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ABSTRACT The mechanisms by which the diffusion rate in the plasma membrane (PM) is
regulated remain unresolved, despite their importance in spatially regulating the reaction
rates in the PM. Proposed models include entrapment in nanoscale noncontiguous domains
found in PtK2 cells, slow diffusion due to crowding, and actin-induced compartmentalization.
Here, by applying single-particle tracking at high time resolutions, mainly to the PtK2-cell PM,
we found confined diffusion plus hop movements (termed “hop diffusion”) for both a nonraft
phospholipid and a transmembrane protein, transferrin receptor, and equal compartment
sizes for these two molecules in all five of the cell lines used here (actual sizes were cell depen-
dent), even after treatment with actin-modulating drugs. The cross-section size and the cyto-
plasmic domain size both affected the hop frequency. Electron tomography identified the
actin-based membrane skeleton (MSK) located within 8.8 nm from the PM cytoplasmic surface
of PtK2 cells and demonstrated that the MSK mesh size was the same as the compartment
size for PM molecular diffusion. The extracellular matrix and extracellular domains of mem-
brane proteins were not involved in hop diffusion. These results support a model of anchored
TM-protein pickets lining actin-based MSK as a major mechanism for regulating diffusion.
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INTRODUCTION

Reaction kinetics is central to cellular processes (Saxton, 1982; Kalay
etal.,2012). Inthe cellular plasma membrane (PM), large spatiotemporal
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variations in reaction kinetics, which might be important for regulating
signal transduction in the PM, can be induced by the presence of a
variety of dynamic mesoscale (3-300 nm) domains (Suzuki et al.,
2007a,b; Costa et al., 2009, 2011; Chung et al., 2010; Treanor et al.,
2010; Parton and del Pozo, 2013), as well as the active processes that
transiently assemble actin filaments and the proteins interacting with
them (Chaudhuri et al., 2011; Gowrishankar et al., 2012).

One of the most controversial issues about the domain structure
of the plasma membrane is the actin-induced compartmentalization
of the PM. Transmembrane (TM) proteins, phospholipids, and glyco-
sylphosphatidylinositol (GPIl)-anchored proteins have been pro-
posed to undergo short-term confined diffusion within compart-
ments of ~100 nm formed by the actin-filament meshwork bound to
the PM inner surface (Morone et al., 2006), called the membrane-
skeleton (MSK) fence, and various TM proteins lining the actin-based
MSK, called anchored TM-protein pickets (Figure 1A; Kusumi et al.,
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along the actin MSK, exerting hydrodynamic
circumferential-slowing (enhanced viscosity)
and steric-hindrance effects on PM molecules
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(B) Experimental design for SFMT and SPT.
For SFMT, TfR tagged with Cy3-Tf (a) and
Cy3-DOPE (b) were used. For SPT, TfR tagged
with 40-nm-diameter colloidal gold particles
coated with a small number of transferrin
molecules were used (c). For colloidal-gold
labeling of DOPE (d), gold probes coated
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FIGURE 1: The MSK fence and anchored-TM-protein picket model, and the single-molecule fluorescein moiety was used as a tag for the
tracking methods used in this study. (A) Fence-and-pickets model. The PM can be partitioned antibody Fab rather than a fluorescent probe.
into compartments, and both TM proteins and lipids undergo short-term confined diffusion (C) Images of Cy3 and colloidal-gold probes
within a compartment and long-term hop movements between these compartments, which is and their trajectories at video rate for 3 s,
termed hop diffusion. Temporary confinement within the compartment is induced by the observed on the top surface of PtK2 cells.
actin-MSK “fences” and the anchored-TM-protein “pickets” anchored to and aligned along the Here a—d are the same as in B.
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in the PM outer leaflet, is controversial. One of the major reasons this
problem has drawn strong attention involves its general interest.
Phospholipids are the most fundamental molecular species to form
the biological membrane; without them, biological membranes
would not be generated. Therefore determining whether and how
the dynamics of such fundamental molecular species is regulated in
the PM is extremely important for understanding the dynamics of all
membrane-associated molecules, as well as their functions enabled
by such dynamics.

The other reason for interest in this problem, which is specific to
the picket model, is that it has been difficult to examine directly the
effects of rows of picket proteins anchored to and aligned along the
actin-based MSK on the dynamics of other molecules in the PM.
However, if the picket model were true, then the compartment size
detected by phospholipids located in the PM outer leaflet would be
the same as that detected by TM proteins.

Therefore the first objective of the present research was to
examine the possible equality of the compartment sizes for a
typical nonraft phospholipid, L-o-diolelylphosphatidylethanolamine
(DOPE), and a TM protein, TfR. Furthermore, to establish the gener-
ality of the equal compartment size for DOPE and TfR, we examined
the PMs of five cell lines, PtK2, normal rat kidney (NRK), T24, Hela,
and HEPA-OVA, both in the PMs of intact cells and in cells treated
with actin-modifying drugs.

By using the PM of the PtK2 cell line and applying cutting-edge
technologies such as (scanning) stimulated emission depletion-FCS
(Eggeling et al., 2009; Honigmann et al., 2014) and simultaneous
fluorescence signal detection on three closely arranged separate
point detectors (Sahl et al., 2010), it has been found that phospho-
lipids, even nonraft phospholipids (Sezgin et al., 2012; Honigmann
etal., 2014), are confined or immobilized temporarily in noncontigu-
ous nanometer-scale PM domains (Eggeling et al., 2009; Sahl et al.,
2010; Honigmann et al., 2014). In particular, Sahl et al. (2010)
proposed that, in the PtK2 cell line, a typical nonraft phospholipid
(Sezgin et al, 2012) exhibited alternating periods of simple-
Brownian diffusion with a diffusion coefficient of ~0.4 pm?/s, lasting
for 7 ms on average, and temporary immobilization within 6- to
20-nm-diameter domains for 3 ms on average. These results raised
the possibility that the picket and fence effects we proposed are not
operative in the PtK2-cell PMs, and thus the fence-and-pickets
model might be applicable only to a small set of cells. Therefore it
was necessary for us to reexamine the PM of the PtK2 cells closely
and extensively. Whereas Andrade et al. (2015) revisited this issue
recently and found that phospholipids are confined by the actin—
MSK network, further extensive studies using single-molecule track-
ing, as used in the studies of many other cells PMs, are necessary.

Therefore the second objective of the present investigation was
to examine thoroughly the PM of PtK2 cells in terms of 1) the actin-
induced hop diffusion of both phospholipids and TfR, 2) the rela-
tionship between the dynamics of membrane molecules and the
actin-based MSK structure, and 3) a comparison between the fence
effect and the picket effect. By accomplishing the first and second
objectives of the present research, we aimed at establishing the
generality of the fence-and-pickets model.

The third objective of this research was to examine the model of
slowed simple-Brownian diffusion for both phospholipids and TfR in
cell types in which lipids undergo slow, simple-Brownian diffusion
rather than hop diffusion (Schmidt and Nichols, 2004; Lenne et al.,
2006; Eggeling et al., 2009; Manzo et al., 2011; Vicidomini et al.,
2011, Billaudeau et al., 2013; also see the series of articles by Vrljic
etal., 2002, 2005; Nishimura et al., 2006; and Umemura et al. 2008),
perhaps due to the crowding of TM proteins in the PM rather than
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partitioning (Gambin et al., 2006; Frick et al., 2007), using fluores-
cence recovery after photobleaching (FRAP) and advanced FCS.
Schmidt and Nichols (2004); Lenne et al. (2006), and Frick et al.
(2007) concluded that the actin-based MSK might be involved in
slowing the diffusion of TM proteins, but not phospholipids, in the
PM. Thus various models for the mechanisms controlling phospho-
lipid dynamics in the PM have been proposed, which warrants fur-
ther study of the regulation mechanisms for phospholipid diffusion
in the PM.

In the present research, we are particularly concerned with three
models of molecular dynamics in the PM and PM domain structure:
models involving 1) temporary binding and/or transient entrapment
within nanoscale domains (Eggeling et al., 2009; Sahl et al., 2010;
Honigmann et al., 2014), 2) slow, simple-Brownian diffusion (Gambin
et al., 2006; Frick et al., 2007), and 3) pickets and fences.

For clearer presentation of the data, we focus here on results
obtained in the PM of PtK2 cells (except for relevant results with
Cy3-TfR and Cy3-DOPE). When comparison with results in other cell
types is needed (to establish their generality), we indicate their use
(see later discussions of Figures 4B, 5G, and 7B). Additional results
in other cell types are shown for comparison in Supplemental
Figures S1, S4, and S5.

RESULTS

Almost all of the mobile TfR molecules are located in the
bulk membrane outside of clathrin-coated pits

All microscopy experiments reported in this article were performed
at 37°C. First, TfR was tagged with transferrin conjugated with either
Cy3 or Alexa 633. The movement of TfR (a single-path TM protein
forming a native covalently-linked dimer) outside and inside the
clathrin-coated pits (CCPs) in the PM of T24 cells was observed by
single-fluorescent-molecule tracking (SFMT), using a home-built ob-
jective lens—type total internal reflection fluorescence (TIRF) micro-
scope operated at video rate (30 Hz, i.e., a time resolution of 33 ms;
lino et al., 2001; Koyama-Honda et al., 2005; Mashanov and Molloy,
2007, Figure 1Ba). The number density of CCPs marked by green
fluorescent protein (GFP)-conjugated AP-2a. or monomeric red flu-
orescent protein—conjugated clathrin light chain at low levels was
0.42 £ 0.15 (mean £ SD; 16 images) or 0.58 + 0.21 (19 images)
CCPs/pm?, respectively (Supplemental Figure S1A, top and middle).
The CCP number density determined by electron microscopy was
0.67 £ 0.38 CCPs/um? (19 images). However, since the optical spa-
tial resolution is ~250 nm, the number density obtained by electron
microscopy was recounted for fluorescence detection: when the
CCPs located within 250 nm were counted as one CCP, the CCP
number density became 0.48 £ 0.21 CCPs/pm? (Supplemental
Figure S1A, bottom), indicating that virtually all CCPs can be visual-
ized by TIRF observations with single-molecule sensitivity.

Single molecules of TfR labeled with Alexa 633-Tf were simul-
taneously observed with CCPs marked by GFP-conjugated clath-
rin light chain expressed at low levels (Supplemental Figure S1B;
Gaidarov et al., 1999; Ehrlich et al., 2004; Loerke et al., 2009;
Taylor et al.,, 2011; Cocucci et al., 2012). TR exhibited a mobile
time fraction of 89 + 3.3% (mean + SD) and an immobile time frac-
tion of 11 + 3.3%, of which 81 + 6.6% occurred in the CCPs (colo-
calization of TfR with CCPs and temporary immobilization were
detected as described by Koyama-Honda et al. (2005) and Shibata
et al. (2012), respectively; total observation time was 314 s; total
number of immobilization events was 28; five independent experi-
ments). These results indicate that virtually all of the mobile TfR
molecules are located outside the CCPs. In this study, since we
were interested in the translational diffusion of TfR outside CCPs,

1103

Plasma membrane partitioning |



we selected trajectories >100 frames (3.3 s) that do not exhibit
temporary immobilization.

TR exhibits effective simple-Brownian diffusion in SFMT at
a slow rate (video rate) in five mammalian cell lines
Single-molecule images and trajectories of TR tagged with Cy3-Tf
(Cy3-TfR) in the apical PM of epithelial PtK2 cells were obtained with
the same TIRF microscope at a slow rate (video rate) but with
oblique-angle illumination (Figures 1Ca and 2A, top left), and each
single-molecule trajectory was classified into the 1) simple-Brown-
ian, 2) directed, or 3) suppressed diffusion mode in the following
manner (Kusumi et al., 1993; Hiramoto-Yamaki et al., 2014).

First, we obtained the plot of the mean-squared displacement
(MSD) against the time interval (A?), called the single-molecule
MSD-At plot, for each trajectory.

Second, we calculated the parameter RD(N, n) = MSD(ndt)/
4Dq_3ndt for each trajectory, where n is the number of steps used
for the analysis in the trajectory of N steps (1 < n < N), 3t is the
camera frame time (thus the actual time for n steps is ndt; Figure
2B, right), and D_3 is the initial slope of the MSD-At plot divided
by 4 (see Materials and Methods and Figure 2B; as a macroscopic
diffusion coefficient obtained from data recorded at video rate,
Dy_4 was used for consistency with the previous results). Here
RD(N, n) describes the long-term (for a period of ndt) relative de-
viation of MSD(ndt) from the simple-Brownian model (see Materials
and Methods). Because ndt (Figure 2B, right) is the key time scale
used for evaluating the deviation from the ideal simple-Brownian
diffusion mode, in this article, RD(N, n) will be expressed in the
form of RD(n, nét) to clearly indicate the time scale of the classifica-
tion of each trajectory (see the x-axes of Figures 2, B right, and C,
and 3B). The average value of RD(N, n) (or RD(n, ndt)) for the en-
semble of molecules undergoing simple-Brownian diffusion will be
1, whereas those for the ensemble of molecules undergoing di-
rected or suppressed diffusion will be >1 or <1, respectively. How-
ever, note that the RD(N, n) value for each individual trajectory
would vary greatly from trajectory to trajectory.

Third, we obtained the RD(N, n) distribution for simple-Brownian
particles by generating 5000 simple-Brownian trajectories, using the
Monte Carlo simulation (Figure 2C, top). On the basis of this distri-
bution, we obtained the RD(N, n) values giving the 2.5th percentiles
of the particles from both ends of the distribution, referred to as
RDp,in and RDyax, respectively (shown in Figure 2C by vertical red
and cyan lines, respectively).

Fourth, we classified each experimental single-molecule trajec-
tory in the following manner. When its RD(N, n) value was <RDy;, or
>RDpax. it was classified into the suppressed- or directed-diffusion
mode, respectively, and otherwise it was classed into the simple-
Brownian diffusion mode. Note that this classification is based
strictly on the statistical deviations from simple-Brownian diffusion,
and no diffusion model is assumed. To emphasize this point, we use
the term “suppressed diffusion” here rather than the term “con-
fined-hop diffusion” used in previous publications (Kusumi et al.,
1993; Fujiwara et al., 2002; Suzuki et al., 2005; Umemura et al.,
2008). Previously, since all of the MSD-At plots for the trajectories
classified into the suppressed diffusion mode could be fitted with
the equation describing hop diffusion (Powles et al., 1992), the term
"confined-hop diffusion” was used for particles exhibiting the “sup-
pressed diffusion mode.”

Note that the average value of RD(N, n) (or RD(n, ndt)) for the
ensemble of molecules undergoing simple-Brownian diffusion will
be 1, but its most likely value or the value at which RD peaks is not
necessarily 1 (Figure 2C, top). For further explanations of the RD(N,
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FIGURE 2: Method for classifying the trajectories into simple-
Brownian-, suppressed-, and directed-diffusion modes and its
application to TfR and DOPE trajectories (with fluorescent and gold
probes) obtained in the PtK2-PM at video rate. (A) Representative
trajectories of TfR (left) and DOPE (right) tagged with Cy3 (top) or
gold (bottom) probes in the PtK2-PM. (B) Left, theoretical MSD-At
curves for 1) simple-Brownian, 2) directed, and 3) suppressed diffusion
(for the same short-term diffusion coefficients = initial slope at time 0).
Right, motional mode classification based on RD(N, n). (C) Distribution
of RD(N, n) for N= 100 and n= 30 (1 s), used for the classification of
the trajectories into different diffusion modes (left, TfR; right, DOPE).
Top, simple-Brownian trajectories generated by Monte Carlo
simulation (the same graphs are used for both TfR and DOPE). The
2.5th percentiles of the distribution from both ends, RD,i4(100, 30)
and RDyax(100, 30), are shown by red and cyan vertical lines,
respectively. Middle, SFMT at normal video rate, using Cy3 as a probe.
Bottom, SPT at normal video rate, using gold particles as probes.

n) distribution for simple-Brownian particles, see Supplemental
Figure S2 and Materials and Methods.

About 90% of the Cy3-TfR trajectories in epithelial PtK2 cells ob-
served at video rate were classed as undergoing effective simple-
Brownian diffusion, as shown in Figure 2C, left middle. Here the term
"effective” is used because, later in this article, we show that the TfR
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molecules actually undergo suppressed (more specifically, hop/con-
fined) diffusion, and the simple-Brownian diffusion detected here is
only true in the limited time scale >33 ms, representing long-term
macroscopic diffusion. Similar observations and analyses for four
other cell lines—HEPA-OVA, Hela, T24, and NRK cells—revealed
that TfR mostly undergoes effective simple-Brownian diffusion on the
time scale of 33 ms to 1's (30 video frames) in all of these cell types
(Supplemental Table S1). Therefore the diffusion on this time scale
can be described by a single effective diffusion coefficient, and here
we used D33 ms)1gg ms (0btained by the linear fitting of the MSD-At
plot between 67 and 132 ms, with a midpoint of 100 ms, for data
obtained at 33-ms time resolution), following Suzuki et al. (2005)
and Umemura et al. (2008). The median and mean values of
D=%(33 ms)100 ms for TR are summarized in Table 1. All values cited in
this article refer to the median values, unless otherwise specified.

The unsaturated phospholipid Cy3-DOPE exhibited
effective simple-Brownian diffusion in SFMT at a slow

rate (video rate) in five mammalian cell lines

We next examined the movement of single molecules of the typical
nonraft phospholipid DOPE tagged with Cy3 in the head group re-
gion (Cy3-DOPE). The majority of their trajectories (Figures 1, Bb and
Cb, and 2A, top right; observed in the PM of PtK2 cells) were statisti-
cally classified into the simple-Brownian diffusion mode (Figure 2C,
right, middle) in all five mammalian cell lines (Supplemental Table
S1). Their median D33 ms);go ms values are summarized in Table 1.

Single-molecule observations with enhanced time resolution
revealed that virtually all TfR and DOPE molecules undergo
suppressed diffusion

Next we used a 40-nm-diameter colloidal gold particle as a probe
(Figure 1, B and C, ¢ and d), which enabled observations up to a
frame rate of 40,500 frames/s (every 0.025 ms; Figure 3A). The col-
loidal gold labeling was optimized as described previously (see
Materials and Methods).

At video rate, >80% of the trajectories of gold-tagged TfR and
DOPE (gold-TfR and gold-DOPE, respectively) in the PtK2-cell PM
were classified into the simple-Brownian mode (Figure 3B and Sup-
plemental Figure S3). With an increase of the frame rate, more tra-
jectories were classified into the suppressed-diffusion mode, and at
40,500 Hz, practically all of the gold-TfR and DOPE trajectories were
classified into the suppressed-diffusion mode (Figure 3B and Sup-
plemental Figure S3; see the enlarged trajectories in Figure 3A).

These results indicated that the suppressed movement, detect-
able at 0.025-ms resolution, was hidden at the slower observation
rates. This is why we used the term “effective” simple-Brownian dif-
fusion for the results obtained at slower camera frame rates (i.e., at
lower time resolutions).

TfR and DOPE underwent hop diffusion and exhibited the
same compartment size in the five examined cell types

The enlarged 0.025-ms-resolution trajectories of gold-TfR and
DOPE recorded in the PtK2-cell PM are shown at the bottom of
Figure 3A. These trajectories, as well as others obtained at 0.025-ms
resolution and classified into the suppressed-diffusion mode, were
analyzed by a computer program developed to detect the occur-
rence of hops between the two compartments (Fujiwara et al., 2002;
Suzuki et al., 2005). The detected plausible hop events define plau-
sible compartments, which are shown in various colors in the en-
larged trajectories at the bottom of Figure 3A. Such hop events were
detected in virtually all of the trajectories classified into the sup-
pressed-diffusion mode, whereas in the computer-generated
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simple-Brownian trajectories, hop events were detected in only 4%
of the trajectories, suggesting that suppressed diffusion is induced
by the temporary confinement plus hop movements (hop
diffusion).

Next we fitted the ensemble-averaged MSD-At plots for gold-
TfR and gold-DOPE by an in-house program, based on the equation
representing the model of idealized hop diffusion (Powles et al.,
1992), in which a particle undergoes diffusion with the true (micro-
scopic) diffusion coefficient between the barriers, Dyicro, in the pres-
ence of semipermeable barriers placed at an equal distance (L), thus
providing the macroscopic (long-term) diffusion coefficient over
many compartments, Dyacro (hop-diffusion fitting; Figure 4A,;
Powles et al., 1992; Fujiwara et al., 2002; Murase et al., 2004; Suzuki
et al., 2005). The fits were good for both gold-TfR and DOPE, sup-
porting the hop-diffusion model.

The MSD-At plot for each trajectory (single-molecule MSD-At
plot) was then fitted by the hop-diffusion fitting, providing the com-
partment size L averaged over a single trajectory. The distribution of
L over all of the molecules is shown in Figure 4B (top). Of impor-
tance, the compartment size distributions for a TM protein, TfR, and
a phospholipid, DOPE, were similar to each other, with median val-
ues of 43 and 46 nm, respectively (Figure 4B, top, and Table 1). This
agreement was found in all five cell types examined here (Figure 4B
and Table 1), suggesting that the underlying mechanisms for confin-
ing TM proteins and phospholipids are the same, that is, MSK-
meshwork-induced compartments.

One might be concerned that gold-TfR, including even mobile
particles, might be extensively entrapped in CCPs and undergo slow
hop diffusion there, even though most of the mobile Cy3-TfR is likely
to be located outside the CCPs (Supplemental Figure S$1). We believe
that the influence of gold-TfR entrapped in CCPs on the compart-
ment size reported here was quite small, for the following reasons:

1. In the histograms shown in Figure 2C, left, comparison of the
histogram for Cy3-TfR (middle) and that for gold-TfR (bottom)
shows that at 33-ms resolution, there is no indication that gold-
TfR is more trapped in CCPs than Cy3-TfR, excluding the long-
term trapping of gold-TfR in CCPs.

2. The CCP architecture is considered to be basically the same in all
five of the cell lines used here, but we did not detect any features
common to all of them in the compartment-size histograms for
TfR shown here.

3. Furthermore, in the same histograms, we failed to detect any
differences in the compartment size distributions between gold-
TfR and gold-DOPE.

Estimation of the average residency time within

a compartment

We estimated residency times (t's) of TfR and DOPE within a com-
partment from the median L values determined for gold-labeled
molecules, using high-speed single-particle tracking (SPT) and
Dvacro = D*f(33 ms)i00 ms measured with Cy3 probes using
SFMT, based on the equation t = L?/[4D*f(33 ms);gg ms] (Table 1).
As described in Murase et al. (2004) and Suzuki et al. (2005),
Dmacro = D=f(33 ms)10g ms has to be used for this calculation for
the following reason. Each membrane molecule exhibits two
diffusion coefficients: 1) the short-term diffusion coefficient, ob-
tained on the time scale of 75 ps (25 ps x 3), representing the
diffusion coefficient within a compartment (Dyicro), and 2) the
long-term diffusion coefficient, obtained on the time scale longer
than the residency time within a compartment, representing the
diffusion coefficient in space scales several times longer than the
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SPT SFMT

Time
Percentage resolution  Observation D=(33 ms)100 ms Calculated
Cell Molecule hop L (nm) (ms) period* (ms) Nt (pm?/s) Nt T (ms)
PtK2 TR 100 43 0.025 1.5 54 0.48 51 0.96
(45+1.9) (0.53+0.037)
DOPE 100 46+ 0.025 1.5 50 0.48 304 1.1
(49 £ 2.7) (0.53 +0.055)
HEPA-OVA TR 100 45 0.025 3.7 32 0.18 34 2.8
(46 +2.5) (0.21+£0.017)
DOPE 100 48+ 0.025 3.7 28 0.21 1914 2.7
(46 £ 2.3) (0.37 £0.032)
Hela TR 97 64 0.025 3.7 59 0.5 46 6.8
(72 + 4.9) (0.16 £ 0.0091)
DOPE 100 68 0.025 3.7 84> 0.178 29 6.8
(68 £3.2) (0.19£0.019)8
T24 TR 97 100 0.11 120 38 0.17 174 15
(120 £ 10) (0.19 £ 0.0081)
DOPE 100 110 0.025 6.7 352 0.341 60 8.9
(120£9.7) (0.35+0.019)!
NRK (smaller TR 91 260 0.025 72 107> 0.29 61 58
compartment) (270 £ 10) (0.29£0.011)
DOPE 85 230 0.025 30 90> 1.11 90¢ 13
(240 £11) (1.2+0.071)1
NRK (larger TR 84 710 33 3000 70° 0.24% 61 530
compartment) (720 £+ 55) (0.30 £ 0.026)*
DOPE 92 750 2 3000 84> 0.34% 27f 410
(800 £ 29) (0.42 £ 0.025)*
NRK (blebbed TfR 26 NA® 0.025 10 19 8.1~ ND9 NA®
PM) (8.0+0.71)
DOPE 13 NA® 0.025 10 30¢ 8.5~ NDgh NA®

(8.9+£0.47)

Median values, as well as mean * SE values (in parentheses) are given for the compartment size and D=%(33 Ms)100 ms-

*The time period in the MSD-At plot used for “hop fitting.”

"Number of examined molecules. The notes denoted by symbols and letters describe the relationships of the results obtained here and those previously reported
by us (Fujiwara et al., 2002; Murase et al., 2004). They are quite complicated and so are summarized in Supplemental Notes to Table 1.

1D°%(25 ps)30 ms obtained with gold-DOPE. The NRK-cell PM has nested 750- and 230-nm compartments (Fujiwara et al., 2002). Therefore it was difficult to deter-
mine the diffusion coefficient of DOPE among the 230-nm compartments without the influence of the presence of the 750-nm compartments. It turned out that
Deff30 ms (Dsg ms according to the definition of Murase et al., 2004) better represents the macroscopic diffusion rate of DOPE molecules over 230-nm compartments
than Deff 0 s used for other cells to describe Dyacro in the present study because the latter is strongly affected by the presence of the larger, 750-nm compart-
ments. However, it was impossible to determine D34 ., for Cy3-DOPE due to the insufficient time resolution (33 ms) of SFMT; therefore D*{(25 pis)30ms obtained
with high-speed SPT is shown here (Fujiwara et al., 2002; Murase et al., 2004).

#As described in the preceding note, the NRK-cell PM has nested 750- and 230-nm compartments (Fujiwara et al., 2002). Because the residency times of TfR and
DOPE molecules in the larger compartments of the NRK cell are much longer than 100 ms, D33 ms); 5 (D35 according to the notation by Murase et al., 2004) was
used as Dyacro, which described the diffusion coefficient among the larger compartments.

©Not applicable because the trajectories classified into the simple-Brownian mode should not exhibit compartmentalization and L cannot be determined, and those
classified into the hop-diffusion mode exhibited compartment sizes with extreme variations; also not applicable for T because L could not be defined.

=Def(25 ps)ys us obtained with gold-TfR (present research) or gold-DOPE (Murase et al., 2004). D=f(25 us);s us Values for gold-labeled TfR and DOPE are shown in the
Df(33ms);00ms column for SFMT (see note h in the N column). The blebbed PM is round, and single-molecule tracking can only be performed using the very small,
quasiflat area on top of the rounded PM. Furthermore, in the blebbed PM, both TfR and DOPE diffuse rapidly and thus move out of the top quasiflat area very
quickly. Therefore their diffusion coefficients could be measured using single-molecule tracking only at high frequency (which allows sufficient observations of single
particles/molecules during the time the molecules stay in the small top flat area). Namely, SFMT at video rate was useless for obtaining diffusion coefficients of TfR
and DOPE in the blebbed PM. Therefore we evaluated the diffusion coefficients of TfR and DOPE in the blebbed PM, using high-speed (25-ps resolution) SPT of
gold-TfR and gold-DOPE. Cy3-TfR and Cy3-DOPE might diffuse faster, but the difference would be small because the values obtained here with gold probes are
comparable to those from the FRAP data (using fluorescent probes) in artificial lipid bilayer membranes (Kusumi et al., 2012).

TABLE 1: Compartment size L obtained by SPT, D*f(33ms)109 ms evaluated by SFMT, and residency time within each compartment (1) calculated
from L (SPT, median value) and D*(33 ms);0g ms (SFMT, median value) using the equation 1 = L%/4Dyacro for TfR and DOPE in PtK2, HEPA-OVA,
Hela, T24, and NRK cells.
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FIGURE 3: Hop diffusion becomes visible only with enhanced frame
rates (improved time resolution). (A) Representative trajectories of
gold-TfR (left) and DOPE (right) in the PtK2-cell PM obtained at
systematically varied frame times of 33, 2, 0.22, and 0.025 ms. The
trajectories obtained at 0.22- and 0.025-ms resolution are enlarged
(see scales). Color coding in the 0.025-ms-resolution trajectories
represents plausible compartments detected by a computer program
(Fujiwara et al., 2002). The residency time within each compartment is
shown. The overlaps of trajectories in adjacent compartments occur
due to noise (limited single-molecule localization precision of 19.3 nm
for both the horizontal and vertical directions of the camera at

Volume 27 April 1, 2016

compartment size. Namely, it is the long-term diffusion coefficient
that directly reflects the hop frequency or the residency time
within a compartment.

We used this method because the direct determination of the
residency time within a compartment, using high-speed SPT using
colloidal gold probes, is difficult due to gold probe—induced cross-
linking of TfR and DOPE (Murase et al., 2004) and also because the
hop events occurring on a millisecond time scale could not be ob-
served by the SFMT of fluorescent probes (no cross-linking) due to
the insufficient signal-to-noise ratio. Note that the microscopic diffu-
sion of molecules within a compartment is hardly affected by gold-
tagging (Dmicro of gold-DOPE within a compartment was found to
be ~8 um?/s by Murase et al. (2004), which is comparable to the
diffusion coefficients of fluorescent lipid molecules in various artifi-
cial lipid membranes (Kusumi et al., 2012); the virtual lack of the ef-
fect of cross-linking on Dpyicro is consistent with the classical theory
of two-dimensional diffusion published by Saffman and Delbriick
(1975), which showed that an increase of the diffusant size only very
weakly affects the two-dimensional diffusion coefficient). The
residency times of TfR and DOPE were in the range of 1-58 and
1-13 ms, respectively, for all five cell types (Figure 4B and Table 1).

The MSK mesh sizes determined by electron tomography
agree well with the phospholipid hop-diffusion
compartment sizes

The top PMs (apical PMs) of the PtK2 cells were gently removed
from the rest of the cells and rapidly frozen from the PM cytoplas-
mic surface. After deep etching followed by platinum shadowing
from the same side, the specimens were observed by electron to-
mography, as described previously (Morone et al., 2006). In Figure
5, A (right four images) and B (second to fourth images), the boxed
areas in the leftmost images were expanded, and the tomography
sections obtained every 2.2 nm (superposition of two 1.1-nm-thick
slices; 320 x 320 nm) are displayed between 0 and 15.4 nm from
the PM cytoplasmic surface. Using these sections, we determined
the filaments located within 8.8 nm from the PM cytoplasmic sur-
face (Morone et al., 2006; see Materials and Methods for more de-
tails), as shown in green in Figure 5C (images for a larger area are
shown in Figure 5, D and E). Based on the actin filament diameter
(~7 nm) and the platinum particle size (~2 nm), these filaments are

0.025-ms resolution; see Materials and Methods). (B) Distributions of
RD(n steps, ndt) (3t = time resolution) for gold-TfR and DOPE in the
PtK2-cell PM. For the data obtained at time resolution of 33, 2, and
0.025 ms, the values of the (N, n) pair used here were (100, 30), (500,
30), and (2500, 60), respectively, in terms of the number of steps and
(3.3s,15), (25,60 ms), and (62.5 ms, 1.5 ms), respectively, in terms of
time. The (N, n) pair of (100, 30) for the 33-ms resolution data was
used, for consistency with the data for Cy3-TfR and Cy3-DOPE
(Figure 2C). For the analysis of the data obtained at 2- and 0.025-ms
resolution, n values were selected so that the analysis time scale of
ndt would be useful to detect the non-simple-Brownian nature of the
trajectories (Murase et al., 2004). The shapes of the RD distributions
for simulated simple-Brownian particles at different time resolutions
shown here seem to be quite different because we used the same
x-axis scale for all of the RD distributions obtained at different time
resolutions, whereas the ratios n/N, which strongly affect the
appearance of the RD histograms, used here were quite different for
the data obtained on different time scales. To show the shapes of the
RD distributions obtained at different time resolutions more clearly,
histograms with different x-scales for the same data sets are shown in
Supplemental Figure S3.
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FIGURE 4: The hop-diffusion fitting of the ensemble-averaged
MSD-At curves obtained at 0.025-ms resolution supports the
proposal that suppressed diffusion is actually induced by hop diffusion
(A), and the compartment sizes detected by TfR and DOPE are
virtually the same for the five cell lines examined here (B).

(A) Ensemble-averaged MSD-At plots for gold-TfR (left; n = 54)

and gold-DOPE (right; n = 50) obtained at 0.025-ms resolution,

with the best-fit curves (green) based on the hop diffusion model
(Powles et al., 1992). The error bars represent standard errors.

(B) Distributions of the compartment size L for the five different cell
lines. Gray bars, TfR (30-101 particles examined for each cell line).
Open bars, DOPE (30-77 particles). Arrowheads indicate median
values. The difference between TfR and DOPE for each cell line was
insignificant (Mann-Whitney U test). The NRK-cell PM is unique, in
that it exhibited nested double compartments (Fujiwara et al., 2002;
Suzuki et al., 2005). However, we only discuss the smaller
compartments in this article. The relationships of the compartment
size distributions for gold-DOPE diffusion shown here and those
previously reported by us (Fujiwara et al., 2002; Murase et al., 2004)
are described in the Supplemental Notes to Figure 4B.

considered to be the actin filaments that formed the MSK fences
(Morone et al., 2006).

The areas surrounded by these filaments are colored green in
the 0- to 8.8-nm section shown in Figure 5F. The sizes of these green
areas were measured, and the distribution of the square root of the
area size (the side length, assuming a square shape for the area) for
PtK2 cells (blue open bars) is shown in Figure 5G. The distribution
for the NRK-cell PM obtained previously (Morone et al., 2006) is
shown for comparison (red open bars). The median values are 40
and 200 nm, respectively.
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The compartment size distributions obtained from the DOPE dif-
fusion data (closed bars in Figure 5G) exhibited good agreement
with the MSK mesh size distributions determined by electron to-
mography for both PtK2 and NRK cells (and the sizes were very dif-
ferent between these two cell types). This result strongly supports
the fence-and-pickets model.

The actin-based MSK architecture in PtK2 cells appeared slightly
different from that in NRK cells. The filaments located within 8.8 nm
from the PM cytoplasmic surface, which were considered to be
bound to the PM cytoplasmic surface, were quite often accompa-
nied by (aligned with) another actin filament that was not bound to
the PM cytoplasmic surface (Figure 5, A-E). How this influences the
fence and picket effects is unknown. An attempt was made to per-
form electron tomography experiments after the treatment with an
actin-modifying drug, latrunculin A. For the electron tomography
work, the apical PM, which we always observed for single-particle
(fluorescent molecule) tracking of membrane molecules here, was
cleaved off for the observation. For this, we first attached small cov-
erslips to the apical PM and gently removed them so that the apical
PM came off with the coverslips. However, after latrunculin A treat-
ment, by unknown reasons, the coverslips did not attach the apical
PM well, and so when the coverslips were removed and inspected,
we could hardly find any PM there.

Effects of actin-modifying drugs

We examined and compared effects of actin-modulating drugs on
the diffusion of gold-TfR and gold-DOPE using high-speed SPT at a
time resolution of 0.025 ms. In all of the drug treatment experi-
ments, the drugs were added while the cells were being observed
under the microscope and maintained at 37°C, and high-speed SPT
was performed between 5 and 30 min after drug addition. Note that
the conditions for drug treatment (concentrations and durations)
were adjusted so that the drug treatment did not cause the overall
cell shape changes.

In the PM of PtK2 cells, we did not detect any statistically signifi-
cant effects of latrunculin A on the compartment size sensed by TfR
even at higher concentrations (6 and 54 uM for 5-30 min at 37°C)
(Figure 6A, left top and middle, and Table 2). Following the observa-
tions by Murase et al. (2004), who found that cytochalasin D, but not
latrunculin A, effectively modulated the actin MSK and DOPE diffu-
sion in FRSK cells, we examined the effect of cytochalasin D on the
PtK2-cell PM. After the addition of 5 pM cytochalasin D (Figure 6A,
left, bottom, and Table 2), the compartments became largest during
the first 5-10 min and regained their original sizes during the follow-
ing 10-15 min (Figure 6A, right with yellow background, and
Table 2), indicating that PtK2 cells react readily to the cytochalasin D
treatment but recover quickly, consistent with previous findings
(Hiramoto-Yamaki et al., 2014). The controversies over the effects of
actin modulation (Vrljic et al., 2002, 2005; Schmidt and Nichols
2004; Lenne et al., 2006; Nishimura et al., 2006; Frick et al., 2007)
might be due to the complex counterreactions of the cells respond-
ing to the actin-modulating drugs.

We determined the compartment size for gold-DOPE under the
conditions in which the compartment size for gold-TfR became the
largest, that is, between 5 and 10 min after the addition of 5 uM
cytochalasin D (Figure 6B, bottom, and Table 2). Under these condi-
tions, the compartment size for Gold-DOPE was also increased, and
the sizes for gold-TfR and gold-DOPE were virtually the same (no
statistically significant difference). This result further indicates that
the compartment sizes for TfR and DOPE are determined by a simi-
lar mechanism, that is, the actin-based MSK. Of interest, the resi-
dency times of TfR and DOPE within a compartment both increased
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FIGURE 5: The sizes of the MSK meshwork on the PM cytoplasmic surface determined by
electron tomography agree well with the compartment sizes determined from the gold-
DOPE diffusion measurements. (A, B) Electron tomography images of the PM cytoplasmic
surface of the PtK2 cell. The images on the far left are the O- to 8.8-nm and 8.8- to 17.6-nm
sections, each comprising a stack of eight 1.1-nm sections of 640 x 640 nm. These are from a
series of 133 image sections (1.1 nm thick) from the cytoplasmic surface after the tilt and the
long-wavelength undulation of the cell surface were corrected. The areas enclosed by the
white squares in these images (320 x 320 nm) are expanded on the right, with a section
thickness of 2.2 nm (two 1.1-nm sections are superimposed). (C) The outline of each actin
filament adjacent to the PM cytoplasmic surface (green, observed in the section of 0-2.2 nm
and fading out in the sections of 8.8-11.0 and 11.0-13.2 nm) and the outline of each actin
filament that could not be observed in the first and/or second sections (0-2.2, 0-4.4, and
2.2-4.4 nm) from the membrane surface and that does not fade out even in the section of
13.2-15.4 nm from the surface (red), as determined from the sections in A and B (320 x 320
nm). (D) The image of the 0- to 8.8-nm section, that is, the image expanded from the
leftmost image in A (640 x 640 nm). (E) The outline of actin filaments in a greater view field
(640 x 640 nm). (F) Superimposition of image (D) and the green outline (E). The first-layer
actin filaments are outlined in yellow, and the areas surrounded by these actin filaments are
green. (G) Comparison of the distributions of the actin-MSK mesh size from electron
tomography (green areas in F; open bars) with those of the compartment sizes determined
from the gold-DOPE diffusion data (closed bars) for PtK2 (blue) and NRK (magenta; from
Morone et al., 2006) cells.
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(Table 2), perhaps due to the increased
compartment sizes (reduced frequencies of
arriving at the compartment boundaries).

The mechanisms for the actions of latrun-
culin A (stabilizing G actin) and cytochalasin
D (blocking the fast-polymerizing end) on
the actin filament are quite different, and
perhaps, as a result, their actions strongly de-
pend on the cell type. We previously found
that one works but not the other (to induce
changes in the hop diffusion properties) in
different cell types; for instance, in FRSK
cells, cytochalasin D, but not latrunculin A,
modified the actin-based MSK (Murase et al.,
2004), but the situation was just the opposite
in CHO cells (Umemura et al., 2008). The rea-
son for such variations will be difficult to
clarify, but they probably reflect the subtler
differences in the organizations and interac-
tions of the actin-based MSK.

Similar experiments studying the effect
of actin modulation on the hop diffusion of
gold-DOPE and TfR using NRK cells gave
very similar results (Supplemental Figure S4
and Supplemental Table S2).

Diffusion in the PM blebs
Ultrafast SPT of gold-Tf at 0.025-ms resolu-
tion was performed in the actin-depleted
PM, which was formed by PM blebbing and
further latrunculin A treatment (see Materials
and Methods). Previously, the diffusion of
gold-DOPE was examined in the blebbed
PM, but the diffusion of TM proteins has
never been examined there. Typical trajec-
tories of gold-DOPE (selected from the set
of trajectories obtained for the report by
Fujiwara et al., 2002) and gold-TfR (obtained
in the present research) are shown in Sup-
plemental Figure S5A (NRK cells; blebbed
PMs were difficult to form from the PM of
PtK2 cells). Most of the trajectories of both
gold-TfR and gold-DOPE were classified
into the simple-Brownian diffusion mode
(Supplemental Figure S5B), in stark contrast
to the observations made in the intact PM,
further suggesting that the underlying
mechanisms for the hop diffusion of TfR and
DOPE are related to the actin-based MSK.
The microscopic diffusion coefficients,
D=f(25 ps)ys 4 (8.1 and 8.5 pm?/s for gold-Tf
and DOPE, respectively; Supplemental
Figure S5C), were almost as fast as that of
gold-DOPE in large, unilamellar vesicles (~9
um?/s; Fujiwara et al., 2002), indicating that
the actin-based MSK is predominantly re-
sponsible for non-Brownian movements of
both TR and DOPE in intact PMs.

These D#f(25 ps)ss s values found in the
blebbed PMs are consistent with the micro-
scopic  diffusion  coefficient within a
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FIGURE 6: Cytochalasin D, but not latrunculin A, increased the PM
compartment size in PtK2 cells, and its effect was greatest 5-10 min
after its addition to the cells. Under these conditions, the
compartment sizes were increased for both gold-TfR and gold-DOPE,
but no statistically significant differences were found between these
two probes. (A) Effects of latrunculin A and cytochalasin D on the
compartment size for gold-TfR in the PtK2-cell PM, showing the
dramatic dependence on the drug type and the cytochalasin D
treatment duration. p values were determined by the Mann-Whitney
U test. The compartment size distribution for gold-TfR in the intact
PM of PtK2 cells (blue histograms) is reproduced in all of the boxes
for comparison. This histogram is the same as that shown in

Figure 4B, top, and is reproduced here for comparison with those
after the treatment with actin-modifying drugs. (B) Compartment size
distribution for gold-TfR at 5-10 min after the addition of cytochalasin
D (reproduced from the top graph in A) compared with that for
gold-DOPE. The data in the top graph show the compartment size
distributions in intact cells (control) reproduced here from Figure 4B,
top, for comparison.

compartment, Dyicro, determined previously (Fujiwara et al., 2002;
Murase et al., 2004). These D=f(25 ps)s us Values for gold-TfR (8.1
um?/s) and gold-DOPE (8.5 pm?/s) were greater than the macro-
scopic diffusion coefficients, Dyacro, determined for Cy3-TfR and
Cy3-DOPE (Table 1; see the data for NRK cells) by factors of 28-34
and 7.7-25, respectively. Owing to the nested double compartmen-
talization of the NRK-cell PM, the comparison is somewhat difficult,
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but the difference between Do and Dyacro for the smaller com-
partment, averaged between gold-TfR and gold-DOPE, is about a
factor of 17 (this factor is greater if we include the larger compart-
ments). This indicates that all models and theories that attempt to
explain the PM domain architecture and the molecular dynamics
there must be able to explain the 17-times-slower diffusion in the
PM than in the blebbed PM and artificial lipid membranes. Further-
more, they should be able to reproduce the dependence of the
diffusion mode on the observation frequency shown in Figure 3.

The extracellular matrix and the extracellular domains of
TM proteins are not responsible for the 17-times-slower
macroscopic diffusion
Gold-TfR diffusion was examined after a mild trypsin treatment of
PtK2 cells under conditions in which 51% of the extracellular do-
mains of membrane proteins plus extracellular cell matrix proteins
bound to the cell surface (cell surface-bound biotin probe), 55%
of collagen type I, and 61% of chondroitin sulfate were removed
(under these conditions, 74% of TfR remained). The D=f(33 ms)40o
ms Value of gold-TfR was not significantly affected (median, 0.31
pm?2/s, n=78), as compared with that in the intact PM (0.30 pm?/s,
n=31). Note that this was observed using the 40-nm gold probe,
which would interact and collide with the extracellular matrix and
the extracellular domains of TM proteins much more extensively
than would the Cy3 probe. Therefore the extracellular matrix and
the extracellular domains of TM proteins are not likely to be in-
volved in the 17-times-slower diffusion (compared with the diffu-
sion in the blebbed PM) or the hop diffusion of TR in the PM.
These results are consistent with the previous observations of
gold-DOPE after trypsinization in FRSK and NRK cells. Gold-DOPE
diffusion after trypsinization under the conditions of removing
~60% of the cell-surface biotin probe and chondroitin sulfate in
FRSK cells (Murase et al., 2004) and that after the removal of ~60%
of the cell-surface biotin probe and 83% of heparan sulfate glycos-
aminoglycan in NRK cells (Fujiwara et al., 2002) were examined
previously. No effect of the trypsin treatment on gold-DOPE diffu-
sion was found.

Effects of fence versus pickets

First, the size of the TfR cytoplasmic domain was increased from 134
amino acids (aa) to 762 and 1082 aa by the addition of two and three
Halo-protein tags (see the first four molecules from the left in the
schematic diagram in Figure 7A and its legend), and the movements
of the mutated molecules were observed at the level of single mol-
ecules (after proper fluorescence labeling) at video rate. The hop
diffusion could not be directly observed at this frame rate, but the
macroscopic diffusion coefficient, D*f(33 ms);0g ms, provides a useful
yardstick for the hop frequency of the mutated TfRs (because the
compartment size should stay the same). In both PtK2 and T24 cells,
D*f(33 ms)100 ms Was slightly but statistically significantly decreased,
although the addition of a single Halo-protein (448 aa) did not
change the diffusion coefficient (Figure 7B, second to fourth pairs of
graphs, and Supplemental Table S3). This result indicates that the
cytoplasmic domain is involved in confining TR within the compart-
ments induced by the actin-based MSK.

Second, two point mutations that jointly block TfR dimer forma-
tion were included (C89S and C98S, with a single Halo-tag protein
in the cytoplasm for probing, providing the cytoplasmic domain size
of 381 aa; fifth molecule in Figure 7A). The D*f(33 ms)19g ms value for
this monomer molecule was significantly larger than that for the di-
mer of TfR-Halo chain plus endogenous TR chain (cytoplasmic do-
main size, 448 aa; second molecule in Figure 7A) in both PtK2 and
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SPT SFMT
Percentage D=(33 ms)100 ms Calculated

Treatment Molecule hop* L (nm)t PS NI (pm?/s)T NI T (ms)
Control TR 100 43 (45 +1.9)+ 54  0.48 (0.53 +£0.037) 51 0.96

DOPE 100 46% (49 + 2.7)H2# 50 0.48(0.53+0.055)  30° 1.1
Latrunculin A TR 100 45 (47 £ 1.7\ 0.24 52 0.53 (0.56 £0.024) 57 0.96
(6 uM, 5-30 min)
Latrunculin A TR 100 45 (49 + 1.3\ 0.087 155  0.58 (0.61 £0.024) 54 0.87
(54 pM, 5-30 min)
Cytochalasin D TR 100 51 (52 +1.3)"" 0.0022 157 0.37 (0.40£0.010) 196 1.8
(5 M, 5-30 min)
Cytochalasin D TR 100 57 (56 + 2.5)"" <0.001 44 0.38 (0.42 +£0.023) 54 2.1
(5 UM, 5-10min)  popg 95 51 (58 + 3.4)72 0023 44 0.40(0.36+0.020) 33 1.6
Cytochalasin D TR 100 49 (50 £ 1.9)" 0.018 38 0.38 (0.39 £0.022) 32 1.6
(5 uM, 10-15 min)
Cytochalasin D TR 100 47 (50 + 2.0\ 0.082 75 0.36 (0.39 £0.013) 110 1.5

(5 pM, 15-30 min)

*Percentages of trajectories classified into the hop-confined diffusion mode, determined for 1.5-ms observation at a 0.025-ms resolution; see Figures 2B and 3B,

bottom, and Materials and Methods.

TThe differences in L between TR and DOPE are statistically insignificant for control (without actin modulation) and for the cells 5-10 min after the addition of 5 uM
cytochalasin D. The median L values, as well as the mean * SE L values (in brackets), are given.

*Additional superscripts Y and N indicate results of the statistical test. The distributions selected as the basis for the comparison are shown by the double dagger
($). Different numbers (1 and 2) indicate different bases. The superscript Y or N indicates that the distribution is or is not significantly different from that shown by the
double dagger superscript, respectively (o < 0.05 or >0.05, respectively). For the statistical test, see the following note.

$p values of the Mann-Whitney U test.

INumber of examined molecules. All of the TfR data shown here were obtained in the present research. For the gold-DOPE results, the superscript a in the
N column indicates that the D33 ms);qg s value (for Cy3-DOPE in the control PtK2-cell PM) is from Murase et al. (2004).

1The median values, as well as the mean + SE values (in parentheses), are given.

#Although the L values for gold-DOPE in the PtK2-cell were previously published (Murase et al., 2004), to ascertain the accuracy of the data for small compartment
sizes, the experiments were redone in the present research, and the newly obtained values are shown here. No statistically significant differences from the previously

published values were found.

TABLE 2: Effects of drug-induced actin modulation in PtK2-cell PMs on the compartment size L obtained by SPT (0.025-ms time resolution),
D*(33 ms)100 ms evaluated by SFMT, and residency time within each compartment (1) calculated from L (SPT, median value) and D*(33 ms);0g ms
(SFMT, median value) using the equation t = L%/4Dyacro for TfR and DOPE.

T24 cells (Figure 7B, fifth pair of graphs, and Supplemetal Table S3).
Because the cytoplasmic domain sizes of these two molecules are
similar, the increase of the cytoplasmic domain size from 134 aa (in-
tact dimer) to 448 aa did not change D*(33 ms);gg ms (preceding
paragraph), and, as described in this article, the extracellular matrix
and the extracellular domains of TfR were not involved in slowing
macroscopic diffusion, we concluded that a decrease in the cross
section of the TM domain greatly increases the hop frequency. This
result suggests that the confining effect of pickets might be stronger
than that of the actin-MSK fence for TfR in both PtK2 and T24 cells.

However, even these monomeric Halo-TfR molecules diffused
slightly (but statistically significantly) more slowly than those of the
acyl carrier protein (ACP)-tag protein conjugated to the TM domain
of the low-density-lipoprotein receptor (Figure 7, bottom graphs,
and Supplemental Table S3), a typical nonraft molecule (ACP-TM
with only 10 aa in the cytoplasmic domain; Suzuki et al., 2012). This
result can be explained by the fence effect on the mutant TfR-Halo
monomers (381 vs. 10 aa for ACP-TM) by the actin MSK. However, it
might also be due to the presence of small amounts of noncovalent
dimers formed between mutant TfR-Halo and endogenous TiR.
Overall these results indicate that both the fence and picket effects
are important to temporarily confine TfR within a compartment, but
the TM pickets bound to the actin-MSK fence are more effective
than the fence itself for TfR in both PtK2 cells and T24 cells.
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As extensively described here, the compartment sizes are virtu-
ally the same for TfR and gold-DOPE under all conditions examined
in this study. This suggests that monomeric TR and ACP-TM would
sense the same compartment size as the native TfR (dimer) and
gold-DOPE.

DISCUSSION

Actin-MSK suppressed the diffusion rates of TfR and DOPE
by a factor of >17 from those in actin-free membranes.
Third objective of this research

The results shown in Figure 3 indicate that both gold-DOPE and TfR
undergo suppressed diffusion in the PM, which is detectable only at
a very high time resolution of 0.025 ms. It is almost entirely missed
at video rate observations, whereas at a 2-ms time resolution, only
33% of TIR and 12% of DOPE were classified into the suppressed-
diffusion mode.

The almost complete removal of the actin-MSK (i.e., in the
blebbed PM plus latrunculin A treatment) virtually abolished hop
diffusion and induced very fast simple-Brownian diffusion for
both TfR and DOPE, with diffusion coefficients of ~8.3 um?/s
(Supplemental Figure S5C and Table 1). This value was practically
as large as the diffusion coefficients of lipids in artificial mem-
branes (Kusumi et al., 2012) and was greater by a factor of 17-55
than those observed for Cy3-TfR and Cy3-DOPE in the intact PMs
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FIGURE 7: TfR's D*(33 ms)109 ms (and thus hop frequency) depends on both its cytoplasmic
domain size and dimerization in both PtK2 and T24 cells. (A) Molecules used for this
examination. Note that endogenous TfR exists as dimers, and that since the expression levels of
modified TfR molecules are much smaller than that of endogenous TfR, most of the expressed
molecules are expected to form dimers with endogenous TfR. The numbers indicate the number
of amino acids in the cytoplasmic domain of the endogenous human TfR (67 aa), the Halo-tag
protein (297 aa), linkers (17 and 20 aa), and the cytoplasmic domain of the ACP-TM (10 aa). The
expected total numbers of amino acids in the cytoplasmic domain are shown below (the
endogenous TfR in PtK2 cells was assumed to have the same number of amino acids in the
cytoplasmic domain as that in human TfR). (B) Distributions of the effective macroscopic
diffusion coefficient D*f(33 ms);qg ms for the individual molecules in A in PtK2- and T24-cell PMs.
Def(33 ms)100 ms should be proportional to the hop frequency. For a discussion of the effect of
the cross section of a diffusant on its hop characteristics, see Supplemental Notes to Figure 7B.

of the five cell lines examined here (Table 1), confirming previous
observations in which the diffusion in the intact PM is reduced
from that in the actin-free blebbed PM by a factor of ~20.

A model of slowed simple-Brownian diffusion for phospholipids
(rather than hop diffusion; testing this model was the third major
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objective of the present research), perhaps
due to the crowding of TM proteins in the
PM, has been proposed (Schmidt and Nich-
ols, 2004; Lenne et al., 2006; Frick et al.,
2007; Gambin et al., 2006; Manzo et al.,
2011; Vicidomini et al, 2011; Billaudeau
et al., 2013). However, this interpretation of
their data is inconsistent with the present
observations showing that the diffusion in
the blebbed PM, with basically the same
concentrations of TM proteins but very little
actin-MSK, is as fast as that in artificial lipid
membranes (Fujiwara et al., 2002; Kusumi
etal., 2012).

Both lipids and TM proteins undergo
hop diffusion induced by actin-MSK:
equality of compartment sizes for TfR
and DOPE under all of the examined
conditions and their equality with
actin-MSK mesh sizes. First objective
of this research

Modulations of actin filaments by drug treat-
ment induced changes in compartment size
and/or residency time (Figure 6, Supple-
mental Figure S4, Table 2, and Supplemen-
tal Table S2). Of interest, the compartment
sizes for TfR and DOPE were very similar to
each other in each of the five cell lines exam-
ined (Figure 4B), although the actual com-
partment sizes are different from each other
between these cell lines. Furthermore, when
PtK2 cells and NRK cells were treated with
actin-modifying drugs, the compartment
sizes for TfR and DOPE were very similar to
each other under examined conditions
(Figure 6B, Supplemental Figure S4, Table 2,
and Supplemental Table S2).

The compartment sizes determined in
the PMs of PtK2 cells (this work), NRK cells,
and FRSK cells (Morone et al., 2006) were
found to be the same as the mesh sizes of
the actin-MSK located within 8.8 nm from
the PM, as determined by electron tomog-
raphy (Figure 5G). Taken together, these
results indicate that the underlying mecha-
nism for the hop diffusion of phospholipids
and TM proteins must be the same and
must involve the actin-based MSK.

How does actin-MSK induce hop
diffusion of both phospholipids and
TM proteins?

In the present research (Figure 7 and Sup-
plemental Table S3), we found that an in-
crease in TfR cytoplasmic domain size
caused D*f(33 ms)igg ms to be slightly but

significantly reduced, suggesting that the collision of the TfR cyto-
plasmic domain with the actin-MSK was involved in confining TfR in
the actin-MSK mesh, although this effect would be quite limited.
Meanwhile, the D=f(33 ms);0p ms value of monomeric TfR was much
greater than that of dimeric TfR, indicating that monomeric TR
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passes compartment boundaries much more readily. These results
suggest that the confining effect of pickets on TfR might be much
greater than that of the fence in the PtK2-cell PM.

There is no fence effect on DOPE, and yet DOPE showed actin-
dependent compartmentalization and hop diffusion, with compart-
ment sizes the same as those detected by TfR and also same as the
actin-MSK mesh sizes determined by electron tomography. There-
fore we propose that DOPE confinement within compartments is
induced by TM pickets anchored to the actin fence.

These results, as well as those described in the previous subsec-
tion, indicate that the second purpose of the present investigation
(to examine thoroughly the PM of PtK2 cells) has been accom-
plished. Furthermore, both results are consistent with the recent
conclusions of Andrade et al. (2015).

Biological significance of the partitioned membrane

In the present research, we were particularly concerned with three
models of molecular dynamics in the PM and the PM domain struc-
ture: 1) temporary binding and/or transient entrapment within a
nanoscale-domain model (Eggeling et al., 2009; Sahl et al., 2010;
Honigmann et al., 2014), 2) a slow, simple-Brownian diffusion model
(i.e., the third objective of the present research; Gambin et al., 2006;
Frick et al., 2007), and 3) the fence-and-pickets model. Our results
described here are inconsistent with models 1 and 2, even in the
PtK2 cells used by Eggeling et al. (2009) and Sahl et al. (2010), as
well as in the additional four cell lines. The equal compartment sizes
for phospholipids and a transmembrane protein, TfR, under all con-
ditions in the present study (intact PMs of the five cell lines and un-
der all of the drug-induced actin modification conditions) provided
confirmatory evidence in support of the fence-and-pickets model.

The hop diffusion and PM compartmentalization induced by
the actin-MSK are not contrary to the fluid-mosaic model pro-
posed by Singer and Nicolson (1972). The Singer-Nicolson model
is perfectly suitable for molecular events occurring on space scales
of ~10 nm, which is the scale of the original figure in their elegant
report. However, the PM partitioning model proposes that, for PM
molecular events occurring on greater scales, temporary confine-
ment within a compartment and hop diffusion of molecules must
be considered. This model appears to be quite broadly suitable
because it is applicable to all mammalian cells examined thus far,
including PtK2 cells (despite many recent publications—see Sup-
plemental Figure S6—on why hop diffusion appears like simple-
Brownian diffusion interrupted by frequent transient entrapment),
and Escherichia coli (Oh et al., 2014) and to various types of mol-
ecules incorporated in the PM, including, in addition to TfR and
DOPE, a G protein—coupled receptor, a p-opioid receptor (Suzuki
et al., 2005), an MHC class Il protein (a transmembrane protein;
Umemura et al., 2008), and a GPl-anchored protein (a mutant
MHC protein class Il with transmembrane domain replaced by the
GPl-anchoring chain; Umemura et al.,, 2008), as well as to two
more phospholipids, L-a-dipalmitoylphosphatidylethanolamine
(DPPE) and r-o-dimyristoylphosphatidylethanolamine (DMPE)
(Hiramoto-Yamaki et al., 2014).

The actin-MSK-induced PM partitioning (compartmentaliza-
tion) is important for various PM functions. First, according to
Kalay et al. (2012), such partitioning will not change the bimolecu-
lar collision rate (thus the reaction rate) for the entire PM since it
does not affect the thermal equilibrium, but it can create local
“bursting of reactions” and thus their spatial variations. Second,
lino et al. (2001) showed that in the partitioned PM, E-cadherin
oligomers tend to be trapped longer, due to their increased size,
within the compartment where they are formed (termed oligo-
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merization-induced trapping), which might be useful for the short-
term memory of the location where the ligand binding to the re-
ceptor was initially induced (Chung et al., 2010; Heinemann et al.,
2013; Shelby et al., 2013; Shrivastava et al., 2013). Third, actin-
MSK-induced partitioning is used to create a macroscopic diffu-
sion barrier in the PM of the neuronal initial segment region (Na-
kada et al., 2003). Further studies of the PM compartmentalization
mechanism and its biological functions are clearly required.

MATERIALS AND METHODS

Cell culture

NRK fibroblasts and human T24 epithelial cells were grown in Ham's
F-12 medium (Sigma-Aldrich, St. Louis, MO) supplemented with
10% fetal bovine serum (FBS; Sigma-Aldrich). The T24 cells are the
same as the ECV304 cells used in Murase et al. (2004), which were
erroneously regarded as an endothelial cell line but were previously
reported to be a subclone of T24 epithelial cells (Tanabe et al.,
1999). PtK2 (rat kangaroo kidney) epithelial cells and human Hela
epithelial cells were grown in Eagle’s MEM (Sigma-Aldrich) supple-
mented with 10% FBS, 0.1 mM nonessential amino acids (Gibco/
Invitrogen, Carlsbad, CA), and 1 mM sodium pyruvate (Gibco/Invit-
rogen). Mouse kidney HEPA-OVA epithelial cells were grown in
DMEM (Sigma-Aldrich) supplemented with 10% FBS.

All cell lines were cultured on 12-mm-diameter glass-bottom
dishes (IWAKI, Tokyo, Japan) for SFMT or 18 x 18-mm coverslips
(IWAKI) for SPT, and single-molecule observations were performed
2 d after inoculation. For SFMT of the PtK2, Hela, and HEPA-OVA
cells, the MEM or DMEM was replaced by Ham’s F-12 medium con-
taining 10% FBS at 1 d before observation. This procedure consider-
ably decreased the level of autofluorescence in these cells.

Cell treatments to remove cell-surface proteins with trypsin,
modulate the actin cytoskeleton, and form PM blebs
The extracellular domains of membrane proteins and the extracel-
lular matrix were partially removed by treating cells with low concen-
trations of trypsin (the exact concentrations differed, depending on
the cell type; see later description), in Hanks’ balanced salt solution
(HBSS; Nissui, Tokyo, Japan) buffered with 2 mM 1,4-piperazinedi-
ethanesulfonic acid (PIPES), pH 7.2 (HP medium), which did not de-
tach the cells from the coverslips, using the protocols described by
Fujiwara et al. (2002) and Murase et al. (2004). To monitor the extent
of cleavage, the extracellular surface proteins, including both the
extracellular domains of membrane proteins and extracellular matrix
proteins, were first tagged with sulfosuccinimidyl-biotin (Sigma-
Aldrich) and were visualized by Alexa 488-streptavidin (Molecular
Probes, Eugene, OR) before and after trypsin treatment. Collagen
type | was detected by the indirect immunofluorescence method,
using a polyclonal rabbit anti—collagen type | antibody (Novus Bio-
logicals, Littleton, CO) and a rhodamine-goat anti-rabbit antibody
(Cappel, Irvine, CA). Chondroitin sulfate glycosaminoglycan was de-
tected using CS-56 mouse anti—chondroitin sulfate immunoglobulin
G (Seikagaku, Osaka, Japan) and a Rhodamine Red-X donkey anti-
mouse antibody (Jackson ImmunoResearch, West Grove, PA). Epi-
fluorescence images of cells were captured by MetaMorph software
(Molecular Devices, Downingtown, PA), and fluorescence intensity
was quantitated. When NRK cells were treated with 25 pug/ml trypsin
at 37°C for 10 min, 61% of the extracellular surface proteins were
removed. For the removal of 51% of the extracellular surface pro-
teins of PtK2 cells, the required trypsin concentration was as high as
200 pg/ml (37°C for 10 min).

Cytochalasin D, latrunculin A, and jasplakinolide, kindly provided
by Gerard Marriott (University of California, Berkeley, CA), were
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used for the modulation of the actin cytoskeleton. Cytochalasin D
caps the barbed end to block the interaction of actin with barbed
end-binding proteins and inhibits the polymerization at both ends
of actin filaments, whereas latrunculin A binds to actin monomers,
inhibiting their participation in the actin polymerization reaction
(Ayscough, 1998) and thus reducing the level of actin polymeriza-
tion. Jasplakinolide stabilizes actin filaments (Bubb et al., 2000).
These drug treatments were performed during observation by mi-
croscopy at 37°C, and, unless otherwise stated, single-molecule
tracking experiments were initiated 5 min after adding these drugs
and were completed within 10, 15, and 30 min, depending on the
type of experiment.

PM blebs 5-20 ym in diameter in which the MSK was partially
depleted were formed by incubating the cells with 1 mM menadi-
one (2-methyl-1,4-naphthoquinone; Sigma-Aldrich) in HP medium
at 37°C for 1 h (Malorni et al., 1991). To further remove the actin-
based skeleton, the cells were then treated with latrunculin A as
described.

Preparation of the fluorescence probes (Cy3-Tf, Alexa
633-Tf, and Cy3-DOPE) and cell surface labeling

Human and bovine holo-Tf were purchased from Sigma-Aldrich,
Cy3-succinimidyl ester (monofunctional) was from GE Healthcare
Biosciences (Pittsburgh, PA), and Alexa 633-succinimidyl ester was
from Molecular Probes. To produce Cy3-Tf, 10 pl of a 6.5 mM Cy3
solution in dimethylformamide was added to 200 pl of a 0.5 mg/ml
(6.3 uM) Tf solution in 0.1 M carbonate buffer (Na,CO3-NaHCOs,
pH 9.0). After an incubation for 60 min at 25°C, the unreacted dye
was removed by desalting column chromatography (PD-10; GE
Healthcare Biosciences), and equilibrated and eluted with phos-
phate-buffered saline, and the fractions of the eluate with the dye/
protein ratio of 3.9/1 were collected for SFMT observations. Alexa
633-Tf was prepared in the same manner, except that the concen-
tration of Alexa 633 in the reaction mixture was twofold higher,
and the eluate with the dye/protein ratio of 7.6/1 was collected.

For SEMT observations of Cy3-Tf, after three washes with 1 ml of
HP medium, the cells were incubated for 10 min at 37°C in the same
medium to remove the Tf molecules prebound to TfR. Cy3-Tf
(10 nM) was added to the cells to a final concentration (~0.1 nM)
appropriate for single-molecule observations. The translational dif-
fusion of Cy3-Tf bound to TfR (Cy3-TfR) was observed on the apical
cell membrane at 37 + 1°C immediately after the addition of Cy3-Tf
without exchanging the medium.

Synthesis of DOPE (Avanti Polar Lipids, Alabaster, AL) conju-
gated with Cy3-succinimidyl ester (GE Healthcare Biosciences) in
the head group region (Cy3-DOPE) and its incorporation into the
PM were accomplished according to Fujiwara et al. (2002) and Mu-
rase et al. (2004).

SFMT of Cy3-Tf-labeled TfR (Cy3-TfR) and Cy3-DOPE

All observations of the cells were performed at 37 £ 1°C for up to
30 min. Individual Cy3 molecules were monitored on the upper
PM at video rate (30 Hz), using the oblique illumination mode of a
home-built objective lens-type total internal reflection fluores-
cence microscope (lino et al., 2001; Koyama-Honda et al., 2005).
Briefly, a 532-nm laser beam (the second harmonic of the Nd:YAG
laser beam; model 4501-050; Uniphase, San Jose, CA) was attenu-
ated with neutral density filters, circularly polarized, and then
steered into the edge of a high-numerical aperture (NA) oil immer-
sion objective lens (PlanApo 100x/NA 1.45; Olympus, Tokyo, Ja-
pan), with a focus at the back-focal plane of the objective lens on
an Olympus inverted microscope (IX-70).
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The precision of the position determination was estimated from
the SD of the coordinates of Cy3-Tf adsorbed to a poly-L-lysine—
coated coverslip overlaid by a 15% polyacrylamide gel (5% cross-
linker; Garcia-Parajo et al., 2000) and was ~20 nm at a time resolu-
tion of 33 ms.

To monitor the recruitment of TfR molecules into clathrin-
coated pits, T24 cells were transfected with mouse placental clath-
rin light chain fused to enhanced GFP at the N-terminus (GFP-
clathrin; a gift from J. H. Keen, Thomas Jefferson University,
Philadelphia, PA; Gaidarov et al., 1999). Simultaneous observa-
tions of individual Alexa 633-Tf-labeled TfR and clusters of GFP-
clathrin were performed by using the dual-color SFMT setup de-
scribed by Koyama-Honda et al. (2005). The two images were
spatially corrected and overlaid with an accuracy of 13 nm (Koyama-
Honda et al., 2005).

Preparation of gold-Tf and cell surface labeling

Gold-Tf was prepared essentially as described by Fujiwara et al.
(2002). The 40-nm-diameter colloidal gold particles (British BioCell,
Cardiff, UK) conjugated with bovine Tf were prepared by mixing 50
pl of 31 ug/ml bovine Tf in 2 mM phosphate buffer, pH 7.2, and 500
pl of colloidal gold suspension (2.8 ug/ml Tf in the mixture). After
incubation of the mixture for 1 h at room temperature, the gold-Tf
complex was further stabilized with 0.05% Carbowax 20M (Sigma-
Aldrich). After two washes by centrifugation and resuspension in
0.05% Carbowax/2 mM phosphate buffer, pH 7.2, the conjugates
were resuspended in 0.05% Carbowax 20M/HBSS buffered with 2
mM PIPES, pH 7.2 (observation medium). The gold probe suspen-
sion (~0.05 nM of gold particles; 3 x 10'° particles/ml) was added to
the cells that had been incubated in HP medium for 10 min at 37°C
to remove the Tf molecules prebound to TfR.

To minimize the effect of cross-linking by the gold probe, the
amount of Tf molecules conjugated to a gold particle was reduced
until D*f(33ms);goms of TR in PtK2 cells was maximized (PtK2 cells
were used because they exhibited a smaller compartment size,
~45 nm, in our preliminary studies, which would make the cross-link-
ing effect more apparent) while maintaining the number of Gold-Tf
molecules specifically bound to the cell surface at a sufficient level for
experimental purposes. With a reduction in the Tf concentration in-
cubated with colloidal gold particles, D*f(33 ms);gg ms was increased
and leveled off at 0.30 um?/s at a Tf concentration of ~2.8 ug/ml.
These gold probes exhibited a ratio of specific (Tf-conjugated) versus
nonspecific (without Tf conjugation) binding to the PtK2 cells of 4:1
(12.0 vs. 3.0 particles/cell on average). Further reduction of the num-
ber of Tf molecules on the gold particle did not substantially increase
the diffusion coefficient but did decrease the fraction of specifically
bound gold particles, and therefore we used these conditions for the
preparation of Gold-Tf throughout this research.

Preparation of colloidal gold probes for DOPE diffusion
in the PM
The preparation of 40-nm-diameter colloidal gold particles conju-
gated with the Fab fragments of anti-fluorescein antibodies (Mole-
cular Probes), the fluorescein-DOPE synthesis, and the optimization
of labeling conditions were performed according to Fujiwara et al.
(2002) and Murase et al. (2004). The gold probe suspension
(~0.05 nM of gold particles) was added to cells that had been prein-
cubated with fluorescein-DOPE, and the translational diffusion of
DOPE was recorded immediately after the binding of the gold
probe to the fluorescein-DOPE incorporated in the PM.

Murase et al. (2004) found that on longer time scales, such as 3 s,
the average D*(33 ms); 5 ¢ for Gold-DOPE was smaller than that for
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Cy3-DOPE by a factor of two to three and concluded that this is in-
duced by cross-linking of DOPE by colloidal gold probes. Therefore,
in previous and present studies, the gold probes were optimized by
reducing the number of molecules attached to the gold particle so
that the effective diffusion coefficient was maximized under condi-
tions in which the specificity of the probe binding was maintained
(specific vs. nonspecific binding to the cell surface was 4:1; Fujiwara
et al., 2002; Murase et al., 2004).

The gold particles bound to DOPE did not interact with either
the extracellular matrix proteins or the extracellular domains of
membrane proteins, which might hinder the diffusion of gold-
tagged DOPE more than nonlabeled DOPE, because Fujiwara et al.
(2002) and Murase et al. (2004) found that the trypsin treatment,
which removed ~60-85% of the extracellular matrix proteins and the
extracellular domains of membrane proteins, did not affect the dif-
fusion of Gold-DOPE.

SPT of gold-Tf-labeled TfR and gold-DOPE

For the observations with enhanced frame rates, a digital high-
speed camera with a C-MOS sensor was used (FASTCAM-ultima;
Photron, Tokyo, Japan; Tomishige et al., 1998; Fujiwara et al.,
2002). For high-speed videomicroscopy of colloidal gold-labeled
molecules, bright-field optical microscopy was used, using a Zeiss
Axioplan upright microscope equipped with an oPlan-Fluar 100x
oil immersion objective lens (NA 1.45). The sequence of images
was replayed at the video rate (30 Hz) with analogue and digital
enhancement by an image processor (DVS-3000; Hamamatsu Pho-
tonics, Hamamatsu, Japan) and recorded on a digital videotape
recorder (DSR-20; Sony, Tokyo, Japan).

The precision of the position determination was estimated by
the same method used in SFMT using 40-nm-diameter gold par-
ticles and was 17 nm at a time resolution of 25 ps (Fujiwara et al.,
2002).

Obtaining the trajectories of membrane molecules and
plots of MSD versus time

All of the probes observed in the image were used for analysis, with-
out any arbitrary selection by the observers. The positions (x- and
y-coordinates) of each gold particle and each fluorescent molecule
were determined by an in-house computer program that uses the
method developed by Gelles et al. (1988). For each trajectory, the
MSD for every time interval was calculated according to the follow-
ing formula (Qian et al., 1991; Kusumi et al., 1993):

MSD(N, n) =MSDx (N, n)+MSDy (N, n)
N-1-n
= 2 Dx ) = x(NZ Iy + )= y () (1)
j=1

where 8t is the video frame time; (x(j + n), y(j + n)) describes the par-
ticle position after a time interval ndt after starting at position (x(),
y(i)); Nis the total number of frames in the video recording sequence;
n and j are positive integers; and n determines the time increment.

Classification of the mode of diffusion, calculation

of the diffusion coefficient, and analysis of high-speed

SPT trajectories

For a detailed description of the data analysis methods, see
Fujiwara et al. (2002) and Suzuki et al. (2005). Anomaly in diffusion
is often described using the anomality factor o, assuming that
IN[MSD(t)] is proportional to o In(t). However, this method generally
neglects complicated causes of anomaly (and thus more compli-
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cated time dependence), and it almost always neglects the time
scale for the analysis. Thus the types of anomalous diffusion for
which it is useful are quite limited (Saxton, 2012). Therefore, in the
present research, we used the following method, which we devel-
oped previously.

A statistical method for classifying each trajectory into the sup-
pressed-diffusion mode, the simple-Brownian-diffusion mode, the
mode of simple-Brownian diffusion with drift, or the immobile mode,
based on the MSD-At plot was described by Kusumi et al. (1993).
Briefly, all of the trajectories were first classified into either the mo-
bile or immobile mode, and the mode-of-motion classification was
performed only for the trajectories that were classified as mobile
(see Figure 2B and the related discussion in the Results section).

The classification was performed based on the RD value, defined
as

RD(N, n) = MSD(N.n)
4Dndt

2
with D, = D, = D for simple-Brownian diffusion. The ensemble-av-
eraged RD is <<, =, or >> 1 when the molecules are undergoing
suppressed diffusion, simple-Brownian diffusion, or simple-Brown-
ian diffusion with drift (directed diffusion mode), respectively.
Figure 2B shows the theoretical curves for 1) simple-Brownian dif-
fusion, for which MSD(At) = 4DAt, 2) the directed-diffusion mode,
in which a molecule moves in a direction at a constant drift veloc-
ity (v, vy) with superimposed random diffusion, MSD(At) = 4DAt +
VA(AD?, where v2 = v,2 + v?, and 3) suppressed (totally confined)
diffusion, in which a molecule undergoes Brownian diffusion while
totally confined within a limited area (compartment; 0 < x< L,, 0 <
y < L) during the observation period. The MSD-At plot levels off
and asymptotically approaches a constant value, as expressed by

2 163 < 1 1(knox )
MSD, (N, )= 5 - 165 S k_AQXp{_ﬁ(T)}

k=1(odd)
363 Q1 1(kno, )’ 3
MSDY(N’H)_Z_E_“k:KEo’dd)k_“eXP 20 Ly

6% =2D,ndt, 63 =2Dyndt, 4D =2D,+2D,

15 =15+

For the analysis of the trajectories obtained by using high-speed
SPT with 0.025-ms resolution and classified into the suppressed-
diffusion mode (under the analysis conditions used therein), the
MSD-At plots in the x- or y-direction was fitted with an in-house
program based on the hop diffusion theory of Powles et al. (1992),
in which a particle undergoes diffusion in the presence of semiper-
meable barriers placed at an equal distance (termed "hop fitting” in
the present article; Fujiwara et al., 2002; Murase et al., 2004; Suzuki
et al., 2005). See the Results for further details.

The correct hop rate (or the residency time within a compart-
ment) was evaluated from the macroscopic diffusion coefficient, de-
termined by SFMT with a fluorescent probe, and the compartment
size was determined by SPT with a gold probe. Individual compart-
ments for each trajectory were automatically identified by the com-
puter program (Kusumi et al., 2005; Suzuki et al., 2005).

The following points must be considered with any hop fitting,
but they become especially important when very short residency
times within each compartment or very small compartment sizes are
expected.

As discussed in Suzuki et al. (2005), 1) the total period of the
trajectory used for the MSD calculation must be long enough so that
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a target molecule exhibits a jump (jumps) between the compart-
ments, and 2) the frame rate must be sufficiently high so that a tar-
get molecule stays in each compartment for a period of several tens
of frames on average. Therefore, when the residency time within
each compartment (1) is expected to be as short as 1-10 ms, we
argue that each observation period (total duration of the observa-
tion) should be >1.5-15 ms (1.51) and the frame rate should be
greater than one frame per 0.03-0.3 ms (t/30).

In addition, 3) the time window of the MSD-At plot needs to be
properly determined so that the contributions from Dyico (the initial
slope) and Dyacro (the slope toward the end of the plot) to the
MSD-At curve are well balanced. Therefore, for TfR and DOPE mol-
ecules in PtK2 cells, the total observation period of 12 ms (to fulfill
requirement 1), the time resolution of 0.025 ms (requirement 2), and
the MSD-At time window of 1.5 ms (requirement 3) were selected.
Although a 1.5-ms time window may seem too short to detect hops
every ~2 ms, all of the possible pairs in the whole 12-ms trajectory
are used to calculate the MSD value for each time interval, and
therefore this time window would contain sufficient information to
successfully estimate the hop parameters.

Finally, 4) the contribution from the Gaussian position determina-
tion errors to the MSD-At plot must be subtracted to estimate the
compartment size correctly. Even in single-particle tracking with sub-
pixel precision in particle positions, such as that used here, all of the
MSDs include Gaussian position determination errors attributable to
the systematic pixelation of the camera and the random noise
derived from the optics, the detector, and the sample, and these
errors must be subtracted. The SD of this Gaussian error for gold
particles fixed on a coverslip was 17 nm on average at a 0.025-ms
frame time (for one dimension; Fujiwara et al., 2002). This means
that the correct compartment sizes for TfR and DOPE molecules in
PtK2 cells should be slightly smaller than those (100 nm or a little
smaller) predicted from the visual inspection of the trajectories
(Figure 3A, bottom). When the trajectory is long enough so that the
statistical variation in the MSD values is sufficiently reduced, this
Gaussian position determination error appears on the MSD-At plot
as an offset—a constant value irrespective of the time interval (2 x
SD? for one dimension; Dietrich et al., 2002; Martin et al., 2002).
Therefore, to estimate the correct (average) compartment size for
each trajectory, the offset value was determined as the y-intercept (x
=0) in the MSD-At plot and was subtracted (the intercept was found
by extrapolating the linear-fit function for the first, second, and third
data points in the MSD-At plot for each direction). The two-dimen-
sional MSD-At plot shown in Figure 4A is that after the subtraction
of the offset. The two-dimensional offset value is the sum of those
for the x- and y- directions. The experimentally determined one-di-
mensional value was 742 nm? (n = 108; i.e., x- and y-axes for 54 TfR
trajectories), giving a position determination error of (742/2)"? =
19.3 nm on average. This is in good agreement with the value of
17 nm obtained for gold particles fixed on a coverslip, thus showing
that the offset values were properly determined on the PM.

Theoretical distribution of RD values for particles
undergoing simple-Brownian diffusion
Here we describe an analytical approximation for the distribution of
RD(N, n) given in Eq. 2. To perform the calculations, we consider the
large-N limit, where trajectories are long enough that the estimated
values of D can be approximated by a constant. Therefore the dis-
tribution of RD(N, n) is simply proportional to the distribution of
MSD.

MSD(N, n) can be calculated in two ways (Saxton, 1997): averag-
ing squared displacements over a time interval ndt by either allow-
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ing overlapping intervals (as in Eq. 1) or using only nonoverlapping
(independent) intervals. Here we employ the second strategy be-
cause it has the advantage that the distribution of the MSD can be
calculated exactly (Qian et al., 1991; Saxton, 1997). In this case, the
MSD is given by

k=1
MSD’(N,n) = % 2 {IWx (14 kn, n(k + ]2 +[Wy (1+ kn, n(k + 1)]?} (4)
k=0

where Wi, j) is the displacement between the (j + 1)th and ith
frames along the z-axis (j = i) and K is the number of nonoverlapping
intervals, being the largest integer <(N — 1)/n. Under the assumption
of simple-Brownian motion, Wi, j) is a Gaussian random variable
whose mean is zero and variance is equal to 2(j— i + 1)D&t, since the
displacement between consecutive time steps is Gaussian with zero
mean and variance equal to 2Ddt.

Because the W, in Eq. 4 can be treated as independent Gaussian
random variables, we can write

K=1 2 2
MSD’(N,n):%ZKN(OIHZZ)j +[N(0,nc2sz)j } .

k=0 no no

where 62 = 2D§t and N(a, b) denotes a Gaussian random variable of
mean a and variance b. Because N(O, n6?)/(nc?)"? is Gaussian dis-
tributed with unit variance, its square follows the chi-squared distri-
bution, and the sum of m chi-squared variables is still chi-squared
with m degrees of freedom. Therefore we finally have

2
MSD/(N, n) = "2=x?(2K) )

where x%(m) is a chi-squared distributed random variable with m
degrees of freedom. Using the properties of x%(m), we can express
the probability density function of MSD’ as

L;(ﬁ) (_ﬂ)
no2 2K(K = 1)1\ no? Pl™2n02 ”

Finally, we arrive at the distribution of RD(N, n) by noting that
RD(N, n) = MSD/(4Dndt), which means that the probability distribu-
tion function of RD(N, n) can be obtained from Eq. 7 via rescaling x
by the factor 1/(4Dnét) and dividing the resulting expression by the
same factor. Therefore the probability density function of RD(N, n)
is also chi-squared distributed and is explicitly given by

fmsor (x;N,n) =

FroN, ) = g5 (50T expl—k) ®

Note that the chi-squared distribution approaches a Gaussian
distribution for large values of m, via the central limit theorem. Be-
cause RD(N, n) is proportional to a chi-squared distribution with
~2(N-1)/n degrees of freedom (see Eq. 6), we expect the RD(N, n)
distribution to look like a Gaussian distribution at small values of
n (2(N=1)/n >> 1), and to be more skewed at large values of
n (2(N-1)/n ~ 1). In Supplemental Figure S2, we compare the distri-
bution of RD(N, n) obtained by using the results of Monte Carlo
simulations of simple-Brownian motion to that calculated by Eq. 8.
See the legend to the figure for parameter values.

Rapid-freeze, deep-etch, and platinum-replica electron
microscopy of the PM cytoplasmic surface

The method used was virtually the same as that used previously
(Morone et al., 2006). Briefly, the cytoplasmic surface of the upper
PM (apical PM with scarce microvilli) of PtK2 cells (grown to ~60%
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confluency) was exposed by removing the apical PM from the rest of
the cell. This was performed in the following manner. After cover-
slips coated with positively charged Alcian blue 8GX (Wako, Tokyo,
Japan) were placed on top of the cell layer and incubated at 4°C for
15 min, the coverslips were gently floated off from the cells using
the surface tension of the buffer by slowly adding ice-cold PIPES
buffer containing 1% paraformaldehyde/0.25% glutaraldehyde into
the space between the culture dish and the coverslip. When the
coverslip floated off, the cells were cleaved, and the upper PM re-
mained attached to the coverslip.

Each coverslip was placed on the plunger tip of the rapid-freezing
device (Eiko, Tokyo, Japan) with the cytoplasmic surface of the mem-
brane facing down. The specimen was slammed down (free fall) onto
a polished, pure-copper block, which was prechilled by directimmer-
sion in liquid helium. The excess ice on the cytoplasmic surface was
shaved off, and the cytoplasmic surface was etched and then rotary
shadowed with platinum at an angle of 22.5° from the surface
(FR7000-S; Hitachi, lbaraki, Japan). The replicas were removed from
the glass surface and mounted on 100-200 mesh copper grids (Ted
Pella) coated with polyvinyl formvar (Nisshin EM, Tokyo, Japan).

Electron tomography

For three-dimensional (3D) reconstruction, the replica was imaged
at tilt angles of every 1.0° in the range +70° (total 141 images) for a
single field by a Tecnai Sphera F20 transmission electron micro-
scope (FEI, Eindhoven, Netherlands) equipped with a charge-cou-
pled device camera (1024 x1024 pixels). The pixel size at the speci-
men was 1.1 nm. The image acquisition was fully automated,
as previously described (Medalia et al., 2002). The 100-121 image
sections of every 1.1 nm were obtained by a calculation based on
the set of 141 tilt images using the IMOD software package (Kremer
et al., 1996) running on Linux. Corrections for the tilt of the speci-
men and the long-wavelength undulations of the membrane were
also accomplished with the IMOD software. The 3D rendering (dis-
playing 3D images in different ways) was performed using the Mer-
cury Computer Systems AMIRA DEV software package (San Diego,
CA) operating on a Linux system.

The thickness (width in the image) of the actin filament after plat-
inum shadowing was between 9 and 11 nm (Heuser, 1983), and the
thickness of the platinum replica was <2 nm (Heuser, 1983; Moritz
et al., 2000), and thus the height of the actin filament associated
with the membrane was 7-9 nm (because the height is given by the
actin thickness and one replica thickness, whereas the width in the
image is determined by the actin thickness plus two replica thick-
nesses), with 8 nm being a reasonable estimate. In the series of
electron tomography sections shown in Figure 5, A and B, two ma-
jor classes of filaments with regard to the distance from the mem-
brane surface can be discerned (a third class of filaments, localized
>15.4 nm from the PM cytoplasmic surface, also exists but is not
visible in Figure 5, A and B).

The first class of filaments is distinct even in the first 0- to 2.2-nm
section in the computer-reconstructed sections (because the con-
trast is reversed in these micrographs, they look more lucent or
white), but fade out in the sections of 8.8-11.0 or 11.0-13.2 nm
from the PM inner surface. These filaments are colored green in
Figure 5C. We consider these filaments to be in direct contact with
the PM (the gap between the filament and the inner membrane
surface is <1.1 nm) because they can be seen clearly even in the first
1.1-nm section. These filaments are likely to be the significant ones
for generating membrane corrals.

The second class of filaments includes those that are clear in the
first and/or second sections (0-2.2, 0-4.4, and 2.2-4.4 nm) from the
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membrane surface and do not fade out even in the section 13.2—-
15.4 nm from the surface. These filaments are colored red in Figure
5C. These might be the actin filaments that had platinum coatings
all around their surfaces, because they slightly stood off from the
surface. We did not consider these filaments to be close enough to
generate membrane corrals.

At variance with the electron tomography images obtained for
the PM cytoplasmic surface of NRK cells, the first and second classes
of actin filaments in the MSK of PtK2 cells are often aligned closely,
as seen in Figure 5, A-E, and difficult to discern in these figures.
However, by following each individual filament in three dimensions
(looking at adjacent sections up and down), the filaments belonging
to the first and second classes could be determined (the 0- to 8.8-
nm section shown in Figure 5D).

Therefore we considered that only the first class of filaments
(those colored green in Figure 5, C and E) form the MSK fences, and
the areas surrounded by these filaments are colored green in the
0- to 8.8-nm section shown in Figure 5F. Note that certain areas
were excluded from this analysis, including those where bundles of
actin filaments are present, the actin filaments are too crowded to
be individually discerned, an actin filament is terminated in the mid-
dle of a domain (domains that contain a loose end of an actin fila-
ment), or CCPs, caveolae, and smooth surface membrane invagina-
tions are present.
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