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Abstract

Monotone systems generated by delay differential equations with explicit time-variation are of importance in the modeling
of a number of significant practical problems, including the analysis of communications systems, population dynamics, and
consensus protocols. In such problems, it is often of importance to be able to guarantee delay-independent incremental
asymptotic stability, whereby all solutions converge toward each other asymptotically, thus allowing the asymptotic properties
of all trajectories of the system to be determined by simply studying those of some particular convenient solution. It is known
that the classical notion of quasimonotonicity renders time-delayed systems monotone. However, this is not sufficient alone to
obtain such guarantees. In this work we show that by combining quasimonotonicity with a condition of scalability motivated
by wireless networks, it is possible to guarantee incremental asymptotic stability for a general class of systems that includes
a variety of interesting examples. Furthermore, we obtain as a corollary a result of guaranteed convergence of all solutions to
a quantifiable invariant set, enabling time-invariant asymptotic bounds to be obtained for the trajectories even if the precise

values of time-varying parameters are unknown.
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1 Introduction

Monotone systems represent an important class of dy-
namical systems that are of interest both for their ap-
plicability to a number of practical problems and for
their rich mathematical structure. The order-preserving
structure of these systems allows strong results about
their stability properties to be obtained. In the cele-
brated work [17], Hirsch established results of generic
convergence, guaranteeing convergence of almost every
bounded solution of any time-invariant system for which
the monotonicity property holds strongly to the equilib-
rium set, provided this set is nonempty. In systems of
differential equations that are not autonomous, however,
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the equilibrium set of even a monotone system will fre-
quently be empty, so the generic convergence results are
not directly applicable. Instead, a property that is often
of interest is the concept of incremental asymptotic sta-
bility. The system is said to be incrementally asymptot-
ically stable, in some specified set of initial conditions,
if all solutions starting within this set converge to each
other uniformly, and so this idea is of particular use in
problems of system tracking or prediction. This concept,
proposed in [3] and often referred to simply as incremen-
tal stability, was seen in [29] to be closely linked to the
notions of convergence and contraction studied in [7] and
[24] respectively, and has been investigated in numer-
ous interesting works such as [13, 14, 4, 26, 20, 11]. Two
recent papers in which incremental asymptotic stability
in general nonlinear systems with time-delays has been
studied are [27, 6]. [27] presented a Lyapunov—Krasovskii
framework for verifying incremental asymptotic stabil-
ity in delayed systems, while [6] proposed an incremental
formulation of Lyapunov—Razumikhin approaches and
used this to formulate sufficient algebraic conditions for
incremental asymptotic stability in Lur’e systems.
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Monotone systems have been extensively studied in the
context of a variety of applications, including the moti-
vating problem of population modeling [16], the analysis
of biological systems [19], and the notion of antagonistic
consensus [2]. One particular area in which they have re-
ceived significant attention is in the control of antenna
uplink powers in wireless networks. This follows from the
seminal paper [32], in which it was shown that a general
class of such power control algorithms can be modeled
in discrete-time by a general monotone system satisfy-
ing a condition of scalability. Stability of a continuous-
time version of this framework with time-varying de-
lays was considered in [23]. Stability issues in general
classes of delayed autonomous monotone systems have
been addressed in the literature, e.g. in [30, 5, 10]. It was
shown in [9] that when explicit time-variation is incor-
porated within the class of systems considered in [23],
versions of the monotonicity and scalability properties
introduced in [32] can be sufficient to guarantee that all
trajectories converge to one another, independent of ar-
bitrary bounded time-varying delays. However, the no-
tion of monotonicity used in the analysis is significantly
stronger than the classical property of quasimonotonic-
ity that is needed to specify a general monotone sys-
tem of delay differential equations, thus restricting its
applicability to wider classes of systems. As such, it is
desirable to investigate whether these approaches can
be generalized to yield conclusions guaranteeing delay-
independent incremental asymptotic stability in general
monotone systems under a condition inspired by the
property of scalability.

Within this paper we will demonstrate that this is pos-
sible, proving results guaranteeing incremental asymp-
totic stability for a broad class of time-varying nonlin-
ear systems encompassing a range of interesting practi-
cal examples. Moreover, we shall in fact see that, simi-
larly to the extensions provided to the wireless network
analysis in [31], this framework can be further general-
ized by combining the quasimonotonicity and scalabil-
ity conditions into a single, weaker property of uniform
two-sided quasiscalability, thereby yielding conclusions
of delay-independent incremental asymptotic stability
even for classes of systems that may not be monotone. As
a corollary, we also show that monotonicity properties
can be exploited in this context to deduce convergence
of all solutions to a bounded invariant set, thus allowing
time-invariant asymptotic bounds for the trajectories to
be obtained.

The paper is structured as follows. We begin in Sec-
tion 2 by reviewing some of the theory concerning stabil-
ity and convergence of systems of delay differential equa-
tions. We present in Section 3.1 the general framework
of strictly positive monotone systems of delay differen-
tial equations within which our analysis will take place.
In Section 3.2, we formulate an assumption of uniform
two-sided quasiscalability, and we show that this condi-
tion alone can be used to deduce incremental asymptotic
stability whenever the system admits a solution satis-

fying a particular boundedness condition. Section 3.3
then presents a constraint on the system’s explicit time-
variation that allows us to guarantee the existence of a
bounded invariant set. These results are then combined,
in Section 3.4, to yield our main result of guaranteed
delay-independent incremental asymptotic stability for
systems for which both of the foregoing assumptions are
satisfied. Various applications are given in Section 4, and
finally conclusions are drawn in Section 5.

2 Preliminaries
2.1 Notation

Within the paper, we will use Ry to denote the set

of nonnegative real numbers {s € R: s > 0} and R,
to denote the set of positive reals {s € R: s > 0}. In
the preliminaries, the notation || - || can represent any
norm on R"™, however, within our analysis we will work
mainly with the infinity norm, denoted by || - ||co. In-
equalities in R™ are defined as follows: x > y means
x; > y; for all i, x > y means z; > y; for all i and
r # y, and x > y means x; > y; for all i. We will
use C([a,b],) to denote the Banach space of con-
tinuous functions mapping [a,b0] C R into @ C R”,
with elemental norm ||¢||c = sup,<g<p [|¢(8)]]. Inequal-
ities in C([a,b],?) are treated pointwise, e.g. ¢ >
means ¢(0) > (6) for all 8 € [a, b].

2.2  Background theory

We wish to investigate the long-term behavior of so-
lutions of a general class of nonautonomous systems
of differential equations with arbitrary bounded time-
delays. A detailed study of the theory of such systems
can be found in [15]. Following this framework, if = €
C([to —r,to+ A], Q) for a given ¢y > 0 and A > 0, we de-
fine the segment x; € C([—7, 0], ) of z as z(0) = x(t+0)
for all @ € [—r,0], for any ¢ € [to,to + A]. The general
delay differential equation can then be written as

o(t) = f(t x), (1)

where f : Ry xC([—r,0],Q) — R™ is assumed to be con-
tinuous in its first argument and to satisfy a local Lips-
chitz property, uniformly in ¢, in its second argument !,
which ensure existence and uniqueness of solutions and
their continuous dependence on the initial data ([15],
Theorems 2.2.1, 2.2.2, and 2.2.3). The function z is then
said to be a solution of (1) through (¢g, ¢) for the ini-
tial condition ¢ € C([—r, 0], Q) if (¢) satisfies (1) for all
t > to and x4, = ¢ on [—r,0]. When explicit consider-
ation of the initial conditions is required, this solution
can be denoted by x(¢, tg, ¢), with the corresponding de-
layed segment written as x¢(tg, @).

! By this we mean that for any compact subset ® C Q,
there exists a constant L > 0 such that ||f(¢, @) — f(¢,¢)] <
L||¢ — ||c for all ¢, € C([—r,0], ) and all ¢ > 0.



In this paper, we wish to investigate when it is possi-
ble to guarantee certain properties of stability and con-
vergence for the system (1). We now define a standard
class of comparison functions in terms of which the rel-
evant notions can be formulated. A continuous function
B : Ry x Ry — Ry is said to be of class KL if

e For each fixed § > 0, 5(0,5) = 0 and (s, §) is strictly
increasing in s,

e For each fixed s > 0, 8(s,§) is decreasing in § and
lim;z_, o 5(s,8) = 0.

We first introduce a notion of uniform asymptotic sta-
bility with respect to a particular trajectory of (1).

Definition 1 The solution X(t) of (1) is uniformly
asymptotically stable in a set of initial conditions
S C C([—r,0],9Q) if there exists a function 8 € KL such
that for all tg > 0, all ¢ € S, and all ¢ > ¢,

4 (to, @) = Xille < B (| — Xy lle, t —to) -

It is globally uniformly asymptotically stable if the set
S can be chosen as the entire space C([—r, 0], Q).

Our second convergence definition represents a uniform
asymptotic stability property for the increment between
arbitrary solutions of (1) and is generally a stronger re-
quirement than Definition 1.

Definition 2 The system (1) is incrementally asymp-
totically stable in a set of initial conditions S C
C([-7,0],Q) if there exists a function 5 € KL such that
forall tg > 0, all ¢,v € S, and all t > 1,

22 (to, @) — @e(to, ¥)lle < B (|6 = Plle,t —to)-

Definitions 1 and 2 encode two distinct stability notions
for the system (1): whereas Definition 1 requires uniform
convergence of any arbitrary solution of (1) to the partic-
ular trajectory X (), Definition 2 requires uniform con-
vergence to zero of the increment between any arbitrary
pair of solutions. A similar comparison was discussed in
detail in [29]. The advantage of considering these uni-
form notions of asymptotic stability is that they will al-
low us to obtain conclusions that both guarantee conver-
gence and specify that this convergence occurs at a uni-
form rate with transients that can be uniformly bounded
across the allowed space of initial conditions. In the con-
text of applications, the motivation behind considering
incremental asymptotic stability is that it allows uniform
convergence of all solutions to any choice of trajectory
that is convenient to analyze to be guaranteed without
needing to specify this particular trajectory a priori.

To analyze stability properties of functional differential
equations of the form (1), [28] considered the functional
V(t, ) = sup_,<p<o V(E+0,2(t+6)) and derived con-
ditions on the function V such that V is decreasing along
system trajectories. This involves the time-derivative

along the system trajectory z(t + h,t,¢), defined as

V(t7¢(0)) = limsup;,_,o4 %{V(t + h,x(t + h,t,¢)) —
V(t, $(0))}.

Theorem 3 (Razumikhin Theorem) Letx =0 be a
solution of (1) with Q@ = R™. Suppose that f : Ry X
C([-r, 0, R™) — R™ in (1) takes Ry x bounded sets in
C([-r,0],R™) into bounded sets in R", and q, u, v, w :
R, — Ry are continuous, nondecreasing functions with
q(s) > s and u(s), v(s), w(s) > 0 for all s > 0, u(0) =
v(0) =0, u(s) — oo as s — 0o, and v strictly increasing.
Suppose further that there exists a continuous function
V Ry xR™ = R such that:

(i) wlllel) < V(t,2) < o(z]), Ve € Ry, Vi € RY,

(1) V(t,x(t) < —w(llz@)) if V(¢ + 0,20 +0)) <
q(V(t,z(t))) for all 0 € [—r,0], where x(t) is any
trajectory of (1).

Then x = 0 is globally uniformly asymptotically stable.

This theorem will enable us to guarantee global uniform
asymptotic stability of the origin for a transformed sys-
tem, upon which inversion of the coordinate transforma-
tion can yield stability results for the original system.

3 Stability and convergence analysis
3.1  Problem formulation

We wish to investigate in this section the stability prop-
erties of a general class of delay differential equation sys-
tem of the form (1). As discussed in Section 1, it is of
interest and relevance to consider systems that satisfy
notions of monotonicity and positivity, which we now
define and assume to hold for the system (1).

We will assume that the nonlinearity within the sys-
tem (1) satisfies the property of quasimonotonicity ([21,
25, 18]), which states that

fi(t, @) > fi(t, ) whenever ¢ > and ¢;(0) = 1;(0) (2)

for all ¢ € {1,...,n}, all ¢ > 0, and all ¢, ¢ €
C([-7,0],Q). Under this condition, it holds that
Ty, > Ty, implies z(t) > Z(t) for all t > ty for arbi-
trary solutions z(t) and Z(t), meaning that (1) defines
a monotone system.

Our second assumption is that (1) defines a strictly pos-
itive system, in the sense that the open convex cone
R? = {z € R: 2 > 0} is positively invariant with re-
spect to (1). We can then restrict our attention to the
domain ) = Rﬁ Due to the quasimonotonicity prop-
erty (2), strict positivity will immediately follow for any
system if f(¢,0) > 0 for all ¢ > 0, which gives an easy
check for verifying ? the positivity requirement.

% The condition f(t,0) > 0 is only sufficient for strict posi-
tivity, so failure of this condition to hold does not preclude
the system from being strictly positive.



There exists an extensive theory detailing stability and
convergence results for monotone systems that are time-
invariant, as described in [30, 18]. Using these results,
we can immediately see that in cases where (1) has no
explicit time-variation, almost all bounded solutions are
guaranteed to converge to the set of equilibria of the sys-
tem. However, in the more general setting in which the
system (1) depends explicitly upon time, the analysis
becomes more involved and these results fail to hold. In
particular, boundedness of trajectories can be violated,
so it will be important to establish properties that can
guarantee the existence of bounded trajectories. Fur-
thermore, the limiting behavior will now in general not
simply consist of equilibrium points, but rather can have
a more general time-varying form. Consequently, the
convergence definitions introduced in Definitions 1 and 2
will be of use in the stability analysis in the more gen-
eral time-varying setting. Our aim within this section is
to introduce conditions motivated by practical problems
studied in [32, 31] and to establish how these conditions
can be used to deduce useful results about the conver-
gence properties of the time-varying system (1).

3.2 Incremental asymptotic stability

In order to guarantee incremental asymptotic stability,
it is necessary to endow the system with a property
that will ensure contractiveness between trajectories.
In the context of discrete-time wireless network power
control algorithms, [32] ensured such contractiveness by
considering a class of interference functions I satisfying
the scalability property I(a¢) < al(¢) for all @ > 1
in addition to the discrete-time monotonicity property
I(¢) < I(¥) for all ¢ < 4. The analysis in [31] showed
that these properties can be combined into the single,
weaker condition of two-sided scalability

11(¢) < I(¢) < al(¢) whenever 2o <o < agp.  (3)

However, when these frameworks are generalized to
continuous-time, as in [23, 9], the resulting systems sat-
isfy monotonicity properties that are overly restrictive.
Instead, in order to investigate incremental asymptotic
stability in general continuous-time monotone systems,
we aim here to relax these monotonicity properties to
require only the classical condition of quasimonotonicity
as stated in (2). To achieve this, for the time-invariant
case let us suppose that the nonlinearity in (1) satisfies
the scalability property f(a¢) < af(¢) for all & > 1
in addition to quasimonotonicity (2). Motivated by
the form of (3), we then suppose that éq’) < ¢ < ag,
whence applying the quasimonotonicity and scalability
conditions in each case gives:

o If 4;(0) = £;(0), then fi(¢) < afi(1)),
o If 1;(0) = ag;(0), then f;(¢) < afi(¢).
Consequently, we obtain a condition in which the in-
equality in (3) is split based upon the endpoint of the
interval [2;(0), a; (0)] at which the value ¢;(0) is situ-
ated. Finally, in order to incorporate the time-variation

present within our system model (1), we include unifor-
mity within each of the inequalities. Thus, we arrive at
our main assumption about the nonlinearity f in sys-
tem (1), which as stated holds for all ¢ € {1,...,n} and

all t > 0, and in terms of some given ¢ € C([—r, 0], Ri)
(A) Uniform two-sided quasiscalability: For any a > 1,
if igb < < ag, then
(a) fi(t,®) < afi(t,v) — d(c) whenever L¢;(0) <
;i (0) < #(a)d)i(o)’
(b) fi(t,v) < afi(t,¢) — 6(a) whenever (o —
n(a))¢i(0) < 1(0) < ag;(0),
where 4,7 : (1,00) — Ry are both continuous and
nondecreasing.

Remark 4 It follows from how we arrived at this formu-
lation that assumption (A) represents a generalization
of the combination of quasimonotonicity with a uniform
scalability condition, meaning in particular that systems
of the form (1) that satisfy these properties fit within
the framework considered here. Condition (A) also in-
cludes the more restrictive assumptions considered in
our preliminary conference paper [8] as a special case.
It is important to note that quasimonotonicity, uniform
scalability, and two-sided quasiscalability are all point-
wise conditions on the time-varying nonlinearity f that
can be checked without requiring any knowledge of the
solutions of the system. As such, they can be each be
verified a priori by considering properties of the nonlin-
earity. Furthermore, they are all distributed conditions,
meaning that they can be verified independently for each
component. As it will be seen in Section 4, in many prac-
tical applications these conditions arise naturally from
modeling assumptions, even when precise values of the
system parameters are unknown.

Remark 5 The scalability property used in the formu-
lation of assumption (A) can be thought of as a strict
version of subhomogeneity. Without this strictness in the
inequalities, the condition would not in general be able
to preclude the existence of multiple limiting behaviors
in time-varying systems of the form (1), so incremental
asymptotic stability would not necessarily follow.

Remark 6 If the system’s continuity properties are
strengthened by requiring that the nonlinearity f be
uniformly continuous, then the uniformization function
7 in condition (A) is not required. However, the assump-
tion of uniform continuity can be restrictive, and so we
choose to state the condition in the form given in (A)
in order to derive our results in a more general setting.
Indeed, Example 2 in Section 4 illustrates a situation in
which the system nonlinearity is not uniformly contin-
uous and thus this more general setup is necessary to
prove incremental asymptotic stability.

Using only the condition (A), we are now able to
prove, by means of a logarithmic coordinate change and
Lyapunov-Razumikhin analysis, a result of guaranteed
incremental asymptotic stability for (1) assuming the
existence of some bounded solution.



Theorem 7 Suppose that (1) admits some solution
X (t) for which there exist scalar constants a, A, M > 0
such that

e a < X(t) <A,
o —M S f(taXt) S M;
o f satisfies assumption (A) with ¢ = Xy,

all hold for all t > 0. Then (1) is incrementally
asymptotically stable in the set of initial conditions

S = C([-r,0],Z) for any compact set = C R}.

Proof. Due to the strict positivity of (1), we know that
given any z;, > 0, we must have z(¢), X (¢) > 0 for all
t > to. Consequently, we may apply to (1) the transfor-

Zq

mation y; = log(%), giving the transformed system

dyi - 1
dt h X,;evi

filt, diag(e¥)7) X;) — e¥ f;(t, Xy) (4)

with state space R™, where diag(e®) is used to denote
the function taking as value the n x n diagonal ma-
trix with diagonal entries e?1(?) ¢®2(9)  ¢#(9) at each
0 € [-r,0]. Observe that the boundedness of f(t, X3)
and the fact that the local Lipschitz property for f(¢,-)
holds uniformly with resepct to ¢ imply that right-hand
side in (4) maps R x bounded sets in C([—r, 0], R™) into
bounded sets in R™. Furthermore, the particular solution
X (t) of (1) is transformed to the equilibrium y = 0 of
(4). Thus, this coordinate change will allow us to inves-
tigate the stability properties of the solution X (¢) for (1)
by using Theorem 3 to analyze those of the origin for (4).

The proof now proceeds in three steps:

Step 1: We first use Theorem 3 to establish global uni-
form asymptotic stability of y = 0 for (4).

Let us define, for the system (4), the candidate
Lyapunov-Razumikhin function V(y) = e™axilvil — 1,
which is continuous and satisfies condition (i) of Theo-
rem 3 with u(s) = v(s) = e® — 1 by virtue of the fact
that max; |y;| = ||yllco- Let I denote any component
choice such that |yr| = max; |y;|.

In order to satisfy condition (ii) of Theorem 3, let us
suppose that ¢(V(y(t))) = sup_,<4<o V(y(t + 0)) for ¢

defined as q(s) = €9(1°8(1+9) _ 1 in terms of some §
which is defined on R . This implies that, for all j,

q(lyr ()]) > sup_ ly; (t +0)] . (5)

We will show that it is possible to choose ¢ such that all
of the properties required in Theorem 3 are satisfied.

For the value of the time-derivative of V" along the system

3

trajectories, there are three significant cases* , namely

—e_yl(t)(t)yl(t) (t) if Yi(t) (t) <0,
V1 Wy (1) if yre)(t) >0, (6)
0 ifyI(t)(t+9)=O, Vo e[-r0],

Viy(t) =

The third case is trivial, leaving two important cases:

(i) y1 < 0, whence ¢?=¥) > 1 and (5) gives
e~i-ux, < diag(e(yf)f)Xt < ed(=v1) X,. Therefore,
the uniform two-sided quasiscalability assumption (Aa)
with o = e9(=¥1) implies that

fr(t, diag(e®)i) X,) > =990 f(¢, X,)
+ e v (ed(=vy - (7)

whenever e~ 4(—¥1) < e¥1 < m Due to (5)
and the property that n is nondecreasing, this necessarily
holds in particular whenever

e Y < ed(=y1) < eV 4 eV, (8)

Substituting (7) into (4), rearranging, and invoking (5)
and the nondecreasing nature of § then gives

dyr 1 ¢ _Gyn—
> q(—yr)—yr _q X
dt — X] [(6 )fI(t7 t)

+ e 9y v g (e ). (9)

The above shows that, whenever it holds that

- 1
“YI < pG(—YI) < YT L T §(pVI 1
eV <e <e V4 2M5(6 ) (10)
and
e Y < e‘i(—yr) < 6_2?!1’ (11)

then (9) yields dst’ > %, whence by (6) we have

(12)

(ii) yr > 0, whence e4®1) > 1 and (5) gives e~ W) X, <
diag(e)i)X, < eiW X, Therefore, invoking (Ab)
with a = e?W1) gives

fr(t, diag(el)7) X;) < eTW0) f (2, X;) — 5(e700)), (13)

3 The remaining case in which y(t) = 0 and y7(t46) # 0 for
some 6 € [—r,0) is not needed in order to apply Theorem 3,
since such a possibility can never occur under assumption (5).



whenever ed1) —p(edW)) < e¥1 < 4W1) | Asin case (i),
inequality (5) and the property that 7 is nondecreasing
mean that this necessarily holds in particular whenever

el < elun) < gur 4 n(evn). (14)

Using (13) and again applying (5) together with the non-
decreasing nature of ¢, (4) then becomes

dyr 1

&S [(eé(yz)—yz 1) fr(t, X;) — e—yz(g(eyz)]. (15)

Analogously to case (i), whenever it holds that

. 1
el < ellwn) < gur 4 m(g(eyz), (16)
we then see that (15) implies %1 < —%, whence
by (6) we have
5(@91)
V() < -2 (1)

Based on the foregoing calculations, let us define §(0) =
0 and G(s) = min{log(e® +n(e*)), log(e® + 7176(e*)), 25}
for all s > 0. Recalling that ¢(s) = e1°8(1+5) 1 this
gives ¢(0) = 0 and ¢(s) = s+min{n(1+s),d(1+s), s(1+
s)} for all s > 0, which clearly, since 6 and n are posi-
tive, continuous, and nondecreasing, defines a choice of
q satisfying all of the properties required in Theorem 3.
Moreover, by construction all of (8), (10), (11), (14),
and (16) are satisfied, so ¢ explicitly defines a function
satisfying all of the properties required within the fore-
going analysis. Therefore, if we also define w(0) = 0 and
w(s) = 5(262) for all s > 0, then w also satisfies all of the
properties required in Theorem 3, and inequalities (12)
and (17) yield V (y(t)) < —w(]|y|ls) whenever (5) holds.
This is precisely condition (ii) in Theorem 3,soy = Ois a
globally uniformly asymptotically stable solution of (4).

Step 2: Next, we show that global uniform asymptotic
stability of y = 0 for (4) implies uniform asymptotic
stability of X (¢) for (1).

As a result of Step 1, it follows from Definition 1 that
there exists 8 € KL such that, for all {5 > 0 and all
solutions y(¢t) of (4), |lytllc < Byt lle,t — to) for all
t > to. By the coordinate change, this implies that, for
all tg > 0, all solutions z(¢) of (1), and all ¢ > ¢,

[llog z:— log X¢|lc < B (]| log z¢,— log Xy, lle, t — to) (18)

Now let = be any compact set in Rfﬁ and suppose that
x(t) denotes the solution z(t, to, xt,) of (1) through an
arbitrary x4, € S = C([-r,0],E) at some ¢y > 0. It fol-
lows from compactness that there exist scalar constants
0 < b <aand B > Asuch that S C C([-r,0], [b, B]),

whence we immediately have b < z4,, Xy, < B (using
also the given boundedness properties of the solution
X (t)). Therefore, the logarithmic geometry implies that
[og 24, —log Xyylle < gllze, — X, llc, s0 (18) gives

|| IOgIEt — log Xt”C S 6 (%”Ito — Xto”Cat — to) . (19)

Additionally, it follows from (18) and the boundedness
of Tty Xto that

[logzi[lc < ||log X¢lle + B (|| log x4, — log X, lc,t — to)
< |llog X¢llc + B ([ log 4, |c + || log X, e, t — to)
< C+B(2C,0) (20)

by the definition of a KL function, where C =
max{|logb|, |log B|}. In particular, (20) implies that
z¢, Xy < Dforallt > to, where D = max{B, e“+#(2C.0)}
is a constant independent of both tg and t. Therefore,
the logarithmic geometry again yields |z; — Xi|lc <
D||log z; — log X¢||c, whence (19) gives

lze — Xelle < B (22, — Xeolle, t — to) (21)

for all t > tg, in terms of the K£ function B(s, 5) =
Df(%s,35). Since (21) holds for all ¢y > 0 and all initial
conditions z;, € S, X(¢) is uniformly asymptotically
stable in the set of initial conditions S by Definition 1.

Step 3: Finally, we show that (21) can be used to infer
incremental asymptotic stability. To see this, we follow
the method of the proof of [29, Theorem 8] 4.

Choose any to > 0 and let z(¢) and Z(t) represent so-
lutions of (1) through arbitrary x:,,#;, € S. It fol-
lows from (20) that all solutions with initial conditions
in S remain always within the closed and bounded set
C([—r,0],[e~C—PRCO) CHBECO) Hence by the local
Lipschitz property for f(t,-) and the fact that it holds
uniformly with respect to ¢, there exists a constant v > 0
such that, for all ¢t > tg,

1£(t, @) = f(&,3) || < yllze — Tl (22)

Integrating (1) and applying (22) then gives ||z(t) —
FO| < llz(to) = #(to)|| +7 [y, llzs — &slle ds. Thus, as
v > 0and ||zs — Zslc > 0 for all s, we get ||z; — T¢llc =
~ N t
SUPge—ro) [€(t+0)=Z(t+0)|| < [zt —Teollet [, lws—
Zs|lc ds for all ¢ > ty. Then Gronwall’s Lemma gives

e — Eelle < ||z, — e llee? ") (23)

* A method similar to the proof of [29, Theorem 8] was also
used in [6, Proposition 1] to deduce a result connecting the
properties of uniform convergence and incremental asymp-
totic stability in delayed systems when all solutions converge
to a compact positively invariant set.



forallt > ty. Now note also that (21) applies with respect
to each solution x(t) and Z(t), so the triangle inequality
and the fact that b < ¢, Z4,, Xt, < B give

(”'rto - Xto ||C7 t— tO)
(12, = X lles t — to)
<2B3(B—b,t —to) (24)

lz: — Ztllc

<p
+5

for all t > t. Combining (23) and (24), we finally get

2 — Zelle < min{|lzy, — F¢llce? "),
26(B—b,t—to)}. (25)

That there exists a function S € KL which is an upper
bound for the right-hand side in (25) can then be verified
either by directly considering the behavior of the terms
in the minimum here or by an easy application of Lemma
4.1 in [1], giving the result that

2 — Felle < B (e, — Feolle, t — to)

for all ¢ > tg. Since this holds for all ¢, > 0 and all
choices of z,, 24, € S, it follows from Definition 2 that
the system (1) is incrementally asymptotically stable in
the set of initial conditions S. O

Remark 8 Note that the explicit use of quasimono-
tonicity (2) is not required within the proof of The-
orem 7. Instead, the required monotonicity properties
are encoded in the two-sided quasiscalability assump-
tion (A), which can permit weaker monotonicity notions.

Remark 9 The Lyapunov-Razumikhin function used
in the proof of Theorem 7 can be viewed as a function
of the logarithmic difference logz — log X between so-
lutions. Furthermore, in (12) and (17), bounds on its
derivative are established in terms of this logarithmic dif-
ference. This contrasts with [6], in which the derivatives
of the incremental Lyapunov-Razumikhin functions de-
veloped were constrained in terms of the additive differ-
ence x— X . It is necessary to follow this distinct approach
in order to be able to exploit the inherent multiplicative
nature of the two-sided quasiscalability condition (A).

Remark 10 The fact that uniformity in the asymptotic
stability properties can be established only with respect
to initial conditions taking values in arbitorarily large
compact sets, as opposed to in the whole of R"} , is a con-
sequence of the fact that the two-sided quasisaclability
property (A) ensures contraction only in the ratio be-
tween solutions rather than directly in their difference.
A uniform correspondence between these two notions,
as established in Step 2 of the proof of Theorem 7, is
only feasible when the permitted initial conditions are
bounded both above and away from the coordinate axes.
We will see in Example 2 that nonuniformity in the con-
vergence when the initiaoml conditions take values in the
whole positive orthant R} is indeed possible under the
assumptions in Theorem 7.

3.3 Ezistence of an invariant set

One way in which the boundedness requirements within
Theorem 7 can be ensured is by guaranteeing the exis-
tence of a compact positively invariant set for (1). We
now show that this can be achieved through an addi-
tional assumption stipulating the existence of points at
which the nonlinearity f has fixed sign, and moreover
that the time-variation on the interval between these
points is bounded. To be precise, we assume:

(B) Bounded time-variation: there exist points 2™ <
2™ in R” such that f(¢, 2™) > 0 and f(t, 2™) <
0 for all ¢ > 0. Moreover, there exists a con-
stant K such that —K < f(t,¢) < K for all
¢ € C([—r,0], [z™™, 2™2%]) and all ¢t > 0.

Remark 11 In systems in which the explicit time-
variation satisfies known bounds, the technical condi-
tion (B) frequently arises naturally by calculating the
points 2™ and 2™ as fixed points of the functions
fI(@) = infi>o fi(t, @) and f**(¢) = sup,>q fi(t, ¢).
The boundedness requirement can often then follow
from the continuity of f™* and f™** and the compact-
ness of the set [z™" »M2X], Examples of this will be seen
in the applications in Section 4.

Remark 12 In the case where z™» = zm2% these
points correspond to an equilibrium of (1). Therefore,
our framework can also be used to recover stability
properties of monotone systems with equilibria.

By recalling ideas from the theory of monotone systems
presented in [30], we can use the property (B) together
with quasimonotonicity (2) to construct a positively in-
variant set for (1).

Lemma 13 Suppose that assumption (B) holds. Then
the interval J = C([—r,0], [z™™, 2™*]) = {¢: 2™ <
¢ < 2™} s a non-empty positively invariant set for (1).

Proof. The interval J is non-empty because z™in <
z™ax Positive invariance follows immediately from The-
orem 5.2.1 and Remark 5.2.1 in [30], which establish
through use of quasimonotonicity (2) that the regions
[2™i0 00) HRQL_ and (—oo, 2™ N R’_f_ are both positively
invariant. O

3.4 Incremental asymptotic stability and convergence
of all trajectories

We proved in Section 3.2 that, assuming certain bound-
edness properties, assumption (A) implies an incremen-
tal stability result given by Theorem 7. In Section 3.3 we
then established that assumption (B) implies a bound-
edness result given by Lemma 13. Therefore, it is natural
to combine Theorem 7 and Lemma 13 in order to prove
delay-independent incremental asymptotic stability for
the system (1) under both assumptions (A) and (B).

Theorem 14 Suppose that [ satisfies assumption (B)
and also satisfies assumption (A) for all ¢ € C([—r,0],
[zrin zmax]) - Then the system (1) is incrementally



asymptotically stable in the set of imitial conditions
S = C([-r,0],2) for any compact set = C R}.

Proof. If f satisfies assumption (B), then Lemma 13
guarantees that J = C([—r,0],[z™", 2™2X]) defines a
non-empty, bounded, positively invariant set for (1).
Thus, if we specify any Xo € C([—r, 0], [z™in, z™8X]),
then necessarily X(¢) € [™ 2] for all t > 0.
Moreover, the property (B) also then ensures that
—K < f(t,X;) < K for all t > 0. Furthermore, since
X; € C([-r,0],[z™", 2max]) for all ¢ > 0 and assump-
tion (A) holds for all ¢ € C([—r,0], [z™™, 2m2X]), it fol-
lows that (1) satisfies assumption (A) with ¢ = X; for
all t > 0. We therefore see that all of the assumptions of
Theorem 7 are satisfied. Consequently, from Theorem 7
we conclude that (1) is incrementally asymptotically
stable in the set of initial conditions S = C([-r,0],Z)

for any compact Z C R}. O

The fact that Theorem 14 proves incremental asymp-
totic stability in arbitrarily large sets of initial conditions
implies the following result guaranteeing convergence of
all trajectories.

Corollary 15 Suppose that f satisfies assumption (B)
and also satisfies assumption (A) for all ¢ € C([—r,0],
[zmin zmax]) - Then for any two solutions x(t) and Z(t)
of (1), z(t) — &(t) = 0 ast — oo.

Proof. Choose S such that x,,Z;, € S. Then incre-
mental asymptotic stability in S implies that the incre-
ment z(t) — Z(t) > 0ast —oo. O

Another consequence of the arguments used to prove
Theorem 14 is the following corollary, which quantifies
bounds on the asymptotic behavior of trajectories di-
rectly from the constraints on the nonlinearity in (B).

Corollary 16 Suppose that f satisfies assumption (B)
and also satisfies assumption (A) for all ¢ € C([—r,0],
[zmin zmax])  Then every solution of (1) satisfies x(t) —
[zmin zmax] ggt — oo,

Proof. X(t) € [2™n zm%%] for all ¢ > —r and

z(t) — X(t) — 0 as t — oo by Corollary 15, so
x(t) — [¢™, 2] ast — o0. O

The foregoing analysis demonstrates that the existence
of a region with respect to which the two-sided quasis-
calability property (A) holds, in conjunction with appro-
priate conditions such as (B) that lead to the existence
of a bounded invariant set, yield some strong global per-
formance guarantees. In particular, Theorem 14 guar-
antees that the asymptotic behavior of all solutions will
be identical for arbitrary bounded time-varying delays,
with uniform convergence rates and uniformly bounded
transients within any closed and bounded set of ini-
tial conditions. Moreover, all solutions are guaranteed to
be bounded, prohibiting pathological divergent behav-
ior. Furthermore, Corollary 16 allows explicit bounds
on the system’s asymptotic behavior to be determined
independently of both the initial states and the delays
present in the system.

4 Applications

Example 1 As a first application, consider the behav-
ior of the general class of time-varying wireless network
uplink power control algorithms studied in [9] motivated
by the setting in [32]. Letting x; denote the power of the
signal transmitted by user ¢ and I; (¢, =) denote the gener-
alized interference nonlinearity measured at ¢, a general
class of time-delayed uplink power control schemes can
be modeled by the equation d;ti = ki(—x; + L;(t, 2%)),
where 2% (t) = (21(t + 0:1(1)), ..., 2p(t + 0 ()T for
continuous ;; : Ry — [—r,0]. The functions I are as-
sumed to fit within a uniform continuous-time version
of the framework ® of [32]:

(i) if x > &, then I(t,z) > I(t, Z),
(ii) Ii(t,x)—LI(t,ax) > é(z, o) for all a > 1 for some
b R% x (1,00) — R, that is continuous and non-

decreasing in all variables and satisfies ad(z, a) >

0(ax,a) for all & > 1.

In the framework studied above, then, we have f;(t, ¢) =
ki{—¢:(0) + Lt,diag(¢;(6;;(t)))]} and it can be seen
that property (i) implies the quasimonotonicity condi-
tion (2). Moreover, it can be shown that f(¢,0) > 0 for
all t > 0, whence the strict positivity property follows
immediately. Thus, this example fits within the frame-
work analyzed in Section 3. To verify the two-sided qua-
siscalability property (A) consider arbitrary o > 1 and
¢ € C([—r,0], [z™n, 2m2X]) for any potential choices of
2™ and 2™2% and let écﬁ < ¢ < a¢. We then see that:

(i) If L6:(0) < 43(0) < +=L56(0), these properties
give fi(t, @) —afi(t,v) < FA0ks max; 2 —5(2m, ).

(i) Analogously, if (o — n(a));(0) < 1;(0) = ap;(0),
then fi(t,¢) — afi(t,¢) < n(a)max; 2" — d(zMn ).

From cases (i) and (ii) we thus see that the re-

quired conditions (Aa) and (Ab) are both satis-
fied if we make the choice §(a) = 16(z™™ a) and
S(Zmi)17a)

oo . Both of these definitions

’ 2 max; 2}
are, as required, positive, continuous, and nondecreas-
ing. Hence, assumption (A) holds with respect to all
¢ € C([—r,0], [z™" 2m2X]), Therefore, we are assured by
Theorem 7 that any system having this form that admits
a bounded solution will necessarily be incrementally

asymptotically stable® in all closed and bounded sets

n(a) = min{a—1

5 This framework could also be relaxed to the formulation
in [31], and our analysis would still be applicable to deduce
incremental asymptotic stability through application of The-
orem 7. Note, however, that by using the framework in [32],
we are additionally able to deduce asymptotic bounds on the
trajectories by application of Corollary 16, which would not
be feasible with the relaxed monotonicity properties in [31].
6 Note that the notion of incremental stability is stronger
than the results established in [9], where the uniformity of
convergence was not explicitly addressed.



of initial conditions. Furthermore, Theorem 14 guaran-
tees incremental asymptotic stability provided that the
system admits time-invariant bounds of the form (B).
A particular example here is the prototypical Foschini—
Miljanic [12] interference function with time-variation
in the link gains G';;, corresponding to relative motion of
the network users, I;(t,x) = ﬁ(t)(zj# Gij(t)z; +vi).
Assuming time-variation with minimum and maximum
saturation at G?;in and G7;**, taking the link gains
Gii = G?ilax, Gi]‘ = G?;m, and Gii = G?ilm, Gij = G?j}ax
respectively yields time-independent J™" and J™* for
which J™i(z) < I(t,z) < Jm*(z) for all t > 0 and
all z € Ri Whenever these bounding nonlinearities
admit positive fixed points such that Jmin(zmin) = ymin
and Jmax(gmax) — zmax’ the Brouwer fixed point the-
orem guarantees that Zmin < omax Ty thyg follows
as required that f(t,z™") > 0, f(t,2™*) < 0, and
_zrrlax+Jmi11(Zrnin) S f(t,¢) S _Zmi11+Jmax(er1ax) fOI‘
all ¢ € C([—r,0],[z™", 2™%]) whence assumption (B)
is satisfied. Therefore, by calculating these fixed points
we can formulate a limiting set [z™", 2™%%] to which all
trajectories are guaranteed to converge by Corollary 16.

Example 2 A second example is the scalar Gompertz
equation discussed in [22]

z = z(a(t) —logx), (26)

where a(t) € [a,a] for some nonnegative constants a, a.
For this system, it can be shown that quasimonotonic-
ity, strict positivity, and assumptions (A) and (B) all
hold when delays are included within the z-dependence
of the term a(t)x. Then Theorem 14 and Corollary 16
guarantee that the system is incrementally asymptoti-
cally stable in all closed and bounded sets of initial con-
ditions and that all solutions approach the invariant set
[e2, %] under arbitrary bounded delays. However, when
the delays are instead incorporated within the linear fac-
tor in the second term —zlogz, property (A) is seen
to be violated. As such our results do not apply in this
case, and we expect that the incremental asymptotic sta-
bility property may fail. Indeed, this is seen to be the
case for the simple example with a(t) = 1 in the plots
shown in Fig. 1. Whereas in the first of these plots, we
observe delay-independent incremental asymptotic sta-
bility for the system trajectories when the delays appear
only within the first term, when the delays are included
instead within the second term, we see in the second plot
that incremental asymptotic stability breaks down for
larger delay values and the convergence of trajectories
in this case becomes delay-dependent. Note that in all
cases the system remains strictly positive and admits a
bounded trajectory, in the form of the equilibrium at e,
along which the nonlinearity is bounded. Consequently,
the failure of Theorem 7 to be applicable is due to the vi-
olation of assumption (A), demonstrating that the con-
vergence breakdown occurs here exclusively as a result
of this violation. In this way, this example demonstrates
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Fig. 1. Evolution of the relative error for trajectories of the
Gompertz equation, averaged over 16 random initial condi-
tions. Delays are included in the first term (first plot) and the
second term (second plot) on the right-hand side of (26), for
8 constant time-delay values, ranging from 0.5 to 4. The first
plot shows delay-independent stability while the second plot
exhibits convergence breakdown when the delays reach 2.

the importance and necessity of the uniform two-sided
quasiscalability assumption (A) in order for incremental
asymptotic stability to hold.

This example can also offer a simple illustration of why
the stability conclusions in Theorems 7 and 14 require
compact sets of initial conditions. To see this, we con-
sider the simple undelayed case of (26) with a(t) = 1,
for which the analytical solution

z(t) = exp(1 — [1 — log z(0)]e™") (27)

can easily be derived. Let us now suppose that (26) were
globally incrementally asymptotically stable. Then, in
particular, the solution x = e must be globally uniformly
asymptotically stable, whence by Definition 1 there ex-
ists 8 € KL such that

z(t) —e| < B(|z(0) — el 1) (28)

holds for all (0) € R, and all £ > 0. Let us now consider
the initial conditions z*(0) = e~* for k € N. Then,
substituting the corresponding solutions z*(t) from (27)
into (28) and noting that B(|z*(0) —e|,t) < B(e, t) gives
the inequality

e—exp(l—(1+k)e™") < Be,1)
= k < (1—log(e — Be,t)))e’ — 1, (29)

which must be satisfied by all £ € N and all t > 0. But by
definition there exists some T for which (e, T) < e—1,



whence (29) becomes k < e’ — 1, which is clearly vi-
olated for all sufficiently large choices of k. Thus, the
contradiction implies that (26) cannot” be globally in-
crementatlly asymptotically stable on the whole positive
orthant R .

Example 3 We finally provide a simple example that
illustrates how Theorem 14 can be combined with com-
parison results from classical monotone systems theory
to yield insights into the behavior of systems that do
not directly fit within our framework. Consider a sim-
plified consensus protocol including arbitrary bounded
noise and a uniform time-varying delay

= —mi 4+ > ai () + vilt), (30)

J#i

with ¢ = x(t + 0(¢)) for a continuous map 6 : R, —
[-7r,0] and each v;(¢t) € (=N,N). The matrix A =
(aij(t))i,; is row-stochastic and, for simplicity of the
analysis, has each a;; = 0 and satisfies the uniform two-
hop connectivity property that there exists p > 0 such
that, given any pair (4, j) there exists some k # 4, j with
a;k(t), a;x(t) > p for all t > 0. Due to the possibly nega-
tive noise, both the strict positivity requirement and the
two-sided quasiscalability assumption (A) may be vio-
lated. However, if z; = x;—2,, where z,,, = min; z;, then

2 < —zi + Z aij(t)zjd + (aik(t> - p)Zg +2N.
Jj#ik

(31)

Based on this, we introduce the bounding system

Zi==Zi+ Y ay()Z] + (aw(t) — p) Zil +2N. (32)
J#ik

Applying the classical comparison result [18, Theo-
rem 4.1] to (31) and (32) shows that if z;, = Z;,, then
z(t) < Z(t), and so the solutions of (31) are bounded
above by those of (32). Moreover, (32) defines a strictly
positive monotone system of the form (1) for which
assumption (A) is satisfied by similar arguments as in

" To be precise, the example shows that incremental asymp-
totic stability is not guaranteed unless the set of initial
conditions is bounded away from the coordinate axes. It is
straightforward to see that incremental asymptotic stability
also does not necessarily hold when the initial condition set
is not bounded from above by considering the simple system
# = max{1l — z, —1} in R. This equation has an equilibrium
at © = 1 and satisfies assumption (A) with ¢ = 1. Further-
more, the difference between solutions through initial condi-
tions k and k + 1 for any k € N\ {0, 1} remains equal to 1
for all t < k — 2. Hence, by letting £ — oo, the rate at which
these solutions converge to one another can be made arbi-
trarily slow. This is incompatible with Definition 2, demon-
strating the necessity of the upper boundedness requirement
in Theorems 7 and 14.

10

Example 1. Furthermore, the system nonlinearity sat-
isfies f(t, %) = 0, so as discussed in Remark 12, the
bounded time-variation property (B) is satisfied with
Zmin — pmax _ %. Thus, Theorem 14, and in particular

Corollary 16, apply for (32), guaranteeing incremental
asymptotic stability and furthermore the result that
Z(t) — % for all solutions of (32). Thus, by choosing

Zy, = zt,, the comparison result gives z(t) — [0, %]
as t — oo for any z;,. Therefore, for all initial con-
ditions x;, € C([—r,0],R™), the solutions of (30) sat-
isfy max; z;(t) — min; z;(t) — |0, %], quantifying a
delay-independent bound on the maximum asymptotic
deviation from global consensus that can occur.

5 Conclusions

We have considered the behavior of the solutions of a
class of time-varying, strictly positive monotone systems
of delay differential equations. Motivated by its utility
in the analysis of a class of power control schemes in
wireless networks, we first considered a scalability con-
dition and combined this with quasimonotonicity to for-
mulate a weaker combined condition of two-sided qua-
siscalability. Using this condition, we were able to prove,
whenever certain boundedness properties hold, a result
guaranteeing incremental asymptotic stability. We then
discussed that, by imposing a condition constraining the
time-variation of the system nonlinearity, it is possible
to guarantee the existence of a non-empty, bounded,
positively invariant set. This guarantees the requisite
boundedness properties, meaning that by combining our
results we were able to prove that the existence of a
bounded region on which the system’s time-variation
is suitably constrained and with respect to which the
two-sided quasiscalability assumption is satisfied can be
sufficient to guarantee that the system is incrementally
asymptotically stable in arbitrarily large sets of initial
conditions, independent of arbitrary time-varying de-
lays. Consequently, all solutions are guaranteed to con-
verge to one another asymptotically, at a uniform rate
and with uniformly bounded transients within any set
of initial conditions taking values in any compact sub-
set of R”. The significance of this result lies in the fact
that it allows the behavior of all trajectories to be ro-
bustly determined by simply studying the evolution of
one particular convenient choice of solution. Further-
more, it was seen that the specified constraints on the
time-variation of the nonlinearity, which can often be
determined directly from the system model, quantify a
limiting region to which all solutions converge, yielding
explicit constraints on the system’s long-time behavior
without requiring the calculation of any system trajec-
tory. It is part of ongoing research to determine to what
extent the technical conditions stated here can be re-
laxed while still yielding incremental asymptotic stabil-
ity, and whether they can also provide necessary condi-
tions for delay-independent convergence.



References

(1]

2]

(9]

(10]

(1]

(12]

(13]

(14]

(15]

F. Albertini and E. D. Sontag. Continuous control-
Lyapunov functions for asymptotically controllable
time-varying systems. International Journal of Control,
72:1630-1641, 1999.

C. Altafini. Consensus problems on networks with an-
tagonistic interactions. IFEE Transactions on Auto-
matic Control, 58:935-946, 2013.

D. Angeli. A Lyapunov approach to incremental stabil-
ity properties. IEEE Transactions on Automatic Con-
trol, 47:410-421, 2002.

E. D. Sontag and B. Ingalls. A small-gain theorem
with applications to input/output systems, incremental
stability, detectability, and interconnections. Journal of
the Franklin Institute, 339:211-229, 2002.

V. S. Bokharaie, O. Mason, and M. Verwoerd. D-
stability and delay-independent stability of homoge-
neous cooperative systems. IEEFE Transactions on Au-
tomatic Control, 55:2882-2885, 2010.

A. Chaillet, A. Y. Pogromsky, and B. S. Riiffer. A Razu-
mikhin approach for the incremental stability of delayed
nonlinear systems. Proceedings of the 52"¢ IEEE Con-
ference on Decision and Control, 1:1596-1601, 2013.
B. P. Demidovich. Lectures on the mathematical theory
of stability. Nauka, Moscow, 1967.

E. Devane and 1. Lestas. Delay-independent global con-
vergence in time-varying monotone systems of delay
differential equations satisfying a scalability condition.
Proceedings of the 53" IEEE Conference on Decision
and Control, 1:3113-3118, 2014.

E. Devane and I. Lestas. Stability of a general class of
distributed algorithms for power control in time-varying
wireless networks. [EEE Transactions on Automatic
Control, 59:1999-2011, 2014.

E. Devane and I. Lestas. Delay-independent asymp-
totic stability in monotone systems. Proceedings of the
American Control Conference, 1:4658-4663, 2015.

F. Forni and R. Sepulchre. A differential Lyapunov
framework for contraction analysis. IEEE Transactions
on Automatic Control, 59:614-628, 2014.

G. Foschini and Z. Miljanic. A simple distributed au-
tonomous power control algorithm and its convergence.
IEEE Transactions on Vehicular Technology, 43:641—
646, 1993.

V. Fromion, S. Monaco, and D. Normand-Cyrot.
Asymptotic properties of incrementally stable systems.
IEEE Transactions on Automatic Control, 41:721-723,
1996.

V. Fromion and G. Scorletti. The behavior of incremen-
tally stable discrete time systems. Systems € Control
Letters, 46:289-301, 2002.

J. K. Hale and S. M. Lunel.
tional Differential FEquations.
York, 1993.

Introduction to Func-
Springer-Verlag New

11

[16]

(17]

18]

[19]

20]

21]

22]

23]

24]

[25]

[26]

27]

(28]

29]

30]

(31]

32]

M. W. Hirsch. Systems of differential equations which
are competitive or cooperative. SIAM Journal of Math-
ematical Analysis, 13:167-179, 1982.

M. W. Hirsch. Stability and convergence in strongly
monotone dynamical systems. Journal fiir die reine und
angewandte Mathematik, 49:1-53, 1988.

M. W. Hirsch and H. Smith. Monotone dynamical sys-
tems. Handbook of Differential Equations: Ordinary Dif-
ferential Equations, 2:239-357, 2005.

S. B. Hsu and P. Waltman. Analysis of a model of
two competitors in a chemostat with an external in-

hibitor. STAM Journal on Applied Mathematics, 52:528—
540, 1992.

J. Jouffroy and I. Fossen. A tutorial on incremental
stability analysis using contraction theory. Modeling,
Identification and control, 31:93-106, 2010.

E. Kamke. Zur Theorie der Systeme gewohnlicher Dif-
ferentialgleichungen II. Acta Mathematica, 58:57-85,
1932.

A. K. Laird. Dynamics of tumour growth. British Jour-
nal of Cancer, 18:490-502, 1964.

I. Lestas. Power control in wireless networks: stabil-
ity and delay-independence for a general class of dis-
tributed algorithms. IEEFE Transactions on Automatic
Control, 57:1253-1258, 2012.

W. Lohmiller and J.-J. E. Slotine. On contraction anal-
ysis for non-linear systems. Automatica, 34:683—696,
1998.

M. Miiller. Uber das Fundamenthaltheorem in der The-
orie der gewoOhnlichen Differentialgleichungen. Mathe-
matische Zeitschrift, 52:619—645, 1927.

A. Pavlov, A. Pogromsky, N. van de Wouw, and H. Ni-
jmeijer. Convergent dynamics, a tribute to Boris
Pavlovich Demidovich. Systems & Control Letters,
52:257-261, 2004.

G. Pola, P. Pepe, M. D. Di Benedetto, and P. Tabuada.
Symbolic models for nonlinear time-delay systems using
approximate bisimulations. Systems & Control Letters,
59:365—-373, 2010.

B. S. Razumikhin. On the stability of systems with a
delay. Prikladnava Matematika © Mekhanika, 20:500—
512, 1956.

B. S. Riiffer, N. van de Vouw, and M. Mueller. Con-
vergent systems vs. incremental stability. Systems &
Control Letters, 62:277-285, 2013.

H. L. Smith. Monotone Dynamical Systems: an Intro-
duction to the Theory of Competitive and Cooperative
Systems. American Mathematical Society, 1995.

C. W. Sung and K. K. Leung. A generalized frame-
work for distributed power control in wireless networks.
IEEE Transactions on Information Theory, 51:2625—
2635, 2005.

R. D. Yates. A framework for uplink power control in
cellular radio systems. IEEE Journal on Selected Areas
in Communications, 49:1341-1347, 1995.



