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Abstract 

Background:  Modern designs for dose-finding studies (e.g., model-based designs such as continual reassessment 
method) have been shown to substantially improve the ability to determine a suitable dose for efficacy testing when 
compared to traditional designs such as the 3 + 3 design. However, implementing such designs requires time and 
specialist knowledge.

Methods:  We present a practical approach to developing a model-based design to help support uptake of these 
methods; in particular, we lay out how to derive the necessary parameters and who should input, and when, to these 
decisions. Designing a model-based, dose-finding trial is demonstrated using a treatment within the AGILE platform 
trial, a phase I/II adaptive design for novel COVID-19 treatments.

Results:  We present discussion of the practical delivery of AGILE, covering what information was found to sup-
port principled decision making by the Safety Review Committee, and what could be contained within a statistical 
analysis plan. We also discuss additional challenges we encountered in the study and discuss more generally what 
(unplanned) adaptations may be acceptable (or not) in studies using model-based designs.

Conclusions:  This example demonstrates both how to design and deliver an adaptive dose-finding trial in order to 
support uptake of these methods.
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Background
Identification of the correct dose of a treatment is an 
essential part of drug development. A rich literature [1–
3] exists highlighting the benefits of model-based [4–6], 
model-assistant [7, 8] and curve-free approaches [9, 10] 
over traditional, simple rule-based methods (such as the 
3 + 3 design) for recommending a dose for efficacy test-
ing. However, the uptake of these new methods has been 
slow [11] and several obstacles to their use have been 

identified, including software, knowledge, and imple-
mentation [12–14]. To address some of these challenges, 
several software solutions have been described and made 
available [15, 16] and publications describing these meth-
ods [17] or experiences using them [18, 19] have been 
published in recent years.

Methods
The aim of this paper is to provide further insight into the 
implementation of model-based designs, and guidance 
on decisions made throughout the design and analysis 
of trials using these methods. This includes the specific 
decision-making for an example trial, as well as guidance 
that would apply to other trials using similar designs.
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The setting for this paper is the AGILE platform trial 
[20], which seeks to find a safe dose range and prelimi-
nary efficacy testing for a number of potential treatments 
for COVID-19; in particular, we focus on one of the treat-
ments (Molnupiravir) undergoing testing in AGILE. The 
AGILE trial team includes experienced statistical meth-
odologists and the statistics team within a UKCRC Clini-
cal Trials Unit, who collaborated to help contribute to 
the design and delivery of the AGILE platform trial. We 
believe this example highlights that, despite the chal-
lenging circumstances of an ongoing pandemic, model-
based dose-finding designs can be implemented even 
when previous experience with such approaches is lim-
ited. Additionally, we seek to highlight the added benefit 
of the model-based approach in terms of decision mak-
ing, even when set against the steep initial learning curve 
and the additional resource initially required. At the same 
time our example shows that pairing with an experienced 
team is useful to expedite the learning required.

AGILE platform trial
The AGILE trial is a randomised seamless phase I/II trial 
platform in which multiple different candidate treat-
ments for COVID-19 can be evaluated [21] (clinicaltri-
als.gov registration number NCT04746183; registered 
09/02/2021). Each of the novel treatments entering the 
platform undergo a dose-finding phase evaluating a range 
of safe doses (Phase I) to recommend a dose for further 
testing, and a group-sequential phase establishing the 
activity of a dose (Phase II). Below, we describe the statis-
tical methodology used to govern dose-escalation deci-
sions in Phase I for treatments entering the platform (as 
described in the AGILE master protocol) and describe 
how it was shaped to fit the setting of one particular 
treatments, Molnupiravir. We also present some results 
from the trial for demonstration purposes.

General dose‑escalation setting in AGILE
Based on an increasing body of evidence for their effi-
cient use of information in Phase I trials [22], a model-
based dose-finding design was chosen for AGILE. The 
standard approach involves modelling the dose-toxic-
ity relationship for m increasing doses, d1,d2,,...,dm of 
a treatment. One major difference in AGILE was that 
knowledge of COVID-19 symptomatology was still in its 
infancy during the design of the study, and the rates and 
types of symptoms could not reliably be separated from 
treatment side effects (dose-limiting toxicities; DLTs). 
This motivated the use of a control arm, to avoid labelling 
potential treatments as unsafe due to misclassifying non-
treatment related symptoms [23]. The primary goal of the 
dose-escalation was therefore to evaluate the additional 
risk of a dose limiting toxicity (ARDLT), defined in terms 

of the expected difference in DLT risk between the treat-
ment doses and the control (which constituted standard 
of care for Molnupiravir). Participants were therefore 
randomised to control or to the current dose being evalu-
ated to provide robust estimates of ARDLT compared to 
control. However, many of the considerations we present 
through this example will also apply to a non-randomised 
setting.

Model‑based dose‑escalation design in AGILE
To model the dose-toxicity relationship, a randomised 
Bayesian model-based dose-finding design [24] was used. 
The basic model used to estimate the risk of toxicity, 
pj, for dose dj was a two-parameter logistic model. This 
model assumes that the risk of toxicity increases mono-
tonically with dose. The primary motivation for using 
this model over the one-parameter model [25] is based 
on its flexibility. In the randomised setting, the majority 
of the data during the escalation will be collected around 
two points on the dose-toxicity curve: around the con-
trol DLT rate and in the neighbourhood of the estimated 
target dose. While the one-parameter model has been 
found to be flexible enough to accurately approximate the 
dose-toxicity relationship in the neighbourhood of one 
point [26] (i.e., in a non-randomised dose-escalation set-
ting), this may not translate to data collected around two 
points. An extensive simulation study comparing sev-
eral parametric curves for the dose-toxicity relationship 
in the randomised setting found that the one-parameter 
model tended to identify significant differences between 
the target dose and the control, particularly in scenarios 
with no or little difference in toxicity (i.e., flat dose-toxic-
ity curve) [24].

The two-parameter logistic model of the risk of toxicity, 
pj, at dose dj is given by:

where θ = (θ1, θ2) are the parameters of the model and dj 
are the standardised dose levels. The standardised dose 
levels are found by solving the above equation based 
on prior estimates of θ and pj, (see “Model evaluation”) 
to ensure that the prior estimates of DLT risks and cor-
responding dose levels can be aligned with the chosen 
model shape. Once calculated prior to the trial start-
ing, the levels are subsequently used in the calculations 
throughout the trial as the parameters, θ (and hence the 
estimated pj), are updated once data is collected. The 
standardised dose level for the control (d0) was chosen to 
be 0, ensuring that the estimate of the dose-toxicity rela-
tionship does not affect the DLT risk estimate on stand-
ard of care [24]. This means θ1 can be interpreted as the 

pj
(

dj , θ1, θ2
)

=
exp

(

θ1 + θ2 ∗ dj
)

1+ exp
(

θ1 + θ2 ∗ dj
) , for j = 0, 1, . . . ,m,
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risk of DLT in the control arm (on the logit scale; i.e., 
logit(p0) = θ1), and θ2 is the steepness of the dose-toxicity 
curve on the treatment arm. The advantage of including 
the control arm in the modelling is that it allows for bor-
rowing of information in the estimation of ARDLTs for 
the non-zero doses. The standardised dose levels were 
constructed for each treatment in the AGILE platform 
separately.

The model parameters are estimated using Bayes 
theorem, using prior distributions (specified by statis-
ticians in communication with clinicians – see “Appli-
cation of design to Molnupiravir”) on θ1 and θ2. We 
refer the reader elsewhere for more technical details 
of the estimation for this model [23]. Using the speci-
fied dose-toxicity model, dose escalation proceeds as 
follows:

1.	 A cohort of n participants are randomised between 
the starting dose (in this case, d1) and control (of 
sizes n1 and n2, respectively), and DLT outcomes are 
evaluated.

2.	 Given observed DLTs, the distributions of the model 
parameters are updated, and the posterior distribu-
tion of the toxicity risk, pj, is obtained for each dose 
level (including d0).

3.	 The set of safe doses is found. A dose is deemed to be 
safe if the ARDLT has a sufficiently low probability of 
being unacceptably high, i.e.,

where pj − p0 represents the ARDLT of dose dj over d0, 
γtoxic is the highest ARDLT that is considered to be 
acceptable in the patient population, and  coverdose is the 
probability threshold that controls the overdose and 
defines the stringency of the safety constraints.

4.	 Subsequent cohorts of patients are assigned to the 
dose level with highest probability of lying within a 
pre-defined interval centred around a target ARDLT 
(γ), given by

where δ is the half-width of the interval (provided that 
this dose meets the above safety criterion).

5.	 Steps 2–4 are repeated until the maximum number 
of patients, N, is reached or all doses are deemed 
unsafe

P
(

pj − p0 ≥ γtoxic
)

< coverdose

P
(

pj − p0 ∈ [γ − δ, γ + δ]
)

The choices of the parameters n1,n2, γ, γtoxic, δ, coverdose, 
together with the prior estimates of toxicity and prior 
distribution of model parameters, are defined for each 
treatment entering the AGILE platform, prior to the start 
of the treatment-specific trial. These choices depend on 
many factors, e.g., number of doses, dosages, patient 
populations, and mechanism of action of the compound. 
Below, we describe how this generic design setting was 
shaped for Molnupiravir to guide the dose-escalation 
decisions.

Application of design to Molnupiravir
To apply the design described above to the given drug, 
a number of parameter choices must be made. These 
choices may either be fixed in advance or evaluated via 
simulation and calibration, designed to achieve desir-
able model performance (see “Parameter choices based 
on calibration” onwards). We approached parameter 
choice in a particular order, based firstly on parameters 
relating to safety considerations (γ, γtoxic, δ), then exist-
ing knowledge of the treatment (number of doses, m), 
practicalities of the trial (cohort and overall sample size), 
and finally statistical considerations (parameters of the 
prior distributions). The prior estimates of DLT risks at 
each dose (the dose-toxicity skeleton) may be chosen 
based on existing knowledge of the treatment or treated 
as a flexible set of parameters chosen based on solely sta-
tistical considerations (or some hybrid); as we explain 
later, we determined the skeleton based on statistical 
considerations.

The parameters relating to safety require clinical input, 
and so the discussion of these, in our opinion, should 
supersede the decision on any other design parameters. 
These should be kept fixed throughout the trial.

Practical considerations, such as cohort and/or overall 
sample size, can be evaluated via simulation over a range 
of values agreed with the research team to understand 
the trade-off between model performance and recruit-
ment demands. Cohort sizes would typically be small 
(similar to A + B designs) to allow for frequent reviews of 
safety and dose-escalation decisions. Parameters relating 
to statistical considerations can be calibrated via simu-
lations, where a range of values for each parameter are 
evaluated collectively to determine the set that provides 
best model performance.

We discuss the details of how we determined the 
parameters for the Molnupiravir trial in the following 
sections, with a summary given in Table  1. Note that 
while we describe our process in a randomised setting, 
these or similar parameters will need to be specified for 
non-randomised dose-escalation trials, with the underly-
ing considerations being the same.
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Parameter choices based on trial setting
The first set of parameters (γ, δ and γtoxic) should be 
defined by clinical members of the research team. The 
target ARDLT (γ) was defined after extensive discus-
sions with clinicians, where it was agreed that the target 
ARDLT should be γ = 20%. Furthermore, it was con-
cluded that any doses with additional risk between 15 and 
25% would be a reasonable target (as there is no guar-
antee the doses being evaluated would have an ARDLT 
of 20%). This provides a half-width of the interval, δ, of 
5%. It was also agreed by the clinicians that an ARDLT of 
over 30% would not be acceptable for the studied patient 
population. Hence, γtoxic = 30% was chosen. These values 
were based on the clinical context of potentially severe 
illness and a lack of alternative treatment options.

Next, the doses to be studied in the trial were defined, 
based on existing knowledge of the drug. This again 
requires clinical input and is required before an efficient 
design (from a statistical point of view) can be deter-
mined. For Molnupiravir, doses of 300 mg bd, 400 mg bd, 
600 mg bd, and 800 mg bd (with corresponding standard-
ised dose levels denoted by d1, d2, d3 and d4, respectively) 
were chosen for evaluation. When considering dose 
escalation, it was agreed that doses could be skipped but 
cannot be more than doubled, meaning that, if deemed 
acceptable by the model and by the clinicians, escalation 
from d1 to d3 and from d2 to d4 were possible. We empha-
sise that any dose-skipping constraints be defined at this 
point of the planning, before any numerical evaluations, 
as it might affect the performance of the design notice-
ably, especially with limited sample sizes.

Having defined the safety and treatment parameters, 
we next determined the cohort sizes for a given dose (i.e., 
the number of patients to be randomised between treat-
ment and control for a given dose). While the cohort size 
should normally be one of the parameters of the design, 
assessed by simulations of the operating characteristics 
under various cohort sizes, this evaluation was primarily 
done as part of the general AGILE platform design [23] 
rather than for Molnupiravir specifically. (Note, operat-
ing characteristics refers to different criteria to judge 
model performance, e.g., the ability to select the correct 
dose under different scenarios – see “Plausible dose-tox-
icity scenarios”) Specifically, the cohort size of 6 patients 
with 2:1 randomisation ratio in favour of the experimen-
tal arm was found to result in good operating charac-
teristics due to a more balanced (compared to 1:1 ratio) 
allocation of patients overall between treatment and con-
trol (as each cohort contributes patients to the control 
arm). Importantly, beyond the statistical considerations 
(i.e., good operating characteristics), it was agreed with 
the clinicians that they would be happy to make dose-
escalation decisions based on this cohort size.

Following this, we next determined the maximum sam-
ple size, N, of patients that could be enrolled in the study. 
To ensure desirable operating characteristics, a range of 
N should be evaluated via extensive simulations. In the 
general AGILE platform evaluations [23], it was found 
that N equal to the number of doses in the study (4 for 
Molnupiravir) plus 1, multiplied by the cohort size (6; for 
N = 30), resulted in good operating characteristics across 
various scenarios. Intuitively, this is the minimum sam-
ple size that would be enough to reach the highest dose 
(if deemed safe to escalate to it) while accounting for the 
fact that a DLT can be observed even on safe doses. This 
value was used for the preliminary evaluation but due to 
the platform nature of the trial, no cap was formally spec-
ified in the protocol to allow for more flexibility.

Next, the threshold controlling overdosing  coverdose 
should be selected. Again, while this can be treated as a 
parameter to be varied (where a value providing desir-
able balance between accuracy and number of patients 
exposed to toxic doses can be found via simulations), 
we fixed this value at  coverdose = 0.25 as it was previ-
ously found [27] that this value, applied within the two-
parameter logistic model, allows for safeguarding of 
patients. Subsequent extensive simulation study for the 
AGILE platform has also confirmed that this value lim-
its the exposure of patients to overly toxic doses [23]. The 
decision to fix this value was also a pragmatic one, as it 
reduced the number of parameters to be evaluated and 
thus reduced the computational complexity and time to 
run simulations (a particular concern given the context of 
the trial in an ongoing pandemic).

Finally, the last parameter to be fixed in advance is 
the mean (μ1) of the prior distribution for θ1. This mean 
was fixed to be logit(0.1) to provide a prior estimate of 
DLT risk on the control arm of 10% based on previous 
research [28]. Having fixed these parameters, we now cal-
ibrate the remaining parameters of the prior distributions 
of θ and the prior estimates of toxicity at each dose.

Parameter choices based on calibration
The parameters specified in “Parameter choices based 
on trial setting” are defined by the clinical setting. The 
rest of the parameters of the design, specifically, the 
prior distribution hyperparameters (i.e., the param-
eters of the prior distributions for θ) and the prior esti-
mates of toxicity at each dose, define the properties of 
the design – i.e., how accurate it is and how partici-
pants are allocated in the trials (e.g., conservatively or 
aggressively). There are two approaches for how the 
dose-toxicity skeleton and hyperparameters can be 
defined – they can be elicited from clinicians and/or 
historical data [29], or, if there is no available external 
information, via calibration [30, 31] to determine the 
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parameters that result in good operating characteris-
tics over a range of plausible scenarios. Alternatively, 
there might be a “hybrid” approach where the clinicians 
can provide some constraints that the calibrated prior 
parameters should satisfy (e.g., the DLT risk on the 
starting dose is available but not for other doses). For 
this trial, given the limited reliable knowledge about the 
safety of Molnupiravir in the new emerging COVID-
19 patient population at the time of the trial planning, 
the calibration approach was taken for both the dose-
toxicity skeleton and hyperparameters. The scenarios 
we used to evaluate performance are given in “Plausible 
dose-toxicity scenarios”.

We also note that the calibration approach might be 
selected over elicitation for logistical reasons – while the 
former can be more computationally expensive, it may 
be more efficient time-wise than (potentially multiple) 
discussions with clinical colleagues (particularly relevant 
in this study). Moreover, there are some recommended 
design parameter choices [32, 33] for certain dose-esca-
lation models, that again might be a more feasible option 
with limited funding and/or time. Nevertheless, the 
model operating characteristics of the chosen parameters 
should be evaluated under plausible scenarios.

The prior estimates of DLT risk ( p(0)j  ) at each dose are 
required to initiate the model and derive the standard-
ised dose levels (note, these are the DLT risks and not the 
ARDLT). For Molnupiravir, no constraints were placed 
on the prior DLT risks, other than they were based on 
a grid of values determined by a prior estimate of DLT 
risk for the control arm ( p(0)0  ) and a fixed difference in 
risk between neighbouring doses, i.e., p(0)j  = p(0)0 + ν ∗ j , 
where ν defines the fixed difference. The values ν = {0.0
5,   0.075, 0.10, 0.125, 0.15} were tried in the grid search. 
This grid was felt to cover plausible scenarios, where 
greater differences in DLT risk between doses was 
thought to be unlikely. The constraint was applied by the 
statistical team, as equal spacing in the prior DLT risks 
between the doses reduces the computational complexity 
of the calibration. In this study, this was deemed appro-
priate given the actual dosages of the drug were close to 
each other with no major jumps in dosage. If, however, 
it is thought a priori that the increase in the toxicity is 
noticeably higher for one (or more) pair of neighbouring 
doses, unequal spacing might be needed. However, it is 
worth noting that the doses should be chosen to cover 
the part of the dose-toxicity relationship that is of inter-
est (i.e., either side of the targeted toxicity level) with 
sufficient granularity [34]. Hence, in the case of unequal 
spacing, it is worth reconsidering the doses so that it is 
reasonable to consider a priori equal increases in the 
toxicity risks between neighbouring doses. Finally, also 
note that this choice of the prior toxicity values does not 

constrain fixed differences between the estimated DLT 
risks (or ARDLT) once data is collected.

Next, the joint prior distribution of the model parame-
ters is defined as (θ1, log( θ2)) ∼ N(μ, Σ) where μ = (μ1, μ2)T 
is the vector of means, and Σ is the covariance matrix 
with zero covariance and diagonal elements σ1 and σ2. 
Note we use log( θ2) as we require θ2 ≥ 0 to ensure mono-
tonicity in the risk of toxicity with increasing doses. 
Assuming 10% toxicity probability in the control arm (as 
per “Parameter choices based on trial setting”), we set the 
prior mean for θ1 to be μ1 = logit(0.1). For the rest of the 
parameters, the grid of values to be calibrated over were 
defined as follows:

The grids of the values were selected to imply quanti-
tatively different prior shapes of the dose-toxicity rela-
tionship (various steepness) and various amounts of 
uncertainty around the prior estimates (with higher val-
ues of variance not necessarily implying greater uncer-
tainty around the prior toxicity estimates [32]). The 
influence of the prior parameters on the shape of the 
dose-toxicity relationship and uncertainty around it is 
illustrated in Fig. 1. These grid values were based on pre-
vious experience; in the absence of this, the grid could 
be determined through an iterative process beginning 
with a wide range of values and narrowing down to a set 
that give varying shapes of dose-toxicity relationship and 
uncertainty in prior estimates.

The left panel of Fig.  1 illustrates two dose-toxicity 
curves for the values of μ2 and spacing ν on the different 
edges of the selected grids corresponding to a flat dose-
toxicity curve (where the target dose is 800bd) and a 
steep one (where the target dose is 300bd). The values in-
between correspond to the steepness of the dose-toxicity 
curve between these two cases. The right panel of Fig. 1 
illustrates various levels of uncertainty, with the values 
of hyper-parameters from each extreme of the selected 
grids.

While the approach taken was based on computational 
(rather than clinical) considerations, the selected hyper-
parameters still should imply plausible prior toxicity 
rates. For example, the ARDLT at the lowest dose should 
be below the upper toxicity bound γtoxic = 30% (i.e., 
assuming the lowest dose will be safe), and the toxicity 
of the highest dose should not be too low (as this would 
suggest the study has not been designed appropriately to 
discover a dose with the desired properties). Note that 

µ2 = {−0.15,−0.05, 0.00, 0.05, 0.15}

σ1 = {0.80, 0.90, 1.00, 1.10, 1.20}

σ2 = {0.10, 0.20, 0.30, 0.40, 0.50}
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a low prior probability of toxicity for the highest dose 
might also result in overly aggressive dose escalation.

Now that a range of parameter values have been 
defined for the prior DLT risks and hyperparameters, 
we can evaluate model operating characteristics under 
a range of plausible scenarios in order to determine the 
final values of the parameters to be used in the trial.

Plausible dose‑toxicity scenarios
The operating characteristics of the design were exten-
sively evaluated via simulation studies, conducted on a 
set of clinically plausible dose-toxicity scenarios. As the 
selection of scenarios can add subjectivity into the assess-
ment of the method’s properties [35] (i.e., one can always 
find scenarios in which a particular design performs bet-
ter than others) and one does not know which scenario 
is true (or closest to the truth), it is important to ensure 
good operating characteristics over a range of plausible 
scenarios. To gauge what good operating characteristics 
are, the non-parametric optimal benchmark [36, 37] can 
be used. It gives an upper bound of performance and 
hence large deviation from it suggests poor operating 
characteristics. The benchmark for binary outcomes is 
implemented as a web application [38] with the R code 
for the benchmark with non-binary studies and com-
bination studies freely available online (https://​github.​
com/​dose-​findi​ng; last accessed 05-Apr-2021). While the 
benchmark for randomised setting is not yet available, 

the non-randomised benchmark can still provide a con-
text for the evaluation as it would assess the difficulty of 
a given scenario. Hence, the binary benchmark [36, 37] 
for 4 doses targeting an additional toxicity risk of 20% 
was used. Model performance can also be compared to 
alternative designs (e.g., an A + B design) to explore if the 
proposed design is making efficient use of the data within 
the trial constraints of, e.g., fixed total sample size.

For the current study with 4 dose levels, there are four 
possible locations of the target dose (provided that at 
least one dose is safe) – the first, second, third, and fourth 
dose – and hence four scenarios were considered, where 
each dose in turn had an ARDLT of 20%. Given the nov-
elty of COVID-19 and of Molnupiravir in these patients, 
it was assumed that these scenarios were equally likely 
to be true. Further to the location of the target dose, the 
DLT rates at non-target doses must be defined (note, 
these are now what we are assuming to be the truth, and 
are distinct from the prior estimates we discussed in the 
previous section).

Generally, when several DLT rates are close to the 
target value, the proportion of the target dose selection 
will be lower under a fixed sample size [35]; however, if 
a range of acceptable DLT risk is defined, the proportion 
of doses selected that are in this range may still be high if 
more than one dose falls in this range. Thus, it is accepted 
that although the “optimal” dose may not be accepted 
with high probability, a dose with a similar safety (and, 

Fig. 1  Left: Prior dose-toxicity relationship for σ1 = 1.10, σ2 = 0.30, with μ2 =  − 0.15,  ν = 0.05 (solid line), and μ2 = 0.15,  ν = 0.15 (dashed line). The 
horizontal line is the target toxicity level (note the toxicity on the control arm is not exactly 10% as this is the mean of a nonlinear transformation). 
Right: Bounds of the prior 95% credible interval around prior toxicity estimates for μ2 =  − 0.05,  ν = 0.075 with σ1 = 0.80, σ2 = 0.10 (dashed lines) and 
σ1 = 1.20, σ2 = 0.50 (dotted lines)

https://github.com/dose-finding
https://github.com/dose-finding
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assumed, efficacy) profile to this optimal dose has a high 
chance of being selected. Only larger sample sizes, with 
its associated logistical downsides, would overcome this 
issue. As noted previously, DLT rates that are greatly 
spread out will not provide sufficient granularity for 
selecting the targeted toxicity level and attempts to avoid 
this should be made through suitable choice of doses.

The evaluation of model operating characteristics was 
therefore restricted to scenarios where only one dose was 
within the target range. Given that the width of the tar-
get interval is 10%, a difference of 15% between the tar-
get and neighbouring doses was selected (except scenario 
1, where the first dose is fixed to be 20% above control). 
This therefore leads to scenarios where the dose above 
the target should be deemed too toxic, and doses below 
the target are implicitly assumed to be too low (i.e., effi-
cacy assumed to be insufficient due to limited DLTs). This 
resulted in four dose-toxicity scenarios (Table  2) over 
which the remaining design parameters were calibrated, 
and which were then used to assess performance of the 
design (“Model evaluation”). Additionally, Scenario 5 
with all doses having toxicity rate above the target toxic-
ity was considered in the evaluations to ensure that the 
design would stop the trial early if all doses are unsafe. As 
per “Parameter choices based on trial setting”, the DLT 
rate on the control arm was 10%.

It is worth noting that in the setting with larger num-
bers of doses or in combination studies, the possible 
number of target dose locations can be large [36] and it 
might be infeasible to explore the behaviour of the design 
over all of them. The recommendation for a comprehen-
sive evaluation would be still to include all clinically plau-
sible scenarios with the main requirement for them to be 
quantitatively different, e.g., with the target doses being 
in the difference ranges of the dose grid.

When evaluating the design under different scenarios, 
various characteristics of the design can be of inter-
est. The primary measure of performance of a design is 
its accuracy in terms of the proportion of times the cor-
rect dose is selected. However, safeguarding of patients is 

also paramount in Phase I dose-escalation studies; other 
measures of the performance may be based on safety 
considerations, such as the average number of DLTs 
observed in the trial, the average number of patients 
assigned to toxic doses, and the proportion of overly 
toxic selection. While all of these characteristics can be 
informative, we prioritised the proportion of overly toxic 
selection and overall accuracy. Importantly, the measures 
of accuracy and safety are conflicting [39], and therefore 
the final design recommendation will be based on the 
trade-off between how accurate the selection is against 
how many patients are exposed to unsafe doses.

Model evaluation
For a given combination of prior estimates of DLT risk 
and hyperparameters, the standardised dose levels can be 
calculated using:

where µ(0)
1  and µ(0)

2  are prior means of the model 
parameters.

For each combination of the prior estimates of DLT risk 
and hyperparameters, the proportion of correct selec-
tions (PCS) was computed for each scenario in Table 2. 
Then, the geometric mean of the PCS across four scenar-
ios was found [31]. The combination of hyperparameters 
yielding the highest PCS is then selected as the param-
eters of the operational prior.

Following this procedure, the chosen hyperparam-
eter values were μ2 =  − 0.05, σ1 = 1.10, σ2 = 0.30, and 
ν = 0.075, with the latter implying mean prior DLT risks 
of 17.5, 25, 32.5, and 40% on doses 1 to 4, respectively 
(with corresponding ARDLT found by subtracting the 
control arm mean, 10%). As in other situations where 
there is a high number of parameters to calibrate, there 
were several combinations of parameters that led to rea-
sonably similar PCS. Any combination with PCS close 
to the maximum one can be chosen if it is decided to 
be more appropriate for the specific setting, though we 
opted for the maximum here.

Given the prior distribution of the parameters, θ1 and 
θ2, one can approximate (via sampling) the distribu-
tions for the ARDLT at each dose using the dose-toxicity 
model; this helps to illustrate the implications of the cho-
sen design parameters. The prior distributions on each 
dose implied by the calibrated prior parameters are given 
in Fig. 2. This can also be done throughout the trial each 
time θ1 and θ2 are updated.

Figure  2 suggests that the calibrated prior distribu-
tions imply a noticeable level of uncertainty around tox-
icity risks at doses d2, d3, and d4, and less on the lowest 

dj =
logit

{

p
(0)
j

}

− µ
(0)
1

µ
(0)
2

,

Table 2  Five dose-toxicity scenarios that are considered for the 
design evaluation. Note, we present the risk of DLT at reach dose 
here, rather than additional risk of DLT

d0 d1 d2 d3 d4

Scenario 1 10% 30% 45% 60% 70%

Scenario 2 10% 15% 30% 45% 60%

Scenario 3 10% 12% 15% 30% 45%

Scenario 4 10% 11% 12% 15% 30%
Scenario 5 10% 50% 65% 80% 90%
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dose (that is thought to be safe). The prior probabili-
ties for doses d2, d3, and d4 being the target dose were 
nearly equal to each other (20–22%). The lower prob-
ability of the lowest dose being the target will ensure 
that the escalation is not stuck at the bottom of the grid 
if it is safe to escalate. Approximately equal prior prob-
abilities of being the target dose is a desirable feature 
of a calibrated hyper-parameters. If a large discrepancy 
in these probabilities is observed, a re-calibration for 
other grid values should be considered.

Plots such as those in Fig.  1 may be useful in com-
municating DLT risks throughout the trial. However, 
it is recommended that the trial team undergo some 
form of training, led by the statistical team, in order to 
ensure the information conveyed by the plots is clearly 
understood.

Once the calibrated parameters are found, we can 
assess model performance against the benchmark (see 
“Plausible dose-toxicity scenarios”).

Numerical results
The proportion of each dose selection using the cali-
brated hyperparameters under all four scenarios are 
given in Table 3.

The proportion of optimal dose selection is close to or 
above 60%, expect for scenario 3. The ratio of PCS to the 
benchmark is consistent across the scenarios, approxi-
mately 65–75%. Given that the standard benchmark 
does not account for uncertainty in the control arm, this 
was regarded as acceptable performance and it was con-
cluded that the design is able to identify the correct dose 
with sufficiently high probability across all considered 
scenarios. Therefore, we concluded that the design has 
good properties in terms of the accuracy.

Besides PCS, we also assessed the proportion of overly 
toxic doses being selected – here it is below 25% under 
scenarios 2 and 3, which implies that the proportion of 
overly toxic selection is well controlled under this case. 
Under the steeply ascending toxicities of scenario 1, the 

Fig. 2  Prior distributions of ARDLT for the 4 doses, based on the calibrated prior parameters. The vertical dotted lines represent the desirable range 
of additional toxicity (15–25%). The percentages in the header of each graph represent the probability that the ARDLT for the dose lies within this 
interval
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proportion of overly toxic selection is nearly 38%. How-
ever, 32% is attributed to the selection of the dose cor-
responding to 45% of toxicity, or 35% over the control 
under our assumptions. This is 5% above the maximum 
acceptable toxicity of γtoxic = 30%, and therefore harder 
to distinguish with the limited sample sizes. At the same 
time, this property of being slightly more aggressive in 
selections under scenario 1 allows us to limit the propor-
tion of under-toxic selection under flat scenario 3 that 
ensures that a more promising dose is recommended for 
the next phase. Lastly, considering the unsafe scenario in 
which all doses have target toxicity rate above the target 
one, it was found that the design would terminate the 
trial with probability 70%; this was agreed to be accept-
able in the scope of other operating characteristics and 
limited sample size.

Considering the results as a whole, and taking into 
account the context of the design performance and the 
trade-offs between the accuracy, proportion of over-toxic 
and under-toxic selections, it was agreed by the statistical 
and clinical team that the design yields good operating 
characteristics and can be used to drive dose-escalation 
decisions in the actual trial.

Importantly, when interpreting the results above, it 
was assumed that all of the scenarios are equally likely 
to occur and equally important. It is, however, possible 
that in some settings some of the scenarios are deemed 
more probable or clinically important. This can be taken 
into account when interpreting the result, either for-
mally – for example, considering the weighted mean of 
the PCS, with the weights reflecting the importance of 

given scenario – or limiting the proportion of overly toxic 
selection below some threshold, e.g., 25% – or informally 
through interpretation of the results under each scenario 
and discussing the implications with the clinical team.

Computational aspects
To implement and evaluate the proposed design, R 
[40] was used. There are existing packages that imple-
ment dose-finding model-based designs [41], and the 
two-parameter logistic model in a dose-finding trial in 
particular [15, 42]. Most of these are restricted to the 
non-randomised setting. While these can be modified 
(through the source code available on CRAN), the Bayes-
ian model was implemented via MCMC algorithm, spe-
cifically JAGS [43], via the R package rjags [44] without 
any dose-finding specific packages to enhance flexibility 
in the implementation. Alternatively, BUGS [45] can be 
used as it uses similar syntax. The output of the MCMC 
model is the vectors of the samples of the posterior dis-
tribution of the trial parameters, θ1, θ2, that are in turn 
used to compute the samples of the toxicity risk at each 
dose and control. These posterior distributions are then 
used for all computations – for example, the probability 
of being in the target interval is the proportion of pos-
terior samples between 0.15 and 0.25, and the probabil-
ity of overdosing is the proportion of posterior samples 
above 0.30.

There are an increasing number of resources (to which 
this work hopes to contribute) on how model-based 
dose-finding can be implemented [19]. While the first 
programming of such designs might be time-consum-
ing for a statistician without prior experience in Bayes-
ian methods, and, specifically, MCMC implementation, 
we note that it is becoming more common for authors 
to provide their code for the methods implementation, 
which may be used a good starting point. We have made 
our programming available in the form of R code on 
GitHub at https://​github.​com/​dose-​findi​ng/​agile-​imple​
ment. The implementation beyond the first trial/applica-
tion, however, is associated with diminishing time costs, 
in our experience.

Another important aspect of implementation is the 
time it takes to conduct the described calibration and 
evaluations. As MCMC is used for the implementation, 
the simulations, with many repetitions, might be quite 
time consuming. Specifically, the calibration of the pro-
posed design involved 4 parameters with 5 values to be 
tried. This results in 625 design specifications to be tried 
for each of the four scenarios. Given the computational 
complexity and the objective to find the right ballpark of 
the values implying good operating characteristics, we 
used 500 simulations and 1000 MCMC samples (with 
1000 burn-in) for each combination. These choices for 

Table 3  Percentage of correct selections for the calibrated 
parameters and benchmark results under each scenario

d1 d2 d3 d4

Scenario 1

  Toxicity Risk 30% 45% 60% 70%

  Selection Proportion 59.1% 32.0% 5.7% 0.0%

  Benchmark 81.0% 18.8% 0.5% 0.0%

Scenario 2

  Toxicity Risk 15% 30% 45% 60%

  Selection Proportion 16.9% 57.4% 21.4% 3.8%

  Benchmark 5.6% 75.4% 18.7% 0.2%

Scenario 3

  Toxicity Risk 12% 15% 30% 45%

  Selection Proportion 2.8% 25.5% 49.7% 22.0%

  Benchmark 0.2% 4.8% 76.7% 18.3%

Scenario 4

  Toxicity Risk 11% 12% 15% 30%
  Selection Proportion 0.0% 4.8% 28.9% 65.9%
  Benchmark 0.0% 0.2% 5.1% 94.4%

https://github.com/dose-finding/agile-implement
https://github.com/dose-finding/agile-implement
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the specified 2-parameter logistic model were found to 
provide a fair balance between the time taken to evaluate 
model performance and gaining an adequate understand-
ing of how the PCS changes within each parameter. Paral-
leling the calibration process (or simply running several R 
sessions in parallel) resulted in nearly 8 h to complete the 
calibration across all 4 scenarios (Intel® Core™ i7-8650U 
CPU @ 1.90GHz × 8).

For the evaluation of the performance of the design 
under the calibrated operational prior, a larger number 
of simulations were used to provide more precise estima-
tion on the proportion of each dose selection [46]. Specif-
ically, 2000 simulations, and 5000 MCMC samples were 
used to provide the results in Table 3. For one scenario, 
it took around 10 min. On this note, the convergence of 
the MCMC, in our experience, has not been of a major 
concern in a dose-finding setting with the two-parameter 
logistic model.

Finally, for the actual conduct of the trial, 4 ∗ 106 
MCMC samples were used to provide estimates of the 
model for the dose-escalation decision-making. This is 
chosen to limit the simulation error coming from the 
Monte Carlo methods.

Team roles in trial planning
Given the context of the pandemic, speed was of the 
essence. Therefore, the initial design evaluations, as given 
in “Application of design to Molnupiravir” onwards, were 
carried out by the experienced statistical methodologists 
in the team (PM and TJ). At the time of the planning 
phase, both PM and TJ were supported by NIHR per-
sonal fellowships to provide such statistical support and 
oversight. The increasing recognition by the NIHR of the 
resources required to successfully implement such com-
plex designs made the rapid set-up of this trial possible. 
This also allowed, among other activities, PM to provide 
training for the AGILE clinical team on Bayesian meth-
ods employed in the platform. However, this time might 
not always be available, and more funding opportunities 
to allow methodologists and applied statisticians to col-
laborate in order to support clinical trials in the UK are 
needed.

At the time of trial planning, the CTU team had limited 
experience in the methods, amounting to one time-to-
event continual reassessment method [47] trial submit-
ted for funding. During study set-up, the methodologists 
provided a training session to the statisticians in the CTU 
to support their understanding. This training took the 
form of a meeting to talk through the broad design and 
the coding used to produce the results given in “Model 
evaluation”. The code was passed on to the CTU team (SE 
and GS) along with some documentation laying out the 
design and calibration results, allowing them to become 

familiar with the code and ready to use it during the trial. 
The methodologists also provided ongoing support dur-
ing this time, answering queries from the CTU team.

Timescales
The general AGILE platform design (as mentioned in 
“Parameter choices based on trial setting”) was carried 
out prior to the final protocol for Molnupiravir, where 
the clinical and practical considerations were decided on. 
Otherwise, given the context of the trial, the calibrations 
were undertaken largely in parallel with development 
of the protocol, and the protocol outlined the intended 
philosophy of the analysis and when the model would 
be updated rather than details of the model. A separate 
document was produced once calibration was completed 
and final model parameters were determined. In other 
circumstances, this evaluation would occur prior to the 
protocol being finalised and should be included in the 
protocol; indeed, some funding bodies will ask for these 
evaluations to be completed at the application stage.

Results
Trial processes
The trial design for Molnupiravir involved cohorts of six 
participants, randomised 2:1 to Molnupiravir or stand-
ard of care. The Safety Review Committee (SRC) were 
to review data following 7 days of follow-up of the last 
participant in each cohort (dosing was carried out over 
5–6 days). At this stage, the Bayesian dose-toxicity model 
was updated based on observed DLTs (defined accord-
ing to grade 3 events using CTCAE v5.0). The model was 
used to support decision-making to either escalate, de-
escalate, recruit another cohort at the same dose, stop 
the study due to unacceptable toxicity, or recommend a 
dose for testing in Phase II. Note, the SRC did not have 
to follow the model recommendations and could choose 
the dose they felt most appropriate. Deviating from the 
model’s recommendation alters the operating character-
istics (e.g., the PCS may be altered), but the model can, 
however, continue to be used after a diverging decision 
is taken by the SRC as the model can accommodate such 
deviations.

Team roles in trial delivery
The CTU team were responsible for delivery of the trial, 
running the analysis in preparation for the SRC meet-
ings and presenting results. GS and SE took responsibility 
for this within the CTU, investing time in understanding 
the code, carrying out trial runs, and linking this to data 
pulled from the trial database. The code was automated 
to return formatted output in order to produce results 
very rapidly (within hours) following the end of data col-
lection. PM developed additional code in order to run 
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a second, independent set of analyses as a check for the 
analysis run by the CTU team, also implemented in rjags. 
This was not linked directly to the database and was run 
based on the CTU providing the minimum amount of 
information (numbers per arm and number of DLTs per 
arm).

The methodologists attended the SRCs, with TJ, as a 
member of the SRC, providing additional input in pre-
senting and interpreting the results. PM provided an 
additional training session during the study to support 
the understanding of the model outputs for the clinical 
members of the SRC. Additional time was given in the 
first SRC meeting for SE and TJ to describe the model 
and its results in order to support the understanding of 
voting members; brief reminders were given in subse-
quent meetings.

SRC report template
A template SRC report was developed prior to recruit-
ment, led by the CTU with input from the method-
ologists (and the SRC). The part of the SRC report 
concerning the model-based recommendation is pro-
vided in Additional file 1. The report included estimates 
of the DLT rate for each dose (including standard of 
care), ARDLT for each dose of Molnupiravir, and the 
probability of ARDLT being 30% or more. The estimates 
of DLT risks were based on the mean of the posterior 
distribution for each dose and were presented alongside 
95% credible intervals. The relationship between doses 
and risk of DLT was presented in a plot (i.e., a line plot 
of a section of the two-parameter logistic model), along-
side 95% credible intervals (with a reference line for 20% 
ARDLT over standard of care). The model was used to 
derive the next recommended dose, determined by the 
dose with highest probability of lying within 15–25% of 
ARDLT over standard of care. The SRC report included 
this recommendation, along with the probability the 
ARDLT was within this range for the recommended dose.

SRC reports in practice
The model outputs were presented for two situations: 1) 
based on all available information on DLTs at the time of 
the analysis; and 2) based on the first 7 days of follow-
up only. The latter was used to provide a potentially 
fairer comparison of arms, as it was likely that follow-up 
across groups would be of notably different lengths (as 
the control arm included participants across cohorts, 
and so would include participants with the full 28 days of 
follow-up) and hence estimates of ARDLT may be con-
founded by time. The plots for each dose are given in the 
main trial publication [48] to demonstrate how the model 
updated over time. Note that throughout the study, no 
DLTs were observed.

In one cohort, one participant received only a subset of 
the full dosing schedule (two of ten intended doses) for 
reasons other than DLTs. They were, by the definitions 
given in the protocol, evaluable and so were counted as 
one of six in the cohort to be reviewed by the SRC. How-
ever, it was not immediately obvious if this person should 
be included in the model. As they did not experience a 
DLT before stopping treatment, they should in theory be 
included as not having a DLT – but as a result, the treat-
ment may appear to be safer than it was (i.e., the model 
does not acknowledge the fact this person received only 
two doses). For this situation, the SRC was presented 
with three different scenarios:

1)	 where the participant was included as a person not 
experiencing a DLT;

2)	 where the participant was included as a person expe-
riencing a DLT; and

3)	 where the person was not included in the model.

This approach may be considered a sensitivity analy-
sis and allowed the SRC to understand the impact on 
DLT estimates (and potentially their decision-making) 
depending on how this participant was treated in the 
modelling. In this instance, how this participant was 
included made little difference to the overall results and 
the decision of the SRC (see Additional  file  2 for the 
results under each scenario above).

Following escalation to, and evaluation of one cohort 
at, the highest dose, and with no observed DLTs, the SRC 
had two realistic options: 1) to enrol an additional cohort 
to the highest dose, or 2) close Phase I and recommend 
this highest dose for testing in Phase II. The model rec-
ommended the highest dose be tested next (note, the 
model is not designed to recommend ending Phase I). 
As well as having the highest probability of being in the 
15–25% ARDLT range, the model suggested the highest 
dose had a very low probability of having ARDLT of 30% 
or more over control, suggesting this dose was likely to 
be safe.

To support the results at this point, the SRC were also 
presented with what-if scenarios, where different hypo-
thetical results of an additional cohort of six participants 
were fed into the model – ranging from zero DLTs to eve-
ryone on treatment experiencing a DLT (see Additional 
file  2). Estimates of DLTs, credible intervals, probability 
of being too toxic (ARDLT of 30% or more), and recom-
mended doses were presented under each scenario. The 
model provided reassurance that at this point in the trial, 
only an extreme result (all four people in the treatment 
arm experiencing a DLT and none in the control arm) 
would result in the model recommending a different 
dose (i.e., to de-escalate one dose level). In the opinion 
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of the SRC, this information, coupled with the perceived 
unlikeliness of this outcome, provided reassurance that 
the existing data was sufficient to recommend the high-
est dose for Phase II testing. It is worth noting that this 
additional evaluation was carried out in the SRC meet-
ing itself, given that the code had been well prepared in 
the run up to the trial. This approach has parallels with 
the dose transition pathways advocated elsewhere [49], 
allowing the research team to understand progression of 
the trial under hypothetical examples.

Statistical analysis plan
The statistical analysis plan (SAP) was developed dur-
ing the trial; as with the SRC template, this was led by 
the CTU statisticians with input from the methodolo-
gists and clinical team. The section of the SAP relating 
to the dose-escalation model is given in Additional file 1. 
There are currently limited guidelines on what should be 
reported from model-based dose escalation trials, so we 
hope this provides a useful guide for future trials.

Changes to an ongoing trial
One challenge faced in the trial was occasional changes to 
some of the design parameters after calibration was com-
pleted. Early in trial development, the number of doses 
(and their magnitude) was not settled, due to accruing 
information from other ongoing trials (e.g., healthy vol-
unteer trials). The code to calibrate the design parame-
ters was, however, developed early and could be quickly 
adapted to changes in the number and magnitude of 
the doses. These changes could be quickly incorporated 
while the study was underway, even after recruitment 
had begun. Generally, if there are minor changes to the 
number of dose levels and re-calibration cannot be done 
due to time/resource constraints, one can still utilise pre-
viously calibrated parameters. While the performance 
might not be optimal, the model-based design would still 
be expected to have good operating characteristics. Nev-
ertheless, a simulation study under the new number of 
doses (and specified parameters) is still essential to con-
duct to ensure good statistical properties of the design. 
If an analysis has been carried out (e.g., for an SRC), we 
would strongly discourage re-calibrating the model as 
this may involve ad hoc changes to the prior information 
that may be influenced in light of observing data.

Other changes to an ongoing trial that can be straight-
forwardly accommodated include the cohort size and the 
maximum sample size. Again, while the performance of 
the model-based design might not be optimised under 
the changed circumstances, the operating characteris-
tics of the design are not expected to deviate noticeably 
from that previously found. More generally, the decision 
making of the SRC cannot always be captured a priori by 

the statistical team and so the calibrations are conducted 
under fixed behaviour that may not perfectly mimic prac-
tice. Although this may impact the operating character-
istics somewhat, the model can still be used to derive 
estimates of toxicity.

New doses can be added during a trial, though care-
ful consideration would need to be given to determin-
ing the standardised dose levels for the newly introduced 
doses. The existing structure may be used to define the 
new dose levels (e.g., preserving the spacing when the 
new dose levels are outside the existing range, or using 
linear interpolation within the existing range propor-
tional to the actual dosage). However, the similarity (or 
otherwise) of the new dose(s) to existing doses can affect 
how the model performs, and so testing and evaluation 
of the model across a wider range of scenarios (e.g., with 
the DLT risk for the new dose equal to the target toxicity 
level) is required to ensure satisfactory performance.

Changes in other design parameters after the first 
analysis has already taken place, however, might have 
undesirable effect, e.g. the target toxicity rate, overdose 
control, upper toxicity bound and tolerance around the 
target rate as these, essentially, correspond to change of 
the objective of the trial and, hence, should be avoided 
where reasonably could be. If agreed to be essential, 
changes in these will require the recalibration of the 
parameters (possibly considering the currently observed 
data) to align the specification of the design with the 
amended objectives and further evaluations before the 
decision on further escalation is made.

Discussion
We have described the use of a model-based dose-esca-
lation model delivered as a collaboration between expe-
rienced adaptive trials methodologists and UKCRC 
Clinical Trials Unit (CTU) statisticians. We have high-
lighted many of the practical considerations encoun-
tered through the study that may serve to support others 
attempting to implement these designs, as well as dem-
onstrating the benefits of such models.

Model-based dose-escalation designs have been 
shown to bring benefits over traditional A + B designs; 
however, as may be obvious from the Methods sec-
tion, there are many (and sometimes complex) aspects 
to consider that may serve to limit their use. We have 
laid out a template (Table  1 and accompanying dis-
cussion) to further guide users in approaching such 
designs. We hope this guide will help potential users 
understand who in the research team needs to input, 
and when, to the parameter choices, in order to allow 
an efficient and effective approach to design. We also 
hope that the discussion of the scenarios in which to 
calibrate and evaluate the model will guide potential 
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users to prepare models most capable of achieving 
their aims. This paper also provides guidance on how 
to present the ongoing results of the trial to the Safety 
Review Committee, as well as what information may 
be needed in the SAP/final trial report (see Additional 
file 1); note, the published results are also given in the 
final trial publication [48].

We appreciate the circumstances of having expert 
methodological input may be rare in many circum-
stances. From the perspective of the CTU statistical 
team, this expert input brought two primary benefits: 
1) the speed at which the trial could be designed – in 
terms of the methodologists having existing code, 
knowing how to efficiently approach the process of 
eliciting prior information and other considerations, 
and how best to approach the calibration (e.g., what 
scenarios to test); and 2) a “safety net” for any ques-
tions or uncertainties that arose throughout the trial 
(which motivated this paper). In more usual circum-
stances (i.e., not in a pandemic), we believe it is pos-
sible for less experienced trial teams to design these 
trials, but it should be acknowledged that the first 
attempt will require an investment of time by a statisti-
cal team. However, this investment will, in our experi-
ence, diminish each time these designs are used. Even 
given this, we encourage the research community to 
recognise the complexity of these trials, and believe 
that infrastructure, such as that provided by the NIHR 
fellowships for TJ and PM, will be crucial in making 
use of these designed more widespread and ensuring 
they maximise their potential.

Lastly, and importantly, we would like to emphasise 
the success of the model in this trial in terms of how 
it was received by the whole trial team and its ability 
to impact decision-making. The clinical team become 
increasingly confident in the model, both in terms of it 
matching their intuitions (hence increasing their trust) 
and in terms of being able to interpret the results. The 
what-if scenarios presented in “SRC reports in prac-
tice” were very important following dosing at the high-
est dose level; this allowed the team to consider the 
possible outcomes from recruiting another cohort, and 
the associated pros and cons (e.g., additional informa-
tion from this cohort versus the additional resource 
required to recruit). Given the model had aligned with 
their intuitions to that point, they could put faith in 
the outcomes of these what-if scenarios, and were able 
to see a quantification of toxicity estimates and their 
uncertainty rather than relying on potentially differ-
ent interpretations of what, for example, a DLT in the 
treatment arm might mean for their decision making.

Conclusion
Model-based designs for dose-finding studies have 
important theoretical and practical advantages over rule-
based methods, and we encourage those designing dose-
finding studies to invest time in learning these methods. 
We hope that this paper serves to address many of the 
questions that may arise when using such designs – both 
during the design and implementation – so that we can 
encourage others to consider using these methods, to 
improve the accuracy when determining suitable doses 
for future efficacy testing.
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