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1. Introduction1

Science has grown from our need to understand the world around us. Seis-2

mology as a science is no different, with earthquakes and their destructive3

effect on society providing the motivation to understand the Earth’s seismic4

wavefield. The question of when seismology as a science really began is an5

interesting one, but it is unlikely that there will ever be a universally agreed-6

upon date, partly because of the incompleteness of the historical record, and7

partly because the definition of what constitutes science varies from person8

to person. For instance, one could regard 1889 as the true birth of seis-9

mology, because that is when the first distant earthquake was detected by10

an instrument; in this case Ernst von Rebeur-Paschwitz detected an earth-11

quake in Japan using a pendulum in Potsdam, Germany (Ben-Menahem,12
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1995). However, even the birth of instrumental seismology could be con-13

tested; the so-called Zhang Heng directional “seismoscope” (detects ground14

motion but not as a function of time) was invented in AD 132 (Rui and15

Yan-xiang, 2006), and is said to have detected a four-hundred mile distant16

earthquake which was not felt at the location of the instrument (Needham,17

1959; Dewey and Byerly, 1969). Prior to instrumental seismology, observa-18

tions of earthquakes were not uncommon; for instance, Aristotle provided a19

classification of earthquakes based on the nature of observed ground motion20

(Ben-Menahem, 1995).21

While the origins of seismology as a science can be argued, there is little22

doubt that modern seismology, which combines the detection and recording23

of earthquake signals with theory, has its origins in the late 19th century24

with the development of early instruments designed to capture the oscilla-25

tory nature of ground motions associated with seismic waves. These often26

rudimentary seismometers were the progenitors of the more sophisticated27

instruments used by luminaries of the discipline including Mohorovičic to28

discover the Moho in 1909, Gutenberg to determine the depth to the core-29

mantle boundary, and Lehmann to discover the inner core in 1936. While30

seismology can be regarded as a data-driven science, the development of the-31

ory necessary to explain the observations is obviously equally crucial. In the32

case of elastic wave theory, much of the developmental work was carried out33

in other fields prior to the advent of modern seismometers; this is also true34

of many other tools used by seismologists. This is not to say that the evo-35

lution of seismology involved little fundamental theoretical development; a36

well-known example is so-called elastic rebound theory (Stein and Wysession,37
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2003), which described the gradual accumulation of elastic strain energy on38

either side of a fault prior to rupture. However, many of the tools used by39

modern seismologists to analyse and understand their data come from the40

mathematical and physical sciences, including time series analysis, solution41

of differential equations, inverse theory and many more.42

Apart from the introduction of seismometers and recording systems, an-43

other revolution which profoundly influenced modern seismology was the de-44

velopment of the computer. IN addition to allowing vastly more data to be45

recorded, stored and processed, it enabled far more sophisticated techniques46

to be applied to extract information. Seismic tomography, which allows the47

Earth to be imaged in 2-D and 3-D, is an excellent example of the impact48

that the CPU had on seismology. Prior to 1970, seismic tomography in name49

or form simply did not exist. However, as computing power began to increase50

at an exponential rate, it gradually began to emerge in active source (Bois51

et al., 1971) and passive source imaging (Aki et al., 1977; Dziewonski et al.,52

1977) involving datasets of significant size. In subsequent years, the volume53

of data used and the sophistication of the forward and inverse solvers applied54

have kept pace with the growth in computing power. Today, full wave-form55

inversion, involving numerical solution of the elastic wave equation and large56

numbers of unknowns (10s-100s of thousands or more) is gradually becoming57

commonplace (e.g. Fichtner et al., 2013; French, 2015).58

The main goal of this article is to introduce the special issue associ-59

ated with the Seismix 2016 symposium on seismic imaging of continents and60

their margins, which was held in Aviemore, Scotland, from May 15-20 2016.61

However, it is also an opportunity to briefly discuss some of the latest devel-62
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opments in the field which were considered at various points throughout the63

five day symposium. This includes (i) joint inversion of multiple datasets,64

which may involve purely seismic datasets such as body and surface wave,65

or a mix of geophysical datasets including seismic gravity, heat flow etc.; (ii)66

seismic interferometry, which is relevant to both diffuse and deterministic67

sources, and can be used for imaging purposes; and (iii) acquisition, where68

improved recording systems can yield far more and higher quality data than69

before. Some of the latest developments in these three areas are discussed70

below, after which a brief description of the symposium is given, and the71

papers contained in this special issue are introduced.72

2. Joint inversion of multiple datasets73

In seismic imaging that requires the solution of an inverse problem, it74

is most common to invert a single data type for a set of directly related75

unknowns. A classic example in seismic tomography is the inversion of trav-76

eltimes for velocity or slowness structure (Aki and Lee, 1976; Aki et al.,77

1977; Dziewonski et al., 1977; Bishop et al., 1985; Walck, 1988; Bijwaard78

et al., 1998; Widiyantoro et al., 2002; Burdick et al., 2014); assuming geo-79

metric ray theory, the traveltime is simply the integral of slowness along a80

path between source and receiver, which means that the inverse problem is81

straightforward to formulate. In seismic tomography, there are various types82

of datasets that can be considered, depending on the scale of the problem,83

the phase type used, and the property of the waveform that is exploited. In84

the case of teleseismic tomography, structure beneath an array is illuminated85

by distant earthquakes (Aki et al., 1977; Oncescu et al., 1984; Humphreys86
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and Clayton, 1990; Steck et al., 1998; Ren and Shen, 2008; Rawlinson et al.,87

2014); local earthquake tomography uses data from earthquakes in the neigh-88

bourhood of an array to image crust and upper mantle structure (Aki and89

Lee, 1976; Eberhart-Phillips, 1990; Graeber and Asch, 1999; Schurr et al.,90

2006); refraction and wide-angle reflection tomography uses active source91

data to image continuous and discontinuous variations in seismic properties92

(Kanasewich and Chiu, 1985; Hole, 1992; Zelt and White, 1995; Bleibinhaus93

and Gebrande, 2006); regional and global tomography tend to use earthquake94

data to image the whole globe or a significant portion of it (Dziewonski et al.,95

1977; Nataf et al., 1984; Grand et al., 1997; Montelli et al., 2004; Burdick96

et al., 2014).97

Apart from the arrival time or travel time of a particular phase, the prop-98

erties of the seismic waveform that can be exploited include dispersion (for99

surface waves), frequency spectra or the whole waveform, and unknowns can100

involve one or more seismic properties, including P-wave velocity, S-wave101

velocity, anisotropy and attenuation. Direct inversion for related proper-102

ties including velocity or attenuation ratio (Walck, 1988), and bulk sound103

(Gorbatov and Kennett, 2003), are also possible. Surface wave tomography,104

which formerly was only carried out at regional and global scales, can now105

span from the metre scale to the global scale thanks to the advent of ambi-106

ent noise tomography (Shapiro et al., 2005; Saygin and Kennett, 2009; Pilia107

et al., 2015).108

The idea of jointly inverting multiple seismic datasets for one or more109

seismic properties has been around for a number of decades. Where such110

datasets “overlap” there is potential to yield more information than what111
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can be obtained via separate inversions. In seismic tomography, studies have112

been done which jointly invert local earthquake and teleseismic data (Roecker113

et al., 1993; Zhao et al., 1994; Sato et al., 1996; Nunn et al., 2014; Huang114

et al., 2015), local earthquake and active source data (Parsons and Zoback,115

1997; Wagner et al., 2007) and teleseismic and active source data (Rawlinson116

and Urvoy, 2006; Rawlinson et al., 2010). The joint inversion of body wave117

and surface wave data is also becoming common (West et al., 2004; Obrebski118

et al., 2011) due to the potential for improving both horizontal and vertical119

resolution in the upper mantle. On a global scale, joint inversion of multi-120

ple seismic datasets is becoming almost commonplace. For example Li and121

Romanowicz (1996); Su and Dziewonski (1997); Mégnin and Romanowicz122

(2000); Antolik et al. (2003); Ritsema et al. (2011) jointly invert surface and123

body wave data (and in the latter case normal modes) for seismic velocity124

structure in the mantle. Despite its much greater computational costs, full125

waveform tomography has also been used for the joint inversion of body and126

surface waves (French, 2015), which results in improved resolution of the127

mantle volume.128

Although the focus in this section is on seismic tomography, there are129

other seismic imaging methods for which joint inversion is considered. For130

example, receiver function inversion, which exploits body wave conversions131

at discontinuities beneath a receiver, is sometimes combined with surface132

wave dispersion in order to increase the accuracy of absolute velocities (Julià133

et al., 2000). The non-linearity of the inverse problem and the sensitivity to134

choice of weighting between the surface wave dispersion and receiver function135

datasets is one of the main challenges of this technique (and indeed most136
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joint inversion problems in geophysics). Bodin et al. (2012) implement a137

hierarchical Bayesian transdimensional scheme to tackle the joint inversion of138

surface wave dispersion and receiver functions. Apart from dealing with the139

non-linear nature of the inverse problem thanks to the underlying Markov140

chain Monte Carlo sampler, an arbitrary choice of weighting factors is no141

longer necessary due to the ability of the method to evaluate the noise content142

of each dataset.143

Joint inversion of multiple seismic datasets has obvious attractions in that144

the observables are all sensitive to seismic properties. However, if we want145

to jointly invert data of different type, which are sensitive to very different146

properties of the medium (e.g. seismic wavespeed and electrical resistivity),147

then the problem becomes more challenging. In the realm of seismic to-148

mography, joint inversion of seismic and gravity data is perhaps the most149

common (Lees and VanDecar, 1991; Roy et al., 2005; Maceira and Ammon,150

2007) no doubt partly because direct parameter relationships (i.e. one prop-151

erty can be expressed as a function of another property) between density152

and wavespeed are relatively common in the literature (although they are153

often empirical and only valid in particular circumstances). If no valid di-154

rect parameter relationships exist, then other approaches are required. One155

of these is the so-called cross-gradient constraint, which achieves coupling156

between the parameter types by including a term in the objective function157

which favours structural similarity between models. The coupling between158

parameter types is looser when compared to direct parameter relationships,159

but fewer assumptions are made. The relative performance of these two160

approaches is examined by Moorkamp et al. (2010). Joint inversion of multi-161
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ple datasets which employ cross-gradient constraints is particularly favoured162

in exploration and environmental geophysics, which often have overlapping163

datasets of different type For example, Gallardo and Meju (2003) jointly in-164

vert seismic traveltime data and DC resistivity, and Linde et al. (2008) jointly165

invert seismic traveltime and radar data from a crosshole experiment.166

In global seismic tomography, there have been attempts to incorporate167

non-seismic data via direct inversion. For example, GyPSuM is a global 3-D168

model of mantle S-wavespeed, P-wavespeed and density derived from joint in-169

version of body wave traveltimes, global free-air gravity, dynamic topography,170

plate divergence and anomalous core-mantle boundary ellipticity (Simmons171

et al., 2010). Scaling relationships, which are essentially equivalent to the172

direct parameter relationships discussed above, are used to link S-wavespeed,173

P-wavespeed and density, and a strictly linear inversion approach is adopted,174

whereby a set of weighting parameters are used to balance the influence of175

the different datasets. In subsequent inversions, the scaling relationships are176

permitted to vary such that patterns of density, P-wave and S-wave velocity177

are not necessarily correlated.178

Rather than describe the Earth in terms of seismic (e.g. wavepseed),179

electrical (e.g. resistivity), or some other property that is a direct function180

of the related observable, another approach is to parameterize the Earth in181

terms of its primary physical properties, namely composition, pressure and182

temperature. Given values for these parameters at a point in the Earth, it183

is then possible to make estimates of derivative properties such as seismic184

wavespeed. The advantage of this approach is that it has the potential to185

be thermodynamically and internally consistent, and does not require any186

8



direct or indirect coupling between sub-ordinate properties like wavespeed187

and density. Initial attempts at solving this problem using multiple datasets188

were 1-D (e.g. Khan et al., 2008) owing to the computational costs of dealing189

with significant non-linearity and non-uniqueness. In 3D, initial attempts190

(Shito et al., 2006) inverted velocity and attenuation structure obtained via191

tomography for temperature, major element geochemistry, water content and192

degree of partial melting. More recently, Afonso et al. (2013a,b, 2016) in-193

troduced a new “thermochemical tomography method” which allows for the194

inversion of multiple datasets (P and S traveltimes, Rayleigh wave dispersion195

curves, geoid height, Bouguer gravity anomalies, gravity gradients, surface196

heat flow and elevation) for 3-D temperature, pressure and composition (de-197

fined by five parameters). A fully non-linear Bayesian probabilistic approach198

is used to solve the inverse problem. Application to data from the Colorado199

Plateau reveals a strong association between recent intraplate baslatic vol-200

canism and underlying zones of high temperature and low MG# (Afonso201

et al., 2016).202

3. Seismic interferometry203

Seismic interferometry, which refers to the principle of extracting a new204

signal from the cross-correlation of waveforms recorded by a pair of seis-205

mometers, has been a rapidly growing area of seismology for a decade and206

a half. Although first recognised by Claerbout (1968) in the context of syn-207

thesizing a reflection response from the autocorrelation of its transmission208

response in a layered medium, it wasn’t until the early 21st century that it209

emerged as a major new field of development. In one of the pioneering pa-210
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pers from the acoustics community, Lobkis and Weaver (2001) demonstrated211

both theoretically and experimentally via ultrasonic laboratory tests, that212

the Green’s function of a medium can be recovered by cross-correlating the213

recordings made at two transducers from a diffuse field generated by a third214

transducer. They also found that with increased stacking and use of multiple215

sources, the quality of the recovery improves. Subsequent application to seis-216

mic recordings showed that this principle is transferable to the Earth’s diffuse217

seismic wavefield, whether produced by so-called ambient noise or scattered218

coda waves from large earthquakes (Campillo and Paul, 2003; Shapiro and219

Campillo, 2004; Snieder, 2004; Wapenaar et al., 2005; Curtis et al., 2006).220

From a seismic imaging perspective, the ability to recover the Green’s221

function between two receivers, which has an equivalence to the signal that222

would be recorded at one receiver if the other was a “virtual” impulse source,223

meant that both new and legacy data recorded by passive seismic arrays could224

be exploited. The majority of applications exploit Rayleigh wave or Love225

wave signal extracted via cross-correlation because surface waves tend to be226

much more emergent than body waves (e.g. Kang and Shin, 2006; Saygin227

and Kennett, 2009; Arroucau et al., 2010; Young et al., 2011; Pilia et al.,228

2016). However, it has been demonstrated that with careful data processing229

and large and dense arrays, body waves of sufficient quality can be extracted230

and used for 3-D refraction tomography (e.g. Nakata et al., 2015).231

The imaging of structure using diffuse natural (oceanic microseismic, at-232

mospheric disturbances) or anthropogenic (human-induced) noise sources is233

often referred to as “ambient noise tomography”, and has become common-234

place in the published literature. One reason for its rapid adoption is that,235
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apart from the processing required to produce the Green’s function response236

from cross-correlation of data from station pairs, conventional tomography237

workflows can be applied. In the case of ambient noise surface wave tomog-238

raphy, group and phase dispersion analysis can be undertaken, and phase239

or group velocity maps produced. To obtain 3-D velocity models, pseudo-240

dispersion curves can be extracted from the group or phase velocity maps on241

a regular grid, and inverted for local 1-D structure; a composite 3-D model242

can than be produced from the regular 1-D samples (e.g. Young et al., 2013).243

For the body wave tomography example of Nakata et al. (2015) cited above,244

the inversion scheme of Hole (1992) was implemented. As such, new inversion245

methodologies are not often specifically developed for ambient noise tomog-246

raphy. However, one area where this may be required is in the full wave-247

form inversion of ambient noise signal. The accuracy of the Green’s function248

that is retrieved can be heavily influenced by attenuation and heterogeneous249

source distribution, resulting in amplitude and phase contamination, the ap-250

pearance of spurious arrivals, and missing phases (e.g. Tsai, 2009; Halliday251

and Curtis, 2008; Fichtner, 2014). As such, direct inversion of the extracted252

Green’s function may result in the introduction of spurious structure. In the253

case of Gao and Shen (2014), full waveform inversion is performed only after254

carrying out ensemble-averaging of cross-correlations and corresponding sen-255

sitivity kernels to help minimise the effects of irregular source distribution.256

Fichtner et al. (2017) develop a general theory for interferometry, which does257

not equate interferometry with Green’s function retrieval, and accounts for258

heterogeneous source distribution, processing choices, seemingly unphysical259

arrivals, and the presence of earthquakes in the continuous data stream. The260
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aim of this theory is to permit the full waveform inversion of waveform cross-261

correlations which may or may not be true representations of the interstation262

Green’s function.263

Other than seismic tomography, seismic interferometry has also been ex-264

ploited for more direct imaging methods, including those that attempt to265

migrate the entire wavefield such as seismic reflection imaging. From an266

exploration point of view, the use of diffuse noise sources is potentially at-267

tractive, as it may be viable as a low cost and environmentally friendly al-268

ternative to active source imaging, which usually require explosives, air-guns269

or vibroseis trucks. However, there are major challenges to be overcome, in-270

cluding the low amplitude of body waves in cross-correlations and the often271

limited high frequency content of noise sources. However, developments in272

this field are rapid, and usable results have been obtained (Dragonov et al.,273

2009; Nakata et al., 2011; Quiros et al., 2016). Interferometric seismic imag-274

ing in exploration is not limited to exploiting only diffuse sources of energy.275

For example, it can be used with conventional reflection seismic data to im-276

prove migration imaging (Schuster et al., 2004). A natural extension to this277

kind of interferometric imaging is so-called Marchenko imaging (Wapenaar278

et al., 2014), which, using only sources and receivers located at the surface,279

is able to retrieve the Green’s function for a subsurface source. Conventional280

interferometry requires a receiver to be located at the virtual source. Ap-281

plication of Marchenko imaging to reflection data allows the extraction of a282

reflection response which suppresses spurious arrivals related to a complex283

overburden (Wapenaar et al., 2014; Sing et al., 2014).284

In passive seismic imaging, autocorrelation of the diffuse wavefield or285

12



teleseismic coda waves is starting to become more popular as a direct imag-286

ing tool. Compared to standard cross-correlation of waveforms at separate287

stations, autocorrelation of waveforms at a single station has the advantage288

that the surface wave component is effectively removed (Gorbatov et al.,289

2013), and the remaining response can be related to the reflectivity struc-290

ture beneath the station. Although the majority of studies published so far291

have attempted to exploit the ambient noise field (Ito et al., 2012; Kennett292

et al., 2015; Oren and Nowack, 2017; Saygin et al., 2017), a recent study has293

attempted to tackle the problem using teleseismic coda waves (Pha̧m and294

Tkalčić, 2017).295

Finally, seismic interferometry has also been applied to the problem of296

monitoring temporal changes in the subsurface, which can be of use in natural297

hazard or buried waste storage monitoring. Snieder et al. (2002) introduce a298

method for measuring small perturbations in a medium by cross-correlating299

coda waves from deterministic sources before and after the perturbation. Us-300

ing a laboratory experiment in which a granite sample is gradually heated301

from 20◦C to 90◦C, with piezo-electric transducers providing both elastic302

wave excitation and recording, they demonstrate that coda wave interferom-303

etry is able to detect velocity changes (which are of the order of 0.1% with304

0.02% error) associated with temperature changes of 5◦C. Ambient noise305

recordings have also been found to be useful for monitoring changes in rock306

properties. For example, Wegler and Sens-Schönfelder (2007) use autocor-307

relations of ambient noise at a single receiver to detect a -0.6% decrease308

in seismic velocity associated with a Mw 6.6 earthquake. Brenguier et al.309

(2008) use 18 months of ambient seismic noise data recorded at the Piton de310
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la Fournalse volcano to demonstrate that velocity perturbations of the order311

of 0.05% can be detected using interferometry, with a clear link between small312

velocity changes and pre-eruptive behaviour. Effective time-lapse monitoring313

over periods of years has also been shown to be possible with seismic inter-314

ferometry. For example, de Ridder et al. (2014) demonstrate that variations315

in Scholte wave group velocity images derived from ambient noise recordings316

from an ocean bottom cable array over a period of 6 years are statistically317

significant.318

4. Acquisition319

As mentioned in the Introduction, modern seismology really only came320

into being in the late 19th century when instruments capable of measuring321

ground motion were developed. Of all the progenitors of modern seismome-322

ters, the 1895 horizontal pendulum design of John Milne, Alfred Ewing and323

Thomas Gray is noteworthy because it enabled teleseismic earthquakes to be324

recorded (Musson, 2013). These early instruments used a rotating drum with325

a needle on smoked paper to trace out the waveform, although these were326

eventually superseded by light beams and photographic paper. The Wood-327

Anderson (WA) torsion seismograph (Anderson and Wood, 1925) did not328

use a pendulum; instead a small copper cylinder was attached to a tungsten329

wire under tension, and moved in response to ground motion. Damping was330

achieved by suspending the copper cylinder in a magnetic field and recordings331

were made by bouncing light from a mirror mounted on the mass onto photo-332

sensitive paper (Sandron et al., 2015). Most famously, the Wood-Anderson333

seismometer was used by Richter (1935) to define the local magnitude of334
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an earthquake. More recent seismometers generally involve movement of a335

mass through a magnetic field, which induces a voltage which can be linked336

to ground motion. Modern broadband instruments employ force feedback337

in order to stabilise the mass and ultimately improve the accuracy of the338

recorded signal, particularly at long periods (Stein and Wysession, 2003).339

The idea for a global network of seismic stations to detect earthquakes was340

first mooted in the 19th century by pioneers of the science including Mallot341

and Milne (Musson, 2013), and indeed by the early 20th century seismome-342

ters could be found on many continents. However, a truly global network that343

used standardised instrumentation with accurate timing and an established344

data exchange procedure did not eventuate until the 1960s with the deploy-345

ment of the World-Wide Standardised Seismograph Network (WWSSN). A346

total of 127 stations were deployed throughout the world, although by 1978,347

only 115 were active (Peterson and Hutt, 2014). A photographic recording348

system was used, in which light was focused on a rotating drum wrapped in349

photographic paper; these records were changed on a daily basis (Peterson350

and Hutt, 2014). The WWSSN was eventually superseded by the Global351

Seismic Network (GSN), which was established in 1986 by the US Geolog-352

ical Survey, National Science Foundation and IRIS (Incorporated Research353

Institutions for Seismology). It now consists of more than 150 permanent354

broadband seismometers coupled to digital recorders and features real-time355

transmission of the recorded signal to the IRIS DMC, which makes all data356

freely available on the internet. More broadly, the FDSN (Federation of Dig-357

ital Seismograph Networks) includes networks from many different countries358

that record high fidelity digital seismic data. Data from these stations (many359
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thousand) are also archived by the IRIS DMC.360

In terms of global seismology, the GSN already offers a potent tool for361

earthquake research and Earth imaging, which in many areas of the Earth can362

be supplemented by national networks. Temporary seismic arrays, which use363

portable instruments installed for a limited period of time are also valuable364

for Earthquake analysis and Earth imaging, and data from such experiments365

are often made available to the global community via the IRIS DMC. Many366

such temporary arrays are part of short projects, but in recent decades there367

has been a push for large programs which try to cover significant geographic368

regions using a so-called transportable array. Perhaps the first example of this369

was the SKIPPY array in Australia (Zielhuis and van der Hilst, 1996) which370

used a modest array of digital broadband instruments to achieve coverage371

of the Australian continent at approximately 400 km separation. This was372

followed by the WOMBAT array in Eastern Australia, which began in 1998,373

and to date has resulted in the installation of over 700 instruments as part374

of 17 array movements (Graeber et al., 2002; Rawlinson et al., 2006, 2014).375

The largest transportable array experiment to date is USArray, which376

utilises 400 high quality 3-component seismic instruments in order to achieve377

complete coverage of the United States at a station spacing of 70 km. The378

experiment began in 2007, with an array deployment inboard of the west379

coast, which has been gradually migrated to the east in order to achieve to-380

tal coverage. The bulk of the deployment is now complete, with remnants381

of the array now in Alaska. All data is freely available on the IRIS DMC,382

making it one of the largest repositories from a single experiment. To date,383

a vast number of studies have been carried out which make use of this data,384
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largely in the context of understanding the structure and dynamics of conti-385

nental lithosphere (e.g. Burdick et al., 2008; Liu et al., 2012; Buehler, 2017).386

Although not strictly a transportable array in the mold of USArray, WOM-387

BAT or SKIPPY, the European AlpArray initiative aims to densely cover the388

Alps with approximately 260 broadband stations, which complement a pre-389

existing network of permanent stations. To date approximately 45 institutes390

from 18 countries are involved in the project.391

Another recent development in the field of passive seismic acquisition392

involves the deployment of very dense arrays in order to record more of393

the seismic wavefield. As technology improves, it is becoming more feasible394

to build cheap, highly portable and good quality instruments that can be395

rapidly deployed. For example, Davenport et al. (2014) deploy an array of396

201 short-period vertical component seismometers for an aftershock study,397

which enabled very small earthquakes to be detected and highly accurate398

hypocenter determination. In the study of Nakata et al. (2015) mentioned399

previously, ambient noise body waves are extracted from a large 2-D array400

consisting of 2500 receivers at 100 m spacing. These so-called “large N”401

arrays are becoming increasingly popular, and tend to make use of compact402

systems that include a geophone, digitizer, battery, data storage and GPS in403

single unit that can be rapidly deployed (Brenguier et al., 2015).404

In active source seismic imaging, the use of very large arrays of receivers405

has been around for a long time. For example, in 3-D marine seismic reflec-406

tion surveys, multiple lines of receivers are towed in parallel. In the ultra-407

high resolution 3D survey in the Gulf of Mexico described by Brookshire408

et al. (2015), 18 100 m long streamers were towed. Each streamer contained409
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receiver groups spaced at 6.25 m, with each receiver group consisting of 12410

hydrophones. Thus this “transportable” array consisted of 3456 sensors and411

288 channels, and with shots fired every 12.5m, the volume of data recorded412

was immense. Large underwater arrays of ocean bottom seismic nodes, which413

can be used for both active and passive imaging/monitoring is another area414

of development (Beaudoin and Ross, 2007). Although the idea of deploying415

cables on the seabed populated with hydrophones has been around for several416

decades, the introduction of cheap, portable, self-contained and autonomous417

recording devices which can be readily deployed in their thousands has had418

a major influence on the acquisition of marine reflection data (Bunting and419

Moses, 2016).420

The rapid increase in the size of recorded seismic datasets, both in ex-421

ploration and solid earth applications is only set to continue. In part,this422

is due to developments in sensor technology, which allows for cheaper and423

much more portable recording units to be developed. For example, fibre-optic424

sensors are cost-effective, allow for very dense sampling, and have recently425

been developed for both land and marine use (Molteni et al., 2016). Con-426

tinuous optical fibre sensors fall under the category of distributed acoustic427

sensing (DAS), a rapidly developing field which has revolutionized borehole428

seismic and is in the process of migrating to other areas of seismic acquisition429

(Mateeva et al., 2013).430
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5. The symposium: deep seismic imaging of continents and their431

margins432

“Seismix” is an international symposium on seismic imaging that is held433

every two years. The first meeting was held at Cornell in 1984 and the434

series has gone on to establish a truly international profile thanks to subse-435

quent hostings in various parts of the world, including New Zealand, Canada,436

China, Spain, Australia and Finland. The original motivation for the con-437

ference series was the emergence of coordinated national efforts to apply438

multi-channel seismic reflection profiling methods to understand the struc-439

ture of continents and their margins. Notable examples include BELCORP440

in Belgium, Lithoprobe in Canada, Fire in Finland, DEKORP in Germany,441

ESCI in Spain and BIRPS in the UK. However, since the main goal of the442

symposium is to apply cutting edge methods to understand structure and443

processes in the crust and mantle lithosphere beneath continents, there has444

by necessity been a diversification in the data used and methods applied.445

Most notably, passive seismic imaging methods have become an integral part446

of the symposium, with receiver function studies, ambient noise imaging and447

earthquake tomography now presented alongside deep reflection profiling.448

Seismix 2016 was held in Aviemore, Scotland between May 15-20, 2016,449

and represents the 17th gathering of the Seismix community. It was primar-450

ily organised by the University of Aberdeen, but received assistance from451

Imperial College London and the British Geological Survey. The program452

committee comprised 16 individuals from 14 research institutions around the453

UK. A total of 150 researchers from the UK and around the world attended454

the symposium, which included four and a half days of talks and posters and455
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a half day field trip. The sessions were divided into the following subject456

areas:457

• Novel seismic imaging using interferometry458

• Joint inversion of multiple datasets459

• Advanced seismic imaging and inversion methods460

• Innovative seismic acquisition a nd processing techniques461

• Real time monitoring and subsurface imaging462

• Shallow subsurface imaging463

• Seismic imaging of sedimentary basins464

• Continental margins and sedimentary basins465

• Oceanic lithosphere and mantle466

• The North Atlantic lithosphere and mantle467

• Continental lithosphere468

• Lithospheric subduction469

• Back-arc lithosphere470

• Orogenic lithosphere471

• Magmatism and hydrothermal processes in the lithosphere472
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During the symposium, there were 81 oral presentations and 89 poster pre-473

sentations. The underlying theme of the conference was “seismology at the474

cross-roads”, because as the above session list attests, Seismix has the unique475

ability to bring together those from the active and passive source imaging476

community, as well as those who study the Earth from the exploration to the477

continental scale.478

One tradition of the Seismix symposia is to publish a special issue which479

features some of the latest research from conference attendees. Table 1 pro-480

vides a list of all the previous special issues from Seismix, dating back to481

1984. Below, a brief summary of each contribution to the Seismix 2016 spe-482

cial issue is provided. While these papers by no means span all the subject483

areas that were covered during the course of the symposium, they do reflect484

the diversity of presentations that make Seismix such an exciting biennial485

event.486

6. In this volume487

The following papers are based on presentations given at Seismix 2016:488

Aarseth et al. [this volume] use seismic data from an OBS profile across489

the western Barents Sea to map crust and upper mantle structure in or-490

der to discriminate between different Caledonian structural trends and rift491

basin orientations. Refraction and wide-angle reflection P-wave traveltimes492

are inverted for layered crustal velocity structure, and constraints from grav-493

ity modelling are also considered. Their findings support the existence of494

Barentsia as an independent microcontinent between Baltica and Laurentia.495

Calvert [this volume] presents a method analogous to semblance veloc-496
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ity analysis for estimating 3-D reflector orientations along 2-D deep seismic497

reflection profiles. The method is tested on data from the Yilgarn craton498

in Australia, and is found to work except for near linear seismic lines. The499

results suggest that the placement of additional receivers, possibly as cross-500

recording spreads, will be sufficient to supplement the limited range of az-501

imuths from in-line acquisitions.502

He et al. [this volume] exploit teleseismic pmP reflections from the Moho503

underside to examine crustal thickness variations beneath the intermediate504

seismic zone of the Pamir-Hindu Kush region. The deepest interface is found505

to be nearly 97 km below the southernmost Pamir, which points to the506

presence of subducted Asian lower crust in the study area.507

Lee et al. [this volume] examine the stress field in the continental margin508

region of the Korean Peninsula and Japanese Islands using earthquake focal509

mechanisms. They find that the crustal stress fields in the neighbourhood of510

subduction zones adjacent to the Japanese islands exhibit depth-dependent511

orientations. They also find that the regional stress field, which was per-512

turbed by the magnitude 9 Tohoku earthquake in 2011, recovered to its513

normal state in a few years.514

Ishiyama et al. [this volume] image active blind faults in Japan using high-515

resolution 2D seismic reflection profiling. Data is sourced from an 8-km long516

seismic line which crosses compressionally reactivated normal faults within a517

back-arc failed rift along the southwestern extension of the Toyoma trough in518

the Sea of Japan. The new images illuminate previously unrecognised thrust-519

related structures beneath the on-shore alluvial plain, and demonstrate the520

usefulness of high resolution profiling in delineating active faults in regions521
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where basement is buried by sedimentary cover.522

Krzywiec et al. [this volume] use seismic reflection data to investigate523

sedimentary cover on the SW slope of the East European Craton in Poland.524

They demonstrate that following improved data processing techniques, the525

structural patterns revealed by the POLCRUST-01 profile may be explained526

by thin-skinned tectonics; this is in contrast to previous studies which also527

found evidence for thick-skinned tectonics. They also find evidence to sug-528

gest that most of the south-westward tilt of the cratonic basement is pre-529

Ordovician in age.530

Roots et al. [this volume] carry out interferometric seismic imaging531

around the Lalor mine in the Flin Flon greenstone belt, Canada. Here,532

data from a dense array of 336 receivers, each recording 300 hours of am-533

bient seismic noise, were used to generate virtual shot gathers along three534

receiver lines. Coherent events in the passive reflection profiles can be asso-535

ciated with geological contacts, which bodes well for future developments of536

this technique.537

Song et al. [this volume] image the Moho beneath south China using538

teleseismic wavefield construction based on the radial basis function (RBF)539

technique. They demonstrate that compared to the stacking, the RBF tech-540

nique exhibits more detail and produces depths which appear to be more541

consistent with changes in tectonic province.542

Syracruse et al. [this volume] present a new method for the joint inver-543

sion of body wave, surface wave dispersion and gravity data for 3D P-and544

S-wave velocity structure. The method is tested on USArray data from Utah545

to image the crust and upper mantle structure. Results show clear delin-546
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eations between the three primary tectonic provinces, with synthetic testing547

demonstrating that the combined dataset dramatically improves the recovery548

of S-wave velocities, whereas the improvements to P-wave structure is more549

subtle.550

Yelisetti et al. [this volume] migrate seismic reflection data recorded by551

widely-spaced OBSs in order to image structure beneath the northern Casca-552

dia margin. They employ a mirror-imaging or multiple-migration technique,553

which is shown to be superior even to coincident multichannel reflection imag-554

ing. The resultant images reveal for the first time a dual-vergent structure,555

which may be a consequence of horizontal compression caused by subduction556

and low basal shear stress caused by over-pressure.557
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