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Foreword

The 28-year term of Martin Jones as the first George 
Pitt-Rivers Professor of Archaeological Science wit-
nessed, and in part created, a transformation in the 
fields of environmental and biomolecular archaeol-
ogy. In this volume, Martin’s colleagues and students 
explore the intellectual rewards of this transformation, 
in terms of methodological developments in archaeo-
botany, the efflorescence of biomolecular archaeology, 
the integration of biological and social perspectives, 
and the exploration of archaeobotanical themes on 
a global scale. These advances are worldwide, and 
Martin’s contributions can be traced through cita-
tion trails, the scholarly diaspora of the Pitt-Rivers 
Laboratory and (not least) the foundations laid by 
the Ancient Biomolecules Initiative of the Natural 
Environment Research Council (1989–1993), which he 
chaired and helped create. As outlined in Chapter 6, 
Martin’s subsequent role in the bioarchaeology pro-
gramme of the Wellcome Trust (1996–2006) further 
consolidated what is now a central and increasingly 
rewarding component of archaeological inquiry. 
Subsequently, he has engaged with the European 
Research Council, as Principal Investigator of the 
Food Globalisation in Prehistory project and a Panel 
Chair for the Advanced Grant programme. As both 
practitioner and indefatigable campaigner, he has 
promoted the field in immeasurable ways, at critical 
junctures in the past and in on-going capacities as a 
research leader. 

The accolades for Martin’s achievements 
are many, most recently Fellowship of the British 
Academy. Yet it is as a congenial, supportive—and 
demanding—force within the Pitt-Rivers Laboratory 
that the foundations of his intellectual influence were 
laid. Here, each Friday morning, the archaeological 
science community would draw sticks to decide 
who would deliver an impromptu research report 
or explore a topical theme. Martin is among the 
most laid-back colleagues I have worked with, yet 
simultaneously the most incisive in his constructive 
criticism. As a provider of internal peer-review he 
was fearless without being unkind. The themed Pitt-
Rivers Christmas parties were equally impactful—on 
one occasion Alice Cooper appeared, looking ever so 
slightly like our professor of archaeological science.

Martin’s roles as a research leader extended to 
several stints as head of the Department of Archaeol-
ogy, chairing the Faculty of Archaeology and Anthro-
pology and serving as a long-term member of the 
Managing Committee of the McDonald Institute for 
Archaeological Research. Having started his profes-
sional career as an excavation-unit archaeobotanist 
in Oxford, he was a long-standing proponent of the 
highly successful Cambridge Archaeological Unit. In 
the wider collegiate community, he is a Fellow (and 
was Vice-Master) of Darwin College and was the staff 
treasurer of the Student Labour Club. In all roles he 
fought valiantly and often successfully for the interests 
of his constituency. His capacity to fight for deeply 
held priorities while recognizing the value of diverse 
perspectives was of utmost importance. His nostalgic 
enthusiasm for the debate with archaeological science 
that was engendered by the post-processual critique 
is one signal of an underlying appreciation of plural-
ity. His active support for the recent merger of the 
Divisions of Archaeology and Biological Anthropol-
ogy, within our new Department of Archaeology, is 
another. As a scientist (Martin’s first degree, at Cam-
bridge, was in Natural Sciences) he values the peer-
reviewed journal article above all scholarly outputs, 
yet has authored as many highly regarded books as 
a scholar in the humanities. His Feast: Why humans 
share food has been translated into several languages 
and won Food Book of the Year from the Guild of 
Food Writers. He views academia and society as a 
continuum, campaigning for archaeobotanical con-
tributions to global food security (e.g. by promoting 
millet as a drought-resistant crop) and working with 
world players such as Unilever to encourage archaeo-
logically informed decisions regarding food products. 

That Martin’s achievements and influence merit 
celebration is clear. That his colleagues and students 
wish to honour him is equally so. Yet does the McDon-
ald Conversations series publish Festschriften? This is 
a semantic question. As series editor I am delighted to 
introduce a collection of important papers regarding 
the past, present and future of archaeobotany, rep-
resenting its methodological diversity and maturity. 
That this collection concurrently pays respect to a 
treasured colleague is a very pleasant serendipity.

Dr James H. Barrett
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Chapter 16

The Adoption of Wheat and Barley as Major Staples in 
Northwest China During the Early Bronze Age

Haiming Li & Guanghui Dong

Introduction

The history and impact of food globalization in prehis-
tory has been increasingly contested and discussed in 
recent years (Dong et al. 2017b; Jones et al. 2011; 2016; 
Liu & Jones 2014). It is an important process that can 
be described as bringing the Fertile Crescent ‘Neolithic 
founder crops’ to the East and Chinese domesticates 
such as millets to the West (Diamond & Bellwood 2003; 
Dong et al. 2017a; Hunt et al. 2008; Jones & Liu 2009; 
Liu et al. 2016; Spengler et al. 2014; Stevens et al. 2016). 
With the application of plant flotation technology and 
ancient crop direct dating in the last 10 years, the chro-
nology and pathways of these prehistoric agricultural 
expansions have become increasingly clear (e.g. Jones 
et al. 2011). For example, previous research shows 
that broomcorn millet (Panicum miliaceum) spread 
to the western side of Eurasia possibly during the 
sixth and fifth millennia bc (Hunt et al. 2008), while 
updated research based on single grain radiocarbon 
analyses indicated that both Chinese and southwest 
Asian crops were present in the late third millennium 
bc (directly dated 2461–2154 cal. bc) in Begash in east 
Kazakhstan (Liu et al. 2016; Motuzaite-Matuzeviciute 
et al. 2013; 2015; Spengler 2015). In addition, a recent 
archaeobotanical study suggests that the eastward 
spread of free-threshing wheat (Triticum cf. aestivum) 
and naked barley (Hordeum vulgare) were through dif-
ferent routes, wheat following a northern route (via 
the Inner Asian mountain corridor) and barley passing 
through more a southerly route (south of the Tibetan 
Plateau) into China from southwest Asia during the 
late third and early second millennia bc (Frachetti 
2012; Frachetti et al. 2010; Liu et al. 2016; 2017). These 
studies provide valuable clues for reconstructing the 
timelines and routes of agricultural interactions across 
Eurasia in prehistoric times. However, the specific tim-
ing in which these foreign crops replaced local staple 
foods, and the driving forces of these transformations, 
remains unclear. 

Although the timelines and routes of the east-
ward movement of wheat and barley into China are 
controversial, it is almost certain that wheat was 
introduced into Shangdong between 2500 and 2000 
bc (Jin et al. 2011), and wheat and barley dispersed 
into northwest China around 2000 bc (Dong et al. 
2017a; Liu et al. 2016). However, the time taken for 
these exotic crops to become the primary staples 
in China varies from region to region. For example, 
stable isotopic and radiocarbon data show that 
wheat became a staple food in the Central Plains by 
500 bc (Atahan et al. 2014), while wheat and barley 
became important staples in northwest China dur-
ing the Early Bronze Age (Atahan et al. 2011; Ma 
et al. 2016; Zhang 2006). The archaeobotanical and 
stable isotope evidence indicates that wheat was 
introduced into the Hexi Corridor around 2000 bc 
(Dong et al. 2017a; Liu et al. 2014; Zhao 2009; Zhou 
et al. 2016), and rapidly replaced millet to become 
a staple crop after 1700 bc (Zhou et al. 2016). Stable 
carbon and nitrogen isotopic data also suggest that 
human diets shifted from C4 (presumably foxtail 
millet and broomcorn millet) to mixed C4 and 
C3 (probably through the inclusion of wheat and 
barley into the diet) in the northeastern Tibetan 
Plateau (NETP) after 1600 bc (Ma et al. 2016), but 
a detailed history of the adoption of these exotic 
crops as major staples in the area remains unclear, 
due to the absence of systematic archaeobotanical 
study from excavation of Early Bronze Age sites.

In this chapter, we present the results of 
archaeobotanical analysis and direct radiocarbon 
dates of charred crop seeds unearthed from the exca-
vation of Lijiping site in the Hehuang basin of NETP, 
and compare the results with previous archaeobo-
tanical analyses and published radiocarbon dates in 
the NETP and the adjacent Hexi Corridor, to explore 
when and where wheat and barley were accepted 
as staple crops in northwest China, as well as the 
influencing factors behind the process. 
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Study area

The Hehuang basin (Fig. 16.1) is located on the NETP 
and connects the Tibetan Plateau, Hexi Corridor and 
the Loess Plateau. This area covers the upper reaches 
of the Yellow River and the Huangshui and its tribu-
taries. The climate of this region is characterized as 
semi-humid and semi-arid. The average annual pre-
cipitation in the Hehuang basin is 240–600 mm and 
decreases from southeast to northwest. The mean 
annual temperature varies between 2.2°C and 10.6°C 
with an average annual temperature of 5.8°C. Major 
crops in this region today include wheat, barley, maize, 
potato and broad bean. 

The Lijiaping site (35°33'55.6"N, 103°13'5.4"E) is 
located in southeast Linxia county with an altitude of 
2508 m a.s.l (Fig. 16.1). It is an important cultural relic 
protection unit of Gansu Province in China. Linxia 
county experiences a continental monsoon climate 
today, with a mean annual temperature of 5.9°C, mean 
annual precipitation of 631 mm and an annual frost-
free period of about 150 days. A total of 54 Neolithic 
and Bronze Age sites were found in Linxia county, 43 
of which are Qijia sites (Bureau of National Cultural 
Relics 2011). The Lijiaping site was excavated in 2011 
by Gansu Province Institute of Cultural Relics and 
Archaeology and the Museum of Linxia County. The 
site covers an area of 210 sq. m, including four trial pits 
of 5×5 sq m (T1, T2, T3, T6), two trial pits of 5×10 sq. 
m (T4, T5) and a trial trench of 2×5 sq. m (G1). Plenty 
of pots and pottery sherds that display typical Qijia 

characteristics (such as double-ear jars), stone artefacts 
and bones were excavated. Many ash pits and trenches 
were found during the excavation of the site.

Methods

In total, 13 samples were collected from ash pits that 
were found in the excavation of the Lijiaping site, 
which were then floated by washover flotation in a 
bucket. Carbonized remains were collected by a sieve 
with #80 mesh (aperture size of 0.2 mm), then dried in 
the shade and sorted. Charred plant seeds were iden-
tified in the Paleoethnobotany Laboratory, Institute 
of Archaeology, Chinese Academy of Social Sciences.

Two charred seed samples were dated via accel-
erator mass spectrometry (AMS) at Peking University 
in Beijing, China, and another charred seed sample 
was dated via the AMS method by Beta Analytic, 
Miami, USA. Results were calibrated using Calib (v. 
7.0.2; Stuiver & Reimer 1993) and the IntCal13 calibra-
tion curve (Reimer et al. 2013). All ages are reported 
as ‘cal. bc’. 

Results

Chronology
All of the radiocarbon dates from Lijiaping are listed 
in Table 16.1, including previously published dates. 
The three calibrated 14C ages from remains of barley 
and wheat at the Lijiaping site reveal that the age of 
the site is mainly distributed between c. 1700 cal. bc 
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Figure 16.1. Distribution of 
prehistoric sites with archaeobotanical 
analysis and AMS dates in the NETP 
and Hexi Corridor.  
(1) Huoshiliang; (2) Ganggangwa;  
(3) Huangniangniangtai;  
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Site Lab. no. Dating  
material

Radiocarbon 
age (bp)

Calibrated age (cal bc; 
Reimer et al. 2013) Location Reference
1 sigma 2 sigma

Lijiaping

BA120213 Barley seed 3370±35 1729–1623 1748–1536 Hehuang Basin This study

BA120214 Barley seed 3380±35 1733–1630 1759–1561 Hehuang Basin This study

Beta-324458 Wheat seed 3240±30 1598–1453 1610–1440 Hehuang Basin This study

Ajiacun Beta-314717 Foxtail millet 
seed 3640±30 2106–1950 2132–1920 Hehuang Basin Chen et al. 2015

Zhongtan Beta-303694 Foxtail millet 
seed 3640±30 2106–1950 2132–1920 Hehuang Basin Chen et al. 2015

Gongshijia Beta-303689 Barley seed 3620±30 2023–1945 2117–1894 Hehuang Basin Chen et al. 2015

Zhaojiazhuang BA110904 Foxtail millet 
seed 3595±25 2010–1913 2022–1891 Hehuang Basin Chen et al. 2015

Wayaotai BA120199 Broomcorn 
millet seed 3410±30 1745–1665 1864–1627 Hehuang Basin Chen et al. 2015

Jinchankou BA110913 Barley seed 3595±20 2008–1917 2020–1892 Hehuang Basin Chen et al. 2015

Huangniangniangtai OZK418 Wheat seed 3570±60 2021–1781 2126–1746 Hexi Corridor Zhou et al. 2012

Huoshiliang OZK603 Wheat seed 3635±45 2118–2097 2135–1894 Hexi Corridor Dodson et al. 2013

Ganggangwa OZK658 Wheat seed 3560±50 2008–1780 2029–1754 Hexi Corridor Dodson et al. 2013

Xichengyi

QAS1311 Wheat seed 3430±25 1754–1690 1873–1660 Hexi Corridor Zhang et al. 2015

QAS1312 Wheat seed 3460±25 1872–1699 1879–1693 Hexi Corridor Zhang et al. 2015

QAS1314 Wheat seed 3390±30 1736–1643 1750–1620 Hexi Corridor Zhang et al. 2015

QAS1315 Wheat seed 3355±30 1685–1619 1739–1535 Hexi Corridor Zhang et al. 2015

QAS1316 Wheat seed 3385±25 1732–1642 1743–1624 Hexi Corridor Zhang et al. 2015

QAS1317 Wheat seed 3400±25 1740–1663 1749–1631 Hexi Corridor Zhang et al. 2015

Shaguoliang
OZK668 Wheat seed 3450±60 1877–1689 1915–1623 Hexi Corridor Dodson et al. 2013

OZK669 Wheat seed 3390±50 1744–1626 1875–1533 Hexi Corridor Dodson et al. 2013

Huoshaogou OZK672 Wheat seed 3430±50 1870–1663 1881–1628 Hexi Corridor Dodson et al. 2013

Donghuishan

OZK653 Wheat seed 3260±45 1611–1498 1629–1436 Hexi Corridor Zhou et al. 2012

OZK654 Wheat seed 3405±50 1754–1630 1879–1565 Hexi Corridor Zhou et al. 2012

OZK655 Wheat seed 3425±40 1859–1664 1877–1629 Hexi Corridor Zhou et al. 2012

OZK656 Wheat seed 3410±50 1764–1635 1881–1611 Hexi Corridor Zhou et al. 2012

Table 16.1. Calibrated radiocarbon data in the Hehuang Basin and Hexi Corridor.

and 1500 cal. bc (1 sigma). According to the results 
of the radiocarbon dates, the age of these sites in 
the NETP and Hexi Corridor can be divided into 
two periods (Figs 16.2 & 16.3; Table 16.1): the first 
period (2000–1700 bc) including the sites Huoshiliang, 
Ganggangwa, Huangniangniangtai, Xichengyi, Lajia, 
Ajiacun, Zhongtan, Zhaojiazhuang, Gongshijia and 
Jinchankou, and the second period (1700–1500 bc) 
including the sites Shaguoliang, Huoshaogou, Dong-
huishan, Xichengyi, Wayaotai and Lijiaping (Chen et 
al. 2015; Dodson et al. 2013; Zhang et al. 2015; Zhou 
et al. 2012).

Carbonized plant remains from Lijiaping site 
We identified 3402 charred grains in 13 samples taken 
during the excavation of the Lijiaping site in 2011 (Fig. 

16.4; Table 16.2). Remains of four crops were identi-
fied, including 1989 foxtail millet (Setaria italica), 561 
broomcorn millet (Panicum miliaceum), 286 barley 
(Hordeum vulgare) and 8 wheat (Triticum aestivum) 
grains, accounting for 58.4, 16.5, 8.4 and 0.2 per cent 
of the total identified charred plant seeds, respectively. 
The ubiquities of charred foxtail millet, broomcorn 
millet, barley and wheat in the 13 floated samples 
are 100, 92.31, 84.62 and 23.08 per cent, respectively. 
Seventeen other grass seed types were also present 
in those samples; 388 bristlegrass (Setaria sp.) seeds 
and 79 grains belonging to the pea family (Legumi-
nosae) were also identified in seven and nine samples, 
respectively, which account for 11.41  and 2.32 per 
cent of total identified charred grains, respectively. 
In addition, 91 charred grains were identified as a 
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Figure 16.2. The actual yield 
percentage of the sites in the NETP and 
Hexi Corridor.

Figure 16.3. Sum of the actual 
yield percentage of the sites in the 
NETP and Hexi Corridor. (A) Sum 
actual production of Huoshiliang, 
Ganggangwa, Huangniangniangtai 
and Xichengyi; (B) Sum actual 
production of Shaguoliang, 
Huoshaogou, Donghuishan 
and Xichengyi; (C) Sum actual 
production of Lajia, Ajiacun, 
Zhongtai, Zhaojiazhuang, Gongshijia 
and Jinchankou; (D) Sum actual 
production of Lijiaping and Wayaotai.
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variety of taxa. Some of those grains can be assigned 
to the genus/species level, such as Avena sp., Herba 
Agastaches, Peganum harmala (esfand), Chenopodium sp., 
Salsola sp. and Rubus sp., and the others can be only 
assigned to the family, such as Gramineae, Violaceae, 
Polygonaceae and Cruciferae. Results of the archaeo-
botanical identification are listed in Table 16.2, with 
images presented in Figure 16.4.

Lijiaping and contemporary sites 
Between 2000 and 1000 bc, there was a global climatic 
transition from the Middle Holocene Megathermal to 
the relatively cold Late Holocene (Wanner et al. 2008). 
The monsoon system in Asia weakened, which led to 
many local agricultural systems becoming unstable 
and eventually changing in different parts of the Old 
World. The Hehuang basin of NETP and Hexi Corri-
dor are located on the margin of the Asian monsoon 
region and are highly sensitive to climate change 
(Chen et al. 2010; Wu 1980). Over the last few decades, 
systemic chronological and archaeobotanical studies 

have been carried out at Lijiaping and contemporary 
sites from the NETP and Hexi Corridor dating to 
2000–1000 bc (Chen et al. 2015; Yang et al. 2016; Zhang 
et al. 2013; Zhou et al. 2016), which can give us a clear 
understanding of the transformation time of agricul-
tural structures in these two regions. According to 
the results of radiocarbon dating of these sites in the 
NETP and Hexi Corridor, combined with the actual 
yield percentage calculated by Zhou et al. (2016), in the 
study area, the different patterns of agricultural trans-
formation in the Hehuang basin of NETP and Hexi 
Corridor can be observed (Figs 16.2 & 16.3). Between 
c. 2000 and 1700 bc, in both the Hexi Corridor and in 
the NETP, the actual yield percentages of broomcorn 
millet and foxtail millet are over 70 per cent in all sites, 
which indicates that millets were the dominant crop; 
while from 1700 to 1500 bc, wheat began to appear as 
an important crop in Hexi Corridor and barley was 
the dominant crop in the NETP. In the Hexi Corridor, 
wheat makes up the largest percentage of the pro-
duction ratio, up to 58 per cent. However, the largest 

Sample no.
LM 
LT2 
H1

LM 
LT3 
H2

LM 
LT6 
H1 1O

LM 
LT6 
H1 2O

LM 
LT6 
H1 3O

LM 
LT6 
H1 4O

LM 
LT6 
H1 5O

LM 
LT6 
H2

LM 
LT6 
H3

LM 
LT6 
H4

LM 
LT4 
G1a

LM 
LT4 
G1b

LM 
LT5 
G1

Total Unearthed 
probability

Flotation quantity (L) 9 9 11 15 10 9 10 10 9 12 8 7 8 127

Setaria italica 29 1 378 191 241 497 43 96 15 399 54 8 37 1989 100%

Panicum miliaceum 3 48 82 104 215 25 23 2 28 7 3 21 561 92%

Hordeum vulgare 1 60 22 27 19 25 40 65 1 1 25 286 85%

Triticum aestivum 2 1 5 8 24%

Avena fatua L. 3 12 15 15%

Setaria sp. 1 11 10 25 337 1 3 388 54%

Gramineae 2 2 4 15%

Herba Agastaches 1 2 1 4 24%

Leguminosae 2 8 6 19 27 5 1 10 1 79 69%

Hippophae 1 1 8%

Peganum harmala L. 1 1 8%

Violaceae 2 3 5 15%

Malvaceae 1 1 1 3 23%

Compositae 1 1 8%

Polygonaceae 1 1 2 15%

Chenopodiaceae 2 1 3 15%

Chenopodium L. 1 4 2 24 31 31%

Salsola L 5 3 8 15%

Rosaceae 2 1 4 7 24%

Rubus 1 1 1

Cruciferae 5 5 5

Unknown 4 18 4 3 29 29

Total 35 2 523 336 405 840 438 165 18 508 65 12 84 3431

Table 16.2. Charred seeds from the Lijiaping site, Linxia county, Gansu Province, China.



194

Chapter 16

percentage of the production ratio in the NETP was 
barley, up to 57 per cent (Fig. 16.3).

Discussion

The stability of agricultural systems in various ecologi-
cal environments is critical for understanding ancient 
cultural development in the context of a changing 

climate (Riehl 2009). Studies of the structural changes 
in agricultural systems, combined with accurate 
radiocarbon dating, may help us better understand 
the adaptation strategies of ancient human societies 
worldwide. Based on the archaeobotanical and radio-
carbon dating results from Lijiaping, barley was the 
most important cultivated crop at the site between 
c. 1700 and 1500 cal. bc. Other utilized crops include 

Figure 16.4. Carbonized plant seeds collected from Lijiaping Site. (a) Foxtail millet (Setaria italica); (b) Broomcorn 
millet (Panicum miliaceum); (c, d, e) Barley (Hordeum vulgare); (f, g) Wheat (Triticum aestivum); (h) Mallow 
family (Malvaceae); (i) Bristlegrass (Setaria sp.).
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production is vulnerable to temperature drops (Brink 
2006; Cappers et al. 2010; Kamkar et al. 2006), which 
occurred during this period (e.g. An et al. 2005). Barley 
and wheat are more resistant to lower temperatures 
than millets (Klepper et al. 1998; Saseendran et al. 2009; 
Stoskopf 1985) and were likely quickly accepted by the 
local people as staple cereal grains.

Why did wheat become a staple crop after 1700 
bc and rapidly replace millet after 200 to 300 years 
in the Hexi Corridor, while barley was the dominant 
crop in the NETP between 1700 and 1500 bc? This 
spatial difference might be caused by temperature 
decline and different hydrothermal condition in 
these two areas. As we all know, millets are frost-
sensitive crops which need to grow in a warmer and 
wetter environment (Chai 1999; Guedes & Butler 
2014; Wang 1994). The NETP is an extremely harsh 
environment with high altitude, low temperature 
and low oxygen level, which creates difficult condi-
tions for plants and human to survive. More impor-
tantly, multiple climate records have demonstrated 
that the climate was wetter and warmer during 
the middle Holocene, and became cooler and drier 
after 2000 bc in Gansu and Qinghai provinces (An 
et al. 2004; 2005; Chen et al. 2015; Marcott et al. 2013; 
Wang et al. 2005; Zhao & Yu 2012). Therefore, millet 
production might have decreased, since it can hardly 
survive in such cooler and drier climate conditions 
after 2000 bc. However, barley has a longer growing 
season and is more frost-hardy than millets (Páldi 
et al. 2001). The climate model of Guedes (2015) also 
shows that growing degree days of millets has higher 
temperature requirements than wheat and barley 
(Guedes 2015). Thus, the low-temperature tolerance 
of barley enables it to be cultivated in higher-altitude 
regions such as the NETP. Finally, barley replaced 
millet as a staple crop between 1700 and 1500 bc 
in the NETP. Recent archaeobotanical studies also 
found that barley-based agriculture facilitated per-
manent prehistoric human settlements in the areas 
above 2500 masl after 1600 bc in the NETP, where 
temperatures are lower (Chen et al. 2015; Dong et 
al. 2016). The plant macrofossil analysis results also 
suggest that humans were heavily reliant on barley-
based agriculture in northeast Qinghai province 
during the Kayue culture period (1600–500 bc; Wang 
2012; Zhang & Dong 2017; Zhao 2010). Besides, the 
optimal (wetter and warmer) climate during the 
middle Holocene might have led the population to 
grow rapidly in the western Loess Plateau (Bureau 
of National Cultural Relics 1996; 2011; Ma et al. 2016; 
Zhou et al. 2016). The large population might have 
migrated from the western Loess Plateau to the NETP 
when the climate became cooler and drier after 2000 

foxtail millet, broomcorn millet and wheat. As shown 
in Figure 16.2, barley comprised the largest proportion 
of the production ratio in the Lijiaping site, up to 57 
per cent, whereas the actual yield percentage of millets 
and wheat only comprise 43 per cent in total. Another 
macrofossil analysis also indicated that barley was the 
primary cultivated crop in the NETP from 1700 bc to 
1500 bc (Chen et al. 2015). Additionally, stable isotopic 
evidence also suggested that more C3 foods (probably 
wheat, barley and animals fed with C3 foods) were 
added to human diets after 1600 bc in Gansu and 
Qinghai provinces (Ma et al. 2016). In contrast, millets 
were the main crops in most of the sites in the eastern 
Gansu province during the whole Qijia cultural period 
(2300–1500 bc: Jia et al. 2012; Wang 2012; Yang 2014;  
Zhou et al. 2011). 

Compared with the Hehuang basin in the NETP, 
wheat-based agriculture was the primary subsistence 
strategy in the Hexi Corridor between 1700 and 1500 
bc (Fig. 16.2; Fan 2016; Flad et al. 2010; Zhou et al. 2016). 
For example, the actual yield percentages of wheat 
in Shahuoliang, Huoshaogou, Donghuishan and 
Xichengyi are 65, 83, 68 and 42 per cent, respectively 
(Fig. 16.2; Zhou et al. 2016). However, whether in the 
NETP or in the Hexi Corridor, millets dominate the 
charred plant assemblages between 2000 and 1700 bc 
(Fig. 16.2). For instance, millets comprise 97, 74, 83 and 
100 per cent of the production ratio at Huoshiliang, 
Ganggangwa, Huangniangniangtai and Xichengyi in 
the Hexi Corridor, respectively (Fig. 16.2). Foxtail and 
broomcorn millet also remained the main crops at all 
six sites in the NETP (Fig. 16.2). 

To describe the crop assemblage in these two 
regions more clearly, we summarized the crops of all 
sites in the same area in one pie chart (Fig. 16.3). It 
can be seen very clearly that barley and wheat make 
up the largest percentage of the production ratio in 
the NETP and Hexi Corridor between 1700 and 1500 
bc, up to 57 and 58 per cent, respectively (Fig. 16.3), 
whereas between 2000 and 1700 bc, the actual yield 
percentage of millets is 97 per cent in the Hexi Cor-
ridor, accounting for 95 per cent in the NETP. Stable 
carbon isotope research from these two areas also 
shows that C4-type millets were the dominant food 
from 2000 to 1700 bc (Atahan et al. 2011; Ma et al. 
2016). Therefore, we can conclude that humans had 
adopted barley and wheat as the primary staples in 
the NETP and Hexi Corridor, respectively, between 
1700 and 1500 bc. But prehistoric people in these two 
regions mainly engaged in the cultivation of millet 
crops from 2000 bc to 1700 bc. In brief, the agriculture 
structure changed significantly in the NETP and Hexi 
Corridor around 1700 bc. The impetus for this change 
is likely a response to changes in the climate, as millet 
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bc (Chen et al. 2015). However, the yields of wheat 
and naked barley are higher than millets (Dong & 
Zheng 2006), and barley is a crop that is more suit-
able for growth in lower temperatures than wheat 
(Klepper et al. 1998; Saseendran et al. 2009; Stoskopf 
1985). As a result, the low yield of millets may have 
been inadequate to feed large populations, and led 
to barley becoming a staple crop in the NETP.

In the Hexi Corridor, recent research has found 
that its climate and landscape environment were 
similar to the Near East (Zhou et al. 2016). As men-
tioned above, compared to rain-fed millet cultivation, 
the yields of wheat and naked barley are higher 
(Dong & Zheng 2006). Meanwhile, wheat is a C3-type 
plant, and water supply is the most important factor 
for maintaining its high yield (Klepper et al. 1998; 
Saseendran et al. 2009). In contrast to the valley and 
hilly regions in most parts of NETP, the oasis regions 
of the Hexi Corridor have a lot of flat areas (Zhou et 
al. 2016). Water supply is dependent upon irrigation 
by rivers, and farmlands can be easily irrigated via 
access to shallow underground water supplies in 
the oasis (Zhou 2002). Therefore, these flat lands in 
the Hexi corridor are better suited for the cultivation 
of wheat than barley. Moreover, bronze mining and 
smelting were introduced to the Hexi Corridor during 
the Bronze Age and developed significantly (Dodson 
et al. 2009; 2013; Yang et al. 2016; Zhang et al. 2017). 
The development of mining and smelting requires an 
external labour force and a food supply. In addition, 
based on the results of the Second National Archaeo-
logical Survey, the number of sites in the Hexi Corri-
dor is large, which shows the high intensity of human 
settlement during the Early Bronze Age (Bureau of 
National Cultural Relics 2011). These high-intensity 
human settlements require more food supplies in 
this area. Hence, high-yield wheat might have been 
chosen to meet the labour force needed in the bronze 
mining and smelting industry, and consequently 
replaced traditional lower-yield millet agriculture in 
the Hexi Corridor after 1700 bc.

In summary, cooler and drier climate conditions 
after 2000 bc, as well as the characteristics of barley’s 
low-temperature tolerance, promoted the cultivation 
of barley in the NETP between 1700 and 1500 bc. The 
easily irrigated oasis flat land in the Hexi Corridor 
and development of a bronze mining and smelting 
industry enabled people to choose high-yield wheat 
agriculture from 1700 bc to 1500 bc. The decrease in 
temperature after 2000 bc and the different hydrother-
mal conditions in different regions may be the two 
key factors contributing to the various agricultural 
structures in the NETP and Hexi Corridor.

Conclusion

Archaeobotanical analysis and radiocarbon dating 
from the excavation of the Lijiaping site suggest that 
humans mainly cultivated barley, and supplemented 
this with millet and wheat during the period c. 1700–
1500 bc. Combined with previous archaeobotanical 
studies in the NETP and Hexi Corridor, we argue that 
humans adopted barley and wheat, respectively, in 
these two areas approximately 300 years later than the 
introduction of these two exotic crops to northwest 
China around 2000 bc. The evident cooling trend 
in the Early Bronze Age may have led to unstable 
production of millets, which are sensitive to lower 
temperatures. The rapid transition from rain-fed 
agriculture to farming mainly based on the cultiva-
tion of cold-tolerant crops, and the spatial variation 
in adoption of barley and wheat, are likely a result 
of different hydrothermal conditions in the Hexi Cor-
ridor and the NETP.
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