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ABSTRACT
We have investigated the properties of gravito-turbulent discs in 3D using high-resolution
shearing-box simulations. For large enough domain sizes, Ly � 60H, the disc settles down
into a quasi-steady state, showing no long-term trends in properties or variation with box size.
For smaller boxes, we find that the azimuthal wavelength of the dominant spiral modes is
limited to the domain size. This is associated with a bursty behaviour that differs from the
quasi-steady dynamics at larger sizes. We point out that a similar transition may be expected
in global simulations at the point where the range of azimuthal wavelengths is limited by
the finite disc size. This condition (i.e. when 60H ∼ 2πR, i.e. H/R ∼ 0.1) correctly predicts
the transition to bursty behaviour previously found in global simulations for disc-to-star mass
ratios in excess of 0.25. We recover a transition in the dynamics from 2D to 3D behaviour,
characterized by a turbulence that becomes more isotropic on small scales. This turbulence
likely plays an important role in the evolution of dust in self-gravitating discs, potentially
dominating the collision velocity for particles with Stokes number < 1. Finally, we consider
the stability of gravito-turbulence against fragmentation, finding that discs that cool faster than
a few dynamical times fragment immediately, supporting previous results. We also find hints
of stochastic fragmentation at marginally longer cooling times, in which a fragment forms
from a quasi-equilibrium state. However, this makes little practical difference to region where
planet formation via gravitational instability may occur.

Key words: hydrodynamics – instabilities – turbulence – planets and satellites: formation –
protoplanetary discs.

1 IN T RO D U C T I O N

Early in their evolution, protoplanetary discs pass through a phase
in which their mass is comparable to that of the central protostar.
During this phase, the disc’s own gravity plays an important role
in its evolution, with self-gravitating modes transporting angular
momentum, driving accretion through the disc. The outcome of this
evolution depends on the balance of heating and cooling: If the
cooling is not too fast then the disc is expected to maintain marginal
stability, where the Toomre’s Q ≈ 1 (Safronov 1960; Toomre 1964;
Paczynski 1978), with the heating produced by the spiral shocks be-
ing balanced by cooling (so-called gravito-turbulence). Conversely,
when cooling is sufficiently fast relative to the orbital time-scale the
discs may instead fragment. Both of these regimes have important
implications for planet formation.

Fragmentation due to gravitational instability (GI) has been sug-
gested as a way to produce giant planets (Cameron 1978; Boss
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1998). The requirement of short cooling times, β = tc� � 31 (where
� is the Keplerian angular speed and tc is the cooling time, Gam-
mie 2001), limits the process to the outer regions of protoplanetary
discs (Rafikov 2005; Clarke 2009; Rafikov 2009). Here, the frag-
ment masses exceed several Jupiter masses, with brown dwarves or
low-mass stars potentially being a more natural outcome (Stamatel-
los & Whitworth 2009; Rice et al. 2015). However, high-resolution
simulations suggest that fragmentation may occur stochastically at
longer time-scales (Meru & Bate 2011; Paardekooper, Baruteau &
Meru 2011), which would push the fragmentation limit to small
radii and allow the formation of lower mass objects.

While the boundary between immediate fragmentation and quasi-
stability at β ≈ 3 is becoming well understood (Kratter & Murray-
Clay 2011; Young & Clarke 2015; Deng, Mayer & Meru 2017), the
role of stochastic fragmentation is harder to determine directly due
to the need for high resolution and long integration times. However,

1The discussion of fragmentation here assumes γ = 5/3. Using γ = 1.4
instead increases the critical cooling time-scale by a factor of a few, but does
not otherwise change the results.
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insights from 2D simulations suggest that it is unlikely that stochas-
tic fragmentation can be important at very long cooling times for
two reasons. First, when β � 3 bound clumps collapse on a cool-
ing time, and thus may be disrupted when passing through shocks
before they can contract (Kratter & Murray-Clay 2011; Young &
Clarke 2015). Young & Clarke (2016) showed that clumps typically
encounter shocks once every few orbits, with the probability of
avoiding shocks for a long time falling off exponentially. Secondly,
at long cooling times the formation of bound clumps is increasingly
rare (e.g. Paardekooper et al. 2011). Here, we use shearing-box sim-
ulations to argue that similar results must hold in three dimensions.

The gravito-turbulent regime at moderate to long cooling times
has another role to play in planet formation, through its effects
on dust grains. Since dust grains drift towards the transient pres-
sure maxima associated with the spiral arms, this provides a way
to concentrate dust grains (Rice et al. 2004). For large enough
sizes (around decimetre), this can result in the dust reaching high
enough densities that the dust itself becomes self-gravitating, po-
tentially producing planetesimals by direct collapse in the dust layer
(Rice et al. 2006; Gibbons, Mamatsashvili & Rice 2014). Tradition-
ally, the strong large-scale motions in gravito-turbulence have been
considered a problem for dust growth in such discs, for example,
with collisions between planetesimals being destructive (Walm-
swell, Clarke & Cossins 2013). However, recent 2D simulations
have shown that for grains with small enough Stokes number, St =
ts� � 3 (where ts is the time-scale over which drag forces damp
the relative velocity between the gas and dust), decouple from the
large-scale flow and may avoid fragmenting (Booth & Clarke 2016;
Shi et al. 2016).

The dynamics on scales smaller than the disc scale height turn
out to be crucial for understanding whether dust trapping leading to
planetesimal formation can occur. For example, small-scale turbu-
lence is important because it drives diffusion. This diffusion is not
only important for determining the strength and extent of dust trap-
ping, but will act against gravity, setting a minimum density required
for the dust trapped in spiral arms to become self-gravitating. This
in turn controls the effective Jean’s mass of the clumps that form
and thus the properties of planetesimals formed via this mechanism.

Perhaps the clearest test of the small-scale properties of gravito-
turbulent discs comes from studies of the Large Magellanic Cloud
(LMC): the power spectrum of density fluctuations in the LMC
shows a break at length-scales around the disc’s scale height
(Elmegreen, Kim & Staveley-Smith 2001; Block et al. 2010). Sim-
ilar behaviour has also been seen in M33, supporting this idea
(Combes et al. 2012). Indeed, using adaptive mesh refinement sim-
ulations of isolated disc galaxies, Bournaud et al. (2010) reproduced
the break in the power spectrum of density fluctuations and showed
that it is associated with the scale on which gravito-turbulence tran-
sitions from being 2D to 3D.

However, the applicability of galactic gravito-turbulence to the
protostellar case is not immediately obvious. While Bournaud et al.
(2010) show that the additional physics such as supernova feedback
and dark matter are important to the dynamics, they also showed that
these processes do not play a dominant role in driving the turbulence.
Perhaps the biggest difference is the gas cooling time, which is
much smaller than the orbital time in the galactic context, resulting
in an effectively barotropic equation of state. As discussed above,
the short effective cooling time makes the spirals highly unstable to
fragmentation. Although the power spectrum of density fluctuations
is known to fall off on scales less than about the disc scale height in
the protostellar case too (e.g. Boley et al. 2006; Cossins, Lodato &
Clarke 2009), this is seen in both 2D and 3D simulations (e.g.

Gammie 2001; Cossins et al. 2009; Rice 2016). Thus, it cannot be
related to a transition between 2D and 3D dynamics, and instead is
associated with the preferred scale of the dynamics.

However, there are some hints that gravito-turbulence in proto-
stellar discs has similarities to the galactic case. For example, Riols,
Latter & Paardekooper (2017) showed that on large scales the power
spectrum of kinetic energy is close to the k−5/3 scaling expected for
both 2D and 3D turbulence (Kraichnan 1967; Kritsuk et al. 2007),
as reported by Bournaud et al. (2010). While Riols et al. (2017)
saw a steeper decline in kinetic energy on scales below the scale
height, we will argue here that this is due to numerical dissipation.
Furthermore, high-resolution 2D simulations of gravito-turbulent
protostellar discs show the formation of large-scale vortices, as
expected for 2D (Mamatsashvili & Rice 2009; Gibbons, Mamat-
sashvili & Rice 2015; Booth & Clarke 2016), although self-gravity
does modify the dynamics, preventing the formation of arbitrarily
large vortices (Mamatsashvili & Rice 2009).

In this work, we demonstrate that self-gravitating protostellar
discs do transition from 2D to 3D dynamics, showing that this oc-
curs on smaller scales than the most unstable wavelength. Section 2
describes the numerical methods used. In Section 3, we discuss the
large-scale properties of the turbulence before considering the tur-
bulent spectra. In Section 4, we report the results of an investigation
into fragmentation. In Section 5, we discuss the implications of
the turbulence for the dynamics of dust in gravito-turbulent discs.
Finally, in Section 6 we summarize the results.

2 N U M E R I C A L M E T H O D

We employ the Godunov code ATHENA (Stone et al. 2008) in order
to simulate gravito-turbulence in 3D, following closely the methods
used by Shi & Chiang (2014). We solve the equations of hydrody-
namics in a local frame co-rotating with the background flow using
the stratified shearing-box approximation (Hill 1878; Hawley, Gam-
mie & Balbus 1995; Stone & Gardiner 2010). The equations solved
are those of self-gravitating hydrodynamics:

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂(ρv)

∂t
+ ∇ · (ρvv + P I + T ) = −2ρ� ẑ × v + 2ρq�2x x̂

− ρ�2 z, (2)

∂E

∂t
+ ∇ · [(E + P )v] = Q̇cool − ρv · ∇� + ρ�2v · (2q x̂ − z),

(3)

∇2� = 4πGρ, (4)

where � is the gravitational potential due to disc and the total energy,
E, includes the thermal and kinetic energy, E = 1

2 ρv2 + P/(γ − 1),
� is the local angular speed and

q = −∂ log (�)

∂ log (r)
= 3/2, (5)

where the final equality is for Keplerian motion. We parametrize
the cooling rate in the standard way for simulations of self-
gravitating discs (e.g. Gammie 2001; Rice et al. 2003; Lodato &
Rice 2004; Mejı́a et al. 2005; Cossins et al. 2009; Meru & Bate
2011; Paardekooper et al. 2011), by setting the cooling time-scale

MNRAS 483, 3718–3729 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/483/3/3718/5237722 by U
niversity of C

am
bridge user on 31 January 2019



3720 R. A. Booth and C. J. Clarke

to a multiple of the local dynamical time-scale, tc = β�−1, and
setting Q̇cool = −U/tc, where U = P/(γ − 1) is the internal energy
per unit volume and γ = 5/3 is the ratio of specific heat capacities.
The gravitational stress tensor, T , is given by

T = 1

4πG

[
∇�∇� − 1

2
(∇� · ∇�)I

]
. (6)

We solve the above equations using van Leer integration (van
Leer 2006; Stone & Gardiner 2009) along with piece-wise linear
reconstruction with a Courant number C = 0.4. The gravitational
potential, �, is solved for using fast Fourier transforms using the
routines in the public version of ATHENA (Koyama & Ostriker 2009;
Kim, Kim & Ostriker 2011). Since in the shearing-box approxima-
tion the simulation domain is only shear periodic, it is necessary to
first shift the density back to the nearest time at which the simula-
tion was strictly periodic, solve for �, and then shift back to current
time. We perform the shift in real space as in Gammie (2001), rather
than shifting in Fourier space (Johansen et al. 2007).

We use the standard boundary conditions for shearing boxes in x
and y – periodic in y and shear periodic in x – along with outflow
boundary conditions in z. Since our boxes are stratified, we found
greatest accuracy when extrapolating the density using the hydro-
static equilibrium profile. We did this assuming the temperature in
the boundary cells is the same as the last active cell. Additionally,
we copied the velocities from the final cell, but set the velocity
normal to the grid to zero if it was directed into the simulation box.

As reported by Shi & Chiang (2014), we found that it was neces-
sary to introduce a density floor into the simulations as the outflow
boundary conditions occasionally produce very low densities in a
few cells near the upper and lower boundaries, which ended up be-
coming very hot and forcing the use of tiny time-steps. We typically
set the threshold to 10−4 of the mid-plane density as in Shi & Chiang
(2014), Riols et al. (2017), and Baehr, Klahr & Kratter (2017). Due
to mass-loss through the boundary, at each time-step we typically
rescale the density by a constant factor to renormalize the density to
its initial value, while keeping the per unit mass quantities fixed (i.e.
energy, velocity). The mass and energy added through this process
is approximately a few per cent per cooling time.

For the simulation units, we scale times to �−1 and lengths to

H = πG�

�2
, (7)

which can be interpreted as the tidal radius of a clump of mass of
order �H2. By choosing G = 1/π, � = 1, and the average density
� = 1, we obtain H = 1 in code units. With this choice, the pressure
scale height, Hp, is given by

Hp = QH, (8)

where Q is Toomre’s Q parameter.
For the initial conditions, we set-up the profile in hydrostatic

equilibrium with a vertically isothermal temperature profile, i.e.
close the equilibrium temperature profile (Shi & Chiang 2014). The
density structure is computed by solving for hydrostatic balance
including both the external potential and the self-gravity assuming
an infinite slab geometry. The initial temperature is set to give Q =
1. We then add a perturbation to the x- and y-components of the
velocity. Unless specified otherwise, following Johnson & Gammie
(2003) the velocities were set according to a Gaussian random field
with a flat spectral distribution (white noise) in the range 0.25 <

k < 4 with an r.m.s. amplitude of cs. In Section 4, we have also
explored introducing uncorrelated velocities instead.

3 G R AV I TO - T U R BU L E N C E

3.1 Background properties

The statistical properties of gravito-turbulence have been studied in
great detail previously, here we briefly present their properties as
a demonstration that the simulations are behaving as expected. For
this purpose, we explore how the properties depend on resolution
and box size for a cooling time β = 10. Fig. 1 shows the box-
averaged Toomre Q parameter and stress, α. Here, we compute Q
via

Q = �〈c2
s 〉1/2

ρ

πG〈�〉 , (9)

where 〈X〉 is the volume average:

〈X〉 = 1

V

∫
V

X dV , (10)

with V = LxLyLz and 〈X〉ρ is the mass-weighted volume average,

〈X〉ρ =
∫

V
ρX dV∫

V
ρ dV

. (11)

We further define the average per unit area:

〈X〉A = 1

A

∫
V

X dV , (12)

where A = LxLy such that 〈�〉 = 〈ρ〉A. Here, we note that the
density-weighed r.m.s. sound speed used 〈c2

s 〉1/2
ρ in the expression

for Q is typically a few per cent larger than the density-weighted
sound speed, 〈cs〉ρ .

The stress α = αG + αRe, where the gravitational and Reynolds
stress-to-pressure ratios, αG and αRe, are given by

αG = 2

3γ

〈gxgy〉
4πG〈P 〉 , (13)

and

αRe = 2

3γ

〈ρvxδvy〉
〈P 〉 . (14)

Here, δvy = vy + q�x and gx, gy are the x- and y-components of
the gravitational acceleration, respectively.

From Fig. 1, we see that neither Q nor α is sensitive to the
resolution of the simulations suggesting that our lowest resolu-
tion is already sufficient to capture the large-scale behaviour of the
gravito-turbulence. This is consistent with previous results, which
also found convergence at resolutions around eight cells per scale
height (Shi & Chiang 2014; Riols et al. 2017). We note that the
convergence of the total α is not a particularly stringent test of the
code because α is fixed by energy conservation in a quasi-steady
gravito-turbulent equilibrium, as long as the energy lost through the
boundaries is small (which we estimate to be a few per cent per
cooling time). The balance between the heating and cooling gives

α = 4

9γ (γ − 1)β
(15)

(Gammie 2001), hence α = 0.04 for β = 10, in excellent agreement
with the simulations at all resolutions and box sizes. However,
the independence of Q and the ratio of gravitational stress to total
stress with resolution confirms that the large-scale structure is well
resolved.

Conversely, there is a box-size dependence for L � 64H. For
small boxes, the gravitational stress increases with box size, while
the Reynolds stress decreases to maintain the total stress (see also
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Figure 1. Dependence of volume-averaged quantities on resolution (left) and box size (right). The Toomre Q has been computed using the density-weighted
r.m.s. sound speed. αG and αRe have been Gaussian smoothed over an orbital period to remove the high-frequency oscillations. The solid horizontal lines show
the time-averaged α, which agrees with equation (15) to within a few per cent.

Riols et al. 2017). Similarly, the kinetic energy increases with box
size. However, we do see convergence for our largest box sizes,
with the averaged statistics agreeing well for boxes with sizes 64H
and 128H (Table 1), in agreement with the results of Shi & Chiang
(2014) at lower resolution. While these averages have only been
computed over 150 �−1, our simulations do not show clear long-
term trends. This has been confirmed by running the low resolution
64H model until 2000 �−1, which shows near identical averages to
those obtained between 50 and 200 �−1.

For large domains, the global quantities are remarkably steady,
showing no long-term trends in Q, α, or the averaged kinetic and
thermal energies (Fig. 2). Similar results were seen in the 2D sim-
ulations of Gammie (2001), which also employed large domains.
These results are contrary to those reported by Riols et al. (2017),
who found trends on time-scales of 100 s of orbits in simulations
with a domain size of 20H. Riols et al. (2017) attribute this to tran-
sient density clumps seen in their simulations. We argue that this
behaviour is affected by the small box size, which gives rise to
unsteady behaviour as described next.

The smallest domains show a different behaviour, characterized
by bursts on time-scales regulated by the cooling. Instead of the slow
variation seen for Lx ≥ 32H, in small boxes the Toomre Q parameter
undergoes phases of rapid increase followed by steady decrease on
the cooling time-scale. This behaviour is clearest for Lx = 8H, but
can also be seen for Lx = 16H. To elucidate the origin of this bursty
behaviour, we show the kinetic energy and total stress, unsmoothed,
together in Fig. 3. The smallest boxes undergo rapid bursts that heat
the disc, after which kinetic energy and stress rapidly decay. With
the heating removed the disc cools until reaching Q ≈ 1, before
undergoing another burst and so the process repeats. We note that
this bursty behaviour can also be seen in the temporal variations of
Q and α in the simulations presented by Baehr et al. (2017).

To provide an explanation for the transition to bursty behaviour
as the box size decreases, we consider how the power spectrum of
density fluctuations varies with box size.

To compute the power spectra, we first compute the shear-
periodic Fourier transform, X̂(kx, ky, t), following the method out-
lined in Hawley et al. (1995).2 Denoting the time-average of

2The wavenumbers, kx and ky, are the Eulerian wavenumbers in Hawley’s
terminology.

X̂(kx, ky, t) as X̂(kx, ky) (over the temporal range t = 50 to
200 �−1), the 1D and 2D power spectra are then computed via

X̃(kx) =
∫

|X̂(kx, ky)|2 dky (16)

and

X̃(k) =
∫

|X̂(kx, ky)|2δ(k2
x + k2

y − k2) dky dky, (17)

where δ(x) is the Dirac δ-function.
From Fig. 4, we see that the power spectra with L � 32 H are

in good agreement, whereas smaller boxes show larger amplitude
fluctuations on all scales present. However, we note that while the
power spectra for L = 32H are in excellent agreement with larger
boxes on small scales, the wavelength of the peak mode (7 to 10 H )
is smaller than that seen in larger boxes (14H). While in both cases
the peak radial wavelength is considerably smaller than the box
size, the peak azimuthal wavelength is always close to the box
size. This makes it challenging to obtain direct measurements of
the dominant azimuthal wavelength from the power spectrum be-
cause the separation between k points is comparable to the k it-
self. Thus, we find that the pitch angle of the spirals provides a
more robust constraint on the ky where the density power spec-
trum peaks in any given simulation. The pitch angles are measured
from the 2D autocorrelations computed from the time-averages,
|ρ̃(kx, ky)|2 and |�̃(kx, ky)|2, via inverse Fourier transform (see e.g.
Gammie 2001). Fitting for the longest axis in the autocorrelation
function produces a consistent estimate of the pitch angle for all
box sizes, i ≈ 13◦, from which we can estimate ky = kxtan i. For
L = 64 H and 128 H , we find λy = 2π/ky ≈ 60H , while for boxes
with L = 32H and smaller this estimate for λy decreases, remain-
ing close to the box size. Thus, we argue that the squeezing of
azimuthal wavelengths by small boxes is the driver for the non-
convergence.

Since the squeezing of the azimuthal wavelengths in small boxes
is significant, when considering protostellar discs (which have
Hp/R ≈ 0.1) the required domain size becomes comparable to the
size of the disc. This means that the local model is not fully applica-
ble, and thus the precise properties of gravito-turbulence will differ
from those determined here, even before additional physics such as
the radiative transfer are factored in.
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3722 R. A. Booth and C. J. Clarke

Table 1. Box-averaged properties for the simulations with β = 10. Averages are computed from t = 50 �−1 to t = 200 �−1, except for the run L64N8 lt, for
which the range 50–2000 �−1 is used.

Name Box size (Lx × Ly × Lz) Resolution (Nx × Ny × Nz) 〈Q〉 〈α〉 〈αG〉/〈α〉 〈EK, x + EK, y〉A 〈EK, z〉A

L8N8 8H × 8H × 6H 64 × 64 × 48 1.13 0.039 0.49 0.20 0.032
L8N16 8H × 8H × 6H 128 × 128 × 96 1.13 0.041 0.47 0.21 0.039
L8N32 8H × 8H × 6H 256 × 128 × 192 1.11 0.040 0.44 0.20 0.041
L16N8 16H × 16H × 6H 128 × 128 × 48 1.19 0.041 0.64 0.42 0.042
L16N16 16H × 16H × 6H 256 × 256 × 96 1.14 0.041 0.64 0.32 0.047
L16N32 16H × 16H × 6H 512 × 512 × 192 1.15 0.042 0.61 0.41 0.051
L32N8 32H × 32H × 6H 256 × 256 × 48 1.30 0.042 0.76 0.44 0.064
L32N16 32H × 32H × 6H 512 × 512 × 96 1.28 0.042 0.73 0.43 0.071
L32N32 32H × 32H × 6H 1024 × 1024 × 192 1.24 0.042 0.73 0.39 0.070
L64N8 64H × 64H × 6H 512 × 512 × 48 1.42 0.039 0.86 0.64 0.080
L64N8 lt – – 1.40 0.040 0.86 0.62 0.076
L64N16 64H × 64H × 6H 1024 × 1024 × 96 1.41 0.042 0.84 0.64 0.090
L128N8 128H × 128H × 6H 1024 × 1024 × 48 1.40 0.039 0.87 0.65 0.077

Figure 2. Evolution of the box-averaged quantities for the long-term simulation, L64N8 lt. Note that the range of α shown is much smaller than in Fig. 3.

For the smallest boxes, L � 16H, the bursty nature is then under-
stood as being due to the fact that the modes otherwise responsible
for maintaining Q ≈ 1 are larger than the box size, and thus not
present in the simulation. Since the small wavelength modes are
only unstable at lower Q (Mamatsashvili & Rice 2010), this ex-
plains the on average lower Q in the boxes. However, we see from
Fig. 4 that the density perturbations have a larger amplitude even
on average, and from Fig. 3 that they give rise to rapid heating
when active. This drives the box to high Q where all of the modes
with wavelength smaller than the box size are again stable. This
behaviour can also be clearly seen in the profiles of Q and α for the
box sizes of 12H presented by Baehr et al. (2017).

While this effect is likely present in a weaker form at intermediate
box sizes, the unsteady behaviour seen in Riols et al. (2017) is also
affected to the formation of transient clumps, which significantly
perturb the boxes. For small boxes, the periodic nature of the domain
may inflate their importance as the clumps self-interact, an effect

that should be weaker in larger domains. Once the perturbation is
present, the large amplitude modes also persist for much longer than
the clumps themselves. This may partially be another consequence
of the perturbation being limited to a small number of modes.

This insight (concerning the importance of long-wavelength
modes in allowing a steady gravito-turbulent state to develop) also
provides an explanation for a hitherto unexplained phenomenon.
Lodato & Rice (2005) showed in global simulations that there is no
steady self-gravitating state once the disc-to-star mass ratio exceeds
around 0.25, at which point H/R ∼ 0.1. Our simulations demonstrate
bursty behaviour if the azimuthal domain is less than ∼60H, which
corresponds (at this H/R value) to ∼2πR. We therefore suggest
that the onset of bursty behaviour in global simulations at high
disc to star mass ratio is also a consequence of the missing long-
wavelength modes (but where this is not numerical, as in the present
experiments, but related to the finite disc size). We note that this
comparison can only be qualitative in detail due to differences be-
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Figure 3. Top: Kinetic, 〈E〉A and thermal 〈U〉A energy per unit area for simulations with different box sizes. Bottom: The total stress α. Unlike in Fig. 1, the
stress has not been smoothed. The dashed lines show α = 0 and α = 0.04, the steady-state value.

Figure 4. Power spectrum of density fluctuations for simulations with different box sizes (left) and resolution (right). Top panels show surface density
fluctuations, while the bottom panels show the mid-plane volume density. The line styles denote power spectra in the radial (x) and azimuthal (y) directions.

tween the shearing-box model and real discs, for example, through
the radial periodic boundaries or the neglection of curvature terms.

3.2 Small-scale structure and transition to 3D dynamics

The small-scale properties of 3D gravito-turbulence have been char-
acterized by Bournaud et al. (2010) in the barotropic limit (short
cooling time) and at moderate cooling times by Riols et al. (2017).
We begin by summarizing the key results of these studies.

Bournaud et al. (2010) showed that power spectra of the in plane
(vx and vy) components of the motions approximately follow the
k−5/3 scaling expected for both 2D and 3D incompressible turbu-
lence at all scales (neglecting rotation), with the vertical component
(vz) also following a similar scaling for wavelengths shorter than
the scale height, H, but falling off at larger scales. They also showed
that the spectrum of enstrophy, |∇ × v|2, followed the k−1 behaviour
on large scales that is expected for 2D turbulence (Kraichnan 1967),
thus arguing that gravito-turbulence transitions from 2D to 3D char-
acter at these scales. Furthermore, they found that this is associated
with a break in the power spectrum of density fluctuations consistent
with that seen in the LMC (Elmegreen et al. 2001).

Riols et al. (2017) also found that the kinetic energy spectrum
(ρ1/3-weighted, see next) followed k−5/3 on large scales, and iden-
tified a parametric instability of the large-scale modes by inertial
waves as a possible origin of the small-scale turbulence. The in-

compressible nature of the inertial waves may help to explain why
the kinetic energy power spectrum of gravito-turbulence is close to
that expected for incompressible turbulence. Although Riols et al.
(2017) found the power spectrum steepened on scales smaller than
the scale height, we show here that this is likely due to the nu-
merical resolution. We will thus argue that the picture put forward
by Bournaud et al. (2010) largely applies to protostellar gravito-
turbulence.

In addition to the density power spectrum, we consider the power
spectrum of u = ρ1/3v. The ρ1/3 weighting is included to account
for the effects of compressibility, with the power spectrum of w,
which is denoted as E(k), following k−5/3 as long as the simple
scaling arguments still hold (Lighthill 1955; Fleck 1996; Kritsuk
et al. 2007). Again, we consider the 2D spectra evaluated at a
particular height above the mid-plane.

Fig. 5 shows the mid-plane kinetic energy spectrum for the total
velocity |v| and individual components. These have been averaged
over 150 �−1, except for the simulation with L = 16 and resolution
64 H−1, which was averaged over a shorter run of 75 �−1. First,
we note that numerical diffusion affects the power spectra on scales
well above the grid scale, causing significant dissipation on length-
scales smaller than about 10–20 cells. Given that Riols et al. (2017)
used a resolution of around 20H−1, this potentially explains the cut-
off at ∼H, although the exact scale likely depends on the details of
the numerical method.
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3724 R. A. Booth and C. J. Clarke

Figure 5. Mid-plane kinetic energy spectrum weighted by ρ1/3 and scaled by k5/3 versus inverse wavelength, λ−1. Left: variation of the power spectrum of
the total velocity with resolution. Right: The contribution to the total power from each velocity component in the high-resolution spectrum. Top panels show
simulations with box sizes of L = 32 H , while bottom panels show L = 16 H .

Here, we use the 1D power spectrum in k, but note that the same
behaviour is seen in kx and ky independently. The main difference
between spectra in kx and ky occurs at large scales, with ky spec-
trum peaking at longer wavelengths than kx. These peaks occur at
comparable scales to the peaks in the density power spectrum seen
in Fig. 4, confirming those scales as the upper limit to the scales of
gravito-turbulence.

On large scales the power spectrum agrees closely with k−5/3;
however, as the wavelength drops below H the total kinetic energy
is less steep until turning over due to dissipation. Examining the
individual components, we see that this is driven primarily by the
increasing contribution from vz. The spectra of vx and vy are instead
close to k−5/3 until dissipation becomes significant.

We note that the mid-plane power spectrum of vz peaks close
to where the power spectra of vx and vz are comparable, which,
for horizontal slices near the mid-plane, is close to the dissipation
scale at all resolutions (Fig. 6). While it may be possible that the
peak of vz will always remain close to the dissipation scale, we
argue that this is unlikely, instead preferring the explanation that
the simulations are not yet sufficiently resolved (except perhaps the
highest resolution simulation). To justify this, we also present the
power spectra of vx and vz for slices at z = 0.5H and z = H, where
the flow is more isotropic (Riols et al. 2017). From Fig. 6, we see
that there is a z-dependent above which the power spectra of vx and
vz become equal, and that this scale is not affected by resolution.
Between this scale and the dissipation scale, the power spectra of
vx and vz are both in good agreement with k−5/3.

Fig. 6 also suggests that at small scales the flow becomes
isotropic. While this is clear for vx and vz, the power spectrum
of vy remains smaller vx at all scales and resolutions. However,
the difference decreases towards smaller scales, suggesting that at
small enough scales the flow becomes isotropic. Extrapolating the
power spectra suggests that the flow may become fully isotropic
below λ ∼ 0.1H.

The fact that the small-scale flow only becomes isotropic for
scales λ � 0.1–0.3H may help to explain why we do not see a break
in the power spectrum of density fluctuation. Bournaud et al. (2010)

only see such a break at the scale where the power spectra of vx

and vz are comparable, which is close to the dissipation scale in our
simulations. Thus, the break in the density power spectrum and its
slope scales smaller than this may be hidden by dissipation.

The agreement of the weighted kinetic energy spectra with k−5/3

is further evidence that the small-scale turbulence is not driven by
large-scale compressive motions associated with the spiral arms.
Federrath (2013) showed that the spectra can be steeper than k−5/3

in the presence of strongly compressive forcing; however, if any-
thing our simulations show spectra that may be slightly shallower
than k−5/3. By partitioning ρ1/3v into compressive and solenoidal
(incompressible) motions, we see that solenoidal motions dominate
away from the grid scale (Fig. 7). If compressive motions were im-
portant, they should dominate on the scales where the turbulence is
driven. This explains the good agreement with k−5/3 and is consis-
tent with the turbulence being driven by the inertial modes (which
have incompressible character) as identified by Riols et al. (2017).
Thus, we argue that gravito-turbulence really is turbulent on scales
below the most unstable wavelength, kH ≈ 1. At large scales, the
turbulence has 2D character and transitions to 3D character for
kH � 20 (λ � 0.3H).

3.3 Temporal correlations and diffusion

The radial diffusion coefficient for gas or well-coupled particles,
Dx, is computed via

Dx =
∫

〈Rxx(t)〉 dt, (18)

where 〈Rxx(t)〉 is the correlation function of the Lagrangian velocity
along trajectories,

〈Rxx(t)〉 = 〈vx(t)vx(0)〉. (19)

Here, we follow Zhu, Stone & Bai (2015) and use the shear-
corrected Eulerian velocity in the place of the Lagrangian velocity,
averaging this over space and time.
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3D Gravito-turbulence 3725

Figure 6. Weighted kinetic energy power spectra for the x- and z-components of the velocity for different vertical slices.

Figure 7. Fraction of the density-weighted kinetic energy associated with
solenoidal and compressive modes at different scales.

Shi et al. (2016) noted that in 2D gravito-turbulent boxes, the
diffusion coefficients as computed above are dominated by low-
density regions between the spiral arms, where the velocities are
large. They showed that the measured diffusion of solid particles
is in better agreement with a mass-weighted diffusion coefficient,
with only moderate differences between the coefficients computed
using the dust and gas density. Thus, we also compute

〈Rxx(t)〉ρ = 〈ρ(t)vx(t)ρ(0)vx(0)〉
〈ρ(t)ρ(0)〉 , (20)

along with the equivalent diffusion coefficient.
In Fig. 8, we show the temporal correlation functions. The ra-

dial and azimuthal correlation functions, 〈Rxx(t)〉 and 〈Ryy(t)〉, show
large oscillations with an angular frequency ω ≈ 0.8 �, which dom-
inates the correlation function. This is likely driven by a large-scale
epicyclic mode with the same frequency that dominates the dynam-
ics (Riols et al. 2017). We note that this oscillation makes estimating
the diffusion coefficient from 〈Rxx(t)〉 and 〈Ryy(t)〉 challenging be-
cause the oscillations largely cancel out. The vertical correlation,
〈Rzz(t)〉, does not show this oscillation.

We find that while 〈Rzz(t)〉 decays on a time-scale much shorter
than the dynamical time, there is a small background component that
remains positive on much longer time-scales, which would appear
to suggest a small net inflow or outflow. However, this is not seen
in density-weighted coefficient, 〈Rzz(t)〉ρ , and is driven by the low-

density regions above the mid-plane, which may be affected by the
boundary conditions. This velocity residual affects the estimate of
the vertical diffusion coefficient; however, once subtracted off this
results in estimates of Dz (0.02–0.05) that are similar between the
mass-weighted ones (0.025–0.03). Comparing this to the gravito-
turbulent α = 0.04 gives an estimate of the Schmidt number of
1–2 (the ratio of turbulent angular momentum transport and mass
diffusion coefficients), similar to the in-plane diffusion coefficients
found in 2D (Shi et al. 2016).

4 FR AG M E N TAT I O N

4.1 Prompt fragmentation

It is well known that global simulations of gravito-turbulent discs
may undergo spurious fragmentation before gravito-turbulence be-
comes properly developed (Paardekooper et al. 2011; Young &
Clarke 2015; Deng et al. 2017). These works found that fragmen-
tation can be spuriously triggered at interfaces between turbulent
and non-turbulent regions that arise due to radial variations in the
cooling time. Here, we report that shearing-box simulations started
from dynamically cold initial conditions can also undergo a sim-
ilar prompt fragmentation before the gravito-turbulence develops
properly.

An example of this is shown in Fig. 9, where the surface peak
density as a function of time is shown for simulations run at differ-
ent β and resolution with a fixed box size of 16H. The velocities
of each cell were initialized to independent random uniform val-
ues with an amplitude of 0.1cs. Here, we see that at low resolution
the maximum surface density rises to a high value before settling
down to the ∼3�0 indicative of gravito-turbulence. However, at
high enough resolution and low enough β fragmentation can oc-
cur when the density perturbation reaches its maximum. This re-
sults in a resolution-dependent fragmentation threshold (∼16H−1 at
β = 10, ∼32H−1 at β = 20, we did not see fragmentation at all
at β = 50), and one that likely also depends sensitively on the
numerical method.

The non-convergence of the previous results may not be entirely
surprising because the GI has a preferred wavelength, kH ≈ 1,
while purely random velocities imply the perturbations have an ef-
fective length-scale that varies with the grid scale of the simulation.
However, we note that similar experiments using our default ini-
tial conditions, where the velocities are initialized according to a
Gaussian random field. Even when the same k-space realization was
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3726 R. A. Booth and C. J. Clarke

Figure 8. Top: Temporal correlations functions of the velocity components. Bottom: Same, but density weighted.

Figure 9. Maximum surface density as a function of time for different
cooling times and resolution. A peak in the surface density occurs just before
the onset of gravito-turbulence. This can lead to a resolution dependence
in the fragmentation, with higher resolution simulations achieving higher
densities and thus being able to fragment at higher β. At β = 50 (not shown),
none of the models fragment. We also do not observe fragmentation in any
of the models that become fully gravito-turbulent even after integrating for
200π�−1.

used at all resolutions, we still found a resolution dependence on
the fragmentation threshold, with the highest resolution simulation
fragmenting at β = 10 and an initial velocity amplitude of 0.1cs.
By increasing the amplitude of the perturbation to cs, none of the

simulations tested fragmented (up to the maximum resolution of
32H−1).

Rather than attempt to find a set of initial conditions that show
convergence, we avoid the problem in tests next by first relaxing
the boxes into equilibrium at longer cooling time. This process
has typically shown convergence in global simulations, and we
demonstrate next the same result here.

4.2 Relaxed initial conditions

Here, we consider the stability of self-gravitating discs against frag-
mentation beginning from states that are already in gravito-turbulent
equilibrium. We consider two experiments to determine the frag-
mentation threshold. First, we continually reduce the cooling time
until the disc eventually fragments. Secondly, we instantaneously
reduce the cooling time to a new value and then investigate whether
the disc fragments.

In the first experiment, we slowly reduce β according to β(t) =
β0 − t/δt. The behaviour of the disc can be divided into two cases
depending on whether δt is smaller or greater than the cooling time.
Using 3D global SPH simulations, Clarke, Harper-Clark & Lodato
(2007) showed that for fast changes in β (small δt) the disc is not able
to respond thermally to changes in β and fragmentation is delayed
until smaller β. However, for slow changes in β the fragmentation
boundary converged to β ≈ 3, similar to what Gammie (2001) found
the stability criterion to be for 2D shearing sheets.

We limit our exploration of the response to reducing the cooling
time to box sizes of 16H due to the long run time needed for these
experiments. For this test to produce a meaningful βcrit above which
the disc is stable, we should see β at which fragmentation occurs
should converge as the resolution and δt are increased. If the disc
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Table 2. The cooling time, βfrag �−1, at which a fragment first forms in
the experiment where the cooling time was steadily reduced. The simula-
tions were initially relaxed into a gravito-turbulent state and β was reduced
linearly such as β(t) = β0 − t/δt. The box size was 16H.

Resolution β0 δt βfrag

(cells per H) (�−1)

8 50 4π 2.0
8 50 8π 2.0
8 20 16π 2.1

16 50 4π 2.0
16 50 8π 4.0
16 20 16π 4.5

32 50 4π 1.0
32 50 8π 5.0
32 20 16π 4.25

Table 3. Whether a given simulation fragmented on the cooling time-scale
(Yes) or fragmented stochastically sometime after the new gravito-turbulent
equilibrium was obtained, in which case we show the approximate number
of dynamical times before fragmentation. Blank means the simulation did
not fragment within 100 �−1.

Name β

1 2 3 4 5

L8N8 Yes Yes Yes – –
L8N16 Yes Yes Yes – –
L8N32 Yes Yes Yes Yes –
L16N8 Yes Yes Yes – –
L16N16 Yes Yes Yes 20 –
L16N32 Yes Yes Yes 10 –
L32N8 Yes Yes 50 – –
L32N16 Yes Yes Yes – –
L32N32 Yes Yes Yes 20 –

is also able to fragment stochastically at longer cooling times, the
convergence to a βcrit can only be found over a limited range of δt
because if we wait for long enough at a given β then fragmentation
must eventually occur. However, we can also turn this argument
around: if some kind of convergence is obtained over a reasonable
range of δt then we can place limits on the fragmentation probability
at larger β.

The results of such experiments conducted in boxes of size 16H
are given in Table 2, which do indeed suggest convergence of the
critical cooling time at resolutions above eight cells per scale height.
We find that the β at which fragmentation occurs converges to
βcrit ≈ 4.0–5.0 for δt � 8π, although there is some scatter within
that range. We note that this threshold is slightly higher than the
βcrit ≈ 3 found recently by Deng et al. (2017) and Baehr et al.
(2017). In the following, we will interpret this difference as being
due to the role of stochastic fragmentation.

To explore the role of stochastic fragmentation, we turn to the
second set of experiments. For these experiments, we take the sim-
ulations presented in Table 1 with L ≤ 32H and immediately reduce
the cooling time β. We focus on L ≤ 32H to allow the comparison
between three different resolutions. The simulations are then run
for another 100 �−1 or until they fragment, depending on which
occurs first. The results are shown in Table 3.

First, we note that all simulations with β ≤ 2 fragmented
immediately. This result is unsurprising given that over densi-
ties cool fast enough to allow collapse on a free-fall time for

Figure 10. Maximum surface density as function of time for different
cooling times for the L16N16 simulation. The simulations were initially
relaxed into a gravito-turbulent state at β = 10 before the cooling time was
reduced. For β ≤ 3, the simulations fragmented on a cooling time, while
for β > 3 they relaxed into a new gravito-turbulent state, from which we
observe the formation of a fragment in the β = 4 simulation.

β <
√

2πQ/(5γ − 4) ≈ 3, preventing pressure support from sta-
bilizing the disc on small scales (Kratter & Murray-Clay 2011). For
β = 3, we also see that the simulations fragment on a cooling time
(excluding the L32N8 run, which is likely affected by low reso-
lution, but still fragments after 50 �−1). However, the borderline
nature of β = 3 is evident in Fig. 10, where a clump with sur-
face density �/�0 ≈ 20 goes through a phase of relatively steady
contraction for around 10 �−1 before rapidly collapsing.

As in the simulations where the cooling time was slowly reduced,
we see fragmentation at β = 4 given sufficient resolution. However,
the mode of fragmentation differs from that seen for β � 3, with
the disc settling down into a new quasi-steady equilibrium on a
shorter time-scale than fragmentation. We note that the length of
time the L16N16 simulation took to fragment, 10–20 �−1, is similar
to the results obtained by slowly reducing the cooling time, which
fragmented near β = 4 when the cooling time was changed over
8π�−1 ≈ 25 �−1, but was delayed until β ≈ 2 for faster changes.

Although the behaviour seen in Fig. 10 hints at the probabilistic,
or stochastic, nature of fragmentation, we do not see fragmentation
when β > 5. Our ability to place strict limits on the importance
of stochastic fragmentation is limited by the relatively short run
time of the simulations considered here. However, it is clear that
the probability of fragmentation drops rapidly from β = 3 to β = 5.
Given that a resolution of 16 cells per scale height appears sufficient
to resolve fragmentation at β = 4, it seems unlikely that the reason
we do not see fragmentation at β = 5 in our highest resolution
simulations (32 cells per scale height) is due to a lack of resolution.

We note that these simulations may overestimate the importance
of stochastic fragmentation because the box sizes used are smaller
than the sizes required for convergence. Table 3 shows that small
boxes fragment more easily (e.g. β = 4 and 32H−1 resolution),
which should perhaps be expected from the lower average Q and
the large amplitude density fluctuations. Both of these factors make
it easier for bound clumps to form, and thus we expect that stochastic
fragmentation will be even less important at long cooling time than
found here.

In addition, we note that none of our simulations fragmented at
β = 10, with our longest run times around 500 �−1 at resolutions of
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3728 R. A. Booth and C. J. Clarke

16 and 32 cells per scale height.3 This is already a significant fraction
of the lifetime of the self-gravitating phase (∼0.1 Myr ≈ 2000 �−1

at 50 au). Thus, we argue that stochastic fragmentation is unlikely
to significantly shift the fragmentation threshold in protoplanetary
discs.

5 IM P L I C AT I O N FO R D U S T DY NA M I C S

The simulations presented here suggest that self-gravitating discs
are characterized by turbulence on small scales. On large scales the
vertical motions are unimportant, consistent with 2D turbulence,
while on small scales the motions become approximately isotropic.
The scale at which the dynamics transition from 2D to 3D behaviour
is found to be dependent on height above the mid-plane (see also
Riols et al. 2017): at z = H the flow power spectra are already
isotropic on length-scales, λ ≈ 2H, yet at the mid-plane this is
almost an order of magnitude smaller, around 0.3H.

The small-scale turbulence in self-gravitating discs should be
efficient at driving large velocity dispersions in the dust particles,
leading to high collision velocities. We estimate the magnitude of
the collision velocities, �v, using the closed-form expressions from
Ormel & Cuzzi (2007):

�v2 = {2, 3}〈v2
g〉ts/tL, (21)

where 〈v2
g〉 is the r.m.s. velocity of the turbulence, ts is the particle

stopping time, and tL is the correlation time of the largest eddies.
This expression is valid for particles with stopping times in the
inertial range of the turbulence (the ‘intermediate range’ of Ormel &
Cuzzi 2007) and the factor 2 corresponds to particle pairs with equal
ts, while the factor 3 is for the case when ts → 0 for the smaller
particle. Using the relations between tL, E(k), and 〈v2

g〉 from Ormel &
Cuzzi (2007), the factor

〈v2
g〉/tL =

√
18[k5/3E(k)]3. (22)

Taking k5/3E(k) ≈ 0.1 (Fig. 5), we find that the relative velocity in the
limit where one particle has negligible ts is given by �v ≈ 0.4

√
St ,

where St = ts� is the Stokes number of the larger particle.
For particles with very different stopping times, the above es-

timate of the turbulent velocities is in good agreement with the
numerical results of Shi et al. (2016; their fig. 8). For small par-
ticles, Shi et al. (2016) showed that the gravitational contribution
to the velocity dispersion is small, with the drag coupling to the
gas velocity dominating the driving. While the velocity dispersion
of Shi et al. (2016) is roughly a factor 2 smaller than the estimate
from the Ormel & Cuzzi (2007) estimates derived from power spec-
trum, the Voelk et al. (1980) models, on which the expressions of
Ormel & Cuzzi (2007) are based, are known to overestimate the tur-
bulent velocities by a similar amount (Pan & Padoan 2015). Thus,
the collision velocities of small particles in gravito-turbulence are
consistent with driving by small-scale turbulence.

Conversely, for like particles with Stokes numbers between 0.1
and 1, the collision velocity determined from simulations was found
to be as much as an order of magnitude smaller than estimate from
the power spectra (Booth & Clarke 2016; Shi et al. 2016). This sug-
gests that the motions of these particles are correlated, which can
also be inferred from the narrow filamentary structures for particles
of those sizes. The concentration of particles to small regions pro-
vides a simple explanation as to why the collisions velocity should

3Our long-term run, L64N8 lt, is likely too low resolution to provide useful
constraints.

be so low: velocity fluctuations on scales larger than the particles’
separation should drive correlated motions but not relative motion.
As a simple estimate, if one uses the Ormel & Cuzzi (2007) for-
mulae, only including contributions from wavelengths smaller than
the width of the filament, about 0.2H for St = 1 (Booth & Clarke
2016), we find collision velocities that are already a factor ∼10
smaller, closer to the values found from 2D simulations. However,
since 0.2H is already close to the dissipation scale of the highest
resolution simulations presented here, it is likely that in previous
simulations the velocity dispersions of particles with St = 0.1 and
1 were underresolved, likely resulting in too narrow filaments and
also too low collision velocities.

While it is clear that the small-scale turbulence plays an im-
portant role in determining the dynamics of small dust particles,
high-resolution simulations including dust are required to assess
the impact for the largest particles with St ∼ 0.1–1 due to their
correlated motions. This is needed to determine not only relative
velocity of the particles but also the densities achieved, to assess
the viability for planetesimal formation.

6 D I SCUSSI ON & C ONCLUSI ONS

We present the results of a systematic investigation into the stabil-
ity and properties of gravito-turbulent protostellar discs using 3D
shearing-box simulations. We find that the general properties of
gravito-turbulence are well behaved, and are not sensitive to resolu-
tion. However, there is a box-size dependence of the modes beneath
a minimum size, ∼60H, which we interpret as being due to the
preferred azimuthal wavelength of the spiral modes being around
∼60H. We attribute the bursty behaviour manifest in our smaller
boxes as being due to a large number of long-wavelength modes,
which all play a role in the gravito-turbulent dynamics, being miss-
ing. We furthermore argue that in global simulations the finite disc
size plays a qualitatively similar role in removing such modes when
60H ∼ 2πR and note that this is in good quantitative agreement
with the results of Lodato & Rice (2005), who found an onset of
bursty behaviour for disc to star mass ratio above ∼0.25.

At long cooling times, we recovered the small-scale turbulence
found by Riols et al. (2017) and demonstrated that it has a power
spectrum close to the classical k−5/3 result for weakly compressible
turbulence. On large scales these motions are largely 2D, becoming
more isotropic to smaller scales, although even at the highest reso-
lution presented (64 cells per scale height) the power in azimuthal
modes remains lower than the vertical or radial components. We
suggest that this turbulence may play an important role in the dy-
namics of particles in self-gravitating discs, but that turbulence on
scales around 0.1H will need to be resolved to capture the dynamics.

We explored the stability of gravito-turbulence against fragmen-
tation, supporting previous results that there is a transition be-
tween immediate fragmentation and quasi-stable gravito-turbulence
at cooling times of around three dynamical times (Gammie 2001;
Baehr et al. 2017; Deng et al. 2017). However, we also find that
stochastic fragmentation may be possible at cooling times slightly
longer than this, up to cooling times around five dynamical times. At
longer cooling times, we do not see any evidence for fragmentation,
if the disc is allowed to relax into quasi-steady gravito-turbulence
before hand. We note that due to the larger amplitude density fluctu-
ations for smaller box sizes, it is likely that our results represent an
upper limit to the practical range of cooling times in which fragmen-
tation can occur, rather than the opposite, and thus fragmentation
will be limited to the outer regions of protostellar discs.
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