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A B S T R A C T   

Image super-resolution (SR) techniques can benefit a wide range of applications in the remote sensing (RS) 
community, including image classification. This issue is particularly relevant for image classification on time 
series data, considering RS datasets that feature long temporal coverage generally have a limited spatial reso
lution. Recent advances in deep learning brought new opportunities for enhancing the spatial resolution of 
historic RS data. Numerous convolutional neural network (CNN)-based methods showed superior performance in 
terms of developing efficient end-to-end SR models for natural images. However, such models were rarely 
exploited for promoting image classification based on multispectral RS data. This paper proposes a novel CNN- 
based framework to enhance the spatial resolution of time series multispectral RS images. Thereby, the proposed 
SR model employs Residual Channel Attention Networks (RCAN) as a backbone structure, whereas based on this 
structure the proposed models uniquely integrate tailored channel-spatial attention and dense-sampling mech
anisms for performance improvement. Subsequently, state-of-the-art CNN-based classifiers are incorporated to 
produce classification maps based on the enhanced time series data. The experiments proved that the proposed 
SR model can enable unambiguously better performance compared to RCAN and other (deep learning-based) SR 
techniques, especially in a domain adaptation context, i.e., leveraging Sentinel-2 images for generating SR 
Landsat images. Furthermore, the experimental results confirmed that the enhanced multi-temporal RS images 
can bring substantial improvement on fine-grained multi-temporal land use classification.   

1. Introduction 

The value of high spatial and temporal resolution remote sensing 
(RS) data has been widely recognized in terms of the improvement in the 
quality of multi-temporal land use and land cover (LULC) classification 
maps (Vuolo et al., 2018). However, publicly accessible RS datasets that 
feature a high spatial resolution mostly do not have long temporal 
coverage. For instance, the temporal coverage of Sentinel-2 started in 
2015. Even for commercially available datasets, their temporal coverage 
commonly started from the year 2000. The limited temporal coverage of 
high-resolution or medium-resolution RS datasets substantially restricts 
the analysis of long time series. As for the RS datasets having much 
longer temporal coverage (e.g., over 30 years), they usually have a much 
lower spatial resolution. For example, Landsat datasets have been 
widely used for time series land dynamic analysis due to their long 
temporal coverage. However, the spatial resolution of Landsat data is 30 
m for the modern platforms in the multi-spectral domain, the relatively 

coarse spatial resolution considerably limits the research on long-term 
yet fine-grained land change observations. 

Recent advances in the field of deep learning provide new opportu
nities for improving the quality of long time series LULC maps. With 
super-resolution (SR) deep networks, the spatial resolution of long time 
series imagery can be largely improved by taking advantage of newly 
produced high-resolution RS imagery. 

1.1. Convolutional neural networks (CNNs) for image super-resolution 

Methods developed for addressing single image super-resolution 
(SISR) problems have been extensively studied. In general, SISR 
methods can be mainly categorized into interpolation-based methods (e. 
g., bicubic interpolation) and learning-based methods. Compared with 
interpolation-based methods, learning-based methods, especially deep 
learning-based methods, are less dependent on handcrafted features 
(Kim et al., 2016). Also, many deep-learning-based SISR methods 
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presented superior reconstruction ability with efficient end-to-end 
model structures. 

In the field of deep learning, the development of CNN-based SISR 
methods made substantial progress over recent years. As one of the 
earliest deep learning methods for SISR, Super-resolution Convolutional 
Neural Network (SRCNN) (C. Dong et al., 2015) directly mapped images 
to a higher resolution in an end-to-end fashion. Based on SRCNN, Very 
Deep Super Resolution (VDSR) (Kim et al., 2016) was proposed with a 
residual learning mechanism and a deeper model structure. Both SRCNN 
and VDSR require upscaling schemes before low-resolution images are 
fed into networks. By contrast, Fast Super-Resolution Convolutional 
Neural Networks (FSRCNN) (C. Dong et al., 2016) and Enhanced Deep 
Super-resolution network (EDSR) (Lim et al., 2017) exhibited better 
performance with an up-sampling scheme embedded in the last part of 
the model. EDSR outperformed many state-of-the-art residual networks 
by introducing a residual-in-residual mechanism in the model structure 
to further deepen and widen the network. Subsequently, Residual 
Channel Attention Networks (RCAN) (Y. Zhang, Li, et al., 2018) pro
vided another direction to improve the performance of CNN-based SR 
models, it emphasized the significant benefit of introducing a channel 
attention mechanism for increasing the channel-wise discriminative 
ability of the model. The adoption of channel attention in RCAN leads to 
an improvement of model performance while outperforming many other 
CNN-based methods, including SRCNN, VDSR, and EDSR. Moreover, 
efforts have been made in tailoring deep learning-based SISR methods 
for remote sensing images, including hyperspectral super-resolution 
(Gao et al., 2021; Zheng et al., 2019, 2021). For example, Zheng 
et al., (2019) proposed a deep network with separable-spectral convo
lution module designated for hyperspectral image super-resolution. 
Furthermore, attempts have been made in applying CNN-based 
methods to enhance the resolution of RS data for practical analysis. 
For instance, M. Chen et al., (2020) adopted SRCNN and FSRCNN for 
monitoring the invasion of exotic plants. 

Alternatively, based on Generative Adversarial Networks (GAN) 
(Goodfellow et al., 2014), many GAN-based methods were developed for 
SISR applications, such as Super-resolution GAN (SRGAN) (Ledig et al., 
2017) and Enhanced Super-Resolution GAN (ESRGAN) (X. Wang et al., 
2018). GAN-based methods generally consist of at least two deep net
works which act as generator and discriminator respectively. However, 
the multiple networks in GANs generally increase the difficulty of 
training, the training process of many GAN-based models tends to be 
highly unstable (Kodali et al., 2017). Given these considerations, we did 
not follow a GAN-based approach here. 

1.2. Convolutional neural networks (CNNs) for image classification 

Recent advances of CNN models, especially Fully Convolutional 
Networks (FCNs), in semantic segmentation tasks brought new oppor
tunities for RS image classification. As one of the widely recognised 
FCNs, U-Net (Ronneberger et al., 2015) was initially proposed for 
biomedical image segmentation but also has achieved success in seg
menting remote sensing images (McGlinchy et al., 2019; Pasquali et al., 
2019; Schuegraf & Bittner, 2019; Yang et al., 2019; W. Zhang et al., 
2021). However, a vanilla U-Net specialises in processing two- 
dimensional images with single or multiple spectral channels. Conse
quently, it lacks the capability of processing temporal sequential data 
efficiently. To deal with spatial–temporal data, Convolutional LSTM 
(ConvLSTM) network was proposed by X. Shi et al., (2015) for precipi
tation prediction. Considering the advantages of ConvLSTM in terms of 
extracting spatial–temporal features, attempts have been made to 
develop ConvLSTM for multi-temporal classification and prediction 
(Rußwurm & Körner, 2018; Teimouri et al., 2019; Yeom et al., 2020; Zhu 
et al., 2021). These developments for multi-temporal classification 
suggested that integration of ConvLSTM layers with FCN can generally 
bring improvements in classification accuracy. 

1.3. Methods of improving CNN model performance 

Much research has been focused on improving the performance of 
CNN models. Viable approaches include deepening the depth (He et al., 
2015), expanding the width of networks (Szegedy et al., 2015), and 
increasing cardinality (Xie et al., 2017). These approaches generally 
require redesigns of the model structure to achieve improvements, 
whereas other methods can promote model performance by lightweight 
mechanisms that do not demand much network engineerings, such as 
attention mechanisms and dense connection mechanisms. 

1.3.1. Attention mechanisms 
Inspired by the importance of attention in human visual experience, 

numerous attention mechanisms were developed for promoting deep 
learning networks (F. Wang et al., 2017; Zagoruyko & Komodakis, 
2017). Attention mechanisms in deep networks can be regarded as 
trainable weighted maps, which are functional in terms of guiding 
models to be more focused on important features in the data. In this 
manner, models with attention mechanisms can be less affected by the 
noise in the data, thereby become more efficient and robust. 

Attention mechanisms can be mainly categorized into four types: (1) 
channel attention mechanism (Haut et al., 2019; Panboonyuen et al., 
2019; W. Tong et al., 2020; Q. Wang et al., 2020; Y. Zhang, Li, et al., 
2018), (2) spatial attention mechanism (W. Shi et al., 2020; Zhao et al., 
2018), (3) temporal attention mechanism (Tran et al., 2017), and (4) 
hybrid attention mechanism (e.g., channel-spatial attention mechanism 
(J. Chen et al., 2020a; L. Chen et al., 2017; Muqeet et al., 2019; Woo 
et al., 2018; Xu & Li, 2019), spatial–temporal attention mechanism 
(Altaf et al., 2018)). Each type of attention mechanism can be effective 
in providing weighted features along the axis that they are implemented. 

The implementation of channel attention boosted the performance of 
many CNNs, such as Squeeze-and-Excitation Networks (SE-Net) (Hu 
et al., 2019) and Efficient Channel Attention Networks (ECA-Net) (Q. 
Wang et al., 2020). Channel attention modules have been frequently 
adopted together with spatial attention modules. For instance, Residual 
Attention Network (F. Wang et al., 2017) was proposed with a stack of 
channel attention and spatial attention modules to produce attention- 
aware features for image classification. Moreover, Dual Attention Net
works (DANet) (Fu et al., 2019) included spatial attention and channel 
attention modules in two sub-branches to capture global dependencies. 

Tentative efforts have been made in developing channel-spatial 
attention blocks that can be efficiently incorporated into any feed- 
forward network, two representative examples are Bottleneck Atten
tion Modules (BAM) (Park et al., 2018) and Convolutional Block 
Attention Module (CBAM) (Woo et al., 2018). BAM and CBAM are 
different regarding how they combine attention modules and where they 
are integrated into model structures. BAM arranges channel attention 
and spatial attention parallelly, whereas CBAM organizes them 
sequentially. Ablation studies of CBAM showed that sequential con
nections of channel attention and spatial attention can yield more 
enhancement than other combination sequences. Moreover, BAM can 
perform better when being applied at the bottlenecks (Park et al., 2018), 
whereas CBAM is proposed to be integrated inside residual blocks (Woo 
et al., 2018). 

Regarding the applications of attention mechanisms in SISR 
methods, although RCAN and Multiscale Attention Network (MSAN) (S. 
Zhang et al., 2020) leveraged channel attention mechanisms to promote 
their reconstruction capability, they neglected the role of spatial atten
tion mechanisms. Some other SISR methods attempted to value both 
channel-wise and spatial-wise attention. For instance, Multi-Grained 
Attention Networks (MGAN) (Wu et al., 2021) incorporated a multi- 
grained attention mechanism that can generate and multi-scale feature 
maps considering both channel-wise dependencies and spatial locations. 
Yao et al., (2020) proposed a cross-attention mechanism that can bridge 
the spatial importance of high-resolution images and the spectral 
importance of the low-resolution images for SISR performance gains. 
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1.3.2. Dense connection mechanism 
The shortcut connections introduced in ResNet (He et al., 2015) 

enable models to exploit deeper structures and become easier to train. 
Based on ResNet, Dense Convolutional Network (DenseNet) (Huang 
et al., 2018) incorporated a dense connection mechanism, in which each 
layer was connected to every subsequent layer to formed a densely 
connected network. These dense skip connections are beneficial in 
mitigating gradient vanishing and enhancing feature propagation 
(Huang et al., 2018). Such promising effects have been widely observed 
in a variety of CNNs for diverse tasks. 

Regarding the implementations of dense connections in SISR 
methods, SRDenseNet (T. Tong et al., 2017) implemented dense skip 
connections to propagate encoded feature maps to every subsequent 
layer, thereby low-level features can be integrated with high-level fea
tures to promote reconstruction ability. Moreover, Residual Dense 
Network (RDN) (Y. Zhang, Tian, et al., 2018) was proposed with stacked 
residual dense blocks (RDB), inside which every convolutional layer is 
densely connected. RDBs can facilitate the model to extract local dense 
features and achieve contiguous memory. Similarly, Wen et al., (2018) 
proposed densely connected residual networks (DRNet) with dense skip 
connections in residual blocks, they yielded higher PSNR values with 
relatively fewer parameters compared with EDSR. 

The above mentioned densely connected CNN-based SISR methods 
applied the dense connection mechanism before up-sampling layers, 
whereas Dong et al., (2020) developed a dense-sampling super-resolu
tion network (DSSR) which used skip connections between earlier layers 
and up-sampling layers. In this framework, each prior residual group 
was upscaled then densely connected with a corresponding up-sampling 
layer. Such type of dense connections is termed as a dense-sampling 
mechanism. According to their experimental results, the dense- 
sampling mechanism is particularly effective for SISR models due to 
its capability of integrating the features learned at various depths for 
constructing better high-frequency information. Therefore, we adopted 
and tested this mechanism as one of the integrated modules for 
achieving performance gains for our considered models. 

Identifying a research gap, this paper aims to address the limitation 
of low-resolution historic RS images on fine-grained multi-temporal 
LULC classification through leveraging newly produced data. To achieve 
this aim, we propose a novel CNN-based super-resolution method for 
multi-temporal image classification. Specifically, two extension mech
anisms, i.e., channel-spatial attention and densely sampling, were inte
grated to improve the performance of the considered SISR methods. The 
proposed SISR method can improve the spatial resolution of historic RS 
images, which can further lead to accuracy gains of image classification. 
Moreover, we implemented state-of-the-art CNN-based classification 
methods on super-resolution Landsat data to examine the extent to 
which the proposed method can benefit the classification accuracy on 
time series data. It is worth noting that most research on CNN-based 
SISR methods was developed on datasets that consist of natural im
ages with three spectral bands (i.e., red, blue, green). However, given 
multiple spectral bands in RS images are critical for LULC classification, 
we developed the proposed framework with four spectral bands (i.e., 
red, blue, green, and NIR). Furthermore, the proposed SISR methods 
were developed based on publicly available RS datasets (i.e., Sentinel-2 
and Landsat) to gain extensive practical values. 

The remainder of this paper is organized as follows: section 2 in
troduces the proposed method. The experiment datasets and setup are 
described in section 3. Then results are reported in section 4 and the 
main findings are concluded in section 5. 

2. Proposed SISR methods 

Given RCAN exhibited superior performance than many other state- 
of-the-art CNN-based SISR methods, the proposed method employed 
RCAN as the backbone structure. However, we substantially redesigned 
the structure in three aspects. Firstly, the original channel attention 

mechanism was replaced with a hybrid channel-spatial attention 
mechanism (Fig. 1 (c)). Secondly, a dense-sampling mechanism was 
applied between each residual group and the upscaling block of the 
model (Fig. 1 (a)). Lastly, based on the original skip connections 
implemented in the inner structures of an RCAN, additional skip con
nections were added from the low-level feature maps to the following 
output of residual groups (Fig. 1 (a)). As such, our proposed method is 
termed as Dense-sampling Residual Channel-spatial Attention Network 
(D-RCSAN). The details are introduced as follows. 

2.1. Channel-spatial attention mechanism 

The channel-wise attention in RCAN enables the network to weigh 
the importance of each channel and thereby be more focused on prior
itized channels than the remaining channels. However, RCAN treated 
the feature maps in spatial dimension homogenously. The proposed 
method replaced the channel-wise attention mechanism with CBAM 
(Woo et al., 2018) in every residual block to produce weighted feature 
maps. In a CBAM module, channel-wise and spatial-wise attention 
mechanisms are sequentially combined as follows: 

F’ = Ac(F) ⊗ F  

F’’ = As(F’) ⊗ F’ 

where the feature map F ∈ Rc×h×w represents the input for a CBAM 
module, Ac ∈ Rc×1×1 refers to the channel attention sub-module and As ∈

R1×h×w refers to the spatial attention sub-module. Also, c, h, and w are 
the number of channels, height, and width of the feature map, respec
tively. Moreover, ⊗ denotes the operation of element-wise multiplica
tion. 

Ac(F) = σ
(

MLP
(

f c
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)
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(
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) )
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max(F)

) ) ) )

where f c
avg and fc

max denote the operation of average-pooling and max- 
pooling in the channel-attention sub-module respectively, MLP refers to 
a multilayer perception network containing one hidden layer, W0 ∈

Rc/r×c and W1 ∈ Rc×c/r denote the weights in the MLP, in which r refers to 
a ratio that changes the number of channels. σ refers to the sigmoid 
activation function. Ablation studies (Woo et al., 2018) claimed that the 
max-pooling is functional in encoding the most salient information, such 
encoding can compensate for some over-softened features caused by 
global average-pooling (Woo et al., 2018). 

As(F’) = σ
(
f 7*7( CAT

(
f s
mean(F

’), f s
max(F

’)
) ) )

where f s
mean and f s

max denote the operation of getting the mean and 
maximum value of the feature maps through channel dimension. The 
results of f s

mean(F’) and f s
max(F’) are two 2D spatial attention maps. CAT 

denotes the operation of concatenating the two spatial attention maps. 
Then f7*7a convolutional operational, which has a filter size of 7 by 7. As 
in the equation for channel attention sub-module, σ refers to the sigmoid 
activation function. 

2.2. Dense sampling mechanism 

Given deeper layers with dense connections can promote the per
formance of deep neural networks for SISR tasks (X. Dong et al., 2020; X. 
Wang et al., 2018; Wen et al., 2018), we integrated dense connections in 
the up-sampling part of the model architecture. The original RCAN 
model follows a late up-sampling scheme, which upscales the output of 
the last residual group to the target upscaled size before feeding it into 
the final output layer. Based on the original model structure, a dense- 
sampling structure is introduced in the up-sampling part of the 
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network. To be more specific, the output of each residual group is 
upscaled to the target size, then concatenated together to form a deeper 
upscaled feature map before the final output layer. In this way, the 
lower-level features from prior convolutional groups can be deployed for 
reconstructing larger sizes of feature maps. The operation of the dense- 
sampling concatenation can be expressed as follows: 

Fdense = CAT
(
fup(Fres0), fup(Fres1), fup(Fres2),⋯, fup(Fres5)

)
FSR

= f 3*3
out

(
f 3*3(Fdense)

)

where Fdense denotes a feature map that is generated by a concate
nation of all the upscaled outputs of residual groups. fup refers to the 
operation of upscaling, and Fres0 to Fres5 are the outputs of residual 
groups. Then the final output FSR is computed after applying two con
volutional layers on Fdense with a filter size of 3 by 3. 

2.3. Residual in residual structure 

As discussed in section 1.1, residual-in-residual structures have been 

extensively proven to be an effective mechanism to improve the per
formance of a very deep neural network. Especially considering that the 
depth of networks can substantially influence the performance of SR 
models, the proposed method preserves the residual-in-residual struc
ture adopted in RCAN, but more skip connections are added to the 
model. 

As shown in Fig. 1, additional skip connections are set between the 
output of the first convolutional layer and the output of each residual 
group. In this manner, features extracted at various depths can be passed 
through hidden layers. For instance, low-level features (e.g., location 
information) can therefore be integrated with high-level features for 
enhancing the reconstruction ability of networks. 

3. Data sets and experimental setup 

3.1. Datasets 

3.1.1. Datasets for SISR experiments 
The RS images for SISR experiments were collected from Sentinel-2 

Fig. 1. The structure of the proposed method for image super-resolution. (a) overview of the proposed network. (b) structure of a residual group in the network. (c) 
structure of a residual block in a residual group with embedded spatial-channel attention mechanism. 

Fig. 2. Overview of two datasets (a) dataset I: Pearl River Delta. (b) dataset II: Yangtze River Delta, (c) dataset III: Greater Beijing Area.  
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and Landsat 8. In the experiments, 10 m resolution Sentinel-2 images 
were used as high-resolution targets, and 30 m resolution Landsat im
ages were employed as low-resolution inputs. Four spectral bands were 
adopted in the SISR experiments, including blue, green, red, and NIR 
bands. 

Three datasets for experiments have different geographic locations 
(Fig. 2). The location of the first dataset was Pearl River Delta, China, the 
second dataset was the Yangtze River Delta, China, and the third dataset 
was the Greater Beijing Area, China. All three datasets had a likewise 
spatial coverage of around 10,000 km2, the pixel sizes of the collected 
Landsat images and Sentinel images in each dataset were 3661 by 3661 
pixels and 10,980 by 10,980 pixels, respectively. These datasets con
sisting of paired Landsat and Sentinel-2 images were regarded as cross- 
sensor datasets. It is worth noting that, for training SISR models on cross- 
sensor datasets, the domain of Landsat inputs was transferred to the 
domain of the target Sentinel-2 data, meaning the considered SISR 
methods for the cross-sensor datasets involved the issue of domain 
adaptation. 

Much SISR research tended to use downscaled high-resolution im
ages as low-resolution images for model testing, such datasets can be 
referred to as same-sensor datasets. Following this way of generating 
paired datasets, an alternative approach to achieving SR Landsat is to 
train a SISR model based on purely Sentinel-2 data then apply the 
trained model on Landsat images. To compare with this alternative 
approach, the Sentinel-2 images in each cross-sensor dataset were 
downscaled to 30 m resolution as low-resolution inputs to form three 
same-sensor datasets. 

Both cross-sensor datasets and same-sensor datasets had the same 
settings regarding sub-sampling images for training and validation. In 
each dataset, an original high-resolution image (e.g., Sentinel-2 image) 
was evenly cropped into small images with a size of 240 by 240 pixels, 
and the corresponding low-resolution image (e.g., Landsat data and 
down-scaled Sentinel-2 data) were cropped into small images with 80 by 
80 pixels. To achieve more samples for training, each subsampled high- 
resolution image had an overlap of 10 pixels with its neighbouring im
ages. In total, each dataset consisted of 2,209 cropped images, which 
were subsequently randomly divided into 1,988 samples for training and 
221 samples for validation. It is worth mentioning that all the over
lapping pixels were excluded at the stage of model validation and 
evaluation. 

It should be noted that, although we intended to select the same 
acquisition dates of data from the Sentinel-2 and Landsat datasets, it was 
almost inevitable to have time lags between the two data sources, 
ranging from 10 days to four months. For dataset I, the sampled Landsat 
data was produced in September 2017, whereas the corresponding 
Sentinel-2 data was produced in November 2017. Regarding dataset II, 
the acquisition dates of images from these two sensors were May 2020 
and September 2020, respectively. As for dataset III, the acquisition 
dates for Sentinel-2 and Landsat images were both in April 2020. 

3.1.2. Datasets for image classification 
Both single-temporal LULC classification and multi-temporal classi

fication were conducted with SR Landsat images generated by the pro
posed SISR methods. The geographic location of datasets for image 
classification was Shenzhen, China. Shenzhen has a prevalence of urban 
villages, which are generally in sub-standard conditions compared with 
the rest of urban built-up areas. Thus, the settlements in urban villages 
can be regarded as “informal settlements”, whereas other built-up areas 
can be regarded as “formal settlements”. To test the extent to which the 
enhanced SR images can contribute to better LULC maps, we preferred a 
LULC category that is manageable with Sentinel-2 images but chal
lenging for Landsat images. Specifically, “informal settlements” was 
included as a LULC class to test the performance of SR images in rela
tively more fine-grained image classification tasks. The datasets for 
single-temporal and multi-temporal classification shared the same LULC 
category, which consists of formal settlements, informal settlements, 

water, barren soil, other impervious surfaces, and vegetation. 
Regarding the dataset for single-temporal LULC classification, 10 m 

resolution SR Landsat images with four spectral bands were adopted as 
input data for classification (Fig. 3). The dataset included three large 
images with a size of 2048 by 2048 pixels. Then one of the large images 
was split into two parts, in which a part of 400 by 2048 pixels was used 
for validation, the rest was included for training. The large images were 
randomly cropped into small images with 128 by 128 pixels. In total, 
there were 321 cropped images for training and 50 for validation. 

For multi-temporal LULC classification, the original time series data 
were collected from Landsat 4–5 and Landsat 8 (Fig. 4), then a trained 
SR model was applied to these images to generate enhanced multi- 
temporal SR images. The dataset for multi-temporal LULC classifica
tion consisted of six time-steps with a 5-year interval, including the years 
1995, 2000, 2005, 2010, 2015 and 2020. Due to the limited availability 
of zero cloud coverage images in the study area, the Landsat images for 
multi-temporal classification were collected within the ranges of the 
winter seasons of 1995/2000, 1999/2000, 2005/2006, 2009/2010, 
2014/2015, 2019/2020. The SR image for each time-step had a size of 
3600 by 3600 pixels. The multi-temporal images were croped into small 
patches for training and validation. In all, 179 small patches were used 
for training and 46 for validation. The patches used for validation were 
higlighted in Fig. 4 (a). 

3.2. Experiment setup 

Overall, the whole experiment framework can be mainly divided into 
two stages, image super-solution stage and image classification stage 
(Fig. 5). 

3.2.1. Experiment setup for SISR 
The first stage aimed to train a deep learning-based SR model that 

can improve the spatial resolution of the original Landsat images from 
30 m to 10 m. Three cross-sensor datasets with different geographic 
locations and building morphologies were tested at the first stage. Five 
baseline models were compared in SISR experiments, including Bicubic, 
SRCNN, VDSR, EDSR, and RCAN. Moreover, to investigate the extent to 
which a dense-sampling module and a channel-spatial module (i.e., 
CBAM) could benefit the proposed method, two methods incorporated 
with each module were involved in the comparison with baseline 
models. The two additional developed methods for comparisons are 
termed as Residual Channel-spatial Attention Network (RCSAN) and 
Dense-sampling RCAN (D-RCAN) respectively. Together with the pro
posed method D-RCSAN, in total 8 models were tested for each dataset. 

The optimizer used for model training is Adam, with the initial 
learning rate set as 8 × 10^-5. Each model was trained for 100 epochs. At 
every five epochs, the learning rate of each model was updated in the 
manner of multiplication with a factor of 0.8. Such a decrease in the 
learning rate continued during the whole training process. All the 
models were trained with PyTorch on an NVIDIA GeForce RTX 3090. 
The training time of a D-RCSAN for 100 epochs was about 20 h. Same as 
the loss function of its backbone structure RCAN, the loss function 
deployed for the proposed method is L1 loss, which is a simple but 
efficient loss function that has been widely applied for SR deep neural 
networks. The loss between the generated SR image FSR and the corre
sponding ground truth high-resolution image FHR was calculated as 
below: 

LossL1 =
1
n
∑n

i=1
‖FSR

i − FHR
i ‖

3.2.2. Experiment setup for image classification 
The purpose of the experiments at the second stage was to investigate 

the extent to which the SR images generated by the proposed SISR 
method can improve the performance of image classification, especially 
for multi-temporal LULC classification. Therefore, a series of images 
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classification tests were conducted to gain a comprehensive evaluation, 
including both single-temporal land use classification and multi- 
temporal land use classification. Firstly, the improved SR Landsat im
ages were deployed to form datasets with single-temporal settings and 
multi-temporal settings respectively. The classification method 
employed for single-temporal classification was U-Net (Ronneberger 
et al., 2015), and the multi-temporal classification method being 
adopted was a UNet-Convolutional LSTM model (UNet-ConvLSTM) (Zhu 
et al., 2021), which is a hybrid framework proposed for multi-temporal 
image segmentation, it incorporates 2D Convolutional LSTM layers in an 
UNet-like encoder-decoder structure. 

Quantitative evaluations were conducted on the classification results 
of each set of image classification experiments. In the test of single- 
temporal land use classification, original Sentinel-2 images and the 
images produced by SR baseline methods were deployed as a bench
mark. For multi-temporal land use classification, since the temporal 

coverage Sentinel-2 datasets were very limited, only upscaled images 
produced by SR baseline methods were used as a benchmark. 

Regarding the training details of single-temporal and multi-temporal 
land use classification, the optimizers adopted were Adam, the initial 
learning rates were set to 5 × 10^-4. Throughout the subsequent training 
process, the learning rates decreased with an adjusting strategy of 
multiplying with a factor of 0.8 when the validation loss stopped 
decreasing for more than 20 epochs. Both single-temporal and multi- 
temporal classification models were trained for 50 epochs with 
PyTorch on an NVIDIA GeForce RTX 3090. 

3.3. Evaluation metrics 

Two evaluation methods adopted for SISR experiments, structural 
similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR), 
are the evaluation methods that have been widely used in SR problems. 

Fig. 3. Dataset settings for single-temporal land use classification tests: (a) super-resolution Landsat images (b) number of pixels for each land use category.  

Fig. 4. Dataset settings for multi-temporal land use classification tests: (a) super-resolution Landsat images (b) number of pixels for each land use category.  

Fig. 5. Overview of the experiment setup.  
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PSNR = 10 × log10

(
MAX2

MSE

)

MSE =

∑
M,N [SR(m, n) − HR(m, n) ]2

M × N 

where M and N refer to the number of rows and columns in the image 
that needs to be compared, and m and n refer to the mth row and the nth 

column of the image. MAX refers to the maximum value in the image 
data type. 

SSIM(sr, hr) =
(2μsrμhr + C1)(2σsrhr + C2)

(
μ2

sr + μ2
hr + C1

)(
σ2

sr + σ2
hr + C2

)

where μsr and μhr are means of images, σx and σy are the standard 
deviation of images, σsrhr is cross-covariance for images. The default 
settings for C1 and C2 are as follows: 

C1 = (0.01 × L)2
,C2 = (0.03 × L)2 

where L is the maximum pixel value of images. 
As for the tests in the second stage, overall pixel accuracy (OA), per- 

class accuracy, and K-statistics were employed to evaluate the perfor
mance of both single-temporal and multi-temporal LULC classifications. 

4. Results and discussion 

4.1. Performance of the SR models trained by cross-sensor datasets 

The evaluation results of the SR models trained on cross-sensor 
datasets were presented in Table 1. In general, the backbone structure 
RCAN showed superior performance than other baseline models, and the 
three proposed methods (RCSAN, D-RCAN and D-RCSAN) all presented 
different levels of improvements compared with their backbone struc
ture RCAN among the three datasets. 

Regarding the overall performance, although D-RCAN achieved the 
best quality of SR images in dataset I, D-RCSAN outperformed all the 
other models in both dataset II and dataset III. 

Specifically, it can be observed that when adopting the channel- 
spatial attention module (i.e., RCSAN) and dense-sampling module (i. 
e., D-RCAN) separately, the expected improvement on the backbone 
model is not stable. For instance, although D-RCAN achieved the best 
result in dataset I, it did not yield improvement in dataset II. As for the 
performance of RCSAN, its improvement on SR image quality was less 
than D-RCAN in dataset I, and less than D-RCSAN in dataset II and III. As 
such, it can be argued that, for the SISR methods trained by the cross- 
sensor RS datasets, D-RCSAN achieved the best overall performance 
among all the experimental methods. 

4.2. Visual comparisons of the SR images generated by cross-sensor SR 
models 

Regarding the experiments of cross-sensor SISR, the visual compar
isons of the SR images from validation datasets produced by models 
trained on dataset I, dataset II and dataset III were presented in Fig. 6, 
Fig. 7, and Fig. 8, respectively. Enlarged details were presented below 
the SR images, and the sampling areas of these detailed images were 

highlighted by yellow bounding boxes in the large pictures presented in 
Fig. 6, Fig. 7, and Fig. 8. The corresponding original Landsat images and 
the Sentinel-2 images were also included in the comparisons as raw 
inputs and ground truth. 

Comparing with the SR images generated by baseline models, the 
three proposed methods generally showed better performance in 
reconstructing more detailed features of multi-spectral RS images. 
Especially in terms of the outlines of objects, the SR images of proposed 
methods present shaper edges and more regular shapes, such as the 
informal settlements in Fig. 6 and the formal buildings in Fig. 7. This 
effect is more pronounced in objects that can be distinctively distin
guished by their spectral values, for instance, the boundaries between 
water bodies and vegetation, individual settlements in the field, and the 
outlines of roads. However, it seems that the tested models heavily rely 
on the intricate texture provided in the low-resolution images to 
construct SR information. To be more specific, in the enlarged areas of 
Fig. 8, the gaps between buildings in the Sentinel-2 image can hardly be 
detected in the original Landsat image, thus a lack of corresponding 
information results in the blurring and merging of building blocks in the 
produced SR images. 

4.3. Comparisons with the SR images trained by same-sensor datasets 

As discussed in 3.1.1, to compare with the alternative approach of 
training SR models on the same-sensor dataset then applying the trained 
models on Landsat images, a series of model experiments on same-sensor 
datasets were conducted and evaluated. 

Comparing Table 2 with Table 1, the PSNR and SSIM of same-sensor 
models applied on Landsat data are substantially lower than their cross- 
sensor counterparts. This is very likely due to the circumstance that the 
data domain of the input and target are identical in same-sensor tests, 
but different in cross-sensor tests. It also can be observed that, after 
eventually applying trained models on Landsat images (as presented in 
Table 2.), D-RCAN and D-RCSAN yielded the highest PSNR and SSIM 
values among the three datasets. However, these scores were still lower 
than their cross-sensor counterparts. Arguably, the SR models on same- 
sensor datasets and cross-sensor datasets can be regarded as different 
tasks as SR models on same-sensor datasets generally do not involve 
domain adaptation during the model training process. 

Visual comparisons of the SR Landsat images generated by same- 
sensor models and cross-sensor models were presented in Fig. 9. The 
first row showed SR Landsat images generated by same-sensor models; 
the second row presented the SR Landsat images constructed by cross- 
sensor models. It is worth noting that, before validating these trained 
models, a preprocessing method of histogram matching was applied on 
Landsat images to match their domains with Sentinel-2 images. As 
shown in Fig. 9, the SR Landsat images by same-sensor models generally 
had poorer visual representations than the SR Landsat images by cross- 
sensor models, the former generally failed to reconstruct details of fea
tures, including blurring edges and fuzzy objects in the images. Argu
ably, when the final application of a trained SISR model includes domain 
adaptation issues, training the model on cross-sensor datasets would 
achieve better overall performance than the alternative approach of 
training on same-sensor datasets. 

Table 1 
Comparison of PSNR and SSIM of super-resolution models trained on cross-sensor data in dataset I, dataset II, and dataset III.  

Dataset  Bicubic SRCNN VDSR EDSR RCAN RCSAN D-RCAN D-RCSAN 

Dataset I PSNR  23.6139  27.2829  27.0803  27.6560  27.7439  27.7665  27.8029  27.7628 
SSIM  0.93090  0.96338  0.96228  0.96612  0.96650  0.96658  0.96689  0.96662 

Dataset II PSNR  23.0485  28.6598  28.5889  29.1869  29.2461  29.2704  29.2206  29.2819 
SSIM  0.87258  0.90972  0.91000  0.92000  0.92088  0.92087  0.92050  0.92124 

Dataset III PSNR  23.9020  28.4166  27.9897  29.2601  29.3341  29.3465  29.3712  29.3867 
SSIM  0.91048  0.96352  0.96120  0.96820  0.96829  0.96837  0.96842  0.96857  
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4.4. Evaluation of SR images for land use classification 

Since the D-RCSAN trained by cross-sensor datasets achieved the best 
overall performance regarding constructing SR Landsat images, we 
proceeded to the second stage experiments (i.e., single-temporal and 
multi-temporal LULC classification) with SR Landsat images generated 
by proposed SISR methods. In the evaluation of SR images for single- 

temporal and multi-temporal LULC classification, images upscaled by 
the baseline SISR methods were also deployed for measuring the effects 
of the proposed SISR method in terms of classification accuracy. 

4.4.1. Single-temporal image classification 
As can be observed in Fig. 10, in the experiments of single-temporal 

classification, the OA and k-statistics achieved by D-RCSAN improved 

Fig. 6. Visual comparisons of false color images of dataset I.  

Fig. 7. Visual comparisons of false color images of dataset II.  
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SR images were 85.11% and 0.7589, respectively. Although the number 
was not as high as the performance of using Sentinel-2 images (OA 
87.18%, k-statistics 0.8017), it can be regarded as a significant 
improvement compared with the performance of bicubic images (OA 

81.60%, k-statistics 0.7151) and RCAN images (OA 84.54%, k-statistics 
0.7556). Moreover, the proposed method achieved higher classification 
accuracy than all the baseline methods. 

The results of per-class accuracy for single-temporal classification 

Fig. 8. Visual comparisons of false color images trained on dataset III.  

Table 2 
Comparison of PSNR and SSIM of same-sensor SR models applied on Landsat data in dataset I, dataset II, and dataset III.  

Dataset  Bicubic SRCNN VDSR EDSR RCAN RCSAN D-RCAN D-RCSAN 

Dataset I PSNR  23.6139  22.2758  22.2047  22.2074  22.2528  22.2592  22.3157  22.2958 
SSIM  0.93090  0.92331  0.92062  0.91941  0.91953  0.92057  0.92034  0.92028 

Dataset II PSNR  23.0485  22.0043  21.9310  21.9154  21.9611  21.8978  21.8772  22.0408 
SSIM  0.87258  0.85792  0.84511  0.84174  0.84682  0.84817  0.84900  0.85383 

Dataset III PSNR  23.9020  22.8085  22.6714  22.6396  22.7210  22.7050  22.7264  22.7060 
SSIM  0.91048  0.89368  0.88836  0.88589  0.88825  0.88922  0.88905  0.88854  

Fig. 9. Visual comparisons of SR Landsat images generated by models trained on same-sensor dataset and cross-sensor dataset.  

Y. Zhu et al.                                                                                                                                                                                                                                     



International Journal of Applied Earth Observation and Geoinformation 104 (2021) 102543

10

were presented with producer’s accuracy and user’s accuracy in Fig. 11. 
The variations of classification accuracy were significant in the class of 
informal settlements, all the tested datasets showed higher user’s ac
curacy than producer’s accuracy, which indicates more false negatives 
and fewer false positives. This effect of a large number of false negatives 
was more significant in most SR-based methods, except the proposed 
method D-RCSAN. 

The visual representations of the single-temporal classification maps 
generated based on each SR method were shown in Fig. 12. It can be 
visually detected that the classification maps generated based on the 
RCSAN and D-RCSAN exhibited better performance than other baseline 
models. Particularly in delineating informal settlements, the proposed 
method achieved a very similar pattern compared with Sentinel-2. 

4.4.2. Multi-temporal image classification 
In the experiments of multi-temporal LULC classification, classifi

cation maps were produced based on all the baseline and proposed SISR 
models. The sentinel-2 images were not included in multi-temporal 
classification due to the circumstance that sentinel-2 can only provide 
images after the year 2015. The overall pixel accuracy and k-statistics of 
multitemporal classification maps generated based on D-RCSAN were 
83.87% and 0.7118 respectively, which were the highest scores in the 
comparison (Fig. 13). 

The comparison of per-class accuracy can be seen in Fig. 14. In 
general, the proposed SR method led to higher producer’s accuracy and 
user’s accuracy than all the other SR images. Compared with bicubic and 
RCAN, D-RCSAN achieved substantially better overall performance in 
the classes of other impervious surfaces and barren soil. 

The visual comparisons of multi-temporal land use classification 
were presented in Fig. 15. It can be observed that the multi-temporal 
LULC maps improved substantially after adopting effective SR 
methods, including EDSR, RCAN, as well as the proposed SR methods. As 
can be observed in the visual comparison, the images enhanced by D- 
RSCAN led to better performance in the delineation of roads and formal 
settlements, as well as the recognition of informal settlements. 

Furthermore, considering that the potential applications of multi- 
temporal land-use classification maps mainly include change detection 
or change prediction, therefore it is critical that the tendency of changes 
in each land-use class was effectively captured in multi-temporal clas
sification. In this 

case, the number of pixels in each land-use class over six-time steps 
were mapped in Fig. 16. It can be observed that, compared with ground 
truth, the proposed D-RSCAN showed better performance in capturing 
the consistent changing trend of the number of pixels in the class of 
formal settlements. For instance, the ground-truth number of pixels in 
the class of formal settlements increased 11.04% from 2015 to 2020, D- 
RSCAN simulated an increase of 6.93%, whereas RCAN projected a 
decrease of 2.76%. 

5. Conclusions 

In general, this paper offers a new prospect to improve the quality of 
multi-temporal LULC classification maps by taking advantage of the 
newly produced RS images for enhancing the resolution of historic RS 
imagery. A novel framework was developed for improving multi- 
temporal LULC classification through a proposed CNN-based SISR 

Fig. 10. Overall pixel accuracy and K-statistics of single-temporal classification by super-resolution images.  

Fig. 11. Per-class accuracy of single-temporal land use classification.  
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Fig. 12. Visual comparison of the land use maps produced by single-temporal classification.  

Fig. 13. Overall pixel accuracy and K-statistics of multi-temporal classification by super-resolution images.  

Fig. 14. Per-class accuracy of multi-temporal land use classification.  
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method. 
The research was conducted in two stages: image SR preprocessing 

and LULC classification. At the first stage, we proposed a SISR method 
that incorporated a channel-spatial attention module and a dense- 
sampling module based on an RCAN structure. The results of experi
ments with baseline SISR methods proved that the two extension mod
ules can both bring improvements to the performance of the proposed 

SR model. By adopting the proposed SR method, the spatial resolution of 
multispectral Landsat images (four spectral bands) was significantly 
enhanced based on multi-spectral Sentinel-2 images. At the second 
stage, the SR Landsat image generated by the proposed SR method 
substantially elevated the accuracy of both single-temporal and multi- 
temporal classification, and the discriminative ability of trained 
models was distinctively improved. 

Fig. 15. Visual comparisons of predictions of multi-temporal land use classification with super-resolution images.  

Fig. 16. Number of pixels in each land-use class of multi-temporal classification results.  
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Furthermore, the proposed framework not only developed an 
enhanced SR model for better image classification, but also practically 
highlighted and verified the likelihood of making use of a wealth of 
previously untapped low-resolution imagery for purposes of urban 
growth observation, urban planning, or even vulnerability assessment 
review. 
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