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We present some new and explicit error bounds for the approximation of distributions. The
approximation error is quantified by the maximal density ratio of the distribution Q to be
approximated and its proxy P . This non-symmetric measure is more informative than and
implies bounds for the total variation distance.

Explicit approximation problems include, among others, hypergeometric by binomial distri-
butions, binomial by Poisson distributions, and beta by gamma distributions. In many cases we
provide both upper and (matching) lower bounds.
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1. Introduction

The aim of this work is to provide new inequalities for the approximation of probability
distributions. A traditional measure of discrepancy between distributions P,Q on a space
(X ,A) is their total variation distance

dTV(Q,P ) := sup
A∈A

∣∣Q(A)− P (A)
∣∣.

Alternatively we consider the maximal ratio

ρ(Q,P ) := sup
A∈A

Q(A)

P (A)
,

with the conventions 0/0 := 0 and a/0 := ∞ for a > 0. Obviously ρ(Q,P ) ≥ 1 because
Q(X ) = P (X ) = 1. While dTV(·, ·) is a standard and strong metric on the space of all
probability measures on (X ,A), the maximal ratio ρ(Q,P ) is particularly important in
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situations in which a distribution Q is approximated by a distribution P . When ρ(Q,P ) <
∞, we know that

Q(A) ≤ ρ(Q,P )P (A)

for arbitrary events A, no matter how small P (A) is, whereas total variation distance
gives only the additive bounds P (A)± dTV(Q,P ).

Explicit values or bounds for ρ(Q,P ) are obtained via density ratios. From now on let
P and Q have densities f and g, respectively, with respect to some measure µ on (X ,A).
Then

ρ(Q,P ) = ess sup
x∈X

g(x)

f(x)
. (1)

The ratio measure ρ(Q,P ) plays an important role in acceptance-rejection sampling (von
Neumann, 1951): Suppose that ρ(Q,P ) ≤ C <∞. Let X1, X2, X3, . . . and U1, U2, U3, . . .
be independent random variables where Xi ∼ P and Ui ∼ Unif[0, 1]. Now let τ1 < τ2 <
τ3 < · · · denote all indices i ∈ N such that Ui ≤ C−1g(Xi)/f(Xi). Then the random
variables Yj := Xτj and Wj := τj − τj−1 (j ∈ N, τ0 := 0) are independent with Yj ∼ Q
and Wj ∼ Geom(1/C).

As soon as we have a finite bound for ρ(Q,P ), we can bound total variation distance
or other measures of discrepancy. The general result is as follows:

Proposition 1. Suppose that g/f ≤ ρ for some number ρ ∈ [1,∞).
(a) For any non-decreasing function ψ : [0,∞)→ R with ψ(1) = 0,∫

ψ(g/f) dQ ≤ Q({g > f})ψ(ρ).

(b) For any convex function ψ : [0,∞)→ R,∫
ψ(g/f) dP ≤ ψ(0) +

ψ(ρ)− ψ(0)

ρ
.

Both inequalities are equalities if g/f takes only values in {0, ρ}.

Under the assumptions of Proposition 1, the following inequalities hold true, with
equality in case of g/f ∈ {0, ρ}:
Total variation: With ψ(t) := (1− t−1)+, part (a) leads to

dTV(Q,P ) ≤ Q({g > f})(1− ρ−1). (2)

Kullback-Leibler divergence: With ψ(t) := log t, part (a) yields∫
log(g/f) dQ ≤ Q({g > f}) log ρ.

Hellinger distance: With ψ(t) := 2−1
(√
t− 1

)2
, part (b) leads to

1

2

∫ (√
f −√g

)2
dµ ≤ 1− ρ−1/2.
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Bounding via density ratios 3

Pearson χ2 divergence: With ψ(t) := (t− 1)2, part (b) yields∫
(g/f − 1)2 dP ≤ ρ− 1.

Inequality (2) implies that dTV(Q,P ) ≤ 1−ρ(Q,P )−1, and the latter quantity is easily
seen to be the mixture index of fit introduced by Rudas et al. (1994),

π∗(P,Q) := min
{
π ∈ [0, 1] : P = (1− π)Q+ πR for some distribution R

}
= min

{
π ∈ [0, 1] : P ≥ (1− π)Q on A

}
.

The remainder of this paper is organized as follows: In Section 2 we present an explicit
inequality for ρ(Q,P ) with Q being a hypergeometric and P being an approximating
binomial distribution. Our result complements results of Diaconis and Freedman (1980),
Ehm (1991) and Holmes (2004) for dTV(Q,P ).

In Section 3 we first consider the case of Q being a binomial distribution and P
being the Poisson distribution with the same mean. The corresponding ratio measure
ρ(Q,P ) has been analyzed previously by Christensen et al. (1995) and Antonelli and
Regoli (2005). Our new explicit bounds bridge the gap between these two works. As a
by-product we obtain explicit bounds for dTV(Q,P ) which are comparable to well-known
bounds from the literature. All these bounds carry over to multinomial distributions, to
be approximated by a product of Poisson distributions. In particular, we improve and
generalize approximation bounds by Diaconis and Freedman (1987). Indeed, at several
places we use sufficiency arguments similarly to the latter authors to reduce multivariate
approximation problems to univariate ones. Section 4 presents several further examples,
most of which are based on approximating beta by gamma distributions.

Most proofs are deferred to Section 5. In particular, we provide a slightly strengthened
version of the Stirling–Robbins approximation of factorials (Robbins, 1955) and some
properties of the log-gamma function. This part is potentially of independent interest.
As notation used throughout, we write [a]0 := 1 and [a]m :=

∏m−1
i=0 (a−i) for real numbers

a and integers m ≥ 1.

2. Binomial approximation of hypergeometric
distributions

Sampling from a finite population. First we revisit a result of Freedman (1977)
concerning sampling with and without replacement. For integers 1 ≤ n ≤ N let X =
{1, . . . , N}n, the set of all samples of size n drawn with replacement from {1, . . . , N}.
The uniform distribution P on X has weights

P ({x}) = 1/Nn
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for x = (x1, . . . , xn) ∈ X . When sampling without replacement, we consider the set X∗
of all x with all components different, and the distribution Q with weights

Q({x}) =

{
1/[N ]n if x ∈ X∗,
0 if x ∈ X \ X∗.

Consequently, dQ/dP = Nn/[N ]n on X∗ and dQ/dP = 0 on X \X∗, so Proposition 1 (a)
with ψ(t) := (1− t−1)+ implies that

ρ(Q,P ) = Nn/[N ]n and dTV(Q,P ) = 1− ρ(Q,P )−1 = 1− [N ]n/N
n. (3)

Freedman (1977) showed that

1− exp
(
−n(n− 1)

2N

)
≤ dTV(Q,P ) ≤ n(n− 1)

2N
. (4)

Here are two new bounds for ρ(Q,P ) which we will prove in Section 5. The lower bound
in the following display follows from Freedman’s proof of the lower bound in (4), while
the upper bound is new.

n(n− 1)

2N
≤ log ρ(Q,P ) ≤ −n

2
log
(

1− n− 1

N

)
. (5)

From (3) and (4) one would get the upper bound − log
(
1 − n(n − 1)/(2N)

)
with the

convention that log(t) := −∞ for t ≤ 0. For n = 2 this coincides with the upper bound
in (5), for n ≥ 3 it is strictly larger.

Hypergeometric and binomial distributions. Now recall the definition of the hy-
pergeometric distribution: Consider an urn with N balls, L of them being black and N−L
being white. Now we draw n balls at random and define X to be the number of black
balls in this sample. When sampling with replacement, X has the binomial distribution
Bin(n,L/N), and when sampling without replacement (n ≤ N), X has the hypergeo-
metric distribution Hyp(N,L, n). Intuitively one would guess that the difference between
Bin(n,L/N) and Hyp(N,L, n) is small when n� N . Note that when Freedman’s (1977)
result is applied to a particular function, e.g. the number of black balls, the resulting
bound is suboptimal because it involves n(n− 1)/N rather than n/N . Indeed, Diaconis
and Freedman (1980) showed that

dTV

(
Bin(n,L/N),Hyp(N,L, n)

)
≤ 2

n

N
.

Stronger bounds have been obtained by means of the Chen–Stein method. Ehm (1991)
showed that with p := L/N ,

dTV

(
Hyp(N,L, n),Bin(n,L/N)

)
≤ n

n+ 1

(
1− pn+1 − (1− p)n+1

) n− 1

N − 1
for 1 ≤ n ≤ min{L,N − L}, (6)
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while Holmes (2004) proved that

dTV

(
Hyp(N,L, n),Bin(n,L/N)

)
≤ n− 1

N − 1
. (7)

Our first main result shows that for fixed parameters N and n ≤ N/2 + 1, the ratio
measure ρ

(
Hyp(N,L, n),Bin(n,L/N)

)
is maximized by L = 1 (and L = N − 1):

Theorem 2. For integers N,L, n with 1 ≤ n ≤ N , n−1 ≤ N/2 and L ∈ {0, 1, . . . , N},

ρ
(
Hyp(N,L, n),Bin(n,L/N)

)
≤ ρ

(
Hyp(N, 1, n),Bin(n, 1/N)

)
=
(

1− 1

N

)−(n−1)
≤
(

1− n− 1

N

)−1
.

Moreover,

dTV

(
Hyp(N,L, n),Bin(n,L/N)

)
≤
(

1− [L]n
[N ]n

− [N − L]n
[N ]n

)(
1−

(
1− 1

N

)n−1)
≤
(

1− [L]n
[N ]n

− [N − L]n
[N ]n

)
n− 1

N
.

Remarks. Note that our bounds for dTV

(
Hyp(N,L, n),Bin(n,L/N)

)
are slightly bet-

ter than the bound (7) of Holmes (2004). If we fix n and let L,N → ∞ such that
L/N → p ∈ (0, 1), then our bounds are equal to

(1 + o(1))(1− pn − qn)
n− 1

N

and thus similar to the bound (6) of Ehm (1991). If we fix L and let n,N → ∞ such
that n/N → γ ∈ (0, 1), then our two bounds converge to

(1− γL)(1− e−γ) ≤ (1− γL)γ,

whereas the upper bound in (7) tends to γ, and (6) is not applicable.

3. Poisson approximations

3.1. Binomial distributions

It is well-known that for n ∈ N and p ∈ [0, 1], the binomial distribution Bin(n, p) may
be approximated by the Poisson distribution Poiss(np) if p is small. Explicit bounds
for the approximation error have been developed in the more general setting of sums
of independent but not necessarily identically distributed Bernoulli random variables by
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various authors. Hodges and Le Cam (1960) introduced a coupling method which was
refined by Serfling (1975) and implies the inequality

dTV

(
Bin(n, p),Poiss(np)

)
≤ np(1− e−p) ≤ np2.

By direct calculations involving density ratios, Reiss (1993) showed that

dTV

(
Bin(n, p),Poiss(np)

)
≤ p.

Finally, by means of the Chen–Stein method, Barbour and Hall (1984) derived the re-
markable bound

dTV

(
Bin(n, p),Poiss(np)

)
≤ (1− e−np)p. (8)

Concerning the ratio measure ρ
(
Bin(n, p),Poiss(np)

)
, Christensen et al. (1995) showed

that
Λ(p) := max

n≥1
log ρ

(
Bin(n, p),Poiss(n, p)

)
is a convex, piecewise linear function of p ∈ [0, 1) with limp→1 Λ(p) =∞ and

Λ(p) = p for 0 ≤ p ≤ log(2). (9)

A close inspection of their proof reveals that Λ(p) is the maximum of the log-ratio measure
log ρ

(
Bin(n, p),Poiss(n, p)

)
over all integers n ≤ 1/(1−p), so the bound Λ(p) is probably

rather conservative for large sample sizes n. Indeed, it follows from the results of Antonelli
and Regoli (2005) that for any fixed p ∈ (0, 1),

lim
n→∞

log ρ
(
Bin(n, p),Poiss(np)

)
= − log(1− p)/2 (10)

which is substantially smaller than Λ(p), at least for small values p. By means of ele-
mentary calculations and an appropriate version of Stirling’s formula, we shall prove the
following bounds:

Theorem 3. For arbitrary n ∈ N,

Λn(p) := log ρ
(
Bin(n, p),Poiss(np)

)
is a continuous and strictly increasing function of p ∈ [0, 1), satisfying Λn(0) = 0 and

Λn(p) <

{
− log(1− p)
− log(1− dnpe/n)/2

for 0 < p < 1. More precisely, with k := dnpe,

Λn(p) + log(1− p)/2


< − k − 1

12n(n− k + 1)
+

1

8(n− k) + 6
,

> − k − 1

12n(n− k + 1)
− 1

12(n− k)(n− k + 1)
.

(11)
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Figure 1. Comparing Bin(40, p) with Poiss(40 p).

Remarks. Since P ({0}) = e−np ≥ Q({0}) = (1 − p)n, the first two upper bounds of
Theorem 3 and Proposition 1 (a) lead to the inequalities

dTV

(
Bin(n, p),Poiss(np)

)
<
(
1− (1− p)n

)
·


p,

1−
√

1− dnpe
n

≤ dnpe/n
2− dnpe/n

;

see inequality (20) in Section 5. For fixed λ > 0, the bound in (8) may be rephrased as
ndTV

(
Bin(n, λ/n),Poiss(λ)

)
≤ (1− e−λ)λ. Our bounds imply that

lim sup
n→∞

dTV

(
Bin(n, λ/n),Poiss(λ)

)
≤ (1− e−λ) min

{
λ, dλe/2

}
,

and dλe/2 < λ for λ > 1/2. The refined inequalities imply that for any fixed po ∈ (0, 1),

log ρ
(
Bin(n, p),Poiss(np)

)
= − log(1− p)/2 +O(n−1) uniformly in p ≤ po.

The proof of Theorem 3 reveals that Λn(p) = log ρ
(
Bin(n, p),Poiss(np)

)
is concave in

p ∈
[
(k − 1)/n, k/n

]
for each k ∈ {1, . . . , n}. Figure 1 illustrates this for n = 40. In the

left panel one sees Λn(p) (black) together with Λ(p) (black dashed) and the simple upper
bounds − log(1− p) (green) and − log(1− dnpe/n)/2 (blue). The right panel shows the
quantities Λn(p) + log(1 − p)/2 (black), i.e. the difference of Λn(p) and the asymptotic
bound − log(1 − p)/2 of Antonelli and Regoli (2005), together with the upper bound
− log(1− dnpe/n)/2 + log(1− p)/2 (blue) and the two bounds in (11) (red and orange).

Poisson binomial distributions. The distribution Bin(n, p) can be replaced with
the distribution Q of

∑n
i=1 Zi with independent Bernoulli variables Zi with arbitrary

parameters pi := IP(Zi = 1) ∈ (0, 1) and λ :=
∑n
i=1 pi in place of np. Dümbgen and

Wellner (2020) showed that ρ(Q,Poiss(λ)) ≤ (1− p∗)−1 with p∗ := max1≤i≤n pi.
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3.2. Multinomial distributions and Poissonization

Multinomial distributions. The previous bounds for the approximation of binomial
by Poisson distributions imply bounds for the approximation of multinomial distributions
by products of Poisson distributions. For integers n,K ≥ 1 and parameters p1, . . . , pK > 0
such that p+ :=

∑K
i=1 pi < 1, let (Y0, Y1, . . . , YK) follow a multinomial distribution

Mult(n; p0, p1, . . . , pK),

where p0 := 1 − p+. Further, let X1, . . . , XK be independent Poisson random vari-
ables with parameters np1, . . . , npK respectively. Elementary calculations reveal that
with Y+ :=

∑K
i=1 Yi and X+ :=

∑K
i=1Xi,

L(Y1, . . . , YK |Y+ = m) = L(X1, . . . , XK |X+ = m) = Mult
(
m;

p1
p+
, . . . ,

pK
p+

)
for arbitrary integers m ≥ 0. Moreover,

Y+ ∼ Bin(n, p+) and X+ ∼ Poiss(np+).

This implies that for arbitrary integers x1, . . . , xK ≥ 0 and x+ :=
∑K
i=1 xi,

IP(Yi = xi for 1 ≤ i ≤ K)

IP(Xi = xi for 1 ≤ i ≤ K)
=

IP(Y+ = x+)

IP(X+ = x+)
.

Consequently, by (1),

ρ
(
L(X1, . . . , XK),L(Y1, . . . , YK)

)
= ρ

(
Bin(n, p+),Poiss(np+)

)
,

and one easily verifies that

dTV

(
L(X1, . . . , XK),L(Y1, . . . , YK)

)
= dTV

(
Bin(n, p+),Poiss(np+)

)
.

Poissonization. Theorem 3 applies also to Poissonization for empirical processes: Let
X1, X2, X3, . . . be independent random variables with distribution P on a measurable
space (X ,A). Let Mn be the random measure

∑n
i=1 δXi , and let M̃n be a Poisson process

on (X ,A) with intensity measure nP . Then M̃n has the same distribution as
∑
i≤Nn δXi ,

where Nn ∼ Poiss(n) is independent from (Xi)i≥1. For a set Ao ∈ A with 0 < po :=

P (Ao) < 1, the restrictions of the random measures Mn and M̃n to Ao satisfy the equality

ρ
(
L(Mn|Ao),L(M̃n|Ao)

)
= ρ

(
Bin(n, po),Poiss(npo)

)
.

Here Mn|Ao and M̃n|Ao stand for the random measures

{A ∈ A : A ⊆ Ao} 3 A 7→ Mn(A), M̃n(A)
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on Ao. Indeed, for arbitrary integers m ≥ 0,

L
(
Mn|Ao

∣∣Mn(Ao) = m
)

= L
(
M̃n|Ao

∣∣ M̃n(Ao) = m
)
,

while
Mn(Ao) ∼ Bin(n, po) and M̃n(Ao) ∼ Poiss(npo).

Consequently,

ρ
(
L(Mn|Ao),L(M̃n|Ao)

)
= ρ

(
Bin(n, po),Poiss(npo)

)
and

dTV

(
L(Mn|Ao),L(M̃n|Ao)

)
= dTV

(
Bin(n, po),Poiss(npo)

)
.

4. Gamma approximations and more

In this section we present further examples of bounds for the ratio measure ρ(Q,P ). In
all but one case, they are related to the approximation of beta by gamma distributions.

4.1. Beta distributions

In what follows, let Beta(a, b) be the beta distribution with parameters a, b > 0. The
corresponding density is given by

βa,b(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1+ , x > 0,

with the gamma function Γ(a) :=
∫∞
0
xa−1e−x dx. Note that we view Beta(a, b) as a

distribution on the halfline (0,∞), because we want to approximate it by gamma distri-
butions. Specifically, let Gamma(a, c) be the gamma distribution with shape parameter
a > 0 and rate parameter (i.e. inverse scale parameter) c > 0. The corresponding density
is given by

γa,c(x) =
ca

Γ(a)
xa−1e−cx, x > 0,

The next theorem shows that Beta(a, b) may be approximated by Gamma(a, c) for suit-
able rate parameters c > 0, provided that b� max(a, 1).

Theorem 4. (i) For arbitrary parameters a > 0 and b > 1,

ρ
(
Beta(a, b),Gamma(a, a+ b)

)
≤ (1− δ)−1/2 and

dTV

(
Beta(a, b),Gamma(a, a+ b)

)
≤ 1− (1− δ)1/2 <

δ

2− δ
,
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where

δ :=
a+ 1

a+ b
.

(ii) For a > 0, b > 1, and arbitrary c > 0,

ρ
(
Beta(a, b),Gamma(a, c)

)
≥ ρ

(
Beta(a, b),Gamma(a, a+ b− 1)

)
.

Moreover, for this opimal rate parameter c = a+ b− 1,

ρ
(
Beta(a, b),Gamma(a, a+ b− 1)

)
≤ (1− δ̃)−1/2 and

dTV

(
Beta(a, b),Gamma(a, a+ b− 1)

)
≤ 1− (1− δ̃)1/2 <

δ̃

2− δ̃
,

where
δ̃ :=

a

a+ b− 1
< δ.

Remarks. The rate parameter c = a + b is canonical in the sense that the means of
Beta(a, b) and Gamma(a, a+ b) are both equal to a/(a+ b). But note that

δ̃

δ
=

a

a+ 1
· a+ b

a+ b− 1
≈ a

a+ 1

if b� max{a, 1}. Hence, Gamma(a, a+ b− 1) yields a remarkably better approximation
than Gamma(a, a+ b), unless a is rather large or b is close to 1.

In the proof of Theorem 4 it is shown that in the special case of a = 1, one can show
the following: For b > 1,

log ρ
(
Beta(1, b),Gamma(1, b)

)
= (b− 1) log(1− 1/b) + 1,

and for b ≥ 2,
log ρ

(
Beta(1, b),Gamma(1, b)

)
dTV

(
Beta(1, b),Gamma(1, b)

)} ≤ 1

2b
+

1

4b2
.

4.2. The Lévy–Poincaré projection problem

Let U = (U1, U2, . . . , Un) be uniformly distributed on the unit sphere in Rn. It is well-
known that U can be represented as Z/‖Z‖ where Z ∼ Nn(0, I) and ‖ · ‖ denotes
standard Euclidean norm. Then the first k coordinates of U satisfy

√
n (U1, . . . , Uk)

d
= (Z1, . . . , Zk)

/(
n−1

n∑
j=1

Z2
j

)1/2

(12)

→d (Z1, . . . , Zk) ∼ Nk(0, Ik),
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since n−1
∑n
j=1 Z

2
j →p 1 by the weak law of large numbers. Indeed, let

Qn,k := L
(
rn(U1, . . . , Uk)

)
with rn > 0, and let

Pk := L(Z1, . . . , Zk) = Nk(0, I).

Diaconis and Freedman (1987) showed that

dTV(Qn,k, Pk) ≤ k + 3

n− k − 3
for 1 ≤ k ≤ n− 4 and rn =

√
n.

By means of Theorem 4, this bound can be improved by a factor larger than 2. The
approximation becomes even better if we set rn =

√
n− 2. To verify all this, we consider

the random variables Rk :=
(∑k

i=1 Z
2
i

)
, Rn :=

(∑n
i=1 Z

2
i

)
and

V := R−1k (Z1, . . . , Zk).

Note that V is uniformly distributed on the unit sphere in Rk and independent of
(Rk, Rn). Moreover,

(Z1, . . . , Zk) = RkV and (U1, . . . , Uk) =
Rk
Rn

V .

But R2
k ∼ Gamma(k/2, 1/2) and R2

k/R
2
n ∼ Beta(k/2, (n− k)/2). Hence,

ρ(Qn,k, Pk) = ρ
(
L(rnRk/Rn),L(Rk)

)
= ρ

(
L(R2

k/R
2
n),L(r−2n R2

k)
)

= ρ
(
Beta(k/2, (n− k)/2),Gamma(k/2, r2n/2)

)
.

Applying Theorem 4 with a := k/2, b := (n − k)/2 and c := r2n/2 yields the following
bounds:

Corollary 5. For n > k + 2,

ρ(Qn,k, Pk) < (1− δ)−1/2 and

dTV(Qn,k, Pk) < 1−
√

1− δ <
δ

2− δ
,

where

δ =


k + 2

n
if rn =

√
n,

k

n− 2
if rn =

√
n− 2.

Figures 2 and 3 illustrate Corollary 5 in case of k = 1. For dimensions n = 5, 10,
Figure 2 shows the standard Gaussian density f (green) and the density gn of Qn,1 in
case of rn =

√
n (black) and rn =

√
n− 2 (blue). Figure 3 depicts the corresponding ratios

gn/f . The dotted black and blue lines are the corresponding upper bounds (1 − δ)−1/2
from Corollary 5. These pictures show clearly that using rn =

√
n− 2 instead of rn =

√
n

yields a substantial improvement.
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Figure 2. Densities of N(0, 1) and Qn,1 for n = 5, 10.
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Figure 3. Density ratios for Figure 2.
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Bounding via density ratios 13

4.3. Dirichlet distributions and uniform spacings

Dirichlet distributions. For integers 1 ≤ k ≤ N and parameters a1, . . . , aN , c > 0,
let X be a random vector with independent components Xi ∼ Gamma(ai, c). With

X+ :=
∑N
i=1Xi, it is well-known that the random vector

Y = (Y1, . . . , YN ) :=
(X1

X+
, . . . ,

XN

X+

)
and X+ are independent, where X+ ∼ Gamma(a+, c) with

a+ :=

N∑
i=1

ai.

The distribution of Y is the Dirichlet distribution with parameters a1, . . . , aN , written

Y ∼ Dirichlet(a1, . . . , aN ).

Now let us focus on the first k components of X and Y :

(X1, . . . , Xk) = X
(k)
+ (V1, . . . , Vk),

(Y1, . . . , Yk) =
X

(k)
+

X+
(V1, . . . , Vk),

with

X
(k)
+ :=

k∑
i=1

Xi and Vi :=
Xi

X
(k)
+

.

Then (V1, . . . , Vk) ∼ Dirichlet(a1, . . . , ak) and is independent of (X
(k)
+ , X+), while

X
(k)
+

X+
∼ Beta(a

(k)
+ , a+ − a(k)+ ) and X

(k)
+ ∼ Gamma(a

(k)
+ , c)

with

a
(k)
+ :=

k∑
i=1

ai.

Hence, the difference between L(Y1, . . . , Yk) and L(X1, . . . , Xk), in terms of the ratio

measure, is the difference between Beta(a
(k)
+ , a+ − a(k)+ ) and Gamma(a

(k)
+ , c). Thus The-

orem 4 yields the following bounds:

Corollary 6. Let Pk := ⊗ki=1Gamma(ai, c), and let QN,k := L(Y1, . . . , Yk). Then

ρ(QN,k, Pk) < (1− δ)−1/2 and

dTV(QN,k, Pk) < 1−
√

1− δ <
δ

2− δ
,
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14 L. Dümbgen, R. J. Samworth, and J. A. Wellner

where either

c = a+ and δ =
a
(k)
+ + 1

a+
,

or

c = a+ − 1 and δ =
a
(k)
+

a+ − 1
.

Uniform spacings. A special case of the previous result are uniform spacings: For an
integer n ≥ 2, let U1, . . . , Un be independent random variables with uniform distribution
on [0, 1]. Then we consider the order statistics 0 < Un:1 < Un:2 < · · · < Un:n < 1. With
Un:0 := 0 and Un:n+1 := 1, it is well-known that

(Un:j − Un:j−1)n+1
j=1 ∼ Dirichlet(1, 1, . . . , 1︸ ︷︷ ︸

n+1 times

).

That means, the n + 1 spacings have the same distribution as (Ej/E+)n+1
j=1 with in-

dependent, standard exponential random variables E1, . . . , En+1 and E+ :=
∑n+1
j=1 Ej .

Consequently, Corollary 6 and the second remark after Theorem 4 yield the following
bounds:

Corollary 7. For integers 1 ≤ k < n let Qn,k be the distribution of the vector

Yn,k := n(Un:j − Un:j−1)kj=1.

Further let Pk be the k-fold product of the standard exponential distribution. Then

ρ(Qn,k, Pk) ≤


exp
( 1

2n
+

1

4n2

)
if k = 1,(

1− k

n

)−1/2
in general.

In particular,

dTV(Qn,k, Pk) ≤


1

2n
+

1

4n2
if k = 1,

1−
√

1− k

n
<

k

2n− k
in general.

Remarks. Corollary 7 gives another proof of the results of Runnenburg and Vervaat
(1969), who obtained bounds on dTV(Qn,k, Pk) by first bounding the Kullback–Leibler
divergence; see their Remark 4.1, pages 74–75. It can be shown via the methods of Hall
and Wellner (1979) that

dTV(Qn,1, P1) ≤ 2e−2

n
+
e−2

n2
,

where 2e−2 ≈ .2707 < 1/2.
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Bounding via density ratios 15

4.4. Student distributions

For r > 0 let tr denote student’s t distribution with r degrees of freedom, with density

fr(x) =
Γ((r + 1)/2)

Γ(r/2)
√
rπ

(
1 +

x2

r

)−(r+1)/2

.

It is well-known that fr converges uniformly to the density φ of the standard Gaussian
distribution N(0, 1), where φ(x) := exp(−x2/2)/

√
2π. The distribution tr has heavier

tails than the standard Gaussian distribution and, indeed,

ρ
(
tr, N(0, 1)

)
= ∞.

However, for the reverse ratio measure we do obtain a reasonable upper bound:

Lemma 8. For r ≥ 2,

1

2(r + 1)
< log ρ(N(0, 1), tr) <

1

2r
.

Remarks. It follows from Lemma 8 that

r log ρ(N(0, 1), tr) →
1

2
as r →∞.

By means of Proposition 1 (a) we obtain the inequality r dTV(N(0, 1), tr) ≤ 1/2 for r ≥ 2.
Pinelis (2015) proved that

r dTV(N(0, 1), tr) < C :=
1

2

√
7 + 5

√
2

πe1+
√
2
≈ 0.3165

for r ≥ 4, and that r dTV

(
N(0, 1), tr

)
→ C as r →∞. So C is optimal in the bound for

dTV, whereas 1/2 is optimal for ρ.
Let Z and Tr be random variables with distribution N(0, 1) and tr, respectively, where

r ≥ 2. Then for any Borel set B ⊂ R,

IP(Tr ∈ B) ≥ e−1/(2r)P (Z ∈ B).

In particular,
IP
(
±Tr < Φ−1(1− α)

)
IP
(
|Tr| < Φ−1(1− α/2)

)} ≥ e−1/(2r)(1− α).

4.5. A counterexample: convergence of normal extremes

In all previous settings, we derived upper bounds for ρ(Q,P ) which implied resonable
bounds for dTV(Q,P ) = dTV(P,Q), whereas ρ(P,Q) = ∞ in general. This raises the
question whether there are probability densities g and fn, n ≥ 1, such that dTV(fn, g)→
0, but both ρ(fn, g) =∞ and ρ(g, fn) =∞? The answer is “yes” in view of the following
example.
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16 L. Dümbgen, R. J. Samworth, and J. A. Wellner

Example 9. Suppose that Z1, Z2, Z3, . . . are independent, standard Gaussian random
variables. Let Vn := max{Zi : 1 ≤ i ≤ n}. Let bn > 0 satisfy 2πb2n exp(b2n) = n2 and then
set an := 1/bn. Then it is well-known that

Yn := (Vn − bn)/an →d Y∞ ∼ G (13)

where G is the Gumbel distribution function given by G(x) = exp(− exp(−x)). Set
Fn(x) := P (Yn ≤ x) for n ≥ 1 and x ∈ R. Hall (1979) shows that for constants 0 < C1 <
C2 ≤ 3 and sufficiently large n,

C1

log n
< ‖Fn −G‖∞ := sup

x∈R
|Fn(x)−G(x)| < C2

log n
,

and dL(Fn, G) = O(1/ log n) for the Lévy metric dL. It is also known that if b̃n :=

(2 log n)1/2 − (1/2){log log n + log(4π)}/(2 log n)1/2 and ãn := 1/b̃n, then ãn/an → 1,

(̃bn − bn)/an → 0 and (13) continues to hold with an and bn replaced by ãn and b̃n, but
the rate of convergence in the last display is not better than (log log n)2/ log n.

In this example the densities fn of Fn are given by

fn(x) = Φ(anx+ bn)n
nanφ(anx+ bn)

Φ(anx+ bn)
→ G(x) · e−x = G′(x) =: g(x)

for each fixed x ∈ R; here φ is the standard normal density and Φ(z) :=
∫ z
−∞ φ(y)dy is

the standard normal distribution function. Thus dTV(Fn, G) → 0 by Scheffé’s lemma.
But in this case it is easily seen that both ρ(fn, g) = ∞ and ρ(g, fn) = ∞ where the
infinity in the first case occurs in the left tail, and the infinity in the second case occurs
in the right tail.

We do not know a rate for the total variation convergence in this example, but it
cannot be faster than 1/ log n.

5. Proofs and Auxiliary Results

5.1. Proofs of the main results

Proof of (1). Suppose that µ({g/f > r}) = 0 for some real number r > 0. Then
g ≤ rf , µ-almost everywhere, so Q(A) ≤ rP (A) for all A ∈ A, and this implies that
ρ(Q,P ) ≤ r. On the other hand, if µ({g/f ≥ r}) > 0 for some real number r > 0, then
A := {g/f ≥ r} = {g ≥ rf} ∩ {g > 0} satisfies Q(A) > 0 and Q(A) ≥ rP (A), whence
ρ(Q,P ) ≥ r. These considerations show that ρ(Q,P ) equals the µ-essential supremum of
g/f .

Proof of Proposition 1. (a) Under the given hypotheses that ψ is non-decreasing,
ψ(1) = 0 and g/f ≤ ρ, we have∫

ψ(g/f) dQ ≤
∫
{g>f}

ψ(g/f) dQ ≤ Q({g > f})ψ(ρ). (14)
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Bounding via density ratios 17

Equality holds in the first inequality if and only if Q
(
{g < f} ∩ {ψ(g/f) < 0}

)
= 0, and

in the second inequality if and only if Q
(
{g > f} ∩ {ψ(g/f) < ψ(ρ)}

)
= 0. In particular,

if g/f ∈ {0, ρ}, then Q
(
{g < f}) = Q({g/f = 0}) = 0 and Q

(
{g > f} ∩ {ψ(g/f) <

ψ(ρ)}
)

= Q(∅) = 0, so we have equality in (14).
(b) For any convex function ψ : [0,∞)→ R and y ∈ [0, ρ], we have

ψ(y) ≤ ψ(0) +
y

ρ
{ψ(ρ)− ψ(0)}

with equality in case of y ∈ {0, ρ}. Hence∫
ψ(g/f) dP ≤ ψ(0) +

ψ(ρ)− ψ(0)

ρ

∫
g

f
dP = ψ(0) +

ψ(ρ)− ψ(0)

ρ
.

Equality holds if g/f ∈ {0, ρ}.

Proof of (5) and comparison with (4). The asserted bounds are trivial in case of
n = 1, so we assume that 2 ≤ n ≤ N . Note first that

log ρ(Q,P ) = log(Nn/[N ]n) =

n−1∑
j=1

H(j)

with H(x) := − log(1− x/N) =
∑∞
`=1(x/N)`/` for x ≥ 0. Since H(x) ≥ x/N ,

log ρ(Q,P ) ≥
n−1∑
j=1

j/N =
n(n− 1)

2N
.

This is essentially Freedman’s (1977) argument. For the upper bound, it suffices to show
that for 1 ≤ n < N , the increment

log(Nn+1/[N ]n+1)− log(Nn/[N ]n) = H(n) (15)

is not larger than the increment

− n+ 1

2
log
(

1− n

N

)
+
n

2
log
(

1− n− 1

N

)
= (n+ 1)H(n)/2− nH(n− 1)/2. (16)

But the difference between (16) and (15) equals

(n− 1)H(n)/2− nH(n− 1)/2 = n(n− 1)
(
H(n)/n−H(n− 1)/(n− 1)

)
/2 ≥ 0,

because H(x)/x is non-decreasing on [0,∞). Since H(tx) > tH(x) for x ∈ [0, N) and
t > 1, we may also conclude that for 3 ≤ n ≤ N ,

− log
(

1− n(n− 1)

2N

)
= H(n(n− 1)/2) > (n/2)H(n− 1) = −n

2
log
(

1− n− 1

N

)
.
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18 L. Dümbgen, R. J. Samworth, and J. A. Wellner

Auxiliary inequalities. In what follows, we will use repeatedly the following inequal-
ities for logarithms: For real numbers x, a > 0 and b > −x,

(x+ b) log
( x

x+ a

)
< −a+

a(a− 2b)

2x+ a
− 2a3(x+ b)

3(2x+ a)3
(17)

< −a+
a(a− 2b)

2x+ a
(18)

and

(x+ a/2) log
( x

x+ a

)
> −a− a3

12x(x+ a)
. (19)

These inequalities follow essentially from the fact

log
( x

x+ a

)
= log

(2x+ a− a
2x+ a+ a

)
= log

(1− y
1 + y

)
= −2

∞∑
`=0

y2`+1

2`+ 1
< −2y − 2y3

3

with y := a/(2x + a), where the Taylor series expansion in the second to last step is
well-known and follows from the usual expansion log(1± y) = −

∑∞
k=1(∓y)k/k. Then it

follows from x+ b > 0 that

(x+ b) log
( x

x+ a

)
< −2a(x+ b)

2x+ a
− 2a3(x+ b)

3(2x+ a)3
= −a+

a(a− 2b)

2x+ a
− 2a3(x+ b)

3(2x+ a)3
,

whereas

(x+ a/2) log
( x

x+ a

)
=

a

2y
log
(1− y

1 + y

)
= −a

∞∑
`=0

y2`

2`+ 1

> −a− ay2

3(1− y2)
= −a− a3

12x(x+ a)
.

Here is another expression which will be encountered several times: For δ ∈ [0, 1],

1−
√

1− δ =
δ

1 +
√

1− δ
=

δ

2− (1−
√

1− δ)
= · · · =

δ

2− δ
2− δ

2−···

,

and the inequality
√

1− δ ≥ 1− δ implies that

1−
√

1− δ ≤ δ

2− δ
=

δ

2

(
1− δ

2

)−1
=

δ

2
+

δ2

4− 2δ
. (20)

Recall that we write [a]0 := 1 and [a]m :=
∏m−1
i=0 (a−i) for real numbers a and integers

m ≥ 1. In particular,
(
n
k

)
= [n]k/k! for integers 0 ≤ k ≤ n.
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Bounding via density ratios 19

Proof of Theorem 2. The assertions are trivial in case of n = 1 or L ∈ {0, N}, because
then Hyp(N,L, n) = Bin(n,L/N). Hence it suffices to consider n ≥ 2 and 1 ≤ L ≤ N−1.
For k ∈ {0, 1, . . . , n} let

h(k) = hN,L,k(k) := Hyp(N,L, n)({k}) =

(
L

k

)(
N − L
n− k

)/(N
n

)
=

(
n

k

)
[L]k[N − L]n−k

[N ]n
,

b(k) = bn,L/N (k) := Bin(n,L/N)({k}) =

(
n

k

)
(L/N)k(1− L/N)n−k

=

(
n

k

)
Lk(N − L)n−k

Nn

and

r(k) = rN,L,n(k) :=
h(k)

b(k)
=

[L]k[N − L]n−kN
n

Lk(N − L)n−k[N ]n
.

Since
rN,N−L,n(n− k) = rN,L,n(k),

it even suffices to consider

n ≥ 2 and 1 ≤ L ≤ N/2.

In this case, r(k) > 0 for 1 ≤ k ≤ min(n,L), and r(k) = 0 for min(n,L) < k ≤ n.
In order to maximize the weight ratio r, note that for any integer 0 ≤ k < min(L, n),

r(k + 1)

r(k)
=

(L− k)(N − L)

L(N − L− n+ k + 1)

{
≤
>

}
1

if and only if

k

{
≥
<

}
(n− 1)L

N
.

Consequently,

ρ
(

Hyp(N,L, n),Bin(n,L/N)
)

= rN,L,n(k)

with k = kN,L,n :=
⌈ (n− 1)L

N

⌉
∈ {1, . . . , n− 1}.

The worst-case value kN,L,n equals 1 if and only if L ≤ N/(n− 1). But

rN,L,n(1) =
[N − L]n−1N

n

(N − L)n−1[N ]n
=

n−2∏
i=0

(
1− i

N − L

) Nn

[N ]n

≤
n−2∏
i=0

(
1− i

N − 1

) Nn

[N ]n
= (1− 1/N)−(n−1) = rN,1,n(1).
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20 L. Dümbgen, R. J. Samworth, and J. A. Wellner

Consequently, it suffices to consider

N/(n− 1) < L ≤ N/2.

Note that these inequalities for L imply that n − 1 > 2. Hence it remains to prove the
assertions when n ≥ 4 and N/(n− 1) < L ≤ N/2.

The case n = 4 is treated separately: Here it suffices to show that

rN,L,4(2) ≤ rN,1,4(1) for N ≥ 6 and 1 < L ≤ N/2.

Indeed

rN,L,4(2)

rN,1,4(1)
=

[L]2[N − L]2(N − 1)3

L2(N − L)2[N − 1]3
=

(L− 1)(N − L− 1)(N − 1)2

L(N − L)(N − 2)(N − 3)

=
(L(N − L)−N + 1)(N − 1)2

L(N − L)((N − 1)2 − 3N + 5)
=
(

1− N − 1

L(N − L)

)/(
1− 3N − 5

(N − 1)2

)
≤
(

1− 4(N − 1)

N2

)/(
1− 3N − 5

(N − 1)2

)
with equality if and only if L = N/2. The latter expression is less than or equal to 1 if
and only if

4(N − 1)

N2
≥ 3N − 5

(N − 1)2
,

and elementary manipulations show that this is equivalent to

(N − 7/2)2 + 12− 49/4 ≥ 4/N.

But this inequality is satisfied for all N ≥ 5.
Consequently, it suffices to prove our assertion in case of

n ≥ 5 and N/(n− 1) < L ≤ N/2.

The maximizer k = kN,L,n of the density ratio is k = d(n− 1)L/Ne ≥ 2, and

n− k = bn− (n− 1)L/Nc ≥ bn− (n− 1)/2c = b(n+ 1)/2c ≥ 3.

Now our task is to bound

log ρ
(

Hyp(N,L, n),Bin(n,L/N)
)

= log
( [L]k
Lk

)
+ log

( [N − L]n−k
(N − L)n−k

)
− log

( [N ]n
Nn

)
= log

( [L− 1]k−1
Lk−1

)
+ log

( [N − L− 1]n−k−1
(N − L)n−k−1

)
− log

( [N − 1]n−1
Nn−1

)
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from above. Corollary 11 in Section 5.2 implies that for integers A ≥ m ≥ 2,

log
( [A− 1]m−1

Am−1

)
= log((A− 1)!)− log((A−m)!)− (m− 1) log(A)

= (A− 1/2) log(A)−A− (m− 1) log(A)

− (A−m+ 1/2) log(A−m+ 1) +A−m+ 1 + sm,A

= (A−m+ 1/2) log
( A

A−m+ 1

)
+ 1−m+ sm,A,

where

− m− 1

12A(A−m+ 1)
< sm,A < 0.

Consequently,

log ρ
(

Hyp(N,L, n),Bin(n,L/N)
)

< (L− k + 1/2) log
( L

L− k + 1

)
+ (N − L− n+ k + 1/2) log

( N − L
N − L− n+ k + 1

)
+ 1− (N − n+ 1/2) log

( N

N − n+ 1

)
+

n− 1

12N(N − n+ 1)
.

Now we introduce the auxiliary quantities

δ :=
n− 1

N
, ∆ := 1− δ =

N − n+ 1

N

and write
k = (n− 1)L/N + γ = Lδ + γ with 0 ≤ γ < 1.

Then
L− k = L∆− γ, N − L− n+ k = (N − L)∆ + γ − 1,

whence

(L− k + 1/2) log
( L

L− k + 1

)
+ (N − L− n+ k + 1/2) log

( N − L
N − L− n+ k + 1

)
= (L∆ + 1/2− γ) log

( L

L∆ + 1− γ

)
+
(
(N − L)∆ + γ − 1/2

)
log
( N − L

(N − L)∆ + γ

)
= (L∆ + 1/2− γ) log

( L∆

L∆ + 1− γ

)
+
(
(N − L)∆ + γ − 1/2

)
log
( (N − L)∆

(N − L)∆ + γ

)
− (N − n+ 1) log(∆).

It follows from (18) with x = L∆, a = 1− γ and b = 1/2− γ that

(L∆ + 1/2− γ) log
( L∆

L∆ + 1− γ

)
< −(1− γ) +

γ(1− γ)

2L∆ + 1− γ
,
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and with x = (N − L)∆, a = γ and b = γ − 1/2 we may conclude that

(
(N − L)∆ + γ − 1/2

)
log
( (N − L)∆

(N − L)∆ + γ

)
< −γ +

γ(1− γ)

2(N − L)∆ + γ
.

Hence

log ρ
(

Hyp(N,L, n),Bin(n,L/N)
)

< − (1− γ) +
γ(1− γ)

2L∆ + 1− γ
− γ +

γ(1− γ)

2(N − L)∆ + γ
− (N − n+ 1) log(∆)

+ 1− (N − n+ 1/2) log
( N

N − n+ 1

)
+

n− 1

12N(N − n+ 1)

= g(L)− log(∆)

2
+

δ

12N∆
,

where

g(L) := γ(1− γ)
( 1

2L∆ + 1− γ
+

1

2(N − L)∆ + γ

)
<

1

8L∆
+

1

8(N − L)∆
=

N

8L(N − L)∆
,

because γ(1− γ) ≤ 1/4. It will be shown later that

g(L) ≤ δ

7∆
. (21)

Consequently,

log ρ
(
Hyp(N,L, n),Bin(n,L/N)

)
< − log(∆)

2
+

δ

7∆
+

δ

12N∆

= − log(1− δ)
2

+
δ

7(1− δ)
+

δ

12N(1− δ)

≤ − log(1− δ)
2

+
δ

7(1− δ)
+

δ

6N
,

because δ ≤ 1/2, and we want to show that the right-hand side is not greater than

−(n− 1) log(1− 1/N) = (n− 1)

∞∑
`=1

1

`N `
> δ +

δ

2N
.

Hence, it suffices to show that

− log(1− δ)
2

+
δ

7(1− δ)
− δ ≤ 0.

imsart-bj ver. 2014/10/16 file: BinPoissAppr_BJ_final.tex date: July 31, 2020



Bounding via density ratios 23

But the left-hand side is a convex function of δ ∈ [0, 1/2] and takes the value 0 for δ = 0.
Thus it suffices to verify that the latter inequality holds for δ = 1/2. Indeed, for δ = 1/2,
the left-hand side is log(2)/2 + 1/7− 1/2 = (log(2)− 5/7)/2 < 0.

It remains to verify (21). When k = dLδe ≥ 3, this is relatively easy: Here 2δ−1 <
L ≤ N/2, so

L(N − L) > 2δ−1(N − 2δ−1) = 2Nδ−1
n− 3

n− 1
≥ Nδ−1,

because n ≥ 5. Hence,

g(L) <
N

8L(N − L)∆
<

δ

8∆
.

The case k = 2 is a bit more involved: Since

g(L) =
γ(1− γ)(2N∆ + 1)

(2L∆ + 1− γ)(2(N − L)∆ + γ)
,

inequality (21) is equivalent to

7γ(1− γ)(2N∆2 + ∆) ≤ (2L∆ + 1− γ)(2(N − L)∆ + γ)δ. (22)

The left-hand side of (22) equals

14γ(1− γ)N∆2 + 7γ(1− γ)∆ ≤ 14γ(1− γ)N∆2 + 2∆,

because 7γ(1− γ) ≤ 7/4 < 2, while the right-hand of (22) side equals

4L(N − L)∆2δ + 2((1− γ)(N − L) + γL)∆δ + γ(1− γ)δ

≥ 4L(N − L)∆2δ + 2Lδ∆ > 4L(N − L)∆2δ + 2∆,

because N − L ≥ L and Lδ > 1. Consequently, it suffices to verify that

7γ(1− γ)N ≤ 2L(N − L)δ. (23)

To this end, note that γ depends on L, namely, γ = 2− Lδ, whence L = (2− γ)δ−1 and

2L(N − L)δ = 2(2− γ)(N − (2− γ)δ−1) = 2(2− γ)(n− 1− (2− γ))δ−1,

so (23) is equivalent to

2(2− γ)(n− 3 + γ)− 7γ(1− γ)(n− 1) ≥ 0. (24)

But the left-hand side is

4(n− 3)− 2γ(4.5n− 8.5) + γ2(7n− 9)

≥ 4(n− 3)− (4.5n− 8.5)2

7n− 9
=

4(n− 3)(7n− 9)− (4.5n− 8.5)2

7n− 9
.
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For n ≥ 5, the denominator is strictly positive, and the derivative of the numerator is
15.5n− 43.5, which is strictly positive, too. Thus it suffices to verify that the numerator
is nonnegative for n = 5. Indeed, 4(n− 3)(7n− 9)− (4.5n− 8.5)2 = 12 for n = 5.

Finally, it follows from Bernoulli’s inequality1 that (1−1/N)−(n−1) ≤ (1−(n−1)/N)−1.
Now the inequalities for the total variation distance are an immediate consequence of
Proposition 1 (a) with ψ(t) = (1 − t−1)+ and the fact that Q({0}) ≤ P ({0}) and
Q({n}) ≤ P ({n}), whence

Q({g > f}) ≤ 1−Q({0})−Q({n}) = 1− [N − L]n
[N ]n

− [L]n
[N ]n

.

Proof of Theorem 3. Obviously, Λn(0) = 0. For k ∈ N0 we introduce the weights
b(k) = bn,p(k) := Bin(n, p)({k}) and π(k) = πnp(k) := Poiss(np)({k}) = e−np(np)k/k!.
Obviously, b(k) = 0 for k > n, while for 0 ≤ k ≤ n and p ∈ (0, 1),

λn,p(k) := log
b(k)

π(k)
= log

( [n]k
nk

)
+ np+ (n− k) log(1− p).

Note that the right hand side is a continuous function of p ∈ [0, 1) with limit λn,0(k) :=
log([n]k/n

k) ≤ 0 as p→ 0, where λn,0(0) = 0. Thus we may conclude that

Λn(p) = max
k=0,1,...,n

λn,p(k)

is a continuous function of p ∈ [0, 1).
Next we need to determine the maximizer of λn,p(·). For k ∈ {0, 1 . . . , n− 1},

λn,p(k + 1)− λn,p(k) = log(1− k/n)− log(1− p)

{
≥ 0 if k ≤ np,
≤ 0 if k ≥ np.

Consequently,
Λn(p) = λn,p(dnpe).

From now on we fix an integer k ∈ {1, . . . , n} and focus on p ∈
[
(k − 1)/n, k/n

]
, so

that k = dnpe if p > (k − 1)/n. Then

Λn(p) = log
( [n]k
nk

)
+ np+ (n− k) log(1− p).

This is a concave function of p with derivative

n− n− k
1− p

=
k − np
1− p

{
< 1/(1− p)
> 0

1(1 + x)m ≥ 1 +mx for real numbers x > −1 and m ≥ 1
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if (k − 1)/n < p < k/n. Since 1/(1− p) is the derivative of − log(1− p) with respect to
p, and since Λn(0) = 0 = − log(1− 0), this implies that

Λn(p) < − log(1− p) for p ∈ (0, 1).

On the other hand, Λn is strictly increasing, whence

Λn(p) ≤ Λn(k/n).

But Corollary 11 in Section 5.2 implies that

log
( [n]k
nk

)
= log

( [n− 1]k−1
nk−1

)
= (n− k + 1/2) log

( n

n− k + 1

)
+ 1− k + sk,n

with

− k − 1

12n(n− k + 1)
< sk,n < min

(
0,− k − 1

12n(n− k + 1)
+

1

122(n− k + 1)2

)
.

Consequently,

Λn(k/n) = log
( [n]k
nk

)
+ k + (n− k) log(1− k/n)

≤ (n− k + 1/2) log
( n− k
n− k + 1

)
+ 1− log(1− k/n)

2

< − log(1− k/n)

2
,

where the last inequality follows from (18) with x = n− k, a = 1, and b = 1/2.
The refined bounds are for the quantity

Dn(p) := Λn(p) + log(1− p)/2.

For p ∈
[
(k − 1)/n, k/n

]
,

Dn(p) = log
( [n]k
nk

)
+ np+ (n− k + 1/2) log(1− p)

and

D′n(p) = n− n− k + 1/2

1− p
=

k − 1/2− np
1− p

{
≥ 0 if p ≤ (k − 1/2)/n,

≤ 0 if p ≥ (k − 1/2)/n.

Consequently,

Dn(p) ≤ Dn

(k − 1/2

n

)
≤ (n− k + 1/2) log

(n− k + 1/2

n− k + 1

)
+

1

2
− k − 1

12n(n− k + 1)
+

1

122(n− k + 1)2
.
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It follows from (17) with x = n− k + 1/2, a = 1/2 and b = 0 that

(n− k + 1/2) log
(n− k + 1/2

n− k + 1

)
+

1

2
= x log

( x

x+ a

)
+ a

<
a2

2x+ a
− 2a3x

3(2x+ a)3

<
1

8(n− k) + 6
− n− k + 1/2

12 · 8(n− k + 3/4)3
,

and with y := n− k + 3/4 ≥ 3/4,

n− k + 1/2

12 · 8(n− k + 3/4)3

/ 1

122(n− k + 1)2

=
3(y − 1/4)(y + 1/4)2

2y3
>

3(y2 − 1/16)

2y2
≥ 4

3
≥ 1.

Hence

Dn(p) ≤ 1

8(n− k) + 6
− k − 1

12n(n− k + 1)
.

On the other hand, the lower bound for Dn(p) in (11) is trivial in case of k = n, and
otherwise

Dn(p) ≥ min
j=k−1,k

Dn(j/n)

= min
j=k−1,k

(
(n− k + 1/2) log

( n− j
n− k + 1

)
+ 1− k + j

)
+ sk,n

> (n− k + 1/2) log
( n− k
n− k + 1

)
+ 1− k − 1

12n(n− k + 1)

> − 1

12(n− k)(n− k + 1)
− k − 1

12n(n− k + 1)

by (19) with x = n− k and a = 1.

Proof of Theorem 4. We start with the first statement of part (ii). Let β := βa,b and
γc := γa,c for c > 0. Since β(x) = 0 for x ≥ 1, it suffices to consider the log-density ratio

λc(x) := log
β

γc
(x) = log

Γ(a+ b)

Γ(b)
− a log c+ (b− 1) log(1− x) + cx

for 0 ≤ x < 1, noting that the latter expression for λc(x) is well-defined for all x < 1.
The derivative of λc equals

c− b− 1

1− x
=

c

1− x

(
1− x− b− 1

c

)
=

c

1− x

(c− b+ 1

c
− x
)
,
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and this is smaller or greater than zero if and only if x is greater or smaller than the
ratio (c− b+ 1)/c, respectively. This shows that in case of c ≤ b− 1,

log ρ
(
Beta(a, b),Gamma(a, c)

)
= λc(0) = log

Γ(a+ b)

Γ(b)
− a log c

≥ log
Γ(a+ b)

Γ(b)
− a log(b− 1)

= log ρ
(
Beta(a, b),Gamma(a, b− 1)

)
.

For c ≥ b− 1,

log ρ
(
Beta(a, b),Gamma(a, c)

)
= λc

(c− b+ 1

c

)
= log

Γ(a+ b)

Γ(b)
− (a+ b− 1) log c+ (b− 1) log(b− 1) + c− b+ 1. (25)

But the derivative of the latter expression with respect to c ≥ b− 1 equals

1− a+ b− 1

c
,

so the unique minimizer of log ρ
(
Beta(a, b),Gamma(a, c)

)
with respect to c > 0 is c =

a+ b− 1.
It remains to verify the inequalities

log ρ
(
Beta(a, b),Gamma(a, a+ b)

)
≤ − log(1− δ)

2
, (26)

log ρ
(
Beta(a, b),Gamma(a, a+ b− 1)

)
≤ − log(1− δ̃)

2
. (27)

Then the total variation bounds of Theorem 4 follow from Proposition 1 (a) and the
elementary inequality (20). Corollary 11 in Section 5.2 implies that

log
Γ(a+ b)

Γ(b)
< (a+ b− 1/2) log(a+ b)− (b− 1/2) log(b)− a. (28)

Combining this with (25) yields (26):

log ρ
(
Beta(a, b),Gamma(a, a+ b)

)
= log

Γ(a+ b)

Γ(b)
− (a+ b− 1) log(a+ b) + (b− 1) log(b− 1) + a+ 1

<
log(a+ b)

2
− log(b− 1)

2
+ 1 + (b− 1/2) log

(b− 1

b

)
= − log(1− δ)

2
+ 1 + (b− 1/2) log

(b− 1

b

)
< − log(1− δ)

2
,
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by (18) with (x, a, b) = (b−1, a, 1/2). Concerning (27), if follows from (25) and (28) that

log ρ
(
Beta(a, b),Gamma(a, a+ b− 1)

)
= log

Γ(a+ b)

Γ(b)
− (a+ b− 1) log(a+ b− 1) + (b− 1) log(b− 1) + a

<
log(a+ b)

2
− log(b− 1)

2
− (a+ b− 1/2) log

(a+ b− 1

a+ b

)
+ (b− 1/2) log

(b− 1

b

)
= − log(1− δ̃)

2
+

1

2

(
A log

(1− 1/A

1 + 1/A

)
−B log

(1− 1/B

1 + 1/B

))
,

where A := 2b− 1 and B := 2(a+ b)− 1. Now (27) follows from

A log
(1− 1/A

1 + 1/A

)
−B log

(1− 1/B

1 + 1/B

)
=

∞∑
`=0

B−2` −A−2`

2`+ 1
< 0,

because A < B.
In the special case of a = 1, we do not need (28) but get via (25) the explicit expression

log ρ
(
Beta(1, b),Gamma(1, b)

)
= log

Γ(b+ 1)

Γ(b)
− b log(b) + (b− 1) log(b− 1) + 1

= (b− 1) log(1− 1/b) + 1,

because Γ(b+ 1) = bΓ(b). Now the standard Taylor series for log(1− x) yields that

log ρ
(
Beta(1, b),Gamma(1, b)

)
= −(b− 1)

∞∑
`=1

b−`

`
+ 1 =

∞∑
`=1

(b−`
`
− b−`

`+ 1

)
=

∞∑
`=1

b−`

`(`+ 1)

<
1

2b
+

1

6b2
+

1

12b3

∞∑
j=0

b−j =
1

2b
+

1

6b2
+

1

12b2(b− 1)
,

and in case of b ≥ 2, the latter expression is not larger than

1

2b
+

1

6b2
+

1

12b2
=

1

2b
+

1

4b2
.

Proof of Lemma 8. By Proposition 1 (a) and the inequality 1−exp(−x) ≤ x for x ≥ 0,
it suffices to verify the claims about log ρ

(
N(0, 1), tr

)
. Note first that

log
φ(x)

fr(x)
= log

Γ(r/2)
√
r/2

Γ((r + 1)/2)
+
r + 1

2
log
(

1 +
x2

r

)
− x2

2

and
∂

∂(x2)
log

φ(x)

fr(x)
=

r + 1

2(r + x2)
− 1

2
=

1− x2

2(r + x2)
,
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whence

log ρ
(
N(0, 1), tr

)
= log

Γ(r/2)
√
r/2

Γ((r + 1)/2)
− 1

2
+
r + 1

2
log
(

1 +
1

r

)
.

On the one hand, the Taylor expansion − log(1− x) =
∑∞
k=1 x

k/k yields that

−1

2
+
r + 1

2
log
(

1 +
1

r

)
= −1

2
− r + 1

2
log
( r

r + 1

)
= −1

2
+
r + 1

2

∞∑
k=1

1

k(r + 1)k

=
1

2

∞∑
k=2

1

k(r + 1)k−1
,

and the latter series equals

1

4(r + 1)
+

1

2(r + 1)2

∞∑
`=0

1

(`+ 3)(r + 1)`

<
1

4(r + 1)
+

1

6(r + 1)2

∞∑
`=0

(r + 1)−` =
1

4(r + 1)
+

1

6(r + 1)2(1− (r + 1)−1)

=
1

4(r + 1)
+

1

6(r + 1)r
=

1

4r
− 1

4r(r + 1)
+

1

6(r + 1)r
=

1

4r
− 1

12r(r + 1)
.

Moreover, it follows from Lemma 12 in Section 5.2 with x := r/2 that

log
Γ(r/2)

√
r/2

Γ((r + 1)/2)
<

1

4r
+

1

12r(r2 − 1)
=

1

4r
+

1

12r(r + 1)(r − 1)

≤ 1

4r
+

1

12r(r + 1)
,

because r − 1 ≥ 1 by assumption. Consequently,

log ρ
(
N(0, 1), tr

)
<

1

2r
.

On the other hand, the previous considerations and Lemma 12 imply that

−1

2
+
r + 1

2
log
(

1 +
1

r

)
>

1

4(r + 1)

and

log
Γ(r/2)

√
r/2

Γ((r + 1)/2)
>

1

4(r + 1)
,

whence

log ρ(N(0, 1), tr) >
1

2(r + 1)
.
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5.2. Auxiliary Results for the Gamma Function

In what follows, let

h(x) := log Γ(x) = log

∫ ∞
0

tx−1e−t dt, x > 0.

With a random variable Yx ∼ Gamma(x, 1) one may write

h′(x) = IE(log Yx) and h′′(x) = Var(log Yx).

The functions h′ and h′′ are known as the digamma and trigamma functions; see e.g.,
Olver et al. (2010), Section 5.15. This shows that h(x) is strictly convex in x > 0.
Moreover, it follows from concavity of log(·) and Jensen’s inequality that

h′(x) < log IE(Yx) = log x.

The well-known identity Γ(x+ 1) = xΓ(x) is equivalent to

h(x+ 1)− h(x) = log x.

Binet’s first formula and Stirling’s approximation. Binet’s first integral formula
states that

h(x) = log
√

2π + (x− 1/2) log x− x+R(x), (29)

where

R(x) :=

∫ ∞
0

e−txw(t) dt and w(t) :=
1

t

(1

2
− 1

t
+

1

et − 1

)
,

see Chapter 12 of Whittaker and Watson (1996). The following lemma provides a lower
and upper bound for w(t), and these yield rather precise bounds for the remainder R(x).

Lemma 10. For arbitrary t > 0,

12−1e−t/12 < w(t) < 12−1.

In particular, the remainder R(x) in Binet’s formula (29) is strictly decreasing in x > 0
and satisfies

(12x+ 1)−1 < R(x) < (12x)−1.

Since n! = Γ(n+ 1), Lemma 10 implies a slight improvement of the Stirling approxi-
mation by Robbins (1955): For arbitrary integers n ≥ 0,

log(n!) = log
√

2π + (n+ 1/2) log(n+ 1)− n− 1 + sn (30)

with
1

12(n+ 1) + 1
< sn <

1

12(n+ 1)
.

In addition, Binet’s formula (29) and Lemma 10 lead to useful inequalities for the incre-
ments of h(·).
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Corollary 11. For arbitrary 0 < a < b,

h(b)− h(a) = (b− 1/2) log(b)− (a− 1/2) log(a)− (b− a) + s(a, b)

where

−b− a
12ab

< s(a, b) < min
(

0,−b− 1

12ab
+

1

122a2

)
Proof of Lemma 10. The series expansion of the exponential function and some ele-
mentary algebra lead to the representation

w(t) =
1

t

(1

2
− 1

t
+

1

et − 1

)
=

t(et − 1)− 2(et − 1− t)
2t3

/et − 1

t

=

∞∑
m=1

amt
m−1

m!

/ ∞∑
m=1

tm−1

m!
,

with
am :=

m

2(m+ 1)(m+ 2)
.

Note that a1 = 12−1, and

am+1

am
=

(m+ 1)2

(m+ 1)2 +m− 1

{
= 1 for m = 1,

< 1 for m ≥ 2.

This shows that am ≤ 12−1 with strict inequality for m ≥ 3. Consequently, w(t) < 12−1.
The reverse inequality, w(t) > 12−1e−t/12, is equivalent to

12
t(et − 1)− 2(et − 1− t)

2t3
>

et − 1

t
e−t/12.

The left hand side equals 12
∑∞
m=1 amt

m−1/m!, while the right hand side equals

e(11/12)t − e−t/12

t
=

∞∑
m=1

(
(11/12)m − (−1/12)m

)
tm−1

m!

<

∞∑
m=1

cmt
m−1

m!
with cm := (11/12)m + (1/12)m.

Note that 12a1 = 1 = c1. Consequently, w(t) > 12−1e−t/12 for all t > 0, provided
that 12am ≥ cm for all m ≥ 2. But c2 = 61/72 and cm+1/cm < 11/12, whence cm ≤
(61/72)(11/12)m−2 for m ≥ 2. Consequently, it suffices to show that

12(12/11)m−2am ≥ 61/72 for all m ≥ 2.
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But
(12/11)m+1−2am+1

(12/11)m−2am
=

1 + 1/11

1 + (m− 1)/(m+ 1)2
< 1

if and only if m2 − 9m < −12, and for integers m ≥ 2 this is equivalent to m ≤ 7. Hence

min
m≥2

12(12/11)m−2am = 12(12/11)8−2a8 ≥ 0.89 > 0.85 ≥ 61/72.

Since for any fixed t > 0, the integrand e−txw(t) is strictly decreasing in x > 0, the
remainder R(x) is strictly decreasing in x > 0. The two bounds for w(t) imply that R(x)
is larger than 12−1

∫∞
0
e−t(x+1/12) dt = (12x+ 1)−1 and smaller than 12−1

∫∞
0
e−tx dt =

(12x)−1.

Proof of Corollary 11. Writing h(x) = log
√

2π+ h̃(x)+R(x) with the auxiliary func-

tion h̃(x) := (x− 1/2) log x− x, the remainder term s(a, b) equals R(b)−R(a). But

R(a)−R(b) =

∫ ∞
0

(e−ta − e−tb)w(t) dt,

and since e−ta − e−tb > 0, it follows from 0 < w(t) < 12−1 that

0 < R(a)−R(b) <
1

12

∫ ∞
0

(e−ta − e−tb) dt =
1

12a
+

1

12b
=

b− a
12ab

.

Moreover, since w(t) > 12−1e−t/12,

R(a)−R(b) >
1

12

∫ ∞
0

(e−t(a+1/12) − e−t(b+1/12)) dt =
1

12a+ 1
− 1

12b+ 1

=
b− a
12ab

+
1

12b(12b+ 1)
− 1

12a(12a+ 1)
>

b− a
12ab

− 1

122a2
.

Special increments of h. In connection with student distributions, we need lower and
upper bounds for the quantities h(x + 1/2) − h(x) − log(x)/2. With a random variable
Yx ∼ Gamma(x, 1), the latter expression equals log IE

√
Yx/x, so it follows from Jensen’s

inequality that h(x+1/2)−h(x)− log(x)/2 < log
√

IE(Yx/x) = 0. The next lemma shows
that h(x+ 1/2)− h(x)− log(x)/2 is close to to −1/(8x) for large x.

Lemma 12. For arbitrary x > 0,

− 1

8x
− 1

24x(4x2 − 1)+
< h(x+ 1/2)− h(x)− log x

2
< − 1

8(x+ 1/2)
.

Proof of Lemma 12. Let us first mention that the second derivative of the log-gamma
function h is given by Gauss’ formula

h′′(x) =

∞∑
n=0

1

(x+ n)2
,
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see Chapter 12 of Whittaker and Watson (1996). In particular, h′′ is strictly convex and
decreasing on (0,∞) with

h′′(x) >

∫ ∞
x

1

y2
dy =

1

x
,

because (x+ n)−1 >
∫ x+n+1

x+n
y−2 dy.

Now we start with a general consideration about second order differences of h: For
arbitrary 0 < a < z,

h(z + a) + h(z − a)− 2h(z) =
(
h(z + a)− h(z)

)
−
(
h(z)− h(z − a)

)
=

∫ a

0

(
h′(z + u)− h′(z − a+ u)

)
du

=

∫ a

0

∫ a

0

h′′(z − a+ u+ v) dv du

= a2 IEh′′(z − a+ a(U + V )),

where U and V are independent random variables with uniform distribution on [0, 1].
Since h′′ is convex and h′′(z) > 1/z, it follows from Jensen’s inequality that

h(z + a) + h(z − a)− 2h(z) ≥ a2h′′(z − a+ a IE(U + V )) = a2h′′(z) >
a2

z
.

Note also that the distribution of W := U +V is given by the triangular density f(w) :=
(1− |w − 1|)+, so

h(z + a) + h(z − a)− 2h(z) = a2
∫
R

(1− |w − 1|)+h′′(z − a+ aw) dw

=

∫
R

(a− |a(w − 1)|)+h′′(z + a(w − 1)) a dw

=

∫
R

(a− |t|)+h′′(z + t) dt.

We first apply these findings with z = x+1/2 and a = 1/2: Since h(x+1)−h(x) = log x,

log x

2
−
(
h(x+ 1/2)− h(x)

)
=

h(x+ 1)− h(x)

2
− h(x+ 1/2) + h(x)

=
1

2

(
h(x+ 1) + h(x)− 2h(x+ 1/2)

)
≥ 1

8(x+ 1/2)
,

which gives us the upper bound for h(x+ 1/2)− h(x)− log(x)/2. Furthermore,

log x

2
−
(
h(x+ 1/2)− h(x)

)
=

1

2

∫
R

(1/2− |t|)+h′′(x+ 1/2 + t) dt.
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On the other hand, if x > 1/2, then with z = x+ 1/2 and a = 1 we obtain

log
(x+ 1/2

x− 1/2

)
=
(
h(x+ 3/2)− h(x+ 1/2)

)
−
(
h(x+ 1/2)− h(x− 1/2)

)
=

∫
R
(1− |t|)+h′′(x+ 1/2 + t) dt.

Note that

∆(t) :=
1

8
(1− |t|)+ −

1

2
(1/2− |t|)+

has the following properties:∫
R

∆(t) dt =

∫
R

∆(t)t dt = 0

and

∆(t)

{
< 0 if |t| < 1/3,

≥ 0 if |t| ≥ 1/3.

These properties plus the convexity of h′′ imply that∫
R

∆(t)h′′(x+ 1/2 + t) dt ≥ 0.

Indeed, the latter integral doesn’t change if we replace h′′(x + 1/2 + t) with g(t) :=
h′′(x+1/2+ t)+a+bt with constants a, b such that g(±1/3) = 0. But then, by convexity
of g and the sign changes of ∆, we have that g∆ ≥ 0. Consequently,

log x

2
−
(
h(x+ 1/2)− h(x)

)
=

1

2

∫
R

(1/2− |t|)+h′′(x+ 1/2 + t) dt

≤ 1

8

∫
R

(1− |t|)+h′′(x+ 1/2 + t) dt

=
1

8
log
(x+ 1/2

x− 1/2

)
.

Finally, with y := (2x)−1 < 1, the latter expression equals

1

8
log
(1 + y

1− y

)
=

1

4

∞∑
`=0

y2`+1

2`+ 1
=

y

4
+

1

4

∞∑
`=1

y2`+1

2`+ 1

<
y

4
+

y3

12(1− y2)

=
1

8x
+

1

24x(4x2 − 1)
.
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