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Abstract We prove Kontsevich’s homological mirror symmetry conjecture
for certain mirror pairs arising from Batyrev–Borisov’s ‘dual reflexive Goren-
stein cones’ construction. In particular we prove HMS for all Greene–Plesser
mirror pairs (i.e., Calabi–Yau hypersurfaces in quotients ofweighted projective
spaces). We also prove it for certain mirror Calabi–Yau complete intersections
arising from Borisov’s construction via dual nef partitions, and also for certain
Calabi–Yau complete intersections which do not have a Calabi–Yau mirror,
but instead are mirror to a Calabi–Yau subcategory of the derived category of
a higher-dimensional Fano variety. The latter case encompasses Kuznetsov’s
‘K3 category of a cubic fourfold’, which ismirror to an honest K3 surface; and
also the analogous category for a quotient of a cubic sevenfold by an order-3
symmetry, which is mirror to a rigid Calabi–Yau threefold.
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628 N. Sheridan, I. Smith

1 Introduction

1.1 Toric mirror constructions

One of the first constructions of mirror pairs of Calabi–Yau varieties was due
to Greene and Plesser [28]. They considered Calabi–Yau hypersurfaces in
quotients of weighted projective spaces. They were interested in the three-
dimensional case, but their construction works just as well in any dimension.

Batyrev generalized this to a construction of mirror pairs of Calabi–Yau
hypersurfaces in toric varieties [8]. In Batyrev’s construction one considers
dual reflexive lattice polytopes � and �̌, corresponding to toric varieties Y
and Y̌ . Batyrev conjectured that Calabi–Yau hypersurfaces in Y and Y̌ ought
to be mirror. His construction reduces to Greene–Plesser’s in the case that �

and �̌ are simplices. Borisov generalized Batyrev’s construction to encompass
mirror pairs of Calabi–Yau complete intersections in toric varieties [13].

However, certain examples in the literature not encompassed by theBatyrev-
Borisov construction suggested that some Calabi–Yau complete intersections
might not admit any Calabi–Yau mirror, but might nevertheless be mirror
in some generalized sense to a higher-dimensional Fano variety, which one
considers to be a ‘generalized Calabi–Yau’.1 For example, Candelas, Derrick
and Parkes considered a certain rigid Calabi–Yau threefold, and showed that
it should be mirror to a quotient of a cubic sevenfold by an order-3 symmetry
group [14].

Batyrev andBorisov succeeded in generalizing their constructions to include
these generalized Calabi–Yau varieties. They constructed mirror pairs of
Landau–Ginzburg models, depending on dual pairs of ‘reflexive Gorenstein
cones’ [9]. They showed that a reflexive Gorenstein cone equipped with
a ‘complete splitting’ determines a Calabi–Yau complete intersection in a
toric variety, which should be equivalent to the Landau–Ginzburg model via
the ‘Landau–Ginzburg/Calabi–Yau correspondence’. Borisov’s previous con-
struction was equivalent to the new one in the case that both cones were
completely split. However it may happen that a reflexive Gorenstein cone is
completely split, but its dual is not; in this case the dual will correspond to
some generalized Calabi–Yau variety.

In this paper, we prove that certain special cases of Batyrev–Borisov’s
construction (which we call generalized Greene–Plesser mirrors) satisfy an
appropriate version of Kontsevich’s homological mirror symmetry conjecture.

1 It has since been understood that in these contexts, the derived category of the higher-
dimensional Fano variety admits a semi-orthogonal decomposition, one interesting component
of which is Calabi–Yau, which means it looks like it could be the derived category of some hon-
est Calabi–Yau variety (see [39]). We think of the ‘generalized Calabi–Yau variety’ as having
derived category equal to this Calabi–Yau category.
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Homological mirror symmetry 629

The rest of the introduction is organized as follows: we give the construction
of generalized Greene–Plesser mirrors in Sects. 1.2, 1.3 and 1.4; we formulate
a version of Kontsevich’s homological mirror symmetry conjecture for gen-
eralized Greene–Plesser mirrors in Sect. 1.5; we state our main result, which
constitutes a proof of the conjecture (contingent in some cases on certain tech-
nical assumptions), in Sect. 1.6. Three running examples used to illustrate the
constructions are returned to in Sect. 1.7. In particular, we remark that gener-
alized Greene–Plesser mirrors include all Greene–Plesser mirrors, and work
through the case of the quartic surface and its mirror (in the ‘reverse’ direction
from that considered in [55]); we also consider some examples which do not
arise from the Greene–Plesser construction, including the rigid Calabi–Yau
threefold mentioned above, as well as a certain K3 surface which is mirror to
Kuznetsov’s ‘K3 category associated to the cubic fourfold’ [38].

1.2 Toric data

In this section we give the toric data on which our construction of generalized
Greene–Plesser mirrors depends.We start by recalling some terminology used
in the Batyrev–Borisov construction, following [9,12].

If M and N are dual lattices, and if σ ⊂ MR is a rational finite polyhedral
cone with vertex 0, then its dual cone σ̌ = {y ∈ NR : 〈x, y〉 ≥ 0 ∀ x ∈ σ }.
Assume both σ and σ̌ are full-dimensional. We say σ is Gorenstein if it is
generated by finitely many lattice points contained in an affine hyperplane
{x ∈ MR : 〈x,nσ 〉 = 1} for a (then uniquely determined) lattice point nσ ∈
int(σ̌ ). We say σ is reflexive if σ̌ is also Gorenstein; ifmσ̌ is the corresponding
lattice point in int(σ ), then σ is Gorenstein of index r = 〈nσ ,mσ̌ 〉.

The support of a Gorenstein cone σ is the convex polytope � = {m ∈
σ : 〈nσ ,m〉 = 1}. We will denote the support of σ̌ by ∇. If σ is reflexive
Gorenstein of index r , then a complete splitting for σ is a choice of elements
q̌1, . . . , q̌r ∈ ∇ ∩ N with nσ = q̌1 + · · · + q̌r (this definition of complete
splitting is equivalent to the one in [9] by [12, Corollary 2.5]).

Let I1, . . . , Ir be finite sets with |I j | ≥ 3 for all j , and let I := I1
 . . .
 Ir .
Let d ∈ (Z>0)

I be a tuple of positive integers such that
∑

i∈I j
1/di = 1 for

all j . We denote d := lcm(di ), and let q ∈ (Z>0)
I be the vector with entries

qi := d/di . Let ei be the standard basis of Z
I , and denote eK :=∑

i∈K ei for
a subset K ⊂ I .

Let M ⊂ Z
I be a sublattice such that

• M contains diei for all i and eI j for all j .
• d|〈q,m〉 for allm ∈ M .

We explain how these data give rise to a pair of dual reflexive Gorenstein
cones.
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630 N. Sheridan, I. Smith

The dual lattice to M is

N := {n ∈ R
I : 〈n,m〉 ∈ Z for allm ∈ M}, (1.1)

and it includes the element nσ := q/d. Let σ := (R≥0)
I ⊂ R

I ∼= MR. This
cone is Gorenstein (with respect to the lattice M), because it is generated by
the vectors diei which all lie on the affine hyperplane {m : 〈nσ ,m〉 = 1}.

The dual cone is σ̌ = (R≥0)
I ⊂ R

I . It is Gorenstein (with respect to
the lattice N ), because it is generated by the vectors ei which all lie on the
hyperplane {n : 〈mσ̌ ,n〉 = 1} where mσ̌ := eI . Therefore σ and σ̌ are dual
reflexive Gorenstein cones, of index 〈nσ ,mσ̌ 〉 = r .

The support

� = {m ∈ σ : 〈nσ ,m〉 = 1} (1.2)

is the convex hull of the vectors diei , and hence a simplex. Let � := � ∩ M ,
and

�0 := {p ∈ � : pi = 0 for at least two i ∈ I j , for all j}. (1.3)

Our constructions will depend on one further piece of data, which is a vector
λ ∈ (R>0)

�0 . This is now the complete set of data on which our constructions
depend: the sets I j , the vector d, the sublattice M , and the vector λ (we will
later put additional conditions on the data).

The decomposition mσ̌ = ∑
j eI j determines a complete splitting of the

cone σ̌ . Therefore it determines a codimension r Calabi–Yau complete inter-
section in a toric variety, in accordance with [9]. This complete intersection
may be singular, but under certain hypotheses the vector λ determines a maxi-
mal projective crepant desingularization X (in the sense of [8]), together with
a Kähler form ωλ. We describe the construction explicitly in Sect. 1.3.

We associate a graded Landau–Ginzburg model (S, W ) to the reflexive
Gorenstein cone σ . This cone is completely split if and only if the nef-partition
condition holds (see Definition 1.1 below); in that case we have an associated
Calabi–Yau complete intersection X̌ . The nef-partition condition is automatic
if r = 1. If r > 1, then whether or not the nef-partition condition holds we
have an associated Fano hypersurface Ž (of dimension greater than that of X ).
We describe the constructions explicitly in Sect. 1.4.

Now let us explain when the reflexive Gorenstein cone σ is completely split.
We define a map

ι : Z
I → R

I

ι(ei ) = 1

di
ei . (1.4)
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Homological mirror symmetry 631

Definition 1.1 We say that the nef-partition condition holds if ι(eI j ) ∈ N for
all j .

When the nef-partition condition holds, we have nσ = ι(eI ) =∑
j ι(eI j ),

so σ is completely split. It is not difficult to show that this is the only way that
σ can be completely split. In this situation we have a symmetry of our data
which exchanges M ↔ N , where N is regarded as a sublattice of Z

I ∼= im(ι).

Remark 1.2 The case r = 1 will be the Greene–Plesser construction, which
we recall is a special case of Batyrev’s construction in terms of dual reflexive
polytopes. The reflexive polytopes in this case are the simplex � (with lattice
M ∩ �) and its polar dual ∇ := {n ∈ σ̌ : 〈mσ̌ ,n〉 = 1} (with lattice N ∩ ∇).
The nef-partition condition always holds in this case.

Definition 1.3 Let V ⊂ Z
I be the set of vertices of the unit hypercube [0, 1]I .

We say that the embeddedness condition holds if

M ∩ V ⊂ 〈eI j 〉. (1.5)

Remark 1.4 The embeddedness condition always holds in the Greene–Plesser
case r = 1. That is because, if eK ∈ M ∩ V , we have 〈nσ ,eK 〉 ∈ Z because
eK ∈ M ; on the other hand, for ∅ � K � I we have

0 = 〈nσ ,e∅〉 < 〈nσ ,eK 〉 < 〈nσ ,eI 〉 = 1. (1.6)

1.2.1 Running example: the quartic

We describe the toric data giving rise to the mirror pair (X, X̌), where X is a
‘mirror quartic’ K3 surface and X̌ is a quartic K3 surface.

Take r = 1, I = I1 = {1, 2, 3, 4}, d = 4eI , and M := {m ∈ Z
4 :∑i mi ≡

0 (mod 4)}. The simplex � is illustrated in Fig. 1: it is the convex hull of
the vectors 4ei . The set �0 is also illustrated: it consists of all lattice points
p = (p1, p2, p3, p4) with pi ∈ Z≥0 such that

∑
i pi = 4 and at least two of

the pi are 0. In other words,�0 consists of those 22 lattice points that lie at the
vertices or on the edges of �. The nef-partition and embeddedness conditions
both hold in this case, as r = 1.

1.2.2 Running example: the cubic fourfold

We describe the toric data giving rise to the mirror pair (X, Ž), where X is a
certain K3 surface and Ž is a cubic fourfold (which is a ‘generalized Calabi–
Yau’).

Take r = 2, I = I1 
 I2 = {1, 2, 3} 
 {4, 5, 6}, d = 3eI , and M :=
{m ∈ Z

6 : ∑i mi ≡ 0 (mod 3)}. The simplex � is the convex hull of the
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632 N. Sheridan, I. Smith

vectors 3ei ∈ Z
6. �0 is the set of lattice points (p1, . . . , p6) ∈ (Z≥0)

6 such
that

∑
i pi = 3, at most one of (p1, p2, p3) is non-zero, and at most one of

(p4, p5, p6) is non-zero. We have |�0| = 24. These toric data do not satisfy
the nef-partition condition, as ι(eI1) /∈ N (for example, 〈ι(eI1),e1 − e4〉 =
1/3 /∈ Z). Nor do they satisfy the embeddedness condition (for example,
e{1,4,5} ∈ V ∩ M does not lie in the span of e{1,2,3} and e{4,5,6}).

1.2.3 Running example: the Z-manifold

We describe the toric data giving rise to the mirror pair (X, Ž), where X is the
‘Z -manifold’ (a certain rigid Calabi–Yau threefold described in [14]) and Ž
is a quotient of a cubic sevenfold by an order-3 symmetry group (which is a
‘generalized Calabi–Yau’).

Take r = 3, I = I1 
 I2 
 I3 = {1, 2, 3} 
 {4, 5, 6} 
 {7, 8, 9}, d = 3eI ,
and

M :={m ∈ Z
9 : m1+m2 + m3 ≡ m4+m5+m6 ≡ m7+m8+m9 (mod 3)}.

(1.7)

The simplex � is the convex hull of the vectors 3ei ∈ Z
9. We have

�0 = {3ei }1≤i≤9 ∪ {ei + e j + ek}i∈I1, j∈I2,k∈I3, (1.8)

with |�0| = 36. Neither the nef-partition nor the embeddedness conditions
hold.

1.3 Symplectic construction

The elements eI j define an embedding

Z
r ↪→ M ↪→ Z

I , (1.9)

which induces an embedding

M/Z
r =: M ↪→ M̃ := Z

I /Z
r . (1.10)

Note that M̃ = M̃1× . . .× M̃r where M̃ j := Z
I j /eI j . Each M̃ j supports a

complete fan 	̃′
j whose rays are generated by the images of the basis vectors

ei for i ∈ I j . The corresponding toric variety is Ỹ ′
j
∼= P

|I j |−1. We denote the

product fan in M̃ by 	̃′, which is the fan of the product of projective spaces
Ỹ ′ := Ỹ ′

1 × . . . × Ỹ ′
r .
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Homological mirror symmetry 633

Let π : R
I → M̃R denote the projection. Let ψλ : M̃R → R be the

smallest convex function such that ψλ(t · π(p)) ≥ −t · λp for all t ∈ R≥0 and
all p ∈ �0. The decomposition of M̃R into domains of linearity of ψλ induces
a fan 	̃λ.

Definition 1.5 We say that the MPCP condition holds if 	̃λ is a projective
simplicial refinement of 	̃′ whose rays are generated by the projections of
elements of �0.

Remark 1.6 MPCP stands for Maximal Projective Crepant Partial desingular-
ization (see [8, Definition 2.2.13]). In the language of [16, Section 6.2.3], the
MPCP condition holds if and only if λ lies in the interior of a top-dimensional
cone cpl(	̃λ) of the secondary fan (or Gelfand–Kapranov–Zelevinskij decom-
position) associated to π(�0) ⊂ M̃R, where 	̃λ is a projective simplicial
refinement of 	̃′ whose rays are generated by π(�0).

Now we consider the fans 	′ and 	λ, which are the same as 	̃′ and 	̃λ

except we equip the vector space M̃R with the lattice M rather than M̃ .

Remark 1.7 If r = 1 and the MPCP condition holds, 	λ is called a simplified
projective subdivision of 	′ in [16, Definition 6.2.5].

Wehavemorphismsof fans	λ → 	′ → 	̃′, thefirst being a refinement and
the second being a change of lattice. It follows that we have toric morphisms
Yλ → Y ′ → Ỹ ′, the first being a blowdown and the second being a branched
cover with covering group G := M̃/M . We consider the hyperplane

X̃ ′
j :=

⎧
⎨

⎩

∑

i∈I j

zi = 0

⎫
⎬

⎭
⊂ Ỹ ′

j (1.11)

for all j , and denote X̃ ′ :=∏
j X̃ ′

j ⊂
∏

j Ỹ ′
j . We let X ′ ⊂ Y ′ be the pre-image

of X̃ ′, and X ⊂ Yλ the proper transform of X ′. The intersection of X with each
toric stratum is a product of hypersurfaces of Fermat type, and in particular
smooth; so if theMPCP condition holds then X is amaximal projective crepant
partial desingularization (hence the name of the condition). Observe that the
topology of X may depend on λ, but we will omit this from the notation.

Observe that even if the MPCP condition holds, Yλ may have finite quotient
singularities, since	λ is only assumed to be simplicial. Therefore X may also
have finite quotient singularities. We would like to understand when X is in
fact smooth. Observe that for each j we have a morphism Yλ → Ỹ ′ → Ỹ ′

j ,
where the last map is projection. We denote the union (over all j) of the pre-
images of toric fixed points in Ỹ ′

j by Yλ,0 ⊂ Yλ, and we observe that X avoids

Yλ,0 because X̃ ′
j avoids the toric fixed points of Ỹ ′

j .
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634 N. Sheridan, I. Smith

Fig. 1 The simplex �, with
the set �0 labelled as solid
points and the centroid
eI =∑

i ei labelled with an
empty point. The rays of the
fan 	′ are also illustrated;
the refinement 	λ has rays
in the directions of all
elements of �0

4e1

4e2

4e3

4e4

Σie i

Definition 1.8 We say that the MPCS condition holds if the MPCP condi-
tion holds, and furthermore Yλ is smooth away from Yλ,0. MPCS stands for
Maximal Projective Crepant Smooth desingularization.

We remark that the MPCS and MPCP conditions are equivalent when
dimC(Yλ) ≤ 4 (see [8, §2.2]). If the MPCS condition holds, then X avoids the
non-smooth locus of Yλ, so X is in fact a smooth complete intersection. The
fact that σ̌ is reflexive Gorenstein of index r means that X is Calabi–Yau by [9,
Corollary 3.6], in the weak sense that the canonical sheaf is holomorphically
trivial.

We denote the toric boundary divisor of Yλ by DY . Note that it has irre-
ducible components DY

p indexed by p ∈ �0. Let DY
λ := ∑

p∈�0
λp · DY

p be
the toric R-Cartier divisor with support function ψλ. Because ψλ is strictly
convex (by our assumption that its domains of linearity are the cones of the
fan	λ), this divisor is ample, so the first Chern class of the corresponding line
bundle is represented in de Rham cohomology by an orbifold Kähler form (see
discussion in [4, §4]). We denote the restriction of this orbifold Kähler form
to X by ωλ. Because X avoids the non-smooth locus of Yλ, ωλ is an honest
Kähler form. Its cohomology class is Poincaré dual to

∑
p∈�0

λp · [Dp], where
Dp := X ∩ DY

p .

1.3.1 Running example: the quartic

We continue from Sect. 1.2.1, and describe the ‘mirror quartic’ K3 surface
X . We consider the lattice M = M/eI equipped with the complete fan 	′
whose rays are spanned by the vectors 4ei . It is illustrated in Fig. 1: since we
quotient by eI = ∑

i ei , the central point is now regarded as the origin. The
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Homological mirror symmetry 635

corresponding singular toric variety Y ′ is the quotient CP
3/H , where

H := ker
(
(Z/4)4

+−→ Z/4
)

/〈eI 〉. (1.12)

The toric morphism Y ′ → Ỹ ′ is the map

CP
3/H → CP

3, [z1 : z2 : z3 : z4] �→ [z41 : z42 : z43 : z44]

which is a branched coveringwith covering group G = Z/4. The hypersurface
X ′ ⊂ Y ′ is the quotient of the Fermat hypersurface

{∑
i z4i = 0

} ⊂ CP
3 by

H .
Now X ′ is not smooth: it has six A3 singularities where it hits the pairwise

intersections of the components of the toric boundary divisor of Y ′. We can
resolve them by partially resolving the ambient toric variety. We do this by
refining the fan 	′ to 	λ, which has rays spanned by vectors in the set �0. We
define X to be the proper transform of X ′ in the corresponding partial toric
resolution Yλ of Y ′. We observe that the singularities of Yλ lie over the toric
fixed points of Y ′, which X ′ avoids: so X avoids the singularities and in fact is
smooth (it is obtained from X ′ by resolving the six A3 singularities). We also
observe that, while the toric variety Yλ depends on λ, the variety X does not.

We denote the intersections of X with the components of the toric boundary
divisor by Dp ⊂ X , for p ∈ �0. We choose a Kähler form ωλ on X whose
cohomology class is Poincaré dual to

∑
p λp · [Dp]. Note that we have a 22-

dimensional space of choices of λ; however the classes Poincaré dual to [Dp]
only span a 19-dimensional space in H2(X), so up to symplectomorphism we
get a 19-dimensional family of symplectic K3 surfaces.

1.3.2 Running example: the cubic fourfold

We continue from Sect. 1.2.2, and describe the K3 surface X which is mirror
to the cubic fourfold. We consider the elliptic curve E = C/〈1, e2π i/6〉, with
the order-3 symmetry generated by z �→ ζ · z where ζ := e2π i/3. The quotient
E/(Z/3) is isomorphic to X̃ ′

1
∼= X̃ ′

2: it is a sphere with three orbifold points
of order 3. We take the quotient of E × E by the anti-diagonal action of Z/3:
i.e., (z1, z2) �→ (ζ · z1, ζ−1 · z2). This gives a surface X ′ which has 9 A2
singularities: resolving themwe get a K3 surface X equipped with a divisor D
which has 24 irreducible components.We consider aKähler formωλ on X with
cohomology class Poincaré dual to

∑
p λp · [Dp]. The classes Poincaré dual

to [Dp] span a 20-dimensional space in H2(X), so up to symplectomorphism
we get a 20-dimensional family of symplectic K3 surfaces.
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1.3.3 Running example: the Z-manifold

We continue from Sect. 1.2.3, and describe the Z -manifold X . It is a crepant
resolution of the quotient E × E × E/∗, where E is as in Sect. 1.3.2 and
∗ ∼= Z/3 acts diagonally. The orbifold has 27 C

3/(Z/3) singularities, each
of which admits a crepant resolution locally modelled on OCP2(−3), so the
resolution is equipped with a divisor having 36 irreducible components. These
span a 30-dimensional subspace of H2(X), so we obtain a 30-dimensional
space of ambient Kähler forms.

1.4 Algebraic construction

We work over the universal Novikov field:

� :=
⎧
⎨

⎩

∞∑

j=0

c j · qλ j : c j ∈ C, λ j ∈ R, lim
j→∞ λ j = +∞

⎫
⎬

⎭
. (1.13)

It is an algebraically closed field extension of C. It has a valuation

val : � → R ∪ {∞} (1.14)

val

⎛

⎝
∞∑

j=0

c j · qλ j

⎞

⎠ := min
j
{λ j : c j �= 0}. (1.15)

We consider the graded polynomial ring S� := �[zi ]i∈I , where |zi | = qi .
We consider polynomials

Wb(z) := −
r∑

j=1

zeI j +
∑

p∈�0

bp · zp, (1.16)

for b = (bp) ∈ A
�0 , which are weighted homogeneous of degree d.

The dual to the group G introduced in Sect. 1.3 is G∗ ∼= hom(ZI /M, Gm),
which acts torically on A

I . The action preserves Wb, because all monomials
zp appearing in Wb satisfy p ∈ M . Thus we have a Landau–Ginzburg model
([AI /G∗], Wb).

Remark 1.9 Observe that we have a correspondence

monomial zp of Wb ↔ divisor Dp ⊂ X. (1.17)

This correspondence is called the ‘monomial–divisor mirror map’ (see [4]).
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Homological mirror symmetry 637

Because Wb is weighted homogeneous, its vanishing locus defines a hyper-
surface inside theweighted projective stackWP(q). The action ofG∗ descends
to an action of  := G∗/(Z/d) on WP(q), preserving the hypersurface. We
denote V̌ := [WP(q)/], and Žb := {Wb = 0} ⊂ V̌ .

Now suppose that the nef-partition condition holds. Then the vectors
ι(eI j ) ∈ N define a map M � Z

r splitting the inclusion Z
r ↪→ M , so

we have M ∼= Z
r ⊕ M . We denote

� j := {m ∈ � : 〈ι(eIk ),m〉 = δ jk}, (1.18)

� j := π
(
� j
) ⊂ MR, (1.19)

� := �1 + · · · + �r . (1.20)

We denote the toric stack corresponding to the polytope � by Y̌ , and the
divisor corresponding to � j by Ď j . We define a section W j

b of O(Ď j ) by

W j
b := −zeI j +

∑

p∈�0∩� j

bp · zπ(p), (1.21)

and let sb := W 1
b ⊕ . . .⊕ W r

b be the corresponding section of O(Ď1)⊕ . . .⊕
O(Ďr ). We finally denote X̌b := {sb = 0} ⊂ Y̌ . It is a Calabi–Yau complete
intersection by [9, Corollary 3.6], and it corresponds to the hypersurface Žb
in accordance with [9, Section 3].

1.4.1 Running example: the quartic

We continue from Sects. 1.2.1 and 1.3.1, and describe the family of quartic
K3 surfaces X̌ . We have

Wb(z1, z2, z3, z4) = −z1z2z3z4 +
∑

p∈�0

bp · zp, (1.22)

where val(bp) = λp. We have G ∼= Z/4 in this case, and  is trivial. So

X̌b = {Wb = 0} ⊂ P
3
� (1.23)

is a quartic K3 surface in projective 3-space. By varying b we get a 22-
dimensional family of hypersurfaces; however the algebraic torus G

3
m acting

on P
3 preserves this family, so up to isomorphism we get a 19-dimensional

family of K3 surfaces.
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1.4.2 Running example: the cubic fourfold

We continue from Sects. 1.2.2 and 1.3.2, and describe the family of cubic
fourfolds Ž . The group  is trivial, so

Žb =
⎧
⎨

⎩
−z1z2z3 − z4z5z6 +

∑

p∈�0

bpzp = 0

⎫
⎬

⎭
⊂ P

5
� (1.24)

is a cubic fourfold.2 We have a 24-dimensional space of choices for the
coefficients b. The algebraic torusG

5
m
∼= G

6
m/Gm acts onP

5, but only the four-
dimensional subgroup {(ζ1, . . . , ζ6) ∈ G

6
m/Gm : ζ1ζ2ζ3 = ζ4ζ5ζ6} preserves

the space of cubic fourfolds of the form (1.24). Thus we have a 20-dimensional
space of cubic fourfolds,which is full-dimensional in themoduli space of cubic
fourfolds.

1.4.3 Running example: the Z-manifold

Wecontinue fromSects. 1.2.3 and 1.3.3, and describe the family of generalized
Calabi–Yau varieties mirror to the Z -manifold. The group  is

 := {(ζ1, ζ2, ζ3) ∈ (Z/3)3 : ζ1ζ2ζ3 = 1}/(ζ, ζ, ζ ) ∼= Z/3, (1.25)

and acts on P
8 by multiplying homogeneous coordinates z1, z2, z3 by ζ1,

z4, z5, z6 by ζ2, and z7, z8, z9 by ζ3. Thus

Žb =
⎧
⎨

⎩
−z1z2z3 − z4z5z6 − z7z8z9 +

∑

i

bi z3i +
∑

i∈I1, j∈I2,k∈I3

bi jk zi z j zk = 0

⎫
⎬

⎭
/ (1.26)

is a quotient of a cubic sevenfold by Z/3. The algebraic torus G
8
m
∼= G

9
m/Gm

acts on P
8, with the six-dimensional subgroup {(ζ1, . . . , ζ9) ∈ G

9
m/Gm :

ζ1ζ2ζ3 = ζ4ζ5ζ6 = ζ7ζ8ζ9} preserves the space of equations of the form
(1.26), yielding a 30-dimensional space of sevenfolds.

1.5 Statement of homological mirror symmetry

On the B-side of mirror symmetry we consider the category of -equivariant
graded matrix factorizations of Wb, which we denote GrMF(S�, Wb) (the
precise definition is reviewed in Sect. 4.4). It is a �-linear Z-graded cohomo-
logically unital A∞ (in fact, DG) category.

2 We observe that the central fibre of this family is {z1z2z3 + z4z5z6 = 0}, known in the
classical literature as the ‘Perazzo primal’ [47] (see also [41]).
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On the A-side of mirror symmetry we consider the Fukaya A∞ category
F(X, ωλ). More precisely, we recall that the Fukaya category may be curved,
i.e., it may have non-vanishingμ0 and therefore not be an honest A∞ category.
Therefore we consider the version whose objects are bounding cochains on
objects of the Fukaya category, which we denote by F(X, ωλ)

bc. It is another
�-linear Z-graded cohomologically unital A∞ category.

One part of Kontsevich’s homological mirror symmetry conjecture for gen-
eralized Greene–Plesser mirrors then reads:

Conjecture A There is a quasi-equivalence of �-linear Z-graded A∞ cate-
gories

DπF(X, ωλ)
bc � GrMF(S�, Wb), (1.27)

for some b = b(λ) ∈ A
�0 with val(bp) = λp.

In order to relate the category of graded matrix factorizations with a more
manifestly geometric category, we recall the following theorems. The first
is proved by Favero and Kelly [23], and employs a theorem which is due
independently to Isik and Shipman [33,61] (extending a theorem of Orlov
which applies in the case r = 1 [45]):

Theorem 1.10 (Favero–Kelly, Isik, Shipman, Orlov) If the nef-partition con-
dition holds, then we have a quasi-equivalence

GrMF(S�, Wb) � DbCoh(X̌b), (1.28)

where the right-hand side denotes a DG enhancement of the stacky derived
category of X̌b (which is unique by [19,40]).

The second is due to Orlov [45], and does not depend on the nef-partition
condition:

Theorem 1.11 (Orlov) We have a quasi-equivalence

GrMF(S�, Wb) � AŽb
, (1.29)

whereAŽb
is a certain full subcategory of DbCoh(Žb) (which is in fact Calabi–

Yau, see [39]).

Thus we see that Conjecture A implies:

Corollary B If the nef-partition condition holds (recall that this is true, in par-
ticular, in the Greene–Plesser case r = 1), then there is a quasi-equivalence

DπF(X, ωλ)
bc � DbCoh(X̌b). (1.30)
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Even if the nef-partition condition does not hold, there is a quasi-
equivalence

DπF(X, ωλ)
bc � AŽb

. (1.31)

1.6 Main results

In order for Conjecture A to make sense, one needs a definition of the Fukaya
category F(X, ωλ). Unfortunately a general definition is not available at the
time of writing, although it is expected that one will be given in the work-in-
preparation [3], following [24]. However, the Fukaya category of a compact
Calabi–Yau symplectic manifold of complex dimension≤ 2 has been defined
using classical pseudoholomorphic curve theory in [55]. Using this definition
of the Fukaya category, we prove:

Theorem C Conjecture A holds when dimC(X) ≤ 2 and the embeddedness
and MPCS conditions hold.

If furthermore the ‘no bc condition’ below holds, then Conjecture A holds
even if we remove the ‘bc’ from the Fukaya category.

It is not possible at present to give a complete proof of Conjecture A when
dimC(X) ≥ 3, because we don’t have a construction of the Fukaya category
in that case. Nevertheless we have:

Theorem D If we assume that the MPCS condition holds, and that the Fukaya
category F(X, ωλ)

bc has the properties stated in Sect. 2.5, then Conjecture A
holds.

If furthermore the ‘no bc condition’ below holds, then Conjecture A holds
even if we remove the ‘bc’ from the Fukaya category.

Definition 1.12 We say the no bc condition holds if there does not exist any
K ⊂ I such that eK ∈ M and

|K | − 1 = 2
∑

i∈K

1

di
. (1.32)

This is the case, in particular, for all Greene–Plesser mirrors with
dimC(X) ≥ 2.

Remark 1.13 In the case that X is a Calabi–Yau hypersurface in projective
space, Theorems C and D were proved in [55,58] respectively.

Remark 1.14 If the embeddedness conditiondoes not hold, thenonemustwork
with a version of the Fukaya category that includes certain specific immersed
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Lagrangians (see Lemma 3.7). It maywell be the case that it is easier to include
these specific immersed Lagrangians as objects of the Fukaya category, than
to include general immersed Lagrangians (compare [5]).

Remark 1.15 One might hope that the MPCS condition could be replaced by
theweakerMPCPcondition inTheoremD, and that the proofwould go through
with minimal changes. In that case (X, ωλ)would be a symplectic orbifold, so
the definition of the Fukaya category would need to be adjusted accordingly
(compare [18]).

Remark 1.16 The properties of the Fukaya category outlined in Sect. 2.5
should be thought of as axioms, analogous to the Kontsevich–Manin axioms
forGromov–Witten theory (without any claim to completeness however). They
are structural, rather than being specific to the symplectic manifold X . Using
these axioms, we reduce the problem of proving Conjecture A to certain com-
putations in the Fukaya category of an exact symplectic manifold. Thus we
have separated the proof of Conjecture A into two parts: one foundational and
general, about verifying that the axioms of Sect. 2.5 hold; and one computa-
tional and specific to X , taking place within a framework where foundational
questions are unproblematic. The present work addresses the first (founda-
tional) part in the setting of Theorem C, but not in the setting of Theorem D;
and it addresses the second (computational) part in full generality.

Remark 1.17 The properties of the Fukaya category outlined in Sect. 2.5 will
be verified for a certain substitute for F(X, ωλ)

bc in the works-in-preparation
[29,48]. Namely, they will be verified for the relative Fukaya category spe-
cialised to the�-point corresponding to ωλ (see [60, §5.4]). This will allow us
to prove Theorem D for a specific version of the Fukaya category. However,
this version of the Fukaya category is not so useful if one wants to study the
symplectic topology of X . For example, it does not help one to study arbitrary
Lagrangians in X : the only objects it admits are exact Lagrangians in the com-
plement of a certain divisor D ⊂ X . On the other hand, the results of [29,48]
combined with the present work and [30] are sufficient to compute rational
Gromov–Witten invariants of X via mirror symmetry, so the substitute is good
for this purpose.

Remark 1.18 We can refine Conjecture A by giving a specific formula for the
mirror map b(λ) (formulae in the Greene–Plesser case r = 1 can be found, for
example, in [16, §6.3.4]). We can also prove this refined version if we assume
additional structural results about the cyclic open-closed map and its mirror,
which are stated in [30] and will be proved in [29] in the context referenced
in Remark 1.17. Compare [60, Appendix C].

Remark 1.19 ConjectureA is not themost general possible statement of homo-
logical mirror symmetry for generalized Greene–Plesser mirrors: for example,
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we only consider Kähler formswhich are restricted from the ambient toric orb-
ifold. It appears that non-ambient Kähler forms would correspond, in some
cases, to complex deformations of the mirror which cannot be embedded in
the toric variety Y̌ , and in others, to noncommutative deformations. We do not
know how to prove such a generalization of our result. See [16, §6.2.3] for a
relevant discussion.

Remark 1.20 There is a Fano version of the generalizedGreene–Plessermirror
construction: the main difference is that one should assume

∑
i∈I j

1/di > 1
for all j , rather than

∑
i∈I j

1/di = 1. It should be straightforward to adapt
the arguments of this paper to prove the Fano version. The technical aspects
are easiest if one works with the monotone symplectic form, which means
λ = eI . In that case the assumptions of Sect. 2.5 can be shown to hold in
any dimension (see [59]), so one does not need to impose caveats as in the
statement of Theorem D. The situation is simpler than the Calabi–Yau case
because themirrormap is trivial: onemay take bp = q for all p ∈ �0. However
one slight difference arises in the Fano index 1 case: a constant term needs to
be added to the superpotential Wb (compare [59]).

1.7 Examples

We return to our three running examples, elaborating on the particular con-
text for our main results in these cases, and adding some variations. Further
interesting examples can be found in [50,51].

1.7.1 The quartic

As we have already mentioned, when r = 1 our results amount to a proof
of homological mirror symmetry for Greene–Plesser mirrors. There are 27
Greene–Plesser mirror pairs in dimension 2 [36], and 800 in dimension 3 [37].
We remark that our results imply both ‘directions’ of homological mirror sym-
metry: we prove both DπF(X) � DbCoh(X̌) and DπF(X̌) � DbCoh(X),
for each pair of Greene–Plesser mirrors.

One interesting case is when X̌ is a Calabi–Yau hypersurface in projective
space. It has been proved in [55,58] that DπF(X̌) � DbCoh(X) for the
appropriate mirror X , and we will not discuss this case further here. However
our main result also applies to prove homological mirror symmetry in the other
direction in these cases: i.e., we also prove that DπF(X) � DbCoh(X̌), which
is new. Our first running example, from Sects. 1.2.1, 1.2.2, 1.2.3, 1.3, 1.3.1,
1.3.2, 1.3.3, 1.4, and 1.4.1, concerns the case when X̌ is a quartic hypersurface
in projective 3-space, and X is the mirror quartic.
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Because r = 1 the embeddedness condition holds, so we can apply Theo-
rem C. It says that there exists b = b(λ) with val(bp) = λp, such that

DπF(X, ωλ) � DbCoh(X̌b). (1.33)

Remark 1.21 Bayer and Bridgeland have computed the derived autoequiv-
alence group of a K3 surface of Picard rank 1 [10], for example the very
general quartic surface X̌b. In [63], the authors combine Bayer–Bridgeland’s
result with (1.33) to derive consequences for the symplectic mapping class
group of (X, ωλ), for a generic Kähler class [ωλ] (the genericity requirement
on [ωλ] ensures that the mirror has Picard rank 1).

Remark 1.22 The Greene–Plesser construction provides one other example of
mirror pairs (X, X̌) of K3 surfaces such that the very general fibre X̌b of the
mirror family has Picard rank 1, and to which the results of [63] can therefore
be applied. Namely, X̌ is a sextic hypersurface in P(3, 1, 1, 1) (known as a
‘double plane’), and X is a quotient of a certain double plane by a group
isomorphic to Z/2 × Z/6 (known as a ‘mirror double plane’). This example
corresponds to the toric data r = 1, I = I1 = {1, 2, 3, 4}, d = 2e1+6e{2,3,4},
M := {m ∈ Z

4 : 3m1 +∑4
i=2 mi ≡ 0 (mod 6)}. In particular, it provides an

example where the di are not all equal, in contrast with our running examples.
We refer to [63] for more discussion of this example.

1.7.2 The cubic fourfold

It is recognized that there is an intimate relationship between cubic fourfolds
and K3 surfaces: see [32] and references therein. In particular, Hassett [31]
explained that certain cubic fourfolds have an ‘associated K3 surface’ in a
certain Hodge-theoretic sense. The moduli space C of cubic fourfolds is 20-
dimensional, and Hassett showed that there exist certain irreducible divisors
Cd ⊂ C with an associated K3 surface that is polarized of degree d. It is
conjectured (although not explicitly byHassett) that a cubic fourfold is rational
if and only if it has an associated K3 surface in this sense.

Relatedly, Kuznetsov [38] explained that any cubic fourfold Ž has an associ-
ated categoryAŽ , which is the semi-orthogonal complement of the exceptional

collection 〈O,O(1),O(2)〉 ⊂ DbCoh(Ž). He observed that this category
‘looks like’ the derived category of a K3 surface, and conjectured that the
cubic fourfold is rational if and only if it is equivalent to the derived category
of an actual K3 surface (in which case the category is called ‘geometric’).
Addington and Thomas [7] showed that this holds for the general member of
one of Hassett’s divisorsCd , establishing compatibility of these two rationality
conjectures.
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Our second running example, from Sects. 1.2.2, 1.2.3, 1.3, 1.3.1, 1.3.2,
1.3.3, 1.4, 1.4.1 and 1.4.2, explains how Kuznetsov’s categoryAŽ fits into our
results. Recall that on the symplectic side we consider a K3 crepant resolution
X of the quotient of E × E by an antidiagonal Z/3-action, where E is the
elliptic curve with an order 3 automorphism, whilst on the B-side we have a
cubic fourfold Žb.

Recall that the toric data do not satisfy the embeddedness condition, so
we need to admit certain immersed Lagrangian tori into our Fukaya category
in order for Theorem D to apply. If we do that, we obtain the existence of
b = b(λ) with val(bp) = λp, such that there is a quasi-equivalence

DπF(X, ωλ)
bc � AŽb

. (1.34)

Remark 1.23 The category AŽb
is only ‘geometric’ on some 19-dimensional

loci inside the 20-dimensional moduli space of cubic fourfolds, by [7]—
indeed, for the generic cubic fourfold it does not even contain any point-like
objects (cf. op.cit. Section 2.4). Thus it is striking that, on the A-side, the
Fukaya category is ‘geometric’ (in the sense of being the Fukaya category of an
honest symplectic manifold) on the entire 20-dimensional moduli space. The
absence of point-like objects is mirrored by the absence of special Lagrangian
tori T ⊂ (X, ω) for generic ω: the homology class [T ] of such a spe-
cial Lagrangian torus would have to be non-zero (because special), isotropic
(because a torus), and lie in the transcendental lattice T (X) ∼= −A2 which
however admits no non-zero isotropic vectors. In particular, there does not
exist an SYZ fibration on (X, ω), so this version of homological mirror sym-
metry can not be proved using family Floer theory on X (it might, however,
be possible to prove it via family Floer theory on a larger space, compare [1]).

Remark 1.24 The construction generalizes to arbitrary values of r , by taking
I = {1, 2, 3} 
 . . . 
 {3r − 2, 3r − 1, 3r} and M = {m ∈ Z

3r : ∑mi ≡
0 (mod 3)}. The variety Žb is a cubic (3r − 2)-fold, and the mirror X is a

crepant resolution of the quotient Er/S, where S := ker((Z/3)r +−→ Z/3).

Remark 1.25 The reverse direction of homological mirror symmetry in this
case, which would relate a component of the Fukaya category of the cubic
(3r − 2)-fold Ž to the derived category of the Calabi–Yau r -fold Er/S, ought
to follow from the results of [59].

Remark 1.26 Alex Perry pointed out the following variation on this exam-
ple to the authors. Consider the square elliptic curve F = C/〈1, i〉, which
is a four-fold branched cover of CP

1 with 3 orbifold points of orders 4, 4, 2.
The quotient of F × F by the antidiagonal action of Z/4 admits a crepant
resolution X which is a K3 surface of Picard rank 20. The mirror Ž ,
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according to the Batyrev–Borisov construction, is a quartic hypersurface in
CP

5(1, 1, 2, 1, 1, 2) (although as explained to us by Perry, this example is
expected to be related to Gushel–Mukai varieties [35]). Precisely, this exam-
ple corresponds to the toric data r = 2, I = I1 
 I2 = {1, 2, 3} 
 {4, 5, 6},
d = 4e{1,2,4,5} + 2e{3,6}, M := {m ∈ Z

6 : ∑i=1,2,4,5 mi +∑
i=3,6 2mi ≡

0 (mod 4)}. We remark that the intersection of one of the toric divisors with X
has two connected components, with the result that the ambient Kähler forms
only span a 19-dimensional subspace of the Kähler cone. We also remark that
this is another example where the di entering the toric data are not all equal.

1.7.3 The Z-manifold

The Z -manifold is an example of a rigid Calabi–Yau threefold, i.e., one which
has h1,2 = 0 and therefore admits no complex deformations. In particular, it
cannot bemirror to anotherCalabi–Yau threefold: themirrorwould necessarily
have h1,1 = 0 and therefore could not be Kähler. It was first considered in
the context of mirror symmetry in [15]; see [22] for a detailed study of its
properties. It was explained in [14] that the generalized mirror ought to be the
quotient of the cubic sevenfold by a Z/3 action. Our final running example,
from Sects. 1.2.3, 1.3, 1.3.1, 1.3.2, 1.3.3, 1.4, 1.4.1, 1.4.2, 1.4.3, verifies this
on the level of homological mirror symmetry.

Recall that the Z -manifold X is a crepant resolution of the quotient E ×
E × E/∗, where E is as in Sect. 1.7.2 and ∗ ∼= Z/3 acts diagonally, whilst
Ž is a Z/3-quotient of a cubic sevenfold.
Theorem D gives a quasi-equivalence

DπF(X, ωλ)
bc � AŽb

. (1.35)

The embeddedness condition does not hold, sowemust again include certain
immersed Lagrangian tori in our definition of the Fukaya category to obtain
this result.

1.8 Outline

To help the reader’s navigation, in this section we give a rough outline of the
proofs of Theorems C and D. We caution the reader not to take the statements
here too literally, as we’re brushing over technical details in the interests of
readability.

The proofs havemuch in commonwith Seidel’s proof of homologicalmirror
symmetry for the quartic surface [55], and even more in common with the
first-named author’s proof of homological mirror symmetry for Calabi–Yau
hypersurfaces in projective space in [58]. In particular,weuseSeidel’s idea [52]
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to consider the Fukaya category of X relative to the simple normal crossings
divisor D ⊂ X which is the intersection of X with the toric boundary divisor of
Yλ. In [55,58], the irreducible components of D were all ample, which meant
that the relative Fukaya category was defined over a formal power series ring.
For arbitrary generalized Greene–Plesser mirrors however, D will have non-
ample components which are created by the crepant resolution. In this case
the relative Fukaya category must be defined over a more complicated ring
related to the Kähler cone, which we now describe following [60].

Let Amp(X, D) ⊂ H2(X, X\D;R) be the cone of effective ample divisors
supported on X . Let N ⊂ Amp(X, D) be an open convex subcone containing∑

p∈�0
λp · [Dp], and let N E(N) = {u ∈ H2(X, X\D) : u · a ≥ 0 ∀ a ∈ N}.

The coefficient ring R(N) of the relative Fukaya category F(X, D,N) is the
completion of the ring C[N E(N)] at the maximal ideal m̃ spanned by ru for
u �= 0.

The relative Fukaya category F(X, D,N) is a flat deformation of the affine
Fukaya category F(X \ D) over R(N). It may be curved, so we introduce the
uncurved R(N)-linear A∞ category F(X, D,N)bc, whose objects are objects
of F(X, D,N) equipped with bounding cochains.

Because
∑

p∈�0
λp[Dp] ∈ N, there is a well-defined C-algebra homomor-

phism

a(λ)∗ : R(N) → �,

a(λ)∗(ru) = q
∑

p∈�0
λp[Dp]·u .

We define F(X, D,N)bca(λ) := F(X, D,N)bc⊗R(N) �, where � is regarded
as an R(N)-algebra via the homomorphism a(λ)∗ (geometrically, we are spe-
cializing the family of categories to the �-point a(λ)). There is an embedding
of �-linear A∞ categories

F(X, D,N)bca(λ) ↪→ F(X, ωλ)
bc. (1.36)

We observe that X \ D is a cover of a product of ‘generalized pairs of
pants’, and introduce the subcategory A ⊂ F(X, D,N) whose objects are
lifts of products of the immersed Lagrangian spheres constructed in [56]. We
expand the A∞ operations as

μ∗
A
= μ∗

0 +
∑

0 �=u∈N E(N)

ruμ∗
u, (1.37)

where μ∗
0 is the A∞ structure on the corresponding subcategory A0 ⊂ F(X \

D).
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We introduce a corresponding subcategory B in a mirror category of matrix
factorizations, expand the A∞ operations as in (1.37), and let B0 be the order-
zero category (it corresponds to perfect complexes on the central fibre of the
mirror family). The first step in the proof is to prove that A0 and B0 are quasi-
equivalent. This follows immediately from [56], together with the Künneth
formula for Fukaya categories [6].

The next step in the proof is to identify the ‘first-order deformation classes’
of the categories A and B. The first-order deformation classes of A live in
HH2(A0, A0 ⊗ m̃), and are represented by the Hochschild cochains ru pμ∗

u p
where u p ·Dq = δpq . They can be computed by combining the computation of
the first-order deformation classes of the relative Fukaya category of the pair
of pants from [58] with structural results from [60], and matched with those
of B.

At this point the versality criterion of [60] takes over. We say that A is a
versal deformation of A0 if, for any other deformation A

′ with the same first-
order deformation classes, there is an automorphismψ : R(N) → R(N) and a
(potentially curved) A∞ isomorphismA

′ � ψ∗
A (here the automorphism acts

by applying ψ∗ to all coefficients ru in the expansion of μ∗
A
). A simple form

of the versality criterion asserts that, ifN is ‘nice’ (a technical condition), X is
Calabi–Yau, and the first-order deformation classes span HH2(A0, A0 ⊗ m̃),
then A is a versal deformation of A0. The proof involves the construction of a
suitable automorphism ψ order-by-order in the m̃-adic filtration on R(N).

Applying the versality criterion in the present context, we obtain a (poten-
tially curved) A∞ isomorphism A � ψ∗

B for some ‘mirror map’ ψ . The
curvature of B vanishes by definition, so each object can be equipped with the
zero bounding cochain. These can be transferred through the curved isomor-
phism to (potentially non-vanishing) bounding cochains on the objects of A,
giving a quasi-embedding ψ∗

B ↪→ A
bc.

The next step is to specialize our categories to the�-point a(λ). We obtain a
quasi-embeddingBψ(a(λ)) ↪→ A

bc
a(λ).We identifyA

bc
a(λ) with a full subcategory

of F(X, ωλ)
bc via the embedding (1.36), and Bψ(a(λ)) with a full subcategory

of GrMF(S�, Wb), where b = ψ(a(λ)).
We now have a quasi-embedding of Bψ(a(λ)) into both of the mirror cate-

gorieswe are trying to identify, so it remains to prove that the respective images
split-generate. On the B-side this is a consequence of the fact that Wb has an
isolated singularity at the origin, by a result due independently to Dyckerhoff
[21] and Seidel [53]. On the A-side it is then a consequence of the ‘automatic
split-generation criterion’ of [49], or that of [26] (we employ the latter).

Let us now remark on two points where the above summary was inaccu-
rate. Firstly, we actually work with the ‘ambient relative Fukaya category’,
which is roughly the restriction of the relative Fukaya category to the sub-
space of ambient Kähler forms. It is defined over a ring R(Namb) where
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Namb ⊂ H2(Y, Y\DY ) is an open convex cone in the cone of effective ample
divisors supported on DY (see Sect. 2 for details). We are forced to work with
the ambient Fukaya category because we do not know how to describe the
mirrors to non-ambient Kähler forms, see Remark 1.19.

Secondly, in our case the deformation classes do not spanHH2(A0, A0⊗m̃),
but there is afinite symmetrygroup Ḡ such thatHH2(A0, A0⊗m̃)Ḡ is contained
in the submodule spanned by the deformation classes. This suffices for our
purposes, by an equivariant version of the versality result.

There is a geometric motivation underlying the introduction of this group
action. If one assumes that the closed–open map CO : SH∗(X \ D) →
HH∗(F(X \ D)) is an isomorphism, then one can show that the versality
criterion is satisfied so long as H2(X \ D) = 0; and the equivariant versality
criterion is satisfied if H2(X \ D)Ḡ = 0. In our case H2(X \ D) �= 0, which
explains why we need to use the equivariant versality criterion. The same was
true in [55,58], where the group Ḡ was taken to be the symmetric group acting
on the homogeneous coordinates of X (more precisely, a cyclic subgroup was
taken in [55]). That symmetry does not exist for all generalizedGreene–Plesser
mirrors, as the action of the symmetric group need not preserve the toric data
in general. However, in [60] it was explained that one could also use a real
structure to rule out deformations in the direction of H2(X \ D). In this paper
we verify that this does the job for the generalized Greene–Plesser mirrors.

2 The ambient relative Fukaya category

In this section we recall the definition of the ambient relative Fukaya category
given in [60], and explainwhat it looks like in the present setting. Recall that Yλ

is a (possibly singular) toric variety, and we denote the toric boundary divisor
by DY ⊂ Yλ. We consider the complete intersection X ⊂ Yλ, and equip it
with the divisor D := X ∩ DY . Our assumptions ensure that X is smooth and
D is a simple normal-crossings divisor, so (X, D) is a snc pair in the sense
of [60]. Even though (Yλ, DY ) need not be a snc pair because Yλ need not be
smooth, we are going to call (X, D) ⊂ (Yλ, DY ) a sub-snc pair in accordance
with [60, §3.6], because all of the relevant arguments go through when Yλ

has singularities so long as X avoids them, which it does when the MPCS
condition holds.

2.1 Grading datum

We recall some terminology from [60]. A grading datum G is an abelian group
Y with homomorphisms Z → Y → Z/2 whose composition is non-zero. A
G-graded object (vector space, module, algebra, etc.) is a Y -graded object in
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the usual sense. One says that an element has degree k ∈ Z if its degree is the
image of k in Y , and any Koszul-type signs appearing in formulae are defined
via the map Y → Z/2. A splitting of a grading datum is a homomorphism
Y → Z splitting the first map. A splitting can be used to produce a Z-graded
object from a G-graded one.

The hypersurface X ⊂ Yλ is cut out by a section of a certain vector bundle
L. We define RP(∧top(T Yλ ⊕L∨))|Yλ\DY , the fibre bundle of real lines in the
indicated line bundle over Yλ \ DY . We define a grading datum G = Gamb :=
{Z → H1(RP(∧top(T Yλ ⊕ L))|Yλ\DY ) → Z/2}, where the map from Z is
induced by the inclusion of a fibre, and the map to Z/2 corresponds to the first
Stiefel–Whitney class of the tautological real line bundle.

In this case the line bundle ∧top(T Yλ ⊕L) is trivial over Yλ (which is why
X ends up being Calabi–Yau). Restricting this trivialization to Yλ\DY induces
a splitting of the grading datum. This determines an isomorphism of G with
the grading datum

Z → Z ⊕ M → Z/2
j �→ j ⊕ 0

j ⊕ m �→ [ j],
(2.1)

via the natural isomorphism M ∼= H1(M ⊗ C
∗) ∼= H1(Yλ \ DY ).

Note that there is also a morphism of grading data

q : G → Z

j ⊕ m �→ j (2.2)

induced by the trivialization.

2.2 Relative Kähler form

We briefly recall the notion of a signed group action on an snc pair from [60,
Definition 5.8]. A signed group is a group with a homomorphism to Z/2, so
that the group can be decomposed into ‘odd’ and ‘even’ elements. An action
of a signed group on an snc pair (X, D) is an action of the group on X ,
preserving D as a set, such that even elements act holomorphically and odd
elements anti-holomorphically.

We recall the covering group G := M̃/M of the branched cover Yλ → Ỹ ′
fromSect. 1.3. The covering groupG acts on (Yλ, DY ), preserving the sub-snc
pair (X, D). We also observe that Yλ has a real structure, as it is a toric variety
and therefore defined overR: so it admits an anti-holomorphic involution. This
involution preserves X , because its defining equation is real. The covering
group G, together with the anti-holomorphic involution, generate a signed

123



650 N. Sheridan, I. Smith

group (Ḡ, σ ) which acts on (Yλ, DY ) preserving the sub-snc pair (X, D), as
outlined in [60, §5.4].

Recall that a relative Kähler form on the snc pair (X, D) is a Kähler form
ω on X equipped with a Kähler potential h on X \ D having a prescribed
form near D [60, Definition 3.2]. We abuse notation by denoting a relative
Kähler form by ω ≡ (ω, h). Recall that a relative Kähler form defines a
cohomology class [ω] ∈ H2(X, X \ D;R), which is specified by the linking
numbers �p corresponding to the irreducible components Dp of D. Explicitly,
[ω] =∑

p �p · P D(Dp).
Suppose D = ∪p∈P Dp is the decomposition into irreducible components.

Observe that DY = ∪p∈�0 DY
p . There is a function ι : P → �0, defined so

that Dp is a connected component of DY
ι(p) ∩ X .

Lemma 2.1 There exists a relative Kähler form ωλ on (X, D) with linking
numbers �p = λι(p). It can be chosen to be (Ḡ, σ )-invariant.

Proof First let us suppose that Yλ is smooth. Recall that the support function of
the divisor

∑
p λp · DY

p on Yλ is the piecewise-linear function which is linear
on each cone of 	λ and equal to −λp at each p ∈ �0. It is clear that this
coincides with the function ψλ already defined, and that ψλ is strictly convex
by our assumptions, so this divisor is ample by [25, §3.4]. It follows that the λp
can be realized as the linking numbers of a relative Kähler form on (Yλ, DY ),
by [60, Lemma 3.3]. This relative Kähler form can be chosen to be toric, and
therefore invariant under the action of the subgroup G of the algebraic torus. It
can also simultaneously be chosen to be invariant under the anti-holomorphic
involution. The restriction of the resulting relative Kähler form to (X, D) then
has the desired properties.

Thegeneralization to the casewhenYλ has orbifold singularities is addressed
following [4, §4] (compare [16, Proposition 3.3.1]). �

Remark 2.2 For each p ∈ �0, DY

p ∩X is smooth. The function ι is a bijection if
and only if these divisors are furthermore connected for all p. In this casewe do
not need the ambient relative Fukaya category, we can work with the ordinary
relative Fukaya category. In the Greene–Plesser case r = 1, this happens if
and only if the ‘correction term’ in the formula for the Picard rank of X (i.e.,
the final term in the equation appearing in [8, Theorem 4.4.2]) vanishes.

2.3 Coefficient ring

We recall the definition of the coefficient ring of the ambient relative Fukaya
category (see [60, §3.7] for further details).

Recall that we can identify H2(X, X \ D;R) ∼= R
P with the space of

R-divisors supported on D. The function ι : P � �0 determines a map

123



Homological mirror symmetry 651

ι∗ : Z
P � Z

�0 (when Yλ is smooth we identify it as the map H2(X, X \D) →
H2(Yλ, Yλ \ DY ) induced by the inclusion). Applying Hom(−, R) gives a
map ι∗ : R

�0 ↪→ R
P (when Yλ is smooth we identify it as the restriction

map H2(Yλ, Yλ \ DY ;R) → H2(X, X \ D;R)). We let Nef (X, D) ⊂ R
P

correspond to the cone of effective nef divisors supported on D, andwe suppose
that N ⊂ Nef (X, D) is a convex sub-cone. We denote the pre-image of N
under ι∗ by Namb ⊂ R

�0 . We will assume that N is amb-nice in the sense of
[60, Definition 3.39], rational polyhedral, contained in the ample cone, and
that Namb contains λ in its interior. Such a cone exists by [60, Lemmas 3.30
and 3.44], because λ ∈ Amp(Yλ, DY ) by construction.

We denote the dual cone to Namb by N∨
amb ⊂ R

�0 , and N Eamb(N) :=
N∨

amb ∩Z
�0 . We observe that the interior of Namb contains λ and in particular

is non-empty, so N∨
amb is strongly convex. We define a C-algebra

R̃amb(N) := C
[
N Eamb(N)

]
, (2.3)

and equip it with a G-grading by putting the generator rp in degree 0 ⊕ p,
for all p ∈ �0. It has a unique toric maximal ideal m̃ ⊂ R̃amb(N), and we
define Ramb(N) to be theG-graded completion of R̃amb(N)with respect to the
m̃-adic filtration. We will abbreviate R := Ramb(N).

2.4 Ambient relative Fukaya category

The ambient relative Fukaya category Famb(X, D,N) is a G-graded R-linear
A∞ category. Its objects are compact exact Lagrangian submanifolds L ⊂
X \ D, equipped with an anchoring, Pin structure and orientation.

Remark 2.3 The various versions of the Fukaya category (absolute, relative,
and ambient relative) can be defined without requiring the Lagrangian branes
to be oriented. In particular, [60] did not require the Lagrangian branes to be
oriented: there is a forgetful functor from the version we introduce here to
the version considered in [60] which forgets the orientation of each object.
We need to consider oriented Lagrangians here in order for the open–closed
map OC to be defined (see Sect. 2.5), since that is required for us to prove
split-generation of the Fukaya category in Proposition 4.8 using Abouzaid’s
criterion ([60] did not consider the open–closed map).

The morphism spaces in the relative Fukaya category are free R-modules
generated by intersection points, and its A∞ structure maps count pseudo-
holomorphic discs u : D → X with boundary on the Lagrangian branes, with
a weight r ι∗[u] ∈ R. In order to arrange that [u] ∈ N Eamb(N), we choose a
system of divisors E with N(E) = N. This is possible by [60, Lemma 3.8]
because we assume N to be rational polyhedral and contained in the ample
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cone. We then use perturbation data in our pseudoholomorphic curve equa-
tions that are adapted to E in the sense of [60, Definition 4.1]. It follows that
[u] ∈ N Eamb(N) by positivity of intersection (see [60, Lemma 4.2]).

Remark 2.4 The definition of the relative Fukaya category depends on a choice
of relative Kähler form ω on (X, D) (e.g., the objects are Lagrangian with
respect to the chosen symplectic form, and exact with respect to the chosen
primitive for it on X \ D). It should be independent of ω in some sense, which
is why we do not include it in the notation. However we have not proved
this independence. Nevertheless, a weak version of it is proved in [60, §4.5]:
namely, thatF(X\D) and thefirst-order deformation classes ofFamb(X, D,N)

are independent ofω. This weak version is all that wewill use in this paper (see
Remark 3.11), so we hope the reader will accept this notational imprecision
in the name of readability.

We define a C-algebra homomorphism

a(λ)∗ : R → �

a(λ)∗(rp) := qλp . (2.4)

We regard it as a �-point a(λ) of the scheme

Mamb-K äh(X, D,N) := Spec(R). (2.5)

Following [60, Assumption 5.4], there should be an embedding

(
q∗Famb(X, D,N)bc

)

a(λ)
↪→ F(X, ωλ)

bc. (2.6)

Recall that the ‘q∗’ means we turn the G-graded category into a Z-graded
one via the morphism q : G → Z, and the subscript ‘a(λ)’ means we take
the fibre of the family of categories over the corresponding �-point. In other
words, we turn the R-linear category into a �-linear one by tensoring with �

(regarded as an R-algebra via the homomorphism a(λ)∗).

2.5 Assumptions about the Fukaya category

In this section we explain which properties of (the various versions of) the
Fukaya category we will use, because the constructions of these categories
and the proofs of their basic properties have not yet been carried out in full
generality.Wewill discuss cases inwhich these assumptions have been proved.

We assume that the ambient relative Fukaya category is defined and satisfies
[60, Assumption 5.1] (more precisely, the analogue of that assumption in
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the ambient case): namely, it is a G-graded (possibly curved) deformation of
F(X \ D) over R. We assume that its first-order deformation classes are as
prescribed in [60, Assumption 5.3].

We assume that the absolute Fukaya category F(X, ω)bc is defined and
satisfies [60, Assumption 5.4]: namely, there is an embedding of �-linear,
Z-graded A∞ categories as in (2.6) (here and in what follows, we abbreviate
ω = ωλ).

We assume the existence of the open–closed map, a map of�-vector spaces

OC : HH•(F(X, ω)bc) → QH•+n(X) (2.7)

where QH•(X) := H•(X;�). We assume that the map HHn(F(X, ω)bc) →
� given by

∫
X OC(−) defines a weak proper Calabi–Yau structure on

F(X, ω)bc (see e.g. [30, Definition 6.3]).
We assume the existence of the coproduct, which is a morphism of

F(X, ω)bc-bimodules

� : F� → Yl
K ⊗� Yr

K [n] (2.8)

from the diagonal bimodule F� to the tensor product of left- and right-Yoneda
modules for any object K .

We assume the existence of the length-zero part of the closed–open map, a
unital graded �-algebra homomorphism

CO0 : QH•(X) → Hom•
F(X,ω)bc

(K , K ) (2.9)

for any object K , where QH•(X) is equipped with the quantum cup product.
We assume that theCardy relation is satisfied,whichmeans that the diagram

HH•−n(F(X, ω)bc)
OC

HH•(�)

QH•(X)

CO0

HH•(Yl
K ⊗� Yr

K )
H∗(μ)

Hom•
F(X,ω)bc

(K , K )

(2.10)

commutes for any object K , up to the sign (−1)n(n+1)/2 (see [2] for notations).
We assume that the open–closed map respects pairings, in the sense that

〈α, β〉Muk = (−1)n(n+1)/2
∫

X
OC(α) ∪ OC(β) (2.11)

for all α, β ∈ HH•(F(X, ω)bc). Here 〈−,−〉Muk denotes the ‘Mukai pairing’
on Hochschild homology, as defined by Shklyarov [62] (see also [17]).
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Remark 2.5 When (X, ω) is positively monotone (which is not true in our
case), versions of the relative and absolute Fukaya categories Famb(X, D,N)

and F(X, ω) which satisfy the analogues of all of the above assumptions are
constructed using classical pseudoholomorphic curve theory in [59] (up to
minor changes in conventions), with the exception of the proof thatOC respects
pairings, which is proved in [26, Theorem 31]. We remark that it was also
explained in [59] how to incorporate homotopy units and (weak) bounding
cochains supported on (direct sums of) Lagrangians, which introduced a sub-
tlety regarding the unitality of CO0.

Remark 2.6 When X is Calabi–Yau, the constructions and proofs referenced in
Remark 2.5 go through with minor alterations so long as one can upgrade each
object L of Famb(X, D,N) to a tautologically unobstructed object, which is a
pair (L , JL) where L is a Lagrangian brane and JL an ω-compatible almost-
complex structure such that there are no non-constant JL -holomorphic spheres
intersecting L , or non-constant JL -holomorphic discs with boundary on L ,
where JL should be adapted to the systemof divisors E . The construction of the
absolute and relative Fukaya categories whose objects are such pairs (L , JL)

is discussed for example in [54,55]. The incorporation of bounding cochains is
straightforward, following [59].We remark that the subtlety regarding unitality
of CO0 referenced in Remark 2.5 does not arise in the context of the present
paper, because we need only consider bounding cochains (rather than weak
bounding cochains), so we do not need homotopy units, which were the origin
of the subtlety (see [59, Remark 5.7]).

Remark 2.7 When dimC(X) ≤ 2 the condition that (L , JL) should be tau-
tologically unobstructed is generic in JL , so any Lagrangian brane can be
upgraded to a tautologically unobstructed object in this case. It follows
by Remark 2.6 that all of the above assumptions hold in this case. When
dimC(X) ≥ 3, there is no reason to expect that the Lagrangians we consider
in this paper can be upgraded to tautologically unobstructed objects. In this
case, virtual techniques may be required [3,24] to justify our assumptions, or
recourse to the substitute mentioned in Remark 1.17.

3 Computations in the Fukaya category

3.1 Branched cover and the corresponding map of grading data

Recall that the morphism of fans 	λ → 	̃′ determines a toric morphism
Yλ → Ỹ ′ with covering group G = M̃/M , which induces a branched covering
of sub-snc pairs

φ : (X, D) → (X̃ ′, D̃′) (3.1)
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in the sense of [60, §4.9]. We will denote the toric boundary divisor of Ỹ ′ by
D̃Ỹ ′

, and its intersection with X̃ ′ by D̃′.

Lemma 3.1 The branched cover φ : (X, D) → (X̃ ′, D̃′) induces a homo-
morphism

φ∗ : H2(X, X \ D) → H2(X̃ ′, X̃ ′ \ D̃′). (3.2)

We have

H2(X, X \ D) ∼= Z
P , (3.3)

H2(X̃ ′, X̃ ′ \ D̃′) ∼= Z
I , and (3.4)

φ∗(ep) = ι(p) ∈ �0 ⊂ Z
I , (3.5)

for any p ∈ P.

Lemma 3.2 The branched cover φ : (X, D) → (X̃ ′, D̃′) induces a morphism
of ambient grading data

p : Gamb(X \ D) → Gamb(X̃ ′ \ D̃′) (3.6)

in accordance with [60, §4.9]. We have

G := Gamb(X \ D) ∼= Z ⊕ M, (3.7)

G̃ := Gamb(X̃ ′ \ D̃′) ∼= Z ⊕ Z
I /〈(2(1− |I j |),eI j )〉, and (3.8)

p(k,m) = (k + 2〈nσ − eI ,m〉,m). (3.9)

Proof Follows from [60, Lemma 4.19]. �


3.2 The immersed Lagrangian sphere in the pants

Let us assume for the moment that r = 1. Then the hypersurface X̃ ′ \ D̃′ ⊂
Ỹ ′ \ D̃Ỹ ′

is an (|I | − 2)-dimensional pair of pants. In [56], an exact immersed
Lagrangian sphere L � X̃ ′ \ D̃′ was constructed, equipped with an anchoring
and Pin structure, and the endomorphism algebra ÃI

0 := hom•
Famb(X̃ ′\D̃′)(L , L)

was explicitly computed (up to A∞ quasi-isomorphism). We briefly recall the
result.

The grading datum associated to X̃ ′ \ D̃′ is G̃ = Z ⊕ Z
I /(2(1− |I |),eI ).

We have ÃI
0
∼= C[θi ]i∈I on the cochain level, where θi has degree (−1,ei ).

The variables θi are in odd degree, so this is an exterior algebra rather than a
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polynomial algebra. The algebra structure μ2 is the exterior product, and the
higher A∞ productsμ≥3 define aMaurer–Cartan element in CC•(C[θ1, . . .]).

We have the Kontsevich formality quasi-isomorphism of L∞ algebras [34]:

�H K R : CC•(C[θ1, . . .]) ��� C[z1, . . .][θ1, . . .], (3.10)

where the variable zi has degree (2,−ei ), and the variables θi are graded
as before. The variables zi are even, so commute, and θi are odd, so anti-
commute. The right-hand side is a formal L∞ algebra, i.e., it has L∞ products
�s = 0 for s �= 2. The bracket is identified with the Schouten bracket on
C[z1, . . .][∂/∂z1, . . .], via the map sending θi �→ ∂/∂zi . We would like to use
this to compute the Hochschild cohomology of ÃI

0, following [59, §6.4].

Lemma 3.3 The pushforward of the Maurer–Cartan element μ≥3 by �H K R
is

�H K R
(
μ≥3) = W0 ∈ C[z1, . . .][θ1, . . .], (3.11)

where we recall W0 = −zeI .

Proof The formula for the pushforward of a Maurer–Cartan element by an
L∞ morphism is

�H K R
(
μ≥3) =

∑

j≥1

�
j
H K R

(
μ≥3, . . . , μ≥3

)

j ! . (3.12)

It is computed in [56] that the leading term is �1
H K R

(
μ≥3

) = W0, so it
suffices to prove that the remaining terms in (3.12) vanish.

We do this using the ‘length’ grading s, which is equal to the number of
inputs of the Hochschild cochain on CC•, and to the degree in the zi -variables
on C[z1, . . .][θ1, . . .]. The L∞ morphism map �k

H K R has degree 2− 2k with
respect to the length grading, by construction. The terms in theMaurer–Cartan
elementμ≥3 have s ≥ 3 by definition, and s ≡ 2 (mod |I |−2) by [58, Lemma
2.95]. It follows that they all satisfy s ≥ |I |, so the length of �k

H K R(μ≥3, . . .)

is ≥ 2− 2k + k|I | > |I | for any k ≥ 2 (since |I | ≥ 3). However the relevant
graded piece of C[z1, . . .][θ1, . . .] is spanned by W0 by [58, Lemma 2.96],
which has length |I |; it follows that all terms in (3.12) vanish except the k = 1
term, as required. �


Following [59, §6.4], the HKR map defines a quasi-isomorphism between
the Hochschild cochain complex of ÃI

0 and the complex

K (dW0) := (C[z1, . . .][θ1, . . .], [W0,−]) . (3.13)
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To explain the notation, we observe that under the identification of the
right-hand side with polyvector fields, the differential [W0,−] corresponds
to −ιdW0 , the contraction with dW0, so this is nothing other than the Koszul
complex of the sequence ∂W0/∂zi . Taking cohomology, we have

HH•(ÃI
0)

∼= H•(K (dW0)). (3.14)

We need to compute HH•(ÃI
0), so we turn to that task now. Note that W0

does not have an isolated singularity at 0, so the cohomology of K (dW0) is
not concentrated in degree 0.

Let U := C
I , and H := U/eI . For any K ⊂ I we denote

UK := U/〈ei : i /∈ K 〉, (3.15)

HK := UK /eI . (3.16)

We regard these as odd super-vector spaces, so that for example C[U ] ∼=
∧•(U∗) = C[u1, . . .] is an exterior algebra (the ui anti-commute). We have
inclusions C[HK ] ⊂ C[H ] ⊂ C[U ]. We equip all of these exterior algebras
with a G̃-grading by putting each ui in degree (1, 0).

Definition 3.4 We define the G̃-graded algebra

JI = C[z1, . . .][H ]/I, (3.17)

where I is the ideal generated by zK̄ · ∧top(H∗
K ) for all K ⊂ I (here, ‘K̄ ’

denotes the complement of K ).

We now define an injective G̃-graded algebra map

f : C[z1, . . .][U ] → C[z1, . . .][θ1, . . .],
f (zi ) := zi ,

f (ui ) := zi · θi . (3.18)

Lemma 3.5 The map f induces an isomorphism of G̃-graded C-algebras

JI ∼= H•(K (dW0)). (3.19)

Proof Suppose we have an element of the kernel of [W0,−] = −ιdW0 :

ιdW0

(
∑

K

aK (z) · θ K

)

= 0. (3.20)
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Then
∑

k /∈K

±aK
{k} · z{k} = 0 ⇒ zk |aK
{k}. (3.21)

It follows that
∑

K aK (z) · θ K ∈ im( f ): so ker(ιdW0) ⊂ im( f ).
We have a differential

ιeI : C[z1, . . .][U ] → C[z1, . . .][U ] (3.22)

given by contraction with eI , and

ιdW0( f (a)) = W0 · f (ιeI (a)). (3.23)

As W0 is not a zero-divisor, it follows that f induces an isomorphism

ker(ιdW0)
∼= ker(ιeI ) = C[z1, . . .][H ]. (3.24)

We now have

H•(K (dW0)) := ker(ιdW0)/im(ιdW0). (3.25)

The image of ιdW0 is generated by the classes

ιdW0

(
θ K
)
= zK̄ · f

(
ιeI

(
uK
))

. (3.26)

Now uK spans∧top(U∗
K ), so ιeI

(
uK
)
spans∧top(H∗

K ). Therefore the right-

hand side of (3.26) spans zK̄ · ∧top(H∗
K ), completing the proof. �


Nowwe consider the case r > 1.We consider the product exact Lagrangian
immersion L := ∏

j L j �
∏

j (X̃ ′
j \ D̃′

j ) = X̃ ′ \ D̃′. Its endomorphism
algebra is quasi-isomorphic to

Ã0 := hom•
Famb(X̃ ′\D̃′)(L , L) ∼=

r⊗

j=1

Ã
I j
0 (3.27)

by [6] (or [60, Proposition 4.25], which handles tensor products of A∞ cate-
gories in a different way). Its Hochschild cohomology is therefore

HH•(Ã0) ∼= J :=
r⊗

j=1

JI j (3.28)

by the Künneth formula for Hochschild cohomology of proper A∞ categories.
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3.3 Signed group action

Recall the notion of a signed group action fromSect. 2.2. A signed group action
on an snc pair (X, D), together with a morphism of grading dataG(X \D) →
Z/4 that is preserved by the action, induces a signed group action on the relative
Fukaya category by [60, Lemma 5.12].

In our case, complex conjugation τ : X̃ ′ → X̃ ′ defines a signed action of
Z/2 on (X̃ ′, D̃′). Any holomorphic volume form on X̃ ′ with poles along D̃′
induces a map of grading data, v : G̃ → Z (and hence a map to Z/4, by
post-composing with Z → Z/4). Explicitly, if the volume form has a pole of
order vi along D̃′

i , and we denote v :=∑
i viei , then we have

〈v,eI j 〉 = |I j | − 1 (3.29)

for all j , and the morphism is defined by

v : G̃ → Z (3.30)

v( j,m) = j + 2〈v,m〉. (3.31)

If we choose a real holomorphic volume form, i.e., one such that τ ∗� = �,
then τ preserves the map of grading data v (see [60, Example 5.11]).

Thus, τ together with v determine a signed action of Z/2 on Famb(X̃ ′ \ D̃′).
Furthermore, it was observed in [56] that we have an isomorphism of branes
L ∼= τ L . As a result, τ induces an action of Z/2 on the vector space
Ã0 = hom•

Famb(X̃ ′\D̃′)(L , L). The non-trivial element of Z/2 acts on the endo-

morphism algebra of L by sending

θ K �→ (−1)1+
∑

j∈K v j · θ K (3.32)

(it was erroneously claimed in [56, Corollary 3.13] that the action sent θ K �→
−θ K ; the correct calculation appears in the post-publication update to the
arXiv version of [56]).

It is immediate that (3.32) defines a signed action of Z/2 on the endomor-
phism algebra of L , on the level of cohomology (and this is how one establishes
that the endomorphism algebra is supercommutative). We would like to lift it
to an action on the cochain level, but this may run into issues with equivariant
transversality. To avoid them,wedefine a full subcategory Ã0 ⊂ Famb(X̃ ′\D̃′),
closed under shifts, which has two underlying unanchored Lagrangian branes:
L and τ L . The advantage of this ‘doubled’ category is that Z/2 acts freely
on the underlying set of unanchored Lagrangian branes, bypassing issues with
equivariant transversality: so we have a signed action ofZ/2 on Ã0 up to shifts,
by [60, Lemma 5.12].
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Because L ∼= τ L , the inclusion of the full subcategory whose objects are
L and its shifts is a quasi-equivalence. In particular we have an isomorphism
HH•(Ã0) ∼= J from the previous section. The signed action of Z/2 on Ã0
induces an action on HH•(Ã0) = J (see [60, §A.4]).

Lemma 3.6 Let za · h represent an element of J, where h ∈ ∧|h|H. The non-
trivial element of Z/2 sends

za · h �→ (−1)† · za · h, where

† = 1+ 〈v + eI ,a〉 + |h|. (3.33)

Proof The element za · h is represented by a sum of Hochschild cochains of
the form

θi1 ⊗ . . . ⊗ θis �→ θ K (3.34)

where a +∑
j∈K e j = ∑

j ei j (as can be seen from (3.18) and the explicit
formula for the HKR isomorphism [58, Definition 2.89]). By (3.32), the non-
trivial element of Z/2 sends this Hochschild cochain to a Hochschild cochain
of the form

θi1 ⊗ . . . ⊗ θis �→ (−1)‡ · θ K (3.35)

in CC•(Famb(X̃ ′ \ D̃′)op), where

‡ = 1+
∑

j∈K

v j −
s∑

j=1

(1+ vi j )

= 1+ s +
〈

v,
∑

j∈K

e j +
s∑

j=1

ei j

〉

= 1+ |a| + |K | + 〈v,a〉
= †. (3.36)

The isomorphism CC•(Fop
amb) → CC•(Famb) then sends this to a

Hochschild cochain of the form

θis ⊗ . . . ⊗ θi1 �→ (−1)‡+� · θ K , (3.37)

where

� =
∑

1≤ j<k≤s

(1+ |θi j |) · (1+ |θik |) (3.38)
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(see for example [60, Equation (2–27)]). The variables θi j are all odd, so in
fact � vanishes.

The Hochschild cochain (3.37) corresponds to (−1)‡+� · za · h under the
HKR isomorphism: so the involution sends

za · h �→ (−1)† · za · h (3.39)

as required. �

Now we consider the branched cover of snc pairs φ from (3.1). By [60,

Lemma 4.17] combined with Lemma 2.1 we can equip (X, D) with a (Ḡ, σ )-
invariant relative Kähler formω so that φ becomes a branched cover of relative
Kähler manifolds.

It follows that there is an embedding

p∗
Ã0 ↪→ Famb(X \ D) (3.40)

by [58, Proposition 4.23], using the facts that p is the morphism of ambient
grading data induced by the branched cover φ by Lemma 3.2, that this mor-
phism is injective, and that the covering group G of φ is abelian. We denote
the image of this embedding by A0.

Lemma 3.7 The objects of A0 are embedded Lagrangians if and only if the
embeddedness condition holds (Definition 1.3).

Proof Recall that the generators θ K of Ã
I j
0 correspond to self-intersections of

L j for all K ⊂ I j except K = ∅, I j (which correspond to the generators of
the cohomology of the underlying sphere). Therefore the generators θ K of the
product L = L1 × . . . × Lr correspond to self-intersections for all K ⊂ I
except K = 
 j∈J I j where J ⊂ {1, . . . , r}.

The self-intersection θ K in X̃ ′ lifts to an intersection between two lifts of L
in X . The two lifts of L coincide (i.e., θ K is a self -intersection) if and only if
the degree of θ K in H1(X̃ ′ \ D̃′) lies in the image of themap φ∗ : H1(X \D) →
H1(X̃ ′ \ D̃′) (see [58, Lemma 7.1]). So the lifts of L are embedded if and only
if the only generators θ K whose degree lies in the image of this map are those
for which K = 
 j∈J I j .

The map φ∗ can be identified with the map M ↪→ M̃ by Lemma 3.2. The
degree of θK is the image of eK in M̃ , so it lies in the image of φ∗ if and only
if eK ∈ M . Therefore L is embedded if and only if

V ∩ M = {eK : K = 
 j∈J I j }, (3.41)

(recall V = {eK : K ⊂ I } is the set of vertices of the unit hypercube in Z
I ),

which is equivalent to the embeddedness condition. �
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The group Ḡ acts freely on the unanchored Lagrangian branes underlying
A0: combining this with the morphism of grading data

G
v◦p−−→ Z → Z/4, (3.42)

there is an induced action of (Ḡ, σ ) on A0 up to shifts, by [60, Lemma 5.12].
It follows that Ḡ acts on HH• (A0), by [60, §A.4]. We have isomorphisms

HH• (A0)
G ∼= p∗HH•(Ã0) (by [She15b, Remark 2.66])
∼= p∗J (by Lemma 3.5). (3.43)

This isomorphism is Z/2-equivariant (for this it suffices that the morphism
G → Z/4 factors through G̃, which is true by construction). Thus we have

HH• (A0)
Ḡ ∼= (p∗J)Z/2. (3.44)

3.4 Deformation classes

We recall the graded vector spaces sh•amb(X̃ ′, D̃′) and sh•amb(X, D) defined
in [60, §§4.3 and 4.9]. The basis elements of sh•amb(X̃ ′, D̃′) are denoted ỹu,
where u ∈ H2(X̃ ′, D̃′) is a class that can be represented by a disc meeting D̃′
at a single point, where it meets each component of D̃′ non-negatively. We
denote the elements dual to the divisors D̃′

i by ỹi := ỹei . We denote the basis
elements of sh•amb(X, D) similarly by yu and yi .

We recall the maps

co : sh•amb(X̃ ′, D̃′) → HH•(Ã0) ∼= J, (3.45)

co : sh•amb(X, D) → HH•(A0) (3.46)

defined in [60, §4.4]. The idea is that this is a version of the ‘closed–openmap’:
co(yu) counts pseudoholomorphic discs with a single internal marked point
at which the curve is required to have orders of tangency with the components
of D̃′ prescribed by u. We observe that co : sh•amb(X, D) → HH•(A0) is
G-equivariant, so it induces a map

co : sh•amb(X, D)G → HH•(A0)
G ∼= p∗J. (3.47)

The first-order deformation classes of Ã
I j
0 ⊂ Famb(X̃ ′

j \ D̃′
j ) are computed

in [58, Proposition 6.2] up to sign: the result is that co(ỹi ) is equal to±zi ∈ JI j .
It follows that the first-order deformation classes of Ã0 ⊂ Famb(X̃ ′ \ D̃′) are
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co(ỹi ) = ±zi ∈ J, by [60, Proposition 4.25]. It follows that

co
(
ỹp
) = ±zp (3.48)

for all basis elements ỹp of sh•amb(X̃ ′, D̃′), by [60, Lemma 4.13], and in
particular for all p ∈ �0.

We also consider the map

φ∗ : p∗sh•amb(X̃ ′, D̃′) → sh•amb(X, D) (3.49)

from [60, Definition 4.21]. We observe that it actually lands in sh•amb(X, D)G ,
as is clear from the definition. It follows from Lemma 3.1 that

φ∗ (ỹp
) =

∑

q∈ι−1(p)

yq (3.50)

for all p ∈ �0. The sum on the right-hand side is over all components Dq that
are contained in the component of DY

p of DY . We observe that the image of
the right-hand side under co is precisely the pth deformation class of the cor-
responding subcategory A ⊂ Famb(X, D,N), by our assumptions in Sect. 2.5
(specifically, our assumption that [60, Assumption 5.3] holds).

By [60, Lemma 4.22], this deformation class coincides, under the isomor-
phism (3.43), with

co

⎛

⎝
∑

q∈ι−1(p)

yq

⎞

⎠ = co
(
ỹp
) = ±zp ∈ p∗J (3.51)

for all p ∈ �0.
Now let m̃ ⊂ R̃ be the unique toric maximal ideal. Recall that the morphism

of grading data v from the previous section induces an action of Ḡ on R̃ (see
[60, Definition–Lemma 5.10]). Explicitly,

γ · ra := (−1)σ(γ )·†ra, where

† := v ◦ p(deg(ra))

2
. (3.52)

We have deg(ra) = (0, k(a)) in G by definition, where k : Z
�0 → M is

the map sending ep �→ p for each p ∈ �0. Thus we have

† = v (2〈nσ − eI , k(a)〉, k(a))

2
(applying Lemma 3.2)

= 〈nσ + v − eI , k(a)〉 (applying (3.31)). (3.53)
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Lemma 3.8 HH2 (A0, A0 ⊗ m̃)Ḡ is contained in the R̃0-submodule generated
by the deformation classes rp · zp. Furthermore, the deformation classes are
all non-zero.

Proof We have

HH2 (A0, A0 ⊗ m̃)Ḡ ∼= (J⊗ m̃)
Z/2
2 (3.54)

by taking the degree-2 part of (3.44) (the subscript ‘2’ on the right-hand side
denotes the degree-2 part). We identify (J ⊗ m̃)2. A generator has the form
razbh, where a ∈ N Eamb(N), b ∈ (Z≥0)

I , h ∈ ∧•H .
The degree of ra in G is (0, k(a)), so the degree in G̃ is p(0, k(a)) =

(2|a| − 2|k(a)|, k(a)) (as in (3.53)). The degree of zb is (2|b|,−b), and the
degree of h is (|h|, 0). Therefore, if the degree of razbh is 2, we have

(2, 0) = (2|a| − 2|k(a)| + 2|b| + |h|, k(a) − b) (3.55)

in the grading datum G̃. By the definition of G̃, this means that there exist
integers � j such that

k(a) − b =
r∑

j=1

� j · eI j and (3.56)

2 = 2|a| − 2|k(a)| + 2|b| + |h| +
r∑

j=1

2� j · (|I j | − 1). (3.57)

We apply 2〈nσ −eI ,−〉 to (3.56), add it to (3.57), and cancel terms to obtain

2 = 2〈nσ ,b〉 + |h|. (3.58)

Observe that 〈nσ ,b〉 ≥ 0 because bothnσ andb live in (Z≥0)
I by definition,

so |h| ≤ 2. It is also clear that |h| is even (from (3.58)), so h must be 0 or 2.
Applying (3.53) and Lemma 3.6, we find that the non-trivial element ofZ/2

sends

razbh �→ (−1)† · razbh, where

† = 〈nσ + v − eI , k(a)〉 + 1+ 〈v + eI ,b〉 + |h|
= 1+ 〈nσ + v − eI , k(a) − b〉 + 〈nσ ,b〉 (since |h| is even)

= 1+
〈

nσ + v − eI ,

r∑

j=1

� j · eI j

〉

+ 〈nσ ,b〉 by (3.56)
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= 1+ 〈nσ ,b〉 (because 〈nσ ,eI j 〉 = 1 = 〈v − eI ,eI j 〉 by (3.29))

= 1+ 2+ |h|
2

by (3.58)

= |h|
2

. (3.59)

Thus, in order for razbh to represent a Z/2-invariant class, |h| must be
divisible by 4. We already showed |h| ≤ 2, so we must have |h| = 0.

Substituting this into (3.58), we obtain

〈nσ ,b〉 = 1. (3.60)

It follows that b ∈ �. If b /∈ �0, then there exists some k ∈ I j such that
zb is divisible by

∏
i∈I j\k zi . One easily verifies that the latter monomial is a

generator of the ideal I j by which we quotient to get JI j , so zb vanishes in
this case. Thus, in order for razbh to be non-vanishing and Z/2-invariant, we
must have b ∈ �0 and |h| = 0.

The degree of razb is then equal to the degree of rbzb (since both are equal
to 2), so ra has the same degree as rb. It follows that ra is a multiple of rb,
because the coefficient ring R is ‘nice’ in the sense of [60, Definition 2.3], by
[60, Lemma 3.42], because we chose N to be amb-nice in Sect. 2.4. Therefore
razbh is a multiple of the first-order deformation class rbzb, as required.

Finally, it is easy to check from the definitions that zb �= 0 in J for all
b ∈ �0, so the first-order deformation classes are non-zero. �

Remark 3.9 Lemma 3.8 may appear mysterious at first. The geometric reason
for it is explained in [60, Corollary 6.8]. In particular, one of the important
steps in the proof of Lemma 3.8 was to rule out deformation classes razbh
with |h| = 2. This corresponds, in [60, Corollary 6.8], to showing that H2(X \
D)Ḡ ∼= 0. Indeed, in this case we have H2(X \ D)Ḡ ∼= H2(X̃ ′ \ D̃′)Z/2, so
we must show that the anti-holomorphic involution τ ∗ acts with sign +1 on
H2(X̃ ′ \ D̃′) (because τ is defined to act on H•(X̃ ′ \ D̃′) by −τ ∗, see [60,
Equation (6–4)]). This follows because τ ∗ acts with sign (−1)k on Hk(Ỹ ′ \
D̃Ỹ ′

) ∼= Hk((C∗)|I |−r ), and the restriction map H2(Ỹ ′ \ D̃Ỹ ′
) → H2(X̃ ′ \ D̃′)

is surjective.

Now let A ⊂ Famb(X, D,N) denote the full subcategory corresponding
to A0 ⊂ F(X \ D). The category A is a Ḡ-equivariant deformation of A0
over R relative to the action of Ḡ on R by (3.52) (see [60, Lemma 5.12]). We
recall some terminology from [60, §2]: the equivariant deformation is said to
be R-complete if, for any Ḡ-equivariant deformation B of A0 over R such that
HH2(A0, A0⊗m/m2)Ḡ is contained in the span of the first-order deformation
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classes of B, there exists an automorphism �∗ : R → R and a (possibly
curved) A∞ isomorphism

B ��� �∗
A. (3.61)

If furthermore the map �∗ : m/m2 → m/m2 is uniquely determined, the
deformation is said to be R-versal.

Corollary 3.10 A is an R-versal Ḡ-equivariant deformation of A0 over R.

Proof Follows from [60, Theorem 5.16] and Lemma 3.8. �

Remark 3.11 Although we used a specific relative Kähler form ω to verify
Corollary 3.10, namely one such that the branched cover φ respects relative
Kähler forms, the analogous result follows for arbitrary (Ḡ, σ )-equivariant
relative Kähler forms by [60, Remark 5.14].

We finish with the following:

Lemma 3.12 If the no bc condition holds (Definition 1.12), then the A∞
isomorphism (3.61) is necessarily non-curved.

Proof Suppose to the contrary that the curvature of (3.61) is non-zero. The
curvature defines a degree-1 endomorphism of each object in A (where ‘1’
means ‘(1, 0) ∈ G’). Such an endomorphism can be written as ra · α, where
ra ∈ m̃ and α is a lift of some endomorphism of an object in Ã0.

Suppose that α is a lift of the endomorphism θ K . If θ K is to lift to an
endomorphism in A, i.e., a self -intersection point of some lift of L , then we
must have eK ∈ M (as in the proof of Lemma 3.7). On the other hand, for
raθ K to have degree (1, 0), we must have (following the proof of Lemma 3.8
and skipping some steps):

k(a) + eK =
∑

j

� j · eI j (3.62)

∑

i∈K

1− 2

di
= 1. (3.63)

Therefore we have eK ∈ M and (3.63) holds: this contradicts the no bc
condition, so the proof is complete. �


4 Graded matrix factorizations

4.1 Matrix factorizations

We make the G-graded ring R into a G̃-graded ring by pushing the grading
forward by p: so ra has degree (2|a| − 2|k(a)|,a) ∈ G̃. We introduce the G̃-
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graded ring S := R[zi ]i∈I with zi in degree (2,−ei ). We define the element

W := −
r∑

j=1

zeI j +
∑

p∈�0

rpzp ∈ S (4.1)

of degree 2, and we consider the differential G̃-graded category of matrix
factorizations of W , M F

G̃
(S, W ).

We consider the G̃-graded matrix factorization O0 introduced in [58, §7.2],
and let

B̃dg := A∞
(
homM F

G̃
(S,W )(O0,O0)

)
, (4.2)

the A∞ algebra corresponding to the DG endomorphism algebra of O0 (see
[57, Definition 3.4]). Assuming all terms of W to have degree ≥ 2, a minimal
model for B̃dgwas constructed in [58, §7.2] using the homological perturbation
lemma. We denote it by B̃. The underlying R-module is R[θi , . . .]i∈I with θi
in degree (−1,ei ) (as in Sect. 3.2). The A∞ products have the form μ∗ =
μ2

ext + μ̃∗, where μ2
ext denotes the exterior product among the θi , and μ̃∗ is

everything else. The leading term in the HKR map (3.10) sends

�1
H K R : CC•(R[θ1, . . .]) → S[θ1, . . .] (4.3)

�1
H K R

(
μ̃∗) = W (4.4)

by [58, Proposition 7.1] (the result there was stated in the case that W has
degree ≥ 3, but the proof works also if W has quadratic terms).

4.2 Signed group action

Recall that on the A-side, the choice of a holomorphic volume form on X̃ ′ with
poles along D̃′ induced a Z/2-action on Ã0. We introduced the vector v ∈ Z

I ,
where the i th entry vi is the order of pole of the volume form along D̃′

i . This
induces an involution on the coefficient ring R, defined in (3.52). We extend
this to an involution ε : S → S by defining

ε(zi ) := (−1)1+vi zi . (4.5)

Lemma 4.1 This involution changes the sign of W : ε(W ) = −W .

Proof The terms in W have the form razb, so can also be regarded as an
element of (J⊗ m̃)2. In Lemma 3.8 we considered an action of Z/2 on such
elements: this action is the negative of the action of ε, because of the leading
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‘1’ in the sign † from Lemma 3.6. Since we verified in the proof of Lemma 3.8
that the action of Z/2 preserves the terms razb of degree 2, it follows that the
action of ε reverses the sign of each term. �


Now recall that there is a canonical isomorphism of DG categories,
M F

G̃
(S, W ) ∼= M F

G̃
(S,−W )op, given by dualization (see, e.g., [21, §4.3]).

This is the analogue of the isomorphismF(X, ω) ∼= F(X,−ω)op that goes into
constructing the signed group action on the Fukaya category. On the level of
objects, the isomorphism sends amatrix factorization K = (K , δK ) ofW to the
dualmatrix factorization K∨ = (K∨, δK∨)of−W ,where K∨ := homS(K , S)

and

δK∨(α)(k) := (−1)|α|′ · α(δK (k)). (4.6)

On the level of morphisms, it sends a morphism f ∈ Hom•
S(K , L) to the

morphism f ∨ ∈ HomS(L∨, K∨), where

f ∨(α)(k) := (−1)| f |·|α| · α( f (k)). (4.7)

The matrix factorization O0 := (K , δK ) has underlying S-module K :=
S[ϕ1, . . .]where the ϕi have degree 1⊕−ei and anticommute, and differential

δK :=
∑

i

zi
∂

∂ϕi
+ Wiϕi (4.8)

where W =∑
i zi Wi . We identify S[θ1, . . .] ∼= K∨ in the standard way, where

the θi have degree (−1,ei ) and anticommute: explicitly, we map

θi1 . . . θik �→ ∂

∂ϕi1
. . .

∂

∂ϕik

. (4.9)

The dual differential is easily computed to be

δK∨ =
∑

i

−ziθi + Wi
∂

∂θi
. (4.10)

The isomorphism ε : (S, W ) → (S,−W ) induces an isomorphism ε∗ :
M F

G̃
(S,−W ) → M F

G̃
(S, W ). The image of K∨ under this isomorphism is

the matrix factorization (S[θ1, . . .], ε∗δK∨) where

ε∗δK∨ =
∑

i

−ziθi − Wi
∂

∂θi
. (4.11)
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We now have the standard isomorphism of a Koszul complex with its dual:

ε∗K∨ → K

θi1 . . . θik �→ (−1)k ∂

∂ϕi1
. . .

∂

∂ϕik

(ϕtop), (4.12)

where ϕtop := ϕ1ϕ2 . . . ϕ|I |. One easily verifies that this map commutes with
the differentials (the sign (−1)k is needed so that the differential on K is the
original δK : without it, the map would commute with the differential −δK on
K ). We observe that this map has degree r − |I |, so this isomorphism is not
an isomorphism in M F

G̃
(S, W ) because it is not graded (recall that shifting

in M F
G̃
(S, W ) changes the sign of the differential). Nevertheless it defines a

graded isomorphism of endomorphism DG algebras

hom•
M F

G̃
(S,W )(K , K ) ∼= hom•

M F
G̃

(S,W )(K , K )op, (4.13)

which is what we will need.
We recall the identification of this DG algebra with S[ϕ1, . . . , ∂/∂ϕ1, . . .]

from [58, §7.2], following [21]. Tracing through the signs, we find that the
isomorphism (4.13) sends

∂

∂ϕk
�→ (−1)vk

∂

∂ϕk
. (4.14)

Now recall that we denoted B̃dg := A∞(hom•
M F

G̃
(S,W )(K , K )). There is a

strict A∞ isomorphism

B̃dg ∼= (B̃dg)op (4.15)

induced by (4.13), which sends

∂

∂ϕk
�→ (−1)1+vk

∂

∂ϕk
(4.16)

by (4.14): note the sign change, which arises from the fact that the canonical
isomorphism A∞(Cop) ∼= A∞(C)op sends c �→ −c for any DG category C

(see [57, Remark 3.8]).
The isomorphism (4.13) carries through the homological perturbation

lemma construction to induce a strict isomorphism B̃ ∼= B̃op on the mini-
mal model B̃ also. Recall that the underlying R-module is B̃ = R[θ1, . . . , θn].
The isomorphism sends θk �→ (−1)1+vk θk by (4.16).
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Let B̃0 ∼= C[θ1, . . .] be the order-0 A∞ algebra of the minimal model B̃: it
inherits an isomorphism B̃0 ∼= B̃op

0 . We have an identification of cohomology
algebras H•(Ã0) ∼= C[θ1, . . .] ∼= H•(B̃0): and furthermore this identification
is Z/2-equivariant, since it sends θk �→ (−1)1+vk θk on both sides (see (3.32))
and the θk generate the algebra.

4.3 Versality

We now mirror the construction of A in the matrix factorization world. We
define a subcategory B̃

dg ⊂ A∞(M F
G̃
(S, W )) which has objects O0 and O∨

0
and all of their shifts, and equip it with a signed Z/2-action up to shifts by
dualization. We construct a minimal model B̃ for B̃

dg as above: we may do
so in such a way that it also has an induced Z/2-action. Let B̃0 be its order-0
A∞ algebra: then it follows from the preceding computations that we have a
Z/2-equivariant isomorphism of categories H•(Ã0) ∼= H•(B̃0).

Let us denote the corresponding minimal model for a subcategory of

M F(C[zi ]i∈I j ,−zeI j ) by B̃
I j
0 . It was shown in [56,58] that there is an A∞

isomorphism B̃
I j
0 ��� Ã

I j
0 . The argument starts with the identification of coho-

mology algebras H•
(
B̃

I j
0

) ∼= H•
(
Ã

I j
0

)
, then constructs the A∞ isomorphism

order-by-order in the DGLA of Hochschild cochains on the cohomology alge-
bra (see [56, Proposition 5.15] or [58, Corollary 2.97]). The same argument
can be carried out in the DGLA of Z/2-equivariant Hochschild cochains, to

construct a Z/2-equivariant A∞ isomorphism B̃
I j
0 ��� Ã

I j
0 . We can take the

tensor product of these isomorphisms, by [21, §6] and [6], to obtain a Z/2-
equivariant A∞ isomorphism B̃0 ��� Ã0.

We now define B := p∗
B̃.

Lemma 4.2 There exists an automorphism �∗ ∈ Aut(R) and a (possibly
curved) G-graded R-linear A∞ isomorphism

F : B ��� �∗
A. (4.17)

The automorphism satisfies

�∗(rp) = ±rp +m2. (4.18)

As a corollary, there is a non-curved A∞ embedding

B ��� �∗
A
bc. (4.19)

If the no bc condition holds, then we can remove the ‘bc’ from (4.19).
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Proof The A∞ isomorphism B̃0 ��� Ã0 induces an A∞ isomorphism B0 ���
A0 between the order-zero categories, so we may assume without loss of
generality that B0 = A0 (see [58, Proof of Corollary 2.105]). We then observe
that B and A are now (Ḡ, σ )-equivariant deformations of A0 over R; and
they have the same deformation classes rpzp up to sign, as we calculated in
Sect. 3.4 (on the A-side) and (4.4) (on the B-side). The existence of �∗ and
F then follows by Corollary 3.10. The fact that the first-order deformation
classes coincide up to sign allows us to conclude (4.18).

To prove the corollary, we first observe that B is non-curved by definition,
so we can equip each object with the zero bounding cochain. By [60, Lemma
2.16], there is a non-curved A∞ embedding (4.19) which sends each object of
B to the corresponding object of�∗

A equippedwith a bounding cochain given
by the curvature F0. If the no bc condition holds, then the A∞ isomorphism
F is already non-curved by Lemma 3.12, so the ‘bc’ can be removed from
(4.19). �


As a corollary, we have embeddings

(q∗B)b(λ) ↪→ (q∗A)bca(λ) , (4.20)

where we define b(λ) := �−1(a(λ)) and a(λ) is as in (2.4). Note that
val(b(λ)p) = val(a(λ)p) = λp, because �∗(rp) = ±rp +m2.

4.4 Graded matrix factorizations

We recall that the category of graded matrix factorizations [45] can be formu-
lated in terms of the grading datumGM F(d) := Z⊕Z/(2,−d) (see [58, §7.5]).
Namely, we equip the polynomial ring with a GM F(d)-grading by putting zi
in degree (0, qi ), then

GrMF(S�, Wb) := u∗M FGM F(d)
(S�, Wb) (4.21)

where u : Z → GM F(d) is the unique morphism of grading data.
However we want to consider the category of -equivariant graded matrix

factorizations. To that end we introduce a new grading datum

G� := Z ⊕ Z
I / ∼, where

0 ∼ (2〈nσ ,m〉,−m) for allm ∈ M . (4.22)

The map Z → G� sends k �→ (k, 0), and the sign map G� → Z/2 sends
(k, u) �→ [k]. We equip S� with a G�-grading by putting zi in degree (0,ei ).
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There is a morphism of grading data

t : G� → GM F(d)

t(k,m) := (k, 〈q,m〉), (4.23)

which recovers the GM F(d)-grading of the polynomial ring from the G�-
grading.

Anobject K of M FG�
(S�, Wb)determines anobject t∗K ofGrMF(S�, Wb).

The morphism space homi
GrMF(S�,Wb)

(t∗K , t∗L) is equipped with a grading
in

{g ∈ G� : t(g) = u(i)} ∼= ker

(

Z
I /M

〈q,−〉−−−→ Z/d

)

∼= ∗. (4.24)

A ∗-grading determines a -action, whose invariant part is the part of
degree 0 ∈ ∗. In this case it is a simple matter to verify that

homi
GrMF(S�,Wb)(t∗K , t∗L) ∼= homs(i)

M FG�
(S�,Wb)(K , L), (4.25)

where s : Z → G� is the unique morphism of grading data. This justifies the
following definition of the category of -equivariant graded matrix factoriza-
tions:

GrMF(S�, Wb) := s∗M FG�
(S�, Wb). (4.26)

We define a morphism of grading data

r : G̃ → G�

r(k,m) := (k + 2|m|,−m). (4.27)

Observe that r∗S is a G�-graded algebra, and one easily verifies that R is
in degree 0, and zi is in degree (0,ei ). It follows that for any �-point b of
Spec(R), we have fully faithful embeddings

s∗r∗M F
G̃
(S, W )b ↪→ s∗M FG�

(r∗S, W )b

↪→ s∗M FG�
(S�, Wb)

= GrMF(S�, Wb) (4.28)
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Lemma 4.3 There is a commutative square of grading data:

G
q

p

Z

s

G̃
r

G�.

(4.29)

Proof The maps in the square send

(k,m) k

(k + 2〈nσ − eI ,m〉,m) (k + 2〈nσ ,m〉,−m)

(4.30)

(recall thatp is determined in Lemma 3.1). The commutativity follows because
(2〈nσ ,m〉,−m) = 0 in G�. �


By the existence of the commutative square (4.29) and [58, Lemma 2.29],
we have an isomorphism of categories

q∗p∗M F
G̃
(S, W ) ∼= s∗r∗M F

G̃
(S, W )H , (4.31)

where the subscript H denotes equivariance with respect to a certain action of
the dual group H of the group

coker
(
G/Z

p−→ ker
(
G̃/Z

r−→ G�/Z

))
. (4.32)

In this case, we have G/Z ∼= M/〈eI j 〉, G̃/Z ∼= Z
I /〈eI j 〉, and G�/Z ∼=

Z
I /M , so one easily verifies that (4.32) is 0: thus we may remove the H from

(4.31).
Combining (4.31) with (4.26), we obtain an embedding

q∗p∗M F
G̃
(S, W )b ↪→ GrMF(S�, Wb). (4.33)

In particular, we have an embedding

q∗Bb ↪→ GrMF(S�, Wb). (4.34)

4.5 Wb has an isolated singularity

Let b ∈ A
�0 have coefficients (bp)p∈�0 , with val(bp) = λp. Let Wb be

as in (1.16). The aim of this section is to prove the following Proposition,
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which is based on the relationship between the tropical A-discriminant and
the secondary fan (compare [20,27]), although we will not use that language.

Proposition 4.4 If the MPCP condition holds, then Wb has an isolated sin-
gularity at the origin.

Remark 4.5 Wewill apply this result (in the proofs of Propositions 4.7 and 4.8)
with b = �−1(a(λ)). Note that the mirror map � is at this stage unde-
termined; we only know that �∗(rp) = ±rp + m2, which implies that
val(bp) = val(ap) = λp, but we do not know the precise coefficients bp.
So it is a crucial feature of Proposition 4.4 that it needs only to make an
assumption on the valuations of the coefficients of b, rather than requiring
precise knowledge of the coefficients themselves.

We need some preliminary discussion before giving the proof of Proposi-
tion 4.4.

We have a decomposition of A
I into toric orbits (Gm)K indexed by subsets

K ⊂ I . In order to prove that Wb has an isolated singularity at the origin, it
suffices to prove that the vanishing locus of Wb|(Gm)K is smooth for all K . We
start with the case K = I .

Let B ⊂ Z
I denote the set of monomials appearing in Wb (their convex hull

is the Newton polytope �). The valuations of the corresponding coefficients
define a ‘weight vector’ for these vectors (see [43, Definition 2.3.8]), which
is equal to 0 at eI j for 1 ≤ j ≤ r , and equal to λp at p for p ∈ �0. This
weight vector induces a regular subdivision T λ of �. If T λ is a unimodular
triangulation, then the vanishing locus of Wb|(Gm)I is smooth by [43, Theorem
4.5.1]; in fact the proof goes through verbatim without the assumption of
unimodularity when the field has characteristic zero, so it suffices for us to
prove that T λ is a triangulation.

We consider the projection π : R
I → MR from Sect. 1.3, which sends

all eI j to the origin. We set � := π(�) (this clashes with the notation from
Sect. 1.4, but no confusion should result) and B := π(B), and define a weight
vector for B which is equal to 0 at the origin and λp at π(p) for p ∈ �0. We
denote the induced regular subdivision of � by Tλ: by definition it coincides
with the fan 	̃λ, and therefore is a triangulation because 	̃λ is simplicial by
our assumption that the MPCP condition holds.

Lemma 4.6 Let σ = Conv(C) be a cell of Tλ, for some C ⊂ B. We denote
C := π−1(C) ∩ B, and set σ := Conv(C). We have:

• σ is a cell of T λ.
• σ = π−1(σ ) ∩ �.
• σ is a simplex.
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Proof of Proposition 4.4 The simplices σ cover �, so the simplices σ =
π−1(σ ) ∩ � cover �; it follows that T λ is a triangulation as required. There-
fore the vanishing locus of Wb|(Gm)K is smooth for K = I . It follows also that
the restriction of T λ to any coordinate hyperplane is a triangulation, and hence
that the analogous result holds for any K . �

Proof of Lemma 4.6 The first claim follows immediately from the fact that the
weight vector for B is pulled back from that for B. For the second claim, it is
immediate that σ ⊂ π−1(σ ). What remains to prove is the reverse inclusion,
so let x ∈ π−1(σ ) ∩ �; we will show that x lies in the convex hull of C .

Observe that π |�0 is injective, so it identifies C ′ := C \ {0} with C
′ :=

C \π−1(0). We have C = C
′
if 0 /∈ C , and C = C

′ 
 {eI j }{ j=1,...,r} if 0 ∈ C .
We have

π(x) =
∑

c∈C

αc · c, whereαc ≥ 0,
∑

c∈C

αc = 1. (4.35)

It follows that

x =
∑

c∈C
′
απ(c) · c+

r∑

j=1

β j · eI j . (4.36)

Now we consider the following diagram:

Z
I

pr j

Z
I /〈eI j 〉

Z
I j Z

I j /eI j .

(4.37)

Applying pr j to (4.36), we obtain

pr j (x) =
∑

c∈C
′
απ(c) · pr j (c) + β j · eI j . (4.38)

Now any element of �0 must project to an element of Z
I j with at least two

vanishing coordinates, by definition of �0, so the same is true of C
′ ⊂ �0.

Furthermore, because 	̃λ is assumed to be a refinement of 	̃′ := ∏
j 	̃′

j , the

projection of σ to Z
I j /eI j lies inside a cone of 	̃′

j . It follows that pr j (C
′
) lies

inside a coordinate hyperplane of Z
I j . Examining (4.38), and observing that

x ∈ � ⊂ (R≥0)
I , it follows that β j ≥ 0.
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Applying 〈nσ ,−〉 to (4.36), we find that

∑

c∈C
′
απ(c) +

r∑

j=1

β j = 〈nσ , x〉 = 1. (4.39)

We now have two cases: if 0 ∈ C , then eI j ∈ C for all j , and (4.36)
expresses the fact that x lies in the convex hull of C (since we have proved
that the coefficients are non-negative and sum to 1). If 0 /∈ C , then C = C

′
so

we have
∑

c∈C
′ απ(c) = ∑

c∈C αc = 1, from which it follows by (4.39) that
∑r

j=1 β j = 0. Since we showed that β j ≥ 0, we conclude that β j = 0 for all

j , so (4.36) again expresses the fact that x lies in the convex hull of C .
The third claim is equivalent to the claim that the set C is linearly indepen-

dent. Suppose to the contrary that it is linearly dependent. We claim that this
implies that C

′
is linearly dependent. Indeed, if 0 /∈ C , then C

′ = C so there
is nothing to prove. If 0 ∈ C , then (4.36) holds with x replaced by 0. The
previous argument applies to show that β j = 0 for all j , and hence that C

′
is

linearly dependent.
Now, linear dependence of C

′
implies linear dependence of π(C

′
) = C ′,

which contradicts our assumption that Tλ is a triangulation. Therefore C must
be linearly independent, so σ is a simplex as required. �


4.6 Split-generation

We now have A∞ embeddings

q∗Bb(λ)
(4.20)

(4.34)

q∗Abc
a(λ)

(2.6)

GrMF(S�, Wb(λ)) F(X, ωλ)
bc.

(4.40)

We will denote C := q∗Bb(λ), and regard it as a full subcategory
C ⊂ GrMF(S�, Wb(λ)) which is identified with a full subcategory C ⊂
F(X, ωλ)

bc in accordance with (4.40). In this section we prove:

Proposition 4.7 If the MPCP condition holds, then C split-generates
GrMF(S�, Wb(λ)).

Proposition 4.8 If the MPCS condition holds, then C split-generates
DπF(X, ωλ)

bc.
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These two Propositions (together with the observation that the ‘bc’ can be
removed everywhere from Lemma 4.2 onwards, if the no bc condition holds)
complete the proof of Theorems C and D.

We start by recalling some background. Let D be a triangulated category
(e.g., the cohomology category of a triangulated A∞ category). Let E ⊂ D

be a full subcategory; recall that the right orthogonal complement of E is the
full subcategory ofD consisting of all objects L such that Hom(E[i], L) ∼= 0
for all objects E of E and all i ∈ Z. If the right orthogonal complement of E
vanishes, we say that E weakly generates the category.

Now let D be a triangulated category which admits arbitrary direct sums.
Recall that an object K of such a category is called compact if Hom(K ,−)

commutes with direct sums, and denote by Dc ⊂ D the full subcategory of
compact objects. The following result is due to [44,65] (a proof can also be
found in [64, Proposition 13.34.6]).

Proposition 4.9 (Thomason–Trobaugh, Neeman) If E ⊂ Dc is a subcategory
with finitely many objects, then it split-generates Dc if and only if it weakly
generates D.

For the remainder of this section, let us abbreviate M F := M FG�
(S�,

Wb(λ)), and let M F∞ denote the corresponding category of matrix factoriza-
tions of possibly infinite rank (which admits arbitrary direct sums). Then we
have the following result, which is proved in [21, Corollary 4.10] and [53,
Lemma 12.1]:

Proposition 4.10 (Dyckerhoff, Seidel) If Wb(λ) has an isolated critical point
at the origin, then the object O0 split-generates M F.

Now we recall that s∗M F is, by definition, a subcategory of M F (see [58,
Definition 2.65]). One thinks of s∗M F as a G∗-equivariant version of M F ;
so if res : s∗M F ↪→ M F denotes the corresponding faithful (but not full)
embedding, there is an adjoint functor ind : M F → s∗M F given by induction.
Explicitly, let s : Z

I /M → G� be a set-theoretic splitting of the map

G� → coker(s) ∼= Z
I /M, (4.41)

and define ind : M F → s∗M F to act on objects by a direct sum of shifts:

ind(K ) :=
⊕

g∈ZI /M

K [s(g)], (4.42)

and on morphisms by the sum over g ∈ Z
I /M of the isomorphisms

homh(K , L)
∼−→ homh+s(g)−s(g+h)(K [s(g)], L[s(g+ h)]) (4.43)
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given by the shift functors (more precisely, the rightwards shift maps
s−s(g),−s(g+h)
r , see [60, Appendix A.2]). Observe that because Z

I /M is finite,
ind lands in s∗M F , which we recall is the category of finite-rank matrix fac-
torizations. We leave the verification of the adjunctions ind " res " ind to the
reader (it is a version of the standard fact that restriction and induction form a
Frobenius pair of functors).

Corollary 4.11 If the MPCP condition holds, then the object ind(O0) split-
generates s∗M F.

Proof It suffices to show that ind(O0) weakly generates s∗M F∞, by Propo-
sition 4.9. Suppose that Q is in the right orthogonal complement to ind(O0);
it follows by adjointness that res(Q) is in the right orthogonal complement to
O0, and therefore res(Q) ∼= 0 by Proposition 4.10 (since Wb has an isolated
singularity at the origin by Proposition 4.4). If we choose s(0) = 0, then Q is
the direct summand of

⊕

g∈ZI /M

Q[s(g)] =: ind ◦ res(Q) ∼= 0 (4.44)

corresponding to g = 0, and therefore Q ∼= 0. �

Proof of Proposition 4.7 We observe that ind(O0) is a direct sum of objects
of C, by definition. It follows by Corollary 4.11 that C split-generates s∗M F ,
which coincides with GrMF(S�, Wb(λ)) by (4.26). �

Proof of Proposition 4.8 This can be proved using the ‘automatic split-
generation criteria’ of [49] or [26]; we reproduce the argument of the latter.
By Proposition 4.7, Dπ(C) is quasi-equivalent to GrMF(S�, Wb(λ)). By
[45], this is an admissible subcategory of the stacky bounded derived cate-
gory DbCoh(Žb). The latter category is smooth and proper by [11, Theorem
6.6], because the stack Žb is smooth and proper by Proposition 4.4. It follows
that Dπ(C) is smooth and proper, by [42, Theorem 3.24] (see also [46, Theo-
rem 3.25]). Therefore the Mukai pairing onHH•(C) is non-degenerate by [62,
Theorem 1.4].

We observe thatHH0(C) is non-zero becauseC is not quasi-equivalent to the
zero category. Because F(X, ωλ)

bc is weakly Calabi–Yau of dimension n =
dimC(X), it follows that HHn(C)∨ ∼= HH0(C) �= 0 (see [58, Lemma A.2]). It
follows that HH−n(C) �= 0, because the pairing HHn(C) ⊗ HH−n(C) → �

is non-degenerate.
Since the open-closed map OC : HH•(C) → QH•+n(X;�) respects pair-

ings, and the pairing on HH•(C) is non-degenerate, it follows that OC is
injective. In particular the map OC : HH−n(C) → QH0(X;�) is non-zero,
since it is injective and the domain is non-zero, so it hits the unit. It follows
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that C split-generates by Abouzaid’s criterion [2], all of whose ingredients are
contained in Sect. 2.5. �
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