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Abstract 

Hyperpolarization of 13C-labeled substrates can increase their 13C NMR signal 

by more than 10,000-fold, which has allowed magnetic resonance imaging (MRI) of 

metabolic reactions in vivo. This has already provided a unique insight into the 

dysregulated metabolic pathways and microenvironment of tumors. Perhaps the best 

known of the cancer-associated metabolic abberations is the Warburg effect, which 

has been imaged in patients using hyperpolarized [1-13C]pyruvate. In clinical 

oncology there is a requirement to diagnose tumors earlier, better determine their 

aggressiveness and prognosis, identify novel treatment targets and detect response 

to treatment earlier. Here we consider some of the hyperpolarized substrates that 

have been developed and have the potential to meet these requirements and 

become the precision imaging tools of the future.  

 
Introduction 
 

For most cancers imaging is important for diagnosis, prognosis, guiding 

treatment and monitoring subsequent response.  Computed tomography (CT) and 

magnetic resonance imaging (MRI) give anatomical information, but provide limited 

information about tumor biology.  As personalized oncology becomes a reality, the 

development of functional imaging techniques is required to complement the range 

of emerging genetic and molecular tests.  

Warburg’s observation that tumor cells preferentially metabolize glucose to 

lactate in normoxia, rather than oxidize it in the TCA cycle, led him to falsely 

conclude that cancer was a metabolic disease caused by mitochondrial dysfunction 

[1].  Remarkably it took another 46 years for the first proto-oncogene, SRC, to be 

discovered, leading to the realization that cancer is a disease resulting from genetic 

mutation and instability [2]. We now know that some key metabolic pathways are 

under direct control of the most frequently mutated oncogenes and tumor suppressor 
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genes and, although the Warburg effect is a characteristic of many tumors, it is just 

one feature of the metabolic reprogramming that occurs and is required to support 

tumor growth [3,4]. 

Functional imaging techniques have been developed that non-invasively 

probe tissue biochemistry, many of which interrogate the dysregulated metabolic 

processes that are a hallmark of cancer [5]. A wide range of radiopharmaceuticals 

have been developed and employed clinically for use with positron emission 

tomography (PET) [6,7]. Whilst PET offers unrivalled sensitivity (in the femtomolar to 

picomolar range), the limitation is that the tracer and downstream metabolic products 

cannot be differentiated. Paradoxically, 1H or 13C magnetic resonance spectroscopy 

(MRS) are able to differentiate between metabolites but are limited by sensitivity [8]. 

 Dissolution dynamic nuclear polarization (DNP) of 13C labeled substrates can 

increase the signal-to-noise ratio in 13C magnetic resonance spectra and 

spectroscopic images by >104, permitting real-time spectroscopy or spectroscopic 

imaging of the injected substrate and its conversion to downstream metabolic 

products (Box 1).  Due to its position in the glycolytic pathway, favorable polarization 

levels and polarization lifetime, hyperpolarized [1-13C]pyruvate has been the most 

widely used substrate in pre-clinical studies and has also been used in clinical 

studies [9,10]. It is transported into cells by monocarboxylate transporters (MCTs) 

and in tumors is reduced predominantly to lactate, in the reaction catayzed by lactate 

dehydrogenase (LDH). [1-13C]alanine and 13C-bicarbonate are also detectable in 

smaller quantities following pyruvate transamination and decarboxylation, 

respectively [11-13].  Various hyperpolarized substrates have been used to study 

cancer metabolism (Table 1 and Fig. 1). There are several recent comprehensive 

reviews of hyperpolarized MRI [14-17]. We focus here on recent applications of 

hyperpolarized MRI in oncology, which in some cases have the potential for clinical 

translation. 

 

Box 1 
Dissolution Dynamic Nuclear Polarization (DNP)  
 Hyperpolarization can be achieved in a number of ways but DNP has been 

the most widely used.  Although it can in principle be used with any NMR-active 

nucleus the majority of studies have been performed with 13C-labeled molecules 

because of the relatively long polarization lifetime for this nucleus and the possibility 
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of measuring metabolic fluxes with 13C-labeled cell metabolites.  The 13C labeled 

substrate to be hyperpolarized is mixed with a stable radical and rapidly frozen to 

form a glass. At temperatures approaching 1 K, and in the presence of a strong 

magnetic field (> 3 Tesla), the electron spins on the radical are almost completely 

polarized. Excitation of the electron spin resonance by microwave irradiation results 

in transfer of the electron spin polarization to the nuclear spins.  The hyperpolarized 
13C-labeled metabolite is then brought rapidly to room temperature, with substantial 

retention of the nuclear spin polarization in a process that involves injection of a 

super-heated aqueous solvent (~450 K) [16,18]. After dissolution the polarization 

lasts from seconds to a few minutes, depending on the molecule and the position of 

the 13C nucleus within the molecule, with its half-life determined by the longitudinal 

relaxation time constant (T1). 
  

Screening, diagnosis and disease progression  
  
 Hyperpolarized imaging has already shown clinical diagnostic potential in a 

first-in-man study in prostate cancer [9]. An elevated [1-13C]lactate/[1-13C]pyruvate 

ratio was observed in tumor regions and in one patient a biopsy-proven tumor was 

identified by hyperpolarized imaging but not by multi-parametric 1H-MRI [9]. 

 In prostate cancer there is a requirement for new approaches to determine 

tumor aggressiveness. In men over sixty 30-70% are estimated to have prostate 

cancer but the vast majority require no treatment [19]. However, 30% of patients 

defined as being low-risk actually harbor higher-grade tumors that would benefit from 

early treatment [20]. As nearly 80% of cases present with localized disease [21], 

imaging with hyperpolarized [1-13C]pyruvate is a potentially useful tool for 

determining the aggressiveness of these tumors. In a recent study [1-13C]pyruvate 

was co-polarized with 13C-urea (an agent for imaging perfusion) and injected into a 

transgenic mouse model of prostate adenocarcinoma (TRAMP). Both agents 

differentiated high- and low-grade tumors, with high-grade tumors showing increased 

lactate labeling and reduced perfusion but higher vascular permeability and 13C urea 

washout [22].   

 At the other end of the cancer spectrum, pancreatic cancer has >90% 

mortality within 5 years of diagnosis, with early detection and surgery currently 

offering the only chance of survival [21].   In genetically engineered mouse models 
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[23,24] of pancreatic ductal adenocarcinoma the [1-13C]alanine/[1-13C]lactate ratio, 

following injection of  hyperpolarized [1-13C]pyruvate, was shown to decrease with 

disease progression [13]. Similarly, hepatocellular carcinoma has a mortality rate in 

excess of 95%, making it the second most common cause of cancer-mortality 

worldwide. However, localized tumors suitable for resection or ablation have a good 

prognosis [25]. Differentiation of small malignant tumors from benign tumors and 

cirrhotic liver is challenging but may be aided by metabolic imaging. In hepatoma 

cells glutamine uptake is 10-30 fold greater than in normal hepatocytes [26-28]. 

Following injection of hyperpolarized [5-13C]glutamine, [5-13C]glutamate could be 

detected in vivo in rat hepatomas but not in normal liver [29,30]. However, [5-
13C]glutamine does not polarize well and has a short T1, and although there are 

techniques that can improve these characteristics slightly [31], they may ultimately 

limit clinical translation.  

 While it is unrealistic to suggest population-based screening with any cross-

sectional imaging technique, let alone hyperpolarized MRI, it may be feasible for 

highly stratified groups, such as patients with hereditary cancer syndromes. The 

development of more sensitive and specific circulating biomarkers could also 

facilitate patient stratification prior to confirmation with imaging.  
 
Tumor phenotyping 
 
Isocitrate dehydrogenase (IDH) 
 Wild-type IDH catalyzes oxidative decarboxylation of isocitrate to α-

ketoglutarate (α-KG). The most common mutation of IDH in cancer leads to a 

neomorphic function and the reduction of α-KG to D-2-hydroxyglutarate (2-HG), a 

metabolite present in very low concentrations in normal tissue and which has been 

termed an oncometabolite because of its effects on epigenetic modifications and 

gene expression [4]. IDH1 (the cytosolic isoform) is mutated in >70% of low-grade 

gliomas and non-invasive determination of IDH1 mutational status would change the 

approach to surgical resection [32]. Hyperpolarized [2-13C]pyruvate allows 

visualization of TCA cycle metabolites and in IDH1 mutated cells there was reduced 

[5-13C]glutamate labeling because of down-regulation of pyruvate dehydrogenase 

activity [33,34]. [1-13C]2-HG has been observed in tumor models in vivo following 

injection of hyperpolarized [1-13C]α-KG [35] and [1-13C]glutamine [36]. 
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ɣ-glutamyl-transpeptidase (GGT) 
 GGT is bound to the outer aspect of the plasma membrane, where it 

catalyzes degradation of extracellular glutathione to its constituent amino acids 

(glutamate, cysteine and glycine), which can then be used for intracellular 

glutathione synthesis. GGT is over-expressed in a variety of tumors where it may 

have a role in progression, invasion and drug resistance [37]. Cleavage of 

hyperpolarized ɣ-glutamyl-[1-13C]glycine to [1-13C]glycine, catalyzed by GGT, was 

measured in normal rat organs [38]. The next step will be to determine whether 

tumor over-expression of GGT can be detected.  
 
Early Detection of Treatment Response 
  
 Early detection of treatment response could reduce the duration of ineffective 

therapies, decreasing costs and unnecessary side effects and facilitating an earlier 

switch to alternative treatments. Interim 18FDG-PET-CT scans after one or two 

cycles of chemotherapy is now standard of care for most lymphomas [39-41]. There 

is also emerging evidence that early response can be detected with 18FDG-PET in 

melanoma patients treated with the BRAF inhibitor vemurafenib or immune 

checkpoint inhibitors targeting CTLA-4 or PD1 [42-45]. However, overall there has 

been a reluctance to utilize 18FDG-PET for this purpose, with some studies reporting 

lack of efficacy and because of exaggerated fears over repeated ionizing radiation 

exposure [46] and the poorly understood metabolic “flare effect” [47-49]. 
 Hyperpolarized substrates avoid the use of ionizing radiation and, by using 

probes more specific than 18FDG for cancer metabolism or the chemotherapeutic 

being used, may be more sensitive to early therapy induced changes in metabolism. 

So far [1-13C]pyruvate has been the most thoroughly investigated hyperpolarized 

substrate for treatment response monitoring. Chemotherapy and radiotherapy have 

been observed to alter hyperpolarized [1-13C]pyruvate metabolism in numerous 

animal models, usually leading to a decrease in lactate labelling[11,50-56].  

Detection of treatment response in a prostate cancer patient was reported recently. 

Following six weeks of androgen deprivation therapy [1-13C]lactate was virtually 
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undetectable. With 1H-MRI, there were only small changes in the apparent diffusion 

coefficient of tissue water and tumor size [10].  

 However, a number of studies have failed to detect treatment response with 

[1-13C]pyruvate or shown that it is less sensitive than tumor size measurements [57-

59]. In these instances a different approach to response detection is required. 

Following injection of hyperpolarized [1,4 13C2]fumarate the detection of malate is a 

sensitive indicator of cell death [59,60]. Hydration of hyperpolarized [1,4 
13C2]fumarate to malate, catalysed by fumarase, is seen in areas of necrosis, where 

increases in cell membrane permeability improve cell uptake of fumarate and result 

in leakage of fumarase into the extracellular space [60]. 
  

Tumor Microenvironment 
 
pH 
 The acidic extracellular environment of tumors, which is often associated with 

tumor hypoxia, contributes to the malignant phenotype by upregulating signaling 

pathways promoting tumor growth, inflammation, angiogenesis and metastasis, 

whilst inhibiting immune cell activation, chemotherapeutic delivery to the tumor and 

radio-sensitivity [61]. 

 Injection of hyperpolarized 13C-bicarbonate results in the production of 13CO2 

and the extracellular pH and carbonic anhydrase activity can be determined from the 

H13CO3
–/13CO2 signal ratio [62,63]. Several hyperpolarized probes that exhibit pH-

dependent chemical shifts have also been described. 15N2-imidazole and several 
15N-pyridine derivatives have been hyperpolarized and tested in vitro with chemical 

shifts of up to 60 ppm per pH unit [64,65]. More recently [1,5-13C]zymonic acid has 

been used in vivo to image the pH of multiple tissues [66]. 

 
Redox Status 
 Tumors generally have elevated production of reactive oxygen species (ROS), 

which promote tumor development and resistance to therapy [67]. To regulate 

increased ROS production, antioxidant production is also increased and several 

hyperpolarized probes have been used to probe these regulatory mechanisms. [1-
13C]alanine has been used to measure lactate/pyruvate ratio as a surrogate for the 

NAD+/NADH ratio [68]. The pentose phosphate pathway (PPP) produces NADPH, 
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required by glutathione reductase to maintain levels of reduced glutathione, a key 

anti-oxidant. Flux through the PPP has been estimated in tumors by measuring [U-
2H, U-13C]glucose conversion to 6-phosphogluconate, a PPP intermediate [69,70] 

and recently the production of H13CO3
- was detected in mouse liver following 

injection of δ-[1-13C]gluconolactone [71].  Ascorbic acid (AA) combats oxidative 

stress by reducing ROS and in the process producing dehydroascorbic acid (DHA). 

DHA can then be reduced back to AA via glutathione or NADPH dependent 

reactions. Hyperpolarized [1-13C]dehydroascorbic acid and measurement of its 

reduction to [1-13C]ascorbic acid has been used to probe intracellular redox status in 

a number of animal models of cancer [72-74]. 

       
Technical Developments 
 

 The transient nature of hyperpolarization limits it use to metabolic events 

occurring on a timescale of seconds to minutes. Furthermore, each excitation 

required to produce a spectrum or image results in further depletion of the 

hyperpolarization. 3D imaging sequences have been described recently that have 

improved the nominal spatial resolutions in lactate and pyruvate images to ≤0.003 

cm3, with image acquisition times of <2 s [75,76].  Improved polarizers and injection 

protocols could improve the signal available initially [16,77] and rapid removal of the 

radical, which dramatically prolongs polarization lifetime, has been achieved using a 

number of different methods [78,79]. Provided the sample remains at low 

temperature and in a relatively high magnetic field T1s > 20 h are possible [78]. This 

would permit centralized substrate hyperpolarization followed by transport to multiple 

locations for clinical use, in a similar fashion to 18F-labeled PET tracers, dispensing 

with the requirement to have a hyperpolarizer in close proximity to the MRI scanner.  

 Transferring polarization from hyperpolarized 13C nuclei to spin-coupled 1H 

nuclei can be used to further enhance signal detection. Dynamic 1H imaging of 

lactate methyl protons following injection of [1-13C]pyruvate was recently 

demonstrated in vivo [80]. The resulting signal enhancements are likely to be greater 

at the lower magnetic field strengths used in the clinic. 
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PET-MRI 
 PET-MRI combines improved soft tissue contrast with the functional 

information provided by both PET and MRI and is likely to be of particular use where 

MRI is already the anatomical imaging technique of choice e.g. in brain, liver and 

prostate [81]. Simultaneous hyperpolarized 13C MRI and PET studies permit more 

extensive metabolic phenotyping of tumors, as already demonstrated in pre-clinical 

studies (Figure 2) [82-85]. 18FDG can be used to measure the first two steps of 

glycolysis, cell uptake via the glucose transporters and irreversible trapping after 

phosphorylation by hexokinase. Therefore the combination of 18FDG and [1-
13C]pyruvate may yield a single metric that estimates glucose uptake and its 

subsequent metabolism. For example, high 18FDG uptake and low [1-13C]lactate 

production may suggest that mitochondrial oxidation of glucose predominates, 

whereas high 18FDG uptake and high [1-13C]lactate labeling would be indicative of 

the Warburg effect. Studies so far have either demonstrated concordance between 
18FDG uptake and [1-13C]lactate production [83,85] or that hyperpolarized tracers 

can have improved tumor specificity when compared to 18FDG [82,84]. 

 

Conclusions 
 For a field still very much in its infancy a remarkable number of substrates 

have been hyperpolarized and have provided novel, pre-clinical insights into tumor 

metabolism in vivo. Hyperpolarized [1-13C]pyruvate has already entered clinical trials 

and other substrates will undoubtedly follow. The major weakness is the transient 

nature of the signal, limiting studies to fast metabolic reactions in pre-defined body 

regions. Therefore it is very unlikely that hyperpolarized substrates will replace 

nuclear medicine techniques for staging metastatic cancers. However, its great 

strength is the potential for kinetic measurements of multiple enzymatic processes 

providing functional data. For use as a clinical biomarker, these data must be 

sufficiently sensitive and specific to inform treatment decisions, prognosis, or monitor 

treatment response in ways that are not possible by using circulating biomarkers or 

other imaging modalities. If that proves to be the case then routine functional 

precision imaging using this technique could become a clinical reality.  
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Metabolite T1 (s) Polarization Measurable products Measures References 
[1-13C]pyruvate 40 (9.4 

T) 
>60% [1-13C]lactate, 13C 

bicarbonate, 1-
13C]alanine 

MCT expression, LDH, PDH 
and ALT activity, NADH 
availability 

[11,77] 

[1,4-13C2]fumarate 24 (9.4 
T) 

26 – 35% [1,4-13C2]malate Necrosis – leakage of 
fumarase from necrotic cells 
increases conversion of  [1,4-
13C2]fumarate to [1,4-
13C2]malate 

[60] 

[1-13C]lactate 45 (3 
T) 

7% [1-13C]pyruvate, [1-
13C]alanine, 13C-
bicarbonate 

MCT expression, LDH, PDH 
and ALT activity, NAD+ 
availability 

[86] 

[1-13C]alanine 66 (3 
T) 

25 [1-13C]pyruvate, [1-
13C]lactate 

NADH availability, LDH and 
ALT expression 

[68] 

[1-13C]α-
ketoglutarate 

52 (3 
T) 

16.3 ± 3% [1-13C]2-
hydroxyglutarate 

Mutant IDH expression, 
NADPH availability 

[35] 

[1-13C]glutamine 31 (1 
T) 

34.7 ±7% [1-13C]2-
hydroxyglutarate 

Mutant IDH expression [36] 

[5-13C]glutamine 16 (9.4 
T) 

5% [5-13C]glutamate Glutaminase activity, 
glutamine transport 

[29] 

[1-13C]glutamate 34 (9.4 
T) 

28% [1-13C]α-ketoglutarate ALT activity, pyruvate 
availability, glutamate transport 

[87] 

[U-2H, U-13C]glucose 9 (7 T) 15% [1-13C]lactate, [1-13C]6-
phosphogluconate, [2-

Glycolysis [70] 
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13C]dihydroxyacetone 
phosphate, 13C-
bicarbonate 
 

ɣ-glutamyl-[1-
13C]glycine 

30 (9.4 
T) 

5.4% [1-13C]glycine GGT activity [38] 

[1-13C]acetate 16.2 
(9.4 T) 

13% [1-13C]acetylCoA, [1-
13C]acetylcarnitine 

MCT expression, acetylCoA 
synthetase and carnitine 
acetyltransferase activity 

[88] 

 Table 1. The properties of some hyperpolarized subtrates that have been used in cancer studies. The T1 is the spin lattice 
relaxation time and is a measure of the polarization lifetime. The numbers in parentheses are the field strengths at which these 
relaxation times were measured.  Abbreviations: MCT, monocarboxylate transporter; LDH, lactate dehydrogenase; PDH, pyruvate 
dehydrogenase; ALT, alanine transaminase; IDH, isocitrate dehydrogenase; GGT, ɣ-glutamyltransferase.  
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Figure legends 

 

Figure 1. Metabolic processes targeted with hyperpolarized 13C-labeled 

metabolites. Color coding: pink – enzymes; yellow – hyperpolarized 13C-labeled 

substrates; green – measurable hyperpolarized 13C-labeled products; cyan – 

hyperpolarized 13C-labeled substrates and measurable products (depending on the 

substrate injected). Abbreviations: ALT – alanine transaminase; ASCTs – alanine, 

serine, cysteine transporters (there are also several other transporters that can 

transport glutamine into cells); BCAT – branched chain amino acid aminotransferase; 

CAIX – carbonic anhydrase 9; DCTs – dicarboxylate transporters; DHAR – 

dihydroascorbate reductase; GGT - ɣ-glutamyltransferase; GLDH – glutamate 

dehydrogenase; GLS – glutaminase; GLUTs – glucose transporters; GR – 

glutathione reductase; GSH – glutathione; GSSR – glutathione disulfide; IDH – 

isocitrate dehydrogenase; LDH – lactate dehydrogenase; MCTs – monocarboxylate 

transporters; PC – pyruvate carboxylase; PDH – pyruvate dehydrogenase; PPP – 

pentose phosphate pathway; SVCTs – sodium-ascorbate co-transporters. 
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Figure 2. Combined 18FDG-PET/CT and hyperpolarized [1-13C]pyruvate MRI. (a-

c) 3D CT bone reconstructions of a representative Colo205 tumor-bearing mouse 

with co-registered overlays of (a) 18FDG, (b) [1-13C]pyruvate and (c) [1-13C]lactate. (d 

– g) images from a single 2.5 mm thick axial slice. (d) T2-weighted fast spin echo 

image with overlaid with (e) 18FDG, (f) [1-13C]pyruvate and (g) [1-13C]lactate images. 
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