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Abstract 

Working memory training improves performance on trained and untrained working memory 

tasks, but there is little consistent evidence that these gains benefit everyday tasks that rely on 

working memory. Evidence has shown that transcranial electrical stimulation (tES) may be an 

effective tool for enhancing cognitive training and promoting transfer. In the first study, 

participants completed Cogmed working memory training with either active or sham 

transcranial random noise stimulation (tRNS). Training was associated with substantial gains on 

the training activities and on transfer measures of working memory with common processing 

and storage demands to the training tasks. tRNS did not enhance gains on trained or untrained 

activities. The second study systematically investigated the boundary conditions to training 

transfer by testing whether gains following backward digit recall (BDR) training transferred 

within- and across-paradigm to untrained backward recall and n-back tasks with varying 

degrees of overlap with the training activity. A further aim was to test whether transcranial 

direct current stimulation (tDCS) enhanced training and transfer. Participants were allocated to 

one of three conditions: (i) BDR training with active tDCS, (ii) BDR training with sham tDCS, or 

(iii) visual search control training with sham tDCS. The results indicated that training transfer is 

constrained by paradigm, but not by stimulus domain or stimulus materials. There was no 

evidence that tDCS enhanced performance on the training or transfer tasks. The results of Study 

1 and Study 2 provide no evidence that tES enhances the benefits of working memory training. 

The absence of transfer between backward recall training and n-back in Study 2 suggested the 

tasks might tap into distinct aspects of working memory. Consequently, the final study used a 

latent variable approach to explore the degree of overlap between different forms of backward 

recall and n-back tasks containing digits, letters, or spatial locations as stimuli. The best-fitting 

factor model included two distinct but related (r = .68) constructs corresponding to backward 

recall and n-back. Both categories of task were linked to a separate fluid reasoning construct, 

providing evidence that both are valid measures of higher-order complex cognition. Overall, the 

experiments in this thesis suggest that working memory tasks tap into separate processes and 

that training may be targeting and improving these distinct processes, explaining the absence of 

cross-paradigm transfer. 
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Chapter 1 Literature review 

1.1 Overview 

This introductory chapter presents a comprehensive review of the literature that forms the 

theoretical basis for this thesis. It begins by introducing the concept of working memory in 

Section 1.2. This section provides a description of various influential models of working 

memory. In Section 1.3 different categories of behavioural tasks widely used to measure 

working memory capacity are discussed. Some of these paradigms are used in the experimental 

studies presented in this thesis. Working memory training is then introduced in Section 1.4, with 

a focus on the pattern of transfer effects typically observed following training. In Section 1.5 

several types of non-invasive transcranial brain stimulation are described and the potential for 

these techniques to enhance cognitive training is reviewed. The final section of this chapter 

(Section 1.6) outlines the aims and structure of the thesis. 

1.2 Working memory 

Working memory is a limited capacity system responsible for the temporary maintenance of 

task-relevant information during the performance of a cognitive task (Baddeley & Hitch, 1974; 

Daneman & Carpenter, 1980; Miyake & Shah, 1999). It is an important mental faculty that plays 

a critical role in learning and is crucial for many complex cognitive abilities, such as reading 

comprehension (Daneman & Carpenter, 1980), following instructions (Gathercole, Durling, 

Evans, Jeffcock, & Stone, 2008; Jaroslawska, Gathercole, Allen, & Holmes, 2015), mental 

arithmetic (Adams & Hitch, 1997; Kyllonen & Christal, 1990) and reasoning (Kane et al., 2004; 

Kyllonen & Christal, 1990; Suß et al., 2002). Although working memory is a term often used 

synonymously with short-term memory, there is an important distinction between these two 

constructs. Working memory is a dynamic system that both stores and processes information 

(Salthouse, 1990), whereas short-term memory is the system responsible for the passive storage 
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of information over brief periods of time. The term processing is used in a narrow sense when 

describing working memory. Maintenance mechanisms (i.e. rehearsal) are involved in simple 

span tasks (short-term memory tasks), but the processing involved in working memory tasks 

requires the manipulation or transformation of information (Oberauer, Süß, Schulze, Wilhelm, & 

Wittmann, 2000). 

 There are a number of different theoretical accounts of working memory. In 1974, 

Baddeley and Hitch introduced the multiple component model. In this framework working 

memory is compartmentalised into multiple specialised subcomponents (Baddeley & Hitch, 

1974; Miyake & Shah, 1999). Alternative frameworks were subsequently proposed including, 

but not limited to, Cowan’s embedded processes model (Cowan, 1988, 1995, 1999, 2005, 2008) 

and Engle and colleague’s model of controlled attention (Engle, Kane, & Tuholski, 1999; 

Unsworth & Engle, 2007). The main distinction between these models is whether working 

memory is conceptualised as a distinct system (e.g. Baddeley, 2000; Baddeley & Hitch, 1974), or 

as a process of controlled attention that serves to maintain activated representations in long-

term memory in a highly accessible state under conditions of interference or competition (e.g. 

Barrouillet, Bernardin, & Camos, 2004; Cowan, 2005; Engle, Tuholski, Laughlin, & Conway, 

1999). Although these three competing accounts of working memory differ in terms of their 

emphasis and terminology (Baddeley, 2012b), there is some consensus among them. For 

instance, they all view working memory as a capacity limited system, meaning there is an upper 

limit to how much information can be retained and processed at a given time. They also 

emphasise a close relationship between working memory and attentional or executive control 

(Miyake & Shah, 1999). In the following sections these three influential models will be discussed 

in more detail: see Section 1.2.1 for the multiple component model, Section 1.2.2 for the 

embedded processes account, and section 1.2.3 for the attentional control framework. 

The construct of working memory has been central to many theories of cognition 

(Miyake & Shah, 1999). It has also been influential in the field of individual differences research 

(Daneman & Carpenter, 1980; Engle, Kane, et al., 1999; Kyllonen & Christal, 1990; Oberauer et 

al., 2000). The limited capacity of working memory constrains performance on a number of 

cognitive tasks (Oberauer et al., 2000). Individual differences studies have revealed strong 

relationships between working memory capacity and other cognitive abilities, including 

reasoning ability, which is often used as a proxy of general fluid intelligence (Ackerman, Beier, & 

Boyle, 2002; Colom, Rebollo, Palacios, Juan-Espinosa, & Kyllonen, 2004; Conway, Cowan, 

Bunting, Therriault, & Minkoff, 2002; Engle, Laughlin, et al., 1999; Hambrick, 2003; Kane et al., 

2004; Kyllonen & Christal, 1990; Mackintosh & Bennett, 2003; Suß et al., 2002). This research 
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has been influential in validating working memory measures (i.e. determining whether tasks are 

measuring the same underlying theoretical construct; e.g. Kane, Conway, Miura, & Colflesh, 

2007; Schmiedek, Hildebrandt, Lövdén, Lindenberger, & Wilhelm, 2009) and, more recently, in 

investigating the underlying structure of working memory using latent variable methods (e.g. 

Alloway, Gathercole, & Pickering, 2006). This will be discussed further in Chapter 4. 

1.2.1 The multiple component model of working memory 

The multiple component model, also known as the tripartite model, is arguably the most well-

known and influential theoretical framework of working memory. It has inspired a wealth of 

research across experimental, cognitive, and developmental psychology. The original model 

proposed by Baddeley and Hitch in 1974 comprised three main components: an attentional 

control system called the central executive, and two modality-specific passive storage systems 

known as the phonological loop and visuo-spatial sketchpad. The phonological loop is 

responsible for the storage and manipulation of verbal information, whereas the visuo-spatial 

sketchpad maintains and processes visually- and spatially-coded information (Baddeley, 1986, 

1992; Baddeley & Hitch, 1974). 

The two systems serve only as temporary storage and rehearsal mechanisms, while the 

central executive is involved with allocation of attention or the simultaneous processing of 

information. Together, the three component subsystems provide a workspace for cognitive 

activity (Smith & Kosslyn, 2007). A fourth component, the episodic buffer, was subsequently 

added to the model in 2000. This additional component serves as an interface between the 

subsystems of working memory, long-term memory, and executive control (Baddeley, 2000; 

Baddeley, Allen, & Hitch, 2011). A widely cited version of the model, often used in empirical 

research, is presented in Figure 1.1 (Baddeley, 2000). Each subcomponent will be discussed in 

detail in the following sections: see Section 1.2.1.1 for the phonological loop, Section 1.2.1.1 for 

the visuo-spatial sketchpad, Section 1.2.1.3 for the central executive, and Section 1.2.1.4 for the 

episodic buffer. 

Evidence for the structure of the model (see Figure 1.1.) has been provided by studies 

using the dual-task methodology. An assumption of the model is that if two tasks engage the 

same component of working memory (e.g. if two tasks both require visuo-spatial resources 

thereby taxing the visuo-spatial sketchpad subsystem), they cannot be performed as successfully 

together as they would if tasks were undertaken separately. Further, if two tasks make use of 

different components in working memory (e.g. if one tasks requires visuo-spatial resources 
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thereby taxing the visuo-spatial sketchpad, while the other requires verbal resources taxing the 

phonological loop) then it should be possible to perform them equally well together as 

separately (Eysenck, 2001). The continuous repetition of a word (known as articulatory 

suppression) has been shown to impair verbal serial recall because it prevents articulatory 

rehearsal in the phonological loop (Alloway, Kerr, & Langheinrich, 2010; Baddeley, Lewis, & 

Vallar, 1984), but it does not interfere with memory for spatial locations (Alloway, Kerr, & 

Langheinrich, 2010; Smyth, Pearson, & Pendleton, 1988) suggesting that it does not require the 

resources of the visuo-spatial sketchpad. In contrast, spatial tapping of specific locations draws 

on visuo-spatial resources and disrupts spatial serial recall (Alloway et al., 2010; Smyth & 

Pendleton, 1989; Vandierendonck, Kemps, Fastame, & Szmalec, 2004), but leaves verbal recall 

unaffected (Alloway et al., 2010; Morris, 1989). These behavioural findings of double 

dissociations under dual-task conditions, along with evidence from neuropsychological patients 

(for an overview, see Meiser & Klauer, 1999) and developmental studies (e.g. Alloway, 

Gathercole, & Pickering, 2006),  provide support for the separability of the verbal and visuo-

spatial subcomponents of working memory. Studies have also shown that interference tasks that 

are attentionally demanding (e.g. random letter generation) cause the most substantial 

disruption to working memory tasks (e.g. Robbins et al., 1996). This is because attentionally 

demanding tasks block the operation of the central executive and therefore have the most 

profound effect on working memory performance. 

 

 

 
Figure 1.1 – A simplified representation of the multi-component model of working memory adapted from 

Baddeley (2000). 
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1.2.1.1 The phonological loop 

The phonological loop is a specialised storage system for acoustic and speech-based information 

(Baddeley, 1986). This subsystem is thought to have evolved to support the acquisition of 

language (Baddeley, 2012a), as it preserves the order in which words are presented and allows 

the temporary representation of a phonological sequence to be retained so that new vocabulary 

can be encoded into long-term memory (Baddeley, Gathercole, & Papagno, 1998). The 

phonological loop comprises two further subcomponents: a short-term phonological store, 

which serves to hold verbal memory traces, and an articulatory rehearsal mechanism that can 

revive memory traces (Baddeley, 1986). 

The phonological store acts as the mind’s inner ear and holds information in a sound-

based way as auditory-phonological code (e.g. spoken words). The store is passive, meaning 

information is held for approximately 2 s, after which time it is subject to rapid decay (Baddeley, 

1986). In order to prevent information from being forgotten it must be attended to or refreshed 

via the active process of articulatory rehearsal, which occurs in the phonological loop. Rehearsal 

involves some kind of covert verbalisation (i.e. internal speech; Henry, 2012); it is linked to 

speech production and acts as the mind’s inner voice. Rehearsal refreshes information held in 

the phonological store and prevents decay by reactivating fading phonological representations 

(Baddeley, 2012b). The phonological loop is named as such because information is transferred 

through the system in a loop; information enters the store for a brief period before the 

articulatory rehearsal mechanism is then used to recite the information so that it can enter the 

store again. The articulatory control mechanism also serves to convert visual material (i.e. 

written verbal information) into articulatory (sound-based) code so it can enter the 

phonological store. Auditory verbal information (e.g. spoken words) enters the store directly, 

but visually presented material (e.g. written words) must first be converted into phonological 

code via internal articulation before it can enter the store (Baddeley, 1986). 

 Early empirical evidence for the existence of a speech-like memory store was provided 

by the phonological similarity effect, whereby sequences of items that are acoustically similar 

(e.g. man, mat, cap, can, cat) are more difficult to recall than those that sound more distinct (e.g. 

day, few, pen, hot, cow; Baddeley, 1966; Conrad, 1964; Conrad & Hull, 1964). The effect arises 

through confusion in the activation of similar sound-based codes for different items in the 

phonological loop (Smith & Kosslyn, 2007), suggesting verbal information is phonologically or 

acoustically coded in working memory (Baddeley, 1966; Conrad & Hull, 1964). Another key 

finding is the word length effect, whereby participants find it easier to recall a sequence of short 



6 Literature review 

 

words (e.g. sum, wit, twice, bond, harm) versus long words (e.g. university, physiology, individual, 

considerable, immediately; Baddeley, Thomson, & Buchanan, 1975). This effect does not depend 

on the number of syllables of words per se, but on the length of time taken to articulate them  

(Baddeley, 1986). For example, performance is worse for two-syllable words with long vowel 

sounds compared to those with short vowel sounds (e.g. harpoon versus wicket; Baddeley, 

Thomson, & Buchanan, 1975).  The multiple component model assumes that subvocal rehearsal 

occurs in real time. Thus, the word length effect arises because words that take longer to 

vocalise are rehearsed at a slow rate resulting in more time for the memory trace to deteriorate 

(Baddeley, 1986, 2012b). Evidence of the word length effect supports the existence of an 

articulatory subvocal rehearsal process  (Baddeley, 1986, 2012b). 

Articulatory suppression is a technique used to interfere with the rehearsal of 

phonological information. It requires participants to continuously repeat an irrelevant word, 

such as the, the, the (Baddeley, 2012b). The effect of suppression on both the word length and 

phonological similarity effects depends on the presentation modality of the materials. Both 

effects are abolished by suppression when the items for recall are presented visually, but remain 

when auditory items are presented (Baddeley et al., 1975). This is because visually presented 

items must be transformed into a phonological code via subvocalisation in the phonological loop 

to gain access to the store, whereas auditory material enters the phonological store 

automatically (Baddeley et al., 1984). Articulatory suppression is thought to prevent visual 

stimuli from being transformed into a phonological code because the loop is rendered unusable 

by interference from articulatory suppression (Baddeley, 1986; Baddeley et al., 1984, 1975). 

1.2.1.2 The visuo-spatial sketchpad 

The visuo-spatial sketchpad is responsible for the temporary storage and processing of visual 

and spatial information (Baddeley, 1986), and potentially kinaesthetic information (Smyth & 

Pendleton, 1990). This subsystem allows images to be manipulated in the mind’s eye. It plays a 

role in navigation and following instructions (Garden, Cornoldi, & Logie, 2002; Jaroslawska et al., 

2015) as it is responsible for keeping track of locations in relation to other objects in the 

environment (Baddeley, 1997). Early evidence demonstrating that visuo-spatial information 

required a specialised system comes from Baddeley, Grant, Wight and Thomson (1973). They 

found that performing a spatial tracking task, which involved keeping a stylus in contact with a 

moving spot of light, interfered with participants’ ability to recall visuo-spatial (easily 

visualised) sequences, but not nonsense (difficult to visualise) sequences, of digits in a matrix. 
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This demonstrates there is a system for storing information using visual imagery and another 

that uses purely verbal encoding. 

 In 1995, Logie proposed that the visuo-spatial sketchpad could be further segmented 

into two components analogous to the phonological and articulatory rehearsal components of 

the phonological loop (Baddeley, 2012a). The first component, termed the visual cache, acts as a 

visual store and plays a role in retaining visual patterns (Baddeley & Logie, 1999; Logie, 1995). It 

is presumed to retain object information such as form and colour, and is closely linked with the 

visual perceptual system (Logie & Pearson, 1997). Information in this passive visual store is 

subject to time-based decay and interference (Logie, 1995), thus it must be actively rehearsed to 

be maintained. This is achieved by the second subcomponent, known as the inner scribe 

(Baddeley & Logie, 1999; Logie, 1995; Logie & Pearson, 1997). This is an active spatially-based 

system that is presumed to store information related to spatial sequences and is closely linked to 

planning and control of movement to targets in space (Logie & Pearson, 1997). 

 A number of studies have demonstrated a dissociation between visual and spatial 

working memory (for a review, see Klauer & Zhao, 2004). For example, they can be selectively 

disrupted by specific concurrent interference tasks. Exposure to tones played from different 

positions disrupts the retention of spatial locations but not the vividness of mental imagery 

(Smyth & Scholey, 1994), while exposure to dynamic visual noise interferes with the vividness of 

mental imagery (Baddeley & Andrade, 2000) but not memory for spatial locations (Pearson & 

Sahraie, 2003). Further evidence for the fractionation of the visual what and spatial where comes 

from double-dissociations of visual and spatial memory performance on tasks conducted in 

neuropsychological and clinical patients (Carlesimo, Perri, Turriziani, Tomaiuolo, & Caltagirone, 

2001; Luzzatti, Vecchi, Agazzi, Cesa-Bianchi, & Vergani, 1998; Owen, Iddon, Hodges, Summers, & 

Robbins, 1997; Postle, Jonides, Smith, Corkin, & Growdon, 1997; Vicari, Bellucci, & Carlesimo, 

2006). In addition, studies have shown that visual and spatial memory abilities follow different 

developmental trajectories during childhood. While visual working memory appears to develop 

moderately quickly from childhood to adulthood, the rate at which spatial working memory 

develops is relatively slower and steadier (Logie & Pearson, 1997; Pickering, Gathercole, Hall, & 

Lloyd, 2001). These converging findings provide evidence for distinct subcomponents for the 

retention of visual and spatial information. 
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1.2.1.3 The central executive 

The central executive is the component that has overall control of the working memory system 

(Baddeley & Logie, 1999). The phonological loop and visuo-spatial sketchpad are often referred 

to as the slave systems as they are not clever; in other words they are not involved in the control 

of attention or in decision-making (Baddeley, 2012b). This job falls to the central executive, 

which is responsible for monitoring and coordinating the operation of the slave systems.  

Initially, the central executive was described as a domain-general processor capable of 

attentional focus and it was also thought to have some capacity for storage and interfacing with 

long-term memory. In the original multiple component model, the central executive was lacking 

in detail (Baddeley & Hitch, 1974). Baddeley (1986) attempted to advance the concept by 

adapting the Norman and Shallice model of attentional control (Norman & Shallice, 1980) in 

which it was proposed attentional control is divided between two processes. The first relies on 

the automatic control of behaviour by habit patterns or schemas that are triggered by 

environmental cues. The second is an attentionally limited controller called the supervisory 

attentional system (SAS) that intervenes when routine control is insufficient (e.g. in tasks where 

planning or decision making is required). 

 In a further attempt to understand its functions, Baddeley (1996) endeavoured to 

fractionate the central executive into four areas, known under an umbrella term as executive 

functions. These included the capacity to: (1) coordinate performance of two concurrent tasks 

(focus attention), (2) switch between retrieval strategies (attentional control), (3) selectively 

attend to a stimulus and filter out irrelevant information, and (4) activate and hold information 

from long-term memory. The latter of these functions subsequently led to a revision of the 

central executive. The central executive did not have a mechanism for interacting with long-term 

memory, or for integrating information from different subsystems using different codes (i.e. 

verbal and visuo-spatial) without some sort of common storage system. Therefore, Baddeley 

(2000) introduced a new component to the working memory model called the episodic buffer 

(see Section 1.2.3.3). The addition of this component meant the central executive was no longer 

regarded as having capacity for storage, and it is now thought to only be responsible for the 

control and allocation of attention (Baddeley, 2000, 2012a). 
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1.2.1.4 The episodic buffer 

In 2000, Baddeley added the episodic buffer to his model. The original tripartite model had no 

mechanism for allowing the phonological and visuo-spatial subsystems to interact, and offered 

no explanation for how working memory was associated with conscious awareness (Baddeley, 

2003). The episodic buffer was developed to account for these issues and to also explain how 

working memory communicates with long-term memory (Baddeley, 2000). The buffer is 

assumed to be a limited-capacity store that uses multi-dimensional coding to bind together 

information and form integrated episodes or chunks (Baddeley, 2000, 2003, 2012b). It is a 

separate subsystem within working memory that is controlled by the central executive, although 

it can also be regarded as the storage component of the central executive (Baddeley, 2003). It 

acts as a global workspace and can be accessed by the central executive through conscious 

awareness (Baddeley, 2000, 2003). Generally, the system provides a temporary interface 

between the phonological loop, the visuo-spatial sketchpad, and long-term memory, and is 

responsible for integrating information from these different modalities (Baddeley, 2000). 

1.2.2 The embedded processes model of working memory 

Cowan’s embedded processes model proposes that working memory is an activated portion of 

long-term memory, rather than a distinct short-term memory system (Cowan, 1988, 1995, 1999, 

2005, 2008). According to this view, the idea of working memory is that task-relevant 

information must be made accessible for a temporary period of time (Cowan, 1999). This model 

assumes two embedded levels of activation. The first involves long-term memory 

representations, whereby an embedded subset of information in the long-term store takes on a 

temporarily heightened state of activation (Cowan, 1995). This level is not capacity-limited and 

so any information present in long-term memory can be activated. However, activation of long-

term representations is time-limited and subject to decay and interference unless refreshed 

(Cowan, 1999, 2008). The second level, which is embedded within activated long-term memory, 

is called the focus of attention (Cowan, 1995). Information is made particularly salient when it 

falls under the focus of attention and it is thought to be limited in capacity to between three and 

five representational chunks (Cowan, 1995, 1999, 2001, 2010). These chunks can contain more 

than a single piece of information (Cowan, 2001, 2005). For example, an object encoded in 

working memory may contain multiple features such as location, colour, and shape that are 

combined to form an integrated chunk of information (Cowan, 2005). According to Cowan 
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(1995), the capacity-limited focus of attention is the primary limiting factor in the working 

memory system. 

 The embedded processes model also assumes a central attentional control component 

that plays a role in processing and reactivating items in memory (Cowan, 1988). Both voluntary 

and involuntary processes work together to control the focus of attention (Cowan, 1988, 1999). 

This attentional control system (akin to the central executive in Baddeley’s model) uses 

volitional, effortful processes to control the focus of awareness and acts on recently activated 

sensory and categorical features from long-term memory (Cowan, 2005). Automatic, 

subconscious processes orient attention to stimuli that changes, or habituates to stimuli that do 

not change (Cowan, 1988). Individuals are consciously aware of items being processed by the 

central executive, whereas they are unaware of information being processed automatically 

(Cowan, 1988). For memory items to be maintained in the focus of attention they must be 

reactivated and the model proposes that the central executive may carry out an operation to 

keep items active in memory (Cowan, 1999). This could be achieved through mechanisms such 

as subvocal rehearsal or mental imagery. Alternatively, the model suggests that a different 

process of attentional refreshing is used to reactivate fading memory traces by recirculating 

them in the focus of attention (Cowan, 1992, 1995; see also Barrouillet et al., 2004; Johnson, 

1992). During this process, sequential searching or scanning is used to reactivate items by 

moving the focus of attention to memory traces recurrently (Cowan, 1992, 1999). 

1.2.3 The attentional control model of working memory 

Engle and colleagues define working memory as the domain-general capacity for controlled and 

sustained attention in the face of interference or distraction (Engle, Kane, et al., 1999). The 

attentional control model has some similarities with Cowan’s model and also views working 

memory as an activated subset of long-term memory traces (Engle & Kane, 2004; Engle, Kane, et 

al., 1999; Unsworth & Engle, 2007). However, there are some significant distinctions, namely the 

model’s strong emphasis on the importance of inhibitory processes that are critical for 

protecting the contents working memory from potential disruption. Therefore, working memory 

reflects the ability for controlled attention, which is required to keep relevant information (e.g. 

task goals, stimulus, context) in a highly active and easily accessible state, especially when faced 

with interference or competition when it has to inhibit irrelevant information (Engle, Laughlin, 

et al., 1999; Engle & Kane, 2004; Engle, Kane, et al., 1999; Kane, Bleckley, Conway, & Engle, 

2001).  
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According to the attentional control model, the working memory system consists of two 

qualitatively and functionally distinct subsystems, referred to as primary and secondary 

memory (e.g. Unsworth & Engle, 2007; Unsworth & Spillers, 2010). Primary memory serves to 

maintain distinct representations for ongoing processing by means of continued allocation of 

attention, and secondary memory is a probabilistic cue-dependent search component (Unsworth 

& Engle, 2007). Primary memory is an attentional process that has the ability to shield items 

from interference and is thought to have a capacity limit of approximately four items (e.g. 

Atkinson & Shiffrin, 1968; Cowan, 2001). Information is held in primary memory only as long as 

it is actively attended to; otherwise it is displaced and must be retrieved from secondary 

memory via a competitive cue-dependent search process (Unsworth & Engle, 2007). One key to 

successful retrieval is the ability to effectively restrict the search process to only relevant 

information by using different cues (e.g. categorical, temporal, or contextual).  Once the search 

set has been delimited, representations can be sampled and retrieved more easily (Unsworth & 

Engle, 2007). 

Engle and colleagues used a correlational approach to understand the structure of 

working memory. Accordingly, in their framework individual differences in working memory 

capacity are not determined by how many items can be stored per se, but reflect dissimilarities 

in the ability for controlled processing (Engle, 2002; Engle & Kane, 2004). Supporting evidence 

is provided by studies in which large numbers of individuals perform working memory capacity 

tests and are then grouped as high or low ability based on their memory span. Performance of 

these two groups can be compared across a number of measures to investigate what might 

underpin differences in their memory span (e.g. Engle, Laughlin, et al., 1999; Engle & Kane, 

2004; Kane et al., 2001; Kane, Poole, Tuholski, & Engle, 2006; Kane & Engle, 2003; Rosen & 

Engle, 1997). Evidence has shown that individuals with low working memory spans perform 

more poorly than those with high spans on tasks that do not place a significant burden on 

memory capacity but do require attentional control. For example, Kane and Engle (2003) 

examined performance on the Stroop task, which is a classic interference task that requires 

active goal maintenance and inhibition of competing stimulus representations. Larger memory 

spans were found to predict better performance on the Stroop task, suggesting differences in 

working memory capacity reflect differences in executive attentional control. 
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1.3 Measuring working memory 

 The capacity of working memory can be measured using a variety of tasks. Firstly, it is 

important to make a distinction between tasks that measure short-term memory and those that 

engage working memory. Short-term memory simply involves the temporary storage of 

information and can therefore be measured using simple span tasks (i.e. assessments requiring 

the storage and immediate serial recall of phonological or visuo-spatial information such as 

digits or spatial locations). However, working memory tasks must also engage the central 

executive, and thus involve both storage and processing (Daneman & Carpenter, 1980). The 

most common categories of working memory task include: serial recall tasks, interpolated 

processing tasks, and updating tasks (see Figure 1.2; each category will be discussed in more 

detail in the following sections: see Section 1.3.1 for serial recall tasks, Section 1.3.2 for 

interpolated processing tasks, and Section 1.3.3 for updating tasks). As well as being measures of 

working memory capacity, these tasks are also used as training activities in cognitive training 

studies, as will be discussed in more detail in Chapter 3. 

 Working memory consists of multiple interacting systems. For example, separate 

components for different kinds of verbal and visuo-spatial information (Baddeley & Hitch, 

1974). Working memory tasks can be can be operationalised in a number of ways to tap into 

these different components. Task content (memory items) can be manipulated to specifically 

target verbal or visuo-spatial working memory by using digits or spatial locations, respectively. 

Task stimuli can also be manipulated within domain (e.g. digits, letters, or words within the 

verbal domain). Verbal information can also be presented auditorily or visually. The working 

memory system also involves different types of processes, including memory and attention 

(Conway, Macnamara, & Engel de Abreu, 2013). These different processes might have different 

mechanisms for encoding, representing and maintaining stimuli, and for manipulation, 

recognition and retrieval (Conway et al., 2013). When measuring working memory capacity it is 

important to consider that tasks might recruit different processes differentially (Conway et al., 

2013). The tasks might also vary in terms of their structural properties (e.g. interpolated storage 

items with irrelevant distractor activities versus recalling a sequence in reverse order, see 

Figure 1.2). Despite these differences, the general consensus is that a working memory task is 

defined by the requirement to store information while engaging in simultaneous effortful 

processing. This could take the form of processing the storage items, or other material, or it 
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could be the requirement to control attention during storage (Baddeley & Hitch, 1974; Daneman 

& Carpenter, 1980; Engle, Kane, et al., 1999; Kane et al., 2001). 
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Figure 1.2 – A schematic representation of the structure of different working memory paradigms 

including: (A) serial recall tasks, (B) interpolated processing tasks, and (C) updating tasks (an example of 

n-back is shown). 

1.3.1 Serial recall tasks 

Serial recall tasks involve a list of stimuli presented one item at a time. See Figure 1.2 (A) for an 

illustration of the serial recall task structure. As discussed previously, there is a distinction 

between simple span measures of short-term memory, which involve the immediate serial recall 

of stored items (e.g. forward digit recall), and simple span tasks with intrinsic processing, which 
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require participants to transform the storage material prior to recall (e.g. backward digit recall). 

Backward recall tasks are similar to simple span tasks except the participant must recall the 

stimuli in the reverse order. Therefore, the internal representation of the list must be 

transformed prior to recall (Conway et al., 2013). The difficulty of the task, or load on working 

memory, can be made greater by increasing list length.  

 Serial recall tests are simple to administer and can be found in a number of widely used 

standardised cognitive assessments, such as the Children’s Memory Scale (CMS; Cohen, 2001), 

the Wechsler Memory Scale (WMS; Wechsler, 2009), the Wechsler Adult Intelligence Scale 

(WAIS; Wechsler, 2008), the Wechsler Intelligence Scale for Children (WISC; Wechsler, 2003), 

and the Automated Working Memory Assessment (AWMA; Alloway, 2007). These tools are 

useful in developmental research as they enable researchers to track memory span from early 

childhood through to adulthood. Standardised assessments are also commonly used in 

educational and clinical practice to identify individuals with learning difficulties. 

1.3.2 Interpolated processing tasks 

Interpolated processing tasks, commonly known as complex span tasks, are well-established 

measures of working memory capacity (Daneman & Carpenter, 1980; Schmiedek et al., 2009). 

They were designed based on the principles of the multiple component model (Baddeley & 

Hitch, 1974; Conway et al., 2005), with the purpose of tapping into both the storage and 

processing functions of working memory (Daneman & Carpenter, 1980). During complex span, 

to-be-remembered items (e.g. digits) are presented between interleaved episodes of a 

processing task, such as solving maths problems (Conway et al., 2005, 2013). Typically, one item 

is presented between each processing episode. Participants then recall the sequence of memory 

items in forward serial order. See Figure 1.2 (B) for an illustration of the complex span task 

structure. Complex span tasks are essentially dual-tasks as they require the simultaneous 

performance of a primary simple span task and secondary disruptive processing activity 

(Conway et al., 2013; Schmiedek, Lövdén, & Lindenberger, 2014). The load on working memory 

can be manipulated by increasing or decreasing the number of to-be-remembered items and 

corresponding interleaving processing episodes.  

Complex span tasks can be operationalised in different ways by manipulating the storage 

materials as well as the nature of the processing task. There are many examples of complex span 

in both the verbal and spatial domains, including reading span (Daneman & Carpenter, 1980; 

Engle, Laughlin, et al., 1999; Kane et al., 2004; Schmiedek et al., 2009), operation span (Engle, 
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Laughlin, et al., 1999; Kane et al., 2004; Turner & Engle, 1989; Unsworth, Heitz, Schrock, & Engle, 

2005), counting span (Case, Kurland, & Goldberg, 1982; Engle, Laughlin, et al., 1999; Kane et al., 

2004; Schmiedek et al., 2009), navigation span (Kane et al., 2004), rotation span (Kane et al., 

2004; Schmiedek et al., 2009; Shah & Miyake, 1996), and symmetry span (Kane et al., 2004; 

Redick et al., 2013). Generally, these different versions of complex span follow the same basic 

structure but vary in terms of the type of stimuli presented for the primary memory span task 

(e.g. digits, letters, words, spatial locations), and the type of secondary processing task (e.g. 

reading sentences aloud, solving simple arithmetic problems, judging the veracity of sentences, 

rhyme judgement of letters, counting the number of objects in an array, judging shape 

symmetry, pattern matching; Conway et al., 2013). The structure of complex span tasks can also 

differ slightly; sometimes the primary memory task is embedded in the secondary task. For 

example, in another version of complex span, participants complete reading comprehension as 

the processing task, whilst also encoding the final word of each sentence as the primary task 

(Daneman & Carpenter, 1980). 

1.3.3 Updating tasks 

Working memory can also be assessed by tasks involving the continuous updating of memory 

items. The process of updating is considered a fundamental characteristic of the working 

memory system (Ecker, Lewandowsky, Oberauer, & Chee, 2010; Miyake et al., 2000). During 

cognitive activities, task-relevant information must be readily accessible and so must be 

continuously updated in accordance with changes in the environment (Conway et al., 2013). 

There are different paradigms that tap into working memory updating including n-back, running 

span, alpha span, and memory-updating tasks. 

n-back is arguably the most widely used updating paradigm. In this task a continuous 

stream of stimuli (e.g. digits) is presented. Items are shown one at a time, and participants must 

decide whether the current item being presented matches one that was presented n items back 

in the sequence. See Figure 1.2 (C) for an illustration of the n-back task structure. To successfully 

complete this task, representations of memory items must be successively updated as new 

information becomes available (Szmalec, Verbruggen, Vandierendonck, & Kemps, 2011). This 

paradigm is frequently used in neuroimaging experiments (Owen, McMillan, Laird, & Bullmore, 

2005) due to the simple response requirements and the ability to tightly control the timing of 

stimulus presentation (Conway et al., 2013).  
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Another common updating task is running span (e.g. Harrison et al., 2013; Pollack, 

Johnson, & Knaff, 1959). In this task participants are again shown a continuous series of items 

presented one at a time. The sequence finishes at an unknown point, at which time the 

participant must recall the most recent n items (e.g. the last five digits). Crucially, the sequence 

length is unpredictable. Alpha span is also used to tap into updating. In the original version 

participants were presented with a list of words and required to recall the first letter of each 

word in the correct alphabetical order (Craik, 1986; Oberauer et al., 2000; Suß et al., 2002). In a 

recently adapted version of this task, a sequence of 10 letters is presented, each with a 

corresponding digit (Schmiedek et al., 2009). Participants must continuously put the letters in 

alphabetical order and respond to each letter-digit pair to indicate whether the digit 

corresponds to the current alphabetical position of the letter relative to the others.  

An alternative updating paradigm is the memory-updating task, during which 

individuals must update memorised digits by arithmetic operations that are performed on them 

(Oberauer et al., 2000; Salthouse, Babcock, & Shaw, 1991; Schmiedek et al., 2009). For example, 

participants are required to remember a series of digits presented in individual boxes that are 

shown in a row at the beginning of a trial  (Schmiedek et al., 2009). Each of the digits must then 

be independently updated according to a corresponding arithmetic operation appearing in an 

associated box below where a particular digit appeared. Participants must then recall the final 

values.  

When using any variation of updating tasks the load on working memory can be 

increased or decreased, for example by varying the n level in the n-back task (e.g. increasing 

from one-back to two-back) or changing the number of items for recall in the running span task. 

Although distinct in terms of their structural properties and task demands, updating tasks share 

some common features. For example, they all require the building, maintenance, updating, and 

releasing of arbitrary temporary bindings between content (i.e. stimuli) and context (e.g. serial 

position; Oberauer, Süß, Wilhelm, & Sander, 2007; Schmiedek et al., 2009). Performance in 

updating tasks also depends on the ability to resist proactive interference (i.e. the disruptive 

effect of prior information/learning on remembering new information). For example, during the 

n-back task it can be difficult to distinguish between relevant and irrelevant items (Szmalec et 

al., 2011). 
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1.4 Working memory training 

Working memory underpins practical abilities such as following instructions (Engle, Carullo, & 

Collins, 1991; Jaroslawska et al., 2015), mathematical calculation (Raghubar, Barnes, & Hecht, 

2010), reading comprehension (Daneman & Carpenter, 1980), and maintaining focused 

attention (Gathercole, Durling, et al., 2008; Kane et al., 2001). It is considered one of the 

fundamental building blocks of learning, and low working memory is associated with poor 

academic progress in school (e.g. Gathercole, Alloway, et al., 2008). Impairments in working 

memory are also typical among individuals with developmental disorders such as attention-

deficit hyperactivity disorder (ADHD; Martinussen, Hayden, Hogg-Johnson, & Tannock, 2005), 

dyslexia (Jeffries & Everatt, 2004), dyscalculia (Mammarella, Hill, Devine, Caviola, & Szucs, 

2015), and specific language impairment (SLI; Archibald & Gathercole, 2006), where they are 

linked to difficulties in paying attention and learning. Therefore, there is a need for remediation 

of working memory problems in clinical and educational practice. 

 Traditionally, working memory was thought to be a fixed trait that is unchangeable once 

adult levels of performance are reached (Johnson & De Haan, 2011). More recently, studies have 

claimed that working memory capacity may be flexible and can be enhanced through intensive 

computerised training on adaptive memory tasks (e.g. Klingberg, 2010; Morrison & Chein, 

2011). A standard working memory training protocol typically involves practice on a number of 

activities designed to tax working memory for approximately 15 hr (Klingberg, 2010). The 

training regime is adaptive; the difficulty level of the tasks is adjusted on a trial by trial basis so 

that it is titrated to the current ability level of each participant (Klingberg, 2010). Individuals 

who receive active adaptive training are usually compared to a control group who either receive 

no training (no-intervention), a placebo/low dose of working memory training (i.e. non-adaptive 

training capped at a low memory load), or adaptive training of another cognitively demanding 

task with no memory load. Substantial and long-lasting improvements have been widely 

reported on untrained working memory measures following training (e.g. Dunning, Holmes, & 

Gathercole, 2013; Klingberg et al., 2005), although there are limits on the degree to which 

performance transfers to untrained memory tasks (Gathercole, Dunning, Holmes, & Norris, 

2018). Transfer following training will be discussed further in the following section (see Section 

1.4.1). 

 The type of paradigm used to train working memory varies across studies. Many studies 

use updating tasks (e.g. Jaeggi, Buschkuehl, Jonides, & Perrig, 2008; Minear et al., 2016; Redick et 
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al., 2013) and complex span tasks (e.g. Chein & Morrison, 2010; Harrison et al., 2013; Minear et 

al., 2016). Other commercial programmes such as Cogmed (Cogmed, 2005) mainly involve 

training on serial recall tasks with intrinsic processing (e.g. Dunning et al., 2013; Holmes, 

Gathercole, & Dunning, 2009; Klingberg et al., 2005; Klingberg, Forssberg, & Westerberg, 2002). 

1.4.1 Transfer following working memory training 

The ultimate goal of working memory training is not to make people better at working memory 

tasks per se, but to enhance the underlying construct of working memory so that behavioural 

improvements can be attained across the wide range of abilities that depend on working 

memory. Therefore, to consider cognitive training an effective tool, it must promote the 

generalisation of training effects to untrained tasks. This is referred to as training transfer. A 

distinction can be made between near and far transfer. Near transfer refers to gains in a similar 

context to that which is trained (e.g. other working memory tasks), whereas far transfer refers to 

enhancements in a dissimilar context (e.g. novel tasks that do not share many common features 

with the trained tasks but which rely on working memory, such as tests of mathematical 

reasoning). 

 Numerous studies have reported strong evidence for near transfer, demonstrating that 

working memory training improves performance on trained and on untrained working memory 

tasks (e.g. Dunning, Holmes, & Gathercole, 2013; Holmes, Woolgar, Hampshire, & Gathercole, 

2017; von Bastian & Oberauer, 2013). Enhancements in working memory performance are also 

associated with changes in neural activity and network connectivity in the brain areas 

supporting working memory (Astle, Barnes, Baker, Colclough, & Woolrich, 2015; Barnes, 

Woolrich, Baker, Colclough, & Astle, 2015; Buschkuehl, Hernandez-Garcia, Jaeggi, Bernard, & 

Jonides, 2014; E. Dahlin, Neely, Larsson, Bäckman, & Nyberg, 2008; Kundu, Sutterer, Emrich, & 

Postle, 2013; Langer, von Bastian, Wirz, Oberauer, & Jäncke, 2013; Olesen, Westerberg, & 

Klingberg, 2004; Takeuchi et al., 2010). For example, Astle and collegues (2015) found increases 

in the strength of neural connections between frontal regions and areas responsible for 

processing visual information following working memory training. These findings suggest that 

training could be producing fundamental and enduring changes in the cognitive and neural 

systems that underpin working memory. 

 Some researchers have likened cognitive training to physical exercise (e.g. Jaeggi et al., 

2011), whereby training particular muscles through one physical activity is expected to benefit 

general physical fitness. It has been proposed that through enhancing a general cognitive ability 
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such as working memory, improvements will be observed on a broad range of tasks involving 

that function. Some studies have reported far transfer to measures of fluid intelligence (Jaeggi et 

al., 2011, 2008; Jaeggi, Studer-Luethi, et al., 2010; Klingberg et al., 2002), reading (Chein & 

Morrison, 2010; K. Dahlin, 2011; Karbach, Strobach, & Schubert, 2015; Loosli, Buschkuehl, 

Perrig, & Jaeggi, 2012), inhibition (Chein & Morrison, 2010), selective attention (Klingberg et al., 

2005), and mathematical ability (Holmes et al., 2009). These studies are supported by outcomes 

from systematic literature reviews and meta-analyses that reveal some positive evidence for far 

transfer following training (Au et al., 2014; Karbach & Verhaeghen, 2014; Klingberg, 2010; 

Morrison & Chein, 2011; Spencer-Smith & Klingberg, 2015; Titz & Karbach, 2014). Together 

these broad cognitive benefits support the theory that training is enhancing the underlying 

mechanism of working memory.  

However, these positive results have been outnumbered by null results and the 

consensus from studies employing more rigorous testing methods (see Section 1.4.2) is that 

training benefits are apparent on other working memory tasks, but that this does not extend to 

other cognitive abilities closely associated with working memory such as non-verbal reasoning, 

verbal IQ, attentional control, or arithmetic (Melby-Lervåg & Hulme, 2012; Melby-Lervåg, 

Redick, & Hulme, 2016; Redick, 2015; Shipstead, Redick, & Engle, 2012; Simons et al., 2016; 

Soveri, Antfolk, Karlsson, Salo, & Laine, 2017). Moreover, recent studies have suggested that 

transfer within working memory following training may be constrained by the type of memory 

task trained.  

 If training is altering the fundamental capacity or efficiency of working memory, 

training-related improvements would be expected to transfer across different working memory 

tasks. For example, training on working memory tasks involving interpolated processing should 

result in improvements on updating and backward serial recall tasks. However, transfer 

typically only occurs when there is substantial overlap in the processes and structural 

properties between the training and transfer tasks (e.g. Dunning, Holmes, & Gathercole, 2013; 

Holmes, Woolgar, Hampshire, & Gathercole, 2017; von Bastian & Oberauer, 2013). For example, 

there is little evidence for transfer from n-back to untrained complex span measures (Holmes et 

al., 2018; Minear et al., 2016; Redick et al., 2013; Thompson et al., 2013), or vice versa (Holmes 

et al., 2018; Minear et al., 2016). These narrow patterns of generalisation suggest that transfer is 

process- or task-specific (Minear et al., 2016; Sprenger et al., 2013; von Bastian & Oberauer, 

2013, 2014), and that training is not enhancing the underlying construct of working memory. 

The mechanisms that might be mediating transfer within working memory will be discussed 

further in Chapter 3. 
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1.4.2 Methodological issues in training studies 

Many published intervention studies of near and far transfer effects have major shortcomings in 

terms of design or analysis, and the sometimes contradictory results across different studies 

might be explained by methodological issues prevalent in the cognitive training literature 

(Redick et al., 2013; for reviews, see Shipstead et al., 2012; Simons et al., 2016). A common 

problem is lack of an adequate control group. Some studies reporting positive far transfer effects 

have compared a treatment group to a no-contact control (e.g. Chein & Morrison, 2010; Jaeggi et 

al., 2008; Olesen et al., 2004). While this approach might rule out simple test-retest effects, it 

does not control for motivational or expectancy effects (Morrison & Chein, 2011; Shipstead et al., 

2012). Consequently, participants may recognise they have been allocated to a control condition 

and that they are not expected to show pre- to post-test improvements (Shipstead et al., 2012). 

Comparison to a no-contact control condition can therefore lead to inflated estimates of training 

gains (Morrison & Chein, 2011).  

An alternative approach is to include an active control working memory training group 

involving participants either training on a non-adaptive (placebo) version of the paradigm (e.g. 

Holmes et al., 2009; Klingberg et al., 2005), or receiving a lower dose of training (e.g. Klingberg 

et al., 2002). The active control group is not expected to benefit from training but is supposedly 

matched with the treatment group in terms of time engaging in an activity and effort invested 

(Morrison & Chein, 2011). However, participants in the control condition are unlikely to receive 

any feedback that their ability is changing, and still might be aware of group allocation 

(Shipstead et al., 2012). In order to truly control for participants’ motivations, beliefs, and 

expectations, an active control condition must be as difficult and engaging as the working 

memory training but not involve activities that draw on working memory resources (Redick et 

al., 2013; Sternberg, 2008). Therefore, any generalisation effects can be directly attributed to the 

working memory training rather than to peripheral experiences in the lab (Shipstead et al., 

2012). Researchers must also ensure participants are randomly assigned to groups to reduce 

bias (Simons et al., 2016), and make sure they are matched at baseline so that pre-existing 

differences between individuals do not mediate group differences at outcome (Melby-Lervåg & 

Hulme, 2012). 

 When studies apply rigorous methodological standards such as double-blind, 

randomised controlled trials (RCT) with a placebo-control training group, there is limited 

evidence for far transfer. For example, in a study not using an RCT design, Holmes, Gathercole 

and Dunning (2009) showed that ~20 days of Cogmed training had a positive impact on the 
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mathematical skills of children. However, this finding was not replicated in a later study by the 

authors which used a double-blind RCT design (Dunning et al., 2013). Similarly, although Jaeggi, 

Buschkuehl, Jonides and Perrig (2008) found evidence of transfer to fluid intelligence following 

dual n-back training, this was only significant when compared to a no-intervention control 

group. This effect was not replicated in a similar study when dual n-back training was compared 

to an active control training group (Redick et al., 2013). In another study working memory 

training was shown to reduce parent-rated symptoms of ADHD including inattention and 

hyperactivity. However, recent meta-analytic studies found little evidence for this effect once 

raters were blinded to intervention condition (Cortese et al., 2015; Rapport, Orban, Kofler, & 

Friedman, 2013; Sonuga-Barke et al., 2013). Overall, these data stress the importance of using 

rigorous methodologies to evaluate the effectiveness of working memory training. 

1.5 Transcranial electrical stimulation (tES) 

Transcranial electrical stimulation (tES) is a non-invasive brain stimulation technique that 

delivers a weak electrical current through the scalp to affect processing in the underlying cortex 

(Brunoni et al., 2012).  In the last decade there has been a growing body of evidence suggesting 

tES is a promising tool for neuro-enhancement (Elmasry, Loo, & Martin, 2015). There are 

numerous stimulation protocols, including transcranial direct current stimulation (tDCS), 

transcranial alternating current stimulation (tACS), and transcranial random noise stimulation 

(tRNS). During tDCS the stimulation current is held constant and can be used to deliver anodal 

(positive) or cathodal (negative) stimulation to increase or decrease neuronal excitability in the 

cortex (Paulus, 2011). During tACS the current is time dependent with a sinusoidal shape (i.e. 

alternating), and is used to interact or couple with ongoing oscillatory rhythms in the brain 

(Paulus, 2011). In tRNS the current is varied randomly, which appears to generate excitability 

increases in the cortex (Terney, Chaieb, Moliadze, Antal, & Paulus, 2008). See Figure 1.3 for a 

simplified illustration of the waveforms for each type of stimulation protocol. Each of these 

methods is described in more detail in the following sections (see Section 1.5.1 for tDCS, Section 

1.5.2 for tACS, and Section 1.5.3 for tRNS). In this thesis tES is used as the collective term to refer 

to these stimulation protocols. 

 tES is usually delivered using two or more rubber electrodes placed inside saline soaked 

sponges that are positioned on the scalp (Nitsche & Paulus, 2000, 2001; Priori, Berardelli, Rona, 

Accornero, & Manfredi, 1998; Woods et al., 2016). The electrodes are connected to a battery-
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driven machine which enables the researcher to adjust current intensity and the duration of 

stimulation. Stimulation site on the scalp is typically determined using the standard 

international 10 - 20 electroencephalogram (EEG) placement system to locate regions of 

interest. However, tES has relatively poor focal resolution and the electrodes are likely to result 

in moderately wide-spread stimulation of brain regions (Woods et al., 2016). In the case of 

unilateral stimulation, an active electrode is placed over a region of interest and a reference 

(return) electrode is typically placed over the contralateral supraorbital region or at another 

extracephalic location (e.g. shoulder). 

 In general, tES is well-tolerated with only rare cases reporting mild adverse effects 

(Brunoni et al., 2012; Gandiga, Hummel, & Cohen, 2006). The most commonly reported side-

effects include tingling, itching, fatigue, burning, and pain, but are usually reported as mild in 

severity (Kessler, Turkeltaub, Benson, & Hamilton, 2012; Poreisz, Boros, Antal, & Paulus, 2007). 

These sensations depend on stimulation intensity and are more likely to occur as a result of tDCS 

than tACS or tRNS (Paulus, Antal, & Nitsche, 2013). Briefly ramping the intensity of the electrical 

current up and down at the beginning and end of the stimulation period can be used to reduce 

the likelihood or severity of sensations associated with tES (DaSilva, Volz, Bikson, & Fregni, 

2011). 

 An important methodological consideration in tES research is the inclusion of an 

appropriate control group. Due to the common sensations reported with active (real) 

stimulation, simply attaching electrodes to the scalp and not delivering any current is not 

sufficient to blind participants (and investigators) to group allocation. As is the case with 

cognitive training, knowledge of allocation to a control group may affect participants’ motivation 

and expectancy effects. To determine whether active stimulation is having a significant effect 

over and above a placebo effect, a sham (fake stimulation) condition is often used. During the 

standard application of sham tES, stimulation intensity is slowly ramped up (over ~15 s) and 

faded out again after a short period (≤ 30 s) of real stimulation (Ambrus et al., 2012; Gandiga et 

al., 2006). This protocol mimics the sensory side-effects sometimes experienced when receiving 

electrical currents, which are usually greater at the beginning of stimulation (Paulus et al., 

2013). 

A tES machine can be programmed in advance allowing researchers to run double-blind 

sham-controlled trials. One investigator programmes the machine to deliver active or sham 

stimulation, while another simply turns it on and off during testing remaining blind to group 

allocation. It has been argued that this design should be standard procedure in the tES field 

(Nitsche et al., 2008). Even though sensory side-effects are still more common in active 
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compared to placebo stimulation (Kessler et al., 2012), sham stimulation has proven to be a 

successful method for blinding both participants and investigators, who cannot reliably 

distinguish sham from 1 mA of active stimulation (Gandiga et al., 2006). There are also 

differences across the different stimulation protocols. Although active and sham tDCS appear to 

be indistinguishable at lower intensities, perceived differences in sensations between conditions 

are more likely to be reported with higher current strengths (e.g. 2 mA; Kessler et al., 2012; Palm 

et al., 2013; Russo, Wallace, Fitzgerald, & Cooper, 2013). Furthermore, tDCS has a 50% 

perception threshold at 400 μA (Ambrus, Paulus, & Antal, 2010) whereas this threshold is at 

1200 μA in the case of tRNS, making it much easier to blind participants using the former  

technique (Ambrus et al., 2010). 
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Figure 1.3 – A simplified illustration of the waveforms for each type of stimulation protocol: anodal 

transcranial direct current stimulation (tDCS), cathodal tDCS, transcranial alternating current stimulation 

(tACS), and transcranial random noise stimulation (tRNS). 
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1.5.1 Transcranial direct current stimulation (tDCS) 

tDCS was first introduced as a non-invasive brain stimulation technique approximately 15 years 

ago (Nitsche & Paulus, 2000; Priori et al., 1998) and is used to modulate cortical excitability. 

During tDCS a low level of constant current is delivered to a cortical brain region (Flöel & Cohen, 

2007). The physiological effects of tDCS have been examined mainly in terms of motor evoked 

potential (MEP) changes following stimulation to the motor cortex as measured by transcranial 

magnetic stimulation (TMS; Nitsche & Paulus, 2000; Priori, Berardelli, Rona, Accornero, & 

Manfredi, 1998). These studies have revealed that tDCS is capable of inducing cortical 

excitability and activity changes, and that the nature of these modulations depends of the 

polarity (i.e. direction) of the current flow (Liebetanz, Nitsche, Tergau, & Paulus, 2002; Nitsche 

et al., 2005). In general, anodal (positive) tDCS produces increased excitability, whereas cathodal 

(negative) stimulation results in decreased neuronal activity (see Figure 1.3; Boros, Poreisz, 

Münchau, Paulus, & Nitsche, 2008; Nitsche, Fricke, et al., 2003; Nitsche & Paulus, 2000; Paulus, 

2004, 2011). The directional effects of stimulation on neuronal excitability have been mirrored 

in behavioural data. Increases in excitability are associated with enhanced cortical processing 

and therefore improved performance in a behavioural task (e.g. Cattaneo, Pisoni, & Papagno, 

2011; Flöel et al., 2008), whereas decreases in excitability hinder performance (e.g. Vines, 

Schnider, & Schlaug, 2006). 

 During tDCS an anodal (positively charged) electrode and a cathodal (negatively 

charged) electrode are connected to a constant current direct current (DC) stimulator. To apply 

tDCS, a target electrode is placed over a location corresponding to an underlying brain region of 

interest, and a return electrode is placed at a reference location. During anodal stimulation the 

anode is used as the target electrode and the cathode as the reference, whereas during cathodal 

stimulation the cathode takes the place of the target electrode and the anode is used as the 

reference. During active stimulation a constant direct current is sent from the anode, through 

intervening brain tissue, to the cathode to allow effective modulation of neuronal excitability 

under the target electrode (Nitsche et al., 2008). The contralateral orbit (forehead) is the most 

common location for placement of the reference electrode in human studies using tDCS (for a 

review, see Nitsche et al., 2008). The term reference electrode does not necessarily mean that 

the electrode is functionally inactive, but that neuronal excitability changes under this electrode 

are beyond the scope of interest for a particular experiment (Nitsche et al., 2008). The position 

of the reference electrode does influence the pattern of overall current flow through the brain 

however, and so it may also influence brain modulation under the active electrode. It is therefore 
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important to consider the location of both electrodes when deciding stimulation montage 

(DaSilva et al., 2011).  

 The aim of tDCS is to produce cortical changes lasting beyond the length of stimulation. 

The duration of physiological after-effects depends on the intensity and duration of the applied 

current (Batsikadze, Moliadze, Paulus, Kuo, & Nitsche, 2013). When applied to the motor cortex, 

increasing the current intensity and/or stimulation duration, typically results in longer-lasting 

and stronger after-effects (Nitsche, Nitsche, et al., 2003; Nitsche & Paulus, 2000, 2001). In terms 

of intensity, there is a narrow window of current strength for inducing tDCS-related after-effects. 

In the literature, the intensity typically ranges from 0.5 to 2.0 mA (Nitsche & Paulus, 2011), with 

currents below 0.5 mA unlikely to produce noticeable effects. Nitsche and Paulus (2000) found 

that a stimulation intensity of at least 0.6 mA was required to produce after-effects (when 

applied for 5 min), as measured by MEPs. If current intensity is increased to 3 mA, tDCS starts to 

become painful (Furubayashi et al., 2008). In terms of duration, it appears that stimulation must 

be applied for at least 3 min (at 1 mA) to produce noticeable after-effects (Nitsche & Paulus, 

2000), and tDCS can produce stable after-effects for up to an hour if applied for 9 – 13 min 

(Nitsche, Nitsche, et al., 2003; Nitsche & Paulus, 2000, 2001). Stimulation duration usually 

ranges from 10 to 20 min (Moreno-Duarte et al., 2014). 

 More recently, evidence has shown that intensity-dependent effects following tDCS to 

the motor cortex are non-linear and that increasing the current strength does not necessarily 

increase the efficacy of stimulation. For example, Batsikadze et al. (2013) found that when 

increasing the current intensity from 1 mA to 2 mA, the typical inhibitory effect of cathodal 

stimulation is shifted in the opposite direction. Similarly, data shows there may also be an upper 

limit for the duration of tDCS. The after-effects of stimulation cannot be extended indefinitely 

and prolonging stimulation does not always prolong after-effects but may also reverse them 

(Paulus et al., 2013). For example, doubling the stimulation duration of anodal tDCS from 13 to 

26 min was found to convert an MEP increase in excitability to inhibition (Monte-Silva et al., 

2013). Taken together, these findings suggest that although it is broadly true that polarity-

dependent changes are directional, higher intensity currents and longer durations do not 

necessarily result in relative increases of sustained after-effects (Parkin, Ekhtiari, & Walsh, 

2015). It appears there is an upper limit for sustaining excitatory or inhibitory after-effects, and 

therefore there are probably optimal stimulation parameters for maximising the duration of 

these effects (Paulus et al., 2013). For instance, some research has suggested that spaced 

intervals of tDCS may produce longer-lasting effects (e.g. Monte-Silva, Kuo, Liebetanz, Paulus, & 

Nitsche, 2010). Currently, it is not clear what the best stimulation montage is for maximising the 
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duration of after-effects. It is important to note that most of the methodological concepts and 

rationale for a typical stimulation montage rely on MEP measurements from the motor cortex. 

However, different stimulation durations and intensities may result in different after-effects 

when applied to other cortical areas. 

1.5.2 Transcranial alternating current stimulation (tACS) 

tACS is a type of oscillatory stimulation that delivers a non-constant current to the brain (see 

Figure 1.3; Moreno-Duarte et al., 2014). Like tDCS, it has been shown to influence cortical 

excitability and activity (Antal et al., 2008; Chaieb, Antal, & Paulus, 2011; Moliadze, Antal, & 

Paulus, 2010; Wach et al., 2013) as well as facilitate performance in behavioural tasks such as 

implicit motor learning (Antal et al., 2008; Moliadze et al., 2010). The aim of tACS is to interfere 

with ongoing rhythms in the cortex (Paulus, 2011) and it can be used to entrain intrinsic brain 

oscillations to specific frequency bands (Antal et al., 2008; Paulus et al., 2013; Tavakoli & Yun, 

2017), that is to say it can couple the oscillatory behaviour of the brain. A number of studies 

have established a close relationship between brain oscillations and cognitive functions (for 

reviews, see Engel, Fries, & Singer, 2001; Herrmann, Munk, & Engel, 2004). Therefore, tACS may 

be a useful tool for establishing causal links between rhythmic cortical activities and their 

cognitive functions (Herrmann, Rach, Neuling, & Strüber, 2013; Kanai, Chaieb, Antal, Walsh, & 

Paulus, 2008).  

 Application of tACS usually involves delivering sinusoidal stimulation (i.e. an alternating 

current), but other waveforms are possible (Antal & Paulus, 2013). The main parameters that 

determine the direction and duration of the tACS-induced effects are the frequency, intensity, 

and phase of the stimulation (Antal & Paulus, 2013). In general, during tACS a bidirectional, 

biphasic current is delivered in sinusoidal waves (Moreno-Duarte et al., 2014).  The typical time 

for stimulation ranges from 2 – 5 min at intensities between 0.25 – 1 mA (Moreno-Duarte et al., 

2014). Unlike tDCS, duration related effects of tACS on MEPs have not yet been systematically 

investigated (Antal & Paulus, 2013). tACS can be administered in a wide frequency range (Antal 

& Paulus, 2013). Typically it is applied at conventional EEG frequencies (0.1 – 80 Hz) and in the 

so called ripple range of 140 Hz, which may be able to interact with ongoing rhythms in the 

cortex (Antal & Paulus, 2013; Moliadze et al., 2010). Different frequencies can have different 

effects on the brain and behaviour. While some frequencies show a trend towards MEP 

inhibition, others yield excitability increases, and some result in behavioural improvements (for 

an overview, see Antal & Paulus, 2013). The after-effects of stimulation also appear to be 
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dependent on intensity. For example, 1 mA of tACS at 140 Hz results in significant increases of 

cortical excitability as measured by MEPs (Moliadze et al., 2010). However, reducing the 

intensity of stimulation to 0.4 mA switched the excitatory effect to inhibition, and the 

intermediate intensity ranges of 0.6 and 0.8 mA had no effect at all (Moliadze, Atalay, Antal, & 

Paulus, 2012). 

1.5.3 Transcranial random noise stimulation (tRNS) 

tRNS is another form of non-invasive electrical brain stimulation used to induce cortical 

excitability and resulting plasticity (Chaieb, Paulus, & Antal, 2011; Terney et al., 2008). Like 

tACS, tRNS is a relatively new technique and consequently less is known about it compared to 

tDCS. It is essentially a special form of tACS with a white noise characteristic (Antal & Paulus, 

2013; Terney et al., 2008). Unlike tDCS, tRNS is not polarity specific and can be applied 

unilaterally. During stimulation an alternating current is applied along with random amplitudes 

(see Figure 1.3). While tACS uses a fixed frequency, tRNS applies a current within a broad 

frequency spectrum between 0.1 Hz and 640 Hz with a random noise distribution (Antal & 

Paulus, 2013; Terney et al., 2008). 

 As with other forms of tES, there are numerous stimulation parameters that can be 

altered when using tRNS. A typical tRNS montage involves a randomly alternating level of 

current between -500 and +500 μA, with a sampling rate of 1280 samples per second and high 

range frequencies between 100 and 640 Hz, providing a current of 1 mA (Moreno-Duarte et al., 

2014; Terney et al., 2008). These parameters have been shown to elicit increased cortical 

excitability in the motor cortex of healthy participants lasting up to 60 min following 10 min of 

stimulation (Terney et al., 2008). In terms of duration, a minimum of 5 min appears to be 

necessary to observe an effect (Chaieb et al., 2009). tRNS has also been shown to generate some 

behavioural improvements that are similar to those observed with anodal tDCS (e.g. Cappelletti 

et al., 2013; Romanska, Rezlescu, Susilo, Duchaine, & Banissy, 2015; Snowball et al., 2013). It also 

offers some potential methodological advantages over tDCS in terms of enhancing cognitive 

abilities, which will be reviewed further in Chapter 2. 

1.5.4 Mechanism of action 

Explorations into the mechanisms that underlie the behavioural improvements found with tES 

have mostly concentrated on tDCS, and literature on the physiological and cognitive effects of 
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tRNS and tACS is still limited. Therefore, this section mainly discusses findings investigating the 

mechanism of action in terms of tDCS.  

 The principal physiological mechanism of tDCS is thought to be the subthreshold 

modulation of neuronal membrane potentials (Flöel & Cohen, 2007; Paulus, 2004; Woods et al., 

2016). tDCS is not thought to cause resting neurons to fire or directly induce activity in cortical 

areas; rather it modulates the spontaneous neuronal activity at the level of membrane potential 

(Sparing & Mottaghy, 2008; Woods et al., 2016). Anodal stimulation causes a shift towards 

depolarization of cortical neurons, while cathodal tDCS is thought to shift neuronal membranes 

towards hyperpolarization (Batsikadze, Moliadze, Paulus, Kuo, & Nitsche, 2013; Nitsche & 

Paulus, 2000; Paulus, 2004, 2011). Therefore tES may facilitate learning by enhancing plasticity 

via mechanisms similar to long-term potentiation (LTP) or long-term depression (LTD), which 

underlie learning and memory (Andrews, Hoy, Enticott, Daskalakis, & Fitzgerald, 2011; Flöel & 

Cohen, 2007). However, this explanation has been criticised as being overly-simplistic (de 

Berker, Bikson, & Bestmann, 2013). Although there is evidence that tES has the capacity to 

change membrane excitability and membrane potentials, it remains unclear how this is related 

to observed behavioural changes elicited by stimulation (Bestmann, de Berker, & Bonaiuto, 

2015). 

 There is an important distinction to make regarding the effects tDCS has on the brain. On 

the one hand, some methods have focused on examining immediate short-lasting effects of tDCS 

(i.e. the online effects of tDCS on neurons during stimulation), whereas others have investigated 

the formation of long-lasting after-effects (Sparing & Mottaghy, 2008). In terms of the online 

effects of tDCS, findings from pharmacological studies support the theory that short-lasting 

changes are dependent on polarity-specific shifts in the resting membrane potential of cells. 

These shifts in cortical excitability modulate the conductance of sodium and calcium channels, 

and blocking these channels using specific drugs can reduce or abolish the effects of anodal 

stimulation (Nitsche, Fricke, et al., 2003; Stagg & Nitsche, 2011). However, these effects are 

short-lasting and are not thought to have any significant effects on synaptic plasticity (Sparing & 

Mottaghy, 2008; Stagg & Nitsche, 2011). 

 The sustained after-effects elicited by prolonged tDCS are thought to be N-methyl-D-

aspartate (NMDA) receptor dependent, as these receptors are involved in neuroplastic changes 

(Fritsch et al., 2010; Liebetanz et al., 2002; Nitsche, Fricke, et al., 2003). NMDA is a glutamate 

receptor and ion channel protein that is activated when glutamate and glycine bind to it. It plays 

a crucial role in controlling synaptic plasticity and is therefore an important cellular mechanism 

for learning and memory function (Bennett, 2000; Li & Tsien, 2013). Evidence for the 
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involvement of this receptor is provided by pharmacological research demonstrating that drugs 

used to antagonise NMDA receptors eliminate both the prolonged excitability enhancement 

produced by anodal stimulation and the excitability decrease caused by cathodal tDCS 

(Liebetanz et al., 2002; Nitsche, Fricke, et al., 2003). These findings suggest that tDCS might lead 

to strengthening of synaptic connections (Fritsch et al., 2010) via a mechanism that is similar to 

LTP (Nitsche & Paulus, 2000; Stagg & Nitsche, 2011), a cellular correlate of learning and memory 

(Bliss & Collingridge, 1993; Martin, Grimwood, & Morris, 2000). Although antagonising NMDA 

receptors prevented the induction of long-lasting after-effects, it did not alter the excitability 

changes found during shorter-lasting stimulation that do not elicit after-effects (Nitsche, Fricke, 

et al., 2003). This is in line with the theory that short-lasting online effects are generated solely 

by modulating resting membrane potential, whereas after-effects are also dependent on 

modulations of NMDA receptor efficacy (Liebetanz et al., 2002; Sparing & Mottaghy, 2008). 

 tRNS can produce similar after-effects to tDCS and has been shown to induce persistent 

excitability increases in the motor cortex lasting for at least 60 min (Terney et al., 2008). 

However, the mechanism responsible for this cortical excitability alteration is not yet fully 

understood (Chaieb, Antal, & Paulus, 2015). Pharmacological studies have revealed that tDCS is 

NMDA receptor dependent (Liebetanz et al., 2002). However, NMDA receptor antagonist and 

agonist neuroactive drugs have no effect on excitability changes observed with tRNS (Chaieb et 

al., 2015), suggesting a different mechanism is operating. An alternative mechanism that has 

been proposed is the repeated potentiation, or opening, of sodium channels (Paulus, 2011). 

Evidence for this theory is provided by Chaieb et al. (2015) who found that a drug used to block 

sodium channels showed a tendency toward inhibiting MEPs following 10 min of tRNS with a 

current intensity of 1 mA. 

 In terms of tACS, when applied in the EEG range (0.1 – 80 Hz) it is thought to entrain or 

synchronise neuronal networks, therefore inducing changes in ongoing oscillatory brain activity 

(Antal & Paulus, 2013; Paulus et al., 2013). However, it may be having a different effect when 

applied outside of the conventional EEG frequency range (e.g. in the 140 Hz range and low kHz 

range of 1 – 5 kHz). tACS applied for 10 min with 1 mA intensity in the low kHz range has been 

shown to increase excitability in a similar way to anodal tDCS (Chaieb, Antal, et al., 2011). This 

type of stimulation is not thought to interfere with oscillatory activity, but may influence the 

membrane excitability of neurons (Moliadze et al., 2010). Therefore, tACS in this higher 

frequency range might modulate plasticity via a similar biochemical mechanism to tRNS (e.g. by 

influencing calcium ion concentration of post-synaptic neurons). 
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 In general, the mechanisms of action that mediate the cortical and behavioural changes 

associated with tES are not well understood, especially in the case of tRNS and tACS. Although, 

they may involve different mechanisms, it is thought that tDCS, tRNS and tACS are all able to 

drive excitability changes, which in turn may facilitate learning. 

1.5.5 tES for cognitive enhancement 

Many studies have explored the cognitive-behavioural effects of non-invasive brain stimulation 

such as tES (for a review, see Nitsche & Paulus, 2011). Promising results suggest that tES can 

enhance a number of cognitive abilities such as language learning (e.g. Cattaneo et al., 2011; 

Flöel et al., 2008), attention (e.g. Gladwin, den Uyl, Fregni, & Wiers, 2012; Roy, Sparing, Fink, & 

Hesse, 2015), and mental arithmetic (e.g. Hauser, Rotzer, Grabner, Mérillat, & Jäncke, 2013). 

Many studies have focused on the potential of tES for the enhancement of working memory (e.g. 

Jeon & Han, 2012). 

 An important consideration in tES studies is the location of stimulation, as the brain 

region that is targeted must be involved in task performance. Tasks that engage working 

memory typically recruit areas in the frontal and parietal cortex, and the dorsolateral prefrontal 

cortex (DLPFC) appears to play a particularly important role in executive functioning and 

working memory. The DLPFC is also proposed to support both storage and processing 

components of working memory. Evidence from patients with lesions to DLPFC supports the 

involvement of this region in working memory, for example, Barbey Koenigs and Grafman 

(2013) found that damage to the DLPFC is associated with deficits in working memory, and 

suggested that the left DLPFC is especially involved in the manipulation of information in 

working memory. Furthermore, TMS (which disrupts cortical activity) delivered over the left 

DLPFC has been shown to impair working memory performance (e.g. Mull & Seyal, 2001). 

Numerous functional neuroimaging studies have also demonstrated that activation within the 

DLPFC is associated with performance of working memory tasks (e.g. D’Esposito et al., 1998; 

D’Esposito, Postle, Ballard, & Lease, 1999; Hautzel et al., 2002; for reviews, see D’Esposito, 

Postle, & Rypma, 2000; Owen et al., 2005; Smith & Jonides, 1999; Wager & Smith, 2003). This 

converging evidence demonstrates the critical role it plays in working memory, and 

consequently the DLPFC has become a popular target region in non-invasive brain stimulation 

studies involving working memory (for reviews, see Brunoni & Vanderhasselt, 2014; Dedoncker, 

Brunoni, Baeken, & Vanderhasselt, 2016; Hill, Fitzgerald, & Hoy, 2016; Tremblay et al., 2014). 



1.6 Main aims of thesis 31 

 

 Many studies have shown that anodal tDCS over the left DLPFC enhances performance in 

working memory tasks in single sessions (Andrews, Hoy, Enticott, Daskalakis, & Fitzgerald, 

2011; Boggio et al., 2006; Fregni et al., 2005; Hoy et al., 2013; Jeon & Han, 2012; Jo et al., 2009; 

Keeser et al., 2011; Mulquiney, Hoy, Daskalakis, & Fitzgerald, 2011; Ohn et al., 2008; Teo, Hoy, 

Daskalakis, & Fitzgerald, 2011; Zaehle, Sandmann, Thorne, Jäncke, & Herrmann, 2011; for 

reviews, see Berryhill, 2014; Coffman, Clark, & Parasuraman, 2014; Hill, Fitzgerald, & Hoy, 2016; 

Kuo & Nitsche, 2012; Tremblay et al., 2014). However, findings are mixed and recent reviews of 

the literature suggest there is no reliable evidence that tDCS is capable of inducing cognitive or 

neurophysiological changes in the brain in single sessions (Horvath, Forte, & Carter, 2015). 

Additional studies have also found that tES can enhance the effects of cognitive training in a 

number of domains (for a review, see Elmasry, Loo, & Martin, 2015). Studies that have 

investigated the use of tDCS in multi-session working memory training protocols have produced 

mixed results. Some have shown that tDCS can boost both online training gains and transfer 

effects to untrained tasks, and that these effects are sustained for several months (Au et al., 

2016; Ruf, Fallgatter, & Plewnia, 2017; Trumbo et al., 2016). However, other studies have failed 

to demonstrate such enhancements (Martin et al., 2013; Richmond, Wolk, Chein, & Olson, 2014), 

and a recent meta-analysis concluded that tDCS was not much more effective for boosting 

working memory training than sham stimulation (Nilsson, Lebedev, Rydström, & Lövdén, 2017). 

Studies combining tDCS and working memory training will be considered in more detail in 

Chapter 3 of this thesis. The promise of tRNS for boosting the effects of cognitive training has 

also been explored in other domains (e.g. arithmetic training; Snowball et al., 2013), but not yet 

for working memory. The potential of tRNS for enhancing working memory training will be 

explored further in Chapter 2. 

1.6 Main aims of thesis 

To date, studies of working memory training have demonstrated narrow patterns of transfer 

(see Section 1.4.1), and little is known about the precise cognitive mechanisms that mediate the 

generalisation of learning to untrained tasks. There is also little research investigating the 

consequences of combining working memory training with tES (see Section 1.5.5). Therefore, 

the overarching aims of the work presented in this thesis were to examine the effects of 

combining working memory training with tES, to investigate patterns of transfer to untrained 
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tasks following working memory training, and also to elucidate the processes involved in tasks 

commonly used to measure and train working memory. 

 The first study (see Chapter 2), Does transcranial random noise stimulation (tRNS) 

enhance the effects of working memory training?, sought to determine whether stimulation 

applied during multi-session working memory training could: (i) enhance gains on the training 

activities, (ii) enhance gains on transfer tests of working memory with similar task structures to 

the training tasks, and (iii) promote far transfer in terms of improvements on both working 

memory tasks with distinct structures to the training tasks and to measures of other cognitive 

abilities that are related to working memory. The primary aim of this experiment was to test 

whether stimulation could enhance any gains following working memory training. For this 

reason, Cogmed was chosen as the training tool because it has been extensively researched and 

yields larger effect sizes for changes in working memory than other training packages (Cogmed, 

2005; Schwaighofer, Fischer, & Bühner, 2015). Using a program that is known to produce 

training gains provided the ideal starting point for investigating whether stimulation could 

produce any additive benefits. A more nuanced aim of the experimental work was to track 

patterns of transfer across different working memory paradigms both following training alone 

and when training was combined with stimulation. However, the Cogmed program was not 

optimal in this regard as it included a variety of working memory tasks (e.g. verbal and non-

verbal serial recall and serial recall with intrinsic processing paradigms). Using a training 

program that involves practice on a single paradigm may make it easier to track patterns of 

transfer more carefully. 

 With this in mind, the aims of the second study (see Chapter 3), Backward digit training: 

Cross-paradigm transfer and the effects of transcranial direct current stimulation (tDCS), were to 

systematically investigate the extent to which the benefits of working memory training transfer 

within and across working memory paradigms following training on a single working memory 

task, and also to investigate whether tDCS could enhance these effects. Irrespective of the impact 

tDCS has on the generalisation of training effects, the inclusion of an active control training 

group and the systematic manipulation of outcome measures yielded important new data about 

the extent to which working memory training effects transfer within and across untrained 

working memory tasks. 

 The third experimental section of this thesis (see Chapter 4), Backward recall and n-back 

measures of working memory: A large scale latent variable analysis, was conducted to investigate 

the overlap in the processes involved in two tasks that are widely used to measure working 

memory. Backward recall tasks are commonly used in behavioural studies, while n-back tasks 
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are frequently used in neuroimaging studies of working memory. Despite both types of task 

being labelled as working memory tests, they differ substantially in terms of their structural 

properties and the processes involved. Therefore, data was collected online from a large sample 

of adults (N ~700) using different backward recall and n-back tasks. This enabled the factor 

structure underpinning these tasks to be assessed using a latent variable analysis approach, thus 

providing novel data about whether these paradigms can be used interchangeably as measures 

of working memory. 

 Chapter 5 summarises the entire thesis. The main findings and conclusions of the 

empirical studies are discussed, along with various theoretical and methodological implications 

of the results. Finally, limitations and potential areas for future research are identified. 





 

Chapter 2 Does transcranial random noise 

stimulation (tRNS) enhance the effects of 

working memory training? 

The data reported in this chapter have been published in the Journal of Cognitive Neuroscience 

(see Appendix A). 

2.1 Aims 

Intensive adaptive training boosts performance on trained and untrained working memory tasks 

(e.g. Dunning, Holmes, & Gathercole, 2013). However, there is little evidence that gains 

generalise to working memory tasks that involve different processes to training activities (e.g. 

Minear et al., 2016). Transcranial random noise stimulation (tRNS) has been shown to enhance 

the efficacy and generalisability of cognitive training in other domains, such as mathematics 

training (e.g. Cappelletti et al., 2013; Snowball et al., 2013). The potential additive benefit of 

combining this technique with working memory training has not yet been explored. The aim of 

this experiment was to investigate, using the current best practice in training, stimulation, and 

intervention design, whether tRNS applied during multi-session working memory training: (1) 

enhances gains on training activities, (2) boosts gains on memory tasks that share features with 

the training activities, (3) promotes generalisation of gains to memory tasks with processing 

demands that were not trained, and (4) promotes far transfer to tests of cognitive processes 

associated with working memory.  
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2.2 Introduction 

Evidence presented in the literature review has shown that intensive, adaptive training on 

working memory tasks boosts performance on trained and untrained working memory tasks, 

and that the benefits of training are greatest when the training activities and transfer tasks share 

common cognitive and neural components (E. Dahlin, Neely, et al., 2008; Sprenger et al., 2013; 

von Bastian & Oberauer, 2013; see Section 1.4.1). Some studies have shown transfer across 

different categories of working memory task (e.g. Harrison et al., 2013). However, most report 

selective benefits from training to tasks that are structurally similar (e.g. to the same type of task 

such as complex span), or to tasks with overlapping processing demands (e.g. updating; Dahlin 

et al., 2008; Redick et al., 2013; Thompson et al., 2013; von Bastian & Oberauer, 2013). There is 

little evidence for transfer to working memory tests with distinct processing demands and 

structural properties (Melby-Lervåg & Hulme, 2012; Shipstead, Redick, & Engle, 2010). 

Furthermore, when studies employ the most rigorous randomised controlled trial (RCT) designs 

there is no reliable evidence to substantiate the claim that training gains generalise to complex 

everyday activities that depend on working memory, such as academic attainment or focussed 

attention (e.g. Cortese et al., 2015; Dunning et al., 2013; Rapport, Orban, Kofler, & Friedman, 

2013). For working memory training to be considered an effective tool for enhancing working 

memory performance in everyday tasks, research must first establish methods that promote the 

transfer of gains from highly specific memory tasks. 

 tRNS is a relatively new technique for non-invasive brain stimulation. It has not yet been 

extensively researched, but there is growing evidence that it can enhance the effects of intensive 

training in other cognitive domains such as mathematics. In a study conducted by Snowball and 

colleagues (2013), 20 min of tRNS was applied bilaterally to the dorsolateral prefrontal cortex 

(DLPFC) at a current strength of 1 mA during arithmetic training. Significantly greater 

improvements on untrained mathematical problems were reported immediately after training 

and at a 6 month follow-up for an active versus sham control group. In a similar study, 

numerosity discrimination training combined with 1 mA of tRNS applied bilaterally to the 

parietal cortex for 20 min resulted in steeper learning curves and long-lasting improvements in 

magnitude judgements lasting up to 4 months, when compared to training alone (with sham 

tRNS), active tRNS over a control cortical location (motor area), or active parietal tRNS alone 

(Cappelletti et al., 2013). tRNS has also been shown to improve the effects of cognitive training in 

developmental populations. Looi et al. (2017) investigated the effects of numerical training 
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combined with tRNS in children with mathematical learning difficulties. Stimulation applied for 

20 min, with current intensity of 0.75 mA over bilateral DLPFC, enhanced accuracy and was 

associated with a steeper rate of learning during training relative to a sham tRNS control group. 

tRNS also modulated generalisation to an untrained test of mathematical ability. Together, these 

findings demonstrate the potential of tRNS for enhancing cognitive training. 

 While numerous studies have examined working memory training combined with 

transcranial direct current stimulation (tDCS; Au et al., 2016; Martin et al., 2013; Richmond et al., 

2014; Ruf et al., 2017), there are currently no studies that have investigated the effects of tRNS 

and working memory training. One study examined the effect of tRNS in a single session, and did 

not find any significant changes in performance on a working memory task when applied over 

left DLPFC (Mulquiney et al., 2011). tRNS offers some potential methodological advantage over 

tDCS. Firstly, while tDCS is a polarity dependent form of tES that generates opposing excitatory 

and inhibitory activity under the two stimulating electrodes, tRNS is polarity-independent and 

can therefore be applied bilaterally to the cortex (Paulus, 2011; Terney et al., 2008). 

Furthermore, tRNS has a higher cutaneous perception threshold than tDCS making it 

particularly suitable for blinding groups to stimulation condition (Ambrus et al., 2010).  

The aim of this study was to investigate, for the first time, whether tRNS could modulate 

on-task training gains and enhance transfer to both trained and untrained working memory 

tasks and other cognitive abilities related to working memory when combined with working 

memory training. Following Snowball et al. (2013), high-frequency tRNS (101 – 640 Hz) at a 

current strength of 1 mA was applied bilaterally over DLPFC. The DLPFC was chosen as the 

stimulation site as it is a region of the brain associated with working memory function (Owen et 

al., 2005) and is influenced by working memory training (Takeuchi et al., 2010). Participants 

completed Cogmed working memory training (Cogmed, 2005), a program that has been 

extensively researched and yields larger effect sizes for changes in working memory compared 

to other training packages (Schwaighofer et al., 2015). 

It was predicted that tRNS would modulate learning during working memory training 

leading to faster and greater gains on trained tasks, in line with findings reported for 

mathematics training by Snowball and colleagues. A wide battery of outcome measures with 

varying degrees of overlap with the trained activities was administered before and after training 

to map the extent to which gains transferred beyond the trained tasks. Working memory can be 

measured using a variety of tasks including: (i) simple span tasks, which involve the immediate 

serial recall of stored items (e.g. digit recall), (ii) simple span tasks with intrinsic processing, 

which require participants to transform the storage material prior to recall (e.g. backward digit 
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recall), (iii) complex span tasks, in which processing episodes are interpolated between storage 

items,  and (iv) n-back tasks, which require the continuous updating of a list of storage items 

(see Section 1.3 for more details). The training program used in this study included both simple 

span and simple span with intrinsic processing tasks. The primary outcome measures were 

working memory tasks with processing components that overlap with the training tasks (i.e. 

forward and backward recall tasks). Any advancement to training via tRNS should be evident in 

these measures as well as the trained tasks. Next, to determine whether any benefits of 

combining training with tRNS extend beyond specific trained processes, transfer to untrained 

working memory tests with different processing demands to the trained activities was also 

assessed. This involved measuring performance on tasks with non-overlapping processing 

demands that have a novel task structure (i.e. complex span and n-back). Secondary tests of 

cognitive processes that are associated with working memory, including measures of inhibition 

(Kane & Engle, 2003) and selective attention (de Fockert, Rees, Frith, & Lavie, 2001), were 

included alongside measures of information processing and standardised assessments of general 

cognitive abilities (e.g. language and non-verbal reasoning), to assess whether stimulation 

promotes transfer beyond working memory paradigms (i.e. far transfer). An emotional 

recognition task with no memory component was included as a non-memory control task. 

2.3 Method 

2.3.1 Participants 

Thirty native-English speaking adults aged 18 - 35 years (11 male) were recruited via the MRC 

Cognition and Brain Sciences Unit research participation recruitment system and through 

advertisements within Cambridge University colleges, and were paid for their participation. All 

participants had normal or normal-to-corrected vision and were stimulation compatible, i.e. they 

had no history of neurological disease or psychiatric disorder, no history or family history of 

epilepsy or other seizures, no metallic object(s) in the body, no cardiac pacemaker, and no 

history of head, throat, or brain surgery, were not taking any drugs that affect the central 

nervous system (including medication and illicit drugs, excluding alcohol) such as antiepileptic 

drugs, antidepressants, benzodiazepines, and L-dopa. See Table 2.1 for participant 

characteristics. 
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2.3.2 Procedure 

The study used a double-blind randomised controlled design. All participants completed two 

pre-training sessions, each lasting approximately 2 hrs. Following pre-assessment, participants 

were assigned to either an active (6 male, 9 female) or sham stimulation group (5 male, 10 

female). Stratified randomisation was used to ensure groups were matched for age, sex, IQ, and 

baseline short-term and working memory ability (see Table 2.1 for a summary of participant 

characteristics by group). All participants completed 10 sessions of working memory training 

over approximately 19 days. Sessions were run individually with each participant. Pre-training 

assessments were re-administered at the end of training in two separate sessions. Written 

informed consent was obtained prior to testing. The study was approved by and conducted in 

accordance with the guidelines of the Cambridge University Psychology Research Ethics 

Committee and the MRC Cognition and Brain Sciences Unit (ethics code = PRE.2013.87; see 

Appendix B for a copy of the ethics approval letter). 

 

 
Table 2.1 – Participant characteristics by group.           

 Stimulation  Sham  Group comparison 

 
M SD  M SD  t p Cohen's d 

Age (years) 25.270 5.509  24.730 4.008  0.303 .764 0.113 

IQ 120.667 8.524  119.333 10.834  0.375 .711 0.138 

Verbal short-term memory 101.067 15.696  100.600 16.322  0.080 .937 0.029 

VS short-term memory 103.733 23.313  106.667 22.064  -0.354 .726 -0.129 

Verbal working memory 101.000 20.078  101.733 19.282  -0.102 .919 -0.037 

VS working memory 103.133 22.427  107.867 15.287  -0.675 .505 -0.251 

Time to complete training (days) 19.330 4.515  18.333 3.867  0.652 .520 0.238 
 

Note. VS = visuo-spatial.          
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2.3.3 Materials 

2.3.3.1 Transfer tasks 

Process-specific memory tasks 

Eight tasks with processing components that overlapped with the training tasks were 

administered. Participants completed four standardised subtests from the Automated Working 

Memory Assessment (AWMA; Alloway, 2007). These included a test of verbal short-term 

memory (digit recall), visuo-spatial short-term memory (dot matrix), verbal working memory 

(backward digit recall), and visuo-spatial working memory (Mr X). Digit recall involved the 

immediate serial recall of a list of spoken digits and dot matrix required the immediate serial 

recall of dots presented on a 4 x 4 matrix. Backward digit recall involved the reproduction of a 

sequence of spoken numbers in backward order. Mr. X required participants to judge whether 

two cartoon characters were holding a ball in same or different hands when positioned at 

different orientations, while recalling the location of the ball in serial order at the end of each 

trial. Standard scores (M = 100, SD = 15) were calculated for each task. Participants also 

completed four computerized experimental tests of verbal and visuo-spatial storage (i.e. short-

term memory) and of verbal and visuo-spatial storage with intrinsic processing (i.e. working 

memory). Prior to each task participants were presented with audio instructions with example 

trials, and all responses were made using a computer mouse. The storage tasks required 

participants to recall items in serial order. Participants were presented with a list of auditory 

digits in the verbal storage task and a series of spatial locations (nine squares at random 

locations were presented on-screen and a single box would light up on each trial) for the visuo-

spatial version. Participants began the tasks at a span of two items which then increased by one 

item in each subsequent block if participants scored three or more correct trials. The task was 

discontinued if participants scored incorrectly on three or more trials. The verbal and visuo-

spatial working memory tasks were identical to the storage tasks, except participants were 

required to recall digits or spatial locations in backward order. Maximum span length reached 

was used to score all tasks. 

 

Memory tasks with distinct processes 

Two n-back and two complex span tasks were used as memory tasks involving different 

processes to the training activities. Separate verbal and visuo-spatial variants of each were 

administered. During the n-back tasks participants were required to continuously update a list 
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of auditory digits (verbal) or on-screen abstract line drawings (visuo-spatial). During the n-back 

tasks participants had to judge whether or not a currently presented digit or image matched an 

item that was presented n items back in the sequence by pressing a keyboard button. During 

each block participants were presented with a continuous list of 20 + n items during which there 

were a total of six possible matches. Responding to a non-target (a false alarm) or failing to 

respond to a match (missing a target) were counted as errors. If five or more errors were made 

within a block then the task would end. If less than five errors were made then participants 

would progress to the next block at which the difficulty level increased by one (e.g. n-back 

increased from one-back to two-back). Maximum n-level reached was used to score these tasks. 

For both the complex span tasks, participants were presented with a series of verbal or visuo-

spatial storage items interleaved with a same-domain processing task, which was presented for 

6 s between each to-be-remembered item. In the verbal complex span task storage items were 

comprised of spoken numbers (digits 1 - 9, excluding two-syllable seven) and during the 

processing episodes participants performed a rhyme judgment task on spoken letter names 

(excluding polysyllabic W). Responses were made by clicking an on-screen rhyme or non-rhyme 

button. Half of the letter pairs rhymed and were constrained to avoid successive alphabetical 

letters, familiar acronyms, words, or names. In the visuo-spatial complex span task participants 

were presented with nine squares in random locations and a single box would light up for each 

storage item. During the interval task participants had to decide whether patterns of lines inside 

a pair of hexagons were the same by clicking an on-screen match or mismatch button 

accordingly. At the end of each trial participants were required to recall the storage items in 

serial order by clicking the sequence on an on-screen digit or spatial location keypad. For both 

complex span tasks storage span began at one and the number of items in the sequence 

increased by one unless a discontinue rule was met. Participants performed three trials at each 

span length. The task was discontinued if two out of three trials were incorrect, if no response 

was made for any of the processing judgments, or if accuracy for all attempted processing 

judgments across the span was less than 66%. Maximum span reached was used to score the 

complex span tasks. 

 

Cognitive process associated with working memory 

Parallel verbal and visuo-spatial tests of executive function were administered. Two flanker tests 

were used as measures of verbal and visuo-spatial selective attention. Both tasks consisted of 

240 trials: 80 baseline, 80 congruent, and 80 incongruent (all trials presented in a random 

order). During the baseline condition participants were presented with a letter (verbal) or 
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arrow (visuo-spatial) and instructed to click a corresponding button matching the target letter 

(A or B) or arrow (← or →). During the congruent trials participants were presented with an 

array of 5 identical letters (e.g. BBBBB) or arrows (e.g. →→→→→) and asked to click the button 

matching the middle letter or arrow. During the incongruent trials participants were presented 

with a target item in the centre of an array but flanked by different items (e.g. AABAA or 

←←→←←). Participants were again required to click a corresponding button matching the 

centre target item. The average reaction time of the difference between congruent and 

incongruent trials was used to index the Flanker effect. 

 Measures of inhibitory control were provided by two Stroop tasks (verbal and visuo-

spatial). Both tasks consisted of 144 trials: 48 baseline, 48 congruent, and 48 incongruent trials 

(presented in blocks by condition). On baseline trials in the verbal Stroop task, neutral words 

(e.g. when) were presented on screen printed in red, green, blue, or yellow. Participants were 

required to click the corresponding colour block from a choice of four below. On congruent 

trials, participants were presented with colour words printed in the same colour as the word 

(e.g. red appeared on-screen, printed in red ink), and again had to click on the block 

corresponding to the colour the word was printed in. On incongruent trials, colour words were 

presented in a different colour to the word itself (e.g. green appeared on-screen, printed in 

yellow). Participants were required to ignore the colour name and again click on the block 

matching the colour the word was printed in. In the visuo-spatial Stroop task participants were 

presented with an arrow and required to make a judgment on the direction it was pointing. In 

the baseline trials the arrow appeared in the centre of a box pointing up, down, left, or right. 

Participants were required to click an arrow from a choice of four below that pointed in the 

same direction. In congruent trials an arrow appeared with the arrowhead touching the same 

side of the box to which it was pointing (e.g. an arrow pointing up, with the arrowhead touching 

the top side of the box). Again, participants were instructed to click on an arrow from a choice of 

four below which was pointing the same way as the target item. On incongruent trials an arrow 

appeared in a position in the box incongruent to the way it was pointing (e.g. an arrow pointing 

up, could appear with part of the arrow touching the left-hand, right-hand, or bottom side of the 

box). Participants were required to ignore the position of the arrow and respond by selecting 

one arrow of a choice of four below which matched the direction the target arrow was pointing. 

The difference between the mean reaction time for correct trials in the incongruent condition 

and the mean reaction time for correct trials in the congruent condition was used to calculate 

the Stroop effect. 
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Information processing and general cognitive abilities 

Two information processing tasks, one verbal and the other visuo-spatial, were also 

administered. During the verbal processing task, auditory pairs of monosyllabic letters were 

presented. Participants had to judge whether each pair of letters rhymed by clicking either a 

green match or red non-match on-screen button accordingly. Participants could make a response 

at the onset of the second letter. Pairs were constrained to avoid successive letters in alphabet 

(e.g. L, M), highly confusable fricative letter names (e.g. F, S), and familiar acronyms (e.g. PC, IT, 

GB) being presented. In total, there were 50 unique ordered pairs, half of which rhymed. During 

the visuo-spatial processing task participants were required to judge whether line patterns 

inside 50 pairs of hexagons were the same or different by clicking a match or non-match button. 

Reaction times for correct trials were used to score both processing tasks.  

Two subtests of the Wechsler Abbreviated Scaled of Intelligence (WASI; Wechsler, 1999) 

were also administered. A test of verbal (Vocabulary) and of non-verbal (Matrix Reasoning) IQ 

were administered: t scores were derived for these two measures and used to calculate a 

composite score of IQ. This composite score was used for matching participants on baseline 

performance when assigning to group, but was not used as an outcome measure. The Numerical 

Operations task of the Wechsler Individual Achievement Test Second Edition (WIAT-II; 

Wechsler, 2005) was also used to measure mathematical ability. Forms A and B of the Peabody 

Picture Vocabulary Test, Fourth Edition (PPVT-4) were used for a measure of receptive 

vocabulary (Dunn & Dunn, 2007). 

 

Cognitive task with no memory load  

The Facial Expressions of Emotion Test (Young, Perrett, Calder, Sprengelmeyer, & Ekman, 2002) 

was used as a measure of emotion expression recognition. This task was included as it has no 

memory load, meaning it would be possible to test whether any potential gains in cognitive tasks 

after training or training with stimulation were specific to working memory-loaded activities. 

During this task participants were presented with 30 morphed faces on an emotional continuum 

ranging between happiness-surprise, surprise-fear, fear-sadness, sadness-disgust, disgust-anger, 

and anger-happiness over five blocks. Participants were required to judge which of six emotion 

labels (happy, sad, anger, fear, disgust, and surprise) best described each facial expression. 

Responses were made by clicking one of six boxes with each label presented at the bottom of the 

screen. There was no limit on response time. Only trials with morphed images of 70% or 90% 

bias towards a particular expression were used to assess performance. Performance was 

measured using accuracy scores (total correct out of 20 for each of the six expressions). 
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2.3.3.2 Training 

All participants completed 10 sessions of adaptive Cogmed Working Memory Training (Cogmed, 

2005). Each session lasted approximately 45 min (excluding set-up) and involved repeated 

practice on eight training exercises. Each exercise included 15 trials per session, yielding a total 

of 120 trials in each session across the tasks. The training tasks were completed according to 

one of two counterbalanced task orders, to ensure all tasks were completed under active 

stimulation for those in the stimulation group. A mixed-measures ANOVA with order (A or B) 

and task (gain for each of the eight training activities) revealed there were no order effects for 

either the active stimulation group, F (7, 91) = 1.462, p = .191, ηp2 = .101, or sham stimulation 

group, F (7, 91) = .943, p = .478, ηp2 = .068. During the first training session, all exercises were set 

at an initial low difficulty level of a span of two. The training program followed an algorithm that 

calibrated the difficulty of each task, by increasing or decreasing span, on a trial-by-trial basis 

according to the performance of each participant to ensure they were continuously working 

close to their personal memory limits. Motivational features were built into the training program 

including a display showing current performance and previous personal high scores. 

Participants also accumulated energy during each exercise which could be used to play a reward 

racing game at the end of each training session. All responses were made by clicking the items 

displayed on-screen. 

Training involved three simple span tasks requiring immediate serial recall of verbal or 

visuo-spatial items; these included: Visual Data Link, Data Room, and Decoder (see Figure 2.1 for 

a screenshot of each of these tasks). During the Visual Data Link task, a sequence of lamps would 

light up on a 4 x 4 grid and participants were instructed to reproduce the order in which the 

lamps lit up. In Data Room, a series of lamps within a three-dimensional room would light up 

and participants were instructed to click on the lamps in the order which they lit up. During 

Decoder, participants were presented with a row of lamps and three empty boxes in a column 

underneath each lamp. A sequence of letters was spoken aloud and at the same time a lamp 

would light up for each letter (from left to right). Participants were instructed to recall the 

sequence of letters in serial order. For each letter to be recalled a choice of 3 was presented 

underneath the corresponding lamp and participants were required to click the correct series of 

letters. 

Training also involved five storage tasks with intrinsic processing: Input Module, Input 

Module with Lid, Number Grid, Rotating Data Link, and Rotating Dots (see Figure 2.1 for a 

screenshot of each of these tasks). During Input Module, participants were presented with a 
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number keypad (displaying digits 1 - 9). A series of numbers were spoken aloud at the same 

time as the corresponding numbers lit up on the keypad. Participants were required to recall the 

sequence in backward order by clicking the number buttons on the keypad. Input Module with 

Lid was identical, except the keypad was covered by a lid as the numbers were spoken aloud. 

The lid would then open up and participants had to recall the digits in backward order. During 

Numbered Grid, a display showing a 4 x 4 grid of covered boxes was presented. Certain numbers 

would be revealed in a random order at random locations on the grid. Participants had to recall 

the sequence of digits in ascending numerical order by clicking the correct location of the 

number. In the Rotating Data Link task, participants were presented with a sequence of lamps 

lighting up on a 4 x 4 grid. The display would then rotate clockwise by 90 degrees and 

participants were asked to recall the correct serial order in which the lamps lit up whilst in their 

new positions. During the Rotating Dots task, ten lamps were presented in a circular display 

which continuously rotated in a clockwise direction. Lamps would light up in a sequence and 

participants were required to recall the correct order by clicking the lamps as they continued to 

rotate. 

 

Visual data link Data room Decoder

Input module with lid Numbered grid Rotating data link Rotating dots

Input module

 
Figure 2.1 – A screenshot of each training activity. 

 

The average span level reached by participants was calculated for each individual 

training activity for each of the 10 training sessions and was used to measure participants 

learning on the trained tasks. During session one, participants began at a storage item span level 

of two for every task. The maximum span participants could reach in this session was below the 

baseline ability of all participants. As no training took place during the first session it was 

excluded from all statistical analyses. 
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2.3.3.3 Stimulation 

A pair of 5 x 5 cm rubber electrodes were placed inside saline-soaked synthetic sponges and 

secured to the head of each participant using a rubber headband. The electrodes were 

positioned over areas of scalp corresponding to the right and left DLPFC identified using the 

standard international 10 - 20 EEG procedure (locations F3 and F4). Stimulation was driven via 

a battery-driven electrical stimulator (Version DC-Stimulator-Plus; NeuroConn). Participants in 

the active stimulation group received 20 min of high frequency tRNS which began at the onset of 

training, with 15 s of increasing and decreasing ramps at the beginning and end of stimulation. 

As in the study by Snowball et al. (2013), high frequency tRNS (101 – 640 Hz) was used, at a 

current strength of 1 mA, with no DC offset (i.e. varying between -0.5 mA and +0.5 mA), at a 

sampling rate of 1280 sample/s. For the sham group the stimulator was set to fade in for 15 s 

and then out over 15 s at the beginning of each session. The display of the stimulator machine 

was identical for the stimulation and sham groups; hence the experimenter was also blind to the 

type of stimulation being applied. 

2.4 Results 

As well as conducting traditional analyses relying on null hypothesis significance testing (NHST), 

statistical tests using Bayes factors (BF) were also performed. Using Bayesian tests, the strength 

of evidence can be quantified for the null hypothesis (that stimulation does not enhance on-task 

training gains) compared to the alternative hypothesis (that stimulation enhances on-task 

training gains). All Bayesian analyses have been conducted using JASP (The JASP Team., 2017) 

with default prior scales. Inverse BF (BF10) have been calculated to express the odds in favour of 

the alternative hypothesis (stimulation has an effect) compared with the null (no effect of 

stimulation). Therefore, in this study a BF10 of 1 to 3 implies weak/anecdotal positive support 

for the alternative hypothesis, a BF10 of 3 to 10 suggests substantial positive evidence for the 

alternative hypothesis, and a BF10 above 10 indicates strong positive evidence for the alternative 

hypothesis (Kass & Raftery, 1995). 
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2.4.1 Training data 

Training data for both groups, averaged across all tasks are presented in Figure 2.2. A nine by 

two mixed measures ANOVA, with a between-subjects factor of session (2 to 10) and a within-

subjects factor of group (stimulation and sham), was conducted on the average scores of all 

training activities combined. The analysis revealed a significant main effect of session,  F (8, 224) 

= 105.114, p < .001, ηp2 = .790. The main effect of Group, F (1, 28) = .201, p = .658, ηp2 = .007, and 

the interaction between group and session, F (8, 224) = .478, p = .871, ηp2 = .017, were non-

significant (see Table 2.2). These results suggest that although participants improved in the 

training over time, stimulation had no additional effect on these gains. Bayesian ANOVAs revealed 

that a simple main effects model in which group and session were entered separately was 

preferred to a model that included a group by session interaction (BF10 = 44.202; see Table 2.2). 
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Figure 2.2 – Training data by group, averaged across all training tasks. Note that data from session 1 are 

not displayed as there was no training in this session (the maximum span participants could reach was 

below the baseline ability of all participants). 

Mixed measures ANOVAs were also conducted on participants’ training scores for each 

individual training activity. Performance across all eight tasks for both training groups is 

presented in Figure 2.3. Group (stimulation and sham) and session (2 to 10) were entered as the 

between- and within-subjects factors, respectively, for each of the eight tasks. Analyses revealed 

significant main effects for all tasks (all p values < .001), indicating that participants improved 
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on each task over time. There were no significant main effects of group and no significant 

interactions between session and group for any of the activities (all ps > .05), suggesting no 

group differences in gains. Bayesian ANOVAs revealed that a simple main effects model in which 

group and session were entered separately was preferred to a model that included a group by 

time interaction for each of the tasks (BF10 ranging from 8.811 to 74.285 in favour of the main 

effects model; see Table 2.2), providing strong evidence for similar gains for all eight of the 

training tasks for both groups. 

 Next, general linear regression models were conducted for each training task to 

investigate whether there were any group differences in overall gains for each of the eight 

training tasks and for average performance across all tasks. For all models, group (active and 

sham stimulation) was entered as the independent variable and session 10 scores were entered 

as the dependent variable. Group did not significantly predict training gains (averaged across all 

tasks), or gains on any of the individual training tasks (see Table 2.2). Bayesian regression 

analyses were also performed with group (active and sham stimulation) entered as the 

independent variable, but did not provide any evidence that stimulation influenced gains on any 

of the training activities, or on average performance across all tasks (all BF10 scores < .5; see 

Table 2.2). 
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Table 2.2 – Changes in training task performance by group. 

 Gains from sessions 2 to 10  Group by session 
 Stimulation  Sham  Group comparison Bayesian 

ANOVA 
BF10 

    Bayesian 
ANOVA 

BF10  M SD  M SD  Beta t p 
 
 F p Partial 

eta 
                

Average 
across all 
tasks 
 

1.426 0.513  1.346 0.689  -0.064 -0.340 0.737 0.360  0.478 .871 0.017 44.202 

Visual 
data link 
 

1.165 0.631  1.167 0.673  0.029 0.156 0.877 0.348  0.232 .985 0.008 74.285 

Data 
room 
 

1.028 0.739  0.672 0.647  -0.107 -0.567 0.575 0.389  1.136 .340 0.039 8.913 

Decoder 
 

0.867 0.761  0.818 0.447  -0.069 -0.368 0.716 0.363  0.236 .984 0.008 60.758 

Input 
module 
 

2.737 2.078  2.719 2.112  -0.085 -0.451 0.655 0.372  0.952 .474 0.033 13.161 

Input 
module 
with lid 
 

2.611 1.345  2.051 1.511  -0.133 -0.712 0.482 0.417  1.123 .349 0.039 8.811 

Number 
grid 
 

1.025 0.804  1.071 0.837  0.059 0.311 0.758 0.357  0.430 .902 0.015 40.550 

Rotating 
data link 
 

0.959 0.636  0.955 0.748  -0.062 -0.331 0.743 0.359  0.216 .988 0.008 67.100 

Rotating 
dots 
 

1.000 0.686  1.269 0.497  0.008 0.042 0.967 0.345  0.740 .656 0.026 22.717 

 

Note. Data from session 1 were not analysed as there was no training in this session (the maximum span participants 
could reach was below the baseline ability of all participants. 
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Figure 2.3 – Training data for individual training tasks by group. Data from session 1 are not displayed as 
there was no training in this session (the maximum span participants could reach was below the baseline 
ability of all participants). 
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Table 2.3 –Group comparisons of rate of change in performance by group. 

 

       

 Stimulation  Sham  Group comparison Bayesian 
 t test BF10 

 N M SD  N M SD  t p Cohen's 
d 

    
 

   
 

    

Average across all tasks 
 

11 0.194 0.087  8 0.138 0.070 
 

1.480 .157 -0.713 0.345 

Visual data link 10 0.059 0.286  8 0.171 0.149 
 
-1.002 .331 0.515 0.380 

Data room 10 0.067 0.134  8 0.157 0.187 
 
-1.200 .248 0.561 0.347 

Decoder 12 0.161 0.188  11 0.173 0.128 
 

1.208 .870 0.076 1.352 

Input module 12 0.465 0.302  6 0.257 0.081 
 

1.629 .123 -1.086 1.332 

Input module with lid 
 

9 0.367 0.217  8 0.153 0.194 
 

2.123 .051 -1.041 0.715 

Number grid 12 0.051 0.456  11 0.210 0.226 
 
-1.041 .310 0.466 0.379 

Rotating data link 7 -0.047 0.523  9 0.145 0.139 
 

0.088 .306 0.580 2.135 

Rotating dots 12 0.261 0.488  10 0.277 0.075 
 
-0.101 .920 0.057 0.634 

 

Note. Data from session 1 were not analysed as there was no training in this session (the maximum span participants 
could reach was below the baseline ability of all participants).  

 

To investigate whether stimulation enhanced the speed of learning on the training 

activities, Order 2 polynomial (quadratic) functions (y = x² + x + c) were computed for each 

individual training task, and for average performance across all tasks, for each participant 

separately. These functions allowed the approximate point at which maximum performance was 

reached (i.e. the asymptote) to be calculated. If stimulation enhanced learning, then the 

stimulation group should reach the asymptotic point faster than those in the sham group. The 

polynomial functions were also used to calculate the rate of change, in other words, how quickly 

participants reached asymptotic performance. The rate of change index was calculated by 

dividing the maximum score at asymptote by the number of sessions taken to reach asymptotic 

performance for each participant. Independent samples t-tests were then used to compare rate 

of change scores between groups (see Table 2.3). Only curves that showed an asymptote within 

the observable training session window were included in the analysis (i.e. if asymptote < session 

2 or > session 10). There were no significant differences in rate of change scores between the 

stimulation and sham groups for the average across tasks, nor for each of the individual tasks. 

The rate of change score for the Input Module with Lid task approached significance (p = .051), 

but this result did not survive a correction for multiple comparisons (Bonferroni corrected p = 

.006). Bayesian independent samples t-tests on the rate of change scores for each training task, 
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and for the average across all tasks, provided equivocal support for the null and alternative 

hypotheses (all BF10 scores ranged from 0.345 to 2.135; see Table 2.3). Together, these results 

suggest that stimulation does not enhance the speed at which participants learn on the training 

tasks. 

2.4.2 Transfer tasks 

To investigate the effect of training alone on transfer, a series of paired-samples t-tests were 

performed to compare pre- and post-training scores for each outcome measure on the sample as 

a whole (see Table 2.4). Family-wise Bonferroni corrections were made to correct for multiple 

testing. Accordingly, the thresholds for statistical significance were: for process-specific memory 

tests and for tests of cognitive processes associated with working memory, p < .006; for non-

process-specific memory tasks and general cognitive abilities, p < .0125; for the cognitive task 

with no memory load, p < .05. Significant main effects of training were found for all of the 

process-specific working memory tasks (all ps ≤ .005), which persisted after correction for 

multiple comparisons. Bayesian t-tests also provided strong evidence for these effects (BF10 

ranging from 7.597 to 131219 in favour of the alternative hypothesis that training had an effect 

on these measures; see Table 2.4). Further t-tests demonstrated no evidence for transfer to 

memory tasks with distinct processes to the training activities following familywise correction 

for multiple comparisons (all ps ≥ .014). Bayesian t-tests corroborated this pattern of effects for 

all tasks except for the visuo-spatial n-back measure, where a BF10 of 3.322 indicated that there 

was positive evidence for a training effect (all remaining BF10 scores ranged from 0.199 to 

2.917). Transfer effects to verbal and visuo-spatial information processing tasks and the number 

operations measure reached significance (all ps ≤ .009), with BF10 scores ranging from 4.726 to 

1374 in favour of a training effect. Following familywise correction for multiple comparisons, 

there was no evidence for training gains on measures of selective attention, inhibitory control, 

language, and non-verbal reasoning, or on a cognitive task with no memory load (all ps ≥ 0.18). 

Bayesian t-tests confirmed this pattern of effects. BF10 scores ranged from 0.195 to 0.319 in 

support of the null hypothesis for no effect of training on a cognitive task with no memory load, 

or measures of selective attention and inhibitory control. BF10 scores for measures of language 

and non-verbal reasoning ranged from 0.510 to 2.766 demonstrating equivocal support for the 

null and alternative hypotheses. 

 Next, the influence of stimulation on transfer was examined. The pre- to post-training 

gains for the active and sham stimulation groups are presented in Figure 2.4 for the process-
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specific tasks and in Figure 2.5 for memory tasks that do not share common processes with the 

training activities. General linear regression analyses were conducted on all outcome measures. 

Pre-training scores and group (active or sham stimulation) were entered as the independent 

variables and post-training scores entered as the dependent variable. Results demonstrated that 

stimulation group was significant predictor of post-training scores on the verbal n-back 

measure, a memory task with distinct processing properties to the training activities. Training 

gains were significantly greater for the active versus sham stimulation group (p = .046), however 

this effect did not survive familywise correction for multiple comparisons (see Table 2.5). 

Training-related differences all on all other transfer measures were not significant (all ps ≤ .09). 

Bayesian regression analyses were also performed. A BF10 of 1.695 for the verbal n-back task 

provided equivocal support for the null and alternative hypothesis (see Table 2.5). Bayesian 

tests for all other transfer tasks favoured the null hypothesis (no effect of stimulation; BF10 

scores ranging from 0.114 to 0.514). In summary, these results provide no compelling evidence 

that stimulation enhances performance beyond training alone on any outcome measure. 
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Table 2.4 – Training related changes in transfer tasks on the sample as a whole. 

  Pre-training  Post-training  Pre to post Bayesian t 
test BF10 

  M SD  M SD  t p Cohen’s 
d 

 

Process-specific memory 
tasks 

  
 

  
 

    

 
Digit recall 100.833 15.735  108.567 15.850  -4.500 <.001 0.490 255.700 

 
Dot matrix 105.200 22.352  120.100 21.865  -6.971 <.001 0.674 131219.000 

 
Backward digit recall 101.367 19.345  115.200 15.338  -5.897 <.001 0.798 8818.000 

 
Mr X  105.500 19.011  114.733 16.885  -5.541 <.001 0.514 3573.000 

 
Verbal storage  7.967 1.351  8.967 1.732  -4.664 <.001 0.649 385.700 

 
VS storage  7.267 1.311  8.033 1.752  -3.516 .001 0.500 23.720 

 
Verbal backward  6.567 1.612  8.133 1.548  -4.683 <.001 0.991 405.000 

 
VS backward  6.433 1.695  7.367 1.921  -3.006 .009 0.517 7.597 

 

Memory tasks with distinct 
processes 

          

 
Verbal N-back 4.933 1.660  5.400 2.313  -1.304 .203 0.235 0.419 

 
VS N-back  3.567 1.547  4.333 1.936  -2.605 .014 0.440 3.322 

 
Verbal complex span 6.133 2.300  6.900 2.551  -2.538 .017 0.316 2.917 

 
VS complex span 4.667 1.863  4.600 2.061  0.220 .827 -0.034 0.199 

 

Processes associated with 
working memory 

          

 
Verbal Flanker effect 82.774 31.099  79.324 66.107  0.335 .740 -0.071 0.205 

 
VS Flanker effect 75.165 76.888  74.031 66.553  0.064 .949 -0.016 0.195 

 
Verbal Stroop effect 43.349 130.081  76.764 136.269  -1.004 .324 0.251 0.308 

 
VS Stroop effect 124.442 68.500  145.107 114.984  -1.043 .306 0.225 0.319 

 

Information processing 
and general cognitive 
abilities 

          

 
Verbal processing  2071.471 580.697  1916.782 328.809  2.780 .009 -0.340 4.726 

 
VS processing  1221.261 435.736  1017.350 308.897  5.166 <.001 -0.548 1374.000 

 
Matrix reasoning 60.667 4.950  62.600 4.223  -2.511 .018 0.421 2.766 

 
Vocabulary 61.700 8.125  63.533 8.427  -2.483 .019 0.221 2.624 

 
Number Operations 112.400 17.047  115.800 15.624  -3.111 .008 0.208 9.532 

 

Peabody Picture 
Vocabulary Test 110.467 14.277  112.567 18.823  -1.467 .153 0.127 0.510 

 

Cognitive task with no 
memory load 

          

  Emotion hexagon 89.806 8.704  89.698 8.212  0.088 .930 -0.013 0.195 
 

Note. Bold text denote significant effects at p < .05 level, bold italics indicate significant effects after family-wise 
correction for multiple comparison. VS = visuo-spatial. 
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Figure 2.4 – Change in process-specific memory tasks by group. Mean effect sizes for pre- to post-training 

gains are displayed. VS = visuo-spatial. 
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Figure 2.5 – Change in memory tasks with distinct processes by group. Mean effect sizes for pre- to post-

training gains are displayed. VS = visuo-spatial. 
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2.5 Discussion 

As predicted, adaptive working memory training was associated with gains on the training 

activities and enhanced performance on transfer measures with processing and storage 

demands in common with the training tasks. These data are consistent with previous research 

demonstrating that practice improves performance on the training tasks and that training 

improves performance on working memory tasks that share overlapping features with the 

training activities (E. Dahlin, Neely, et al., 2008; Melby-Lervåg & Hulme, 2012; von Bastian & 

Oberauer, 2013). 

 There was little evidence for the benefits of training alone on working memory measures 

that had minimal overlap with the training tasks. The Cogmed training involved practice on 

several serial recall activities that required the reproduction of a sequence of verbal or visuo-

spatial memory items, or the mental manipulation of items prior to recall (e.g. reversing a 

sequence of digits or rotating a sequence of spatial locations). Training did not improve 

performance on complex span tasks, which have a novel structure that involves switching 

between the storage of memory items and an unrelated processing activity. There was a small 

training-related gain on the visuo-spatial n-back measure, which involves continuous updating 

and recognition of items. However, this effect did not survive correction for multiple 

comparisons, and the Bayesian analyses revealed positive but not strong evidence for this 

finding. Overall, this pattern of effects is consistent with previous literature demonstrating that 

training produces task-specific learning that does not generalise to other categories of working 

memory paradigm (Dunning & Holmes, 2014; Holmes et al., 2018; Minear et al., 2016; von 

Bastian & Oberauer, 2013). 

There was also no evidence for more distant transfer of working memory training effects 

without stimulation to tests of non-verbal reasoning and language ability. Small increases in 

speed of responses on tests of verbal and visuo-spatial information processing were observed, 

along with small improvements on a test of mathematical ability (three standard score points). 

However, without a no-intervention test-retest, or placebo training control group, it cannot be 

determined whether these effects reflect genuine training benefits or repetition effects. The 

general pattern of far transfer is consistent with the working memory training literature, which 

provides no consistent evidence that training alone ameliorates the everyday difficulties 

associated with working memory, such as problems in attentional focus and learning (Dunning 

et al., 2013; Holmes et al., 2015; Shipstead et al., 2012; Simons et al., 2016). 
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 tRNS did not modulate the speed of learning or magnitude of gains on the training tasks, 

and there was no evidence that it facilitated the generalization of gains to untrained working 

memory tasks that were similar in structure to training activities. There was no effect of 

stimulation on the majority of working memory transfer tasks with distinct processing demands, 

including visuo-spatial n-back, verbal complex span, and visuo-spatial complex span.  tRNS was 

found to modulate gains on the verbal n-back task, a paradigm that does not share common 

processes with the trained activities. Training gains were significantly greater for participants 

who received active versus sham stimulation, however this effect did not survive correction for 

multiple comparisons and Bayesian analyses provided equivocal support for the null and 

alternative hypothesis. There was also no enhancement by stimulation to other measures of far 

transfer, including tests of mathematics, attention, and processing speed. Therefore, there is 

little evidence from the current study that random noise stimulation boosts transfer to either 

working memory measures or other cognitive tasks that have minimal overlap with the training 

activities. Crucially, the results of the current experiment demonstrate that tRNS does not 

overcome major limitations to enhance far transfer following training. 

 The results of this experiment are inconsistent with findings in another cognitive domain 

where tRNS was found to enhance learning when combined with mathematics training (e.g. 

Cappelletti et al., 2013; Snowball et al., 2013). This may reflect differences in the impact of tRNS 

on the different interventions, as working memory training and mathematical training could 

have different effects on the neural substrates they target. Furthermore, it is unclear how the 

complexity of the training programs and their doses interact with stimulation. In the current 

study, training involved practice on a variety of tasks, yet in the studies conducted by Cappelletti 

et al. (2013) and Snowball et al. (2013), participants trained on either a single task, or on two 

tasks, respectively. tES may be more effective when combined with intensive, concentrated 

training on a single paradigm; this will be investigated in a follow-up experiment (see Chapter 

3). Further research also needs to be conducted to examine the impact of different stimulation 

protocols when applied to other cortical regions and combined with different training regimes. 

Candidate factors for further investigate include the type, duration, and intensity of stimulation 

(Batsikadze et al., 2013; Monte-Silva et al., 2010). For example tDCS, an alternative type of 

stimulation, has shown promise for enhancing working memory training (e.g. Au et al., 2014; Ruf 

et al., 2017). This will be discussed further in the following chapter (see Chapter 3). 

 To conclude, this experiment provides the first test of the potential additive benefits of 

combining tRNS with working memory training. Strong training gains were observed on trained 

activities and overlapping transfer tasks in participants irrespective of stimulation condition. 



60 Does transcranial random noise stimulation (tRNS) enhance the effects of working memory training? 

 

However, using the most rigorous intervention design, there was no reliable evidence that 

random noise stimulation enhances the rate of learning or magnitude in gains on the training 

tasks, or that it extends the limited transfer found with working memory training. 

 Although it did not survive the correction for multiple comparisons, the significant group 

difference found for the verbal n-back task, provides some indication that tRNS may have 

promoted the generalization of training gains to working memory tasks that involve a different 

structure. It is possible that this is a genuine effect that has been lost in this large-scale 

exploratory study or that it may simply be a spurious finding. To investigate this effect, a more 

focused follow-up study was conducted to examine whether stimulation enhances the transfer of 

training gains across two well-validated working memory paradigms (see Chapter 3).  

 



 

Chapter 3 Backward digit training: Cross-

paradigm transfer and the effects of transcranial 

direct current stimulation (tDCS) 

3.1 Aims 

Working memory training is associated with improvements on untrained memory tasks when 

features overlap between the trained activities and transfer tasks (E. Dahlin, Neely, et al., 2008; 

Soveri, Antfolk, et al., 2017; Soveri, Karlsson, Waris, Grönholm-Nyman, & Laine, 2017; von 

Bastian & Oberauer, 2014). To date, there has been little systematic investigation into the 

processes or features that must overlap between trained and untrained tasks for transfer to 

occur. They could include paradigm-specific skills such as updating (E. Dahlin, Neely, et al., 

2008), or processes related to encoding or maintaining the memory items (Ericsson, Chase, & 

Faloon, 1980; Minear et al., 2016; von Bastian & Oberauer, 2014). Transcranial direct current 

stimulation (tDCS) has been shown to enhance on-task working memory training gains (Au et al., 

2016; Richmond et al., 2014; Ruf et al., 2017) and promote transfer to untrained tasks (Au et al., 

2016; Ruf et al., 2017), but there has been no systematic investigation into the limits of these 

potential enhancements across untrained tasks. The two key aims of this study were to: (1) 

understand the limits of transfer within working memory by examining the task characteristics 

that must overlap between training and transfer activities for transfer to occur, and (2) to 

examine whether tDCS can enhance training and/or promote the generalisation of training 

effects within and across working memory paradigms. 
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3.2 Introduction 

3.2.1 Training transfer 

Improvements on untrained working memory tasks following training typically only occur 

under circumstances where there is substantial overlap between the structural properties, 

features, and processes of training and transfer tasks (Melby-Lervåg & Hulme, 2012; Simons et 

al., 2016). There is little evidence that training benefits everyday functions that rely on working 

memory (e.g. Dunning, Holmes, & Gathercole, 2013), or that training-related gains generalise to 

other working memory tasks that involve distinct processes to the training activities (Simons et 

al., 2016). These findings suggest that training is not altering the fundamental capacity or 

efficiency of working memory, and instead support a task- or process-specific theory of transfer. 

According to these accounts, training is promoting the development of processes or strategies 

that are specific to the training activities and transfer occurs for untrained tests with shared 

processes and characteristics (E. Dahlin, Neely, et al., 2008; Dunning & Holmes, 2014; Gathercole 

et al., 2018; Minear et al., 2016; Sprenger et al., 2013; von Bastian & Oberauer, 2014). This idea is 

not new. In fact, over a hundred years ago Thorndike and Woodworth's (1901) principle of 

identical elements stated that the level of similarity between the training and test situation will 

determine the degree to which information is transferred. The more similar the training and test 

situations are, the more likely it is that information will transfer. Conversely, if the situations 

have nothing in common then transfer is unlikely.  

The boundary conditions for transfer following working memory training are not well 

understood: it is not clear what the overlapping properties must be between the training and 

test tasks to generate transfer. So far, the field of working memory training has been hampered 

by a lack of theory driven accounts of transfer and a lack of hypothesis driven research (von 

Bastian & Oberauer, 2014). Many studies rely on post hoc explanations of observed patterns of 

transfer (e.g. Sprenger et al., 2013; von Bastian & Oberauer, 2013), or include a variety of 

training activities and/or outcome measures with varying degrees of overlapping task features, 

which makes it difficult to isolate the task properties that constrain transfer (e.g. Anguera et al., 

2012; Redick et al., 2013; Sprenger et al., 2013; Thompson et al., 2013; von Bastian, Langer, 

Jäncke, & Oberauer, 2013). To understand the boundary conditions to transfer, studies are 

needed that systematically manipulate common characteristics across training and transfer 

tasks. 
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Task- and process-specific accounts of transfer predict the benefits of training will be 

minimal across different categories of working memory task (e.g. n-back to complex span) 

because the training and outcome activities share so few overlapping features. However, it 

remains unclear whether limits on cross-paradigm transfer are associated with processes or 

strategies tied specifically to the trained task (e.g. the requirement to update the contents of 

working memory as in an n-back task), or to other aspects of the task content including 

stimulus-specific features such as the domain of to-be-remembered items (i.e. verbal or visuo-

spatial materials) and the type of memoranda (e.g. materials could be digits or letters). 

Therefore, there are a number of candidate task characteristics that might drive transfer 

including: paradigm, stimulus domain, and stimulus materials. Each of these will be considered 

in the following sections (see Section 3.2.1.1 for paradigm, Section 3.2.1.2 for stimulus domain, 

and Section 3.2.1.3 for stimulus materials). 

3.2.1.1 Paradigm 

Working memory can be measured and trained using a variety of different paradigms such as 

backward recall, complex span, and n-back. Although these tasks are considered valid indicators 

of working memory capacity, they differ in terms of their storage and processing demands (e.g. 

explicit serial recall, interpolated processing, or updating and recognition). For a full description 

of different categories of working memory task see Section 1.3. Transfer might be mediated by 

paradigm-specific cognitive processes. For example, repeated practice on a complex span task 

could be training coordinated processes to protect memory items from distraction, whereas 

practice on n-back could be training the ability to update the contents of working memory. 

Investigations into cross-paradigm transfer have produced mixed results. Some studies 

do report cross-task transfer. Several studies have reported positive transfer following n-back 

training to complex span (Anguera et al., 2012; Schwarb, Nail, & Schumacher, 2016). Similarly, in 

an unpublished report conducted by Seidler and colleagues (2010), participants showed small 

improvements on operation span following n-back training. However, the majority of studies fail 

to demonstrate transfer across different categories of working task (e.g. Holmes, Woolgar, 

Hampshire, & Gathercole, 2018; Li et al., 2008; Minear et al., 2016; Redick et al., 2013; Thompson 

et al., 2013). For example, Redick et al. (2013) failed to show transfer to symmetry or running 

span tasks following dual n-back training containing visuo-spatial (location of squares) and 

auditory verbal (letters) materials. Similarly, Thompson et al. (2013) found that dual n-back 

training, also involving auditory letters and visual spatial locations, did not transfer to operation 
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span or reading span tasks. Several other studies have also reported an absence of training 

effects from practice on n-back tasks to complex span tasks (Chooi & Thompson, 2012; Holmes 

et al., 2018; Lilienthal, Tamez, Shelton, Myerson, & Hale, 2013) and vice versa (Holmes et al., 

2018; von Bastian et al., 2013). Similarly, Shavelson, Yuan, Alonzo, Klingberg, and Anderson, 

(2008) found that gains following training on a working memory program with a variety of tasks 

focusing on forward and backward serial recall (e.g. Cogmed) did not transfer to a complex span 

task (operation span), or an updating task (running span). Another study failed to show transfer 

from n-back training to backward digit span (Heinzel et al., 2014). 

The lack of cross-paradigm transfer between different working memory tasks supports 

the theory that paradigm is a boundary condition to transfer. One explanation for this pattern of 

effects is that transfer is mediated by paradigm-specific cognitive processes. For example, 

Dahlin, Neely, Larsson, Bäckman, and Nyberg (2008) reported transfer to n-back following 

training on a running span task, but not to a Stroop task. They suggested this pattern of gains 

might reflect improvements in the ability to update the contents of working memory following 

training, which benefitted other tasks involving updating (i.e. running span) but not tasks with 

different processing requirements (i.e. Stroop). Functional imaging also revealed training-

related activity in a striatal region that mirrored activity observed during the updating transfer 

task. Therefore, transfer may only occur if the training and transfer tasks engage overlapping 

brain regions and share processing demands. 

If training is enhancing task-specific cognitive processes then the benefits of training 

would be predicted for untrained tasks that involve the same processes. For example, n-back 

tasks require regular updating of the contents of working memory, and so training benefits from 

n-back would be predicted to generalise to other tasks requiring updating such as running span. 

However, evidence supporting this idea is inconsistent. For example, while one study found that 

training on a dual n-back task was associated with significant gains on running span, but not 

complex span (Lilienthal et al., 2013), another failed to demonstrate such effects of transfer from 

n-back to running span (Redick et al., 2013). This explanation fails to explain why transfer 

effects are often absent across paradigms that involve the same cognitive processes. If training is 

enhancing paradigm-specific processes then within-paradigm transfer to tasks that use novel 

materials is also expected (e.g. complex span to untrained versions of complex span). These 

effects are also inconsistent. Training on verbal (operation) and visuo-spatial (symmetry) 

complex span tasks results in generalisation to untrained complex span tasks, despite them 

containing different distractor episodes and novel memory items to those used in the training 

activities (Harrison et al., 2013). This could be due to complex span training enhancing the 
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ability to resist interpolated distraction. Similarly, gains are found on untrained versions of n-

back with novel materials following n-back training (Holmes et al., 2018; Minear et al., 2016). 

However, some studies fail to show transfer within-paradigm to untrained versions of complex 

span with novel materials (Holmes et al., 2018; Minear et al., 2016). Note that for the Minear et 

al. (2016) study, a composite complex span score was used to measure transfer. 

An alternative theory, which builds on the process-specific account, is that training 

promotes the development of novel cognitive routines for trained tasks and transfer will occur 

when these routines can be applied to untrained tasks (Gathercole et al., 2018). According to this 

framework, in order to perform a working memory task that has a complex and unfamiliar 

structure, a new routine must be constructed and refined. Cognitive routines co-ordinate 

existing component cognitive processes into a novel sequence to meet task demands and have a 

hierarchical structure composed of repeated sub-routines. With repeated practice over time 

they become more efficient and autonomous (Gathercole et al., 2018), mirroring the types of 

changes that are found during the course of acquiring other complex cognitive skills (Anderson, 

1982; Tenison & Anderson, 2016). This framework differs to previous accounts of transfer. 

While a process-specific account might argue that training is enhancing a single underlying 

process (e.g. updating), this new theory refers to the sequencing and coordination of processes, 

and the extent to which this sequence of processes can be applied to untrained tasks. 

 Gathercole et al.'s (2018) framework also makes specific predictions about training and 

transfer. First, training will only occur for tasks that are highly unfamiliar: there will be minimal 

training gains for tasks that can be performed using routines or mechanisms that are already 

highly practiced (Gathercole et al., 2018). For example, the processes required to perform a 

verbal short-term memory task such as forward digit recall are well-established and commonly 

used in everyday life (Baddeley et al., 1984; Gathercole et al., 2018). There is therefore no need 

to establish a new routine to perform the task, and limited scope for training gains. Small gains 

on such tasks might reflect fine tuning of existing mechanisms. Second, transfer will only occur if 

the cognitive routines or strategies developed during training can be readily modified to meet 

the demands of an untrained working memory task. For example, training on an unfamiliar task 

such as backward recall with digits requires a new routine to be developed for the recall phase. 

In order to successfully perform this task, the routine must draw on established cognitive 

processes to make repeated covert cycles of forward recall through the sequence to enable the 

final digit to be reported. The novel aspect of the routine comes in peeling off the final digit 

successively with each cycle through the sequence (Anders & Lillyquist, 1971; Thomas, Milner, & 

Hanerlandt, 2003). Transfer is predicted for other tasks to which the same routine can be 
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applied. For example to untrained backward span tasks with other types of verbal material, such 

as letters or words. However, the overall cognitive routines that are employed to perform other 

types of task such as complex span and n-back are distinct, and so this framework does not 

predict cross-paradigm transfer. 

3.2.1.2 Stimulus domain 

It is unclear whether cross-stimulus domain transfer occurs within a working memory paradigm 

(e.g. backward recall training with digits to backward spatial recall). Working memory training 

might be targeting processes or strategies that are specific to the verbal or visuo-spatial domain 

of task content. For instance, training on tasks with verbal stimuli might promote the 

development of chunking that can be used to remember verbal items such as letters and digits, 

but is unlikely to be used for visuo-spatial materials. Transfer might therefore be predicted 

across trained and untrained tasks with same-domain stimuli, but not across training and 

transfer tasks with different domain-stimuli. As described earlier (see Section 1.2.1), verbal and 

visuo-spatial recall are both served by specific processes for encoding and maintaining item and 

order information. Verbal information is stored and maintained in the phonological loop, while 

visuo-spatial information is held in the visuo-spatial sketchpad (Baddeley, 1986, 2012b; 

Baddeley & Logie, 1999; Logie, 1995; Logie & Pearson, 1997). 

According to the theory proposed by Gathercole and colleagues (2018) that training 

involves creating a new routine to perform unfamiliar task, transfer is not predicted to an 

untrained task with materials from a different domain to the training task (i.e. training on 

backward recall with verbal materials such as digits will not transfer to backward spatial recall). 

This is for two reasons. Firstly, backward versus forward recall results in a greater impairment 

in span for verbal than for spatial stimuli (Isaacs & Vargha-Khadem, 1989), suggesting the 

processes required for reversing verbal and visuo-spatial materials are fundamentally different. 

Second, while verbal rehearsal is a well-practiced mechanism established in short-term memory, 

the efficiency of spatial rehearsal is less practiced and much more attentionally demanding 

(Gathercole et al., 2018; Pearson, Ball, & Smith, 2014). Therefore, it is anticipated that the 

routines required for backward span tasks with verbal and spatial stimuli will differ 

substantially. 

 Within-paradigm cross-stimulus domain transfer effects are inconsistent. Some studies 

demonstrate positive effects. For example, n-back training with spatial locations transfers to 

untrained n-back tasks with letters or digits (Buschkuehl et al., 2014; Li et al., 2008), and vice 
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versa (Bürki, Ludwig, Chicherio, & de Ribaupierre, 2014). On the other hand, some fail to show 

this pattern. Blacker et al. (2017) found no benefits on verbal complex span containing letters 

and numerical operations following training on a visuo-spatial complex span task involving 

spatial locations and symmetry judgement of shapes. Therefore, it is unclear whether stimulus 

domain is a barrier to transfer, and so far, no studies have investigated cross-domain transfer 

within a backward serial recall paradigm. 

3.2.1.3 Stimulus materials 

The type of memoranda could also be a barrier to transfer. Training-related improvements could 

arise through the development or refinement of stimulus-specific mnemonic strategies 

(Gathercole et al., 2018; Minear et al., 2016), such as chunking to remember a series of letters as 

a word or familiar acronym, or mentally tracing a shape to remember spatial locations. Such 

strategies could be specific to the memory items (type of material), as found in a study showing 

that training for sequences of digits was tied to the use of mnemonic strategies (based on 

familiar units of long-distance running times) that could not be applied to novel letter materials 

(Ericsson, Chase, and Faloon, 1980). This account assumes that the development of such 

material-specific strategies should lead to training-related gains on other tasks with the same 

content. However, Minear et al. (2016) found that participants completing spatial n-back 

training reported using mental imagery (e.g. tracing shapes) to keep track of sequence locations, 

but found no evidence of transfer to visuo-spatial complex span tasks that also involved keeping 

track of spatial locations. Likewise, following verbal complex span training, most of the 

participants reported using a strategy specifically for remembering letters (i.e. chunking to 

remember sequences by associating the letters with words and forming sentences, or linking 

letters with acronyms or people’s initials), but no improvements were found on other untrained 

memory tasks using letters. 

 Some studies have, however, found within-paradigm transfer to tasks with different 

categories of stimuli in the same domain. For example, training on an n-back task with letters 

transfers to n-back with digits (Küper & Karbach, 2016). Similarly, gains on n-back tasks 

containing visuo-spatial items such as shapes or objects have been found following training on 

n-back with spatial locations  (Jaeggi, Studer-Luethi, et al., 2010). These results indicate that 

material specificity may not be a boundary condition to transfer. 



68 Backward digit training: Cross-paradigm transfer and the effects of transcranial direct current stimulation (tDCS) 

 

3.2.2 Stimulation 

Neuroimaging studies have shown that the dorsolateral prefrontal cortex (DLPFC) plays an 

important role in working memory (Curtis & D’Esposito, 2003; D’Esposito et al., 1998; Owen, 

1997, 2000; see Section 1.5.5 for more details), and tDCS applied this region has been shown to 

boost working memory performance in single sessions in numerous studies (Andrews et al., 

2011; Boggio et al., 2006; Fregni et al., 2005; Jeon & Han, 2012). Several studies have also 

investigated the use of tDCS in multi-session training protocols with young healthy adults and 

produced mixed results (Au et al., 2016; Martin et al., 2013; Richmond et al., 2014; Ruf et al., 

2017). Au et al. (2014) found evidence for an enhanced rate of learning (i.e. a steeper rate of 

improvement) for participants completing visuo-spatial n-back working memory training with 

active tDCS over left or right DLPFC relative to those receiving sham tDCS. Stimulation also 

enhanced performance on untrained versions of n-back relative to sham stimulation in this 

study. Similarly, Ruf et al. (2017) found that active tDCS to left and right DLPFC enhanced the 

rate of learning for verbal and spatial versions of n-back working memory training and also led 

to greater improvements on an untrained version of n-back relative to sham stimulation. 

Other studies have failed to demonstrate enhancements by tDCS. Richmond, Wolk, Chein 

and Olson (2014) found that active tDCS over left DLPFC resulted in enhanced on-task training 

gains on a verbal, but not spatial, complex span task relative to sham stimulation. Although they 

found evidence that tDCS shifted the learning curve of training upwards, it did not increase the 

rate of learning. The authors also claimed that stimulation enhanced transfer to untrained 

working memory tasks, however this was only found for the active stimulation with training 

group when they were compared to a no-intervention group. Critically, no significant differences 

were found between the training groups with active and sham tDCS. Consequently, this effect 

can be attributed to training alone. In another study by Martin et al. (2013), tDCS applied over 

the left DLPFC during dual n-back working memory training did not enhance on-task training 

gains. In terms of transfer, although the training group with real stimulation showed greater 

gains on an untrained working memory task at outcome compared to a tDCS only group (no 

training), again no significant differences were found between the training groups with active 

versus sham stimulation (Martin et al., 2013). 
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3.2.3 Aims 

3.2.3.1 Training transfer 

To increase our understanding of the constraints on transfer it is important to track the degree, 

or distance, to which training gains generalise within and across different categories of working 

memory paradigm. The novel aim of the current study was to do this by systematically 

manipulating the degree of overlap between training and transfer tasks to test whether 

paradigm, stimulus domain, or stimulus material constrain transfer. Table 3.1 summarises the 

training and transfer tasks. The generalisation of gains following training on backward digit 

recall (BDR) was tracked both to other variants of backward recall (with letters and spatial 

locations) and also to different variants of n-back tasks. 

 Within-paradigm transfer was explored to test whether stimulus type or domain 

restricted transfer. A number of backward recall measures were included at outcome to assess: 

(i) generalisation to the same paradigm with the same materials (BDR), (ii) transfer to the same 

paradigm with novel stimuli in the same domain (backward letter recall), and (iii) transfer to the 

same measure with novel materials in a different domain (backward recall with spatial 

locations). Post-training gains on backward letter recall would demonstrate that category of 

materials does not constrain transfer, and gains on backward spatial recall would suggest that 

neither does stimulus domain. 

 
Table 3.1 – Trained and untrained tasks. 

Task paradigm Stimulus domain Stimulus category 
    

Training   

 Backward recall Verbal Digits 

Transfer   

 Backward recall Verbal Digits 

 Backward recall Verbal Letters 

 Backward recall Visuo-spatial Spatial locations 

 n-back Verbal Digits 

 n-back Verbal Letters 
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 Cross-paradigm effects were tested by including two n-back tasks at pre- and post- 

training: (i) an n-back task with the same materials as the training task (n-back with digits), and 

(ii) an n-back task with distinct materials from the training task, but from the same domain as 

the memory items in the training task (n-back with letters). If paradigm is a barrier to transfer, 

then transfer is not predicted from training on backward digit recall to any of the n-back tasks. 

This may be due to substantial differences in the structural properties and processing demands 

of the tasks. During n-back a full sequence of items must be refreshed as a new item is added to 

the list and the first item is dropped, meaning the serial position of storage items must be 

continuously updated as the list is presented. In contrast, in a backward recall task all storage 

items are presented prior to any manipulation of information, meaning the whole sequence 

must be held in mind and then transformed following encoding. n-back also requires recognition 

and familiarity-based responding during list presentation, while backward serial order tasks 

require explicit recall (Oberauer, 2005). Given the substantial differences in the structural 

properties of the tasks, there will be little overlap between the cognitive routines for the two 

paradigms, meaning cross-paradigm transfer is unlikely (Gathercole et al., 2018). Gains on n-

back with digits would mean training transfers across paradigm and across stimuli, and 

improvements on n-back with letters would mean paradigm and stimulus materials do not 

constrain transfer. Lack of transfer to any n-back task would suggest that paradigm is barrier to 

transfer. 

A common methodological limitation in the cognitive training field is the lack of an 

adequate active control training group (Redick et al., 2013). Typically, no-intervention or 

placebo (non-adaptive training) groups are used as controls. However these protocols are not 

sufficiently cognitively demanding and fail to control for motivation and expectancy effects (see 

Section 1.4.2, for further explanation). To overcome this problem the current study included an 

active control training group who completed an adaptive visual search task. Performance on 

visual search is unrelated to working memory ability (Kane et al., 2006), and adaptive training 

on this task does not result in gains on working memory transfer measures (Harrison et al., 

2013; Redick et al., 2013). Note that the group completing visual search training also received 

sham stimulation to control for any potential placebo effects associated with giving sham 

stimulation to the sham BDR training control group. 
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3.2.3.2 Stimulation 

A second aim was to investigate whether tDCS could enhance working memory training and 

transfer. For a detailed description of this technique and its potential in enhancing various 

cognitive abilities, see Section 1.5. The current study aimed to test whether active tDCS enhances 

training performance on a single BDR paradigm relative to a sham control group completing the 

same training regime. The inclusion of the various forms of backward recall and n-back 

paradigms at pre- and post-training enabled the effects of stimulation on transfer to untrained 

working memory tasks to be tested systematically. As with training effects, if tDCS enhances 

transfer within paradigm then gains are predicted for untrained backward recall tasks, and if it 

enhances cross-paradigm transfer then gains are expected for the n-back tasks.  

3.2.3.3 Summary of aims and predictions 

In summary, the key aims of this study are (1) to systematically investigate the boundary 

conditions to training transfer by testing whether the benefits of training on a BDR task transfer 

to untrained working memory tasks with varying degrees of overlap with the training task, and 

(2) to test whether tDCS can enhance on-task training gains and transfer. It was predicted that 

following training alone, paradigm would be a boundary condition to transfer (i.e. no significant 

transfer would be observed to any n-back task). Based on previous findings, category of 

materials within domain was not expected to be a barrier and so significant transfer to 

backward digit and backward letter recall was predicted. However, no specific predictions were 

made regarding transfer to backward spatial recall. In terms of the additional benefits of 

stimulation, it was predicted that the working memory training group with active stimulation 

would show greater on-task training gains relative to the working memory training group with 

sham stimulation, and therefore greater gains would also be observed for the BDR outcome 

measure as it is the same as the trained task. This finding would be consistent with previous 

reports by Au et al. (2016), Richmond et al. (2014), and Ruf et al. (2017). For transfer to novel 

tasks, no specific predictions are made regarding the effects of tDCS to backward recall (with 

letter or spatial locations), or to n-back (with letters or digits) due to the mixed and inconsistent 

findings of previous stimulation studies. 

 The protocol for this study was pre-registered with the Open Science Framework 

(www.osf.io/r4q3s; see Appendix C). 
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3.3 Method 

3.3.1 Participants 

Forty-eight right-handed, native English-speaking adults (31 female) aged 18-35 years (M = 

23.229, SD = 3.680) with normal or corrected-to-normal vision completed this study. 

Participants were recruited via the MRC Cognition and Brain Sciences Unit, University of 

Cambridge research participation system or through advertisements within Cambridge 

University colleges. All participants were stimulation compatible, i.e. they had no history of 

neurological disease or psychiatric disorder, no history or family history of epilepsy or other 

seizures, no metallic object(s) in the body, no cardiac pacemaker and no history of head, throat, 

or brain surgery, were not taking any drugs that affect the central nervous system (including 

medication and illicit drugs, excluding alcohol) such as antiepileptic drugs, antidepressants, 

benzodiazepines, and L-dopa. 

3.3.2 Procedure 

This was a double-blind randomised controlled study. Participants completed the transfer tests 

in pre- and post-training sessions (average completion time, including short breaks and practice 

trials = 87.344 min). After completing the pre-training session, participants were assigned to 

one of three training groups: visual search training with sham stimulation (n = 16, 11 female), 

BDR training with sham stimulation (n = 16, 11 female), or BDR training with active stimulation 

(n = 16, 9 female). Stratified randomisation was used to ensure groups were matched for age, 

sex, and baseline scores on all the pre-training tasks. The investigator who performed the 

randomisation was independent of the experimenter who collected the data. Participants then 

completed three days of adaptive training with active or sham tDCS. Following training 

participants completed the post-training session. All test and training sessions were conducted 

individually with each participant. Written informed consent was obtained prior to testing. The 

study was approved by, and conducted in accordance with the guidelines of the University of 

Cambridge Psychology Research Ethics Committee and the MRC Cognition and Brain Sciences 

Unit (ethics code = PRE.2016.016; see Appendix D for a copy of the ethics approval letter). 
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3.3.3 Materials 

All training and transfer tasks were computerised. 

3.3.3.1 Transfer tasks 

Backward recall 

Participants completed three backward recall measures, each with a different set of stimuli; (i) 

digits (1 to 9), (ii) letters (B C D F G H J K L; i.e. the first 9 letters of the alphabet excluding 

vowels), or (iii) spatial locations (nine boxes at random but fixed locations on the computer 

screen). Trials were presented in blocks, each consisting of four trials. For each trial the to-be-

remembered items or locations were presented visually on screen one at a time for 1000 ms, 

followed by a blank screen for 1000 ms. Participants were then prompted to recall the sequence 

in backward order via a touchscreen keypad of digits, letters, or spatial locations depending on 

the task administered (unlimited response time). All tasks started at a span of three items which 

increased by one item in each subsequent block if the participant scored three or more correct 

trials. The task was discontinued if two or more trials were incorrect in a block. Maximum span, 

as measured by the level the task discontinued on minus one, was recorded. 
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Figure 3.1 – Backward recall tasks (illustrated for a span of 3 items), including: (A) backward digit recall, 

(B) backward letter recall, and (C) backward spatial recall. 

 

n-back 

Two n-back transfer tasks were administered; one with digits (1 to 9) and one with letters (B C 

D F G H J K L). Stimuli were presented one at a time in continuous blocks of 20 + n items, where n 

corresponded to the number of items back to be matched. Each item was presented for 760 ms, 

followed by a blank screen for 2500 ms. Participants were required to indicate whether the 

current item on screen matched the one presented n items back in the sequence via a button 

press. For example, on two-back (n = 2) participants had to decide whether the number on 

screen matched the one presented two items previously in the sequence. In each block there 

were a total of six possible targets (matches), and 14 + n non-targets. Participants were only 
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required to respond to matches, and could do so at any time during stimulus presentation or the 

fixation window for a given trial. An error was scored if participants pressed the button for a 

non-target (a false alarm), or if participants failed to press the button when a match was present 

(a miss). Total errors were scored as a combination of false alarms and misses. The first block 

began at one-back and the difficulty level increased by one in each subsequent block if less than 

five total errors were made (e.g. increase from one-back to two-back). If five or more total errors 

were made within a block then the task would end. Maximum n-level, as measured by final n-

level minus one, was scored. 
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Figure 3.2 – n-back tasks (illustrated for a two-back level), including: (A) n-back with digits, and (B) n-

back with letters. 

3.3.3.2 Training tasks 

Backward digit recall 

BDR training involved reverse serial recall of sequences of digits. The stimuli, presentation rate, 

and response methods were identical to the BDR transfer task (see Figure 1.1). Trials were 

presented in blocks of four trials. This was an adaptive task, meaning the difficulty level was 

increased or decreased depending on performance. During the first training session the 
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difficulty level was titrated to individual baseline performance (as measured at pre-test) minus 

one. During the second and third training sessions the task would begin at the highest level 

reached during the previous training session minus one. The rules for progression up and down 

the levels within each training tasks were: increase by one storage item if three consecutive 

correct responses were made, decrease by one item if two consecutive incorrect responses were 

made, otherwise the sequence length remained the same. Participants completed three training 

sessions, with 100 trials per training day, yielding 300 trials in total. Average performance, as 

measured as the average span level reached on correct trials, was scored for each training 

session. 

 

Visual search 

An adaptive visual search task was used as the active control training program (Harrison et al., 

2013; Redick et al., 2013). On each trial participants were presented with a brief array of letters 

for 500 ms. This array contained a single left or right facing target F and multiple distractors 

made up of left and right facing Es, and left and right tilted Ts (see Figure 3.3). Participants were 

then presented with a mask screen for 2500 ms during which time they had to indicate whether 

the target F was facing left or right via button presses. If participants did not respond during this 

window the trial was scored as incorrect. The difficulty of the task was manipulated by 

increasing or decreasing the size of the array. Each increase in difficulty alternated between 

adding another column and then another row to the array.  For example; level one was a 2 x 2 

array, level two was a 2 x 3 array, level three was a 3 x 3 array, and so on. The rules for 

progression up and down the levels within the visual search training tasks were: increase 

difficulty level by one if accuracy in the previous block was equal to or greater than 87.5%, 

decrease difficulty level by one if accuracy in the previous block was equal to or less than 75%, 

otherwise the difficulty level remained the same. Each training session began at level one. 

Participants completed three days of training. There were 30 blocks per session, with each block 

containing 24 trials, yielding 2160 trials over the three training sessions. Average performance, 

as measured by the average level of difficulty reached across all trials, was scored for each 

training session. 
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(A) (B)

 
Figure 3.3 – Visual search training task, with illustrations of arrays for (A) level one and (B) level five. 

 

3.3.3.3 Stimulation 

tDCS was applied to the left DLPFC via two 5 x 5 cm rubber electrodes covered with saline-

soaked sponges.  An anodal electrode was positioned on the scalp over the area corresponding 

to region F3 according to standard international 10-20 EEG electrode placement procedure, and 

a reference cathodal electrode was position over the contralateral supraorbital area. Electrodes 

were secured with a rubber headband and stimulation was delivered using a battery-driven 

electrical stimulator (DC-STIMULATOR-PLUS; NeuroConn). Participants in the active stimulation 

group received 10 min of tDCS at 1 mA with 15 s of increasing and decreasing ramps at the 

beginning and end of stimulation. For those in a sham condition, stimulation faded in for 15 s 

and then was ramped down over 15 s to mimic the initial sensations associated with actual 

stimulation and blind participants to their stimulation condition. The display of the simulation 

machine was identical for active and sham conditions ensuring the participants were blind to the 

type of stimulation being delivered. The experimenter was blind to stimulation condition for 

participants in the two BDR training groups, but knew participants in the visual search group 

were receiving sham stimulation. 

3.3.4 Analysis plan 

This plan has been reproduced from the pre-registered report (www.osf.io/r4q3s; see Appendix 

C). The tense has been changed to fit with the context of the chapter. 
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On-task training gains 

To investigate whether participants showed gains on the training tasks, paired-sample t-tests 

were performed separately for each of the three groups. In each case, average performance on 

training day one was compared to average performance on training day three. Average 

performance was measured as the average level of difficulty reached on correct trials. It was 

predicted that performance will be significantly higher on day three compared to day one for 

each training group. 

 

Within- and cross-paradigm training effects following backward recall training 

To test whether training on BDR benefited performance on other backward recall tasks (within-

paradigm transfer) and on n-back tasks (cross-paradigm transfer); general linear regression 

analyses were performed separately for each of the five outcome measures. In each case, post-

training scores were entered as the dependent variable with pre-training scores and group 

(backward recall training with sham stimulation or visual search training with sham 

stimulation) entered as the independent variables. A Bonferroni correction for multiple 

comparisons was used for each regression.  As there are five outcome variables the alpha level 

was p < .01. It was predicted that there would be significantly greater gains on backward recall 

with digits and letters following BDR training with sham stimulation compared to visual search 

training with sham stimulation. No predictions were made regarding the extent to which BDR 

training alone (i.e. with sham stimulation) would lead to transfer to backward spatial recall. 

Gains were not predicted for either group on the two n-back tasks. 

 

Modulation of on-task training gains by stimulation 

A general linear regression was performed to test whether stimulation (active or sham) 

predicted differences between the pre- to post-training scores for BDR training. Performance on 

training day three was entered as the dependent variable, and group (active or sham) and 

training day one performance were entered as the independent variables. It was predicted that 

BDR training with active stimulation would result in significantly greater training gains than 

BDR with sham stimulation. 

 

Enhancement of within- and cross-paradigm training effects with stimulation 

To investigate whether stimulation enhanced the transfer of training effects both within and 

across working memory paradigms, general linear regressions were conducted separately for 

each outcome measure with stimulation group as the predictor. In all cases, post-training scores 
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were entered as the dependent variable with pre-training scores and group (BDR with active 

stimulation and BDR with sham stimulation) entered as independent variables. Bonferroni 

corrections for multiple comparisons were applied for each set of analyses (i.e. a correction of 

five, setting the alpha level at p < .01). A significantly greater pre- to post-training score was 

predicted for the backward recall with active stimulation group compared to the backward 

recall with sham stimulation group on the BDR transfer measure. No predictions were made 

regarding the extent to which stimulation would impact transfer to the other backward recall 

outcome measures (letters or spatial). For cross-paradigm transfer, no predictions were made 

regarding the extent to which stimulation would impact transfer to n-back letters or n-back 

spatial. 

3.3.5 Inference criteria 

According to the analysis plan the standard p < .05 value was used for determining results of the 

paired sample t-tests used for on-task training gains. A Bonferroni corrected alpha level was 

used in all analyses investigating the transfer of training gains. As there were five outcome 

measures a p < .01 value was used. All confirmatory analyses (i.e. those reported in the analysis 

plan) rely on null hypothesis significance testing (NHST). In addition to traditional NHST, 

Bayesian methods were also employed. Bayes factors (BF) were computed to allow the strength 

of evidence favouring the alternative versus the null hypotheses to be quantified (Sprenger et al., 

2013). These analyses are exploratory (i.e. they were not stated in the pre-registered report), 

and were computed in JASP (The JASP Team., 2017) with default prior scales. Inverse BF (BF10) 

were used to express the odds in favour of the alternative hypothesis (BDR training and/or 

stimulation has an effect) compared to the null (no effect of BDR training and/or tDCS). A BF10 of 

3-10 indicates positive/substantial support for the alternative hypothesis and a BF10 of > 10 

corresponds to positive/strong evidence for the alternative hypothesis (Kass & Raftery, 1995). 

3.4 Results 

3.4.1 Training 

As shown in Figure 3.4 all training groups improved over the three training sessions 

(improvements in the three training groups as a function of session relative to performance in 



80 Backward digit training: Cross-paradigm transfer and the effects of transcranial direct current stimulation (tDCS) 

 

session 1; i.e. session 2/session 1; session 3/session 1). Means and standard deviations of 

average performance in each training session by group are shown in Table 3.2. To examine on-

task training gains, paired-sample t-tests were performed separately for each training group. 

Average performance on day three of training was significantly greater than on day one of 

training for all training groups; visual search with sham, t (15) = -3.901, p = .001, Cohen’s d = 

0.903; BDR with sham, t (15) = -5.166, p < .001, Cohen’s d = 0.961; and BDR with active 

stimulation, t (15) = -5.486, p < .001, Cohen’s d = 1.006. Bayesian t-tests provided strong 

evidence for these improvements (visual search sham, BF10 = 56.610; BDR sham, BF10 = 504.700; 

BDR active, BF10 = 862.100). 
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Figure 3.4 – Improvements in the three training groups are shown as a function of session relative to 

performance in session 1 (i.e. session 2/session 1; session 3/session 1). Note that averages in each 

session are calculated based on correct trials for the two BDR groups and all trials for the visual search 

group. BDR active = backward digit recall training with active stimulation, BDR sham = backward digit 

recall training with sham stimulation. 

 

 To test whether stimulation enhanced on-task training gains for BDR, a general linear 

regression was run with performance on day three entered as the dependent variable, and group 

(stimulation or sham) and training day one performance entered as the independent variables. 

Group did not significantly predict performance on day three showing that stimulation did not 

enhance training (p = .589). A Bayesian linear regression favoured the null hypothesis (no effect 

of stimulation on training; BF10 = .138). 
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Table 3.2 – Average training performance in each session by group. 
      

 

 

Session 1 
 

 Session 2  Session 3 

 
M SD  M SD  M SD 

 

BDR active 7.764 1.490  9.187 2.293  10.015 2.793 
 

BDR sham 7.418 1.159  8.744 1.996  9.189 2.336 
 

Visual search 4.790 0.574  5.246 0.766  5.494 0.941 
   

 
  

 
   

Note. BDR = backward digit recall. 
 

 
 

 Rate of learning on the training activities was compared between the two backward 

recall training groups. This analysis was exploratory (i.e. not stated in the pre-registered 

analysis plan). Order 2 polynomial (quadratic) functions (y = x² + x + c) were computed for each 

participant separately. These functions allowed the approximate point at the point at which each 

participant reached asymptotic performance during training to be identified (based on average 

performance on each training day). If stimulation enhanced learning, the stimulation group 

should reach this point faster than the sham group. The rate of change (i.e. how quickly 

participants reached asymptotic performance) was calculated as maximum score at 

asymptote/number of sessions to reach asymptote. Group differences in the rate of change were 

compared using an independent samples t-test. Data were excluded for curves in which the 

asymptote was outside the observable training window (i.e. if asymptote < 0 or > 3), and so a 

reduce sample size of 11 was used in this analysis. There was no significant group difference 

between the BDR with active stimulation (M = .775, SD = .792) and BDR with sham stimulation 

(M = 1.049, SD = .743) training groups, t (20) = -.838, p = .412 (Cohen’s d = .357). A Bayesian t-

test provided equivocal support for the null and alternative hypotheses, suggesting that 

stimulation does not enhance the rate of learning (BF10 = .412). 

3.4.2 Transfer 

Performance in each condition is summarised in Figure 3.5. To investigate the effects of training 

alone on transfer, the BDR sham group was compared to the visual search sham group. A general 

linear regression analysis was conducted on each of the five outcome measures (see Table 3.3 

for a summary of these results). In each case, post-training scores were entered as the 

dependent variable with pre-training scores and group (BDR sham or visual search sham) 

entered as the independent variable. Greater gains were observed for BDR sham than for visual 
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search sham on the BDR transfer task (p < .001; BF10 = 3476.9). Significantly greater gains were 

also observed for the backward letter (p = .016; BF10 = 3.651) and backward spatial (p = .013; 

BF10 = 4.553) recall tasks for the BDR sham group relative to the visual search group, but these 

effects did not survive a correction for multiple comparisons. There was no evidence for transfer 

to either n-back task (all ps ≥ .06; all BF10s ≤ 1.416). 
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Figure 3.5 – Transfer to untrained tasks. Changes in within-paradigm transfer measures (backward recall 

tasks) and cross-paradigm transfer measures (n-back tasks). BDR active = backward digit recall training 

with active stimulation, BDR sham = backward digit recall training with sham stimulation. 

 

To investigate the influence of stimulation on transfer within and across working 

memory paradigms, general linear regression analyses were used to compare the BDR training 

with active stimulation group to the BDR with sham stimulation group (see Table 3.3 for a 

summary of these results). In all cases, post-training scores were entered as the dependent 

variable with pre-training scores and group (BDR with active stimulation and BDR with sham 

stimulation) entered as independent variables. Group did not predict post-training scores for 

any of the backward recall or n-back outcome measures (all ps > .580). Bayesian regression 

analyses were also conducted, confirming these effects. BF10 scores for the backward recall tasks 

with digits (0.271) and spatial locations (0.316) favoured the null hypothesis that stimulation 

does not enhance transfer. All remaining BF10 scores ranged from 0.385 to 0.413, providing 
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equivocal support for the null and alternative hypotheses (see Table 3.3). These results suggest 

that stimulation does not enhance transfer. 
 

Table 3.3 – Group comparisons of training and stimulation. 

 Group comparison of training effects: 
visual search sham versus BDR sham 

 Group comparison of stimulation effects: 
BDR sham versus BDR active 

 
Beta t p 

Bayesian 
Regression 

BF10 

 
Beta t p 

Bayesian 
Regression 

BF10 

Backward digit -0.650 -5.676 <0.001 3476.900 
 

-0.004 -0.290 0.977 0.271 

Backward letter -0.423 -2.551 0.016 3.651 
 

-0.610 -0.350 0.729 0.400 

Backward spatial -0.408 -2.632 0.013 4.553 
 

0.031 0.201 0.842 0.316 

n-back digit -0.158 -0.983 0.334 0.512 
 

0.032 0.179 0.859 0.385 

n-back letter -0.309 -1.958 0.060 1.416 
 

0.098 0.559 0.580 0.413 
          

 

Note. Bold text denote significant effects at p < .05 level, bold italics indicate significant effects after family-wise 
correction for multiple comparison. BDR = backward digit recall. 

  

3.5 Discussion 

The present study examined the boundary conditions to transfer by testing whether the benefits 

of training on a BDR task generalised to untrained working memory tasks with varying degrees 

of overlap with the training activity. It also tested the extent to which tDCS enhanced on-task 

training gains and transfer. As predicted, significant gains were observed on the training 

activities for all three training groups over the three training sessions. The magnitude of gains 

was similar across all three tasks, demonstrating that intense practice on cognitively challenging 

and adaptive tasks leads to improvements in performance on the tasks being trained. This is 

consistent with many previous studies that have shown on-task training gains for working 

memory (E. Dahlin, Nyberg, Bäckman, & Neely, 2008; Dunning et al., 2013; Holmes et al., 2009; 

Jaeggi et al., 2008; Karbach et al., 2015), visual search (Harrison et al., 2013; Redick et al., 2013), 

and other higher-level cognitive tasks such as inhibition (Thorell, Lindqvist, Nutley, Bohlin, & 

Klingberg, 2009), and arithmetic training (Fendrich, Healy, & Bourne, 1993; Park & Brannon, 

2013). There was also strong evidence for improvements on the BDR outcome measure for the 

groups who trained on BDR with and without stimulation. This reflects the training effects on 

BDR and is consistent with the proposal that training provides the opportunity to develop novel 

cognitive routines for unfamiliar and demanding tasks (Gathercole et al., 2018).  
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There was no evidence for cross-paradigm transfer. Changes in performance on the n-

back tasks following BDR training with sham stimulation were not significantly different to 

those observed for the visual search training with sham group, even when the n-back transfer 

task contained the same materials (digits) as the training activity. This suggests transfer is not 

mediated by specific expertise related to task content, for example in the basic skills or 

knowledge tied to the task materials (e.g. mnemonic strategies such as chunking letters into 

familiar words; von Bastian & Oberauer, 2014). The data are consistent with previous studies 

showing that working memory training effects do not generalise across working memory tasks 

(Dunning & Holmes, 2014; Holmes et al., 2018; Li et al., 2008; Minear et al., 2016; Sprenger et al., 

2013; von Bastian & Oberauer, 2013), suggesting that paradigm constrains transfer even when 

other features such as the memory items are held constant across tasks.  

The absence of transfer from training on BDR to n-back suggests training effects are 

driven by task-specific skills or processes rather than an increase in the efficiency of the working 

memory system as proposed by Klingberg (2010). If training enhanced the underlying capacity 

of working memory, transfer would be observed across paradigms. The data are consistent with 

the proposal that training promotes the development of novel cognitive routines that can be 

applied to untrained tasks with same task structure (Gathercole et al., 2018). Differences in the 

cognitive routines required for backward recall and n-back tasks may explain the absence of 

transfer across paradigms. For BDR, a routine must be developed that enables reverse serial 

order of verbal items. This could involve using established cognitive processes such as sub-vocal 

rehearsal to make repeated covert cycles of forward recall through the list to report the final 

digit, then peeling each of them off successively (Anders & Lillyquist, 1971; Thomas et al., 2003). 

In contrast, the greatest demand in n-back is the continuous updating of the contents of working 

memory. This might involve the temporary storage of a sequence of items and regular updating 

of item-order bindings with each successively presented item (Oberauer, 2005). 

 There was some evidence that task material (letters, digits, or spatial locations) and 

stimulus domain are not boundary conditions for transfer. Although improvements on backward 

letter and backward spatial recall tasks were not significantly greater following BDR training 

without stimulation relative to visual search training (without stimulation), Bayesian analyses 

provided positive evidence for within-paradigm transfer across materials within (backward 

letters) and across (backward spatial) domain. On balance these data suggest that stimuli 

characteristics, including the category of material and domain of the stimuli, do not constrain 

transfer when the trained and untrained tasks have the same higher-order task structure (e.g. 

they are the same working memory paradigm). This is consistent with previous reports of 
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transfer across different materials within the same paradigm (Anguera et al., 2012; Holmes et al., 

2018; Jaeggi, Studer-Luethi, et al., 2010; Küper & Karbach, 2016; Minear et al., 2016). The effect 

sizes for gains on the backward digit, letter, and spatial tasks diminished respectively with 

distance from the training tasks for those who trained on the BDR task without stimulation. 

Finding larger gains for backward digit than backward letter recall, and for backward letter than 

backward spatial recall is consistent with the idea that the greater the number of features in 

common between training and transfer tasks, the more likely it is that transfer will occur 

(Gathercole et al., 2018; Thorndike & Woodworth, 1901). Transfer from BDR to backward letters 

may reflect the application of common strategies for verbal rehearsal. The processes required 

for reversing verbal and visuo-spatial materials are thought to be fundamentally different 

(Isaacs & Vargha-Khadem, 1989). If training is promoting the development of a novel cognitive 

routine during BDR training that is coordinating the execution of existing verbal processes, then 

it could be more easily applied to other backward tasks with verbal stimuli (letters) compared to 

one with visuo-spatial materials (Gathercole et al., 2018). 

 tDCS applied to the left DLPFC did not enhance on-task training gains, nor did it enhance 

the benefits of training for any of the untrained activities. These absence of benefits during 

training are inconsistent with previous findings showing that tDCS enhances the rate of learning 

in working memory training using verbal and visuo-spatial n-back tasks (Au et al., 2016; Ruf et 

al., 2017). This may reflect differences in the impact of tDCS on different types of training 

activities, resulting from the malleability of the neural substrates targeted by BDR and n-back, 

and the complexity of the training programs and their doses. Differences could also be due to 

discrepancies in the stimulation parameters used. Au et al. (2016) applied 25 min of tDCS, at a 

current intensity of 2 mA, while the current study used 1 mA for 10 min. Similarly, although 1 

mA of tDCS was applied in the study conducted by Ruf et al. (2017), this was for a longer 

duration of 20 min. Future research needs to develop a greater understanding of the 

neurophysiological mechanisms of stimulation and the impact of different tES parameters (e.g. 

current intensity and duration) when combined with different training regimes. The results of 

the current investigation are, however, consistent with the outcomes of a recent meta-analysis 

demonstrating that active tDCS is no more effective than sham tDCS for altering working 

memory performance (Nilsson et al., 2017). The results are also in line with data presented in 

Chapter 2 showing that transcranial random noise stimulation (tRNS), an alternative form of tES, 

has no effect when applied during working memory training (Holmes, Byrne, Gathercole, & 

Ewbank, 2016). Finding that tDCS did not enhance the generalisation of training gains to 

untrained tasks is consistent with previous studies reporting no differences in performance 
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between active tDCS and sham stimulation groups on transfer tasks following working memory 

training (Martin et al., 2013; Richmond et al., 2014). Together these studies suggest that tES is 

not an effective tool for enhancing the effects of cognitive training, and their use for therapeutic 

purposes is likely to be limited. 

 In summary, the current study establishes that transfer following working memory 

training is tightly tied to the characteristics of the training regimes. Transfer does not extend 

across global changes in working memory paradigm, but it does occur within paradigm for 

backward recall tasks where it is unconstrained by both stimulus materials and stimulus 

domain. The absence of transfer between backward recall training and n-back outcome 

measures suggests both tasks may tap into distinct aspects of working memory. With this in 

mind, the final study presented in this thesis (Chapter 4) was designed to examine the degree of 

overlap between different forms of backward recall and n-back tasks using a latent variable 

approach. A final clear conclusion of the current data is that when using the most rigorous, 

randomised sham-controlled intervention design, there is no evidence that tDCS enhances the 

benefits of working memory training. 



 

Chapter 4 Backward recall and n-back 

measures of working memory: A large-scale 

latent variable analysis 

4.1 Aims 

Working memory tasks are widely used as prospective indicators of academic attainment and 

have been used to train cognitive function (Alloway & Alloway, 2010; Bull, Espy, & Wiebe, 2008; 

Dunning et al., 2013; Harrison et al., 2013; Jaeggi et al., 2008). It is therefore important to 

establish what the various tasks designed to assess working memory are measuring so that the 

specific cognitive processes that might be important for learning or amenable to training can be 

better understood. The primary aim of this study was to investigate the overlap in the processes 

involved in two widely used measures of working memory – backward recall and n-back. 

Backward recall tasks are commonly used in behavioural studies, while n-back tasks are used 

more frequently in neuroimaging experiments (Owen et al., 2005). Both require information to 

be simultaneously stored and processed for short periods of time, a key requirement of a task 

tapping working memory, but there are differences in the overall task structures and the 

processes involved. A latent variable approach was employed to investigate the degree of 

overlap between different variants of n-back and backward recall tasks. Multiple versions of 

each of the two types of paradigm were used. The tasks contained different memoranda that 

varied within domain (e.g. two types of verbal material; digits or letters) and across domain (e.g. 

spatial locations or verbal material). Varying materials within and across tasks allowed the 

variance specific to task materials (content) and category of task to be assessed (e.g. Schmiedek, 

Hildebrandt, Lövdén, Lindenberger, & Wilhelm, 2009). Tasks might be related by memory items 

due to the use of material-specific strategies (e.g. chunking letters into familiar words), due to an 

overlap in task processing demands (e.g. maintaining items for serial recall via rehearsal), or due 
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to overlap in the domain-specific systems that support the storage and rehearsal of verbal and 

visuo-spatial information. A second aim was to examine the relationship between the working 

memory tasks and fluid reasoning to test whether there is a single underlying general ability 

factor for all tasks or distinct but related constructs for working memory and reasoning. 

4.2 Introduction 

4.2.1 Background 

There are a wide variety of working memory tasks including serial recall, interpolated 

processing, and updating tasks (see Section 1.3 for a full description). All involve the temporary 

maintenance and simultaneous manipulation of information. Despite these commonalities, the 

processes involved in different categories of task can differ substantially (e.g. reversing digit 

sequences for backward serial recall, rapidly switching between storing items and unrelated 

interpolated processing activities for complex span, or updating/refreshing sequences of storage 

items during n-back). Many studies have tested the construct validity of working memory tasks, 

that is, the degree to which a task is measuring what it claims to be measuring. An individual 

differences approach is useful in this regard (e.g. Jaeggi, Buschkuehl, Perrig, & Meier, 2010; Kane 

et al., 2007; Redick & Lindsey, 2013; Schmiedek et al., 2009). By investigating how well different 

working memory tasks are correlated with each other, and also with other measures of complex 

cognition, it is possible to determine whether tasks are tapping into the same underlying 

construct (Kane et al., 2007). There might be strong associations between tasks from the same 

paradigm (e.g. a group of n-back tasks), between those that contain the same stimulus materials 

(e.g. letters), or between those with same-domain stimuli (e.g. visuo-spatial materials). 

Identifying the associations between tasks provides information about the underlying processes 

they have in common. For example, if tasks group together at the paradigm level, this suggests 

that commonalities in the paradigm structures and processes may explain the shared variance 

between tasks, but if tasks with common stimuli are linked it suggests the strategies used for 

particular materials are important for task performance. The aim of the current study is to 

investigate the degree of overlap between backward recall and n-back measures of working 

memory. 

Previous studies investigating the relationship between different working memory tasks 

have predominantly focussed on complex span and n-back tasks. Complex span tasks containing 
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different storage items and distractor tasks correlate extremely well with each other and also 

with other measures of working memory, including updating tasks such as n-back, memory 

updating, and alpha span (e.g. Schmiedek, Hildebrandt, Lövdén, Lindenberger, & Wilhelm, 2009). 

Complex span scores also predict performance on a wide variety of other cognitive tasks that are 

linked with working memory such as tests of language comprehension (Daneman & Carpenter, 

1980; Kane et al., 2004), attentional control (Kane, Conway, Hambrick, & Engle, 2008), and 

measures of general fluid intelligence (e.g. Schmiedek et al., 2009).  

In contrast, weak associations have been reported between n-back and other tasks such 

as complex span (Jaeggi, Studer-Luethi, et al., 2010; Jaeggi, Buschkuehl, et al., 2010; Kane et al., 

2007; Roberts & Gibson, 2002) and backward digit span (Dobbs & Rule, 1989; McAuley & White, 

2011; Miller, Price, Okun, Montijo, & Bowers, 2009; Roberts, 1998; Roberts & Gibson, 2002). 

These findings suggest n-back tasks might be measuring distinct constructs or processes to 

other working memory tasks (Kane et al., 2007). The low correlations between these tasks could 

be attributed to methodological issues (Schmiedek et al., 2009; Wilhelm, Hildebrandt, & 

Oberauer, 2013). First, associations may be reduced due to a mismatch of content modality 

across n-back, and complex and backward span paradigms (e.g. visual versus auditory 

presentation, or differences in the type and domain of the stimuli). For example, in Kane et al. 

(2007) n-back and complex span tasks were only weakly related, but this could be explained by 

differences in paradigm (n-back or complex span) or stimuli (n-back contained letters, while 

complex span contained numerical operations and words). Using a single indicator for a 

paradigm can also be problematic. In Miller et al. (2009) only one n-back task with letters and 

one backward recall task with digits was used. Likewise in Kane et al. (2007) performance on 

both n-back and complex span was assessed using a single task. When performance is averaged 

across multiple versions of each type of task, stronger associations are found. For example, 

Shamosh et al. (2008) reported a much higher correlation than Kane et al. (2007) between 

composites of two n-back tasks and four complex span tasks.  

However, aggregation of multiple tasks does not eliminate the influence of content- and 

task-specific variance and measurement error (Schmiedek et al., 2009). To overcome these 

issues, a latent variable approach can be used to establish a more accurate picture of construct 

overlap between two tasks measuring working memory (Schmiedek et al., 2014). Using this 

method Schmiedek et al. (2009) reported much higher correlations between two latent 

constructs for measures of complex span and updating. Modifying task demands across 

paradigms can also increase task overlap. Shelton and colleagues (2007) reported that an 
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adjustment to the processing demands of n-back with free recall instead of speeded recognition 

resulted in stronger correlations with complex span than the standard paradigm. 

 Fewer studies have validated backward recall tasks against other tests of working 

memory, and those that have typically focus on backward digit recall (BDR) exclusively. This 

task requires reverse serial order recall of a sequence of digits. It likely relies on short-term 

memory serial order mechanisms to maintain the verbal sequence, but the added requirement 

to recall the items in reverse order imposes a substantial and attentionally demanding 

processing load that is often assumed to be similar to the executive loads of other working 

memory tasks such as complex span (Alloway et al., 2006; Bull et al., 2008). Evidence that 

backward span is significantly more strongly related to n-back than to forward span (Redick & 

Lindsey, 2013), and that backward digit span is related to reasoning ability (e.g. Suß et al., 2002), 

support the idea that backward recall tasks have an executive component. Indeed, Redick and 

Lindsey (2013) reported that the correlation between n-back and backward digit span was 

significantly greater than the correlation between n-back and complex span, suggesting not only 

that it shares variance with other widely used working memory tasks, but also that it may have 

more in common with some working memory paradigms than others.  

Some studies have shown that backward digit span is weakly correlated with other 

working memory tasks such as complex span (e.g. Hilbert, Nakagawa, Puci, Zech, & Bühner, 

2015). Linked to this, it has been suggested that backward and forward recall both tap into the 

same underlying short-term memory ability, and that the executive demands of backward recall 

tasks are minimal (Dobbs & Rule, 1989; Engle, Laughlin, et al., 1999; Rosen & Engle, 1997; St 

Clair-Thompson, 2010; St Clair-Thompson & Allen, 2013). Factor analytic studies showing that 

forward and backward recall tasks load onto the same factor (Colom, Abad, Rebollo, & Shih, 

2005; Engle, Laughlin, et al., 1999) provide support for this. St Clair-Thompson and Allen (2013) 

argue that differences in forward and backward digit span reflect dissimilarities in the 

recruitment of visuo-spatial resources or strategies during the recall phase, rather than 

differences between the attentional or executive demands of the two tasks. They propose that 

forward recall is suited to a phonological code, whereas backward recall is supported by a visuo-

spatial code, and that BDR reflects short-term memory and the strategic use of visual imagery 

rather than the executive component of working memory (St Clair-Thompson & Allen, 2013).  

 The aim of the current study was to elucidate the relationship between backward span 

and n-back tasks. Both tasks require participants to maintain memory items over brief periods 

of time and to update the list of items being held. These common features make them ideal 

candidates for assessing working memory and suggest they might tap into similar aspects of 
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working memory function (maintenance and updating). However, there are studies showing the 

two paradigms are weakly associated (Dobbs & Rule, 1989; McAuley & White, 2011; Miller et al., 

2009; Roberts, 1998; Roberts & Gibson, 2002; and for a meta-analysis, see Redick & Lindsey, 

2013), and in training studies, practice on one category of task does not transfer to the other 

(Byrne, Ewbank, Redick, & Holmes, 2018; Heinzel et al., 2014). Practice on n-back tasks 

consistently improves performance on untrained n-back tasks (Buschkuehl et al., 2014; Holmes 

et al., 2018; Jaeggi, Studer-Luethi, et al., 2010; Li et al., 2008), but these effects do not transfer to 

backward recall tasks (Heinzel et al., 2014). Similarly, practice on backward digit span leads to 

substantial improvements on untrained variants of backward recall tasks, but does not benefit 

performance on n-back tasks even when they contain the same memory items (Byrne et al., 

2018; see Chapter 3). The absence of transfer across backward recall and n-back tasks suggests 

the two paradigms tap into different processes because improving the processes in one does not 

result in improvements to the other. 

Weak associations might be found between the two paradigms due to differences in the 

task properties. These include differences in the recall demands of the tasks; n-back requires 

familiarity-based recognition whereas backward serial order tasks require explicit recall 

(Oberauer, 2005). The updating demands of both tasks are also slightly different. For n-back, the 

full sequence has to be refreshed as a new item is added to the list and the first item dropped. In 

contrast, for backward recall the whole sequence has to be held in mind and transformed and 

updated at the point of recall. Finally, the task structures are different: for backward recall all 

storage items are presented prior to any updating, transformation, or recall of the material, 

whereas for n-back tasks participants have to update the to-be-remembered items and make 

responses while the list is being presented. 

There are issues with previous studies exploring the relationship between these 

paradigms that make it difficult to draw strong conclusions (Dobbs & Rule, 1989; McAuley & 

White, 2011; Miller et al., 2009; Roberts, 1998; Roberts & Gibson, 2002). First, backward recall 

was measured exclusively with digits in all studies; none used stimuli from a different category 

(e.g. letters) or domain (spatial). Second, there was a mismatch of task content between the 

backward recall and n-back measures (e.g. digits and letters). Finally, the majority of studies 

used only single indicators for each task. 

 To investigate whether these two tasks share overlapping processes, and to overcome 

the limitations of previous studies, a latent variable approach was used with multiple indicators 

of each of the two types of working memory task. The tasks contained different memoranda that 

varied within domain (e.g. two types of verbal material; digits and letters) and across domain 



92 Backward recall and n-back measures of working memory: A large-scale latent variable analysis 

 

(e.g. spatial locations or verbal material). The set of backward recall tasks were: BDR, backward 

letter recall, and backward spatial recall. The n-back tasks included: n-back with digits, n-back 

with letters, and n-back with spatial locations. Varying materials within and across tasks allowed 

the variance specific to task materials (content) and category of task (e.g. Schmiedek et al., 2009, 

2014) to be assessed. Including three tests of each paradigm allowed variance specific to 

paradigm to be tested. Unlike previous studies, web-based data collection methods were used to 

maximise the sample size. It is necessary to collect data from a very large sample to conduct 

latent variable modelling and detect meaningful differences between constructs. A sample size of 

N greater than 500 is recommended for looking for complex or subtle differences between 

factors (Wolf, Harrington, Clark, and Miller, 2013) and the number of participants needed 

multiplies up quickly as a factor of the relatedness between the measures. 

 Confirmatory factor analysis was used to test four competing models of the underlying 

structure of the backward recall and n-back tasks. These models are outlined in the following 

section (see Section 4.2.2). It was hypothesized that one of four alternative working memory 

models would best describe the data to explain the interrelationships between the backward 

recall and n-back tasks. Once the best-fitting model of working memory was determined, a 

secondary research question was to explore the relationship between the working memory 

tasks and fluid reasoning to test whether there is a single underlying general ability factor for all 

tasks (e.g. a ‘g’ factor; Duncan et al., 2000), or distinct but related constructs for working 

memory and reasoning (e.g. Schmiedek et al., 2009, 2014). 

 Working memory and fluid intelligence represent dissociable but strongly related 

cognitive skills (e.g. Alloway & Alloway, 2010; Colom, Rebollo, Palacios, Juan-Espinosa, & 

Kyllonen, 2004). This has been demonstrated previously by Schmiedek and colleagues using 

latent factor approaches. In one study they identified two related constructs for updating and 

complex span tasks that predicted a separate reasoning factor equally well (Schmiedek et al., 

2009). More recently, they reported a number of working memory measures were best captured 

by four latent working memory task factors corresponding to working memory paradigm 

(Schmiedek et al., 2014). These four paradigm factors loaded on to a single higher-order 

working memory construct factor, which was related to a separate reasoning factor. To address 

the secondary research question here, the best-fitting working memory model was expanded to 

include reasoning. This multi-factor model was then compared to one where all working 

memory and reasoning tasks loaded on to a single general intelligence factor (g). 
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 In summary, the two key research questions were: (1) what accounts for individual 

differences in performance on backward recall and n-back tasks, and (2) how are the two classes 

of working memory paradigm (backward recall and n-back) related to fluid reasoning?  

The protocol for this study was pre-registered with the Open Science Framework 

(www.osf.io/9qarp/; see Appendix E). 

4.2.2 Models 

Confirmatory factor analysis was used to test four competing models of the underlying structure 

of six n-back and backward recall tasks: (A) a single-factor model that assumed all tasks tap a 

single underlying working memory construct (e.g. Alloway et al., 2006; Kane et al., 2004), (B) a 

two-factor paradigm model that assumed a latent correlation between separate backward recall 

and n-back factors (e.g. similar to two distinct but related structures for complex span and 

updating tasks reported by Schmiedek et al., 2009), (C) a two-factor model that assumed 

separate domain-specific visuo-spatial and verbal latent constructs (Daneman & Tardif, 1987; 

Shah & Miyake, 1996), and (D) a three-factor materials model that assumed separate constructs 

based on the memory items - digits, letters, or spatial locations. Evidence supporting each of 

these models is described in detail below. The outline for the models has been reproduced from 

the pre-registration document: www.osf.io/9qarp/ (see Appendix E).  

 

(A) Single-factor working memory model 

This is consistent with domain-general theories of working memory that propose performance 

on working memory tasks is dependent on a domain-general central executive or attentional 

control system (Alloway et al., 2006; Baddeley, 1986; Engle & Kane, 2004; Engle, Kane, et al., 

1999; Kane et al., 2004). Previous confirmatory factor analyses confirm this view. For example, 

in a study conducted by Kane et al. (2004) participants completed a number of working memory 

tasks. The verbal working memory tasks (operation span, word span, and counting span) 

required participants to remember sequences of verbal information such as words, letters, or 

digits while also completing an additional processing task (solving arithmetic problems, judging 

the veracity of sentences, or counting shapes). The spatial working memory tasks, which 

included rotation span, symmetry span, and navigation span, involved remembering sequences 

of visuo-spatial information such as arrows, matrix locations, or paths of moving balls, whilst 

simultaneously performing a processing task (letter rotation, symmetry judgement, or 

navigation around a letter shape). Confirmatory factor analyses revealed the verbal and visuo-
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spatial working memory tasks tapped into a unitary construct (Kane et al., 2004). Similar 

findings are provided by Alloway et al. (2006) who assessed performance on 12 tasks designed 

to measure verbal and visuo-spatial short-term and working memory. Short-term memory tasks 

such as digit span and dot matrix simply required the reproduction of a sequence of verbal or 

visuo-spatial items, while working memory tasks had additional processing demands such as 

reversing the sequence (e.g. BDR) or making decisions prior to recall. For example, a task called 

Mr X, required participants to judge whether two cartoon characters were holding a ball in same 

or different hands when positioned at different orientations, as well as recalling the location of 

the ball in serial order at the end of each trial. Alloway and colleagues (2006) found that 

although tasks measuring the temporary storage of information depended on separate domain-

specific verbal and visuo-spatial factors, the processing of information within working memory 

was supported by a common domain-general component. Based on these results the single-

factor model assumed that different versions of backward recall and n-back tasks would tap into 

a single underlying working memory construct. 

 

(B) Two-factor domain model 

Domain-specific accounts of working memory propose that separate pools of resources support 

the maintenance and processing of verbal and visuo-spatial information (Daneman & Tardif, 

1987; Friedman & Miyake, 2000; Shah & Miyake, 1996). Individual differences studies using 

verbal and visuo-spatial working memory tasks support this account. For example, Shah and 

Miyake (1996) found only a weak correlation between measures of verbal and spatial working 

memory. In their study participants completed a verbal working memory reading span task, 

which involved reading sentences aloud whilst simultaneously remembering the final word of 

each sentence, and a spatial working memory span task, which involved mental rotation of 

letters whilst simultaneously remembering their orientation. The authors found that verbal 

working memory was highly correlated with other verbal ability measures (i.e. verbal scholastic 

aptitude test scores), but not with tests of spatial ability measures (i.e. spatial visualization and 

perceptual speed). They also found that spatial working memory strongly predicted spatial 

ability but not verbal ability. In an exploratory factor analysis spatial span and spatial ability 

measures loaded on one factor (i.e. a spatial factor) and tests of verbal span and verbal ability on 

another (i.e. a verbal factor), suggesting there are distinct cognitive resources supporting spatial 

and verbal working memory (Shah & Miyake, 1996). 

 The distinction between verbal and visuo-spatial working memory is also reflected in 

separable domain-specific short-term memory stores, and the ways in which verbal and spatial 
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materials are represented and rehearsed internally/mentally. Verbal working memory is 

considered phonological in nature (Gathercole, Frankish, Pickering, & Peaker, 1999), and relies 

on an internal articulatory rehearsal process (Baddeley, 2000; Baddeley et al., 1975). Therefore, 

tasks using different categories of materials within the verbal domain (e.g. digits, letters) may be 

represented internally in the same system, and rely on the same maintenance processes. 

Subvocal rehearsal is one possible maintenance mechanism that enables phonological 

representations to be serially reactivated in short term memory to prevent decay over time 

(Baddeley et al., 1975; Gathercole, Adams, & Hitch, 1994). On the other hand, tasks involving 

visuo-spatial materials (e.g. recalling spatial locations in a matrix) may rely on a distinct system 

dedicated to the maintenance of visual and spatial information (e.g.  forming and maintaining 

mental images). A rehearsal strategy for maintaining temporary visuo-spatial representations 

has been proposed, which is distinct to phonological maintenance mechanisms and involves the 

covert allocation of attention to a series of memorized locations (Pearson et al., 2014; Postle, 

Awh, Jonides, Smith, & D’Esposito, 2004). Based on these accounts of working memory, this two-

factor model assumed separate domain-specific latent constructs for verbal and visuo-spatial 

information. The model predicted that that performance on verbal and visuo-spatial working 

memory tasks would be dissociable, but related, because the tasks rely on different 

representational and maintenance systems. 

 

(C) Two-factor paradigm model 

Backward recall and n-back tasks both require the temporary maintenance and processing of 

verbal or visuo-spatial information but they differ in terms of processing demands. For example, 

performing a backward recall task requires explicit serial recall, whereas an n-back task 

requires recognition and can be completed using familiarity-based responding (Oberauer, 

2005). Paradigm-specific latent constructs have been found for other working memory tasks. 

For example, Schmiedek et al. (2009) reported a two-factor structure for complex span and 

updating tasks (e.g. n-back); both categories of task accounted for inter-individual differences in 

working memory equally well, and were best captured by distinct but related paradigm-specific 

factors. Patterns of transfer observed following working memory training also support the idea 

that working memory tasks might group together based on paradigm-specific processes. 

Transfer to untrained tasks is consistent and robust if there is substantial overlap between the 

processes involved in the trained and untrained activities (Sprenger et al., 2013). For example, 

Dahlin, Neely, Larsson, Bäckman, and Nyberg (2008) reported transfer to n-back, but not to a 

Stroop task, following training on a running span task. This pattern of transfer was speculated to 



96 Backward recall and n-back measures of working memory: A large-scale latent variable analysis 

 

reflect improvements in the ability to update the contents of working memory following 

training, which benefitted other memory task requiring updating but not tasks with different 

processing requirements like inhibition. Working memory paradigm has also been shown to be a 

boundary condition to transfer following training, while stimulus domain of the memory items 

(i.e. verbal or visuo-spatial) and category of materials within paradigm (e.g. letters or digits) is 

not (Byrne et al., 2018; Holmes et al., 2018; Minear et al., 2016). Together these data suggest that 

training-related changes are not associated with material-specific strategies, but are instead tied 

to the processes involved in the specific training task administered. It is therefore possible that 

different categories of working memory task will group together because they share variance 

common to the processes involved in the task (e.g. updating versus serial recall). This two-factor 

paradigm model assumed a correlation between two distinct backward recall and n-back latent 

constructs. 

 

(D) Three-factor materials model 

This model assumed that performance across the different working memory tasks would be best 

described by expertise related to the specific type of stimuli, for example in basic skills or 

knowledge tied to digits, letters or spatial materials. Within the training literature it has been 

suggested that transfer might be mediated by the acquisition of content-specific skills and 

knowledge (von Bastian & Oberauer, 2014). That is, training-related improvements could arise 

through the development or refinement of stimulus-specific mnemonic strategies (Gathercole et 

al., 2018; Minear et al., 2016). These strategies could be specific to content domain. For example 

chunking can be used to remember verbal items as familiar names or acronyms, but it is unlikely 

to be used for visuo-spatial materials. Strategies could be specific to materials within a domain. 

A striking example of this comes from a study showing that training for sequences of digits was 

tied to the use of mnemonic strategies that could not be applied to novel letter materials 

(Ericsson et al., 1980). Similarly, Minear et al. (2016) found that participants who completed 

verbal working memory training reported using strategies specific to letters. During training 

participants used chunking to remember sequences by associating the letters with words and 

forming sentences, or linking letters with acronyms or people’s initials. This three-factor model 

assumed separate constructs for each category of memory item as follows: factor one, n-back 

with digits and BDR; factor two, n-back with letters and backward letter recall; and factor three, 

n-back with spatial locations and backward spatial recall. 
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4.3 Method 

4.3.1 Participants 

Seven-hundred and seven native-English speaking participants aged 18-35 completed this study. 

All had normal or corrected to normal vision, and no literacy difficulties. They were paid for 

taking part. Data from four participants were excluded because the participants did not follow 

the study instructions correctly. A total sample size of 703 participants (421 female) was used 

for the analyses. Participants were recruited through Prolific Academic 

(https://www.prolific.ac/), a widely used online crowdsourcing platform, and completed the 

tasks online. Participants signed up to this website are given a unique ID to ensure anonymity. 

4.3.2 Procedure 

Each participant completed six memory tasks and a reasoning task in a single session according 

to one of 12 possible task orders. The backward recall tasks were grouped together (i.e. 

completed consecutively), and the n-back tasks were also grouped together. The task order 

within these two groups was counterbalanced (i.e. all possible permutations for the three tasks 

were used), yielding six orders for each of the two groups of tasks. The two groups of backward 

recall and n-back tasks were then counterbalanced, resulting in six possible task orders in which 

the backward recall tasks were completed first, and six in which the n-back tasks were 

completed first. This yielded a total of 12 task orders. An additional reasoning task was 

completed in between the n-back and backward recall tasks in all conditions (i.e. it was always 

the fourth task completed). 

Order effects were tested in a series of ANOVAs. First, differences in whether the three n-

back or three backward recall tasks were completed in the first or second block were explored. 

A two by three mixed measures ANOVA with order (first or second) and backward recall task 

(backward recall with digits, letters, and spatial locations) was conducted. Mauchley’s test 

indicated that the assumption of sphericity had been violated, χ2 (2) = 66.171, p < .001, therefore 

degrees of freedom were corrected using Greenhouse-Geisser estimates of sphericity (ɛ = .919). 

There were no order effects for the backward recall tasks, F (1.831, 1250.381) = 2.710, p = .067, 

ηp2 = .919. The same ANOVA was conducted for the n-back tasks. There were also no order 

effects for completing the three n-back tasks in the first or second part of the experiment, F (2, 

1366) = 2.078, p = .126, ηp2 = .003. Next, order effects within each paradigm were assessed (i.e. 
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to test whether there was a difference in performance related to completing a task within a 

block in the first, second, or third position). One-way ANOVAs were conducted to compare the 

effects of position (first, second, or third) on task performance for each task separately (e.g. 

comparing whether performance for backward letter recall differed when it was completed first, 

second, or third in a block). No significant order effects were found for backward recall with 

letters or spatial locations, or for any of the n-back measures (all ps ≤ .005; see Appendix F for a 

summary of these tests). There was a significant effect of task position on backward recall with 

digits, F (2) = 3.977, p = .019, ηp2 = .011. Post-hoc analyses revealed that participants who 

completed the task in the second position performed significantly better compared to those who 

completed it in the third position (p = .016). 

 Participants completed practice trials before beginning each task. Feedback for correct 

and incorrect responses was shown on screen for the practice trials, but was not provided 

during the proper tasks. Data were collected between 15th August and 16th October 2017. 

Informed consent was obtained online prior to testing. The study was approved by, and 

conducted in accordance with the guidelines of the University of Cambridge Psychology 

Research Ethics Committee and the MRC Cognition and Brain Sciences Unit, University of 

Cambridge (ethics code = PRE.2017.001; see Appendix G for a copy of the ethics approval letter). 

4.3.3 Materials 

The tasks were created using the software program Gorilla (https://gorilla.sc/) that has been 

developed by Cauldron (http://www.cauldron.sc/). The experiment was hosted on the online 

crowdsourcing platform Prolific Academic (https://www.prolific.ac/). Participants completed 

the study on a laptop or desktop computer, and all responses were made using a mouse or 

keyboard. 
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Figure 4.1 – Backward recall tasks (illustrated for a span of three items): including (A) backward digit 

recall, (B) backward letter recall, and (C) backward spatial recall. 

 

Backward recall 

Participants completed three backward recall tasks (see Figure 4.1), each containing different 

stimuli: (i) digits (1 to 9), (ii) phonologically distinct letters (B H J L N Q R X Z), or (iii) spatial 

locations (nine random but fixed locations on the computer screen). Trials were presented in 

blocks, each consisting of four trials. During each trial items were presented visually on screen 

one at a time (stimulus presentation = 750 ms, inter-stimulus interval = 250 ms). Participants 

were then prompted to recall the sequence in backward order via an onscreen keypad of digits, 

letters, or spatial locations. Participants began each task at a span of three items. Span length 

was increased by one item in each subsequent block if there were three or more correct trials. 
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The tasks were discontinued if two or more trials were incorrect within a block, or if the 

maximum span level was reached (span 13). Maximum span reached was scored for each of the 

backward recall tasks (i.e. the final span in which the participant met the criterion of at least 

three out of four correct trials). 

 

n-back 

Participants completed three n-back tasks (see Figure 4.2), each containing different stimuli: (i) 

digits (1 to 9), (ii) phonologically distinct letters (B H J L N Q R X Z), or (iii) spatial locations. For 

each task, stimuli were presented one at a time on screen in a random order (stimulus 

presentation = 760 ms, inter-stimulus interval = 2000 ms). Participants were required to 

indicate whether the current item on screen matched the one presented n items back in the 

sequence via a button press. In each block participants were presented with a continuous 

sequence of 20 + n items, during which there were a total of six possible targets (matches) and 

14 + n non-targets. An error was scored if participants pressed the button for a non-target (false 

alarm), or if participants failed to press the button when a match was present (miss). Total 

errors were calculated as false alarms plus misses combined. The first block began at one-back 

and difficulty level was increased by one in each subsequent block if less than five errors were 

made (e.g. an increase from one-back to two-back). The task ended if five or more errors were 

made within a block, or if the maximum level was reached (12-back). The maximum n-level 

reached was scored for each of the n-back tasks (i.e. the final level in which the participant met 

the criterion of less than five errors in a block). 
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Figure 4.2 – n-back tasks (illustrated for a two-back level): including (A) n-back with digits, (B) n-back 

with letters, and (C) n-back with spatial locations. 

 

Relational reasoning 

During the relational reasoning task (Knoll et al., 2016), participants were presented with 80 

puzzles one at a time on screen (see Figure 4.3 for a screenshot of this task). Each puzzle 

consisted of a 3 x 3 matrix (nine spaces in total). Eight of the spaces contained shapes, but the 

bottom right space was empty. Participants were also presented with four boxes at the bottom 

of the screen containing shapes, and were required to select the box with the correct answer – 

the box containing the piece that was missing from the empty space in the matrix. The shapes in 

the matrix varied by colour, size, shape, and position. Difficulty level also varied. Participants 

were given 30 s to complete each trial, and a prompt appeared on screen when only 5 s 
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remained. Odd and even items were scored separately to give two relational reasoning scores. In 

each case the number of correct responses (out of 40) was used in the analyses as the measure 

of ability. 

 

 
Figure 4.3 – Screenshot of a trial from the relational reasoning task. 

 

4.3.4 Analysis plan 

This plan has been reproduced from the pre-registered report (www.osf.io/9qarp/; see 

Appendix E). The tense has been changed to fit with the context of the chapter. 

 To address the primary research question, confirmatory factor analysis was conducted 

to find the best fitting model for the six working memory tasks. The following models were 

compared: (A) a single working memory factor model, (B) a two-factor domain-specific verbal 

and visuo-spatial construct model, (C) a two-factor backward recall and n-back paradigm model, 

and (D) a three-factor digit, letter, and spatial materials model. The best-fitting model(s) were 

identified using a number of widely used fit statistics (see Section 4.3.5 for a summary of these 

fit indices). 

 After establishing interrelationships among the working memory measures and 

determining the best fitting and most parsimonious working memory model for the variables, 

the secondary research question was addressed (i.e. how are the two classes of working memory 

paradigm, backward recall and n-back, related to fluid reasoning?). The parameters of the best-

fitting working memory model were fixed and a reasoning factor was added to examine whether 

the working memory factor(s) and the reasoning tasks load on a single factor or on distinct but 
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related constructs. If a single-factor working memory model was preferred, the plan was to 

examine whether the working memory factor is very strongly or perfectly correlated with a fluid 

reasoning factor. Alternatively, if a multi-factor model was preferred then the relationship 

between the working memory factors and fluid reasoning would be examined to see whether it 

was identical or stronger for certain sub-factors. This multi-factor model was then compared to 

a single-factor general ability model that included all working memory and reasoning tasks. 

All R code for this analysis is available in Appendix H. 

4.3.5 Model fit and comparison 

Models were estimated in the lavaan software package (Version 0.5-20; Rosseel, 2012) in R 

version 3.1.3 (R Core Team, 2015) using maximum likelihood estimation and robust standard 

errors, for which the Yuan-Bentler (YB) scaled test statistic is reported. Missing observations 

were dealt with using the full maximum likelihood (FIML) parameter estimation technique. The 

overall fit of each model was assessed using the χ² test, the comparative fit index (CFI; range: 0-

1.0; acceptable fit: .95-.97, good fit: ≥ .97; Schermelleh-Engel, Moosbrugger, & Müller, 2003), and 

the root mean square error of approximation (RMSEA; range: 0-1.0; acceptable fit: < .08, good 

fit: ≤ .05; Schermelleh-Engel et al., 2003) which is reported with 90% confidence intervals. The 

four models were also compared. When models were nested, they were compared via a 

likelihood ratio test (i.e. the scaled χ² difference test); otherwise non-nested models were 

directly compared via the Akaike information criteria (AIC). 

4.4 Results 

4.4.1 Preliminary analyses 

The data were screened to identify outliers (i.e. scores deviating 3.5 SDs from the sample mean 

on that task). Twenty-nine observations were removed during data screening for outliers, and 

an additional 14 observations were missing due to technical problems during data collection 

(total missing observations = 37). Descriptive statistics are summarised in Table 4.1. A 

correlation matrix of all tasks is displayed in Table 4.2. There were no differences in maximum 

span reached across the three backward recall tasks, nor across the three n-back tasks. All tasks 

were positively correlated (all ps < .01). The strongest patterns of association were observed 
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between backward digit and backward letter recall (r = .526), and between the three n-back 

tasks (all rs > .4). The two relational reasoning scores were very highly correlated, as expected 

given they were two halves of the same test. 

 
Table 4.1 – Descriptive statistics for all variables.       

Variable N M SD Skewness Kurtosis 

Backward digit recall 698 5.307 1.695 0.479 -0.187 

Backward letter recall 690 4.470 1.247 0.844 0.704 

Backward spatial recall 702 5.068 1.214 -0.405 -0.734 

n-back with digits 694 3.307 1.723 0.977 1.047 

n-back with letters 698 3.032 1.658 0.757 0.380 

n-back with spatial locations 699 2.774 1.511 0.984 0.591 

Relational reasoning even 700 24.921 7.604 -0.096 -0.879 

Relational reasoning odd 700 23.787 7.431 0.037 -0.683 

      
 

 
 
Table 4.2 – Correlation matrix for all tasks; simple coefficients are displayed (N = 703). 

       
  

Variable 1 2 3 4 5 6 7 8 
1. Backward digit recall ─        

2. Backward letter recall .526* ─       

3. Backward spatial recall .205* .232* ─      

4. n-back with digits .172* .258* .198* ─     

5. n-back with letters .182* .272* .173* .410* ─    

6. n-back with spatial locations .114* .183* .217* .421* .407* ─   

7. Relational reasoning even .315* .322* .362* .353* .369* .356* ─  

8. Relational reasoning odd .320* .317* .331* .372* .369* .340* .905* ─ 
 

Note. * p < .01. 

 

 

4.4.2 Confirmatory factor analysis 

Confirmatory factor analysis was used to identify the best-fitting factor model for the six 

memory tasks. The models tested are displayed in Figure 4.4. Fit indices for each model are 

provided in Table 4.3. The fit statistics revealed that the single-factor model (A), χ2 (9) = 

195.825, RMSEA = 0.172 (90% confidence interval [CI] = .151, .194), and CFI = .678, the two-

factor domain model (B), χ2 (8) = 204.926, RMSEA = .187 (90% CI = .164, .211), and CFI = .660, 

and the three-factor materials model (D), χ2 (6) = 189.847, RMSEA = .209 (90% CI = .181, .237), 
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and CFI = 683, were a poor fit to data. The two-factor paradigm model (C), χ2 (8) = 29.108, 

RMSEA = .061 (90% CI = .038, .086), and CFI = .964, was an acceptable fit to the data 

demonstrating that separate but related latent constructs corresponding to backward recall and 

n-back best capture the data. 

 The fit of the single-factor working memory model (A) was compared with each of the 

other models using χ2 difference tests because it was nested the other models. These analyses 

revealed that the fit of the single-factor model was not significantly different to the domain 

model (B), ∆ χ2 = 0.150, ∆ df = 1, p = .700, but it did provide a significantly better account of the 

data than the materials model (D), ∆ χ2 = 22.367, ∆ df = 3, p < .001. The two-factor paradigm 

model (C) outperformed the single-factor model (A), ∆ χ2 = 272.820, ∆ df = 1, p < .001. The AIC 

measurement was used to directly compare the other models to one another. The two-factor 

paradigm model (C) was the best fit with the lowest relative AIC value (see Table 4.3). 

 

 
Table 4.3 – Fit statistics for each model in the primary confirmatory and exploratory factor analyses. 

 

         

 Model χ² df YB RMSEA CFI AIC 
 

Confirmatory factor analysis 
 

      

 
(A) Single-factor working memory 195.825 9 .932 .172  [.151, .194] .678 14739 

 
(B) Two-factor domain 204.926 8 .889 .187  [.164, .211] .660 14741 

 (C) Two-factor paradigm 29.108 8 .977 .061  [.038, .086] .964 14587 

 
(D) Three-factor materials 189.847 6 .826 .209  [.181, .237] .683 14720 

 

Exploratory factor analysis 
 

      

 

(E) Single-factor working memory 
with BDR & BLR link 
 

24.154 8 .996 .054  [.030, .079] .972 14583 

 

(F) Two-factor domain with BDR & 
BLR link 
 

25.036 7 .953 .061  [.035, .088] .969 14585 

 

(G) Two-factor paradigm with BDR 
& BLR link 
 

10.658 7 .970 .027  [.000, .059] .994 14571 

 

Note. For root mean errors of approximation (RMSEAs), 90% confidence intervals are given. CFI = comparative fit index; 
AIC = Akaike information criterion. The χ² reported is the Yuan-Bentler scaled χ², with the scaling factor reported as YB. 
BDR = backward digit recall, BLR = backward letter recall.  
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Figure 4.4 (continued on the next page) – Models A (single-factor working memory), B (two-factor 

domain), and C (two-factor paradigm), where ovals represent latent factors and observed variables are 

shown in squares. BDR = backward digit recall, BLR = backward letter recall, BSR = backward spatial 

recall, NBD = n-back with digits, NBL = n-back with letters, NBS = n-back with spatial locations. 
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Figure 4.4 (continued) – Model D (three-factor materials), where ovals represent latent factors and 

observed variables are shown in squares. BDR = backward digit recall, BLR = backward letter recall, BSR = 

backward spatial recall, NBD = n-back with digits, NBL = n-back with letters, NBS = n-back with spatial 

locations. 

4.4.3 Exploratory factor analysis 

Modification indices (using the χ2 statistic) were calculated for the single-factor model (A), two-

factor domain model (B), and three-factor materials model (D), to explore why they were such a 

poor fit to the data. None of the modifications suggested for the materials model were 

appropriate, and so this model was not adjusted. The modification indices for the single-factor 

model revealed that adding a specific link between the BDR and backward letter recall (BLR) 

measures to allow them to co-vary would improve the model fit with an estimated change in χ2 

of 148.713. A single-factor model allowing these two indicators to co-vary was tested, and the 

model fit improved substantially (see Figure 4.5, Model E). The revised model was a good fit to 

the data, χ2 (8) = 24.154, RMSEA = .054 (90% CI = .030, .079), and CFI = .972, and statistically 

superior to the single-factor model without the modification (Model A), ∆ χ2 = 377.66, ∆ df = 1, p 

< .001. The same fix between BDR and BLR was suggested for the domain model, with an 

estimated χ2 change of 149.145. The revised domain model with the same fix (see Figure 4.5, 

Model F) also improved and was an acceptable fit to the data, χ2 (7) = 25.036, RMSEA = .061 

(90% CI = .035, .088), and CFI = .969, and was significantly better than the original domain 

model (B), ∆ χ2 = 357.63, ∆ df = 1, p < .001. A χ2 difference test revealed the modified single-

factor and domain models were not significantly different, ∆ χ2 = 0.145, ∆ df = 1, p < .704. 
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 Next, to compare directly whether the modified single-factor model (E) was better than 

the best-fitting two-factor paradigm model (C) from the confirmatory analyses, the same 

modification was added to the two-factor paradigm model (see Figure 4.5, Model G). Fit indices 

revealed this model was a very good fit to the data, χ2 (7) = 10.658, RMSEA = .027 (90% CI = 

.000, .059), and CFI = .994, and a statistically better fit than the same model without the 

modification (Model B), ∆ χ2 = 17.587, ∆ df = 1, p < .001. The χ2 statistic for Model G was non-

significant (p = .145), a further indication this model was a good fit. A χ2 difference test 

demonstrated that the two-factor paradigm model with the link between BDR and BLR (Model 

G) outperformed the single-factor model with the same link (Model E), ∆ χ2 = 11.668, ∆ df = 1, p < 

.001. The revised paradigm model (G) could not be directly compared with the modified domain 

model (F) as these models were not nested. However, based on there being no significant 

difference between the adjusted single-factor model (E) and domain model (F), but the revised 

paradigm model (G) being statistically superior to the adjusted single-factor model (E) in 

conjunction with a comparison of fit indices, it could be assumed that the modified paradigm 

model (G) was better than the adjusted domain model (F). This was confirmed by the AIC values 

(see Table 4.3), revealing that the best-fitting model of the working memory tasks was a 

paradigm-based model with a specific link between the two verbal backward recall tasks. 



4.4 Results 109 

 

Working 
memory

BDR BLR BSR NBD NBL NBS

.26 .39 .33 .65 .64 .63

.93 .85 .89 .57 .60 .61
.49

(E)

 

Verbal

BDR BLR NBD

.26 .39 .65

.93 .85 .57

Visuo-
spatial

BSR NBS

.34 .64

.89 .58

.96

NBL

.59

.64

(F)

.49

 

Backward 
recall

BDR BLR BSR

.39 .54 .45

.85 .71 .80

n-back

NBD NBL NBS

.66 .64 .63

.57 .59 .60

.68

.42

(G)

 
Figure 4.5 – Models E (single-factor working memory, with BDR and BLR link), F (two-factor domain, with 

BDR and BLR link), and G (two-factor paradigm, with BDR and BLR link), where ovals represent latent 

factors and observed variables are shown in squares. BDR = backward digit recall, BLR = backward letter 

recall, BSR = backward spatial recall, NBD = n-back with digits, NBL = n-back with letters, NBS = n-back 

with spatial locations. 
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4.4.4 Secondary analyses 

A secondary aim of this study was to explore how the working memory tasks are related to 

relational reasoning. Specific aims were to test whether a model with all tasks loading on a 

single factor (working memory and relational reasoning) provides a better account of the data 

than a model with a separate relational reasoning factor that is linked to the two paradigm 

factors, which are defined in the best-fitting model from the previous confirmatory and 

exploratory analyses. Two sets of models were generated. Fit indices for each model are 

provided in Table 4.4. One comprised three correlated latent variables – one each for the 

backward recall, n-back, and reasoning tasks. A reasoning construct was added to the original 

two-factor paradigm model (C), and also to the modified paradigm model (G) with a link 

between BDR and BLR. These are illustrated in Figure 4.6 as Models H and I, respectively. Fit 

indices for both of these models were very good: Model H, χ2 (17) = 63.574, RMSEA = .062 (90% 

CI = .046, .079), and CFI = .976, and Model I, χ2 (16) = 23.576, RMSEA = .026 (90% CI = .000, 

.047), and CFI = .996. The χ2 statistic for Model I was non-significant (p = .099), further indicating 

the good fit of this model. A comparison of the two models using the χ2 difference test and the 

AIC showed a superior fit on both indices for Model I, ∆ χ2 = 67.627, ∆ df = 1, p < .001 (AIC: Model 

H = 22789, Model I = 22752). 

 

Table 4.4 – Fit statistics for each model included in the secondary analyses.  
 

        

Model χ² df YB RMSEA CFI AIC 
      

(H) Three-factor  paradigm & 
reasoning 

63.574 17 .980 .062  [.046, .079] .976 22789 

(I) Three-factor paradigm & 
reasoning, with RR_E & RR_O 
link, and BDR & BLR link 

23.576 16 1.006 .026  [.000, .047] .996 22752 

(J) Single-factor general ability 364.420 20 1.074 .157  [.143, .170] .819 23112 
(K) Single-factor general ability 

with  BDR & BLR link 
 

65.683 18 1.009 .061  [.046, .078] .975 22791 

 

Note. For root mean errors of approximation (RMSEAs), 90% confidence intervals are given. CFI = comparative fit 
index; AIC = Akaike information criterion. The χ² reported is the Yuan-Bentler scaled χ², with the scaling factor 
reported as YB. RR_E = relational reasoning even items, RR_O = relational reasoning odd items, BDR = backward digit 
recall, BLR = backward letter recall.  

 

The second set of models assumed a single latent construct for all measures (three 

backward recall, three n-back, and two relational reasoning tasks). In the first model no 

constraints were added (see Figure 4.7, Model J) and it was a poor fit to the data: χ2 (20) = 

364.420, RMSEA = .157 (90% CI = .143, .170), and CFI = .819. Modification indices suggested fit 
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could be improved by constraining the two reasoning tasks (estimated reduction in χ2 = 

238.094), and then again by adding a link between BDR and BLR (estimated χ2 reduction = 

124.770). These alterations were applied incrementally. The resulting model (K) is presented in 

Figure 4.7. It was an acceptable fit to the data, χ2 (18) = 65.683, RMSEA = .061 (90% CI = .046, 

.078), and CFI = .975, and statistically superior to the same single-factor model without the 

modifications (Model J), ∆ χ2 = 196.310, ∆ df = 2, p < .001 (AIC: Model J = 23112, Model K = 

22791). 
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Figure 4.6 – Models H (three-factor paradigm and reasoning) and I (three-factor paradigm and reasoning, 

with BDR and BLR link). Latent factors are shown in ovals and squares represent observed variables. BDR 

= backward digit recall, BLR = backward letter recall, BSR = backward spatial recall, NBD = n-back with 

digits, NBL = n-back with letters, NBS = n-back with spatial locations, RR_E = relational reasoning even 

items, RR_O = relational reasoning odd items. 
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 Finally, a χ2 difference test demonstrated that Model I outperformed Model K, ∆ χ2 = 

41.136, ∆ df = 2, p < .001. This was confirmed by the AIC values (see Table 4.4), revealing that the 

best fitting model of the working memory and relational reasoning tasks was a three-factor 

model with latent constructs corresponding to backward recall, n-back, and reasoning, that has a 

specific link between BDR and BLR. These distinct latent constructs were strongly related to 

each other, and the relationship between backward recall and reasoning, and between n-back 

and reasoning, was similar (see Figure 4.6, Model I). 

g

BR BSR NBD NBL NBS RR_E

.35 .36 .40 .41 .38 .95

.88 .87 .84 .84 .85 .10

(J)

BDR

.88

RR_O

.95

.10

.35

 

g

BR BSR NBD NBL NBS RR_E

.43 .39 .62 .62 .60 .63

.81 .85 .61 .62 .64 .61

(K)

BDR
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Figure 4.7 – Models J (single-factor general ability model) and K (single-factor general ability model with 

RR_E and RR_O link, and BDR and BLR link). Latent factors are shown in ovals and squares represent 

observed variables. g = general ability factor, BDR = backward digit recall, BLR = backward letter recall, 

BSR = backward spatial recall, NBD = n-back with digits, NBL = n-back with letters, NBS = n-back with 

spatial locations, RR_E = relational reasoning even items, RR_O = relational reasoning odd items. 
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4.5 Discussion 

The goal of this study was to examine the relationship between variations of backward recall 

and n-back measures of working memory by means of a latent variable approach. Confirmatory 

factor analysis revealed that the best-fitting model was one that split the working memory tasks 

by paradigm. The data were best-captured by two distinct backward recall and n-back latent 

constructs that were related to one another (r = .68). This suggests the tasks have something in 

common, but that they also tap into distinct processes too. The underlying structure of these 

paradigms is similar to that found for measures of complex span and updating. Schmiedek et al. 

(2014) reported that these tasks also loaded on two distinct but correlated paradigm factors (r = 

.69). The findings are also consistent with the training literature showing that transfer effects 

are constrained by paradigm: improving performance on one type of working memory task, 

does not lead to improved performance on another category of working memory task (Byrne et 

al., 2018; Holmes et al., 2018; Li et al., 2008; Minear et al., 2016; Redick et al., 2013; Sprenger et 

al., 2013; Thompson et al., 2013).  

The data are, however, inconsistent with the outcomes of previous studies reporting 

much lower correlations (Dobbs & Rule, 1989; McAuley & White, 2011; Miller et al., 2009; 

Roberts, 1998; Roberts & Gibson, 2002), and the results of a meta-analysis where BDR and n-

back tasks were weakly related (r = .31; Redick & Lindsey, 2013). Differences in the strength of 

the relationship between these paradigms may be due to methodological differences. A latent 

variable approach was used here, which included multiple indicators of each paradigm. The 

previous studies, however, focussed exclusively on a single BDR task, and although some 

included multiple n-back tasks with verbal (letters, words) and spatial materials (locations, 

shapes; McAuley & White, 2011; Redick & Lindsey, 2013), many used only a single indicator of n-

back with either letters or words (Dobbs & Rule, 1989; Miller et al., 2009; Roberts, 1998; 

Roberts & Gibson, 2002). Using a latent variable approach overcomes the problem that 

correlations between single tasks are attenuated by paradigm-specific and content-specific 

sources of individual variation as well as measurement error (Schmiedek et al., 2009, 2014).  

 Working memory is a multifaceted system that relies on a range of processes including 

encoding, maintenance, recall, recognition, familiarity, updating, temporal ordering, binding, 

attention, and inhibition (Oberauer et al., 2007; Redick & Lindsey, 2013; Unsworth & Spillers, 

2010). The substantial correlation between the backward recall and n-back constructs suggests 

they share a common source of variance, which might be the variance attributed to processes 
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linked with working memory such as the mechanisms used for building, maintaining, and 

updating arbitrary bindings between memory items and their serial position (Oberauer et al., 

2007; Schmiedek et al., 2009). During backward recall, participants must reorder information 

following encoding (at the point of recall), meaning relative serial positions of the memory items 

must be updated (e.g. the sequence 5 2 7 3 must be reordered with 3 in the first serial position, 7 

in the second serial positon, etc.). Similarly, in n-back the serial positon of items that have been 

previously encoded must be updated as new items are continuously presented (e.g. an item 

going from being in position n, to position n – 1, to position n – 2, etc.; Redick & Lindsey, 2013). 

The similarity of this reordering process and the role of binding items to the appropriate 

temporal context may account for the construct overlap between these two tasks (Oberauer, 

2005; Redick & Lindsey, 2013; Szmalec et al., 2011).  

 The two paradigm-specific factors were not perfectly correlated suggesting they are 

measuring distinct sub-processes of the working memory system, or processes specific to the 

paradigms, in addition to the variance they have in common. These might correspond to 

differences in the retrieval demands of the two tasks, which differ considerably. Backward recall 

involves explicit serial recall and participants must retrieve items using only self-generated cues 

(Kane et al., 2007). In contrast, n-back requires recognition and can be completed using 

familiarity-based responding (Oberauer, 2005). The tasks also have different updating 

requirements. For n-back, the full sequence must be refreshed as new items are added and old 

ones are dropped, while for backward recall the whole sequence has to be held in mind and 

transformed and updated at the point of recall. Data presented in the previous chapter of this 

thesis revealed that BDR training gains transferred to untrained variants of backward recall 

tasks but not to untrained n-back tasks (Byrne et al., 2018; see Chapter 3). The current data are 

consistent with this pattern of transfer and suggest training may be enhancing the paradigm-

specific mechanisms required in backward recall, but not improving other processes that are 

specifically involved in n-back performance or shared between n-back and backward recall.  

 The best-fitting model of the working memory tasks included a specific link between the 

two verbal backward recall tasks (BDR and BLR). This suggests that as well as there being a split 

at the paradigm level between backward recall and n-back, there appears to be a distinction 

within the backward recall construct between verbal and visuo-spatial tasks. This likely reflects 

the use of common cognitive processes or strategies for reverse serial recall tasks of verbal 

items. For example, individuals might engage in repeated covert cycles of forward serial recall 

through the list of encoded memory items, each time recalling the last item and then peeling 

them off sequentially (Anders & Lillyquist, 1971; Thomas et al., 2003). This involves drawing on 
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verbal rehearsal processes that are established in the phonological short-term memory system 

to support the maintenance of verbal material (Page & Norris, 1998), as well as a cognitive 

routine for recalling the last item in the sequence (Gathercole et al., 2018). The use of a common 

maintenance mechanism for the digit and letter stimuli in the backward recall tasks, combined 

with a common cognitive routine (Gathercole et al., 2018) for reversing the sequence explains 

why these two tasks are strongly related. In contrast, spatial rehearsal is not a well-established 

or highly-practiced component of the visuo-spatial short-term memory system. It relies more 

heavily on general attentional resources to guide the execution of covert oculomotor planning 

processes (Pearson et al., 2014), and the maintenance of visuo-spatial items is supported by a 

distinct system within working memory (Allen, Baddeley, & Hitch, 2006; Baddeley et al., 2011; 

Logie, 1995).  

No such additional link between the verbal tasks was suggested for the n-back construct. 

This is in line with a previous study showing that n-back performance is independent of stimulus 

material (Jaeggi, Buschkuehl, et al., 2010) and suggests the mechanisms supporting performance 

on n-back tasks may be more domain-general than those supporting backward recall. The 

requirement for explicit recall in backward recall may encourage participants to engage in 

rehearsal processes more readily than n-back tasks that rely on recognition-based responses. 

Speculatively, the greater tendency for domain-specific rehearsal processes for backward recall 

may explain why domain-specificity was observed for these tasks and not n-back. 

 A model that included separate working memory paradigm and reasoning constructs 

was preferred to one where all working memory and reasoning measures loaded on a single 

factor. This supports the idea that working memory and Gf are highly related but dissociable 

constructs (Kovacs & Conway, 2016), if reasoning is used as a proxy of non-verbal IQ. Both 

categories of working memory task were linked to the separate fluid reasoning construct. This is 

consistent with many previous individual differences studies showing strong associations 

between working memory capacity and general fluid intelligence (Engle, Laughlin, et al., 1999; 

Engle & Kane, 2004; Kane et al., 2004; Schmiedek et al., 2009, 2014). It also provides evidence 

that both paradigms are valid measures of higher-order complex cognition. There is a debate 

concerning whether BDR is a measure of working memory because it requires items to be stored 

and item order to be manipulated (Alloway et al., 2006) or a measure of short-term memory that 

also draws on the strategic use of visual imagery (Rosen & Engle, 1997; St Clair-Thompson, 

2010; St Clair-Thompson & Allen, 2013). Although short-term memory tasks were not included 

in the current study, the shared variance between the backward recall tasks and both the n-back 

and fluid reasoning constructs suggests it shares common variance with other measures of 
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higher-order complex cognition, meaning it potentially taps into more than just short-term 

memory.  

 In summary, these results show that two categories of task used widely to measure 

working memory, n-back and backward recall, tap into distinct processes but that they also 

share common variance with one another and non-verbal reasoning. Building, maintaining, and 

updating arbitrary bindings may constitute the cognitive mechanisms shared between the three 

constructs (Oberauer et al., 2007; Schmiedek et al., 2009). Distinctions at the paradigm level 

might reflect differences in retrieval demands (i.e. active recall versus recognition based 

responding) or updating requirements (i.e. continuous updating during stimulus presentation 

versus transformation and updating at the point of recall after a list is presented). These findings 

suggest that backward recall and n-back tasks can be used interchangeably as measures of 

working memory, but with the caveat that although they measure the temporary processing and 

storage of information they are doing so in ways that tap into distinct processes. Working 

memory training may be training these processes that are specific to each paradigm and not 

those that contribute to the shared variance between tasks, explaining why many studies fail to 

produce cross-paradigm training transfer. 



 

Chapter 5 General discussion 

The overarching aim of the research presented in this thesis was to investigate the effects of 

combining working memory training and transcranial electrical stimulation (tES). The first two 

experiments attempted to enhance working memory training with different forms of tES. In the 

first study, transcranial random noise stimulation (tRNS) was used but did not have any effect 

on performance. Evidence suggests that transcranial direct current stimulation (tDCS) could be 

more effective for enhancing working memory performance compared to tRNS (Mulquiney et al., 

2011), therefore tDCS was used in the second experiment. The second study also examined 

transfer effects following training. This is the first experiment to systematically investigate the 

boundary conditions to transfer following training on backward recall. The three constraints 

tested were: task paradigm (i.e. backward recall and n-back), domain of materials (i.e. verbal or 

visuo-spatial), and type of memoranda (e.g. digit or letter materials). The results of this study led 

to the third experiment, in which the overlap between different types of working memory tasks 

was examined. In this final experiment, novel web-based methods were used to gather data for a 

large-scale latent variable analysis. Using an individual differences approach this study 

examined the shared variance between a series of backward recall and n-back tasks. The main 

findings and conclusions of these experiments are presented in Section 5.1. These are followed 

by a discussion of the theoretical and methodological implications of this research in Section 5.2. 

Limitations and possible future lines of enquiry are discussed in Section 5.3 and Section 5.4, 

respectively. Finally, the conclusion gives a brief summary of the key outcomes in Section 5.5. 

5.1 Summary of results 

The results of the first experiment showed that adaptive working memory training was 

associated with substantial gains on the training activities and enhanced performance on 

transfer measures with processing and storage demands in common with the training tasks. 

However, there was no reliable evidence that tRNS over bilateral dorsolateral prefrontal cortex 
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(DLPFC) enhanced gains on the training activities or facilitated the transfer of gains to untrained 

working memory tasks. Similarly, the second experiment showed that tDCS to left DLPFC did not 

boost gains on trained or untrained working memory tasks when combined with backward digit 

recall (BDR) training. These findings contrast earlier studies demonstrating that stimulation is 

an effective tool for boosting the rate of learning and magnitude of on-task training gains, and 

promoting generalisation to untrained tasks (Au et al., 2016; Ruf et al., 2017; Snowball et al., 

2013). However, the current data is in accordance with studies that show, when using the most 

rigorous randomised-controlled study designs, there is little evidence that tES enhances the 

effects of cognitive training or transfer (Martin et al., 2013; Nilsson et al., 2017; Richmond et al., 

2014). The clear conclusion of the first two experiments is that, when using the current best 

standards in intervention design and combining training and stimulation protocols that have 

been shown to be effective in other domains, there is no evidence that tES targeting DLPFC 

enhances the benefits of working memory training. 

 The inclusion of an active control training group in the second experiment also allowed 

the transfer effects of training alone to be explored. Overall the findings showed that transfer 

following training is limited, and is constrained by paradigm. Post-training gains were found on 

backward recall with digits, letters, and spatial locations following BDR training. However, there 

was no evidence of transfer to any n-back task, even when the task contained the same type of 

materials as the training activity (i.e. digits). These results indicate that paradigm is a boundary 

condition for training transfer, but that type and domain of stimuli are not. These results are 

consistent with previous studies showing that working memory training does not transfer to 

other categories of working memory paradigm (e.g. Dunning & Holmes, 2014; Holmes et al., 

2017; Li et al., 2008; Minear et al., 2016; Sprenger et al., 2013; von Bastian & Oberauer, 2013). 

The effects sizes for gains on the backward recall tasks with digits, letters, and spatial locations 

diminished respectively with distance from the training task, suggesting that the greater the 

number of features in common between training and transfer tasks, the more likely it is that 

transfer will be observed (Gathercole et al., 2018; Thorndike & Woodworth, 1901).  

 Finally, the third study examined the overlap between two widely used working memory 

paradigms, backward recall and n-back, using a latent variable approach. Confirmatory factor 

analysis revealed that three backward recall tasks loaded on a latent backward recall construct 

and three n-back tasks loaded on a distinct n-back factor, and that these two factors were 

substantially related to each other (r = .68). Distinctions at a paradigm level might reflect 

differences in retrieval demands (i.e. explicit recall versus recognition) or updating 

requirements (i.e. updating at recall versus continuous updating). Both categories of working 
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memory task were also linked to a separate fluid reasoning construct, providing evidence that 

both tasks are valid measures of higher-order complex cognition. The underlying structure of 

the tasks is similar to that reported by Schmiedek and colleagues (2009), who found distinct but 

related latent factors for complex span and updating measures that both predicted reasoning 

ability equally well. Overall, the findings of the study suggest that backward recall and n-back 

tasks are valid indicators of working memory ability, but although they both measure the 

temporary storage and processing of information they are tapping into different sub-processes. 

5.2 Implications 

The outcomes of this thesis have significant implications for the potential use of tES as a tool for 

enhancing working memory, for establishing the boundary conditions to transfer following 

training, and for understanding the processes involved in different tasks commonly used to 

measure and train working memory function. The experiments presented in this thesis also have 

important methodological implications for intervention studies involving stimulation and 

training that promise cognitive enhancement. 

5.2.1 Theoretical implications 

Using the current best standards in intervention design, and testing two different stimulation 

montages, the results presented in this thesis provide no evidence that tES enhances the effects 

of working memory training, and do not support the use of these stimulation methods as 

therapeutic tools to remediate working memory problems. The data presented also enhance our 

understanding of the boundary conditions for training transfer. The limited generalisation of 

gains observed across the two training studies supports process-specific theories of training 

transfer. That is, training is promoting the development of processes or strategies that are 

specific to the training activities (E. Dahlin, Neely, et al., 2008; Dunning & Holmes, 2014; 

Gathercole et al., 2018; Minear et al., 2016; Sprenger et al., 2013; von Bastian & Oberauer, 2014). 

More specifically, the pattern of results may provide support for a recent proposal by Gathercole 

and colleagues (2018) that expands on the process-specific account and suggests that working 

memory training is promoting the creation of novel cognitive routines. This framework argues 

that when individuals encounter a complex and unfamiliar working memory task, a novel 

routine must be constructed and refined that co-ordinates and executes existing component 
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cognitive processes in a new sequence (Gathercole et al., 2018). Over time, with repeated 

practice of sub-routines during training, the routine becomes more efficient and automatic and 

can then be readily applied to unfamiliar transfer tasks share the same higher-order structure. 

The BDR task used as the training activity in Study 2 required a new routine to be developed for 

the recall phase. To perform the task properly, the routine must coordinate established cognitive 

processes to make repeated covert cycles of forward recall through the list of items so the final 

digit can be reported. The novel aspect of the routine involves peeling off the final digit 

repeatedly with each successive cycle through the list (Anders & Lillyquist, 1971; Thomas et al., 

2003). As predicted by the framework, transfer to untrained backward recall tasks with novel 

materials was observed; this is because the routine can be applied to a new task that has the 

same higher-order structure (forward covert cycles, reporting the final item, and then peeling 

back repeatedly). Furthermore, no transfer was found to n-back, another unusual and 

demanding working memory task. According to Gathercole et al's (2018) theory, n-back requires 

a different routine. The cognitive challenge of this task is to update the positional information of 

memoranda and at the same time compare each new item with the one n-back in the list. A 

possible routine for this task could involve the repeated updating of item-order bindings as each 

new item is presented (Oberauer, 2005). The routine for BDR cannot be readily adapted to fit 

the higher-order structure of n-back, and so the framework does not predict transfer from BDR 

training to n-back, in accordance with results of Study 2.  

 The work presented in Chapter 4 provides insight into the relationship between 

backward recall and n-back tasks. By examining the construct overlap between different 

working memory tasks, the processes that might be amenable to training can be better 

understood. The results of Study 3 suggest that the two types of paradigm are tapping into 

distinct processes. It could be that working memory training is targeting the processes that are 

specific to each paradigm and not those that contribute to the shared variance between tasks, 

explaining why cross-paradigm transfer was not observed in Study 2. Furthermore, the best-

fitting model in Study 3 included a specific link between the two verbal backward recall tasks 

(backward digit and letter recall), suggesting there is a distinction between verbal and visuo-

spatial backward recall tasks. This may reflect common mechanisms used for reverse serial 

recall of verbal items that draw on verbal rehearsal mechanisms established in the phonological 

short-term memory system (Page & Norris, 1998). Serial recall for spatial materials is supported 

by a distinct system within working memory (Allen et al., 2006; Baddeley et al., 2011; Logie, 

1995). Therefore, the transfer observed from BDR to the backward letter task in Study 2, may 

have been greater than transfer to backward spatial recall because of the application of common 
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strategies for verbal rehearsal. No specific was link was required between the verbal n-back 

tasks in Study 3, suggesting the mechanisms involved in the performance of this task may be 

more domain-general. Based on this finding, it could be predicted that n-back training might 

result in more domain-general transfer effects compared to backward recall training. The spatial 

and verbal mechanisms used during n-back may be more similar than those used for reverse 

serial recall of verbal and visuo-spatial information. Therefore it might be predicted that the 

effect sizes for gains following n-back training with digits may be relatively similar for n-back 

with letters and spatial locations. This idea is supported by findings from previous studies 

showing that n-back training transfers across stimulus domain (Bürki et al., 2014; Buschkuehl et 

al., 2014; Li et al., 2008). 

5.2.2 Methodological implications 

In both the cognitive training and stimulation research fields, there is a need for standard 

methodological practices. Firstly, appropriate control groups are required to ensure that 

participants are matched on motivation and expectancy effects (Morrison & Chein, 2011; Parkin 

et al., 2015; Shipstead et al., 2012). For studies investigating the effects of working memory 

training, in order to truly control for participants’ motivations, beliefs, and expectations, the 

active control condition must be as difficult and engaging as the working memory training but 

not involve activities that draw on working memory resources (Redick et al., 2013; Sternberg, 

2008), therefore any generalisation effects can be directly attributed to the working memory 

training rather than to peripheral experiences in the lab (Shipstead et al., 2012).  

In the case of stimulation research, ideally a sham control group completing the same 

activities as the active group should be used (e.g. Au et al., 2016). In the wider literature, 

although claiming a positive effect of stimulation, some studies fail to make the critical 

comparison between active and sham stimulation groups, meaning differences cannot be 

attributed to stimulation per se and might simply reflect the benefits of training (Martin et al., 

2013; Richmond et al., 2014). It has been argued that stimulation studies must include an active 

control site of stimulation (Parkin et al., 2015). There were no anatomical controls included in 

either of the current stimulation experiments, but this was not an issue given no significant 

stimulation effects were observed. However, in the case of a positive effect of stimulation, a 

further confirmatory study with an anatomical control site would be needed in order to claim 

anatomically specific effects. This is an important consideration that should be taken into 

account in future stimulation studies. 
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 In terms of experimental design, participant and investigator blinding is recommended 

where possible. For stimulation, double-blinding is simple as the tES machine can be programed 

in advance to deliver active or sham stimulation. Therefore, one investigator programs the 

machine prior to testing while another simply turns it on and off during the experiment, 

remaining blind to group allocation. For research involving cognitive training this is more 

difficult. Using appropriate control groups, participants should be naïve to their condition. 

However, unless separate investigators are used to deliver the training and transfer sessions, 

they will be aware of group allocation. Researchers must also ensure participants are randomly 

assigned to groups to reduce bias (Simons et al., 2016), and make sure they are matched at 

baseline so that pre-existing differences between individuals do not mediate group differences 

at outcome (Melby-Lervåg & Hulme, 2012). 

 The two intervention studies presented in this thesis involved tightly controlled rigorous 

designs. Both were randomised-controlled trials with appropriate control conditions to ensure 

participants were matched on motivation and expectancy effects. For stimulation this was a 

sham condition, and for training this was a visual search training regime that was as cognitively 

demanding as active working memory training but had no memory load. Participants were blind 

to both stimulation and training conditions. The experimenter was blind to all stimulation 

groups (expect for the visual search sham stimulation group), but was not naïve to training 

group allocation.  

 New interventions that promise cognitive enhancement such as working memory 

training and brain stimulation are appealing to the scientific community, practitioners, and the 

general public. They generate high levels of intense research activity and are characterised by 

high levels of early positive results that are typically not sustained over longer periods, possibly 

due to publication bias. There is evidence that intervention studies that report positive or 

significant results are more likely to be published, and of selectively reporting outcome 

measures based on their direction of results (i.e. outcome reporting bias; Dwan et al., 2010; 

Dwan, Gamble, Williamson, & Kirkham, 2013). Regardless of outcome (i.e. the direction of 

results), the persuasiveness of results should be based on the strength of evidence combined 

with experimental rigour. Going forward, pre-registration appears to be a promising practice 

that may overcome some of the methodological issues in intervention research. Pre-registration 

is an open science research practice whereby researchers outline their study protocol, which 

includes the rationale, hypotheses, study design, and (statistical) analysis plan, before starting 

an experiment (i.e. prior to any data collection). This ensures that researchers develop their 

study design and analysis plan to directly address the specific research questions of the study in 
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advance. Using this approach, researchers must clearly distinguish between confirmatory 

(hypothesis testing) and exploratory analyses. The protocols for Study 2 and 3 of this thesis 

were both registered online via the Open Science Framework before any data collection was 

started. 

 A novel approach was used in this thesis to systematically test the boundary conditions 

to transfer. By carefully manipulating the degree of overlap in features between the training and 

transfer tasks, the distance to which training on a single working memory task transfers within 

and across paradigm could be tracked. Previous training studies often rely on post hoc 

explanations for observed patterns of transfer (e.g. Sprenger et al., 2013; von Bastian & 

Oberauer, 2013), and many include a variety of training and transfer tasks with varying degrees 

of overlap, making it difficult to map patterns of transfer and establish what constrains the 

generalisation of training gains (e.g. Anguera et al., 2012; Redick et al., 2013; Sprenger et al., 

2013; Thompson et al., 2013; von Bastian, Langer, Jäncke, & Oberauer, 2013). Going forward, 

future studies investigating transfer should be hypothesis driven. For example, by including only 

outcome measures that directly address specific research questions. 

 In Study 3, data from a large sample size (~700) was collected via online methods. 

Although there were challenges developing web-based activities and monitoring participants’ 

performance of cognitive tasks remotely, this method had a number of methodological 

advantages. A large amount of data could be collected in a relatively short amount of time, which 

provides more statistical power than previous studies investigating individual differences in 

working memory performance. As well as web-based methods being advantageous for 

individual differences studies, whereby large samples allow sufficient power to detect subtle 

inter-individual differences in performance, they also show promise for the cognitive training 

research field. Currently, near and far transfer effects across working memory training studies 

are inconsistent. One reason for this is they are typically underpowered due to inadequate 

sample sizes. Data collection in training studies is time consuming, as it usually involves practice 

on working memory activities for ~15 hours over multiple sessions (Klingberg, 2010). In future, 

larger samples could be established via web-based testing methods, producing results with 

greater statistical power. 
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5.3 Limitations 

The data conclusively showed no evidence that tES enhances the effects of working memory 

training, despite testing two different stimulation techniques (tRNS and tDCS), and when 

combined with two different training regimes (i.e. multiple Cogmed tasks and a single BDR task). 

However, a limitation of the current research was the lack of different stimulation parameters 

tested. The tES research field is relatively new and further research is needed to understand the 

impact of different stimulation protocols when applied to different cortical regions and 

combined with different training regimes. There are numerous different ways the stimulation 

machine can be configured. Candidate factors for further investigation include type, duration, 

and intensity of stimulation (Batsikadze et al., 2013; Monte-Silva et al., 2010), as well as the 

timing of stimulation relative to the task (Pirulli, Fertonani, & Miniussi, 2013), and individual 

differences in brain anatomy (Opitz, Paulus, Will, Antunes, & Thielscher, 2015). 

 As discussed in the Literature Review (see Section 1.5.1), the non-linear after-effects of 

increasing intensity and duration of stimulation on motor evoked potentials (MEPs) suggest that 

tES is not operating mechanistically in a push and pull way between excitation and inhibition 

(Parkin et al., 2015). Another potential moderator of tES is the state of the participant during 

stimulation. Antal, Terney, Poreisz, and Paulus (2007) measured MEPs before and after a 

number of conditions which combined tDCS and different activities. They showed that the same 

type of tDCS induced different MEP responses depending on whether participants were sitting 

passively, engaged in a cognitive task, or performing a simple motor task. Excitability in the 

motor cortex was lower following anodal tDCS and higher after cathodal stimulation when 

performing the cognitive task compared to the passive condition. Whereas performing the 

motor exercise reduced excitability after both anodal and cathodal tDCS compared to the passive 

condition. These results suggest that the physiological effects of tDCS on the cortex are highly 

dependent on the state of the participant during stimulation. 

 Currently, there are no guidelines for tES settings. Typically, the standard duration and 

intensity parameters used have been determined by the after-effects measured from the motor 

cortex; however these parameters are only valid if MEPs are taken as a marker. Caution must be 

taken when making assumptions about the mechanistic effects stimulation is having when 

applied to different cortical regions, as it may not respond in the same way as the motor cortex 

to changes in intensity or duration. In this thesis, the configurations used in the two stimulation 

studies were determined by the parameters used in previous tES studies that have shown 
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positive effects (e.g. Hoy et al., 2013; Snowball et al., 2013). However, due to the many 

moderators and mediators that could be influencing the effects of stimulation, it is unclear 

whether 20 minutes of tRNS for 1 mA applied to bilateral DLPFC, or 10 minutes of tDCS for 1 mA 

applied to the left DLPFC, had the intended excitatory effects on cortical activity under the 

electrodes. 

 Another potential limitation of the current research was the lack of a control training 

group in the first experiment. Although small gains were made on some of the far transfer 

measures in the first experiment, without the inclusion of a test-retest control group or control 

training group, it is impossible to determine whether these reflected genuine training benefits or 

repetition effects. However, these additional control groups were not required to test the key 

research question in this study; specifically, whether stimulation modulates the effects of 

working memory training. The critical conditions needed to address the main aim were included 

(i.e. active stimulation with training versus sham stimulation with training). 

 A disadvantage of the current work, and a general limitation in the wider research field 

of both cognitive training and tES, is the time-consuming nature of data collection. The relatively 

small sample size of Study 1 (N = 30) and Study 2 (N = 48) could mean these experiments were 

underpowered. In order to apply stimulation, each session must be completed individually with 

each participant. For example, in Study 1, a single participant took ~18 hours (over 14 sessions) 

to complete the whole experiment. Following correction for multiple comparisons, the transfer 

effects observed to backward letter and spatial recall in Study 2 were non-significant. The 

relatively small sample size may have resulted in limited power to detect significant effects. For 

this reason, Bayesian analyses were also employed. As the Bayesian tests were exploratory, a 

confirmatory follow-on experiment is proposed to examine whether the pattern of transfer 

effects observed in this experiment can be replicated. A larger sample size would provide 

sufficient power to detect significant effects with confidence. The final experiment demonstrated 

the advantages of web-based methods for collecting large amounts of data in a relatively short 

period of time, and this may be a promising avenue for the future of working memory training 

research. 

5.4 Future directions 

In the future, it would be beneficial to replicate and extend the current investigations into the 

transfer effects following working memory training. A follow-on experiment based on the results 
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of this thesis is recommended. This proposed study will investigate within- and cross-paradigm 

transfer effects following online working memory training. Participants will be allocated to one 

of three training conditions: including (i) BDR, (ii) n-back with digits, or (iii) no-memory load 

control training. Participants will complete a number of pre- and post-training assessments that 

will be designed to systematically track the degree to which training gains on backward recall 

and n-back transfer, to test whether paradigm, stimulus domain, and stimulus category are 

barriers to transfer. The outcome measures will include three backward recall tests (with digits, 

letters, and spatial locations), and three n-back tasks (also with digits, letters, and spatial 

locations). Web-based methods could be used to maximise the sample size. First, it is predicted 

that the transfer effects observed in Study 2 following training alone (without tES) will be 

replicated. Participants who complete the BDR training will show significant gains on all 

backward recall tasks, and the increase in performance will be significantly greater for 

backward letter recall relative to backward spatial recall. It is anticipated that the larger sample 

size will provide sufficient power to detect significant effects with confidence. Transfer effects 

following n-back training are expected to be more domain-general. It is predicted that n-back 

training will result in significant gains to untrained n-back tasks with novel materials, but the 

effect sizes for these gains will be comparable for n-back with letters and spatial locations. This 

prediction is based on the finding in Study 3 that there is less domain-specificity for n-back than 

backward recall tasks. Finally, it is expected that paradigm will be a barrier to transfer for BDR 

and n-back training, and so no cross-paradigm transfer is predicted for any condition. 

 Another line of further investigation could be to explore individual differences across 

different categories of working memory task. The final study in this thesis used different 

versions of backward recall and n-back to investigate construct overlap between these two 

tasks. In future it would be interesting to explore their relationship with other types of working 

memory tasks such as complex span and running span. Furthermore, in Study 3, a number of 

different models were examined using confirmatory factor analysis to explore what drives 

performance on different working memory tasks. The model that assumed the tasks would be 

split by domain (verbal and visuo-spatial tasks), and the model that split the tasks by materials 

(digits, letters, and spatial locations), were both a poor fit to the data. However, the tasks used as 

indicators for the constructs were not optimised for finding a domain or materials split in the 

data, as some of these constructs had fewer indicators than others. In a future study, the 

indicators should include an equal number of tasks that involve particular paradigms, domains, 

and materials. 
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5.5 Conclusions 

At this relatively early point in the brain stimulation research field, the clear conclusion from 

this thesis is that, when combining training stimulation protocols that have been shown to be 

effective in other studies, there is no evidence that tES enhances the benefits of working memory 

training. In addition, when using rigorous intervention design, training transfer does not extend 

across global changes in working memory paradigm, but does occur within paradigm and is not 

constrained by stimulus domain or stimulus materials. Working memory training may be 

targeting processes that are specific to each paradigm and not those that contribute to the 

shared variance between tasks, explaining why many studies fail to produce cross-paradigm 

transfer effects. 





 

References 

Ackerman, P. L., Beier, M. E., & Boyle, M. O. D. (2002). Individual differences in working memory 

within a nomological network of cognitive and perceptual speed abilities. Journal of 

Experimental Psychology, 131(4), 567–589. http://doi.org/10.1037/0096-3445.131.4.567 

Adams, J. W., & Hitch, G. J. (1997). Working memory and children’s mental addition. Journal of 

Experimental Child Psychology, 67(1), 21–38. http://doi.org/10.1006/jecp.1997.2397 

Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2006). Is the binding of visual features in working 

memory resource-demanding? Journal of Experimental Psychology. General, 135(2), 298–

313. http://doi.org/10.1037/0096-3445.135.2.298 

Alloway, T. P. (2007). Automated working memory assessment. London, UK: Pearson 

Assessments. 

Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and 

IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20–29. 

http://doi.org/10.1016/j.jecp.2009.11.003 

Alloway, T. P., Gathercole, S. E., & Pickering, S. J. (2006). Verbal and visuo-spacial short-term and 

working memory in childre: are they separable? Child Development, 77(6), 1698–1716. 

http://doi.org/10.1111/j.1467-8624.2006.00968.x 

Alloway, T. P., Kerr, I., & Langheinrich, T. (2010). The effect of articulatory suppression and 

manual tapping on serial recall. European Journal of Cognitive Psychology, 22(2), 297–305. 

http://doi.org/10.1080/09541440902793731 

Ambrus, G. G., Al-Moyed, H., Chaieb, L., Sarp, L., Antal, A., & Paulus, W. (2012). The fade-in – Short 

stimulation – Fade out approach to sham tDCS – Reliable at 1 mA for naïve and experienced 

subjects, but not investigators. Brain Stimulation, 5(4), 499–504. 

http://doi.org/10.1016/j.brs.2011.12.001 

Ambrus, G. G., Paulus, W., & Antal, A. (2010). Cutaneous perception thresholds of electrical 

stimulation methods: Comparison of tDCS and tRNS. Clinical Neurophysiology, 121(11), 

1908–1914. http://doi.org/10.1016/j.clinph.2010.04.020 

Anders, T. R., & Lillyquist, T. D. (1971). Retrieval time in forward and backward recall. 



130 

 

Psychonomic Science, 22(4), 205–206. http://doi.org/10.3758/BF03332570 

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89(4), 369–406. 

http://doi.org/10.1037/0033-295X.89.4.369 

Andrews, S. C., Hoy, K. E., Enticott, P. G., Daskalakis, Z. J., & Fitzgerald, P. B. (2011). Improving 

working memory: The effect of combining cognitive activity and anodal transcranial direct 

current stimulation to the left dorsolateral prefrontal cortex. Brain Stimulation, 4(2), 84–89. 

http://doi.org/10.1016/j.brs.2010.06.004 

Anguera, J. A., Bernard, J. A., Jaeggi, S. M., Buschkuehl, M., Benson, B. L., Jennett, S., … Seidler, R. D. 

(2012). The effects of working memory resource depletion and training on sensorimotor 

adaptation. Behavioural Brain Research, 228(1), 107–115. 

http://doi.org/10.1016/j.bbr.2011.11.040 

Antal, A., Boros, K., Poreisz, C., Chaieb, L., Terney, D., & Paulus, W. (2008). Comparatively weak 

after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in 

humans. Brain Stimulation, 1(2), 97–105. http://doi.org/10.1016/j.brs.2007.10.001 

Antal, A., & Paulus, W. (2013). Transcranial alternating current stimulation (tACS). Frontiers in 

Human Neuroscience, 7, 1–4. http://doi.org/10.3389/fnhum.2013.00317 

Antal, A., Terney, D., Poreisz, C., & Paulus, W. (2007). Towards unravelling task-related 

modulations of neuroplastic changes induced in the human motor cortex. European Journal 

of Neuroscience, 26(9), 2687–2691. http://doi.org/10.1111/j.1460-9568.2007.05896.x 

Archibald, L. M. D., & Gathercole, S. E. (2006). Short-term and working memory in specific 

language impairment. International Journal of Language & Communication Disorders, 41(6), 

675–93. http://doi.org/10.1080/13682820500442602 

Astle, D. E., Barnes, J. J., Baker, K., Colclough, G. L., & Woolrich, M. W. (2015). Cognitive training 

enhances intrinsic brain connectivity in childhood. Journal of Neuroscience, 35(16), 6277–

6283. http://doi.org/10.1523/JNEUROSCI.4517-14.2015 

Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: a proposed system and its control 

processes. In K. W. Spence (Ed.), The Psychology of Learning and Motivation (Vol. 2, pp. 89–

195). New York: Academic Press. http://doi.org/10.1016/S0079-7421(08)60422-3 

Au, J., Katz, B., Buschkuehl, M., Bunarjo, K., Senger, T., Zabel, C., … Jonides, J. (2016). Enhancing 

working memory training with transcranial direct current stimulation. Journal of Cognitive 

Neuroscience, 28(9), 1419–1432. http://doi.org/10.1162/jocn_a_00979 

Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., & Jaeggi, S. M. (2014). Improving fluid 

intelligence with training on working memory. Psychon Bull Rev, 22, 1–12. 

Baddeley, A. D. (1966). The influence of acoustic and semantic similarity on long-term memory 



131 

 

for word sequences. Quarterly Journal of Experimental Psychology, 18(4), 302–309. 

http://doi.org/10.1080/14640746608400047 

Baddeley, A. D. (1986). Working memory. Oxford, UK: Oxford University Press. 

Baddeley, A. D. (1992). Working memory - the interface between memory and cognition. Journal 

of Cognitive Neuroscience, 4(3), 281–288. http://doi.org/DOI 10.1162/jocn.1992.4.3.281 

Baddeley, A. D. (1996). Exploring the central executive. The Quarterly Journal of Experimental 

Psychology, 49(1), 5–28. http://doi.org/10.1080/713755608 

Baddeley, A. D. (1997). Human memory: theory and practice. Hove, UK: Psychology Press. 

Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in 

Cognitive Sciences, 4(11), 417–423. http://doi.org/10.1016/S1364-6613(00)01538-2 

Baddeley, A. D. (2003). Working memory: looking back and looking forward. Nature Reviews. 

Neuroscience, 4(10), 829–839. http://doi.org/10.1038/nrn1201 

Baddeley, A. D. (2012a). Working memory, thought, and action. Working Memory, Thought, and 

Action. Oxford, UK: Oxford University Press. 

http://doi.org/10.1093/acprof:oso/9780198528012.001.0001 

Baddeley, A. D. (2012b). Working memory: Theories, models, and controversies. Annual Review 

of Psychology, 63(1), 1–29. http://doi.org/10.1146/annurev-psych-120710-100422 

Baddeley, A. D., Allen, R. J., & Hitch, G. J. (2011). Binding in visual working memory: The role of 

the episodic buffer. Neuropsychologia, 49(6), 1393–1400. 

http://doi.org/10.1016/j.neuropsychologia.2010.12.042 

Baddeley, A. D., & Andrade, J. (2000). Working memory and the vividness of imagery. Journal of 

Experimental Psychology: General, 129(1), 126–145. http://doi.org/10.1037/0096-

3445.129.1.126 

Baddeley, A. D., Gathercole, S. E., & Papagno, C. (1998). The phonological loop as a language 

learning device. Psychological Review, 105(1), 158–173. http://doi.org/10.1037/0033-

295X.105.1.158 

Baddeley, A. D., Grant, S., Wight, E., & Thomson, N. (1973). Imagery and visual working memory. 

In P. M. A. Rabbitt & S. Dornic (Eds.), Attention and performance v (pp. 205–217). London, 

UK: Academic Press. 

Baddeley, A. D., & Hitch, G. J. (1974). Working Memory. The Psychology of Learning and 

Motivation: Advances in Research and Theory, 8, 47–89. http://doi.org/10.1016/S0079-

7421(08)60452-1 

Baddeley, A. D., Lewis, V., & Vallar, G. (1984). Exploring the articulatory loop. The Quarterly 

Journal of Experimental Psychology, 36(2), 233–252. 



132 

 

http://doi.org/10.1080/14640748408402157 

Baddeley, A. D., & Logie, R. H. (1999). Working memory: The multiple-component model. In A. 

Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and 

executive control. (pp. 28–61). Cambridge, UK: Cambridge University Press. 

http://doi.org/0521587212 

Baddeley, A. D., Thomson, N., & Buchanan, M. (1975). Word length and the structure of working 

memory. Journal of Verbal Learning and Verbal Behavior, 14(6), 575–589. 

http://doi.org/http://dx.doi.org/10.1016/S0022-5371(75)80045-4 

Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions to human 

working memory. Cortex, 49(5), 1195–1205. http://doi.org/10.1016/j.cortex.2012.05.022 

Barnes, J. J., Woolrich, M. W., Baker, K., Colclough, G. L., & Astle, D. E. (2015). Electrophysiological 

measures of resting state functional connectivity and their relationship with working 

memory capacity in childhood. Developmental Science, 1, 1–13. 

http://doi.org/10.1111/desc.12297 

Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in 

adults’ working memory spans. Journal of Experimental Psychology: General, 133(1), 83–

100. http://doi.org/10.1037/0096-3445.133.1.83 

Batsikadze, G., Moliadze, V., Paulus, W., Kuo, M.-F., & Nitsche, M. A. (2013). Partially non-linear 

stimulation intensity-dependent effects of direct current stimulation on motor cortex 

excitability in humans. The Journal of Physiology, 591(7), 1987–2000. 

http://doi.org/10.1113/jphysiol.2012.249730 

Bennett, M. R. (2000). The concept of long term potentiation of transmission at synapses. 

Progress in Neurobiology, 60(2), 109–137. http://doi.org/10.1016/S0301-0082(99)00006-

4 

Berryhill, M. E. (2014). Hits and misses: Leveraging tDCS to advance cognitive research. Frontiers 

in Psychology, 5, 1–12. http://doi.org/10.3389/fpsyg.2014.00800 

Bestmann, S., de Berker, A. O., & Bonaiuto, J. (2015). Understanding the behavioural 

consequences of noninvasive brain stimulation. Trends in Cognitive Sciences, 19, 13–20. 

http://doi.org/10.1016/j.tics.2014.10.003 

Blacker, K. J., Negoita, S., Ewen, J. B., & Courtney, S. M. (2017). N-back Versus Complex Span 

Working Memory Training. Journal of Cognitive Enhancement, 434–454. 

http://doi.org/10.1007/s41465-017-0044-1 

Bliss, T. V, & Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in 

the hippocampus. Nature, 361(6407), 31–39. http://doi.org/10.1038/361031a0 



133 

 

Boggio, P. S., Ferrucci, R., Rigonatti, S. P., Covre, P., Nitsche, M. A., Pascual-Leone, A., & Fregni, F. 

(2006). Effects of transcranial direct current stimulation on working memory in patients 

with Parkinson’s disease. Journal of the Neurological Sciences, 249, 31–38. 

http://doi.org/10.1016/j.jns.2006.05.062 

Boros, K., Poreisz, C., Münchau, A., Paulus, W., & Nitsche, M. A. (2008). Premotor transcranial 

direct current stimulation (tDCS) affects primary motor excitability in humans. European 

Journal of Neuroscience, 27(5), 1292–1300. http://doi.org/10.1111/j.1460-

9568.2008.06090.x 

Brunoni, A. R., Nitsche, M. A., Bolognini, N., Bikson, M., Wagner, T., Merabet, L., … Fregni, F. 

(2012). Clinical research with transcranial direct current stimulation (tDCS): Challenges 

and future directions. Brain Stimulation, 5(3), 175–195. 

http://doi.org/10.1016/j.brs.2011.03.002 

Brunoni, A. R., & Vanderhasselt, M.-A. (2014). Working memory improvement with non-invasive 

brain stimulation of the dorsolateral prefrontal cortex: a systematic review and meta-

analysis. Brain and Cognition, 86, 1–9. http://doi.org/10.1016/j.bandc.2014.01.008 

Bull, R., Espy, K. A., & Wiebe, S. A. (2008). Short-term memory, working memory, and executive 

functioning in preschoolers: longitudinal predictors of mathematical achievement at age 7 

years. Developmental Neuropsychology, 33(3), 205–28. 

http://doi.org/10.1080/87565640801982312 

Bürki, C. N., Ludwig, C., Chicherio, C., & de Ribaupierre, A. (2014). Individual differences in 

cognitive plasticity: an investigation of training curves in younger and older adults. 

Psychological Research, 78(6), 821–835. http://doi.org/10.1007/s00426-014-0559-3 

Buschkuehl, M., Hernandez-Garcia, L., Jaeggi, S. M., Bernard, J. a, & Jonides, J. (2014). Neural 

effects of short-term training on working memory. Cognitive, Affective & Behavioral 

Neuroscience, 14, 147–60. http://doi.org/10.3758/s13415-013-0244-9 

Byrne, E. M., Ewbank, M. P., Redick, T. S., & Holmes, J. (2018). Backward digit training: Cross-

paradigm transfer and the effects of transcranial direct current stimulation. In Prep. 

Cappelletti, M., Gessaroli, E., Hithersay, R., Mitolo, M., Didino, D., Kanai, R., … Walsh, V. (2013). 

Transfer of Cognitive Training across Magnitude Dimensions Achieved with Concurrent 

Brain Stimulation of the Parietal Lobe. Journal of Neuroscience, 33(37), 14899–14907. 

http://doi.org/10.1523/JNEUROSCI.1692-13.2013 

Carlesimo, G. A., Perri, R., Turriziani, P., Tomaiuolo, F., & Caltagirone, C. (2001). Remembering 

what but not where: Independence of spatial and visual working memory in the human 

brain. Cortex, 37(4), 519–534. 



134 

 

Case, R., Kurland, D. M., & Goldberg, J. (1982). Operational efficiency and the growth of short-

term memory span. Journal of Experimental Child Psychology, 33(3), 386–404. 

http://doi.org/10.1016/0022-0965(82)90054-6 

Cattaneo, Z., Pisoni, A., & Papagno, C. (2011). Transcranial direct current stimulation over 

Broca’s region improves phonemic and semantic fluency in healthy individuals. 

Neuroscience, 183, 64–70. http://doi.org/10.1016/j.neuroscience.2011.03.058 

Chaieb, L., Antal, A., & Paulus, W. (2011). Transcranial alternating current stimulation in the low 

kHz range increases motor cortex excitability. Restorative Neurology and Neuroscience, 

29(3), 167–175. http://doi.org/10.3233/RNN-2011-0589 

Chaieb, L., Antal, A., & Paulus, W. (2015). Transcranial random noise stimulation-induced 

plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines 

sensitive. Frontiers in Neuroscience, 9(125), 1–9. http://doi.org/10.3389/fnins.2015.00125 

Chaieb, L., Kovacs, G., Cziraki, C., Greenlee, M., Paulus, W., & Antal, A. (2009). Short-duration 

transcranial random noise stimulation induces blood oxygenation level dependent 

response attenuation in the human motor cortex. Experimental Brain Research, 198(4), 

439–444. http://doi.org/10.1007/s00221-009-1938-7 

Chaieb, L., Paulus, W., & Antal, A. (2011). Evaluating aftereffects of short-duration transcranial 

random noise stimulation on cortical excitability. Neural Plasticity, 2011, 1–5. 

http://doi.org/10.1155/2011/105927 

Chein, J. M., & Morrison, A. B. (2010). Expanding the mind’s workspace: training and transfer 

effects with a complex working memory span task. Psychonomic Bulletin & Review, 17(2), 

193–199. http://doi.org/10.3758/PBR.17.2.193 

Chooi, W.-T., & Thompson, L. A. (2012). Working memory training does not improve intelligence 

in healthy young adults. Intelligence, 40(6), 531–542. 

http://doi.org/10.1016/j.intell.2012.07.004 

Coffman, B. A., Clark, V. P., & Parasuraman, R. (2014). Battery powered thought: Enhancement of 

attention, learning, and memory in healthy adults using transcranial direct current 

stimulation. NeuroImage, 85, 895–908. http://doi.org/10.1016/j.neuroimage.2013.07.083 

Cogmed. (2005). Cogmed Working Memory Training. London: Pearson. 

Cohen, M. J. (2001). Children’s Memory Scale. Journal of Psychoeducational Assessment, 19(4), 

392–400. http://doi.org/10.1007/978-0-387-79948-3 

Colom, R., Abad, F. J., Rebollo, I., & Shih, P. C. (2005). Memory span and general intelligence: A 

latent-variable approach. Intelligence, 33(6), 623–642. 

http://doi.org/10.1016/j.intell.2005.05.006 



135 

 

Colom, R., Rebollo, I., Palacios, A., Juan-Espinosa, M., & Kyllonen, P. C. (2004). Working memory is 

(almost) perfectly predicted by g. Intelligence, 32(3), 277–296. 

http://doi.org/10.1016/j.intell.2003.12.002 

Conrad, R. (1964). Acoustic confusions in immediate memory. British Journal of Psychology, 

55(1), 75–84. http://doi.org/10.1111/j.2044-8295.1964.tb00899.x 

Conrad, R., & Hull, A. J. (1964). Information, acoustic confusion and memory span. British Journal 

of Psychology, 55(4), 429–432. http://doi.org/10.1111/j.2044-8295.1964.tb00928.x 

Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. . B. (2002). A latent 

variable analysis of working memory capacity, short-term memory capacity, processing 

speed, and general fluid intelligence. Intelligence, 30(2), 163–183. 

http://doi.org/10.1016/S0160-2896(01)00096-4 

Conway, A. R. A., Kane, M. J., Al, C. E. T., Bunting, M. F., Hambrick, Z. D., Wilhelm, O., … Al, C. E. T. 

(2005). Working memory span tasks: A methodological review and user’s guide. 

Psychonomic Bulletin & Review, 12(5), 769–786. http://doi.org/10.3758/BF03196772 

Conway, A. R. A., Macnamara, B. N., & Engel de Abreu, P. M. J. . (2013). Working memory and 

intelligence: An overview. In T. P. Alloway & R. G. Alloway (Eds.), Working Memory: The 

Connected Intelligence (pp. 13–35). New York: Psychology Press. 

Cortese, S., Ferrin, M., Brandeis, D., Buitelaar, J., Daley, D., Dittmann, R. W., … Sonuga-Barke, E. J. S. 

(2015). Cognitive training for attention-deficit/hyperactivity disorder: Meta-analysis of 

clinical and neuropsychological outcomes from randomized controlled trials. Journal of the 

American Academy of Child and Adolescent Psychiatry, 54(3), 164–174. 

http://doi.org/10.1016/j.jaac.2014.12.010 

Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual 

constraints within the human information-processing system. Psychological Bulletin, 

104(2), 163–191. http://doi.org/10.1037/0033-2909.104.2.163 

Cowan, N. (1992). Verbal memory span and the timing of spoken recall. Journal of Memory and 

Language, 31(5), 668–684. http://doi.org/10.1016/0749-596X(92)90034-U 

Cowan, N. (1995). Attention and memory: An integrated framework. Attention and memory: An 

integrated framework. Oxford, UK: Oxford University Press. 

Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah 

(Eds.), Models of working memory: Mechanisms of active maintenance and executive control 

(pp. 62–101). Cambridge, UK: Cambridge University Press. 

http://doi.org/10.1017/S0140525X01003922 

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental 



136 

 

storage capacity. Behavioral and Brain Sciences, 24(1), 87–114. 

http://doi.org/10.1017/S0140525X01003922 

Cowan, N. (2005). Working Memory Capacity. Hove, UK: Psychology Press. 

Cowan, N. (2008). What are the differences between long-term, short-term, and working 

memory? Nelson. Progress in Brain Research, 6123(169), 323–338. 

http://doi.org/10.1016/S0079-6123(07)00020-9.What 

Cowan, N. (2010). The magical mystery four: how is working memory capacity lmited, and why? 

Curr Dir Psychol Sci, 19(1), 51–57. http://doi.org/10.1177/0963721409359277.The 

Craik, F. (1986). A functional account of age differences in memory. In F. Klix & H. Hagendorf 

(Eds.), Human memory and cognitive capabilities: Mechanisms and performances (pp. 409–

22). Amsterdam, North Holland: Elsevier Science. http://doi.org/10.4324/9781315440446 

Curtis, C. E., & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working 

memory. Trends in Cognitive Sciences, 7(9), 415–423. http://doi.org/10.1016/S1364-

6613(03)00197-9 

D’Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI 

studies of spatial and nonspatial working memory. Cognitive Brain Research, 7(1), 1–13. 

http://doi.org/10.1016/S0926-6410(98)00004-4 

D’Esposito, M., Postle, B. R., Ballard, D., & Lease, J. (1999). Maintenance versus manipulation of 

information held in working memory: An event-related fMRI study. Brain and Cognition, 41, 

66–86. Retrieved from http://www.idealibrary.com 

D’Esposito, M., Postle, B. R., & Rypma, B. (2000). Prefrontal cortical contributions to working 

memory: evidence from event-related fMRI studies. Experimental Brain Research, 133(1), 

3–11. http://doi.org/10.1007/s002210000395 

Dahlin, E., Neely, A. S., Larsson, A., Bäckman, L., & Nyberg, L. (2008). Transfer of learning after 

updating training mediated by the striatum. Science, 320(5882), 1510–1512. 

http://doi.org/10.1126/science.1155466 

Dahlin, E., Nyberg, L., Bäckman, L., & Neely, A. S. (2008). Plasticity of executive functioning in 

young and older adults: Immediate training gains, transfer, and long-term maintenance. 

Psychology and Aging, 23(4), 720–730. http://doi.org/10.1037/a0014296 

Dahlin, K. (2011). Effects of working memory training on reading in children with special needs. 

Reading and Writing, 24(4), 479–491. http://doi.org/citeulike-article-id:7180697\rdoi: 

10.1007/s11145-010-9238-y 

Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. 

Journal of Verbal Learning and Verbal Behavior, 19(4), 450–466. 



137 

 

http://doi.org/10.1016/S0022-5371(80)90312-6 

Daneman, M., & Tardif, T. (1987). Working memory and reading skill re-examined. In M. 

Coltheart (Ed.), Attention and Performance: The Psychology of Reading (pp. 491–508). 

Taylor & Francis. 

DaSilva, A. F., Volz, M. S., Bikson, M., & Fregni, F. (2011). Electrode positioning and montage in 

transcranial direct current stimulation. Journal of Visualized Experiments : JoVE, (51). 

http://doi.org/10.3791/2744 

de Berker, A. O., Bikson, M., & Bestmann, S. (2013). Predicting the behavioral impact of 

transcranial direct current stimulation: issues and limitations. Frontiers in Human 

Neuroscience, 7(October), 613. http://doi.org/10.3389/fnhum.2013.00613 

de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2001). The role of working memory in visual 

selective attention. Science, 291(5509), 1803–1806. 

http://doi.org/10.1126/science.1056496 

Dedoncker, J., Brunoni, A. R., Baeken, C., & Vanderhasselt, M.-A. (2016). A systematic review and 

meta-analysis of the effects of transcranial Direct Current Stimulation (tDCS) over the 

dorsolateral prefrontal cortex in healthy and neuropsychiatric samples: Influence of 

stimulation parameters. Brain Stimulation, 9(4), 501–517. 

http://doi.org/10.1016/j.brs.2016.04.006 

Dobbs, A. R., & Rule, B. G. (1989). Adult age differences in working memory. Psychology and 

Aging, 4(4), 500–503. 

Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., … Emslie, H. (2000). A neural 

basis for general intelligence. Science, 289(5478), 457–460. 

http://doi.org/10.1126/science.289.5478.457 

Dunn, L. M., & Dunn, D. M. (2007). Peabody Picture Vocabulary Test 4. Summary (Vol. 30). 

Minneapolis, MN: Pearson Assessments. http://doi.org/10.1037/t15144-000 

Dunning, D. L., & Holmes, J. (2014). Does working memory training promote the use of strategies 

on untrained working memory tasks? Memory & Cognition, 42, 854–862. 

http://doi.org/10.3758/s13421-014-0410-5 

Dunning, D. L., Holmes, J., & Gathercole, S. E. (2013). Does working memory training lead to 

generalized improvements in children with low working memory? A randomized 

controlled trial. Developmental Science, 16, 915–925. http://doi.org/10.1111/desc.12068 

Dwan, K., Gamble, C., Kolamunnage-Dona, R., Mohammed, S., Powell, C., & Williamson, P. R. 

(2010). Assessing the potential for outcome reporting bias in a review: A tutorial. Trials, 11. 

http://doi.org/10.1186/1745-6215-11-52 



138 

 

Dwan, K., Gamble, C., Williamson, P. R., & Kirkham, J. J. (2013). Systematic Review of the 

Empirical Evidence of Study Publication Bias and Outcome Reporting Bias - An Updated 

Review. PLoS ONE, 8(7), 1–37. http://doi.org/10.1371/journal.pone.0066844 

Ecker, U. K. H., Lewandowsky, S., Oberauer, K., & Chee, A. E. H. (2010). The components of 

working memory updating: An experimental decomposition and individual differences. 

Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(1), 170–189. 

http://doi.org/10.1037/a0017891 

Elmasry, J., Loo, C., & Martin, D. M. (2015). A systematic review of transcranial electrical 

stimulation combined with cognitive training. Restorative Neurology and Neuroscience, 

33(3), 263–278. http://doi.org/10.3233/RNN-140473 

Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in 

top–down processing. Nature Reviews Neuroscience, 2(10), 704–716. 

http://doi.org/10.1038/35094565 

Engle, R. W. (2002). Working memory capacity as executive attention. Psychological Science, 

11(1), 19–23. http://doi.org/10.1111/1467-8721.00160 

Engle, R. W., Carullo, J. J., & Collins, K. W. (1991). Individual Differences in Working Memory for 

Comprehension and Following Directions. Journal of Educational Research, 84(5), 253–262. 

http://doi.org/10.1080/00220671.1991.10886025 

Engle, R. W., & Kane, M. J. (2004). Executive attention, working memory capacity, and a two-

factor theory of cognitive control. In B. Ross (Ed.), The Psychology of Learning and 

Motivation: Advances in Research and Theory (pp. 145–199). New York: Elsevier. 

http://doi.org/10.1016/S0079-7421(03)44005-X 

Engle, R. W., Kane, M. J., & Tuholski, S. W. (1999). Individual differences in working memory 

capacity and what they tell us about controlled attention, general fluid intelligence and 

functions of the prefrontal cortex. In A. Miyake & P. Shah (Eds.), Models of working memory: 

Mechanisms of active maintenance and executive control. (pp. 102–134). Cambridge, UK: 

Cambridge University Press. http://doi.org/10.1037/a0021324 

Engle, R. W., Laughlin, J. E., Tuholski, S. W., Conway, A. R. A., Laughlin, J. E., & Conway, A. R. A. 

(1999). Working memory, short-term memory, and general fluid intelligence: A latent-

variable approach. Journal of Experimental Psychology: General, 128(3), 309–331. 

http://doi.org/10.1037/0096-3445.128.3.309 

Ericsson, K. A., Chase, W. G., & Faloon, S. (1980). Acquisition of a Memory Skill. Science, 

208(4448), 1181–1182. http://doi.org/10.1126/science.7375930 

Eysenck, M. W. (2001). Principles of Cognitive Psychology. Principles of Psychology (2nd ed.). 



139 

 

Hove, UK: Psychology Press. http://doi.org/10.1037/003539 

Fendrich, D. W., Healy, A. F., & Bourne, L. E. J. (1993). Mental arithmetic: Training and retention 

of multiplication skill. In Cognitive Psychology Applied: A Symposium at the 22nd 

International Congress of Applied Psychology (pp. 111–133). Psychology Press. 

Flöel, A., & Cohen, L. G. (2007). Contribution of noninvasive cortical stimulation to the study of 

memory functions. Brain Research Reviews, 53(2), 250–259. 

http://doi.org/10.1016/j.brainresrev.2006.08.006 

Flöel, A., Rösser, N., Michka, O., Knecht, S., Breitenstein, C., Flo, A., … Breitenstein, C. (2008). 

Noninvasive brain stimulation improves language learning. Journal of Cognitive 

Neuroscience, 20(8), 1415–1422. http://doi.org/10.1162/jocn.2008.20098 

Fregni, F., Boggio, P. S., Nitsche, M. A., Bermpohl, F., Antal, A., Feredoes, E., … Pascual-Leone, A. 

(2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances 

working memory. Experimental Brain Research, 166(1), 23–30. 

http://doi.org/10.1007/s00221-005-2334-6 

Friedman, N. P., & Miyake, A. (2000). Differential roles for visuospatial and verbal working 

memory in situation model construction. Journal of Experimental Psychology. General, 

129(1), 61–83. http://doi.org/10.1037/0096-3445.129.1.61 

Fritsch, B., Reis, J., Martinowich, K., Schambra, H. M., Ji, Y., Cohen, L. G., & Lu, B. (2010). Direct 

current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications 

for motor learning. Neuron, 66(2), 198–204. http://doi.org/10.1016/j.neuron.2010.03.035 

Furubayashi, T., Terao, Y., Arai, N., Okabe, S., Mochizuki, H., Hanajima, R., … Ugawa, Y. (2008). 

Short and long duration transcranial direct current stimulation (tDCS) over the human 

hand motor area. Experimental Brain Research, 185(2), 279–286. 

http://doi.org/10.1007/s00221-007-1149-z 

Gandiga, P. C., Hummel, F. C., & Cohen, L. G. (2006). Transcranial DC stimulation (tDCS): a tool for 

double-blind sham-controlled clinical studies in brain stimulation. Clinical 

Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 

117(4), 845–50. http://doi.org/10.1016/j.clinph.2005.12.003 

Garden, S., Cornoldi, C., & Logie, R. H. (2002). Visuo-spatial working memory in navigation. 

Applied Cognitive Psychology, 16(1), 35–50. http://doi.org/10.1002/acp.746 

Gathercole, S. E., Adams, A.-M., & Hitch, G. J. (1994). Do young children rehearse? An individual-

differences analysis. Memory & Cognition, 22(2), 201–207. 

http://doi.org/10.3758/BF03208891 

Gathercole, S. E., Alloway, T. P., Kirkwood, H. J., Elliott, J. G., Holmes, J., & Hilton, K. A. (2008). 



140 

 

Attentional and executive function behaviours in children with poor working memory. 

Learning and Individual Differences, 18(2), 214–223. 

http://doi.org/10.1016/j.lindif.2007.10.003 

Gathercole, S. E., Dunning, D. L., Holmes, J., & Norris, D. (2018). Working memory training 

involves learning to do something new. Under Review. 

Gathercole, S. E., Durling, E., Evans, M., Jeffcock, S., & Stone, S. (2008). Working memory abilities 

and children’s performance in laboratory analogues of classroom activities. Applied 

Cognitive Psychology, 22(8), 1019–1037. http://doi.org/10.1002/acp.1407 

Gathercole, S. E., Frankish, C. R., Pickering, S. J., & Peaker, S. (1999). Phonotactic influences on 

short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 

25(1), 84–95. http://doi.org/10.1037/0278-7393.25.1.84 

Gladwin, T. E., den Uyl, T. E., Fregni, F., & Wiers, R. W. (2012). Enhancement of selective attention 

by tDCS: Interaction with interference in a Sternberg task. Neuroscience Letters, 512(1), 33–

37. http://doi.org/10.1016/j.neulet.2012.01.056 

Hambrick, D. Z. (2003). Why are some people more knowledgeable than others? A longitudinal 

study of knowledge acquisition. Memory & Cognition, 31(6), 902–917. 

http://doi.org/10.3758/BF03196444 

Harrison, T. L., Shipstead, Z., Hicks, K. L., Hambrick, D. Z., Redick, T. S., & Engle, R. W. (2013). 

Working memory training may increase working memory capacity but not fluid 

intelligence. Psychological Science, 24, 2409–19. 

http://doi.org/10.1177/0956797613492984 

Hauser, T. U., Rotzer, S., Grabner, R. H., Mérillat, S., & Jäncke, L. (2013). Enhancing performance in 

numerical magnitude processing and mental arithmetic using transcranial Direct Current 

Stimulation (tDCS). Frontiers in Human Neuroscience, 7, 1–9. 

http://doi.org/10.3389/fnhum.2013.00244 

Hautzel, H., Mottaghy, F. M., Schmidt, D., Zemb, M., Shah, N. J., Müller-Gärtner, H. W., & Krause, B. 

J. (2002). Topographic segregation and convergence of verbal, object, shape and spatial 

working memory in humans. Neuroscience Letters, 323(2), 156–160. 

http://doi.org/10.1016/S0304-3940(02)00125-8 

Heinzel, S., Schulte, S., Onken, J., Duong, Q. L., Riemer, T. G., Heinz, A., … Rapp, M. A. (2014). 

Working memory training improvements and gains in non-trained cognitive tasks in young 

and older adults. Aging, Neuropsychology, and Cognition, 21(2), 146–73. 

http://doi.org/10.1080/13825585.2013.790338 

Henry, L. (2012). The Development of Working Memory in Children. London, UK: SAGE 



141 

 

Publications. http://doi.org/10.4135/9781446251348 

Herrmann, C. S., Munk, M. H. J., & Engel, A. K. (2004). Cognitive functions of gamma-band activity: 

Memory match and utilization. Trends in Cognitive Sciences, 8(8), 347–355. 

http://doi.org/10.1016/j.tics.2004.06.006 

Herrmann, C. S., Rach, S., Neuling, T., & Strüber, D. (2013). Transcranial alternating current 

stimulation: a review of the underlying mechanisms and modulation of cognitive processes. 

Frontiers in Human Neuroscience, 7, 1–13. http://doi.org/10.3389/fnhum.2013.00279 

Hilbert, S., Nakagawa, T. T., Puci, P., Zech, A., & Bühner, M. (2015). The digit span backwards task: 

Verbal and Visual Cognitive Strategies in Working Memory Assessment. European Journal 

of Psychological Assessment, 31(3), 174–180. http://doi.org/10.1027/1015-5759/a000223 

Hill, A. T., Fitzgerald, P. B., & Hoy, K. E. (2016). Effects of anodal transcranial direct current 

stimulation on working memory: A systematic review and meta-analysis of findings from 

healthy and neuropsychiatric populations. Brain Stimulation, 9(2), 197–208. 

http://doi.org/10.1016/j.brs.2015.10.006 

Holmes, J., Butterfield, S., Cormack, F., van Loenhoud, A., Ruggero, L., Kashikar, L., & Gathercole, S. 

E. (2015). Improving working memory in children with low language abilities. Frontiers in 

Psychology, 6. http://doi.org/10.3389/fpsyg.2015.00519 

Holmes, J., Byrne, E. M., Gathercole, S. E., & Ewbank, M. P. (2016). Transcranial Random Noise 

Stimulation Does Not Enhance the Effects of Working Memory Training. Journal of Cognitive 

Neuroscience, 28(10), 1–13. http://doi.org/10.1162/jocn_a_00993 

Holmes, J., Gathercole, S. E., & Dunning, D. L. (2009). Adaptive training leads to sustained 

enhancement of poor working memory in children. Developmental Science, 12(4), 1–7. 

http://doi.org/10.1111/j.1467-7687.2009.00848.x 

Holmes, J., Woolgar, F. A., Hampshire, A., & Gathercole, S. E. (2018). Are working memory 

training effects paradigm-specific? Under Review. 

Horvath, J. C., Forte, J. D., & Carter, O. (2015). Quantitative review finds no evidence of cognitive 

effects in healthy populations from single-session transcranial Direct Current Stimulation 

(tDCS). Brain Stimulation, 8(3), 535–550. http://doi.org/10.1016/j.brs.2015.01.400 

Hoy, K. E., Emonson, M. R. L., Arnold, S. L., Thomson, R. H., Daskalakis, Z. J., & Fitzgerald, P. B. 

(2013). Testing the limits: Investigating the effect of tDCS dose on working memory 

enhancement in healthy controls. Neuropsychologia, 51(9), 1777–1784. 

http://doi.org/10.1016/j.neuropsychologia.2013.05.018 

Isaacs, E. B., & Vargha-Khadem, F. (1989). Differential course of development of spatial and 

verbal memory span: A normative study. British Journal of Developmental Psychology, 7(4), 



142 

 

377–380. http://doi.org/10.1111/j.2044-835X.1989.tb00814.x 

Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with 

training on working memory. Proceedings of the National Academy of Sciences of the United 

States of America, 105(19), 6829–6833. http://doi.org/10.1073/pnas.0801268105 

Jaeggi, S. M., Buschkuehl, M., Jonides, J., Shah, P., Morrison, A. B., & Chein, J. M. (2011). Short-and 

long-term benefits of cognitive training. Proceedings of the National Academy of Sciences, 

108(25), 46–60. http://doi.org/10.1073/pnas.1103228108 

Jaeggi, S. M., Buschkuehl, M., Perrig, W. J., & Meier, B. (2010). The concurrent validity of the N-

back task as a working memory measure. Memory, 18(4), 394–412. 

http://doi.org/10.1080/09658211003702171 

Jaeggi, S. M., Studer-Luethi, B., Buschkuehl, M., Su, Y.-F., Jonides, J., & Perrig, W. J. (2010). The 

relationship between n-back performance and matrix reasoning — implications for 

training and transfer. Intelligence, 38(6), 625–635. 

http://doi.org/10.1016/j.intell.2010.09.001 

Jaroslawska, A. J., Gathercole, S. E., Allen, R. J., & Holmes, J. (2015). Following instructions from 

working memory: Why does action at encoding and recall help? The Quarterly Journal of 

Experimental Psychology, (2014), 1183–1191. http://doi.org/10.3758/s13421-016-0636-5 

Jeffries, S., & Everatt, J. (2004). Working memory: Its role in dyslexia and other specific learning 

difficulties. Dyslexia, 10(3), 196–214. http://doi.org/10.1002/dys.278 

Jeon, S. Y., & Han, S. J. (2012). Improvement of the working memory and naming by transcranial 

direct current stimulation. Annals of Rehabilitation Medicine, 36(5), 585–595. 

http://doi.org/10.5535/arm.2012.36.5.585 

Jo, J. M., Kim, Y. H., Ko, M. H., Ohn, S. H., Joen, B., & Lee, K. H. (2009). Enhancing the working 

memory of stroke patients using tDCS. American Journal of Physical Medicine and 

Rehabilitation, 88(5), 404–409. http://doi.org/10.1097/PHM.0b013e3181a0e4cb 

Johnson, M. H., & de Haan, M. (2011). Developmental Cognitive Neuroscience: An Introduction. 

Chichester, UK: John Wiley & Sons. http://doi.org/10.1007/s13398-014-0173-7.2 

Johnson, M. K. (1992). MEM: Mechanisms of Recollection. Journal of Cognitive Neuroscience, 4(3), 

268–280. http://doi.org/10.1162/jocn.1992.4.3.268 

Kanai, R., Chaieb, L., Antal, A., Walsh, V., & Paulus, W. (2008). Frequency-Dependent Electrical 

Stimulation of the Visual Cortex. Current Biology, 18(23), 1839–1843. 

http://doi.org/10.1016/j.cub.2008.10.027 

Kane, M. J., Bleckley, M. K., Conway, A. R. A., & Engle, R. W. (2001). A controlled-attention view of 

working-memory capacity. Journal of Experimental Psychology: General, 130(2), 169–183. 



143 

 

http://doi.org/10.1037//0096-3445.130.2.169 

Kane, M. J., Conway, A. R. A., Hambrick, D. Z., & Engle, R. W. (2008). Variation in working memory 

capacity as variation in executive attention and control. In A. R. A. Conway, C. Jarrold, M. J. 

Kane, A. Miyake, & J. N. Towse (Eds.), Variation in Working Memory (pp. 21–48). Oxford, UK: 

Oxford University Press. http://doi.org/10.1093/acprof:oso/9780195168648.003.0002 

Kane, M. J., Conway, A. R. A., Miura, T. K., & Colflesh, G. J. H. (2007). Working memory, attention 

control, and the n-back task: A question of construct validity. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 33(3), 615–622. 

http://doi.org/10.1037/0278-7393.33.3.615 

Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention: The 

contributions of goal neglect, response competition, and task set to Stroop interference. 

Journal of Experimental Psychology: General, 132(1), 47–70. http://doi.org/10.1037/0096-

3445.132.1.47 

Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The 

generality of working memory capacity: a latent-variable approach to verbal and 

visuospatial memory span and reasoning. Journal of Experimental Psychology. General, 

133(2), 189–217. http://doi.org/10.1037/0096-3445.133.2.189 

Kane, M. J., Poole, B. J., Tuholski, S. W., & Engle, R. W. (2006). Working memory capacity and the 

top-down control of visual search: Exploring the boundaries of “executive attention.” J Exp 

Psychol Learn Mem Cogn, 32(4), 749–777. http://doi.org/2006-08497-008 

[pii]\r10.1037/0278-7393.32.4.749 

Karbach, J., Strobach, T., & Schubert, T. (2015). Adaptive working-memory training benefits 

reading, but not mathematics in middle childhood. Child Neuropsychology, 21(3), 285–301. 

http://doi.org/10.1080/09297049.2014.899336 

Karbach, J., & Verhaeghen, P. (2014). Making working memory work: A meta-analysis of 

executive control and working memory training in younger and older adults. Psychological 

Science, 25(11), 2027–2037. http://doi.org/10.1177/0956797614548725.Making 

Kass, R., & Raftery, A. (1995). Bayes Factors. Journal of the American Statistical Association, 90, 

773–795. http://doi.org/10.1080/01621459.1995.10476572 

Keeser, D., Padberg, F., Reisinger, E., Pogarell, O., Kirsch, V., Palm, U., … Mulert, C. (2011). 

Prefrontal direct current stimulation modulates resting EEG and event-related potentials in 

healthy subjects: A standardized low resolution tomography (sLORETA) study. 

NeuroImage, 55(2), 644–657. http://doi.org/10.1016/j.neuroimage.2010.12.004 

Kessler, S. K., Turkeltaub, P. E., Benson, J. G., & Hamilton, R. H. (2012). Differences in the 



144 

 

experience of active and sham transcranial direct current stimulation. Brain Stimulation, 

5(2), 155–162. http://doi.org/10.1016/j.brs.2011.02.007 

Klauer, K. C., & Zhao, Z. (2004). Double dissociations in visual and spatial short-term memory. 

Journal of Experimental Psychology: General, 133(3), 355–381. 

http://doi.org/10.1037/0096-3445.133.3.355 

Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14, 

317–324. http://doi.org/10.1016/j.tics.2010.05.002 

Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlström, K., … Westerberg, H. 

(2005). Computerized training of working memory in children with ADHD--a randomized, 

controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44(2), 

177–86. http://doi.org/10.1097/00004583-200502000-00010 

Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children 

with ADHD. Journal of clinical and experimental neuropsychology (Vol. 24). 

Knoll, L. J., Fuhrmann, D., Sakhardande, A. L., Stamp, F., Speekenbrink, M., & Blakemore, S. J. 

(2016). A Window of Opportunity for Cognitive Training in Adolescence. Psychological 

Science, 27(12), 1620–1631. http://doi.org/10.1177/0956797616671327 

Kovacs, K., & Conway, A. R. A. (2016). Process Overlap Theory: A Unified Account of the General 

Factor of Intelligence. Psychological Inquiry, 27(3), 151–177. 

http://doi.org/10.1080/1047840X.2016.1153946 

Kundu, B., Sutterer, D. W., Emrich, S. M., & Postle, B. R. (2013). Strengthened effective 

connectivity underlies transfer of working memory training to tests of short-term memory 

and attention. Journal of Neuroscience, 33(20), 8705–8715. 

http://doi.org/10.1523/JNEUROSCI.5565-12.2013 

Kuo, M.-F., & Nitsche, M. A. (2012). Effects of Transcranial Electrical Stimulation on Cognition. 

Clinical EEG and Neuroscience, 43(3), 192–199. 

http://doi.org/10.1177/1550059412444975 

Küper, K., & Karbach, J. (2016). Increased training complexity reduces the effectiveness of brief 

working memory training: Evidence from short-Term single and dual n-back training 

interventions. Journal of Cognitive Psychology, 28(2), 199–208. 

http://doi.org/10.1080/20445911.2015.1118106 

Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory 

capacity?! Intelligence, 14(4), 389–433. http://doi.org/10.1016/S0160-2896(05)80012-1 

Langer, N., von Bastian, C. C., Wirz, H., Oberauer, K., & Jäncke, L. (2013). The effects of working 

memory training on functional brain network efficiency. Cortex; a Journal Devoted to the 



145 

 

Study of the Nervous System and Behavior, 49(9), 2424–38. 

http://doi.org/10.1016/j.cortex.2013.01.008 

Li, F., & Tsien, J. Z. (2013). Memory and NMDA receptors. The New England Journal of Medicine, 

361(3), 302–303. http://doi.org/10.1056/NEJMcibr0902052.Memory 

Li, S.-C., Schmiedek, F., Huxhold, O., Röcke, C., Smith, J., & Lindenberger, U. (2008). Working 

memory plasticity in old age: Practice gain, transfer, and maintenance. Psychology and 

Aging, 23(4), 731–742. http://doi.org/10.1037/a0014343 

Liebetanz, D., Nitsche, M. A., Tergau, F., & Paulus, W. (2002). Pharmacological approach to the 

mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex 

excitability. Brain, 125(10), 2238–2247. http://doi.org/10.1093/brain/awf238 

Lilienthal, L., Tamez, E., Shelton, J. T., Myerson, J., & Hale, S. (2013). Dual n-back training 

increases the capacity of the focus of attention. Psychonomic Bulletin and Review, 20(1), 

135–141. http://doi.org/10.3758/s13423-012-0335-6 

Logie, R. H. (1995). Visuo-spatial Working Memory. Hove, UK: Lawrence Erlbaum Associates, Ltd. 

http://doi.org/10.1002/acp.746 

Logie, R. H., & Pearson, D. G. (1997). The inner eye and the inner scribe of visuo-spatial working 

memory: Evidence from developmental fractionation. European Journal of Cognitive 

Psychology, 9(3), 241–257. http://doi.org/10.1080/713752559 

Looi, C. Y., Lim, J., Sella, F., Lolliot, S., Duta, M., Avramenko, A. A., & Cohen Kadosh, R. (2017). 

Transcranial random noise stimulation and cognitive training to improve learning and 

cognition of the atypically developing brain: A pilot study. Scientific Reports, 7(1), 4633. 

http://doi.org/10.1038/s41598-017-04649-x 

Loosli, S. V., Buschkuehl, M., Perrig, W. J., & Jaeggi, S. M. (2012). Working memory training 

improves reading processes in typically developing children. Child Neuropsychology, 18(1), 

62–78. http://doi.org/10.1080/09297049.2011.575772 

Luzzatti, C., Vecchi, T., Agazzi, D., Cesa-Bianchi, M., & Vergani, C. (1998). Neurological 

dissociation between preserved and impaired spatial processing in mental imagery. Cortex, 

1998(34), 461–469. 

Mackintosh, N. J., & Bennett, E. S. (2003). The fractionation of working memory maps onto 

different components of intelligence. Intelligence, 31(6), 519–531. 

http://doi.org/10.1016/S0160-2896(03)00052-7 

Mammarella, I. C., Hill, F., Devine, A., Caviola, S., & Szucs, D. (2015). Math anxiety and 

developmental dyscalculia: A study on working memory processes. Journal of Clinical and 

Experimental Neuropsychology, 37(8), 878–887. 



146 

 

http://doi.org/10.1080/13803395.2015.1066759 

Martin, D. M., Liu, R., Alonzo, A., Green, M., Player, M. J., Sachdev, P., & Loo, C. K. (2013). Can 

transcranial direct current stimulation enhance outcomes from cognitive training? A 

randomized controlled trial in healthy participants. The International Journal of 

Neuropsychopharmacology, 16(9), 1927–36. http://doi.org/10.1017/S1461145713000539 

Martin, S. J., Grimwood, P. D., & Morris, R. G. M. (2000). Synaptic plasticity and memory: an 

evaluation of the hypothesis. Annual Review of Neuroscience, 23(1), 649–711. 

http://doi.org/10.1146/annurev.neuro.23.1.649 

Martinussen, R., Hayden, J., Hogg-Johnson, S., & Tannock, R. (2005). A meta-analysis of working 

memory impairments in children with attention-deficit/hyperactivity disorder. Journal of 

the American Academy of Child and Adolescent Psychiatry, 44(4), 377–84. 

http://doi.org/10.1097/01.chi.0000153228.72591.73 

McAuley, T., & White, D. A. (2011). A latent variables examination of processing speed, response 

inhibition, and working memory during typical development. Journal of Experimental Child 

Psychology, 108(3), 453–468. http://doi.org/10.1016/j.jecp.2010.08.009 

Meiser, T., & Klauer, K. C. (1999). Working memory and changing-state hypothesis. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 25(5), 1272–1299. 

http://doi.org/10.1037/0278-7393.25.5.1272 

Melby-Lervåg, M., & Hulme, C. (2012). Is working memory training effective? A meta-analytic 

review. Developmental Psychology, 49(2), 270–291. http://doi.org/10.1037/a0028228 

Melby-Lervåg, M., Redick, T. S., & Hulme, C. (2016). Working memory training does not improve 

performance on measures of intelligence or other measures of “far transfer”: Evidence from 

a meta-analytic review. Perspectives on Psychological Science, 11(4), 512–534. 

http://doi.org/10.1177/1745691616635612 

Miller, K. M., Price, C. C., Okun, M. S., Montijo, H., & Bowers, D. (2009). Is the n-back task a valid 

neuropsychological measure for assessing working memory? Archives of Clinical 

Neuropsychology : The Official Journal of the National Academy of Neuropsychologists, 24(7), 

711–7. http://doi.org/10.1093/arclin/acp063 

Minear, M., Brasher, F., Guerrero, C. B., Brasher, M., Moore, A., & Sukeena, J. (2016). A 

simultaneous examination of two forms of working memory training: Evidence for near 

transfer only. Memory & Cognition, 44, 1010–1037. http://doi.org/10.3758/s13421-016-

0616-9 

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The 

unity and diversity of executive functions and their contributions to complex “frontal lobe” 



147 

 

tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. 

http://doi.org/10.1006/cogp.1999.0734 

Miyake, A., & Shah, P. (1999). Models of working memory: An introduction. In A. Miyake & P. 

Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive 

control. (pp. 442–481). Cambridge: Cambridge University Press. 

http://doi.org/10.1017/CBO9781139174909 

Moliadze, V., Antal, A., & Paulus, W. (2010). Boosting brain excitability by transcranial high 

frequency stimulation in the ripple range. The Journal of Physiology, 588(24), 4891–4904. 

http://doi.org/10.1055/s-0030-1250984 

Moliadze, V., Atalay, D., Antal, A., & Paulus, W. (2012). Close to threshold transcranial electrical 

stimulation preferentially activates inhibitory networks before switching to excitation with 

higher intensities. Brain Stimulation, 5(4), 505–511. 

http://doi.org/10.1016/j.brs.2011.11.004 

Monte-Silva, K., Kuo, M.-F., Hessenthaler, S., Fresnoza, S., Liebetanz, D., Paulus, W., & Nitsche, M. 

a. (2013). Induction of late LTP-like plasticity in the human motor cortex by repeated non-

invasive brain stimulation. Brain Stimulation, 6(3), 424–432. 

http://doi.org/10.1016/j.brs.2012.04.011 

Monte-Silva, K., Kuo, M.-F., Liebetanz, D., Paulus, W., & Nitsche, M. A. (2010). Shaping the optimal 

repetition interval for cathodal transcranial direct current stimulation (tDCS). Journal of 

Neurophysiology, 103(4), 1735–1740. http://doi.org/10.1152/jn.00924.2009 

Moreno-Duarte, I., Gebodh, N., Schestatsky, P., Guleyupoglu, B., Reato, D., Bikson, M., & Fregni, F. 

(2014). Transcranial electrical stimulation: transcranial Direct Current Stimulation (tDCS), 

transcranial Alternating Current Stimulation (tACS), transcranial Pulsed Current 

Stimulation (tPCS), and transcranial Random Noise Stimulation (tRNS). In R. C. Kadosh 

(Ed.), The Stimulated Brain: Cognitive Enhancement Using Non-Invasive Brain Stimulation 

(pp. 35–59). London, UK: Academic Press. http://doi.org/10.1016/B978-0-12-404704-

4.00002-8 

Morris, N. (1989). Spatial monitoring in visual working memory. British Journal of Psychology, 

80(3), 333–349. http://doi.org/10.1111/j.2044-8295.1989.tb02324.x 

Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and 

challenges of enhancing cognition by training working memory. Psychonomic Bulletin & 

Review, 18, 46–60. http://doi.org/10.3758/s13423-010-0034-0 

Mull, B. R., & Seyal, M. (2001). Transcranial magnetic stimulation of left prefrontal cortex impairs 

working memory. Clinical Neurophysiology, 112(9), 1672–1675. 



148 

 

http://doi.org/10.1016/S1388-2457(01)00606-X 

Mulquiney, P. G., Hoy, K. E., Daskalakis, Z. J., & Fitzgerald, P. B. (2011). Improving working 

memory: Exploring the effect of transcranial random noise stimulation and transcranial 

direct current stimulation on the dorsolateral prefrontal cortex. Clinical Neurophysiology, 

122(12), 2384–2389. http://doi.org/10.1016/j.clinph.2011.05.009 

Nilsson, J., Lebedev, A. V., Rydström, A., & Lövdén, M. (2017). Direct-current stimulation does 

little to improve the outcome of working memory training in older adults. Psychological 

Science, 28(7), 907–920. http://doi.org/10.1177/0956797617698139 

Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., … Pascual-Leone, A. 

(2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 

1(3), 206–223. http://doi.org/10.1016/j.brs.2008.06.004 

Nitsche, M. A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., … Paulus, W. 

(2003). Pharmacological modulation of cortical excitability shifts induced by transcranial 

direct current stimulation in humans. The Journal of Physiology, 553(1), 293–301. 

http://doi.org/10.1113/jphysiol.2003.049916 

Nitsche, M. A., Nitsche, M. S., Klein, C. C., Tergau, F., Rothwell, J. C., & Paulus, W. (2003). Level of 

action of cathodal DC polarisation induced inhibition of the human motor cortex. Clinical 

Neurophysiology, 114(4), 600–604. http://doi.org/10.1016/S1388-2457(02)00412-1 

Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by 

weak transcranial direct current stimulation. The Journal of Physiology, 527(3), 633–9. 

http://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x 

Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC 

motor cortex stimulation in humans. Neurology, 57(10), 1899–1901. 

http://doi.org/10.1212/WNL.57.10.1899 

Nitsche, M. A., & Paulus, W. (2011). Transcranial direct current stimulation - Update 2011. 

Restorative Neurology and Neuroscience, 29(6), 463–492. http://doi.org/10.3233/RNN-

2011-0618 

Nitsche, M. A., Seeber, A., Frommann, K., Klein, C. C., Rochford, C., Nitsche, M. S., … Tergau, F. 

(2005). Modulating parameters of excitability during and after transcranial direct current 

stimulation of the human motor cortex. The Journal of Physiology, 568(1), 291–303. 

http://doi.org/10.1113/jphysiol.2005.092429 

Norman, D., & Shallice, T. (1980). Attention to action: Willed and automatic control of behavior. 

University of California. San Diego, CA. 

Oberauer, K. (2005). Binding and inhibition in working memory: individual and age differences 



149 

 

in short-term recognition. Journal of Experimental Psychology. General, 134(3), 368–387. 

http://doi.org/10.1037/0096-3445.134.3.368 

Oberauer, K., Süß, H. M., Schulze, R., Wilhelm, O., & Wittmann, W. W. (2000). Working memory 

capacity — facets of a cognitive ability construct. Personality and Individual Differences, 

29(6), 1017–1045. http://doi.org/10.1016/S0191-8869(99)00251-2 

Oberauer, K., Süß, H. M., Wilhelm, O., & Sander, N. (2007). Individual differences in working 

memory capacity and reasoning ability. In A. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, 

& J. N. Towse (Eds.), Variation in Working Memory (pp. 49–75). New York: Oxford 

University Press. 

Ohn, S. H., Park, C.-I., Yoo, W.-K., Ko, M.-H., Choi, K. P., Kim, G.-M., … Kim, Y.-H. (2008). Time-

dependent effect of transcranial direct current stimulation on the enhancement of working 

memory. NeuroReport, 19(1), 43–47. http://doi.org/10.1097/WNR.0b013e3282f2adfd 

Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity 

after training of working memory. Nature Neuroscience, 7(1), 75–79. 

http://doi.org/10.1038/nn1165 

Opitz, A., Paulus, W., Will, S., Antunes, A., & Thielscher, A. (2015). Determinants of the electric 

field during transcranial direct current stimulation. NeuroImage, 109, 140–50. 

http://doi.org/10.1016/j.neuroimage.2015.01.033 

Owen, A. M. (1997). The functional organization of working memory processes within human 

lateral frontal cortex: the contribution of functional neuroimaging. The European Journal of 

Neuroscience, 9(7), 1329–39. http://doi.org/10.1111/j.1460-9568.1997.tb01487.x 

Owen, A. M. (2000). The role of the lateral frontal cortex in mnemonic processing: the 

contribution of functional neuroimaging. Experimental Brain Research., 133(1), 33–43. 

http://doi.org/10.1007/s002210000398 

Owen, A. M., Iddon, J. L., Hodges, J. R., Summers, B. A., & Robbins, T. W. (1997). Spatial and non-

spatial working memory at different stages of Parkinson’s disease. Neuropsychologia, 35(4), 

519–532. http://doi.org/10.1016/S0028-3932(96)00101-7 

Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory 

paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain 

Mapping, 25(1), 46–59. http://doi.org/10.1002/hbm.20131 

Page, M. P. A., & Norris, D. (1998). The primacy model: A new model of immediate serial recall. 

Psychological Review, 105(4), 761–781. http://doi.org/10.1037/0033-295X.105.4.761-781 

Palm, U., Reisinger, E., Keeser, D., Kuo, M.-F., Pogarell, O., Leicht, G., … Padberg, F. (2013). 

Evaluation of sham transcranial direct current stimulation for randomized, placebo-



150 

 

controlled clinical trials. Brain Stimulation, 6(4), 690–695. 

http://doi.org/10.1016/j.brs.2013.01.005 

Park, J., & Brannon, E. M. (2013). Training the approximate number system improves math 

rroficiency. Psychological Science, 24(10), 2013–2019. 

http://doi.org/10.1177/0956797613482944 

Parkin, B. L., Ekhtiari, H., & Walsh, V. F. (2015). Non-invasive human brain stimulation in 

cognitive neuroscience: A primer. Neuron, 87(5), 932–945. 

http://doi.org/10.1016/j.neuron.2015.07.032 

Paulus, W. (2004). Outlasting excitability shifts induced by direct current stimulation of the 

human brain. Supplements to Clinical Neurophysiology, 57, 708–14. 

http://doi.org/10.1016/S1567-424X(09)70411-8 

Paulus, W. (2011). Transcranial electrical stimulation (tES - tDCS; tRNS, tACS) methods. 

Neuropsychological Rehabilitation, 21(5), 602–617. 

http://doi.org/10.1080/09602011.2011.557292 

Paulus, W., Antal, A., & Nitsche, M. A. (2013). Physiological basis and methodological aspects of 

transcranial electric stimulation (tDCS, tACS, and tRNS). In C. Miniussi, W. Paulus, & P. M. 

Rossini (Eds.), Transcranial Brain Stimulation (pp. 93–111). Boca Raton, FL: CRC Press. 

http://doi.org/doi:10.1201/b14174-6 

Pearson, D. G., Ball, K., & Smith, D. T. (2014). Oculomotor preparation as a rehearsal mechanism 

in spatial working memory. Cognition, 132(3), 416–428. 

http://doi.org/10.1016/j.cognition.2014.05.006 

Pearson, D. G., & Sahraie, A. (2003). Oculomotor control and the maintenance of spatially and 

temporally distributed events in visuo-spatial working memory. Quarterly Journal of 

Experimental Psychology Section A: Human Experimental Psychology, 56(7), 1089–1111. 

http://doi.org/10.1080/02724980343000044 

Pickering, S. J., Gathercole, S. E., Hall, M., & Lloyd, S. A. (2001). Development of memory for 

pattern and path: Further evidence for the fractionation of visuo-spatial memory. Quarterly 

Journal of Experimental Psychology Section A: Human Experimental Psychology, 54(2), 397–

420. http://doi.org/10.1080/02724980042000174 

Pirulli, C., Fertonani, A., & Miniussi, C. (2013). The role of timing in the induction of 

neuromodulation in perceptual learning by transcranial electric stimulation. Brain 

Stimulation, 6(4), 683–689. http://doi.org/10.1016/j.brs.2012.12.005 

Pollack, I., Johnson, L. B., & Knaff, P. R. (1959). Running memory span. Journal of Experimental 

Psychology, 57(3), 137–146. http://doi.org/10.1037/h0046137 



151 

 

Poreisz, C., Boros, K., Antal, A., & Paulus, W. (2007). Safety aspects of transcranial direct current 

stimulation concerning healthy subjects and patients. Brain Research Bulletin, 72(4–6), 

208–14. http://doi.org/10.1016/j.brainresbull.2007.01.004 

Postle, B. R., Awh, E., Jonides, J., Smith, E. E., & D’Esposito, M. (2004). The where and how of 

attention-based rehearsal in spatial working memory. Cognitive Brain Research, 20(2), 194–

205. http://doi.org/10.1016/j.cogbrainres.2004.02.008 

Postle, B. R., Jonides, J., Smith, E. E., Corkin, S., & Growdon, J. H. (1997). Spatial, but not object, 

delayed response is impaired in early Parkinson’s disease. Neuropsychology, 11(2), 171–

179. http://doi.org/10.1037/0894-4105.11.2.171 

Priori, A., Berardelli, A., Rona, S., Accornero, N., & Manfredi, M. (1998). Polarization of the human 

motor cortex through the scalp. NeuroReport, 9(10), 2257–2260. 

http://doi.org/10.1097/00001756-199807130-00020 

R Core Team. (2015). R: A Language and Environment for Statistical Computing. R Foundation 

for Statistical Computing Vienna Austria. http://doi.org/ISBN 3-900051-07-0 

Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A 

review of developmental, individual difference, and cognitive approaches. Learning and 

Individual Differences, 20(2), 110–122. http://doi.org/10.1016/j.lindif.2009.10.005 

Rapport, M. D., Orban, S. A., Kofler, M. J., & Friedman, L. M. (2013). Do programs designed to train 

working memory, other executive functions, and attention benefit children with ADHD? A 

meta-analytic review of cognitive, academic, and behavioral outcomes. Clinical Psychology 

Review, 33(8), 1237–1252. http://doi.org/10.1016/j.cpr.2013.08.005 

Redick, T. S. (2015). Working memory training and interpreting interactions in intelligence 

interventions. Intelligence, 50, 14–20. http://doi.org/10.1016/j.intell.2015.01.014 

Redick, T. S., & Lindsey, D. R. B. (2013). Complex span and n-back measures of working memory: 

a meta-analysis. Psychonomic Bulletin & Review, 20(6), 1102–13. 

http://doi.org/10.3758/s13423-013-0453-9 

Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., … Engle, R. W. 

(2013). No evidence of intelligence improvement after working memory training: A 

randomized, placebo-controlled study. Journal of Experimental Psychology: General, 142(2), 

359–379. http://doi.org/10.1037/a0029082 

Richmond, L. L., Wolk, D., Chein, J. M., & Olson, I. R. (2014). Transcranial direct current 

stimulation enhances verbal working memory training performance over time and near-

transfer outcomes. Journal of Cognitive Neuroscience, 26(11), 2443–2454. 

http://doi.org/10.1162/jocn_a_00657 



152 

 

Robbins, T. W., Anderson, E. J., Barker, D. R., Bradley, A. C., Fearnyhough, C., Henson, R., & 

Hudson, S. R. (1996). Working memory in chess. Memory & Cognition, 24(1), 83–93. 

http://doi.org/10.3758/BF03197274 

Roberts, R. M. (1998). Pruning the right branch: Working memory and understanding sentences. 

Unpublished doctoral dissertation, California State University, Los Angeles. 

Roberts, R. M., & Gibson, E. (2002). Individual differences in sentence processing. Journal of 

Psycholinguistic Research, 31(6), 573–598. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/12599915 

Romanska, A., Rezlescu, C., Susilo, T., Duchaine, B., & Banissy, M. J. (2015). High-frequency 

transcranial random noise stimulation enhances perception of facial identity. Cerebral 

Cortex, 25(11), 4334–40. http://doi.org/10.1093/cercor/bhv016 

Rosen, V. M., & Engle, R. W. (1997). Forward and backward serial recall. Intelligence, 25(1), 37–

47. http://doi.org/10.1016/S0160-2896(97)90006-4 

Rosen, V. M., & Engle, R. W. (1997). The role of working memory capacity in retrieval. Journal of 

Experimental Psychology. General, 126(3), 211–227. http://doi.org/10.1037/0096-

3445.126.3.211 

Rosseel, Y. (2012). lavaan: an R package for structural equation modeling, 48(2), 1–20. 

Roy, L. B., Sparing, R., Fink, G. R., & Hesse, M. D. (2015). Modulation of attention functions by 

anodal tDCS on right PPC. Neuropsychologia, 74, 96–107. 

http://doi.org/10.1016/j.neuropsychologia.2015.02.028 

Ruf, S. P., Fallgatter, A. J., & Plewnia, C. (2017). Augmentation of working memory training by 

transcranial direct current stimulation (tDCS). Scientific Reports, 7(1), 876. 

http://doi.org/10.1038/s41598-017-01055-1 

Russo, R., Wallace, D., Fitzgerald, P. B., & Cooper, N. R. (2013). Perception of comfort during 

active and sham transcranial direct current stimulation: A double blind study. Brain 

Stimulation, 6(6), 946–951. http://doi.org/10.1016/j.brs.2013.05.009 

Salthouse, T. A. (1990). Working memory as a processing resource in cognitive aging. 

Developmental Review, 10(1), 101–124. http://doi.org/10.1016/0273-2297(90)90006-P 

Salthouse, T. A., Babcock, R. L., & Shaw, R. J. (1991). Effects of adult age on structural and 

operational capacities in working memory. Psychology and Aging, 6(1), 118–127. 

http://doi.org/10.1037/0882-7974.6.1.118 

Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural 

equation models: Tests of significance and descriptive goodness-of-fit Measures. Methods of 

Psychological Research Online, 8(2), 23–74. http://doi.org/10.1002/0470010940 



153 

 

Schmiedek, F., Hildebrandt, A., Lövdén, M., Lindenberger, U., & Wilhelm, O. (2009). Complex span 

versus updating tasks of working memory: the gap is not that deep. Journal of Experimental 

Psychology. Learning, Memory, and Cognition, 35(4), 1089–1096. 

http://doi.org/10.1037/a0015730 

Schmiedek, F., Lövdén, M., & Lindenberger, U. (2014). A task is a task is a task: Putting complex 

span, n-back, and other working memory indicators in psychometric context. Frontiers in 

Psychology, 5, 1–8. http://doi.org/10.3389/fpsyg.2014.01475 

Schwaighofer, M., Fischer, F., & Bühner, M. (2015). Does working memory training transfer? A 

meta-analysis including training conditions as moderators. Educational Psychologist, 50(2), 

138–166. http://doi.org/10.1080/00461520.2015.1036274 

Schwarb, H., Nail, J., & Schumacher, E. H. (2016). Working memory training improves visual 

short-term memory capacity. Psychological Research, 80(1), 128–148. 

http://doi.org/10.1007/s00426-015-0648-y 

Seidler, R. D., Bernard, J. A., Buschkuehl, M., Jaeggi, S. M., Jonides, J., & Humfleet, J. (2010). 

Cognitive training as an intervention to improve driving ability in the older adult. Technical 

Report No. M-CASTL 2010-01, Ann Arbor: University of Michigan. 

Shah, P., & Miyake, A. (1996). The separability of working memory resources for spatial thinking 

and language processing: an individual differences approach. Journal of Experimental 

Psychology. General, 125(1), 4–27. http://doi.org/10.1037/0096-3445.125.1.4 

Shamosh, N. A., DeYoung, C. G., Green, A. E., Reis, D. L., Johnson, M. R., Conway, A. R. A., … Gray, J. 

R. (2008). Individual differences in delay discounting: Relation to intelligence, working 

memory, and anterior prefrontal cortex. Psychological Science, 19(9), 904–911. 

http://doi.org/10.1111/j.1467-9280.2008.02175.x 

Shavelson, R. J., Yuan, K., Alonzo, A. C., Klingberg, T., & Anderson, M. (2008). On the impact of 

computer training on working memory and fluid intelligence. In D. C. Berliner & H. 

Kuermintz (Eds.), Fostering change in institutions, environments, and people: A festschrift in 

honor of Gavriel Salomon (pp. 35–48). New York: Routeledge. 

Shelton, J. T., Metzger, R. L., & Elliott, E. M. (2007). A group-administered lag task as a measure of 

working memory. Behavior Research Methods, 39(3), 482–493. 

http://doi.org/10.3758/BF03193017 

Shipstead, Z., Redick, T. S., & Engle, R. W. (2010). Does working memory training generalize? 

Psychologica Belgica, 17(2), 245–276. http://doi.org/10.3758/PBR.17.2.193 

Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training effective? 

Psychological Bulletin, 138(4), 628–654. http://doi.org/10.1037/a0027473 



154 

 

Simons, D. J., Boot, W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., & Stine-

Morrow, E. A. L. (2016). Do “brain-training” programs work? Psychological Science in the 

Public Interest, 17(3), 103–186. http://doi.org/10.1177/1529100616661983 

Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 

283, 1657–1661. 

Smith, E. E., & Kosslyn, S. M. (2007). Cognitive Psychology: Mind and Brain. London, UK: Pearson. 

Smyth, M. M., Pearson, N. A., & Pendleton, L. R. (1988). Movement and working memory: 

Patterns and positions in space. The Quarterly Journal of Experimental Psychology Section A, 

40(3), 497–514. http://doi.org/10.1080/02724988843000041 

Smyth, M. M., & Pendleton, L. R. (1989). Working Memory for Movements. The Quarterly Journal 

of Experimental Psychology Section A, 41(2), 235–250. 

http://doi.org/10.1080/14640748908402363 

Smyth, M. M., & Pendleton, L. R. (1990). Space and Movement in Working Memory. The Quarterly 

Journal of Experimental Psychology Section A, 42(2), 291–304. 

http://doi.org/10.1080/14640749008401223 

Smyth, M. M., & Scholey, K. A. (1994). Characteristics of spatial memory span: is there an analogy 

to the word length effect, based on movement time? The Quarterly Journal of Experimental 

Psychology. A, Human Experimental Psychology, 47(1), 91–117. 

http://doi.org/10.1080/14640749408401145 

Snowball, A., Tachtsidis, I., Popescu, T., Thompson, J., Delazer, M., Zamarian, L., … Cohen Kadosh, 

R. (2013). Long-term enhancement of brain function and cognition using cognitive training 

and brain stimulation. Current Biology, 23(11), 987–992. 

http://doi.org/10.1016/j.cub.2013.04.045 

Sonuga-Barke, E. J. S., Brandeis, D., Cortese, S., Daley, D., Ferrin, M., Holtmann, M., … Zuddas, A. 

(2013). Nonpharmacological interventions for ADHD: Systematic review and meta-analyses 

of randomized controlled trials of dietary and psychological treatments. American Journal 

of Psychiatry, 170(3), 275–289. http://doi.org/10.1176/appi.ajp.2012.12070991 

Soveri, A., Antfolk, J., Karlsson, L., Salo, B., & Laine, M. (2017). Working memory training 

revisited: A multi-level meta-analysis of n-back training studies. Psychonomic Bulletin & 

Review, 24(4), 1077–1096. http://doi.org/10.3758/s13423-016-1217-0 

Soveri, A., Karlsson, E. P. A., Waris, O., Grönholm-Nyman, P., & Laine, M. (2017). Pattern of near 

transfer effects following working memory training with a dual N-Back task. Experimental 

Psychology, 64(4), 240–252. http://doi.org/10.1027/1618-3169/a000370 

Sparing, R., & Mottaghy, F. M. (2008). Noninvasive brain stimulation with transcranial magnetic 



155 

 

or direct current stimulation (TMS/tDCS)-From insights into human memory to therapy of 

its dysfunction. Methods, 44(4), 329–337. http://doi.org/10.1016/j.ymeth.2007.02.001 

Spencer-Smith, M., & Klingberg, T. (2015). Benefits of a working memory training program for 

inattention in daily life: A systematic review and meta-analysis. PLoS ONE, 10(3), 1–18. 

http://doi.org/10.1371/journal.pone.0119522 

Sprenger, A. M., Atkins, S. M., Bolger, D. J., Harbison, J. I., Novick, J. M., Chrabaszcz, J. S., … 

Dougherty, M. R. (2013). Training working memory: Limits of transfer. Intelligence, 41(5), 

638–663. http://doi.org/10.1016/j.intell.2013.07.013 

St Clair-Thompson, H. L. (2010). Backwards digit recall: A measure of short-term memory or 

working memory? European Journal of Cognitive Psychology, 22(2), 286–296. 

http://doi.org/10.1080/09541440902771299 

St Clair-Thompson, H. L., & Allen, R. J. (2013). Are forward and backward recall the same? A 

dual-task study of digit recall. Memory & Cognition, 41(4), 519–532. 

http://doi.org/10.3758/s13421-012-0277-2 

Stagg, C. J., & Nitsche, M. A. (2011). Physiological Basis of Transcranial Direct Current 

Stimulation. The Neuroscientist, 17(1), 37–53. http://doi.org/10.1177/1073858410386614 

Sternberg, R. J. (2008). Increasing fluid intelligence is possible after all. Proceedings of the 

National Academy of Sciences, 105(19), 6791–6792. 

http://doi.org/10.1073/pnas.0803396105 

Suß, H. M., Oberauer, K., Wittmann, W. W., Wilhelm, O., Schulze, R., Süß, H. M., … Schulze, R. 

(2002). Working-memory capacity explains reasoning ability - And a little bit more. 

Intelligence, 30(3), 261–288. http://doi.org/10.1016/S0160-2896(01)00100-3 

Szmalec, A., Verbruggen, F., Vandierendonck, A., & Kemps, E. (2011). Control of interference 

during working memory updating. Journal of Experimental Psychology. Human Perception 

and Performance, 37(1), 137–151. http://doi.org/10.1037/a0020365 

Takeuchi, H., Sekiguchi, A., Taki, Y., Yokoyama, S., Yomogida, Y., Komuro, N., … Kawashima, R. 

(2010). Training of working memory impacts structural connectivity. The Journal of 

Neuroscience : The Official Journal of the Society for Neuroscience, 30(9), 3297–3303. 

http://doi.org/10.1523/JNEUROSCI.4611-09.2010 

Tavakoli, A. V., & Yun, K. (2017). Transcranial Alternating Current Stimulation (tACS) 

mechanisms and protocols. Frontiers in Cellular Neuroscience, 11(214), 1–10. 

http://doi.org/10.3389/fncel.2017.00214 

Tenison, C., & Anderson, J. R. (2016). Modeling the distinct phases of skill acquisition. Journal of 

Experimental Psychology: Learning Memory and Cognition, 42(5), 749–767. 



156 

 

http://doi.org/10.1037/xlm0000204 

Teo, F., Hoy, K. E., Daskalakis, Z. J., & Fitzgerald, P. B. (2011). Investigating the role of current 

strength in tdcs modulation of working memory performance in healthy controls. Frontiers 

in Psychiatry, 2, 1–6. http://doi.org/10.3389/fpsyt.2011.00045 

Terney, D., Chaieb, L., Moliadze, V., Antal, A., & Paulus, W. (2008). Increasing human brain 

excitability by transcranial high-frequency random noise stimulation. The Journal of 

Neuroscience, 28(52), 14147–14155. http://doi.org/10.1523/JNEUROSCI.4248-08.2008 

The JASP Team. (2017). JASP (Version 0.8.1.1). 

Thomas, J. G., Milner, H. R., & Hanerlandt, K. F. (2003). Forward and backward recall: Different 

response time pattern, same retrieval order. Psychological Science, 14(2), 169–174. 

Thompson, T. W., Waskom, M. L., Garel, K. L. a, Cardenas-Iniguez, C., Reynolds, G. O., Winter, R., … 

Gabrieli, J. D. E. (2013). Failure of working memory training to enhance cognition or 

intelligence. PLoS ONE, 8(5). http://doi.org/10.1371/journal.pone.0063614 

Thorell, L. B., Lindqvist, S., Nutley, S. B., Bohlin, G., & Klingberg, T. (2009). Training and transfer 

effects of executive functions in preschool children. Developmental Science, 12(1), 106–113. 

http://doi.org/10.1111/j.1467-7687.2008.00745.x 

Thorndike, E. L., & Woodworth, R. S. (1901). The influence of improvement in one mental 

function upon the efficiency of other functions. Psychological Review, 8(3), 247–261. 

http://doi.org/10.1037/h0074898 

Titz, C., & Karbach, J. (2014). Working memory and executive functions: effects of training on 

academic achievement. Psychological Research, 78(6), 852–868. 

http://doi.org/10.1007/s00426-013-0537-1 

Tremblay, S., Lepage, J. F., Latulipe-Loiselle, A., Fregni, F., Pascual-Leone, A., & Théoret, H. (2014). 

The uncertain outcome of prefrontal tDCS. Brain Stimulation, 7(6), 773–783. 

http://doi.org/10.1016/j.brs.2014.10.003 

Trumbo, M. C., Matzen, L. E., Coffman, B. A., Hunter, M. A., Jones, A. P., Robinson, C. S. H., & Clark, 

V. P. (2016). Enhanced working memory performance via transcranial direct current 

stimulation: The possibility of near and far transfer. Neuropsychologia, 93, 85–96. 

http://doi.org/10.1016/j.neuropsychologia.2016.10.011 

Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of 

Memory and Language, 28(2), 127–154. http://doi.org/10.1016/0749-596X(89)90040-5 

Unsworth, N., & Engle, R. W. (2007). The nature of individual differences in working memory 

capacity: Active maintenance in primary memory and controlled search from secondary 

memory. Psychological Review, 114(1), 104–132. http://doi.org/10.1037/0033-



157 

 

295X.114.1.104 

Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An automated version of the 

operation span task. Behavior Research Methods, 37(3), 498–505. 

http://doi.org/10.3758/BF03192720 

Unsworth, N., & Spillers, G. J. (2010). Working memory capacity: Attention control, secondary 

memory, or both? A direct test of the dual-component model. Journal of Memory and 

Language, 62(4), 392–406. http://doi.org/10.1016/j.jml.2010.02.001 

Vandierendonck, A., Kemps, E., Fastame, M. C., & Szmalec, A. (2004). Working memory 

components of the Corsi blocks task. British Journal of Psychology, 95(1), 57–79. 

http://doi.org/10.1348/000712604322779460 

Vicari, S., Bellucci, S., & Carlesimo, G. A. (2006). Evidence from two genetic syndromes for the 

independence of spatial and visual working memory. Developmental Medicine & Child 

Neurology, 48(2), 126. http://doi.org/10.1017/S0012162206000272 

Vines, B. W., Schnider, N. M., & Schlaug, G. (2006). Testing for causality with transcranial direct 

current stimulation: pitch memory and the left supramarginal gyrus. NeuroReport, 17(10), 

1047–1050. http://doi.org/10.1097/01.wnr.0000223396.05070.a2 

von Bastian, C. C., Langer, N., Jäncke, L., & Oberauer, K. (2013). Effects of working memory 

training in young and old adults. Memory & Cognition, 41(4), 611–624. 

http://doi.org/10.3758/s13421-012-0280-7 

von Bastian, C. C., & Oberauer, K. (2013). Distinct transfer effects of training different facets of 

working memory capacity. Journal of Memory and Language, 69(1), 36–58. 

http://doi.org/10.1016/j.jml.2013.02.002 

von Bastian, C. C., & Oberauer, K. (2014). Effects and mechanisms of working memory training: a 

review. Psychological Research, 78(6), 803–820. http://doi.org/10.1007/s00426-013-

0524-6 

Wach, C., Krause, V., Moliadze, V., Paulus, W., Schnitzler, A., & Pollok, B. (2013). Effects of 10Hz 

and 20Hz transcranial alternating current stimulation (tACS) on motor functions and motor 

cortical excitability. Behavioural Brain Research, 241(1), 1–6. 

http://doi.org/10.1016/j.bbr.2012.11.038 

Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: A meta-analysis. 

Cognitive, Affective, & Behavioral Neuroscience, 3(4), 255–274. 

http://doi.org/10.3758/CABN.3.4.255 

Wechsler, D. (2003). Wechsler Intelligence Scale for Children–Fourth Edition (WISC-IV). San 

Antonio, TX: The Psychological Corporation. London, UK: Pearson Assessments. 



158 

 

Wechsler, D. (2005). Wechsler Individual Achievement Test - Second Edition (WIAT-II). London, 

UK: Pearson Assessments. 

Wechsler, D. (2009). Wechsler Memory Scale - Fourth Edition (WMS-IV). San Antonio, TX, 

Pearson Assessment. http://doi.org/10.1037/t15175-000 

Wechsler, D. (2010). Wechsler Adult Intelligence Scale – Fourth Edition (WAIS–IV). London, UK: 

Pearson Assessments. 

Wechsler, D. (2011). Wechsler Abbreviated Scale of Intelligence - Second Edition (WASI-II). 

London, UK: Pearson Assessments. 

Wilhelm, O., Hildebrandt, A., & Oberauer, K. (2013). What is working memory capacity, and how 

can we measure it? Frontiers in Psychology, 4, 1–22. 

http://doi.org/10.3389/fpsyg.2013.00433 

Wolf, E. J., Harrington, K. M., Clark, S. L., & Miller, M. W. (2013). Sample Size Requirements for 

Structural Equation Models: An Evaluation of Power, Bias, and Solution Propriety. National 

Institutes of Health, 76(6), 913–934. http://doi.org/10.1177/0013164413495237 

Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., … Nitsche, M. A. (2016). A 

technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical 

Neurophysiology, 127(2), 1031–1048. http://doi.org/10.1016/j.clinph.2015.11.012 

Young, A. W., Perrett, D. I., Calder, A. J., Sprengelmeyer, R., & Ekman, P. (2002). Facial expressions 

of emotion: Stimuli and tests (FEEST). Bury St. Edmunds, UK: Thames Valley Test Company. 

http://doi.org/10.1016/S0010-0277(97)00003-6 

Zaehle, T., Sandmann, P., Thorne, J. D., Jäncke, L., & Herrmann, C. S. (2011). Transcranial direct 

current stimulation of the prefrontal cortex modulates working memory performance: 

combined behavioural and electrophysiological evidence. BMC Neuroscience, 12(1), 2. 

http://doi.org/10.1186/1471-2202-12-2 

 



 

Appendix A       Study I journal publication 



 

 



Transcranial Random Noise Stimulation Does Not Enhance
the Effects of Working Memory Training

Joni Holmes, Elizabeth M. Byrne, Susan E. Gathercole, and Michael P. Ewbank

Abstract

■ Transcranial random noise stimulation (tRNS), a noninvasive
brain stimulation technique, enhances the generalization and
sustainability of gains following mathematical training. Here it
is combined for the first time with working memory training
in a double-blind randomized controlled trial. Adults completed
10 sessions of Cogmed Working Memory Training with either
active tRNS or sham stimulation applied bilaterally to dorso-
lateral pFC. Training was associated with gains on both the

training tasks and on untrained tests of working memory that
shared overlapping processes with the training tasks, but not
with improvements on working memory tasks with distinct pro-
cessing demands or tests of other cognitive abilities (e.g., IQ,
maths). There was no evidence that tRNS increased the magni-
tude or transfer of these gains. Thus, combining tRNS with
Cogmed Working Memory Training provides no additional ther-
apeutic value. ■

INTRODUCTION

Intensive training of working memory, the ability to retain
information for short periods of time for ongoing mental
activities, generates robust gains on untrained tests of
working memory (von Bastian & Oberauer, 2013; Dahlin,
Neely, Larsson, Bäckman, & Nyberg, 2008). In other cogni-
tive domains, the efficacy and generalization of training
benefits has been enhanced by transcranial electrical stim-
ulation (Cappelletti et al., 2013; Snowball et al., 2013; Ditye,
Jacobson, Walsh, & Lavidor, 2012). In this study, we com-
bined the two approaches to investigate whether stimu-
lation could increase the rate and magnitude of training
gains and extend the benefits of training beyond highly
similar untrained tests of working memory. To provide a
rigorous test of the potential added value of stimulation
we used a double-blind randomized controlled design,
with sham stimulation as the control, and tested perfor-
mance onmultiple outcomemeasures. Tomaximize oppor-
tunities for modulating behavior, a multisession training
program that consistently produces large gains in working
memory was used (Schwaighofer, Fischer, & Bühner, 2015)
in conjunction with stimulation parameters that have been
shown to enhance the effects of maths training (Snowball
et al., 2013).
Working memory training involves practice on working

memory tasks that continually adapt to an individual’s
ability. The benefits of training are greatest for untrained
tests of working memory that draw on the same under-
lying cognitive and neural processes as the training activ-
ities (Sprenger et al., 2013; von Bastian & Oberauer, 2013;

Dahlin et al., 2008). This has been termed process-specific
transfer, and it is associated with changes in the neural
structures and networks linked with working memory
(Astle, Barnes, Baker, Colclough, & Woolrich, 2015;
Kundu, Sutterer, Emrich, & Postle, 2013; Takeuchi et al.,
2010; Dahlin et al., 2008; Olesen, Westerberg, & Klingberg,
2004). Evidence for the transfer of training gains to tests
of working memory with distinct processing demands to
the training tasks is less clear. Some studies report positive
transfer across different categories of working memory
tasks. For example, training on complex span tasks, which
involve rapidly switching between the storage of memory
items and an interpolated unrelated processing activity,
generates gains on running span tasks that require the
continuous monitoring and updating of a sequence of
items (Harrison et al., 2013). However, other studies re-
port selective benefits only for transfer tests of working
memory that are the same as the training activities, with
no transfer across working memory paradigms (e.g.,
Redick et al., 2013; Thompson et al., 2013; von Bastian
& Oberauer, 2013). When the most rigorous random-
ized controlled study designs are used, there is little
to no evidence for the generalization of training-related
effects to complex everyday activities that depend on
working memory, such as academic attainment and
focussed attention (e.g., Cortese et al., 2015; Dunning,
Holmes, & Gathercole, 2013; Rapport, Orban, Kofler, &
Friedman, 2013).

Transcranial electrical stimulation is a noninvasive neuro-
modulatory tool in which a weak electric current is de-
livered to the brain through a pair of electrodes attached
to the scalp. Transcranial electrical stimulation is asso-
ciated with changes in cortical excitability (Nitsche &Cambridge University
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Paulus, 2000) and has been proposed to enhance learning
by inducing long-term potentiation (Stagg & Nitsche,
2011). The potential of noninvasive brain stimulation to
modulate and enhance human cognition means that, when
combined with a learning task, it has the potential not only
to increase the efficacy of cognitive training but also to
enhance the generalization of training gains.

Previous studies combining stimulation with working
memory training have used transcranial direct current
stimulation (tDCS; Richmond, Wolk, Chein, & Olson,
2014; Martin et al., 2013), a polarity-dependent technique
that generates opposing excitatory and inhibitory activ-
ity under the two electrodes: Anodal stimulation pulls
neurons toward depolarization and is associated with
an increase in cortical excitability, whereas cathodal hyper-
polarizes neurons and is associated with decreased excit-
ability, or inhibition (Nitsche & Paulus, 2000). In one
study, tDCS shifted the learning curve of the training tasks
upward relative to sham stimulation, but it did not enhance
the rate of learning on these activities (Richmond et al.,
2014). In the other, stimulation did not increase on-task
training gains (Martin et al., 2013). Active stimulation com-
bined with working memory training was associated with
greater gains on untrained tests than either no inter-
vention (no stimulation and no training; Richmond et al.,
2014) or stimulation alone (no training; Martin et al.,
2013). Both studies concluded that active tDCS enhanced
the transfer of training outcomes. There is a problem with
this conclusion, as critically there were no significant dif-
ferences between groups who received training with active
stimulation and groups who received training with sham
(placebo) stimulation on the transfer tests. As such, these
gains can be attributed to training alone. In both studies,
tDCS anodal stimulation was applied to left dorsolateral
pFC (DLPFC), meaning right DLPFC was either not stimu-
lated (Martin et al., 2013) or was under cathodal stimu-
lation (Richmond et al., 2014). Working memory task
performance is associated with bilateral activation of
DLPFC (Rottschy et al., 2012). Failure to stimulate DLPFC
bilaterally may therefore explain why crucial differences
between the active and sham stimulation groups were
not significant.

In other cognitive domains, transcranial random noise
stimulation (tRNS), an alternative method of brain stimu-
lation, has shown more promise. Snowball et al. (2013)
found tRNS applied bilaterally to the DLPFC to be effec-
tive in enhancing the efficacy and generalizability of gains
following arithmetic training. Changes in neural activity
and improvements on untrained mathematical problems
persisted 6 months after training for the tRNS group rel-
ative to the sham group (Snowball et al., 2013). Similarly,
Cappelletti et al. (2013) reported significantly steeper
learning curves and long-lasting improvements in magni-
tude judgments following numerosity training combined
with tRNS applied bilaterally to parietal regions compared
with sham stimulation, training combined with tRNS over
motor cortex, or tRNS alone.

In the current study, we investigated, for the first time,
whether tRNS could modulate on-task training gains and
enhance transfer to both untrained working memory
tasks and other cognitive abilities related to working
memory when combined with working memory training.
tRNS offers potential advantages over tDCS, the stimula-
tion technique combined with working memory training
in previous studies (Richmond et al., 2014; Martin et al.,
2013). Most importantly, it is polarity-independent allow-
ing for bilateral stimulation of DLPFC, a region of the
brain associated with working memory function (Owen,
McMillan, Laird, & Bullmore, 2005) and influenced by
working memory training (Takeuchi et al., 2010). It also
has a higher cutaneous perception threshold, making it
particularly suitable for blinding groups to stimulation
condition (Ambrus, Paulus, & Antal, 2010).
Following Snowball et al. (2013), high-frequency (101–

640 Hz) tRNS at a current strength of 1 mA was applied
bilaterally over DLPFC. Cogmed Working Memory Training
(Cogmed, 2005), a program that has been extensively re-
searched and yields larger effect sizes for process-specific
changes than other training packages (Schwaighofer et al.,
2015; Sprenger et al., 2013), was used. Unlike many studies
that have investigated the impact of training on working
memory in a single session (e.g., Fregni et al., 2005), this
packageprovidedmultisession training, allowing us to inves-
tigate the effects of stimulation on learning. A double-blind
randomized controlled trial design was employed. Multiple
outcome measures varied the degrees of overlap with the
trained activities, allowing us to map out the extent to
which gains generalized beyond the trained tasks. The
primary outcome measures were working memory tests
with processing components that overlapped with the
training tasks. Any enhancement to training via stimulation
should be evident in these measures as well as the trained
tasks. To determine whether any benefits of combining
training with stimulation extend beyond specific trained
processes, participants also completed untrained working
memory tasks with different processing demands to those
in the training tasks. Secondary measures of cognitive pro-
cesses linked with working memory, including tests of in-
hibition (Kane & Engle, 2003) and measures of selective
attention (de Fockert, Rees, Frith, & Lavie, 2001), were in-
cluded alongside tests of information processing and stan-
dardized tests of general cognitive abilities (e.g., language
and nonverbal reasoning) to test whether stimulation en-
hanced transfer beyond working memory paradigms. An
emotional recognition task with no memory component
was included as a nonmemory control task. Previous studies
claiming that cognitive training or brain stimulation are
effective have relied on null hypothesis significance testing
(NHST) to imply that the alternative hypothesis is true; they
have rarely quantified the degree to which the evidence sup-
ports the null or alternative hypotheses (Sprenger et al.,
2013). For this reason, Bayesian methods were employed
to evaluate the strength of the evidence for and against the
null hypothesis in addition to traditional NHST.
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METHODS

Participants

Thirty native English-speaking adults aged between 18
and 35 years (11 men) provided written informed con-
sent to participate in this study, which was approved by
the University of Cambridge’s psychology research ethics
committee. All participants were recruited through the
MRC Cognition and Brain Sciences Unit’s research par-
ticipation system. All participants were stimulation com-
patible (i.e., no metal implants or pacemakers, no
previous history of epilepsy, head injury or neurological
disorders, not currently taking medication affecting the
CNS), had normal or corrected-to-normal hearing and
vision, and were right-handed.

Materials

Process-specific Memory Tasks

Eight tests with processing components that overlapped
with the training tasks were administered. These included
four standardized tests from the Automated Working
Memory Assessment (Alloway, 2007): a test of verbal
STM (digit recall), visuospatial (VS) STM (dot matrix),
verbal working memory (WM) (backward digit recall)
and VS WM (Mr X). Standard scores (M = 100, SD = 15)
were calculated for each task. Participants also completed
four computerized experimental tests of verbal and VS
storage (STM) and of verbal and VS storage with intrinsic
processing (working memory). The storage tasks required
participants to recall either a list of digits (verbal) or spatial
locations (VS) in serial order. The working memory tasks
were identical to the storage tasks, except participants
were required to recall the digits (verbal) or spatial loca-
tions (VS) in reverse order. Trials were presented in
blocks of four trials. Sequences in the first block started
at a span of two items and increased in length by one item
in each subsequent block if participants scored three or
more trials correct. The tasks discontinued if two or more
errors were made in any block. The maximum span length
reached at this point was scored.

Memory Tasks with Distinct Processes

Participants completed four working memory tasks in-
volving distinct processes to the training activities, two
n-back tasks and two complex span tasks. For both
n-back tasks, participants were presented with a sequence
of stimuli one at a time (auditory digits for verbal n-back
and abstract line drawings for VS n-back) and had to in-
dicate by a key press when the current stimulus matched
one presented n items back in the sequence. Sequences
were presented in blocks containing 20 + n items. There
were six target items (matches) in each block. The first
block started at 1-back and increased in difficulty by 1 in
each subsequent block if less than five errors were made
(e.g., increased from 1-back to 2-back). The tasks dis-

continued when five or more errors were made within
a block. False alarms (responding to a nontarget) and
misses (failing to respond when a match was present)
were counted as errors (missing a target). The maximum
n-back level reached to this point was scored. For both
complex span tasks, participants were presented with a
series of storage items (digits for the verbal task and
spatial locations for the VS task) interpolated with a
same-domain processing task, which was presented for
6 sec in-between the presentation of each storage item.
The processing tasks required participants to judge
whether two letters rhymed (verbal task) or to decide
whether patterns of lines presented inside a pair of hexa-
gons matched (VS task). Participants were required to
recall the storage items in serial order at the end of the
trial. Trials were presented in blocks of 3. The first block
started at a span of 1 (one storage item and one process-
ing episode) and increased by a span of 1 (additional
storage item and an additional processing episode) if
two or more trials were correct in any block. Trials were
scored as correct if all storage items were recalled in the
correct serial order and >66% of the processing items
were correct. The tasks discontinued if two of the three
trials in a block were incorrect. A trial was incorrect if the
storage items were recalled incorrectly, accuracy for the
processing tasks was <66%, or if there were no re-
sponses for the processing tasks. The maximum span
reached was scored.

Cognitive Processes Associated with Working Memory

Participants completed a set of tasks that included parallel
verbal and VS tests of executive function. Two flanker
tasks were administered to provide measures of verbal
and VS selective attention. Both tasks consisted of 240
trials: 80 baseline, 80 congruent, and 80 incongruent.
Trials were presented in a random order. In the baseline
condition, participants were required to click on a button
on a computer screen showing a letter (verbal) or arrow
(VS) matching the one presented in a box on screen. In
the congruent condition, participants were presented
with a row of five identical letters (verbal) or a row of five
arrows pointing in the same direction (VS). They were
required to click on the letter or arrow corresponding
to the middle letter/arrow shown below. In the incon-
gruent condition, the central arrow or letter was flanked
by incongruent stimuli (e.g., AABAA). Again, participants
were asked to respond to the middle stimulus by selecting
the appropriate response button shown on screen. RTs
for correct trials were recorded for all conditions. The
average RT difference between correct congruent and
incongruent trials was used to index the Flanker effect.

Indices of inhibitory control were provided by two
Stroop tasks. Both tasks consisted of 48 baseline, 48 con-
gruent, and 48 incongruent trials. These were presented
in blocks by condition. On baseline trials in the verbal
Stroop task, neutral words (e.g., “when”) were presented
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on screen printed in yellow, blue, green, or red. Partici-
pants were required to click on a color block matching
the color the word was printed in. On congruent trials,
participants were presented with color words printed
in the same color as the word (e.g., “yellow” appeared
on screen, printed in yellow ink) and were again asked
to click on the color the word was printed in. On in-
congruent trials, color words were presented in different
colors to the word itself (e.g., “yellow” was printed in red
ink). Participants were required to inhibit the over-
learned verbal response of reading the color word and
instead click on the ink color. On neutral trials in the
VS Stroop task, an arrow appeared in the center of a
box, pointing either up, down, left, or right. Participants
were required to click on the arrow pointing in the same
direction from a choice of four presented in a box below.
On congruent trials, an arrow appeared touching the
edge of the box at a position congruent with the direc-
tion it was pointing (e.g., an arrow pointing right ap-
peared on screen with the arrowhead touching the
right hand side of the box). Participants were asked to
select the arrow pointing the same way as the one in
the box from a choice of four below. On incongruent
trials, participants were presented with an arrow in a
position in a box that was incongruent to the direction it
was pointing (e.g., an arrow pointing right could appear
at the left, top, or bottom of the box). Participants were
required to inhibit the prepotent response associated
with the position of the arrow and instead respond to
the direction of the arrowhead by selecting one of
four arrows below. For both tasks, RTs for correct trials
were recorded for each condition. The Stroop effect was
calculated as the difference between the mean RT for
correct trials in the incongruent condition and the mean
RT for correct trials in the congruent condition.

Information Processing and General Cognitive Abilities

Participants completed two information processing
tasks. The verbal processing task required participants
to judge whether pairs of letters rhymed. Fifty auditory
letter pairs were presented, consisting of monosyllabic
English alphabet letter names. Pairs were constrained
to avoid successive letters in the alphabet (e.g., J, K),
highly confusable fricative letter names (e.g., F, S), and
familiar acronyms (e.g., PC, IT, US). A parallel VS pro-
cessing task required participants to judge whether
the line patterns shown on two hexagons presented
simultaneously were the same or different. Fifty pairs
of hexagons were shown. RTs for correct trials were
scored for both tasks.

Two subtests of the Wechsler Abbreviated Scaled of
Intelligence (Wechsler, 1999), tests of verbal (Vocabu-
lary) and of nonverbal (Matrix Reasoning) IQ, were also
administered. t Scores were derived for each subtest
and used to calculate a composite standard score for
IQ. The Numerical Operations task of the Wechsler

Individual Achievement Test Second Edition (Wechsler,
2005) was used to measure math ability. The Peabody
Picture Vocabulary Test Fourth Edition, a measure of
receptive vocabulary (Dunn & Dunn, 2007), was also
given.

Cognitive Task with No Memory Load

The Facial Expressions of Emotion test (Young, Perrett,
Calder, Sprengelmeyer, & Ekman, 2002) is a measure of
emotion expression recognition. Participants were pre-
sented with 30 morphed faces on an emotional con-
tinuum ranging between happiness–surprise, surprise–
fear, fear–sadness, sadness–disgust, disgust–anger, and
anger–happiness over five blocks. Participants were re-
quired to judge which of six emotion labels (happy,
sad, anger, fear, disgust, and surprise) best described
each facial expression. Only trials with morphed images
of 70% or 90% bias toward a particular expression were
used to assess performance. Proportion correct across all
blocks was scored.

Training

Participants completed 10 sessions of Cogmed Working
Memory Training (Cogmed, 2005). Each session lasted
approximately 45 min and involved repeated practice
on eight training exercises (15 trials on each task totaling
120 trials). Participants completed the same eight tasks
in each training session, in one of two counterbalanced
task orders. Task order was counterbalanced to ensure all
tasks were completed under active stimulation for those
in the stimulation group. A mixed ANOVA with order (A
or B) and task (gain for each of the eight training tasks)
revealed that there were no order effects for either the
active stimulation, F(7, 91) = 1.462, p = .191, η p

2 = .101,
or sham stimulation, F(7, 91) = .943, p = .478, ηp

2 =
.068, groups. Three training tasks required the immedi-
ate serial recall of verbal or VS items (Visual Data, Data
Room, and Decoder). Five further tasks required mental
manipulation (e.g., mental rotation or reversing the se-
quence) prior to recall (Input Module, Input Module
with Lid, Number Grid, Rotating Data Link, and Rotating
Dots). Full details about the training program are pro-
vided at www.cogmed.com/rm. All training exercises
started at a span of two in the first session. An adaptive
algorithm was used to calibrate the difficulty of each task
to current performance on a trial-by-trial basis. Task dif-
ficulty increased by a span of one following three con-
secutive correct responses and decreased by a span of
one following two consecutive incorrect answers. The
average span was recorded for each task in each session.
Data from Session 1 was not included in the analyses as
there was no training in this session (the maximum span
participants could reach was below the baseline ability of
all participants).
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Stimulation

tRNS was applied bilaterally over the DLPFC. Standard
5 × 5 cm rubber electrodes, covered with saline-soaked
sponges, were placed on the scalp on areas correspond-
ing to regions F3 and F4 identified using the standard
international 10–20 EEG electrode placement procedure.
They were fixed by a rubber headband. Stimulation was
delivered via a battery-driven electrical stimulator (DC-
STIMULATOR-PLUS; NeuroConn). Following Snowball et al.
(2013), high-frequency tRNS (101–640 Hz) at a current
strength of 1 mA with no DC offset (i.e., varying between
−0.5 and +0.5 mA) at a sampling rate of 1280 sample/sec
was used. Participants in the active stimulation group re-
ceived 20 min of tRNS with 15 sec of increasing and de-
creasing ramps at the beginning and end of stimulation.
To maximize opportunities for modulating behavior,
stimulation began at the onset of training (Pirulli, Fertonani,
& Miniussi, 2013). Stimulation faded in for 15 sec and
out over 15 sec at the beginning of each session for
the sham group to blind participants to their stimula-
tion condition (Priori, Hallett, & Rothwell, 2009). The
stimulation machine display was identical for both groups
ensuring both the experimenter and participants were
blind to the type of stimulation being applied. Partici-
pants were asked to rate the extent to which they expe-
rienced any physical sensations from the stimulation on a
scale of 1–10 (1 being not at all). The ratings were similar
(stimulationM= 1.000, SD= 1.363, shamM= .9333, SD=
1.580) and did not differ significantly between groups,
t(28) = 1.24, p= .902, Cohen’s d = .046, indicating that
group blinding was effective.

Procedure

This was a double-blind randomized controlled study.
Participants completed two pretraining sessions, each
lasting approximately 2 hr. They were assigned to either
an active (9 women) or sham (10 women) stimulation
condition (n = 15 per group) after preassessment.
Stratified randomization was used to ensure the groups

were matched at baseline in terms of age, sex, IQ, and
standardized short-term and working memory scores
(Table 1). The demand characteristics of the study were
identical between the active and sham groups; both
completed the same training, were unaware whether
they were receiving active or sham stimulation, and were
paid for their time. A no-contact control group was not
included as they would have been poorly matched in
terms of motivation and other demand characteristics
(e.g., Shipstead, Redick, & Engle, 2012). Participants then
completed 10 sessions of adaptive working memory
training with either active or sham stimulation across
∼19 days. Training sessions were run individually with
each participant. The time taken to complete training
did not differ between groups (Table 1). All pretraining
tasks were readministered at the end of training.

RESULTS

Training Data

General linear regression models were conducted for
each training task to investigate whether there were
any group differences in overall gains. For all models,
Session 10 scores were entered as the dependent vari-
able, with group (active stimulation or sham) entered
as the independent variable. Group did not significantly
predict training gains on any task, nor did it predict aver-
age gains across the training tasks (Table 2).

Previous studies claiming that cognitive training or
brain stimulation are effective have relied on NHST to im-
ply the alternative hypothesis is true; they have rarely
quantified the degree to which the evidence supports
the null or alternative hypotheses (Sprenger et al.,
2013). For this reason, Bayesian methods were employed
to quantify the strength of the evidence for the null hy-
pothesis (stimulation does not enhance on-task gains)
versus the alternative (stimulation boosts training gains).
Bayesian regression analyses conducted in JASP (Love
et al., 2015) with default prior scales were conducted
for each training task, with group (active stimulation or

Table 1. Group Characteristics

Stimulation Sham Group Comparison

M SD M SD t p Cohen’s d

Age (years) 25.270 5.509 24.730 4.008 0.303 .764 0.113

IQ 120.667 8.524 119.333 10.834 0.375 .711 0.138

Verbal STM 101.067 15.696 100.600 16.322 0.080 .937 0.029

VS STM 103.733 23.313 106.667 22.064 −0.354 .726 −0.129

Verbal WM 101.000 20.078 101.733 19.282 −0.102 .919 −0.037

VS WM 103.133 22.427 107.867 15.287 −0.675 .505 −0.251

Time to complete training (days) 19.330 4.515 18.333 3.867 0.652 .520 0.238
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sham) entered as an independent variable. Inverse BF
(BF10) were used to express the odds in favor of the al-
ternative hypothesis (group has an effect) compared with
the null (no effect of tRNS). As a point of reference: BF10
of 1–3 indicates weak/anecdotal evidence for the alter-
native hypothesis; BF10 of 3–10 corresponds to positive/
substantial support for the alternative hypothesis and
BF10 > 10 indicates positive/strong evidence for the
alternative hypothesis (Kass & Raftery, 1995). Bayesian
regression analyses, conducted for all training tasks with
group entered as the independent variable, yielded no ev-
idence that stimulation influenced gains on the training
activities, BF10 < .5 for all tasks (Table 2).
Mixed effects ANOVAs with Session (2–10) as a within-

subject factor and Group (stimulation or sham) as a
between-subject factor were conducted to investigate
whether there were any group differences in training
performance across sessions. These analyses revealed a
significant main effect of Session for memory span in
both groups on each of the training tasks (all ps < .01)
and also on span scores averaged across tasks (Figure 1).
Neither the main effects of Group or the Group × Session
interactions were significant (see Figure 1 for scores aver-
aged across tasks and Table 2 for the Group × Session
interaction terms for each task). Bayesian ANOVAs re-
vealed that a simple main effects model in which Group
and Session were entered separately was preferred to a
model that included a Group × Time interaction for all
tasks and for scores averaged across tasks (BF10 ranging
from 8.913 to 74.285 in favor of the main effects model;
Table 2). There was therefore strong evidence for similar
training performance across sessions for both groups.

Rate of learning on the training activities was estimated
by computing a polynomial function that identified the
point at which each participant reached asymptotic per-
formance on each task. If stimulation enhances learning,
the stimulation group should reach this point faster than
the sham group. The functions of the polynomials pro-
vided the rate of change to asymptote for each partici-
pant on each task. These were computed for each
individual training task and for average performance
across tasks by approximating each participant’s perfor-
mance with a function that allowed for two turning
points; the second corresponded to the point at which
they reached asymptote. The functions of the polyno-
mials were then used to calculate how quickly each par-
ticipant reached their asymptote for each task. This ROC
index was calculated as maximum score at asymptote/
number of sessions to reach asymptote. Group differ-
ences in rate of change values were then compared in
a series of independent samples t tests (see Table 2).
Data were excluded for curves in which the asymptote
was outside the observable training window (i.e., if
asymptote <2 or >10). There were no significant group
differences in rate of change for any task or for rate of
change in scores averaged across tasks. Bayesian inde-
pendent samples t tests revealed no evidence for group
differences in rates of change (all BF10 < 3), indicating
that stimulation did not increase the speed of learning
on the training activities (Table 2).

Transfer Tasks

The influences of training and stimulation on transfer
were first assessed on the sample as a whole (Table 3).
Significant main effects of Training were observed on all
working memory tests sharing processes with the train-
ing tasks (all ps < .001). Bayesian analyses indicated that
there was strong evidence for these effects. After family-
wise correction for multiple comparisons, there were no
significant main effects of Training on memory tasks in-
volving distinct processes to the training activities. The
outcomes of Bayesian t tests concurred with this pattern
of effects for all measures except VS n-back, where a
BF10 of 3.322 suggested that there was positive evidence
for a training effect. Training gains on verbal and VS infor-
mation processing tasks and the number operations mea-
sure reached significance, with BF10 > 3 in all cases.
There was no evidence for training effects on measures
of selective attention, inhibitory control, language, or non-
verbal reasoning.

To examine the effect of stimulation on transfer, gen-
eral linear regression analyses were performed with post-
training scores as dependent variables and pretraining
scores and group (active or sham stimulation) as indepen-
dent variables. Stimulation groupwas a significant predictor
of posttraining scores on a verbal n-back task, a memory
test that did not share common processes with the trained
activities. Training gains were significantly greater for the

Figure 1. Training data by group, averaged across all eight training
tasks. A main effect of Session, F(8, 224) = 105.114, p< .001, ηp

2 = .790,
revealed significant training gains. The absence of a main effect of Group,
F(1, 28) = .201, p = .658, ηp

2 = .007, or Group × Session interaction,
F(8, 224) = .478, p = .871, ηp

2 = .017, indicates that gains were not
modulated by stimulation. Data from Session 1 are not displayed as there
was no training in this session (the maximum span participants could
reach was below the baseline ability of all participants).
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active stimulation group ( p= .046), but this effect did not
withstand correction for multiple comparisons (Table 4).
Training-related differences between groups on all other
measures were nonsignificant (see Figure 2). Bayesian re-
gression analyses favored the null hypothesis with BF10 < 1

for all outcome measures, except verbal n-back. For this
task BF10 = 1.695, providing equivocal support for the null
and alternative hypotheses (Table 4). In summary, these an-
alyses provide no strong evidence that stimulation enhances
performance beyond training alone on any outcomemeasure.

Table 3. Training-related Changes in Transfer Tasks

Pretraining Posttraining Pre to Post

Bayesian t Test BF10M SD M SD t p Cohen’s d

Process-specific Memory Tasks

Digit recall 100.833 15.735 108.567 15.85 −4.500 <.001 0.490 255.700

Dot matrix 105.2 22.352 120.1 21.865 −6.971 <.001 0.674 131219.000

Backward digit recall 101.367 19.345 115.2 15.338 −5.897 <.001 0.798 8818.000

Mr X 105.5 19.011 114.733 16.885 −5.541 <.001 0.514 3573.000

Verbal storage 7.967 1.351 8.967 1.732 −4.664 <.001 0.649 385.700

VS storage 7.267 1.311 8.033 1.752 −3.516 <.001 0.500 23.720

Verbal backward 6.567 1.612 8.133 1.548 −4.683 <.001 0.991 405.000

VS backward 6.433 1.695 7.367 1.921 −3.006 .005 0.517 7.597

Non Process-specific Memory Tasks

Verbal n-back 4.933 1.66 5.4 2.313 −1.304 .203 0.235 0.419

VS n-back 3.567 1.547 4.333 1.936 −2.605 .014 0.440 3.322

Verbal complex span 6.133 2.3 6.9 2.551 −2.538 .017 0.316 2.917

VS complex span 4.667 1.863 4.6 2.061 0.220 .827 −0.034 0.199

Processes Associated with WM

Verbal Flanker effect 82.774 31.099 79.324 66.107 0.335 .740 −0.071 0.205

VS Flanker effect 75.165 76.888 74.031 66.553 0.064 .949 −0.016 0.195

Verbal Stroop effect 43.349 130.08 76.764 136.27 −1.004 .324 0.251 0.308

VS Stroop effect 124.442 68.5 145.107 114.98 −1.043 .306 0.225 0.319

General Cognitive Abilities

Verbal processing 2071.47 580.7 1916.78 328.81 2.780 .009 −0.340 4.726

VS processing 1221.26 435.74 1017.35 308.9 5.166 <.001 −0.548 1374.000

Matrix reasoning 60.667 4.95 62.6 4.223 −2.511 .018 0.421 2.766

Vocabulary 61.7 8.125 63.533 8.427 −2.483 .019 0.221 2.624

Number operations 112.4 17.047 115.8 15.624 −3.111 .004 0.208 9.532

Peabody Picture Vocabulary Test 110.467 14.277 112.567 18.823 −1.467 .153 0.127 0.510

Cognitive Task with No Memory Load

Emotion hexagon 89.806 8.704 89.698 8.212 0.088 .930 −0.013 0.195

Bold text indicates significant effect at p < .05 level; bold italics denote significant effects after family-wise correction for multiple comparison.
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DISCUSSION

This randomized controlled trial provides the first test of
the potential additive benefits of combining tRNS with
working memory training. An effective training program
(Schwaighofer et al., 2015) was employed in conjunction
with stimulation parameters that have been used to en-
hance training gains in another cognitive domain (Snowball
et al., 2013). tRNS did not enhance the rate, magnitude, or
degree of transfer of working memory training in an active
stimulation group relative to a sham group. Strong train-
ing gains were found on trained activities in participants
irrespective of stimulation condition, and as in previous
research, these effects extended to transfer tests with pro-
cessing and storage demands in common with the train-
ing activities (Melby-Lervåg & Hulme, 2013; von Bastian &
Oberauer, 2013; Dahlin et al., 2008).
By contrast, on memory tests with minimal overlap

with the training activities there was little evidence for
the benefits of training alone. The training tasks involved
practice on serial memory paradigms that required either
the reproduction of a sequence of verbal or VS items, or
mental manipulation of the items prior to recall (e.g.,

reversing a sequence of digits or rotating a sequence of
spatial items 90°). No training-related enhancements
were found on transfer tests of working memory that
involved switching between the storage of memory items
and an unrelated processing activity (complex span).
There was a small training gain on a VS n-back task in-
volving the continuous updating and recognition of a
set of items. Although this did not survive a correction
for multiple comparisons, Bayesian analyses suggested
that there was positive but not strong evidence for this
effect. There was no evidence for transfer to a verbal n-
back task. On balance, this pattern of effects is consistent
with previous reports that training induces the learning
of task-specific strategies that do not generalize to other
categories of working memory task (Dunning & Holmes,
2014; von Bastian & Oberauer, 2013).

There was also no evidence for more distant transfer
of working memory training without stimulation to tests
of nonverbal reasoning and language ability. Small gains
were observed on a test of mathematical ability (three
standard score points) and short increases in speed of
responses on tests of verbal and VS information pro-
cessing were also found, but in the absence of a no-
intervention test–retest control group, it is impossible
to determine whether these reflect genuine training ben-
efits or repetition effects. This pattern of far transfer
effects is largely consistent with the working memory
training literature, which provides no consistent evidence
that training alone ameliorates the everyday difficulties
associated with working memory such as problems in
attentional focus and learning (Holmes et al., 2015;
Dunning et al., 2013; Shipstead et al., 2012; see Simons
et al., in press, for a review).

Crucially, the results of the current experiment dem-
onstrate that tRNS does not extend the limited transfer
found with working memory training. In line with pre-
vious studies that have combined working memory train-
ing with a different stimulation technique, tDCS, there
were no differences in performance between the active
tRNS and sham stimulation groups on any of the transfer
tests (Richmond et al., 2014; Martin et al., 2013). Together
the results of these studies provide no evidence to sup-
port the use of combining training with stimulation as a
therapeutic tool to improve working memory function.

There was also no evidence that stimulation modu-
lated the speed of learning or magnitude of gains on
the training tasks. These results provide a challenge to
the hypothesis that tRNS provides a global facilitation
in brain plasticity when combined with a learning task
(e.g., Cohen Kadosh, Levy, O’Shea, Shea, & Savulescu,
2012). They are also inconsistent with findings in another
cognitive domain, suggesting that tRNS enhances learn-
ing when coupled with mathematics training (Cappelletti
et al., 2013; Snowball et al., 2013). This may reflect differ-
ences in the impact of tRNS on the different interventions,
resulting from the malleability of the neural substrates tar-
geted by the working memory and mathematical training

Figure 2. Changes in process-specific (A) and non–process-specific
(B) memory tasks by group. Mean effect sizes are displayed. General
linear regression models revealed no significant differences in how the
groups responded to training (all ps > .6; Table 3), demonstrating that
stimulation did not enhance transfer to untrained tests of memory.
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programs, and the complexity of the training programs and
their doses. Future research needs to develop a greater
understanding of the neurophysiological underpinnings
of stimulation and the impact of different stimulation pro-
tocols when applied to different scalp regions and com-
bined with different training regimes. Candidate factors
for further investigation include the type, duration and in-
tensity of stimulation (Batsikadze, Moliadze, Paulus, Kuo, &
Nitsche, 2013; Monte-Silva, Kuo, Liebetanz, Paulus, &
Nitsche, 2010), the timing of stimulation relative to the
task (Pirulli et al., 2013), individual differences in brain
anatomy (Opitz, Paulus, Will, Antunes, & Thielscher, 2015),
and the functional state of the brain during stimulation (An-
tal, Terney, Poreisz, & Paulus, 2007).

New interventions that promise cognitive enhancement
such as working memory training and brain stimulation are
appealing to the scientific community, practitioners, and
the general public alike, generating high levels of interest
and intense research activity. Their history also shows that
they are marked by high levels of early positive results that
are typically not sustained over longer periods, probably
because of publication bias (Dwan, Gamble, Williamson,
& Kirkham, 2013; Scherer, Langenberg, & von Elm,
2007). At this relatively early point in the brain stimulation
research field, the clear conclusion from this study is that,
when using the most rigorous intervention design and
combining training and stimulation protocols that have
been shown to be effective in other domains, there is no
evidence that tRNS targeting bilateral DLPFC enhances the
benefits of Cogmed Working Memory Training.

Reprint requests should be sent to Dr. Joni Holmes, Cognition
& Brain Sciences Unit, MRC, 15 Chaucer Road, Cambridge,
United Kingdom of Great Britain and Northern Ireland, CB2
7EF, or via e-mail: joni.holmes@mrc-cbu.cam.ac.uk.
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Appendix C       Study II pre-registration 

Open Science Framework Pre-registration 
 
Study Information 
 
Title: 
 
Does transcranial electrical stimulation during working memory training enhance cross-
paradigm transfer effects? 
 
Contributors: 
  
Elizabeth Mary Byrne, Michael Ewbank, Joni Holmes 
 
Date registered: 
 
2016-03-04 
 
Research questions: 
 
This study addresses seven questions: 
 
1) Do participants show gains on an adaptive backward digit recall training task that is designed 
to improve verbal working memory performance? 
 
2) Do participants show gains on an adaptive visual search training program that has no 
memory load? 
 
3) Do gains following backward digit recall (working memory) training transfer to backward 
recall tasks with the same stimuli (digits), with novel same-domain materials (letters), and with 
novel cross-domain stimuli (spatial locations; i.e. within-paradigm transfer)? 
 
4) Do gains following backward digit recall training transfer to a different category of working 
memory task (i.e. N-back tasks that are different to the training activity) that has the same 
materials (digits), and that has novel same-domain materials (letters; i.e. cross-paradigm 
transfer)? 
  
5) Does transcranial direct current stimulation (tDCS) enhance performance on backward digit 
recall (working memory) training? 
 



 

6) Does tDCS enhance the transfer of backward digit recall training gains within the same 
working memory paradigm with the same materials (backward digit recall), with novel same-
domain materials (backward letter recall), and with novel cross-domain materials (backward 
spatial recall)? 
 
7) Does tDCS enhance transfer of backward digit recall training gains across different categories 
of working memory paradigms with the same materials (N-back with digits), and with novel 
same-domain novel materials (N-back with letters)? 
 
Hypotheses: 
 
A randomized controlled study will be run to compare three training groups: (1) backward digit 
recall training (i.e. working memory training) with active transcranial direct current stimulation 
(tDCS), (2) backward digit recall training with sham stimulation, and (3) visual search training 
(cognitive training with no memory load) with sham stimulation.   
 
To map the extent to which gains following backward digit recall training transfer within-
paradigm, three backward recall measures will be included at outcome; (1) a backward recall 
task with the same stimuli as the training task (digits), (2) a backward recall task with novel 
materials in the same domain as the training task (letters), and (3) a backward recall task with 
different-domain stimuli (spatial locations). To investigate whether gains following backward 
recall training transfer across working memory paradigms, two N-back tasks will be included; 
(1) an N-back task with the same stimuli as the training task (digits), and (2) an N-back task with 
novel materials in the same domain as the training task (letters).  
 
To investigate whether backward digit recall training effects transfer within and across working 
memory paradigms, group comparisons will be made between the sham backward recall 
training group and the sham visual search training group. Neither group will receive active 
stimulation. They will be matched in terms of baseline performance, training duration and 
expectancy effects (participants will be not made aware as to whether they are receiving active 
or sham stimulation). The only group difference is the type of training received.  
 
To investigate whether tDCS enhances training gains and/or transfer effects, the two backward 
recall training groups (active stimulation and sham stimulation) will be compared. Both groups 
will be matched at baseline and will complete identical training regimes. Participants will be not 
made aware as to whether they are receiving active or sham stimulation. The only difference 
between groups is the type of stimulation applied. 
 
Research question 1 
Do participants show gains on an adaptive backward digit recall training task that is designed to 
improve verbal working memory performance? 
 
Hypothesis 
Participants will show on-task training gains on an adaptive backward digit recall training task. 
 
Prediction 
Several studies have shown that intensive, adaptive training on computerized working memory 
tasks boosts performance on trained working memory tasks (e.g. Dunning et al., 2013). 
Therefore, it is predicted that performance will improve over 3 training sessions (one-tailed). 
 
 
 



 

Research question 2 
Do participants show gains on an adaptive visual search training program that has no memory 
load? 
 
Hypothesis 
Participants will show on-task training gains on an adaptive visual search training task. 
 
Prediction 
Evidence demonstrates that subjects show learning during intensive and adaptive training on a 
visual search paradigm (Harrison et al., 2013; Redick et al., 2013), therefore significant 
improvements are predicted on a visual search training task over three training sessions (one-
tailed). 
 
Research question 3 
Do gains following backward digit recall (working memory) training transfer to backward recall 
tasks with the same stimuli (digits), with novel same-domain materials (letters), and with novel 
cross-domain stimuli (spatial locations; i.e. within-paradigm transfer)? 
Hypothesis 
Transfer following backward digit recall training will be observed within the same paradigm to 
the same stimuli (backward digit recall task) and to different stimuli within the same domain 
(backward letter recall task).  
 
Predictions 
Recent evidence demonstrates that working memory training boosts performance on outcome 
measures of trained and untrained working memory measures, but only under conditions where 
there is substantial overlap between the processes involved in the training and transfer tasks 
(Dahlin et al., 2008; Sprenger et al., 2013). Performance on visual search tasks is unrelated to 
working memory ability (Kane et al., 2006), and visual search training does not result in gains on 
working memory transfer measures (Harrison et al., 2013; Redick et al., 2013). Therefore, 
significantly greater gains are predicted on the backward digit recall transfer task following 
training on backward digit recall with sham stimulation compared to training on visual search 
with sham stimulation (one-tailed). 
 
Evidence suggests that working memory training leads to gains on the same working memory 
task with different materials (Harrison et al., 2013); however it is unclear whether this transfer 
is domain specific. When maintaining (and reversing) verbal information in working memory, 
individuals typically rehearse via the process of subvocal (internal) repetition (Pisoni & Cleary, 
2003). If verbal working memory training is targeting this verbal rehearsal process then transfer 
to other verbal materials should be observed. Therefore, significantly greater gains are predicted 
at outcome on backward letter recall following backward digit recall training with sham 
stimulation versus visual search training with sham stimulation (one-tailed). 
 
On the other hand, there is also evidence to support the idea that individuals have a domain-
general serial order mechanism that supports serial rehearsal of verbal and visuo-spatial 
information (Hurlstone, Hitch & Baddeley, 2014). If verbal working memory training is targeting 
a domain-specific subvocal rehearsal process then transfer should only be observed for same-
domain (letters) and not cross-domain (spatial) materials. However, if backward digit recall 
training is targeting a domain-general serial order rehearsal process then transfer to materials 
within- (letters) and across-domain (spatial) may be observed. Therefore, no predictions are 
made regarding the extent to which backward digit recall training alone (i.e. with sham 
stimulation) will result in transfer to backward spatial recall (two-tailed). 
 



 

Research question 4 
Do gains following backward digit recall training transfer to a different category of working 
memory task (i.e. N-back tasks that are different to the training activity) that has the same 
materials (digits), or novel same-domain materials (letters; i.e. cross-paradigm transfer)? 
 
Hypothesis 
Working memory training alone (with sham stimulation) will not yield cross-paradigm benefits, 
irrespective of the stimuli. 
 
Prediction 
Evidence suggests that working memory training gains transfer to untrained working memory 
measures only when there is substantial overlap between the processes involved in the training 
and transfer tasks (Dahlin et al., 2008; Sprenger et al., 2015). Backward digit recall and N-back 
are both widely used measures of working memory that require items to be held in working 
memory and updated. There are, however, important differences in the processing demands of 
the two tasks. N-back tasks require recognition whereas backward serial order tasks require 
explicit recall. The updating demands of both tasks are also subtly different; during N-back the 
full sequence must be refreshed as a new item is added to the list and the first item is dropped, 
however during backward digit recall the whole sequence must be held in mind and then 
transformed at the point of recall. Evidence suggests that working memory training promotes 
the use of task-specific strategies which do not transfer across different categories of working 
memory tasks (Dunning & Holmes, 2014; von Bastian & Oberauer, 2013). Based on previous 
findings no significant differences are predicted between the backward recall training with sham 
stimulation group and the visual search training with sham stimulation group on either N-back 
measure (one-tailed). 
 
Research question 5 
Does transcranial direct current stimulation (tDCS) enhance performance on backward digit 
recall (working memory) training? 
 
Hypothesis 
tDCS will enhance on-task training gains. 
 
Prediction 
tDCS is a non-invasive neuromodulation technique that delivers a weak electrical current 
through the scalp to affect processing in the underlying cortex (Brunoni et al., 2012). It is 
thought to work through shifting neurons towards depolarization, increasing neuronal 
excitability and leading to more spontaneous neuronal firing (Paulus et al., 2013). tDCS may 
therefore facilitate learning by enhancing plasticity via the mechanism of long-term potentiation 
(Andrews et al., 2011). Previous research has shown that tDCS can significantly enhance 
performance when applied during verbal working memory training (Richmond et al., 2014). 
Therefore, significantly greater gains are predicted for backward digit recall training combined 
with active versus sham stimulation (one-tailed). 
 
Research question 6 
Does tDCS enhance the transfer of backward digit recall training gains within the same working 
memory paradigm with the same materials (backward digit recall), with novel same-domain 
materials (backward letter recall), and with novel cross-domain materials (backward spatial 
recall)? 
 
 
 



 

Hypothesis 
tDCS will enhance the transfer of working memory training gains within the same working 
memory paradigm with the same materials. 
 
Predictions 
tDCS has been shown to boost performance on trained working memory tasks (Richmond et al., 
2014). It is predicted these benefits will transfer to untrained tests that are the same as the 
training tasks, and therefore that participants who receive backward digit recall training with 
active stimulation will show significantly greater gains on the backward digit recall transfer task 
than those who receive sham stimulation (one-tailed). There is no clear evidence that tDCS 
promotes the transfer of working memory training gains beyond the trained tasks (Martin et al., 
2013; Richmond et al., 2014), therefore no predictions are made regarding the extent to which 
tDCS will impact on transfer to backward recall with letters or spatial locations (two-tailed). 
 
Research question 7 
Does tDCS enhance transfer of backward digit recall training gains across different categories of 
working memory paradigms with the same materials (N-back with digits), and with novel same-
domain novel materials (N-back with letters)? 
 
Hypothesis 
No directional hypothesis are made regarding the extent to which tDCS will enhance the transfer 
of working memory training gains across working memory paradigms with the same or different 
stimuli. 
Predictions 
Previous studies that have investigated the potential benefits of transcranial electrical 
stimulation for enhancing cross-paradigm transfer demonstrate mixed findings. In a previous 
study, active transcranial random noise stimulation (a different stimulation technique) 
combined with working memory training was associated with significantly greater gains on a 
working memory transfer task with different processing demands to the trained tasks (i.e. cross-
paradigm transfer) compared to sham stimulation. This effect did not withstand correction for 
multiple comparisons and Bayesian statistics revealed equivocal evidence for both an 
enhancement by stimulation and no effect of stimulation (Holmes et al., submitted). Other 
studies have shown no evidence for cross-paradigm transfer, for example, Martin et al. (2013) 
found no difference between active and sham tDCS groups on any transfer tasks following 
working memory training. As previous studies have produced mixed results no predictions are 
made regarding to extent to which tDCS will promote transfer to N-back with digits or N-back 
with letters (two-tailed). 
 
Sampling Plan 
 
Existing data: 
 
Registration prior to creation of data. 
 
Explanation of existing data: 
 
N/A 
 
Data collection procedures: 
 
 
 



 

Participants 
48 right-handed, healthy adult volunteers, male and female, who are native English speakers 
with normal or corrected to normal vision, between the ages of 18- 35 years will be recruited via 
the Medical Research Council Cognition and Brain Sciences Unit (MRC CBSU) volunteer panel. 
 
Eligibility requirements 
Standard exclusion criteria for transcranial electrical stimulation studies will apply. Participants 
must have no prior or existing history of neurological disease, psychiatric disorder, epilepsy or 
other seizures, no family history of epilepsy or other seizures, no metallic object in body, no 
cardiac pacemaker and no history of head, throat or brain surgery. They will not be eligible to 
take part if they are taking any drugs that affect the central nervous system (including 
medication and illicit drugs, excluding alcohol) such as antiepileptic drugs, antidepressants, 
benzodiazepines and L-dopa. 
 
Recruitment 
The study will be advertised on an online recruitment database that is visible to people who 
have volunteered to take part in psychological research at the MRC CBSU. Information about the 
purpose of the study, the brain stimulation technique used and the eligibility criteria will be 
stated in the advert. Potential participants will be contacted by telephone or email, given a 
volunteer information sheet providing full details about the research, and if they are deemed 
suitable (i.e. they meet the eligibility criteria) they will be invited to participate. Participants will 
be paid standard MRC CBU rates for testing: £10 per hour for tDCS sessions, and £6 per hour for 
behavioural testing. A contribution will also be paid towards travel expenses. 
 
Study procedure 
Each participant will be required to attend five sessions over a period of seven days. Each 
session will last approximately 1 hour 15 mins. In session one, participants will complete a set of 
pre-training baseline measures, including: (1) backward digit recall, (2) backward letter recall, 
(3) backward spatial recall, (4) N-back with digits, and (5) N-back with letters (see details 
below). Participants will then be assigned to one of three groups (backward digit recall training 
with active stimulation, backward digit recall training with sham stimulation, or visual search 
training with sham stimulation) by a researcher who has not been involved in pre-training and 
who is not administering either the training or post-training assessments. Stratified 
randomization will be used to ensure groups are matched for baseline performance on the five 
tasks, age and gender. In sessions two, three and four participants will complete approximately 
1 hour (including a short break) of adaptive training (see details below) with 10 minutes of 
either active or sham transcranial direct current stimulation (tDCS). In session five participants 
will complete a set of post-training assessments, which will include all five tasks administered 
before training. 
 
Training and transfer tasks 
All tasks and outcome measures will be completed on a computer. 
 
Backward digit recall training task 
Participants will complete an adaptive, computerized backward digit recall task which will 
increase or decrease in difficulty depending on performance. Trials will be presented in blocks, 
each consisting of four trials. During each trial, digits (1 to 9) will be presented visually on 
screen one at a time. Participants will then be prompted to recall the sequence in backward 
order via a touchscreen keypad of digits. During the first training session the difficulty level will 
be titrated to individual baseline performance (as measured at pre-test) minus one. During the 
second and third training session the task will start at the last level worked at during the 
previous training session minus one. The rules for progression up and down the levels within 



 

each training tasks are: increase by one storage item if three consecutive correct responses are 
made, decrease by one item if two consecutive incorrect responses are made, otherwise the 
sequence length remains the same. Participants will complete 100 trials per training session, 
yielding 300 trials in total over the three training sessions. 
 
Visual search training task 
On each trial participants will be presented with a left or right facing target F within an array of 
distractors made up of left and right facing Es, and left and right tilted Ts, on screen. Participants 
will then be presented with a mask screen during which they must indicate whether the target F 
was facing left or right via button presses. The difficulty of the task will be manipulated by 
increasing the size of the array. Each increase in difficulty will alternate between adding another 
column and then another row to the array.  For example; level one is a 2x2 array, level 2 is a 2x3 
array, level 3 is a 3x3 array, and so on. The rules for progression up and down the levels within 
the visual search training tasks will be: increase difficulty level by one if accuracy of previous 
block is equal to or greater than 87.5%, decrease difficulty level by one if accuracy of previous 
block is equal to or less than 75%, otherwise the difficulty level will remain the same.  Each 
visual search training session will begin at difficulty level one. Participants will complete 30 
blocks per training session. Each block will contain 24 trials, yielding 2160 trials over the three 
training sessions. 
 
Backward recall outcome measures 
Participants will complete three backward recall transfer tasks, each with a different set of 
stimuli; (1) digits (1 to 9), (2) letters (A B C D F G H J K), or (3) spatial locations (nine boxes at 
random but fixed locations on the computer screen). Trials will be presented in blocks, each 
consisting of four trials. During each trial items will be presented visually on screen one at a 
time. Participants will then be prompted to recall the sequence in backward order via a 
touchscreen keypad of digits, letters or spatial locations. Participants will begin the tasks at a 
span of three items which will increase by one item in each subsequent block if they score three 
or more correct trials. The task will be discontinued if participants were scored incorrectly on 
two or more trials. 
 
N-back transfer task 
Participants will be presented with a random sequence of single digits (1 to 9) one at a time on 
screen and will have to indicate whether the current item on screen matches one presented n 
items back in the sequence via a button press. During each block participants will be presented 
with a continuous sequence of 20 +N items during which there will be a total of 6 possible 
targets (matches). An error will be scored if participants press the button for a non-target (false 
alarm), or if participants fail to press the button when a match is present (miss). Total errors will 
be made up of false alarms and misses combined. The first block will begin at 1-back and the 
difficulty level will increase by one in each subsequent block if less than five total errors are 
made (e.g. increase from 1-back to 2-back). If five or more total errors were made within a block 
the task would end.  
 
Study timeline 
Data collection will be completed by the end of February 2017. 
 
Sample size: 
 
48 participants will be recruited for this study (n=16 per training condition).  If a participant 
does not complete all five sessions of the study, all of their data will be excluded and a new 
participant will be recruited. 
Sample size rationale: 



 

 
Based on the time available to complete data collection, 16 participants per condition (total 
n=48) is the maximum achievable sample size. This is representative of the typical sample size 
used of the majority of experimental studies investigating the effects of working memory 
training and transcranial electrical brain stimulation. 
 
Stopping rule: 
 
Data collection will terminate once the total sample size of 48 is reached. 
 
Variables 
 
Manipulated variables: 
 
Two variables will be manipulated in this study and combined to create 3 conditions. 
 
Training variable (2 levels) 
(1) Backward digit recall training 
(2) Visual search training 
 
tDCS variable (2 levels) 
(1) Active stimulation 
(2) Sham (placebo) stimulation 
 
Study conditions 
(1) Backward digit recall training with active stimulation 
(2) Backward digit recall training with sham stimulation 
(3) Visual search training with sham stimulation 
 
Measured variables: 
 
On-task training variables 
(1) Backward digit recall with active stimulation, session one average span 
(2) Backward digit recall with active stimulation, session three average span 
(3) Backward digit recall with sham stimulation, session one average span 
(4) Backward digit recall with sham stimulation, session three average span 
(5) Visual search training with sham stimulation, session one average score 
(6) Visual search training with sham stimulation, session three average score 
 
Pre- to post-training outcome measure variables 
(1) Backward digit recall, pre-training maximum span 
(2) Backward digit recall, post-training maximum span 
(3) Backward letter recall, pre-training maximum span 
(4) Backward letter recall, post-training maximum span 
(5) Backward spatial recall, pre-training maximum span 
(6) Backward spatial recall, post-training maximum span 
(7) N-back digits, pre-training maximum N-level 
(8) N-back digits, post-training maximum N-level 
(9) N-back letters, pre-training maximum N-level 
(10) N-back letters, post-training maximum N-level 
 
Indices: 



 

 
The means and standard deviations will be calculated for each of the measured variables. 
 
Indices for on-task training gains 
For the two backward digit recall training conditions, the means and standard deviations of the 
average span reached on day one and day three (calculated from correct trials only) will be 
compared. For visual search training the means and standard deviations of the average score 
achieved on day one and day three will be compared. 
 
Indices for pre- to post-training outcome measures 
For the three backward digit recall transfer measures, the mean and standard deviations of the 
maximum span reached before and after training will be used. For the two N-back measures, the 
means and deviations of the maximum N-level reached before and after training will be used. 
 
Design Plan 
 
Study type: 
 
Experiment - A researcher randomly assigns treatments to study subjects, this includes field or 
lab experiments. This is also known as an intervention experiment and includes randomized 
controlled trials. 
 
Blinding: 
 
For studies that involve human subjects, they will not know the treatment group to which they 
have been assigned. 
 
Research personnel who interact directly with the study subjects (either human or non-human 
subjects) will not be aware of the assigned treatments. 
 
Study design: 
 
A mixed-measures design will be used. There will be one between-subjects factor of group, with 
3 levels: (1) backward digit recall training with active stimulation, (2) backward digit recall 
training with sham stimulation, and (3) visual search training with sham stimulation. Within-
subject variables include on-task training gains for each of the 3 groups, as well as changes on 
each of the five transfer tasks: (1) backward digit recall, (2) backward letter recall, (3) backward 
spatial recall, (4) N-back digits, and (5) N-back letters. 
 
Randomization: 
 
Participants will be assigned to one of the three training groups using stratified randomization, 
matched for age, gender and baseline scores on all the outcome measures. 
 
Training groups 
(1) Backward digit recall training with active stimulation  
(2) Backward digit recall training with sham stimulation 
(3) Visual search training with sham stimulation  
 
 
 
Outcome measures 



 

(1) Backward digit recall 
(2) Backward letter recall 
(3) Backward spatial recall 
(4) N-back digits 
(5) N-back letters 
 
Analysis Plan 
 
Statistical models: 
 
On-task training gains 
To investigate whether participants show gains on the training tasks, paired-sample t-tests will 
be performed separately for each of the three groups. In each case, average performance on 
training day one will be compared to average performance on training day three. Average 
performance will be measured as the average level of difficulty reached on correct trials. It is 
predicted that performance will be significantly higher on day three compared to day one for 
each training group. 
 
Within- and cross-paradigm training effects following backward recall training 
To test whether training on backward digit recall benefits performance on other backward recall 
tasks (within-paradigm transfer) and on N-back tasks (cross-paradigm transfer), general linear 
regression analyses will be performed separately for each of the five outcome measures. In each 
case, post-training scores will be entered as the dependent variable with pre-training scores and 
group (backward recall training with sham stimulation or visual search training with sham 
stimulation) entered as the independent variables. A Bonferroni correction for multiple 
comparisons will be made for each regression.  As there are five outcome variables the alpha 
level will be p<.01. 
 
It is predicted that there will be significantly greater gains on backward recall with digits and 
letters following backward digit recall training with sham stimulation group compared to visual 
search training with sham stimulation. No predictions are made regarding the extent to which 
backward digit recall training alone (i.e. with sham stimulation) will lead to transfer to 
backward spatial recall. Gains are not predicted for either group on the two N-back tasks. 
 
Modulation of on-task training gains by stimulation 
A general linear regression will be performed to test whether stimulation (active or sham) 
predicts differences between the pre- to post-training scores for backward digit recall training. 
Performance on training day three will be entered as the dependent variable, and group (active 
or sham) and training day one performance will be entered as the independent variables. It is 
predicted that backward digit recall training with active stimulation will result in significantly 
greater training gains than backward digit recall with sham stimulation. 
 
Enhancement of within- and cross-paradigm training effects with stimulation 
To investigate whether stimulation enhances the transfer of training effects both within and 
across working memory paradigms, general linear regressions will be conducted separately for 
each outcome measure with stimulation group as the predictor. In all cases, post-training scores 
will be entered as the dependent variable with pre-training scores and group (backward digit 
recall with active stimulation and backward digit recall with sham stimulation) entered as 
independent variables. Bonferroni corrections for multiple comparisons will be applied for each 
set analysis (i.e. a correction of five, setting the alpha level at p<.01). Significantly greater pre- to 
post-training scores are predicted for the backward recall with active stimulation group 
compared to the backward recall with sham stimulation group on the backward digit recall 



 

transfer measure. No predictions are made regarding the extent to which stimulation will impact 
transfer to the other backward recall outcome measures (letters or spatial). For cross-paradigm 
transfer, no predictions are made regarding the extent to which stimulation will impact transfer 
to N-back letters or N-back spatial. 
 
Transformations: 
 
N/A 
 
Follow-up analyses: 
 
Further follow-up analyses are not required for this study. 
 
Inference criteria: 
 
The standard p<.05 value will be used for determining results of the paired sample t-tests that 
will be used to investigate on-task training gains. A Bonferroni corrected alpha level will be used 
in all analyses investigating the transfer of training gains. There are five outcome measures, so a 
p<.01 value will be used. 
 
Data Exclusion: 
 
Data will not be excluded based on participants’ scores. If a participant does not complete all five 
sessions of the study, all of their data will be excluded and a new participant will be recruited. 
 
Missing data: 
Data from participants who do not complete all five sessions, or do not complete all five sessions 
within a seven day period, will be excluded from the analysis. 
 
Exploratory analysis: 
 
N/A 
 
Scripts 
 
N/A 
 
Other 
 
Blinding: All participants will be blind to whether they are receiving the real and placebo sham 
stimulation. The experimenter will be blind to the stimulation condition for participants in the 
two backward digit recall training groups; however they will be aware that participants in the 
visual search group are receiving sham stimulation. 
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Appendix E       Study III pre-registration 

Open Science Framework Pre-registration 
 
Study Information 
 
Title: 
 
Backward recall and n-back measures of working memory: a large-scale latent variable analysis 
 
Contributors: 
 
Elizabeth Byrne, Rebecca Gilbert, Rogier Kievit and Joni Holmes 
 
Registered: 
 
2017-08-15 
 
Research questions: 
 
The primary aim of this study is to investigate the processes involved in two widely used 
measures of working memory – backward recall and n-back. A secondary aim is to understand 
the relationship between these measures and nonverbal reasoning. 
 
Backward recall tasks are commonly used in behavioural studies, while n-back tasks are 
frequently used in neuroimaging experiments (Owen, McMillan, Laird, and Bullmore, 2005). 
Although both tasks measure the ability to simultaneously store and process information there 
are substantial differences in the structural properties of the tasks and the processes involved. 
For example, performing a backward recall task requires explicit serial recall, whereas an n-back 
task requires recognition and can be completed using familiarity-based responding. The main 
aim of this study is to investigate whether these two tasks share overlapping processes using a 
latent variable approach. Multiple versions of each of the two types of working memory task will 
be used. They will contain different memoranda that will vary within domain (e.g. two types of 
verbal material, digits and letters) and across domain (e.g. spatial locations or verbal material). 
Varying materials within and across tasks allows us to assess the variance specific to task 
materials (content) and category of task (e.g. Schmiedek, Hildebrandt, Lövdén, Lindenberger, 
and Wilhelm, 2009). For example, tasks might be related due to the use of material-specific 
strategies (e.g. chunking letters into familiar words) or to an overlap in task processing demands 
(e.g. maintaining items for serial recall via rehearsal). 
 



 

A latent variable approach will be used to test competing models of the underlying structure of 
six n-back and backward recall tasks. Four models will be compared: (1) a single-factor model 
that assumes all tasks tap a single underlying working memory construct (e.g. Alloway, 
Gathercole, and Pickering, 2006; Kane et al., 2004), (2) a two-factor model that assumes separate 
domain-specific visuo-spatial and verbal latent constructs (Daneman and Tardif, 1987; Shah and 
Miyake, 1996), (3) a two-factor paradigm model that assumes a latent correlation between 
separate backward recall and n-back factors (e.g. similar to two distinct but related structures 
for complex span and updating tasks reported by Schmiedek et al., 2009), and (4) a three-factor 
materials model that assumes separate constructs based on the memory items - digits, letters or 
spatial locations. 
 
Once the best-fitting model of working memory has been determined, the relationship between 
the two categories of working memory task and fluid reasoning will be examined to test whether 
there is a single underlying general ability factor for all tasks (e.g. a ‘g’ factor; Duncan et al., 
2000), or two distinct but related constructs for working memory and reasoning (e.g. Schmiedek 
et al., 2009; Schmiedek, Lövdén, and Lindenberger, 2014). 
 
In summary, the two key research questions are: 
 
(1) What accounts for individual differences in performance on backward recall and n-back 
tasks? 
 
(2) How are the two classes of working memory paradigm (backward recall and n-back) related 
to fluid reasoning? 
 
Hypotheses: 
 
Primary research question: What accounts for individual differences in performance on 
backward recall and n-back tasks? 
 
It is hypothesized that one of four alternative working memory models will best describe the 
data, and explain the interrelationships between the backward recall and n-back tasks. These 
models are described below (see the PDF attachment ‘Working memory models’ in the analysis 
section, for an illustration of how these models will be constructed). 
 
Model 1 
A single factor model that assumes different versions of backward recall and n-back tasks tap 
into a single underlying working memory construct. This is consistent with domain-general 
theories of working memory that propose performance on working memory tasks is dependent 
on a domain-general central executive or attentional control system (Alloway et al., 2006; 
Baddeley, 1986; Engle and Kane, 2004; Engle, Kane, and Tuholski, 1999; Kane et al., 2004). 
Previous confirmatory factor analyses (CFA) support this view. For example, in a study 
conducted by Kane et al. (2004) participants completed a number of working memory tasks. The 
verbal working memory tasks (operation, word and counting span) required participants to 
remember sequences of verbal information such as words, letters or digits while also completing 
an additional processing task (solving arithmetic problems, judging the veracity of sentences, or 
counting shapes). The spatial working memory tasks (rotation span, symmetry span and 
navigation span) involved remembering sequences of visuo-spatial information such as arrows, 
matrix locations or paths of moving balls, whilst simultaneously performing a processing task 
(letter rotation, symmetry judgement or navigation around a letter shape). Following CFA the 
authors found that the verbal and visuo-spatial working memory tasks tapped into a unitary 
construct (Kane et al., 2004). Similarly, Alloway et al. (2006) found that although tasks 



 

measuring the temporary storage of information (e.g. digit span, dot matrix) depended on 
separate domain-specific verbal and visuo-spatial stores, the processing of information within 
working memory was supported by a common domain-general component. 
 
Model 2 
A two-factor structure that assumes separate domain-specific latent constructs for verbal and 
visuo-spatial information. This is consistent with a domain-specific view of working memory in 
which separate pools of resources support verbal and visuo-spatial working memory (Daneman 
and Tardif, 1987; Friedman and Miyake, 2000; Shah and Miyake, 1996). Evidence for the 
domain-specific account comes from individual differences studies using verbal and visuo-
spatial working memory tasks. For example, Shah and Miyake (1996) found only a weak 
correlation between measures of verbal and spatial working memory. In their study participants 
completed a verbal working memory reading span task, which involved reading sentences aloud 
whilst simultaneously remembering the final word of each sentence, and a spatial working 
memory span task, which involved mental rotation of letters whilst simultaneously 
remembering their orientation. The authors found that verbal working memory was highly 
correlated with verbal ability measures (i.e. verbal scholastic aptitude test scores), but not with 
spatial ability measures (i.e. tests of spatial visualization and perceptual speed), and that spatial 
working memory strongly predicted spatial ability but not verbal ability. The authors also 
conducted an exploratory factor analysis and found that spatial span and spatial ability 
measures loaded on one factor (i.e. a spatial factor), whereas tests of verbal span and verbal 
ability loaded on another (i.e. a verbal factor), suggesting there are distinct cognitive resources 
for spatial and verbal working memory (Shah and Miyake, 1996). The distinction between verbal 
and visuo-spatial working memory is also reflected in separable domain-specific short term 
memory stores, and the ways in which verbal and spatial materials are represented and 
rehearsed internally/mentally. Verbal working memory is considered phonological in nature 
(Gathercole, Frankish, Pickering, and Peaker, 1999), and relies on an internal articulatory 
rehearsal process (Baddeley, 2000; Baddeley, Thomson, and Buchanan, 1975). Therefore, tasks 
using different categories of materials within the verbal domain (e.g. digits, letters) may be 
represented internally in the same system, and rely on the same maintenance processes. 
Subvocal rehearsal is one possible maintenance mechanism that enables phonological 
representations to be serially reactivated in short term memory to prevent decay over time 
(Baddeley et al., 1975; Gathercole, Adams, and Hitch, 1994). On the other hand, tasks involving 
visuo-spatial materials (e.g. recalling spatial locations in a matrix) may rely on a distinct system 
dedicated to the maintenance of visual and spatial information (e.g. for forming and maintaining 
mental images). A rehearsal strategy for maintaining temporary visuo-spatial representations 
has been proposed, which is distinct to phonological maintenance mechanisms and involves the 
covert allocation of attention to a series of memorized locations (Pearson, Ball, and Smith, 2014; 
Postle, Awh, Jonides, Smith, and D’Esposito, 2004). Therefore, according to these theories and 
studies, model 2 predicts that performance on verbal and visuo-spatial working memory tasks 
will be dissociable because the tasks rely on different representational and maintenance 
systems. The two constructs are predicted to be linked. 
 
Model 3 
A two-factor paradigm model that assumes a correlation between distinct backward recall and 
n-back latent constructs. Although backward recall and n-back tasks both involve storage and 
processing, they differ in terms of their processing demands. For example, backward recall 
involves explicit serial recall whereas n-back relies on familiarity and recognition based 
responding. Schmiedek et al. (2009) reported a paradigm-based latent structure for complex 
span and updating tasks (e.g. n-back); both categories of task could account for inter-individual 
differences in working memory equally well and were best captured by distinct but related 
paradigm-specific factors. Data from the working memory training literature supports the idea 



 

that working memory tasks might group together based on the overlap in cognitive processes 
involved in the tasks. Transfer to untrained tasks is consistent and robust if there is substantial 
overlap between the processes involved in the trained and untrained activities (Sprenger et al., 
2013). For example, Dahlin, Neely, Larsson, Bäckman, and Nyberg (2008) reported transfer to n-
back following training on a running span task, but not to a Stroop task. This pattern of gains 
was speculated to reflect improvements in the ability to update the contents of working memory 
following training, which benefitted other tasks involving updating, and not tasks with different 
processing requirements. Other training studies have also demonstrated that working memory 
paradigm is a boundary condition to transfer, but that the stimulus domain of the memory items 
(verbal or visuo-spatial) and category of materials within paradigm (e.g. letters or digits) is not 
(Byrne, Ewbank, Redick, and Holmes, 2017; Holmes, Woolgar, Hampshire, and Gathercole, 2017; 
Minear et al., 2016). These findings suggest that training related changes are not associated with 
material-specific strategies, but are tied to the processes involved in the specific training task 
administered. It is therefore possible that different categories of working memory task will 
group together because they share variance common to the processes involved in the task (e.g. 
updating vs serial recall). 
 
Model 8 
A three factor model with separate constructs for each category of memory item as follows: 
factor one, digit n-back and backward digit recall; factor two, backward letter recall and n-back 
letters; and factor three, n-back with spatial locations and backward spatial recall. This model 
assumes that performance across the different working memory tasks will be best described by 
expertise related to the specific type of stimuli, for example in basic skills or knowledge tied to 
digits, letters or spatial materials. Within the working memory training literature it has been 
suggested that transfer might be mediated by the acquisition of content-specific skills and 
knowledge (von Bastian and Oberauer, 2014). That is, training-related improvements could 
arise through the development or refinement of stimuli-specific mnemonic strategies 
(Gathercole, Dunning, Holmes, and Norris, 2017; Minear et al., 2016). These strategies could be 
specific to content domain, for example chunking can be used to remember verbal items, but it is 
unlikely to be used for visuo-spatial materials. Such strategies could be specific to materials even 
within domain. A striking example of this comes from a study showing that training for 
sequences of digits was tied to the use of mnemonic strategies that could not be applied to novel 
letter materials (Ericsson, Chase, and Faloon, 1980). Similarly, Minear et al. (2016) found that 
participants who completed verbal working memory training reported using strategies specific 
to letters. During training participants used chunking to remember sequences by associating the 
letters with words and forming sentences, or linking letters with acronyms or people’s initials 
(Minear et al., 2016). 
 
Secondary research question: How are the two classes of working memory paradigm (backward 
recall and n-back) related to fluid reasoning? 
 
Working memory and fluid intelligence represent dissociable but strongly related cognitive 
skills (e.g. Alloway and Alloway, 2010; Colom, Rebollo, Palacios, Juan-Espinosa, and Kyllonen, 
2004). This has been demonstrated previously by Schmiedek and colleagues using latent factor 
approaches. In one study they identified two related constructs for updating and complex span 
tasks that predicted a separate reasoning factor equally well (Schmiedek et al., 2009). More 
recently, they reported a number of working memory measures were best captured by four 
latent working memory task factors corresponding to working memory paradigm (Schmiedek et 
al., 2014). These four paradigm factors loaded on to a single higher-order working memory 
construct factor, which was related to a separate reasoning factor. To address the secondary 
research question the best-fitting working memory model will be expanded to include 
reasoning. If a single factor working memory model is preferred, we will examine whether this 



 

working memory factor is very strongly or perfectly correlated with a fluid reasoning factor (cf. 
Kyllonen and Christal, 1990). If a multi-factor working memory model is preferred then the 
relationship between the working memory factors and fluid reasoning will be examined to 
investigate whether it is stronger for particular working memory sub-factors. 
 
Sampling plan 
 
Existing data: 
 
Registration prior to creation of data.  
 
Explanation of existing data: 
 
N/A 
 
Data collection procedures: 
 
Participants 
700 Native-English speaking participants aged 18-35 with normal or corrected to normal vision 
and no literacy difficulties will be recruited. 
 
Recruitment 
This study will be hosted on the online crowdsourcing platform Prolific Academic. Participants 
will be paid approximately £9 for completing the experiment. 
 
Study procedure 
Each participant will be required to complete seven cognitive tasks in a single session. The tasks 
are (1) backward digit recall, (2) backward letter recall, (3) backward spatial location recall, (4) 
n-back with digits, (5) n-back with letters, (6) n-back with spatial locations, and (7) relational 
reasoning. Participants will complete the tasks according to one of 12 possible task orders. The 
backward recall tasks will be grouped together (i.e. completed consecutively), and the n-back 
tasks will also be grouped together. The task order within these two groups will be 
counterbalanced (i.e. all possible permutations for the 3 tasks will be used), yielding 6 orders for 
each of the two groups of tasks. The two groups of backward recall and n-back tasks will be 
counterbalanced. This will result in 6 possible task orders in which the backward recall tasks are 
completed first, and 6 in which the n-back tasks will be completed first (yielding a total of 12 
task orders). The reasoning task will be completed in between the n-back and backward recall 
tasks in all conditions (i.e. it will always be the fourth task completed). Participants will 
complete practice trials before beginning each task. Feedback for correct and incorrect 
responses will be shown on screen for the practice trials, but will not be provided during the 
proper tasks. 
 
Materials 
The tasks have been created by the research team using Gorilla 
(https://www.research.sc/#intro), software developed by Cauldron 
(http://www.cauldron.sc/welcome). The experiment will be hosted on the online 
crowdsourcing platform Prolific Academic (https://www.prolific.ac/). Participants will use a 
laptop or desktop computer, and responses will be made using a mouse or keyboard. 
 
 
 
 



 

Backward recall 
Participants will complete 3 backward recall tasks, each containing different stimuli: (i) digits (1 
to 9), (ii) letters (B H J L N Q R X Z), or (iii) spatial locations (nine random but fixed locations on 
the computer screen). Trials will be presented in blocks, each consisting of four trials. During 
each trial items will be presented visually on screen one at a time. Participants will then be 
prompted to recall the sequence in backward order via an onscreen keypad of digits, letters or 
spatial locations. Participants will begin the tasks at a span of three items. Span length will 
increase by one item in each subsequent block if there are three or more correct trials. The task 
will be discontinued if participants get two or more incorrect trials within a block, or if the 
maximum level is reached (span 13). The measure of ability used in analyses will be the 
maximum span reached for each of the backward recall tasks (i.e. the final span in which the 
participant met the criterion of at least three out of four correct trials). Reaction times, as well as 
number of correct and incorrect trials, and of individual items within trials, will also be 
recorded. 
 
n-back 
Participants will complete 3 n-back tasks, each containing different stimuli: (i) digits (1 to 9), (ii) 
letters (B H J L N Q R X Z), or (iii) spatial locations. For each task, stimuli will be presented one at 
a time on screen in a random order. Participants will be required to indicate whether the current 
item on screen matches one presented n items back in the sequence via a button press. During 
each block participants will be presented with a continuous sequence of 20 +N items during 
which there will be a total of 6 possible targets (matches). An error will be scored if participants 
press the button for a non-target (false alarm), or if participants fail to press the button when a 
match is present (miss). Total errors will be calculated as false alarms plus misses combined. 
The first block will begin at 1-back and the difficulty level will increase by one in each 
subsequent block if less than five errors are made (e.g. increase from 1-back to 2-back). The task 
will end if five or more errors are made within a block, or if the maximum level is reached (12-
back). The measure of ability used in analyses will be the maximum n-level reached for each of 
the n-back tasks (i.e. the final level in which the participant met the criterion of less than five 
errors in a block). Reaction times, as well as number of hits, misses, false alarms and correct 
rejections will also be recorded. 
 
Relational reasoning 
Participants will be presented with 80 puzzles one at a time on screen. Each puzzle will consist 
of a 3x3 matrix (nine spaces in total). Eight of the spaces will contain shapes, but the bottom 
right space will be empty. Participants will be presented with four boxes at the bottom of the 
screen containing shapes, and will be required to select the box with the correct answer – the 
box containing the piece that is missing from the empty space in the matrix. The shapes in the 
matrix will vary by colour, size, shape and position and will vary in levels of difficulty. 
Participants will have 30s to complete each trial, and a prompt will appear on screen when 5s 
remains. Odd and even items will be scored separately to give two relational reasoning scores. In 
each case the number of correct responses (out of 40) will be used in the analyses as the 
measure of ability. Reaction times, as well as errors due to incorrect response and errors due to 
timeout will also be recorded. 
 
Study timeline 
Data collection will be completed by January 2018. 
 
Sample size: 
 
The target sample size is 700. 
 



 

Sample size rationale: 
 
It is necessary to collect data from a very large sample to conduct latent variable modelling. A 
sample size of n greater than 500 is recommended for looking for complex/subtle differences 
between factors (Wolf, Harrington, Clark, and Miller, 2013) and the number of participants 
needed multiplies up very quickly as a factor of the relatedness between the measures. 700 
participants will be recruited to provide sufficient high quality data to detect meaningful 
differences between latent construct (e.g. data from at least n=500, but ideally 650 to 700). 
Based on a sample size of n=700, this study will yield statistical power of .997 to detect 
covariances between the tasks. 
 
Stopping rule: 
 
Data collection will stop when the target n (700) is reached. The sample size accounts for 
attrition and so additional data will not be collected if any is excluded. 
 
Manipulated variables: 
 
N/A 
 
Measured variables: 
 
Backward digit recall maximum span 
Backward letter recall maximum span 
Backward spatial recall maximum span 
n-back digit maximum n-level 
n-back letter maximum n-level 
n-back spatial maximum n-level 
Relational reasoning odd items total items correct 
Relational reasoning even items total items correct 

Indices: 

 
Factor analytic techniques will be used to understand the underlying latent constructs in the 
data. The factor models will be based on performance and covariance of performance across the 
different tasks. Raw scores (maximum span for backward recall tasks, maximum level for n-back 
tasks and total items correct for relational reasoning) will be used in the factor models. 
 
Design Plan 
 
Study type: 
 
Observational Study - Data is collected from study subjects that are not randomly assigned to a 
treatment. This includes surveys, “natural experiments,” and regression discontinuity designs. 
 
Blinding: 
 
No blinding is involved in this study. 
 
 
 



 

Study design: 
 
This is a cohort study looking at individual differences. 
 
Randomization: 
 
N/A 
 
Analysis Plan 
 
Statistical models: 
 
Statistical model: Confirmatory factor analysis (CFA) 
 
To address the primary research question, CFA will be conducted to find the best fitting model 
for the six working memory tasks. The following models will be compared: (1) a single working 
memory factor model, (2) a two-factor domain-specific verbal and visuo-spatial construct model 
(3) a two-factor backward recall and n-back paradigm model, and (4) a three-factor digit, letter 
and spatial materials model. See attached file (‘Working memory models’) for illustrations of 
how these models will be constructed. If necessary to aid convergence, equality constraints will 
be imposed on the factor loadings (within factor) or residual variances (across task). The best-
fitting model(s) will be identified using a number of widely used fit statistics. These will include 
chi-square, the root mean square error of approximation (RMSEA) and the comparative fit index 
(CFI). The likelihood ratio test (LRT) and the Akaike information criterion (AIC) will also be used 
to directly compare models. 
 
After establishing interrelationships among the working memory measures and determining the 
best fitting and most parsimonious working memory model for the variables, the secondary 
research question will be addressed (i.e. how are the two classes of working memory paradigm, 
backward recall and n-back, related to fluid reasoning?). The parameters of the best-fitting 
working memory model will be fixed and a reasoning factor will be added to examine whether 
the working memory factor(s) and the reasoning tasks load on a single factor or on distinct but 
related constructs. If a single factor working model is preferred, we will examine whether the 
working memory factor is very strongly or perfectly correlated with a fluid reasoning factor. 
Alternatively, if a multi-factor model is preferred then the relationship between the working 
memory factors and fluid reasoning will be examined to see whether it is identical or stronger 
for certain sub-factors. 
 
Transformations: 
 
N/A  
 
Follow-up analyses: 
 
N/A 
 
Inference criteria: 
 
The estimation method used to fit the models will be the maximum likelihood estimation (MLE). 
A number of fit indices will be used to determine how well the competing models fit the data. 
 
 



 

Chi-square test statistic 
The chi-square test statistic will be used to evaluate the goodness-of-fit for the competing 
models. It will be reported with degrees of freedom and p values. With CFA a significant result 
indicates that the specified model is significantly different from the data (i.e. it does not fit the 
data). The goodness-of-fit is therefore determined by small and non-significant chi-square 
values. Chi-square test statistic values close to zero indicate better fit and p values less than .05 
will be used to establish significance, however a significant chi square is anticipated for all of the 
models due to the large sample size, so additional fit indices will be used. 
 
RMSEA 
The RMSEA (reported with 90% confidence intervals) ranges from 0 to 1, with smaller values 
indicative of better model fit (values less than .08 indicate acceptable fit, values equal to or less 
than .05 suggest a good fit, values between .08 and .10 suggest mediocre fit and those greater 
than .10 are considered not acceptable). 
 
CFI 
The CFI ranges from zero to one with higher values indicative of better fit (values equal to or 
greater than .90 indicate good model fit and those close to 1.0 are considered a very good fit). 
 
AIC 
The AIC measures the relative quality of a collection of models to each other and can be used to 
compare all models (i.e. this measure can be used to compare non-nested models). This value 
cannot be interpreted in isolation. Models with a relatively lower AIC have a better fit. 
 
LRT 
The LRT will be used to directly compare models. This test is only appropriate for nested models 
(i.e. model 1). 
 
Data exclusion: 
 
Exclusion of poor quality data  
During data collection incoming data will be screened for quality. Participants who have 
particularly high or low scores will be flagged and checked to make sure they completed the 
tasks correctly. Extremely high or low scores will be identified by comparison with existing data 
on the tasks that was collected as part of a previous study (Byrne et al., 2017). To check whether 
participants are completing the tasks properly, error rates and reaction times will be checked. 
For backward recall a very low error rate may indicate cheating (e.g. writing down memory 
items), and a high error rate in conjunction with very fast response times may indicate 
participants are not trying to remember any items for a particular trial (i.e. just ‘clicking through’ 
the task). For the n-back tasks hits, misses, false alarms and correction rejections can be used to 
check participants’ accuracy. Again, high or low error rates may indicate cheating or ‘clicking 
through’ the task. For the relational reasoning task errors made during the easiest trials (spread 
throughout the task) and very fast reaction times might indicate that participants are not trying 
to solve the puzzles (i.e. just ‘clicking through’ the task). Data may be excluded for participants 
who produce poor quality data. Participants who are not following the instructions properly 
(e.g. cheating, ‘clicking through’ the tasks), will not be paid for their participation (in line with 
Prolific Academic guidelines).  It can be difficult to judge ‘proper’ performance for online data 
collection, so decisions to exclude participants will be made by agreement between the primary 
experimenter (EB) and one other member of the research team (JH, BG or RK). Participants will 
have the option to leave feedback at the end of the experiment to indicate whether anything 
might have interfered with their performance on any of the tasks (e.g. did they get distracted or 
encounter any technical difficulties during a trial or task). Poor quality data may be identified 



 

this way. Data for particular tasks where this has happened will be excluded. Remaining data for 
other tasks completed by the same participants will still be included in the analysis. 
 
Outliers 
Data will be screened for outliers. Scores which deviate by more than 3.5 SDs from the mean of 
the sample will be excluded. 
 
Missing data: 
 
Data from all completed tasks will be analysed. If a participant has not completed all tasks, or if 
data from a single task is excluded, the remaining completed tasks will still be included in the 
analysis. Missing cases will be dealt with using the full information maximum likelihood (FIML) 
parameter estimation technique. Participants who are excluded (for example, on the grounds of 
not completing the study properly) will not be replaced as the sample size of 700 accounts for 
some attrition. 
 
Exploratory analysis: 

Exploratory analysis for the primary and/or secondary research questions 

Once the best fitting model has been determined we may also explore higher-order factor 
models for working memory (e.g. for model 4 there may be a higher-order verbal factor for the 
digit and letter tasks that use verbal materials, which may be related to the spatial factor). 

Other 

For the primary research question max span reached on the backward recall tasks, and max n-
level reached on the n-back tasks, will be used as the measure of ability in the main statistical 
analysis. Although additional variables are available (e.g. trials/items correct for backward recall 
and number of hits for n-back) maximum span in the backward recall tasks and maximum level 
in the n-back tasks will be used as indices of memory capacity (i.e. the number of items a 
participant can hold in mind). The additional measures that will also be scored for backward 
recall are the number of trials correct and the number of individual items correct. For n-back the 
number of hits, misses, false alarms and correct rejections will be scored. Reaction times will be 
recorded for all tasks. These additional indices provide more sensitive measures of performance 
(i.e. more data points and potentially more variance in scores) and may be used in exploratory 
analyses if greater sensitivity is required. 

 
Scripts 
 
N/A 
 
 
 
 
 
 
 
 
 
 



 

References 
Alloway, T. P., and Alloway, R. G. (2010). Investigating the predictive roles of working memory 

and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20–29. 
http://doi.org/10.1016/j.jecp.2009.11.003 

 
Alloway, T. P., Gathercole, S. E., and Pickering, S. J. (2006). Verbal and visuo-spacial short-term 

and working memory in children: are they separable ? Child Development, 77(6), 1698–
1716. http://doi.org/10.1111/j.1467-8624.2006.00968.x 

 
Baddeley, A. D. (1986). Working Memory. Oxford: Oxford University Press. 
 
Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in 

Cognitive Sciences, 4(11), 417–423. http://doi.org/10.1016/S1364-6613(00)01538-2 
 
Baddeley, A. D., Thomson, N., and Buchanan, M. (1975). Word length and the structure of 

working memory. Journal of Verbal Learning and Verbal Behavior, 14(6), 575–589. 
http://doi.org/http://dx.doi.org/10.1016/S0022-5371(75)80045-4 

 
Byrne, E. M., Ewbank, M. P., Redick, T. S., and Holmes, J. (2017). Does transcranial electrical 

stimulation during working memory training enhance cross-paradigm transfer effects? In 
prep. 

 
Colom, R., Rebollo, I., Palacios, A., Juan-Espinosa, M., and Kyllonen, P. C. (2004). Working memory 

is (almost) perfectly predicted by g. Intelligence, 32(3), 277–296. 
http://doi.org/10.1016/j.intell.2003.12.002 

 
Dahlin, E., Neely, A. S., Larsson, A., Bäckman, L., and Nyberg, L. (2008). Transfer of learning after 

updating training mediated by the striatum. Science, 320(5882), 1510–1512. 
http://doi.org/10.1126/science.1155466 

 
Daneman, M., and Tardif, T. (1987). Working memory and reading skill re-examined. In M. 

Coltheart (Ed.), Attention and Performance: The Psychology of Reading (pp. 491–508). 
Taylor and Francis. 

 
Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., … Emslie, H. (2000). A Neural 

Basis for General Intelligence. Science, 289(5478), 457–460. 
http://doi.org/10.1126/science.289.5478.457 

 
Engle, R. W., and Kane, M. J. (2004). Executive Attention, Working Memory Capacity, and a Two-

Factor Theory of Cognitive Control. The Psychology of Learning and Motivation: Advances in 
Research and Theory, 145–199. http://doi.org/10.1016/S0079-7421(03)44005-X 

 
Engle, R. W., Kane, M. J., and Tuholski, S. W. (1999). Individual differences in working memory 

capacity and what they tell us about controlled attention, general fluid intelligence and 
functions of the prefrontal cortex. In A. Miyake and P. Shah (Eds.), Models of working 
memory: Mechanisms of active maintenance and executive control. (pp. 102–134). New York: 
Cambridge University Press. http://doi.org/10.1037/a0021324 

 
Ericsson, K. A., Chase, W. G., and Faloon, S. (1980). Acquisition of a Memory Skill. Science, 

208(4448), 1181–1182. http://doi.org/10.1126/science.7375930 
 



 

Friedman, N. P., and Miyake, A. (2000). Differential roles for visuospatial and verbal working 
memory in situation model construction. Journal of Experimental Psychology. General, 
129(1), 61–83. http://doi.org/10.1037/0096-3445.129.1.61 

 
Gathercole, S. E., Adams, A.-M., and Hitch, G. J. (1994). Do young children rehearse? An 

individual-differences analysis. Memory and Cognition, 22(2), 201–207. 
http://doi.org/10.3758/BF03208891 

 
Gathercole, S. E., Dunning, D. L., Holmes, J., and Norris, D. (2017). Working memory training 

involves learning to do something new. In prep. 
 
Gathercole, S. E., Frankish, C. R., Pickering, S. J., and Peaker, S. (1999). Phonotactic influences on 

short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 
25(1), 84–95. http://doi.org/10.1037/0278-7393.25.1.84 

 
Holmes, J., Woolgar, F. A., Hampshire, A., and Gathercole, S. E. (2017). Does training lead to a 

general enhancement in working memory function? In prep. 
 
Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., and Engle, R. W. (2004). 

The generality of working memory capacity: a latent-variable approach to verbal and 
visuospatial memory span and reasoning. Journal of Experimental Psychology. General, 
133(2), 189–217. http://doi.org/10.1037/0096-3445.133.2.189 

 
Kyllonen, P. C., and Christal, R. E. (1990). Reasoning ability is (little more than) working-memory 

capacity?! Intelligence, 14(4), 389–433. http://doi.org/10.1016/S0160-2896(05)80012-1 
 
Minear, M., Brasher, F., Guerrero, C. B., Brasher, M., Moore, A., and Sukeena, J. (2016). A 

simultaneous examination of two forms of working memory training: Evidence for near 
transfer only. Memory and Cognition, 1–24. http://doi.org/10.3758/s13421-016-0616-9 

 
Owen, A. M., McMillan, K. M., Laird, A. R., and Bullmore, E. (2005). N-back working memory 

paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain 
Mapping, 25(1), 46–59. http://doi.org/10.1002/hbm.20131 

 
Pearson, D. G., Ball, K., and Smith, D. T. (2014). Oculomotor preparation as a rehearsal 

mechanism in spatial working memory. Cognition, 132(3), 416–428. 
http://doi.org/10.1016/j.cognition.2014.05.006 

 
Postle, B. R., Awh, E., Jonides, J., Smith, E. E., and D’Esposito, M. (2004). The where and how of 

attention-based rehearsal in spatial working memory. Cognitive Brain Research, 20(2), 194–
205. http://doi.org/10.1016/j.cogbrainres.2004.02.008 

 
Schmiedek, F., Hildebrandt, A., Lövdén, M., Lindenberger, U., and Wilhelm, O. (2009). Complex 

span versus updating tasks of working memory: the gap is not that deep. Journal of 
Experimental Psychology. Learning, Memory, and Cognition, 35(4), 1089–1096. 
http://doi.org/10.1037/a0015730 

 
Schmiedek, F., Lövdén, M., and Lindenberger, U. (2014). A task is a task is a task: putting complex 

span, n-back, and other working memory indicators in psychometric context. Frontiers in 
Psychology, 5(December), 1–8. http://doi.org/10.3389/fpsyg.2014.01475 

 
Shah, P., and Miyake, A. (1996). The separability of working memory resources for spatial 



 

thinking and language processing: an individual differences approach. Journal of 
Experimental Psychology. General, 125(1), 4–27. http://doi.org/10.1037/0096-
3445.125.1.4 

 
Sprenger, A. M., Atkins, S. M., Bolger, D. J., Harbison, J. I., Novick, J. M., Chrabaszcz, J. S., … 

Dougherty, M. R. (2013). Training working memory: Limits of transfer. Intelligence, 41(5), 
638–663. http://doi.org/10.1016/j.intell.2013.07.013 

 
von Bastian, C. C., and Oberauer, K. (2014). Effects and mechanisms of working memory training: 

a review. Psychological Research, 78(6), 803–820. http://doi.org/10.1007/s00426-013-
0524-6 

 
Wolf, E. J., Harrington, K. M., Clark, S. L., and Miller, M. W. (2013). Sample Size Requirements for 

Structural Equation Models: An Evaluation of Power, Bias, and Solution Propriety. National 
Institutes of Health, 76(6), 913–934. http://doi.org/10.1177/0013164413495237 

 



 

 



 

Appendix F       Study III order effect ANOVAs 

One-way ANOVAs were conducted to compare the effects of position (first, second, or third) on 

task performance for each task separately (e.g. comparing whether performance for backward 

letter recall differed when it was completed first, second or third in block). The results are 

shown below for each task. 

 

Backward digit recall, F (2) = 3.977, p = .019, ηp2 = .011 

Backward letter recall, F (2) = .105, p = .900, ηp2 = .000 

Backward spatial recall, F (2) = .290, p = .749, ηp2 = .001 

n-back with digits, F (2) = 1.628, p = .197, ηp2 = .005 

n-back with letters, F (2) = .354, p = .702, ηp2 = .001 

n-back with spatial locations, F (2) = .238, p = .788, ηp2 = .001 
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Appendix H       Study III R analysis script 

 

 





# R Script for Chapter 4 (Study 3): Backward recall and n-back measures of working memory: A large-scale latent 
variable analysis
# Elizabeth M. Byrne

library(lavaan)
library(foreign)
library(haven)
library(semPlot)

#read in data
wm_data = read.spss ("wm_data.sav", to.data.frame=TRUE)

# Primary analysis
# Define models (Confirmatory factor analysis)
single_wm <- ' # Model A - latent variable definition
                 working_memory =~ BDR + BLR + BSR + NBD + NBL +NBS
'

twofactor_paradigm <- ' # Model B - latent variable definition
                          backward_recall =~ BDR + BLR + BSR
                          n_back          =~ NBD + NBL + NBS
'

twofactor_domain <- ' # Model C - Latent variable definition
                        verbal        =~ BDR + BLR + NBD + NBL
                        visuo_spatial =~ BSR + NBS
'

threefactor_material<-' # Model D - Latent variable definition
                        digits  =~ BDR + NBD
                        letters =~ BLR + NBL
                        spatial =~ BSR + NBS
'

# Fit models: CFA
fit_single_wm <- sem(single_wm, data=wm_data,estimator='mlr', missing='fiml')
summary(fit_single_wm, fit.measures=TRUE, standardized=TRUE, rsquare=TRUE,ci=T)
semPaths(fit_single_wm,what='std',cut=.1)

fit_twofactor_domain <- sem(twofactor_domain, data=wm_data, estimator='mlr', missing='fiml')
summary(fit_twofactor_domain, fit.measures=TRUE, standardized=TRUE, rsquare=TRUE,ci=T)
semPaths(fit_twofactor_domain,what='std',cut=.1)

fit_twofactor_paradigm <- sem(twofactor_paradigm, data=wm_data,estimator='mlr', missing='fiml')
summary(fit_twofactor_paradigm, fit.measures=TRUE, standardized=TRUE, rsquare=TRUE,ci=T)
semPaths(fit_twofactor_paradigm,what='std',cut=.1)

anova(fit_single_wm_original,fit_twofactor_paradigm)

fit_threefactor_material <- sem(threefactor_material, estimator='mlr',data=wm_data, missing='fiml')
summary(fit_threefactor_material, fit.measures=TRUE, standardized=TRUE, rsquare=TRUE,ci=T)
semPaths(fit_threefactor_material,what='std',cut=.1)

# Chi sqaure difference tests for CFA
anova(fit_single_wm_original,fit_twofactor_paradigm)
anova(fit_single_wm_original,fit_twofactor_domain)
anova(fit_single_wm,fit_threefactor_material)

# Modification indices for the orignial four models
modificationindices(fit_single_wm)
modificationindices(fit_twofactor_paradigm)
modificationindices(fit_twofactor_domain)
modificationindices(fit_threefactor_material)

# Define models (Exploratory factor analysis)
single_wm_fix <- ' # Model E - Latent variable definition
                     working_memory =~ BDR + BLR + BSR + NBD + NBL +NBS
                     BDR ~~ BLR
'

twofactor_paradigm_fix <- ' # Model F - Latent variable definition
                              backward_recall =~ BDR + BLR + BSR
                              n_back          =~ NBD + NBL + NBS
                              BDR ~~ BLR
'

twofactor_domain_fix <- '   # Model G - Latent variable definition
                              verbal        =~ BDR + BLR + NBD + NBL
                              visuo_spatial =~ BSR + NBS
                              BDR ~~ BLR
'

# Fit models: EFA
fit_single_wm_fix <- sem(single_wm_fix, data=wm_data,estimator='mlr', missing='fiml')



summary(fit_single_wm_fix, fit.measures=TRUE, standardized=TRUE, rsquare=TRUE,ci=T)
semPaths(fit_single_wm_fix,what='std',cut=.1)

fit_twofactor_domain_fix <- sem(twofactor_domain_fix, data=wm_data, estimator='mlr', missing='fiml')
summary(fit_twofactor_domain_fix, fit.measures=TRUE, standardized=TRUE, rsquare=TRUE,ci=T)
semPaths(fit_twofactor_domain_fix,what='std',cut=.1)

fit_twofactor_paradigm_fix <- sem(twofactor_paradigm_fix, data=wm_data,estimator='mlr', missing='fiml')
summary(fit_twofactor_paradigm_fix, fit.measures=TRUE, standardized=TRUE, rsquare=TRUE,ci=T)
semPaths(fit_twofactor_paradigm_fix,what='std',cut=.1)

# Chi sqaure difference tests for EFA
anova(fit_single_wm,fit_single_wm_fix)
anova(fit_twofactor_domain, fit_twofactor_domain_fix)
anova(fit_twofactor_paradigm, fit_twofactor_paradigm_fix)
anova(fit_twofactor_domain_fix,fit_single_wm_fix)
anova(fit_twofactor_paradigm_fix,fit_single_wm_fix)

# Secondary analysis
# Define GF models
threefactor_paradigm_gf <- ' # Model H - Latent variable definition
                               backward_recall =~ BDR + BLR + BSR
                               n_back   =~ NBD + NBL + NBS
                               gf  =~ RR_even + RR_odd

'

threefactor_paradigm_gf_fix <- ' # Model I - Latent variable definition
                                   backward_recall =~ BDR + BLR + BSR
                                   n_back          =~ NBD + NBL + NBS
                                   gf              =~ RR_even + RR_odd
                                   BDR ~~ BLR
'

single_gf <- ' # Model J - Latent variable definition
                 gf =~ BDR + BLR + BSR + NBD + NBL + NBS + RR_even + RR_odd
'

single_gf_fix <- ' # Model K - Latent variable definition
                     gf =~ BDR + BLR + BSR + NBD + NBL + NBS + RR_even + RR_odd
                     RR_even ~~ RR_odd
                     BDR~~BLR
'

# Fit GF models: Secondary analysis
fit_threefactor_paradigm_gf <- sem(threefactor_paradigm_gf, data=wm_data,estimator='mlr', missing='fiml')
summary(fit_threefactor_paradigm_gf, fit.measures=TRUE, standardized=TRUE, rsquare=TRUE,ci=T)
semPaths(fit_threefactor_paradigm_gf,what='std',cut=.1)

fit_threefactor_paradigm_gf_fix <- sem(threefactor_paradigm_gf_fix, data=wm_data,estimator='mlr', missing='fiml')
summary(fit_threefactor_paradigm_gf_fix, fit.measures=TRUE, standardized=TRUE, rsquare=TRUE,ci=T)
semPaths(fit_threefactor_paradigm_gf_fix,what='std',cut=.1)

fit_single_gf <- sem(single_gf, data=wm_data,estimator='mlr', missing='fiml')
summary(fit_single_gf, fit.measures=TRUE, standardized=TRUE, rsquare=TRUE,ci=T)
semPaths(fit_single_gf,what='std',cut=.1)

# Modification indices for single factor GF model:
modificationindices(fit_single_gf)

fit_single_gf_fix <- sem(single_gf_fix, data=wm_data,estimator='mlr', missing='fiml')
summary(fit_single_gf_fix, fit.measures=TRUE, standardized=TRUE, rsquare=TRUE,ci=T)
semPaths(fit_single_gf_fix,what='std',cut=.1)

# Chi sqaure difference tests for secondary analyses
anova(fit_threefactor_paradigm_gf,fit_threefactor_paradigm_gf_fix)
anova(fit_single_gf,fit_single_gf_fix)
anova(fit_single_gf_fix, fit_threefactor_paradigm_gf_fix)
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