaussian process with a covariance function that encodes 
the interactions between the different mechanistic models. 
By using the marginal likelihood to estimate the hyperpara-
meters 0 of the covariance function embedded in the latent 
force model, we are estimating the parameters of differ­
ential equations. 

The related work can be seen from different perspec­
tives. We focus on three: Gaussian processes for multiple 
outputs, parameter estimation in differential equations, and 
Gaussian processes for systems identification. 

6.1 Gaussian Processes for Multiple Outputs 
Gaussian process priors for multiple outputs have been 
thoroughly studied in the spatial analysis and geostatistics 
literature [29], [30], [31], [32], [33], [34]. A valid covariance 
function for multioutput processes can be generated using 
the linear model of coregionalization (LMC). In the LMC, 
each output yri(t) is represented as a linear combination of a 
series of basic processes {uq}^=1, some of which share the 
same covariance function ku <u (t,t'). Both, the semipara-
metric latent factor model [4] and the multitask GP [5] can 
be seen as particular cases of the LMC [35]. Higdon [30] 
proposed the direct use of (5) to obtain a valid covariance 
function for multiple outputs, and referred to this kind of 
construction as process convolutions. Process convolutions 
for constructing covariances for a single output GP had 
already been proposed by Barry and Hoef [36], [37]. Calder 
and Cressie [38] review several extensions of the single 
process convolution covariance. It has been used, for 
example, to develop nonstationary covariance functions 
by Paciorek and Schervish [39]. Boyle and Frean [31] 
introduced the process convolution idea for multiple 
outputs to the machine learning audience. Boyle [40] 
suggested the idea of using impulse responses of filters to 
represent Gd(t, s), assuming the process v(t) was white 
Gaussian noise. The latent force model generalizes this idea 
to allow more general covariance functions for the latent 
processes. Independently, [41] also introduced the idea of 
transforming a Gaussian process prior using a discretized 
version of the integral operator of (5). Such a transformation 
could be applied for the purposes of fusing the information 
from multiple sensors (a similar setup to the latent force 
model but with a discretized convolution), for solving 
inverse problems in reconstruction of images, or for 
reducing computational complexity working wi th the 
filtered data in the transformed space [42]. 

It is important to emphasize that latent force models are 
part of the wider process convolution framework for 
constructing covariance functions. The main difference 
from previous approaches, including MTGP, SLFM, and 
LMC, is the inclusion of physical models for constructing 
the covariance function. 

6.2 Parameter Estimation in Differential Equations 
Differential equations are the cornerstone of a diverse range 
of engineering fields and applied sciences. However, 
combination with probabilistic models and use within 
machine learning and statistics is less explored. We now 
briefly review the most significant related works in this 
area, which fall within a field generally known as functional 
data analysis [43]. 

From the frequentist statistics point of view functional 
data analysis has been concerned with the problem of 
parameter estimation in differential equations [44], [45]: 
Given a differential equation with unknown coefficients 
{ A m } m = 0 , how do we use data to fit those parameters? 
There is a subtle difference between those techniques and 
the latent force model. While these parameter estimation 
methods start with a very accurate description of the 
interactions in the system via the differential equation (the 
differential equation is often nonlinear [22]), in the latent 
force model we use the differential equation as part of the 
modeling problem: The differential equation is used as a 
way to introduce prior knowledge over a system for which 
we do not know the real dynamics, but for which we hope 
some impor tant features of that dynamics could be 
expressed. Still, we briefly review the parameter estimation 
methods because they also deal with differential equations 
with an uncertainty background. 

Classical approaches to fit parameters 0 of differential 
equations to observed data include numerical approxima­
tions of initial value problems and collocation methods ([45] 
and [46] provide reviews and detailed descriptions of 
additional methods). 

The solution by numerical approximations includes an 
iterative process in which, given an initial set of parameters 0Q 
and a set of initial conditions y0 , a numerical method is 
used to solve the differential equation. The parameters of 
the differential equation are then optimized by minimizing 
an error criterion between the approximated solution and 
the observed data. 

In collocation methods, the solution of the differential 
equation is approximated using a set of basis functions, 
{<&(i)}f=1, that is, y(t) = Y.LiI3'^)- T h e basis functions 
must be sufficiently smooth so that the derivatives of the 
unknown function appearing in the differential equation 
can be obtained by differentiation of the basis representation 
of the solution, that is, Vmy(t) = Y.PtVm4>%{t). Collocation 
methods also use an iterative procedure for fitting the 
additional parameters involved in the differential equation. 
Once the solution and its derivatives have been approxi­
mated using the set of basis functions, minimization of an 
error criteria is used to estimate the parameters of the 
differential equation. Principal differential analysis (PDA) 
[47] is one example of a collocation method in which the 
basis functions are splines. 

An example of a collocation method augmented with 
Gaussian process priors was introduced by Graepel in [48]. 
Graepel starts with noisy observations, y(t), of the differ­
ential equation T>ffy(t) such that y(t) ~ M{V^y(t), a2

y). The 
solution of the differential equation Vffyft) is assumed to 
follow a Gaussian process prior with covariance kVM VM (t,t), 

where this covariance is obtained by taking V^f derivatives 
of k(t, t') with respect to t and Vff derivatives with respect 
to t'. The covariance k(t, t') is freely chosen. An approxi­
mated solution y(t) can then be computed through the 
expansion y(t) = ^2n=1 ankVM VM (t, tn), where an is an 
element of the vector 

( K C M CM + a2
yIN) y, 



where ~KVM VM is a matrix with entries kVM VM (tn, tn>), and 
y is a vector of noisy observations oi'V^y{i). An 
important difference between this method and the latent 
force model is that we do not assume we have access to 
noisy observations for V^fy(t), but noisy observations for 
the outputs. The LFM is also typically intended for 
multiple outputs. 

Gaussian processes and differential equations have also 
been used simultaneously in hydrogeology [49], [50], [51], 
[52], particularly for cokriging using flow equations [53]. The 
relationship between transmissivity, T(x) , and piezometric 
head, </>(x), in an aquifer or reservoir is modeled by a 
nonlinear partial differential equation derived from the 
conservation of mass and Darcy's law. In a practical setting, 
there are plenty of measurements for piezoelectric head, but 
only few measurements for transmissivity [52, see chapter 8]. 
Cokriging [29] can be used to estimate the amount of 
transmissivity using piezoelectric head as an auxiliary 
variable. Using cokriging, though, requires the covariances 
for T(x) and (/>(x) and the cross covariance between them. An 
alternative for computing these covariances consists of 
employing a linear version for the partial differential 
equation obtained through a small perturbation approxima­
tion for T(x) and </>(x). For details, the reader is referred to 
[51, see chapter 9] and [53, pp. 637-643]. It turns out that, 
given a covariance for </>(x), the covariance for T(x) and the 
cross covariance for T(x) and (/>(x) can be computed 
analytically in a similar way to (8) and (10), where the 
Green's function is obtained from the linear approximation 
for the partial differential equation. A key difference with 
latent force models is that, usually, we do not have access to 
data for the latent forces, in contrast to the method described 
above in which data for T(x) and (/>(x) is usually at hand. 

6.3 Gaussian Processes for Systems Identification 
In control engineering, systems identification refers to a set 
of techniques used for representing a dynamical system by 
a mathematical model (mostly a linear model). A detailed 
description of the dynamical system is usually unknown, 
and parameters of the surrogate model are estimated from 
measured data. 

Gaussian processes have been used as models for 

systems identification [54], [55], [56], [57]. In [54], a 

nonlinear dynamical system is linearized a round an 

equilibrium point by means of a Taylor series expansion 

[57], y(t) = Xl^o V i ft — a)3' w i t h a the equilibrium point. 

For a finite value of terms, the linearization above can be 

seen as a regression problem in which the covariates 

correspond to the terms (t — a)3 and the derivatives y^\a) 

as regression coefficients. The derivatives are assumed to 

follow a Gaussian process prior with a covariance function 

that is obtained as k^'3'\t,t'), where the superscript j 

indicates how many derivatives of k(t, t') are taken with 

respect to t and the superscript / indicates how many 

derivatives of k(t, t') are taken with respect to t'. Derivatives 

are then estimated a posteriori through standard Bayesian 

linear regression. 

Gaussian processes have also been used to model the 
output y(t) at time t^ as a function of its L previous samples 

{y(t — tk-i)}l=1, a common setup in the classical theory of 
systems identification [58]. The particular dependency 
y(t) = g({y(t — tk-i)}i=i), where g(-) is a general nonlinear 
function, is modeled using a Gaussian process prior and the 
predicted value for the output y.t (i^) is used as a new input 
for multistep ahead prediction at times tj, with j > k [55]. 
Uncertainty about yt{tk) can also be incorporated for 
predictions of future output values [59]. 

It is worth mentioning that there has been recent interest 
in introducing Gaussian processes in the state space 
formulation of dynamical systems [60], [61], [62] for the 
representation of the possible nonlinear relationships 
between the latent space and between the latent space 
and the observation space. 

An important difference of all the above methods for 
systems identification and the latent force model framework 
is that we are interested in describing multidimensional 
outputs. Furthermore, we are interested in constructing 
powerful covariance functions that can be used within a 
Gaussian process. The approaches described above are all 
black-box methods. 

Since the original submission of this paper, work by 
Hartikainen and Sarkka [63], [64] has considered latent 
force models from a state space modeling perspective, 
leading to significant improvements in computational 
complexity for temporal datasets. 

7 CONCLUSION 

In this paper, we have presented the latent force model: a 
hybrid approach to modeling that sits between a fully 
mechanistic and a data-driven approach. We used Gaussian 
process priors and linear differential equations to model 
interactions between different variables. The result is the 
formulation of a probabilistic model, based on a kernel 
function, that encodes the coupled behavior of several 
dynamical systems and allows for more accurate predic­
tions. Linear latent force models explored in this paper can 
be extended in several ways, including: 

Nonlinear Latent Force Models. If the likelihood function is 
not Gaussian or the differential equation is nonlinear, the 
inference process is not generally analytic and approxima­
tions must be used such as Laplace's approximation [1] or 
sampling [65]. 

Cascaded Latent Force Models. Latent forces uq(t) could be 
the outputs of another latent force model. For example, in 
Honkela et al. [66], the authors use a cascaded system to 
describe gene expression data for which a first order linear 
system has inputs uq(t) governed by Gaussian processes 
with covariance function (14). 

Switching Dynamical Latent Force Models. A further 
extension of the LFM framework allows the parameter 
vector 0 to have discrete changes as function of the input 
time. In [67], this model was used for the segmentation of 
movements performed by a Barrett WAM robot as haptic 
input device. 
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