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In Part 1 (Wienkers et al., 2021), we described the theory for linear growth and weakly-9

nonlinear saturation of symmetric instability (SI) in the Eady model representing a10

broad frontal zone. There we found that both the fraction of the balanced thermal11

wind mixed down by SI and the primary source of energy are strongly dependent12

on the front strength, defined as the ratio of the horizontal buoyancy gradient to13

the square of the Coriolis frequency. Strong fronts with steep isopycnals develop a14

flavour of SI we call ‘slantwise inertial instability’ by extracting kinetic energy from the15

background flow and rapidly mixing down the thermal wind profile. In contrast, weak16

fronts extract more potential energy from the background density profile, which results in17

‘slantwise convection.’ Here we extend the theory from Part 1 using nonlinear numerical18

simulations to focus on the adjustment of the front following saturation of SI. We find19

that the details of adjustment and amplitude of the induced inertial oscillations depend20

on the front strength. While weak fronts develop narrow frontlets and excite small-21

amplitude vertically-sheared inertial oscillations, stronger fronts generate large inertial22

oscillations and produce bore-like gravity currents that propagate along the top and23

bottom boundaries. The turbulent dissipation rate in these strong fronts is large, highly24

intermittent, and intensified during periods of weak stratification. We describe each of25

these mechanisms and energy pathways as the front evolves towards the final adjusted26

state, and in particular focus on the effect of varying the dimensionless front strength.27

Key words:28

1. Introduction29

Fronts, or regions with large horizontal density gradients, are common features of30

the ocean surface mixed layer. The strength of a front is measured by the horizontal31

analogue to the buoyancy frequency, M2 ≡
∣∣∇hb̄∣∣, where b̄ ≡ −gρ̄/ρ0 is the background32

buoyancy field, g is the acceleration due to gravity, and ρ0 is a reference density. In33

frontal regions stable to both gravitational and inertial instability, symmetric instability34

(SI) can still grow if the isopycnal slope, M2/N2 (for N2 ≡ ∂z b̄), exceeds a certain35

threshold. Specifically, a front is unstable to SI when the Ertel potential vorticity (PV)36

q ≡ (f ẑ +∇× u) · ∇b, (1.1)37
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(defined with the full velocity, u, and with ẑ the vertical unit vector) is of the opposite38

sign to the Coriolis parameter, f (Hoskins 1974). The growing SI modes resemble slanted39

convection cells and are independent of the along-front direction (i.e. perpendicular to40

the horizontal buoyancy gradient) (Stone 1966).41

In Part 1 we described the dependence of SI growth and saturation on the front42

strength parameterised by Γ ≡ M2/f2. There we considered the linear growth and43

weakly-nonlinear saturation of SI in the idealised problem consisting of a broad frontal44

zone with a uniform horizontal buoyancy gradient in thermal wind balance and bounded45

by flat no-stress horizontal surfaces. We found that depending on Γ and Ri ≡ N2f2/M4,46

the front can extract energy primarily from either the kinetic energy of the balanced47

thermal wind or from the potential energy of the background density profile. Strong48

fronts are dominated by geostrophic shear production, Pg, and we distinguished this SI49

as ‘slantwise inertial instability.’ In contrast, fronts with small Γ or Ri & 0.5 see SI50

energised more by buoyancy production, B, and we called this flavour of SI ‘slantwise51

convection.’52

Subsequent to extracting energy from the balanced thermal wind, we found that SI53

can induce vertically-sheared inertial oscillations with varying amplitude depending on54

Γ . We hypothesised that the fraction of the thermal wind mixed down by SI and the55

ensuing turbulence can be related to the amplitude of the subsequent inertial oscillations56

by using the theory of Tandon & Garrett (1994). We computed their parameter s,57

s ≡ f

M2

∂v̄

∂z

∣∣∣
t=τc

(1.2)58

(using the horizontally-averaged along-front velocity, v̄) to quantify the degree of im-59

balance after the saturation of SI at τc (cf. fig. 8b in Part 1). We then concluded that60

because a higher fraction of the thermal wind is mixed, stronger fronts will exhibit larger61

amplitude inertial oscillations following destabilisation by SI. Finally, we calculated the62

SI momentum transport time-scale, τmix (cf. fig. 8a in Part 1), needed to homogenise63

the thermal wind. We found that τmix > f−1 for Γ < 8 which suggests that weak fronts64

should exhibit a slow quasi-balanced evolution to equilibrium. In contrast, strong fronts65

are expected to rapidly mix the thermal wind and undergo geostrophic adjustment.66

This theoretical handling of the SI induced equilibration of balanced fronts has left a67

number of questions unanswered. Specifically, the nonlinear consequences of these results68

from Part 1 — of the energy sources and thermal wind mixing rate, which were shown to69

strongly depend on Γ — are expected to influence the later evolution of the front beyond70

the initial saturation of SI. We use the framework of Tandon & Garrett (1994) to shed71

light on the effects of dissipation and a finite mixing time on the adjustment and resulting72

inertial oscillations. They considered the geostrophic evolution of an instantaneously73

mixed unstratified front. However, particularly in weak fronts, this τmix may be longer74

than the inertial period, and so the resulting adjustment may instead resemble a turbulent75

thermal wind balance (Gula et al. 2014). In the opposite limit of strong fronts, the excited76

inertial oscillations can modulate the growth rate of residual SI. This leads to periods77

of explosive growth and turbulence corresponding with times when the front is weakly78

stratified (Thomas et al. 2016).79

Other numerical process studies of SI have investigated the nonlinear evolution in vary-80

ing configurations, but most have focused only on a single value of the non-dimensional81

horizontal buoyancy gradient (Thomas & Lee 2005; Taylor & Ferrari 2009; Thomas &82

Taylor 2010; Taylor & Ferrari 2010; Stamper & Taylor 2016). In this paper, we extend83

the theory developed in Part 1 which described the effect of varying the front strength84

on the growth and saturation of SI. We use a set of 2D numerical simulations spanning85
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a large range of Γ to understand the extent to which the geostrophic momentum mixing86

induced by SI and turbulence either directly or indirectly prompts a response similar to87

that of Tandon & Garrett (1994).88

We begin in §2 by briefly describing the physical problem set-up which matches that89

used in Part 1, but here for the special case of a front which is initially vertically90

unstratified. We detail the numerical model and set of simulations in §3, and provide91

an overview of the general evolution of these fronts. In §4, we show how each front is92

forced out of thermal wind balance and suggest how the rate of adjustment influences93

the inertial oscillations considered in §5. There we examine the vertical structure and94

evolution of these inertial oscillations as well as their damping and contribution to the95

equilibration of the front. Finally in §6 we consider the feedbacks of the front generating96

late-time SI and modulating the turbulence. We further describe how these persistent97

SI modes can generate frontlets and bore-like gravity currents, and consider how this98

behaviour scales with front strength.99

2. Problem set-up100

We consider the same configuration of the Eady model as studied in Part 1 (Eady 1949).101

In this context, the Eady model can be viewed as an idealised mixed layer front where102

the bottom of the mixed layer is replaced by a flat, rigid boundary. Explicitly, this set-103

up comprises an incompressible flow in thermal wind balance with a uniform horizontal104

buoyancy gradient, and bounded between two rigid, stress-free horizontal surfaces.105

We choose the dimensionless units of this problem such that the balanced thermal106

wind shear (M2/f) and the vertical domain size (H) are both unity. This results in107

four dimensionless parameters, shown here with the values used to reduce the parameter108

space:109

Γ ≡ M2

f2
; Re ≡ H2M2

fν
= 105; Ri0 ≡

N2
0 f

2

M4
= 0; Pr ≡ ν

κ
= 1, (2.1)110

where the subscript 0 indicates the initial value of an evolving quantity. Here ν is the111

kinematic viscosity and κ is the diffusivity of buoyancy, but we take Pr = 1 to match the112

theory presented in Part 1. We further reduce the parameter space by considering initial113

conditions with no stratification (N2
0 = 0). This choice was made because unstratified114

fronts were found to have the most varied behaviour across Γ from the theory in Part 1.115

Finally, it should be noted that the Rossby number is not an independent parameter but116

can be related to the Richardson number for motions with a given aspect ratio (Stone117

1966).118

We solve the Boussinesq equations on an f -plane and neglect the non-traditional119

Coriolis terms. These non-dimensionalised governing equations are120

Du∗

Dt∗
= −∇∗Π∗ − 1

Γ
ẑ× u∗ +

1

Re
∇∗2u∗ + b∗ẑ (2.2a)121

Db∗

Dt∗
=

1

Re
∇∗2b∗ (2.2b)122

0 = ∇∗ · u∗, (2.2c)123124

where the dimensionless (∗) variables are125

u∗ ≡ u
f

HM2
; b∗ ≡ b f2

HM4
; t∗ ≡ tM

2

f
; x∗ ≡ x

1

H
; ∇∗ ≡ H∇. (2.3)126

The dimensionless pressure head acceleration, ∇∗Π∗, absorbs the hydrostatic pressure127
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Γ Lx Ly Nx Ny Nz λSI σSI (1− s) τmix τc

1 4 — 2048 1 512 0.23 0.77 0.07 9.2 14.0
10 32 — 8192 1 512 0.43 0.31 0.22 7.4 23.3
100 64 — 16384 1 512 0.61 0.10 0.40 13 49.0
1 4 0.25 512 32 256 0.23 0.77 0.07 9.2 14.0
10 16 0.25 2048 32 256 0.43 0.31 0.22 7.4 23.3

Table 1. Summary of the details of each numerical simulation along with a few specific values
from the theory presented in Part 1. All quantities are dimensionless. The physical dimensions
of the domain, (Lx, Ly, 1), along with the corresponding number of Fourier modes or grid points,
(Nx, Ny, Nz). The wavelength, λSI, and growth rate, σSI, of the fastest growing linear SI mode
corresponding to (2.5). The SI thermal wind mixing fraction, (1− s), and dimensionless mixing
time-scale, τmix, predicted in Part 1, and which imply the inertial oscillation amplitude. The
critical time, τc, when SI breaks down via KHI in each simulation.

gradient, but otherwise acts only as a Lagrange multiplier to satisfy the incompressibility128

constraint (2.2c). Because we focus on inertial times after the critical (SI saturation)129

point, τc, we will often use the dimensionless inertial time variable130

t∗f ≡ (t− τc) f = (t∗ − τ∗c )Γ−1, (2.4)131

with corresponding frequency, ω∗f ≡ ω/f , which is also non-dimensionalised by the inertial132

frequency, f .133

The initial condition is a balanced thermal wind (vg) in the invariant along-front (ŷ)134

direction, which balances the baroclinic torque of the uniform buoyancy gradient in the135

across-front (x̂) direction:137

v∗0 = z∗ − 1/2

b∗0 = Γ−1x∗.
(2.5)138

139

Finally, the boundary conditions at z∗ = 0 and 1 are taken to be insulating and stress-140

free. In what follows we will omit the appended asterisks for notational simplicity. All141

variables are dimensionless unless the units are explicitly stated (as in some figures).142

3. Numerical simulations143

We used the non-hydrostatic hydrodynamics code, diablo, to integrate the fully144

non-linear Boussinesq equations (2.2) (Taylor 2008). diablo uses second-order finite145

differences in the vertical and a collocated pseudo-spectral method in the horizontal146

periodic directions, along with a third-order accurate implicit-explicit time-stepping147

algorithm using Crank–Nicolson and Runge–Kutta with an adaptive step size.148

These simulations are run in a 2D (x-z) domain oriented across the front, while still149

retaining all three components of the velocity vector. This choice allows us to focus on the150

evolution of the symmetric (i.e. y-invariant) modes. It should be noted that the thermal151

wind shear in this particular setup would be susceptible to KHI along the front in a 3D152

simulation, but this is not considered for the purpose of this study. Still, we present the153

results of short 3D large-eddy simulations in appendix A to confirm that the following154

results for SI are robust in three dimensions.155

Each of the 2D simulations with Γ = {1, 10, 100} were run until time 100Γ , except for156

the Γ = 100 case which was only run until t = 40Γ . The computational cost scales as Γ 2157

due to the requirement for a shorter time-step and a larger domain. But the large aspect158
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Figure 1. Slices across each front show the along-front vorticity, ωy ≡ (∂zu− ∂xw), along with
buoyancy contours (black lines), for Γ = 1 (top), 10 (centre), and 100 (bottom). Two time
snapshots are shown: at t = τc (left) when secondary KHI first begins to break the coherent
energy of the SI modes into small-scale turbulence, and at a later time t2 (right) when SI again
develops and subsequently rolls up into Kelvin-Helmholtz instability while the vertically-sheared
inertial oscillation de-stratifies the front. (Here, t2 corresponds to times when tf/(2π) = 10, 5,
& 2, respectively for Γ = 1, 10, & 100.) Note that the vorticity is normalised by M , which keeps
the amplitude similar across the range of Γ . The vorticity normalised by f can be obtained by
multiplying the values shown here by Γ−1/2. Note that only a subset of the horizontal domain
is shown for both Γ = 10 and 100.

ratio of the domain (having across-front length, Lx ∼ Γ ) means that the additional159

computation is not conducive to parallelisation. Each simulation was initialised as an160

unstratified balanced front (2.5) with Ri0 = 0. White noise was added to the velocity161

with a (dimensionless) amplitude of 10−4. We do not vary the Reynolds number across162

experiments, which is Re = 105. Many of the other parameters and details of the runs163

are summarised in table 1.164

The non-linear simulations help to paint a picture of these frontal dynamics — from165

SI and KHI-generated turbulence, through adjustment and inertial oscillations, as well166

as late-time SI and further shear instabilities taking the front to equilibrium. While the167

specific details vary depending on Γ , three distinct phases are seen in each simulation:168

(i) Linear SI energises a broad wavenumber spectrum (apparent before the critical169

time of turbulent transition, τc, in figure 2) due to the weak scale and vertical mode (n)170

dependence of SI growing from the initial white noise perturbations. This means that171

a range of SI scales are represented and combine to contribute to the SI transport and172

dynamics. Nonetheless, the predictions from linear theory (based on the fastest growing173

mode) still appear to be remarkably consistent. For example, symbols in fig. 3b from174

Part 1 show the growth rate and TKE budget terms extracted from the simulations in175

the linear SI phase.176

(ii) As the SI modes reach a critical amplitude, Uc, secondary shear instability converts177

much of this coherent energy into small-scale turbulence (left column of figure 1). The SI178

and turbulence removes energy from the background geostrophic shear flow and induces179

vertically sheared inertial oscillations.180

(iii) In the late stages of each simulation, larger-scale SI modes grow and periodically181

exhibit KHI at times when the vertically-sheared inertial oscillation de-stratifies the182
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Figure 2. Time-series of the across-front wavenumber, kx (right), extracted from the 2D Γ = 1
simulation are compared alongside the linear growth rates (left) for each of the vertical modes
n = {1, 2, 4, 8, 16, 32}. Wavenumbers of peak linear growth are indicated with horizontal white
bars and emphasise the weak wavenumber and vertical mode selection during the linear phase.
Remnants of late-time SI with larger wavelengths are modulated by the inertial oscillations and
is apparent once the front has re-stratified and after tf ≈ 50. Subinertial oscillations around
kx = 8 are also visible.

front (e.g. right column of figure 1). These late-time SI modes inject positive PV from183

the boundaries into the domain interior which permits the ageostrophic circulation to184

re-stratify the front, eventually to Ri = 1. Once the mean fq & 0, SI is neutralised but185

the inertial oscillations may still remain.186

4. Loss of geostrophic balance187

The effect of turbulent stresses on the mean circulation is described by the horizontally-188

averaged ageostrophic momentum equations,189

∂tūa + ∂zu′w′ = Γ−1v̄a (4.1a)190

∂tv̄a + ∂zv′w′ = −Γ−1ūa, (4.1b)191192

where the primed variables represent local fluctuations from the horizontally-averaged193

fields denoted by an overbar: ξ′ ≡ ξ − ξ̄. We showed in Part 1 that SI influences the194

larger-scale, laterally-averaged evolution of the front through these turbulent Reynolds195

stresses on the left side.196

4.1. Exchange of dominant balance197

For Γ & 1 and Ri . 0.5 the linear theory indicates that the mean ageostrophic y-198

momentum is generated before ageostrophic x-momentum. As a result, the dominant199

balance of (4.1) is initially200

∂tv̄a ≈ −∂zv′w′. (4.2)201

We can test this by computing the turbulent momentum budget described by equation202

(4.1) on a particular horizontal plane, z = 3/4, away from boundary effects and off of203

the mid-plane (where ūa ≈ 0). This initial dominant balance (4.2) is responsible for204
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Figure 3. The horizontally-averaged x- and y-momentum budget (4.1) at z = 3/4 for Γ = 10.
The red shaded region highlights the period when the dominant balance is described by
SI-induced Reynolds stresses (red line) accelerating the mean along-front y-momentum (blue
line). The linear SI mode transport at saturation is also shown. Following this ageostrophic
perturbation, the front begins inertially oscillating. Grey shaded regions indicate periods when
the Reynolds stress divergence damps the inertial oscillations (i.e. when ūa > 0 coincident with
−∂zu′w′ < 0).

destabilising the front and demonstrates how inertial oscillations are driven during the205

Γ = 10 simulation (figure 3). More specifically, the Reynolds stress divergence accelerates206

the mean ageostrophic y-momentum through the first half inertial period (highlighted207

by the red shaded region in the bottom panel). At the same time, the mean across-front208

x-momentum (in the top panel) is primarily influenced by SI only through the Coriolis209

term (yellow line) coupling to v̄a, even during the first inertial period.210

On the (inertial) time-scale, Γ (i.e. when v̄a is large enough), the dominant balance211

returns to212

∂tūa ≈ −Γ−1ẑ× ūa. (4.3)213

However, the ageostrophic perturbations generated by SI mean that ūa 6= 0. Thus this214

balance now describes the undamped inertial oscillations which we will focus on in §5.215

These two phases of adjustment are most distinct when SI acts to quickly (on a time-scale216

much faster than Γ ) influence the balanced thermal wind. This will be quantified in §4.3217

below.218

4.2. Adjustment energetics219

Both potential energy and geostrophic kinetic energy associated with the balanced220

front can be extracted by SI. The vertically-sheared inertial oscillations that develop in221

response to SI add another component to the system: mean ageostrophic kinetic energy.222

Here, we investigate the energetics as SI saturates and the front adjusts to the loss of223

thermal wind balance.224

In our dimensionless units, the mean kinetic energy (MKE) of the geostrophic flow225

is EK,g = 1/24. Although the equilibrated front (also in thermal wind balance) has the226

same mean kinetic energy, imperfect mixing of the thermal wind shear by fraction (1−s),227

taking it to an intermediate state, v̄s = s v̄g, can temporarily release an amount of kinetic228



8 A. F. Wienkers, L. N. Thomas, and J. R. Taylor

Figure 4. A summary of the energy transfers (top) and reservoirs (bottom) co-evolving for the
Γ = 10 front. In this front, SI and turbulence is primarily energised by Pg which transfers energy
from MKE into TKE. At the same time, the ageostrophic shear production (Pa) is negative in
the first half inertial period (highlighted by the blue region) suggesting that inertial oscillations
are being energised. Because we show just the ageostrophic MKE here, these inertial oscillations
which continually exchange MKE and MPE can only be inferred from the MPE. This energy in
the mean ageostrophic motions is also converted back into TKE when Pa > 0. This primarily
occurs as the vertically-sheared inertial oscillation steepens isopycnals (i.e. when d/dt(EP ) > 0,
highlighted in grey).

energy equal to230

∆EK =
1

2

∫ 1

0

(
v̄2g − v̄2s

)
dz

=
1

24

(
1− s2

)
.

(4.4)231

232

Meanwhile, the uniform background buoyancy gradient, ∂xb̄, represents a reservoir233

of potential energy. It is useful to define the mean potential energy (MPE) as234

EP ≡ −
〈
z
(
b̄− b̄f

)〉
, where 〈·〉 indicates a volume average over the entire domain.235

This MPE is defined relative to the final state, b̄f , with q = 0 (equivalently Ri = 1)236

which is the lowest potential energy before SI shuts down. If we assume a linear mean237

buoyancy profile, b̄ ∝ z, such that ∂z b̄ = 1 when Ri = 1, then the MPE can be238

approximated as239

EP ≈
∫ 1

0

−z2
(
∂z b̄− 1

)
dz =

1

3
(1−Ri) . (4.5)240

241

Thus our choice of Ri0 = 0 gives the maximum potential energy available to SI through242

equilibration: ∆EP = 1/3 (in geostrophic units). The distance, Ld, that the front will243

ultimately slump to reach this state of 0 ‘SI-available’ potential energy is Ld = Γ .244

Now that we have quantified the size of these energy reservoirs, we gain further insight245

into the evolution and equilibration of the front by considering the transfers between246

them. We summarise the energetics of the Γ = 10 simulation in figure 4, which shows247

qualitatively similar features to the other fronts even though the relative importance248

of each term varies. At the start of the simulation, geostrophic shear production, Pg,249
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energises SI by extracting energy from the MKE of the thermal wind and converting it250

into turbulent kinetic energy (TKE), EK ≡ 1
2 〈u

′
iu
′
i〉, which evolves as251

∂EK
∂t

= −
〈
v′w′

∂v̄g
∂z

〉
︸ ︷︷ ︸

Pg

+−
〈
u′w′

∂ū

∂z
− v′w′ ∂v̄a

∂z

〉
︸ ︷︷ ︸

Pa

+ 〈w′b′〉︸ ︷︷ ︸
B

− 1

Re

〈
∂u′i
∂xj

∂u′i
∂xj

〉
︸ ︷︷ ︸

εt

. (4.6)252

While some of this energy is immediately dissipated (εt), part of it is subsequently253

converted (via Pa < 0) to ageostrophic MKE, EK,a ≡ 1
2 〈ūi,aūi,a〉, which for this system254

evolves as255

∂EK,a
∂t

= − 1

Re

(
v̄a|z=1

z=0

)
︸ ︷︷ ︸
Surface Stress

+

〈
u′w′

∂ū

∂z
+ v′w′

∂v̄a
∂z

〉
︸ ︷︷ ︸

−Pa

− 1

Re

〈(
∂ū

∂z

)2

+

(
∂v̄a
∂z

)2
〉

︸ ︷︷ ︸
εm,a

. (4.7)256

The negative ageostrophic shear production, Pa, (particularly during the highlighted257

blue region in figure 4) implies an energy transfer into ageostrophic MKE and reflects258

the excitation of inertial oscillations.259

While it is not shown in the energy transfers on the top panel of figure 4, the inertial260

oscillations involve continual exchange of ageostrophic MKE and MPE. This exchange261

occurs via the mean advection of the horizontal buoyancy gradient, which modifies the262

vertical stratification, and in the process converts energy from the MPE at a rate of263

∂xb̄ 〈ū z〉 . (4.8)264

Energy in the mean inertial oscillation ultimately can be converted back into TKE via265

the ageostrophic shear production when Pa > 0. This occurs here at times when the266

inertial oscillations steepen isopycnals as in Thomas et al. (2016) (and d/dt(EP ) > 0 as267

highlighted by the grey regions in figure 4). During these times the ageostrophic MKE268

decreases as seen in the integrated energy in the bottom panel. The last source of TKE269

in (4.6) is from buoyancy production, B. However, particularly for this Γ = 10 front (and270

stronger fronts) this source of energy does not have a significant influence on the front.271

4.3. Rate of adjustment272

We will now analyse the time-scales involved in the onset of inertial oscillations and273

find two limiting behaviours depending on the front strength. We can visualise these274

differences in the speed of adjustment by considering hodographs of this measure of the275

mean bulk shear:276

〈|ū|〉 = 2

[∫ 1

1/2

ū(z) dz −
∫ 1/2

0

ū(z) dz

]
. (4.9)277

Perfect inertial oscillations in this 〈|ū|〉-〈|v̄|〉 phase space therefore trace circles. This278

metric is also less contaminated by the boundary layers as would be if simply computing279

〈∂zū〉. We show these hodographs of 〈|ū|〉 in figure 5a for each simulation with increasing280

Γ from left to right, and can see how this metric (4.9) corresponds to the full structure281

of a typical inertial period as shown in figure 5b. The axes are in units of the thermal282

wind so that the initial balanced state is 〈|ū|〉 = (0, 1). Starting at t = 0 (designated with283

a black dot) each front departs from the geostrophic balance and begins tracing inertial284

trajectories. Perhaps the most obvious difference is in the radius of these inertial circles.285

A front that is instantaneously vertically mixed by a fraction (1−s) will trace circles with286

radius (1−s). We find the amplitude of these oscillations to be in general agreement with287

the linear SI transport theory to compute (1− s) as presented in Part 1, and reproduced288
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(a)

(b)

Figure 5. (a) Hodographs of each front evolving in the rectified mean velocity phase space,
〈|ū|〉-〈|v̄|〉 (4.9), representing the bulk shear. The first 5 inertial periods are plotted, each for
increasing front strength: Γ = 1 (left), Γ = 10 (centre), and Γ = 100 (right). The trajectories
are coloured with the time-rate of change of the mean flow speed, and correspond inversely with
the thermal wind shear mixing time-scale, τmix, predicted for linear SI in Part 1 (reproduced
in table 1). The predicted oscillation amplitude, (1 − s), is also indicated with dotted circles.
(b) The mean ageostrophic velocity as a function of z over one inertial period. Colour shading
indicates the phase beginning at tf = 6π.

in table 1. Note that our weakly-nonlinear theory doesn’t capture additional turbulent289

momentum transport after the SI modes undergo a secondary instability, and this might290

account for the consistent underestimate in the amplitude of the inertial oscillations seen291

in figure 5a.292

In addition to the amplitude of these inertial circles varying with front strength293

the rates of mixing and adjustment also vary. The degree to which this appears as a294

purely geostrophic adjustment process is indicated by the angle of departure from the295

balanced states in figure 5a. When the vertical fluxes rapidly (relative to an inertial296

period) mix down the thermal wind shear before inertial effects can influence the mean297

dynamics, the response can be viewed as a form of geostrophic adjustment. This occurs298

when Γ = 100 (figure 5a, right panel). In contrast, weak fronts remain quasi-balanced299

throughout adjustment (as for Γ = 1 in the left panel) because inertial adjustments300

occur faster than SI growth and mixing. The resulting evolution of the front as it slowly301

slumps is evident in the left hodograph as 〈|v̄|〉 remains nearly geostrophically-balanced302
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(a) (b)

Figure 6. The vertical structure of the across-front velocity component of the inertial oscillation
for (a) Γ = 1 and (b) Γ = 10. The mean velocity is spectrally filtered over 8 periods starting
at tf = 4π. Realisations of the filtered signal are shown for z > 1/2 and at evenly spaced phase
increments of π/4 starting at ϕ = 0 corresponding to the point of maximum de-stratification.
The analytic oscillatory shear Ekman solution for ūe (5.3) is plotted in the bottom half of the
domain with Le = 0.1. Note the phase lead near the boundaries in both the simulation and the
analytic solution. The solutions are compared by a double reflection about z = 1/2 and ū = 0.
The vertical structure of an unfiltered inertial circle is also shown in figure 5b.

on the line 〈|v̄|〉 = 1 while 〈ū〉 is driven by the Reynolds stresses from SI and turbulence.303

The rate of mixing is also indicated by the line colour in the hodographs, given in units304

of thermal wind per inertial period. The line colour and the initial trajectories broadly305

agree with the thermal wind shear mixing time-scale, τmix (cf. fig. 8b in Part 1). For306

Γ > 8 the time required to fully mix down the thermal wind shear is less than the307

inertial time-scale (Γ ), indicating a more abrupt geostrophic adjustment.308

5. Vertically-sheared inertial oscillations309

Each of the above discussed factors affecting the initial adjustment — the momentum310

transport, energetics, and rate of mixing — also affect the details of the resulting inertial311

oscillations.312

5.1. Vertical structure313

Tandon & Garrett (1994) modelled the geostrophic adjustment of an unstratified and314

vertically-unbounded layer following an impulsive mixing event which reduces the vertical315

shear by a fraction (1 − s) such that ∂z v̄|t=0 = s ∂z v̄g. Solving the inviscid hydrostatic316

equations, they found the geostrophic adjustment to result in vertically-sheared inertial317

oscillations with a linear depth dependence:318

ūi(z, t) = −(1− s) (z − 1/2) sin tf (5.1a)319

v̄i(z, t) = s (z − 1/2) + (1− s) (z − 1/2) (1− cos tf ) . (5.1b)320321

Viscosity and the presence of the boundaries mean that the inertial oscillations in the322

model we consider no longer have this linear structure in z, except sufficiently far from323

the boundaries.324

We model the influence of the boundaries and turbulent viscous effects on the inertial325
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oscillations by solving the horizontally-averaged ageostrophic momentum equations,326

∂ūa
∂t

= − 1

Γ
ẑ× ūa +

1

Ret

∂2ūa
∂z2

, (5.2)327

with an enhanced turbulent viscosity, νt, described by Ret. This turbulent Reynolds328

number accounts for the Reynolds stresses transporting momentum which appeared on329

the left side of (4.1). We solve these equations with a stress-free boundary at z = 0, and330

a prescribed vertically-sheared inertial oscillation (5.1) in the far-field. This oscillatory331

shear Ekman solution resembles a modified version of the classic Stokes 2nd Problem,332

and has a non-linear vertical structure:334

ūe(z, t) = −(1− s) (z − 1/2) sin tf

+ (1− s)Le
2

e−z/Le

[
cos

(
tf −

z

Le

)
− sin

(
tf −

z

Le

)]
+
Le
2

e−z/Le

[
cos

z

Le
+ sin

z

Le

]
.

(5.3)335

336

The last term is the familiar constant Ekman layer solution. The turbulent Ekman depth337

describing this layer,338

Le ≡
√

2Γ

Ret
=

1

H

√
2νt
f
, (5.4)339

is also the characteristic depth of the oscillatory modes.340

We compare the time-dependent component of this oscillatory shear Ekman solution341

to the spectrally filtered inertial oscillations present in the Γ = 1 & 10 simulations. The342

z > 1/2 lines in figure 6 show realisations of this filtered signal at phase increments343

of π/4. The analytic solution shown in the bottom half of the domain uses Le = 0.1344

which corresponds to a turbulent viscosity 50 times larger than molecular. These analytic345

solutions exhibit a phase shift near the boundary which is consistent with the phase lead346

found in the filtered inertial oscillations of the Γ = 10 front (and Γ = 100, not shown).347

The Γ = 1 simulation in the left panel deviates from this predicted structure because the348

small-amplitude inertial oscillations mean that the far-field shear is quite non-linear due349

to fluctuations of comparable amplitude. The relative magnitude of these fluctuations350

compared to the vertically-sheared inertial oscillation is evident in figure 5b which shows351

the vertical structure of the unfiltered velocity in an inertial period.352

This analytic solution is instructive but clearly too simplified to capture the behaviour353

across the range of Γ . Notably, the vertical shear is larger near the boundaries in the354

simulations than in the analytical solution in equation (5.3). This may be caused by355

spatio-temporal variations in the turbulence-enhanced viscosity (peaking during periods356

of de-stratification and decreasing near the boundaries). Together, these factors would357

modulate the constant Ekman flow, and combined with impinging SI modes on the358

boundary may explain these large boundary gradients. We will return to these near-359

boundary dynamics when discussing the acceleration of bore-like gravity currents from360

frontlets in §6.3.361

5.2. Re-stratification & equilibration362

These vertically-sheared inertial oscillations modulate the background stratification363

by differentially advecting the mean buoyancy profile across the front. Assuming the PV364

remains constant, Tandon & Garrett (1994) showed that the stratification resulting from365

this oscillation evolves as366

∂z b̄i = (1− s) (1− cos tf ) . (5.5)367
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(a) (b)

Figure 7. (a) The evolution of the domain-integrated PV and vertical stratification, showing
the connection of the PV flux into the domain in relaxing the mean stratification to a state where〈
∂z b̄

〉
= 1 (i.e. Ri = 1). Colours correspond to each simulation as indicated in the legend at

right. (b) Gradient Richardson number for each of the three runs (in colour) shows increasingly
fast re-stratification for stronger fronts. The Tandon & Garrett (1994) constant PV solution
(5.6) is also shown in black for Γ = 10.

The gradient Richardson number then also oscillates:368

Rig,i ≡
∂z b̄

(∂zū)
2

+ (∂z v̄)
2 =

(1− s) (1− cos tf )

s2 + 2(1− s) (1− cos tf )
, (5.6)369

but with a constant PV dictated solely by the initial condition, the front can only re-370

stratify to Ri = 1−s. For s > 0, this resulting state is still unstable to SI. This results in371

poor agreement with the non-linear simulations which capture both SI and PV dynamics372

(figure 7b for Γ = 10). Thus while this theory appears to connect the initial mixing373

fraction with the amplitude of the resulting inertial oscillations, the simple model clearly374

does not capture the long-term evolution and re-stratification. To go further, we need to375

consider how the PV co-evolves with the front during equilibration.376

Conservation of PV regulates the secular re-stratification (that is, slumping) of the377

front. The flux of positive PV is enhanced by SI-generated turbulence (Taylor & Ferrari378

2009), but at the same time as forcing 〈q〉 → 0 these fluxes also contribute to stabilising379

SI (Thorpe & Rotunno 1989). In our computational domain with an imposed background380

horizontal density gradient, equilibration of SI occurs via boundary PV fluxes and381

redistribution of the resulting positive PV through the interior of the domain. Thus382

SI will ultimately drive each front to Ri = 1, or equivalently 〈q〉 = 0 (see figure 7a).383

However, the details of how the front reaches this equilibrium may differ.384

Potential vorticity is materially conserved in a frictionless, adiabatic flow, such385

as the idealised vertically sheared inertial oscillations (5.1). Considering the non-386

dimensionalised PV averaged in our closed domain,387

〈q〉 = Γ−1
( 〈
∂z b̄
〉
− 1− 〈∂z v̄a〉

)
, (5.7)388

makes clear how the vertical stratification (∂z b̄) is compensated for during inertial389

oscillations by the baroclinic PV term due to the ageostrophic across-front vorticity.390

This suggests two useful diagnostics: First, the difference between the compensating391

terms, Γ 〈q〉 + 1, is a good measure for the equilibration progress by dissipative and392

diabatic processes. This can be directly compared to the vertical stratification,
〈
∂z b̄
〉

393

(non-dimensionally equivalent to the balanced Richardson number), as a metric for the394

inertial oscillations. These two quantities are shown in figure 7a for each of the three395
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simulations. When the front is balanced, Γ 〈q〉+ 1 and
〈
∂z b̄
〉

lie on top of each other, as396

they do initially. Likewise, at very late times when the inertial oscillations have decayed,397

these two curves again coincide. The quasi-balanced evolution for the weakest (Γ = 1)398

front as pointed out in §4.3 is also apparent looking at these metrics, because throughout399

the equilibration Γ 〈q〉+ 1 and
〈
∂z b̄
〉

never greatly differ.400

The mechanisms driving PV increase can be diagnosed using the domain-averaged PV401

equation,402

∂〈q〉
∂t

= − 1

Re

〈
∂

∂z

[
−∇2b (ωz + Γ−1) +

(
∇b×∇2u

)
· ẑ
]〉

, (5.8)403

where we have relied on horizontal periodicity to eliminate the horizontal PV flux404

divergence. Thus the domain-integrated PV can only be changed by diabatic processes405

at the boundaries, and which are enhanced by turbulence. It is apparent from figure 7406

that the periods of rapid increase in PV are typically associated with weak stratification407

(and intense turbulence). At early times, the net boundary PV fluxes (measured by408

the rate of increase in PV) scales with the front strength. However, the relatively409

quiescent phases associated with the inertial oscillations for the strong fronts mean that410

the period-averaged PV flux is nearly independent of front strength. This implies that411

the dimensional PV flux increases with the lateral stratification and is proportional to412

M8/(f4H). Note the particularly strong dependence on the horizontal buoyancy gradient.413

The relative independence of the non-dimensional PV flux on frontal strength might be414

associated with a self-regulating feedback between SI-driven small-scale turbulence which415

increases the PV flux and hence acts to stabilise SI. Empirically, we find that this increase416

in the non-dimensional PV seen in figure 7a has a characteristic time-scale of τq ≈ 5.5Γ .417

While the front may become stabilised to SI (q ≈ 0) after a few inertial periods, still418

inertial oscillations may persist (apparent in the
〈
∂z b̄
〉

signal in figure 7a). Returning419

to the mean ageostrophic momentum budget gives insight into how these inertial oscil-420

lations are damped. Specifically, the Reynolds stress divergence term, −∂zu′w′, in the421

ageostrophic x-momentum equation (4.1a) preferentially damps the inertial oscillation422

when the vertical stratification is decreasing. These periods of ∂zūa > 0 are highlighted in423

the upper panel of figure 3, and during which−∂zu′w′ is also generally negative. Together,424

this implies a decrease in |ua| during these times. The product of these two terms is425

equivalent to the across-front component of Pa in (4.7). This quantity explicitly shows426

that the mean inertial energy is converted back into TKE (and eventually dissipated)427

when Pa > 0 (in figure 4). We now turn focus toward the mechanisms controlling the428

energy pathways associated with the inertial oscillations.429

6. Late-time dynamics430

The inertial oscillations following adjustment of the front manifest as oscillations of431

the shear and stratification. These in turn influence turbulence, large-scale SI modes,432

and other late-time dynamics such as frontlets and bore-like gravity currents that can433

be excited following the initial adjustment period. We address each of these behaviours434

in turn.435

6.1. Modulation of turbulence by inertial shear436

Both the oscillatory shear and vertical stratification associated with the inertial oscil-437

lations modulate the generation and damping of turbulence. Because the amplitude of438

the inertial oscillations depends on the front strength, so too does their influence on the439

TKE budget.440
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Figure 8. Comparison of the evolution of the TKE budget terms for various front strengths.
From top left, the domain-averaged TKE, the cumulative production components (P), the
cumulative sink of energy by turbulent dissipation (εt), and the cumulative contribution of
buoyancy production (B). Dimensionless units of the geostrophic KE are used to collapse
dependence on the geostrophic shear production.

Figure 8 shows the evolution of the TKE and the time-integrated source and sink441

terms in the TKE budget for the three simulations with Γ = 1 (blue), Γ = 10 (red),442

and Γ = 100 (gold). Recall from fig. 3b in Part 1 that SI is primarily energised by443

the geostrophic shear production for Ri = 0 and Γ & 2. This informed our non-444

dimensionalisation, where the geostrophic kinetic energy scales with H2M4/f2. While445

the time-integrated geostrophic shear production and dissipation rate generally appear to446

follow this scaling, the integrated ageostrophic shear production and buoyancy production447

do not. In the simulation with Γ = 1, the buoyancy production is a positive contributor to448

the TKE, while it is small and negative in the other cases with Γ > 1. The time-integrated449

ageostrophic shear production is much smaller in the simulation with Γ = 1 compared450

to Γ = 100. At early times, when Ri ≈ 0, the relative sizes of the buoyancy production451

and geostrophic shear production are consistent with the linear stability analysis (not452

shown). Specifically, the linear stability analysis and the nonlinear simulations have453

B/(B + Pg) ≈ 0.5 for Γ = 1, while this ratio is close to zero for the stronger fronts.454

Transient and ‘bursty’ turbulence occurs when Γ = 10 and Γ = 100. The turbulence455

peaks during phases of de-stratification and is followed by a more quiescent phase456

as the front re-stratifies. These quiescent periods in the interim appear to limit the457

total dissipation and result in more persistent and coherent inertial oscillations. We can458

understand this intermittency by considering the scaling of the turbulence production and459

the damping time-scales relative to an inertial period. Note from figure 8 that the periodic460

increase in TKE is associated with an increase in time-integrated geostrophic shear461

production. The time-scale associated with the geostrophic shear production evaluated462

at the time of minimum stratification in an inertial oscillation can be defined as463

τp ∼
EK,g
Pg

∼ 1

∂z v̄
. (6.1)464

At the time of minimum stratification, the shear is weaker by a factor s (as in §5.1) such465
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that ∂z v̄ = s ∂z v̄g. Hence the shear production time-scale can be written as466

τp ∼ s−1. (6.2)467

Note that in units of f−1, this time-scale is (s Γ )−1. This gives an estimate of the time468

for the turbulence to be excited within each burst. The periods of TKE growth and de-469

stratification are contrasted with the enhanced stratification in the opposite phase of the470

inertial oscillation which acts to dampen vertical fluctuations (w′). If the stratification471

is strong enough it can shut down the geostrophic shear production by decreasing v′w′.472

How quickly this occurs depends on the maximum stratification. We can estimate an473

upper limit for the peak stratification of the inertial oscillations by assuming PV has474

become 0, but that the amplitude of the inertial oscillations has not been damped. This475

maximum stratification then increases with front strength as476

∂b̄

∂zmax
= 2− s, (6.3)477

because the thermal wind mixing ratio, (1− s), predicted in Part 1 increases with front478

strength (see table 1 for specific values). The consequence of these two scalings are479

broadly consistent with the three simulations shown in figure 8. For Γ = 100, the change480

in stratification is very large and in addition τp � Γ , which implies that the front will481

quickly (relative to an inertial period) become turbulent as it de-stratifies. In the opposite482

phase, very strong stable stratification will suppress turbulence, leaving the rest of the483

period nearly laminar until the next turbulent burst. In contrast, for the weakest (Γ = 1)484

front, τp & Γ and the change in stratification is relatively weak such that the turbulence485

remains more uniform throughout the inertial cycle. The intermittency of turbulence in486

the strong fronts reduces the net energy (relative to EK,g) that can be converted from487

the mean profile into TKE and ultimately dissipated as shown in figure 8. Therefore the488

inertial oscillations in these strong fronts are more persistent, and the relatively quiescent489

periods of the oscillation also permit more coherent and larger amplitude late-time SI490

modes to grow as will be considered in the following section.491

6.2. Late-time SI492

Following the breakdown of the primary SI modes to turbulence, Griffiths (2003) (in493

the atmosphere) and Taylor & Ferrari (2009) (in the ocean mixed layer) both found that494

if the new state remained unstable, an SI mode with a longer wavelength emerged which495

is consistent with using an effective turbulent viscosity much larger than the molecular496

viscosity. We observe similar large-scale SI modes at late times and which are nearly497

parallel to the slumped isopycnals. These late-time SI modes lead to intermittent small-498

scale turbulence if their growth rate is sufficiently fast compared to the inertial period499

(Thomas et al. 2016). Their break down via KHI — either partially (for Γ = 10) or500

catastrophically (for Γ = 100) — during periods of minimum stratification results in501

the periodic bursts of turbulence described above in §6.1 and shown in the right column502

of figure 1. We also find that these SI cells can efficiently inject positive PV from the503

boundaries into the domain interior and encourage the front to continue slumping beyond504

the initial adjustment.505

The scale of the late-time SI modes is constrained by the vertical domain size to have506

a minimum vertical wavenumber of kz ≈ 2π. Thus for Ri ≈ 1 (valid after the first few507

inertial periods, cf. figure 7a), these modes have a maximum horizontal wavelength of508

λSI,max ≈ N2/M2 = RiM2/f2 ≈ Γ. (6.4)509

This can also be thought of in terms of the maximum horizontal displacement of fluid510
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Figure 9. Wavenumber–frequency diagram for Γ = 10 highlighting the concentration of
subinertial energy at later times. The spectral energy has been domain- and time-averaged
over the first 12 inertial periods. The bounded linear dispersion relation at Ri = 1 is overlaid in
black for n = 1 (solid) and n = 2 (dashed) modes, computed by numerically solving the coupled
eigenvalue problem from Part 1. The bounded Ri = 0.98 dispersion curve is also plotted in white
to suggest the sustainment of the stationary SI signal at kx = 4kSI,min where kSI,min = 2π/Γ .
Two peaks in energy identify the SI modes (at ωf = 0) and the inertial oscillations (at kx = 0).
A range of energetic subinertial motions also appear at intermediate scales. For contrast, two
unbounded wave solutions for constant kz are plotted in grey.

parcels within any SI mode which is on the order of the deformation radius, Ld = Γ , and511

gives an equivalent scaling to (6.4).512

The enhanced turbulent viscosity also contributes to late-time SI scale selection. The513

Γ = 1 front evolves with a consistently large TKE (see figure 8) implying a larger514

effective turbulent viscosity. This encourages the late-time SI modes to select the largest515

scale able to vertically fit in the layer (λSI ≈ λSI,max) as in figure 2. In contrast, we find516

that the Γ = 10 front selects a smaller-scale late-time SI mode (λSI < λSI,max) suggesting517

that confinement effects had a stronger influence on the scale selection compared to the518

relatively weak turbulent viscous effect. Based on the wavenumber–frequency diagram in519

figure 9 (averaged over the first 12 inertial periods) this dominant stationary (SI) mode520

(ωf = 0) has λSI = λSI,max/4 = 2.5, or kx = 2π/2.5 ' 2.51.521

We gain further insight into the interactions of these stationary modes and oscillations522

which affect the late-time dynamics by considering where energy is concentrated in523

wavenumber–frequency space (figure 9). As the front equilibrates and Ri→ 1, the growth524

rate of SI decreases and the dispersion relation (eq. (2.7) in Part 1) shows that inertia-525

gravity oscillations are supported with an increasing range of subinertial frequencies (the526

numerical solution to this dispersion relation is also detailed in Part 1). The two now-527

familiar limits of this dispersion curve plotted in figure 9 are the horizontally-invariant528

inertial oscillation (ωf = 1) and the dominant late-time SI mode (ωf = 0). In the529

process of regulating the amplitude of these late-time SI modes, KHI and wave-wave530

interactions generate a broad energy spectrum which fills out the subinertial branch531

of the dispersion curve. In particular, parametric subharmonic instability (PSI) — the532

special case of triadic resonance which creates child waves both with frequency half that533

of the progenitor — transfers energy (in this case) from the ωf = 1 inertial oscillation into534

ωf = 1/2 (Thomas & Taylor 2014). The spatial structure of this child wave at ωf = 1/2535
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(a)

(b)

Figure 10. Frequency band-pass filtered across-front velocity, ũ, at tf = 20.4. Each panel
corresponds to the spectral peaks in figure 9, (a) at ωf = 1 capturing the vertically-sheared
inertial oscillation and the inertial waves, and (b) at ωf = 1/2 showing the subinertial oscillation.
Mean isopycnals (using the laterally-averaged buoyancy, b̄) are plotted with black lines. Grey
lines in the top panel additionally indicate a slope 2 times the isopycnal slope. We have used a
filter with band width δωf = 0.1.

is shown in figure 10b, highlighting the shallower mode slope relative to isopycnals (in536

black).537

Another triadic exchange of energy from the inertial oscillation and the stationary SI538

mode can sustain inertial waves with ωf = 1 and kx = kSI. Compared to the bounded539

dispersion relation (solid black curve in figure 9) which contains only a single inertial540

wave solution, the unbounded dispersion relation (grey curves, for constant kz) supports541

many waves at ωf = 1 with various kx (Stone 1966). The particular inertial wave excited542

by this triadic interaction between the inertial oscillation and SI has a slope 2 times543

the isopycnal slope (compare with the grey lines in figure 10a). Grisouard & Thomas544

(2015) found that these ωf = 1 waves critically reflect at horizontal boundaries and can545

encourage the formation of bores, as we will explore next.546

6.3. Frontlets & bore-like gravity currents547

The mean horizontal buoyancy gradient is initially uniform, but it does not need548

to remain that way. Indeed, the late-time SI modes modify the lateral structure of549

the background buoyancy field (for example, see the isopycnal contours in figure 11b).550

Frontlets, or persistent regions of locally-enhanced lateral buoyancy gradients, appear as551

a cross-front stair-step profile in buoyancy. Frontlets form as convergent and divergent552

regions between neighbouring SI cells squeeze and stretch the lateral buoyancy gradients.553

These features therefore have an imprint of the late-time SI modes and are laterally554

separated by λSI. High shear associated with the late-time SI modes occurs between555

frontlets and may be susceptible to KHI which further encourages homogenisation of556

the frontolytic sections. In contrast, the most prominent frontogenetic regions occur557

at the boundaries, as first described by Ou (1984) for an isolated front undergoing558

geostrophic adjustment. We also found that the impingement of late-time SI modes559

onto the boundaries further intensifies near-boundary frontogenesis. As noted in §6.2,560

SI exhibits periodic explosive growth when modulated by the inertial oscillations. This561

enhanced growth appears to help maintain the strength of these frontlets.562

Frontlets appear shortly after the initial adjustment in each of the three simulations563
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(a)

(b)

Figure 11. (a) Hovmöller diagram of the total buoyancy at the bottom boundary evolving with
time, shown for the Γ = 1 (left) and Γ = 10 (right) simulations. The interaction of the edges of
the sharp frontlets with the horizontal boundary can result in a bore-like gravity current which
is both advected by the inertial oscillation and propagates with speed c far ahead of the mean
flow. Lines with slope 〈|ū|〉 are plotted in black, and correspond to the bulk mean across-front
velocity of the inertial oscillation as shown in figure 5a. In the Γ = 10 simulation (right panel),
propagating bores are observed at tf = 18 as well as at tf = 25 and travel with a phase speed of
c ≈ 0.15 (plotted with a red dashed line). (b) A slice across each front showing the across-front
velocity, u, near the point of maximum de-stratification and as a bore begins to form: tf = 20.5
(Γ = 1, left) and at tf = 18 (Γ = 10, right). Bores are clearly evident in the Γ = 10 simulation,
for example near x = 0.4 at the top and bottom boundaries. Isopycnal contour lines highlight
both the accentuated convergence/divergence along the boundaries in addition to the vertical
isopycnals designating the head of the bore. The approximated bore height from the boundaries,
h ≈ 5/3c2, is also shown with grey dashed lines.

presented. We visualise the evolution of these frontlets in figure 11a, which shows a564

Hovmöller diagram of the buoyancy at the boundary, where the signature is strongest.565

Three sharp buoyancy jumps are visible in each plot, and are separated by nearly uniform566

buoyancy regions. Weak, narrow frontlets occur in the Γ = 1 simulation, whereas wider567

and sharper frontlets persist for the two stronger fronts (not shown for Γ = 100), which568

is consistent with the scaling argument (6.4) for λSI. We find that these frontlets in the569

Γ = 10 simulation advect with the mean bulk inertial oscillation, 〈|ū|〉, plotted with black570

lines. This is in contrast to the Γ = 1 front which has less coherent and small amplitude571

inertial oscillations of comparable magnitude to the turbulent fluctuations. In this weak572

front, the motion of the density steps at the boundary appears to be influenced more by573

these fluctuations than by the mean inertial oscillation. In each case, the frontlets are574

observed to persist until SI is ultimately stabilised when f〈q〉 > 0.575
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The sharp horizontal buoyancy gradients defining these frontlets are often in near576

thermal wind balance. However, this balance can be intermittently broken, for example577

by a localised mixing event. The resulting unbalanced buoyancy gradient is associated578

with an unbalanced pressure gradient which drives a gravity current along the horizontal579

boundary. Such a gravity current appears 3 inertial periods after the initial adjustment580

of the Γ = 10 front (indicated by the grey dashed line in figure 11a) and subsequently581

propagates off to the right. Thus compared to frontlets which are persistent, quasi-582

balanced, and vertically span the domain, these bore-like gravity currents are localised583

near the boundaries and only intermittently form when the sharp lateral buoyancy584

gradients become unbalanced.585

One possible explanation for the formation of these bore-like gravity currents from586

frontlets is by rapid localised mixing. Indeed such periodic turbulent bursts as described in587

§6.1 may be responsible for this intermittent mixing. These bursts peak during phases of588

weak stratification, which coincide with the first appearance of bore-like gravity currents.589

Gravity currents may also be encouraged by the further steepening of isopycnals near590

to the boundaries — a consequence of the oscillatory shear Ekman solution (5.3). The591

salient feature of this solution is the phase lead in velocity near the boundaries (apparent592

in figure 6). This enhances the differential advection near the boundaries which further593

steepens isopycnals beyond that of the bulk vertically-sheared inertial oscillation. These594

weakly-stratified near-boundary regions can subsequently generate localised mixing via595

KHI or gravitational instability, and thereby locally destroy the balanced thermal wind.596

Such a mechanism for isopycnal steepening may contribute to the particular bore-like597

shape evident at the origination of the gravity current near x = 0.4 & z = 1 shown in598

the across-front slice on the right side of figure 11b. This snapshot corresponds to a time599

when the front is still de-stratifying, and yet the near-boundary profile may already be600

fully unstratified due to the phase lead. A very prominent bolus was also observed in the601

Γ = 100 simulation (bottom right panel of figure 1) and has a similar shape and vortex602

core structure to those studied by Venayagamoorthy & Fringer (2012).603

Grisouard & Thomas (2015) also found that critical reflections at the boundaries can604

result in wave amplification and generate bores. The inertial waves identified in figure 9605

(and shown in figure 10a) could critically reflect at the boundaries. If so, this convergence606

of wave energy could contribute to rapidly sharpening the frontlets and prompt a bore-607

like gravity current to break out and propagate.608

Pham & Sarkar (2018) found bores in all of the finite-width fronts they studied, each of609

which had Γ = 492 and Rossby number Ro ≡ M2H/(f2L) = 9.8 but with varying Ri0.610

Our results appear to extend this mechanism for broad frontal regions by first generating611

frontlets. However, bore-like gravity currents are not a generic feature of late-time SI.612

Although the stair-step frontlet profile in density is visible even in the weakest front (left613

side of figure 11a), we only see propagating gravity currents for Γ & 10. It appears this is614

because both of the above identified influences on gravity current formation become more615

prominent in stronger fronts. Stronger fronts produce larger and more coherent late-time616

SI which increases impingement/convergence near the boundaries and results in sharper617

frontlets. At the same time, the turbulent bursts and near-boundary de-stratification scale618

with the amplitude of the inertial oscillations, which we know to increase for larger Γ .619

Finally, with increasingly energetic spectral peaks for SI and the inertial oscillation (e.g.620

in figure 9) the triadic interaction energising the critically-reflecting inertial waves should621

also become stronger.622

We can show that these features are indeed propagating along the boundaries as623

gravity currents by measuring their typical speed and height. We compare these to624

the advection speed of the average across-front component of the bulk mean inertial625
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oscillation, 〈|ū|〉, and plotted there with black lines. In the initial adjustment period, any626

buoyancy anomalies are advected with the speed of the mean oscillation. However as627

frontlets begin to form, so too can can gravity currents, which subsequently propagate628

ahead of the inertial oscillation with speed c. The effective bore height corresponding629

to this propagation speed is h = c2/∆b. This lateral jump in buoyancy, ∆b across each630

frontlet (for example as shown in figure 11a) is,631

∆b = δF ∂xb̄ = Ro−1F , (6.5)632

where δF is the spacing between frontlets. RoF ≡ Γ/δF is defined as the frontlet Rossby633

number, and should beO(1) according to equation (6.4) because λSI ≈ δF . In other words,634

horizontal motions can only homogenise buoyancy within a region between frontlets of635

extent Ld. Based on the frontlets as they first appear in each simulation (e.g. figure 11a)636

RoF ≈ 5/3, which gradually increases over time (due to decreasing turbulent viscosity637

and therefore frontlet spacing) and is consistent with the results of §6.2. Finally we fit lines638

to the buoyancy steps in the Γ = 10 front near tf = 18 & 25 (indicated by grey dashed639

lines in figure 11a), and find that these bores propagate ahead of the frontlet at a speed640

c ≈ 0.15. The corresponding expected bore height is then h = RoF c
2 ≈ 0.035, shown641

plotted on the corresponding across-front slice with grey dashed lines, and reasonably642

agrees with the height of the three bores recently formed there. In contrast, for the643

weak Γ = 1 front shown on the left side of figure 11, there is not a clear propagation644

speed associated with these density steps. Considering the sharp density step formed at645

tf = 20.5 (indicated by a grey dashed line) c ≈ 0.08 and so h ≈ 0.009. This inferred646

gravity current height does not seem to describe well the boundary features seen in the647

corresponding across-front slice at the bottom of the figure, suggesting that these are not648

gravity currents in the weakest front.649

7. Conclusions650

In this two-part series, we explored how the equilibration of fronts by symmetric651

instability (SI) depends on the strength of the horizontal stratification, parameterised652

by Γ ≡ M2/f2. We studied an idealised broad frontal zone described by the Eady653

model, which consists of a uniform horizontal buoyancy gradient in thermal wind balance654

and bounded by stress-free horizontal surfaces. In Part 1, we developed the linear and655

weakly-nonlinear theory to describe the cumulative impacts of SI on this balanced front.656

Expanding on the work of Stone (1966) and Weber (1980), we chose to include both657

viscous and non-hydrostatic physics to accurately capture the linear scale selection. We658

then extended our analysis in the present paper using 2D numerical simulations to look659

at the nonlinear consequences of SI as the front continues to adjust. In both the earlier660

theoretical work and this numerical work, we considered fronts with strengths ranging661

from Γ = 1 to 100, which encompasses a broad range of fronts found in the upper ocean —662

from the strong persistent western boundary currents, down to transient strain-generated663

frontal features in the open ocean.664

We found that SI is capable of mixing a significant fraction of the balanced thermal665

wind shear before saturating via a secondary shear instability. This SI-induced mixing666

breaks the balance of the front and can result in large-scale vertically-sheared inertial667

oscillations. The thermal wind mixing ratio, (1 − s), is related to the amplitude of the668

subsequent inertial oscillations by using the theory of Tandon & Garrett (1994). By669

computing this mixing fraction using our weakly-nonlinear analysis, we predicted that670

stronger fronts are more thoroughly mixed and will therefore exhibit larger amplitude671

inertial oscillations following destabilisation by SI. We then determined the corresponding672
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SI momentum transport time-scale, τmix, required to fully homogenise the thermal wind.673

For strong fronts (Γ > 8) the mixing time is faster than the inertial time-scale, suggesting674

a geostrophic adjustment response.675

We then considered the dominant sources energising SI growth across this range of676

Γ and Ri. SI has been generally thought to only extract significant energy from the677

kinetic energy associated with the balanced thermal wind. We showed that this is the678

case for strong fronts, but for fronts with small Γ or Ri & 0.5 the larger contribution679

energising SI growth comes from the potential energy of the background density profile.680

We characterised the two limiting behaviours of symmetric instability distinguished by681

the dominant energy source: ‘slantwise convection’ extracts energy via buoyancy fluxes682

and the modes parallel absolute momentum surfaces, while ‘slantwise inertial instability’683

is energised by geostrophic shear production and has more upright modes aligned with684

isopycnals.685

We tested the consequences of these theoretical predictions in the present paper,686

looking beyond the saturation point of SI by using a set of nonlinear numerical simula-687

tions. We found that weak fronts exhibiting slantwise convection (i.e. buoyancy-driven)688

have a very weak influence on the balanced thermal wind. By considering the dominant689

momentum balance, we found that the Γ = 1 front remains quasi-balanced throughout690

adjustment to the equilibrated state of Ri = 1. However, because there is no clear SI691

saturation point or separation of time-scales, the resulting inertial oscillations were even692

smaller than predicted.693

This quasi-balanced adjustment is contrasted with the evolution of the two stronger694

fronts considered (Γ = 10 & 100). These fronts exhibiting slantwise inertial instability695

generated rapid and thorough mixing of the thermal wind shear. The resulting inertial696

oscillations were well-predicted by the mixing fraction, (1− s), computed in Part 1, and697

were largest for the strongest front. We found that the linear vertical structure of these698

inertial oscillations is modified close to the boundaries, and corresponds more closely699

with the oscillating shear Ekman solution. These larger-amplitude inertial oscillations700

were also found to excite a number of additional dynamics as the fronts evolve towards701

the final adjusted state.702

Vertically sheared inertial oscillations periodically re-stratify the front by differentially703

advecting the horizontal buoyancy gradient and modulate the growth rate of SI and704

turbulence following the initial adjustment. This explained the bursty turbulence which705

is most pronounced for Γ = 10 & 100. Explosive SI growth during weakly stratified phases706

(Thomas et al. 2016) is followed by phases of enhanced damping of vertical fluctuations707

as the front re-stratifies. Despite these differences in the energetic inertial oscillations708

and the initial adjustment time-scales, it was interesting to find that the equilibration709

e-folding time to a q ≈ 0 state via turbulence-enhanced boundary PV fluxes is remarkably710

similar (≈ 5.5/f) across the three fronts simulated.711

Finally, we found step-like frontlets forming in each of our simulations. These frontlets712

form by frontogenesis from neighbouring late-time SI cells generating local regions of713

convergence and which are separated by laterally well-mixed regions. Weak fronts produce714

weak frontlets, but in strong fronts these sharp frontlets generate bore-like gravity715

currents which are intermittently launched and propagate along the boundaries.716

Future work will extend these results to explore the effect of finite width on the717

equilibration of fronts with varying strength. Many of these results of the mixing fraction718

and adjustment time-scale are transferable to finite-width fronts, given that they are not719

enhanced by inertial instability (on the anticyclonic side of the front) for Ro & 2.5.720

However, compared to this frontal region model with constant Γ , the equilibration721

of finite-width fronts have a time-evolving Ro as the width increases and the front722
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Figure 12. Comparison of the mean total 〈|ū|〉 and 〈|v̄|〉 for the 2D and 3D simulations. While
the amplitude of the decaying inertial oscillations varies slightly, the general behaviour is robust
in 2D.

strength consequently decreases. The equilibration of SI will also no longer be fully723

reliant on vertical PV fluxes, as lateral diffusion and fluxes of PV are likely to accelerate724

equilibration. Nonetheless, we anticipate that frontlets and bores as observed in these725

simulations will occur inside finite-width fronts if the front width is larger than the726

deformation radius.727

Details of the assumed surface forcing which precedes and generates our balanced728

unstratified front have also not been considered in this work. Rather, we have assumed729

the resultant mixing at t = 0 instantaneously mixes buoyancy but not momentum in730

order to establish the negative PV front. This is clearly not the case in a real oceanic731

boundary layer. Future work will explore the effects of a constant surface forcing acting732

to either add or remove PV from the equilibrating front. If this input is small compared733

to the cumulative impact of SI through transition, then the details of this early transient734

presented here would likely be unaffected. The late-time and steady-state solutions735

however are expected to be modified by this forcing (Thomas & Taylor 2010).736

Appendix A. Three-dimensional simulations737

We check the robustness of our results from the presented 2D results using two 3D738

simulations with Γ = 1 and 10 (summarised in table 1). We did not run a 3D simulation739

for Γ = 100 due to the prohibitive computational cost in this case. The 3D simulations740

have only half the resolution of the analogous 2D runs, and so we model the subgrid-scale741

stresses using a modified Smagorinsky model. Further, to exclude baroclinic instability742

effects in the along-front direction, we take Ly = 0.25, which is slightly larger than the743

typical turbulence correlation length, but is smaller than the unstable baroclinic waves744

(LBI = 3.97Γ ).745

The bulk shear for the 2D and 3D simulations with Γ = 1 and Γ = 10 are shown in746

figure 12. The amplitude of the inertial oscillations is similar in the 2D and 3D simula-747

tions, although the rate at which the oscillations decay and the phasing of the oscillations748

differ somewhat, particularly when Γ = 1. Importantly, like the 2D simulations, the 3D749

simulations exhibit much larger inertial oscillations when Γ = 10 compared with Γ = 1.750
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