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Abstract
High-quality excitation generators are crucial
to the effectiveness of coupled cluster Monte
Carlo (CCMC) and full configuration interac-
tion Quantum Monte Carlo (FCIQMC) calcula-
tions. The heat bath sampling of Holmes et al.
[Holmes, A. A.; Changlani, H. J.; Umrigar, C.
J. J. Chem. Theory Comput. 2016, 12, 1561–
1571.] dramatically increases the efficiency of
the spawn step of such algorithms but requires
memory storage scaling quartically with system
size which can be prohibitive for large systems.
Alternatively, Alavi et al. [Smart, S. D.; Booth,
G. H.; Alavi, A., unpublished] approximated
these weights with weights based on Cauchy–
Schwarz-like inequalities calculated on-the-fly.
While reducing the memory cost, this algorithm
scales linearly in system size computationally.
We combine both of these ideas with the single
reference nature of many systems studied, and
introduce a spawn-sampling algorithm that has
low memory requirements (quadratic in basis
set size) compared to the heat bath algorithm
and only scales either independently of system
size (CCMC) or linearly in the number of elec-
trons (FCIQMC) that works especially well on
localized orbitals. Tests on small water chains
with localized orbitals with CCMC and with an
initiator point sample in FCIQMC indicate that
it can be equally efficient as the other excitation
generators. As the system gets larger, calcu-
lations with our new algorithm converge faster

than the on-the-fly weight algorithm, while hav-
ing a much more favourable memory scaling
than the heat bath algorithm.

1 Introduction
Coupled cluster Theory1–4 can give ground
state energies to chemical accuracy (1 kcal
mol−1)4,5 in a systematically improvable man-
ner. As an alternative to deterministically solv-
ing the coupled cluster equations, stochastic
coupled cluster (CCMC)6–10 adopts a sparse
representation of the wavefunction which can
reduce memory requirements compared to a
full deterministic representation. This enables
the use of higher coupled cluster levels and
larger basis sets. Recently,11 a finite uni-
form electron gas has been studied with trun-
cation levels coupled cluster singles and dou-
bles (CCSD) up to quintuple excitations (CCS-
DTQ5) reaching basis set sizes of 18342 spinor-
bitals. Like full configuration interaction quan-
tum Monte Carlo (FCIQMC),12,13 CCMC also
does not suffer from the fermion sign problem
in the same way14 as diffusion Monte Carlo
(DMC)15 does. Provided there are enough
walkers/Monte Carlo particles in the calcula-
tions,13,14 FCIQMC energies are exact for the
basis set chosen. FCIQMC has been applied to
various molecules16–23 and some periodic sys-
tems11,14,24–30 to find ground state energies. It
has also been used to determine excited state
energies for example.31–35 Both CCMC and
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FCIQMC have been used with the CC(P;Q)
technique,36 which can speed up the time
needed to find the main excitors/determinants
in CC(P;Q). The algorithm used to perform
FCIQMC and CCMC affects the speed and
convergence, and there is still great scope for
improvements.7–9,13,20,37–41 Here, we propose a
change to the spawn step in the algorithm to use
weighted excitations, inspired by the heat bath
algorithm proposed by Holmes et al.20 (which
was then expanded to the heat bath configura-
tion interaction algorithm42–44), and Cauchy–
Schwarz weights proposed by Smart et al.40 The
method introduced here has a lower compu-
tational scaling in CCMC than the heat bath
excitation generators and a significantly lower
memory cost.
The main part of Fock space quantum Monte

Carlo algorithms such as CCMC and FCIQMC
consists of four steps; selection of a determi-
nant/an excitor, spawn, death and annihilation.
The spawn part of the algorithm explores the
space of possible determinants/excitors. For
a given determinant, it decides how the de-
terminants connected via the hamiltonian be-
come involved in the wavefunction by becoming
occupied. As Holmes et al.20 already noted,
it is not efficient to give all connected deter-
minants/excitors an equal probability of being
considered as some are more important for the
dynamics than others. They have shown that
their heat bath weighting when selecting states
to spawn to can greatly improve the overall ef-
ficiency.
A Slater determinant |Dm〉 is connected to

another determinant |Dn〉 by their connecting
Hamiltonian element 〈Dn| Ĥ |Dm〉 as part of
the spawn step and the algorithms to choose
|Dn〉 given |Dm〉 are called excitation genera-
tors. The probability of this generation is de-
noted p(n|m) = pgen after which a spawn occurs
with probability pspawn ∝ δτ |〈Dn|Ĥ|Dm〉|

pgen
, with

time step δτ .
For an efficient calculation, pspawn should have

a reasonable value. If pspawn > 1, multiple par-
ticles are spawned at the same time, known as a
“bloom”, which is undesirable as it leads to less
controllable population dynamics. If, however,

pspawn is small, determinants are selected with
no resulting spawn, and the algorithm is inef-
ficient. pspawn therefore ideally has a constant
value, which can be altered by the time step δτ .
Hence, it is desirable to make pgen proportional
to | 〈Dn| Ĥ |Dm〉 | rather than selecting deter-
minants uniformly. Holmes et al.20 have intro-
duced a heat bath sampling algorithm which
weights the probability of choosing |Dn〉 with
approximately | 〈Dn| Ĥ |Dm〉 |, but requires pre-
computation of Hamiltonian elements leading
to a significant storage cost of O(M4) (which is
of the same order as stored integrals if the code
does not calculate them on-the-fly) and compu-
tational cost of O(N) where M and N are the
size of the basis set and number of electrons
respectively. Smart et al.40 have reported the
use of the Cauchy–Schwarz-like inequalities to
provide upper bounds for | 〈Dn| Ĥ |Dm〉 | with
weights calculated on-the-fly. This reduces the
storage cost while being linearly scaling in the
number of orbitals.
Inspired by these ideas, excitation gener-

ators were investigated with weights gener-
ated on-the-fly using Cauchy–Schwarz and
Power–Pitzer45 inequalities to approximate
| 〈Dn| Ĥ |Dm〉 | whose computational cost scales
linearly with the number of spinorbitals in the
basis, M . We then present a new excitation
generator that uses this Power–Pitzer inequal-
ity but is of low computational order, O(Nex.)
in the case of CCMC or O(N) when using
FCIQMC, with memory cost O(M2) which is
also below the heat bath memory scaling. Nex.

for a determinant or excitor is the number of
electrons excited with respect to the reference.
For a truncated coupled cluster theoryNex. does
not scale with system size. In a single-reference
calculation, the reference determinant carries
the most weight in the wavefunction and the
majority of spawnings occur from determinants
within a few electrons of excitation of this. We
therefore may pre-compute excitation weight-
ings based on the reference determinant, which
shares the majority of electrons with nearby
excited determinants, and then map the ex-
citation to apply to any excited determinant,
|Dn〉. By this method, similar weights to the
heat bath algorithm and weights inspired by a
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Power–Pitzer inequality are employed and the
spread in |〈Dn|Ĥ|Dm〉|

pgen
is minimised at a reduced

computational and memory cost.
We now give a brief summary of the CCMC

method, followed by a more detailed descrip-
tion of various excitation generators whose per-
formances we then compare.

2 Coupled Cluster Monte
Carlo

This section describes the coupled cluster
Monte Carlo (CCMC) method. Full con-
figuration interaction Quantum Monte Carlo
(FCIQMC) has been discussed extensively in
the literature, see e.g. Refs.12,13,27 Note that
CCMC and FCIQMC can both use the same ex-
citation generators. CCMC solves the coupled
cluster equations stochastically enabling calcu-
lations with larger basis sets and coupled cluster
truncation levels than deterministic methods.
This section gives an overview over the algo-
rithm and more information can be found in
Refs.6–9
The single reference coupled cluster wavefunc-

tion |Ψ〉 is written as

|Ψ〉 ∝ exp (T̂ ) |D0〉 (1)

where |D0〉 is the reference determinant and

T̂ =
∑
i

tiâi. (2)

âi are “excitors” that generate determinants
from the reference as

|Di〉 = âi |D0〉 . (3)

The one-electron orbitals used here are all or-
thogonal. The set of âi included depends on
the coupled cluster truncation level. In cou-
pled cluster singles and doubles (CCSD), those
that create single and double excitations are
included whereas CCSDT contains those with
triple excitations as well and so on. The un-
conventional unlinked coupled cluster equations

are solved as,46

〈Dn| Ĥ |Ψ〉 = E 〈Dn|Ψ〉 (4)

for the ground state energy E. Multiplying by
a small number, δτ , this can be rewritten as

〈Dn| 1− δτ(Ĥ − E) |Ψ〉 = 〈Dn|Ψ〉 . (5)

with imaginary time step δτ . We arrive at an
iterative equation for the coefficients ti for the
Slater determinants in Ψ in imaginary time τ

tn(τ + δτ) = tn(τ)− δτ 〈Dn| (Ĥ − E) |Ψ(τ)〉 .
(6)

Franklin et al.8 have rewritten equation 6 as

tn(τ + δτ) =tn(τ)

− δτ 〈Dn| (Ĥ − Eproj. − EHF) |Ψ(τ)〉
− δτ(Eproj. − S)tn(τ).

(7)

where the sum of the Hartree–Fock energy EHF

and the shift S was substituted for the ground
state energy E. The projected energy Eproj. and
the population controlling shift S (described
below) are both measures for the correlation en-
ergy. Eproj. is given by

Eproj. =
〈D0| Ĥ − EHF |Ψ〉

〈D0|Ψ〉
. (8)

Equation 7 is then sampled stochastically as de-
scribed below and tnnn is updated at each time
step. Monte Carlo particles, “excips”, are placed
on the excitors aiii. At first, all excips are on
the null excitor a000 that gives back the refer-
ence determinant. As the simulation proceeds,
they multiply and spread to other excitors with
spawn, death/birth and annihilation steps at
each imaginary time step.
During each time step, a single excitor or clus-

ter of excitors which have particles on them are
first randomly selected, e.g. the two excitors aiii
and ajjj, that when acting together on the ref-
erence determinant |D000〉, give another determi-
nant |Dmmm〉, i.e. âiiiâjjj |D000〉 = âiii |Djjj〉 = |Dmmm〉. Note
that in the full non-composite algorithm,10 this
is selected slightly differently. This determinant
then undergoes the following processes:
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• Spawn: Another determinant |Dnnn〉 is ran-
domly selected with a probability pgen.
An excip of appropriate sign is placed
on ân with a probability proportional to
δτ |〈Dnnn|Ĥ|Dmmm〉|

pgen
.

• Death/Birth: An excip of opposite or the
same sign is placed on am with a prob-
ability proportional to | 〈Dm| Ĥ − S −
EHF |Dm〉 | if just one excitor was used to
form |Dmmm〉 and a probability proportional
to | 〈Dm| Ĥ−Eproj.−EHF |Dm〉 | if a clus-
ter was used.

• Annihilation: Finally, at the end of a
imaginary time step, excip pairs of oppo-
site sign on the same excitor are removed.

The shift is initially set to zero and is allowed
to vary once the total population (number of
particles), Ntot., is higher than the critical pop-
ulation at the “shoulder” or “plateau”.6,14 To
give an on-average constant population, it is
updated every B iterations according to

S(τ) = S(τ − δτB)− γ

Bδτ
ln

N(τ)

N(τ − δτB)
(9)

where γ is the shift damping factor.
Rather than integer-valued, real-valued ex-

cip amplitudes37,47 have been used and the
full non-composite version of the CCMC al-
gorithm10 with truncated and even selection9

has been applied. We have varied the shift
damping automatically to reduce the variance
of the projected energy1. We have also used
MPI and OpenMP parallelization.10 The re-
sults here were checked for population control
bias using a reweighting scheme by Umrigar
et al.48 and Vigor et al.49 Data has been re-
blocked50 implemented in pyblock2 to estimate
error bars. Our CCMC and FCIQMC calcula-
tions were done with the HANDE code51 which
is open source3. The integral files needed were

1This feature has been implemented by Charles
Scott.

2For code, see https://github.com/jsspencer/
pyblock

3See http://www.hande.org.uk/ and https://
github.com/hande-qmc/hande for information and
code

created with PySCF.52 When applicable, local-
ization has been applied using a Boys53 local-
ization function in PySCF.52 Figures have been
drawn with Matplotlib54 and/or Inkscape4.

3 Excitation Generators
As mentioned above, in the spawn step,
the excitation generator selects a determi-
nant |Dnnn〉 connected to |Dm〉 with probability
pgen. The spawn probability is proportional
to δτ |〈Dnnn|Ĥ|Dmmm〉|

pgen
. In this paper, we present a

method that aims to use an optimal pgen so
that more important determinants are selected
with a higher probability. An introduction to
excitation generators in FCIQMC is given by
Booth et al.12,19 The idea of excitation genera-
tion and dividing by the generation probability
was also discussed in e.g. Refs.20,55–58 and a
transition with uniform selection is also done
by the configuration state function projector
Monte Carlo method of Ohtsuka et al.59 Kolo-
drubetz et al.57 used a weighted excitation
generator that — among other distributions
— used the inverse momentum squared as a
weight. Booth et al.19 also considered weight-
ing the excitation generation by Hamiltonian
matrix elements by enumerating a subset of ex-
citations with the magnitudes of these Hamilto-
nian elements. Due to the cost of finding pgen.,
this idea was not pursued further. A version
of the uniform excitation generators described
here, is explained in detail in Ref.19
The spawn probability is only non-zero if
〈Dn| Ĥ |Dm〉 is non-zero. The Hamiltonians,
Ĥ, considered here only contain constant, one
body, and two body terms. 〈Dn| Ĥ |Dm〉 can
therefore only be non-zero if |Dn〉 and |Dm〉 dif-
fer by at most two orbitals. To select a suitable
|Dnnn〉 for |Dmmm〉 to spawn to, we can create a sin-
gle or a double excitation from |Dmmm〉 to gener-
ate |Dnnn〉 (nnn 6= mmm). Any other excitation would
lead to a zero spawn probability. Except for
the “original” heat bath excitation generator,
all excitation generators discussed here create
a single or double excitation from |Dmmm〉 to gen-

4https://inkscape.org/
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erate |Dnnn〉 with probability psingle or 1 − psingle
respectively. As suggested by Holmes et al.,20
we aim to appropriately select pspawn,single and
pspawn,double by setting psingle suitably to optmize
the distribution of excitations. For a single exci-
tation where electron in spinorbital i is excited
to spinorbital a,

pgen,single = psinglepmethodp(i)p(a|i). (10)

pmethod contains additional factors depending on
the selection method of i and a.
In the case of a double excitation, ij → ab,

as i and j ideally come from the same set of or-
bitals (those occupied in the determinant) and
so do a and b (those unoccupied in the determi-
nant), first ij and then ab are selected in all ex-
citation generators discussed here. That means
that for example while the selection order be-
tween i and j can vary, a will not be selected
before either i and j. The possible orders are
therefore ijab, ijba, jiab and jiba. While the
first selected occupied is called i and the second
j, their indistinguishability has to be taken into
account when calculating pgen:

pgen,double =

(1− psingle)pmethod(p(i)p(j|i)p(a|i, j)p(b|a, i, j)+
p(i)p(j|i)p(b|i, j)p(a|b, i, j)+
p(j)p(i|j)p(a|j, i)p(b|a, j, i)+
p(j)p(i|j)p(b|j, i)p(a|b, j, i)).

(11)

In a rather basic implementation, the spinor-
bitals with electrons to excite i (and j) and the
spinorbitals to excite to a (and b) are selected
with uniform probabilities. The excitation gen-
erator that we call not renormalised excitation
generator or simply no. renorm. here, when
doing a double excitation, first selects i and j
as a pair with uniform probability from the set
of occupied orbitals. In that case,

pmethod(p(i)p(j|i) + p(j)p(i|j)) =
2

N(N − 1)
,

(12)
where the number of electron is N . If both i
and j have the same spin, σ, then a is uniformly
chosen from the set of virtual orbitals of that

spin, otherwise it can be any virtual orbital. b is
then selected uniformly from the set of orbitals
(excluding a) with required spin and symmetry.
With this selection of b, it is possible that after
the selection of i, j, and a, there are no possible
selections of b, or that in fact an occupied or-
bitals has been selected as b. In such cases, it is
a forbidden excitation generation. In that case
the spawn attempt will be unsuccessful (we set
| 〈Dm|H |Dn〉 | = 0).
The choice of how to select which electrons

to excite and to which spinorbitals they are ex-
cited is is entirely arbitrary (assuming all valid
excitations are possible), as long as the proba-
bility with which this selection has been done is
known and pgen is then calculated accordingly.
As an alternative to the not renormalised exci-
tation generator (no. renorm.), most forbidden
excitations (which lead to unsuccessful spawns)
can be avoided by generating a different excita-
tion and renormalising the appropriate proba-
bilities. This is called the renormalised excita-
tion generator or in short, renorm.. Again, see
Booth et al.12,19 for an in-depth description of
uniform excitation generators.
In the following subsections, we describe the

heat bath excitation generators and the heat
bath/uniform Power–Pitzer excitation genera-
tors which follow the ideas of Alavi and others.
Finally, the heat bath Power–Pitzer ref. excita-
tion generator is presented, which pre-computes
some weights based on the reference determi-
nant and therefore has a very low computa-
tional cost not scaling with system size (O(Nex.)
when using CCMC or scaling as O(N) for
FCIQMC instead of O(M)). Its memory cost is
significantly less than heat bath excitation gen-
erators, being O(M2) instead of O(M4). In ap-
pendix A, further uniform excitation generators
are discussed.
Table 1 gives an overview over the weighted

excitation generators presented here. This table
should be understood together with the follow-
ing descriptions in the next subsections.
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Table 1: Overview of weighted excitation generators. C.–S. means Cauchy–Schwarz and P.–P.
Power–Pitzer. p.c. is pre-calculated and o.t.f. means on-the-fly. Comp./mem. O is the com-
putational/memory order the excitation generator scales with. As a method of selection, “heat
bath” refers to “selecting those like the heat bath excitation generator”. Single excitations or ij
in a double excitation that have been selected “uniformly”, have been selected with the uniform
renorm. excitation generator. N is number of electrons, M the number of spinorbitals and Nex.

the excitation level possible from the reference at this coupled cluster level.

single excitations ij ab comp. O mem. O
heat bath decision after heat bath heat bath N M4

having selected ija
heat bath uniform singles uniformly heat bath heat bath N M4

heat bath exact singles exactly, on-the-fly heat bath heat bath N2M or NNex.M M4

uniform C.–S. uniformly uniformly C.–S. o.t.f. M M
uniform P.–P. uniformly uniformly P.–P. o.t.f. M M
heat bath C.–S. uniformly heat bath C.–S. o.t.f. M M2

heat bath P.–P. uniformly heat bath P.–P. o.t.f. M M2

heat bath P.–P. ref. p.c. heat bath p.c. P.–P. p.c. N or Nex. M2

3.1 Heat Bath Excitation Gener-
ators

The heat bath excitation generators aim to
get the orbital selection weights as close as
possible to the Hamiltonian matrix element
| 〈Dn| Ĥ |Dm〉 | with the aim of making part of
the spawn probability |〈Dn|Ĥ|Dm〉|

pgen
as close as pos-

sible to a constant. In the case of a double ex-
citation ij → ab, pgen can be rewritten as

pgen,double =

p(i)× p(j|i)× p(a|ij)× p(b|ija) =∑
jabHijab∑
ijabHijab

×
∑

abHijab∑
jabHijab

×
∑

bHijab∑
abHijab

× Hijab∑
bHijab

,

(13)

where Hijab = | 〈Dn| Ĥ |Dm〉 | where |Dm〉 and
|Dn〉 differ by the excitation ij → ab. In
the case of heat bath excitation generators,∑

jabHijab∑
ijabHijab

with certain limits in the sums is an
approximation for p(i) and so on.
Here, we distinguish between three differ-

ent heat bath excitation generators described
by/based on Holmes et al.20 The “original” heat
bath excitation generator as introduced and de-
scribed in detail by Holmes et al.20 (in short
heat bath), the heat bath excitation generator

that decides first whether a single or a double
excitation is performed and which samples sin-
gles uniformly which is mentioned by Holmes et
al.20 (heat bath uniform singles) and finally, the
one that first decides whether to do a single or
double excitation and samples singles exactly
according to their Hamiltonian matrix element,
heat bath exact singles5. For more information
and an in-depth description, see Ref.20
In all three heat bath excitation generators,

all possible contractions of Hijab appearing in
equation 13 are pre-computed and stored. More
specifically, Hi =

∑
jabHijab, Hij =

∑
abHijab,

Hija =
∑

bHijab and Hijab are pre-computed
where i, j, a and b can be any spinorbital in
the calculation. In all sums i 6= j 6= a 6= b.
The alias method20,60–63 is used and alias ta-
bles are pre-calculated for selecting a (given ij)
with weights Hija and one for selecting b (given
ija) with weights Hijab (which is of O(M4)).
The look-up time with the alias method is of
O(1). The alias tables for selecting i and se-
lecting i given j are computed on-the-fly using
pre-computed weights in O(N) time. The alias
table for selecting i then only considers Hi from
the set of occupied orbitals for i and when se-

5Idea by Alavi and co–workers, this was suggested
to us as an alternative by Pablo López Ríos (personal
communication).
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lecting j given i, the alias table only considers
Hij with occupied j.
When using the heat bath excitation genera-

tor to find an excitation, first an alias table is
created on-the-fly for i as described above and
then i is selected. We proceed similarly for j.
Using the pre-computed alias table with weights
Hija, a is found. If this orbital is occupied, we
have a forbidden excitation and the spawn at-
tempt was unsuccessful. Only at this stage it is
decided whether to attempt a single or a double
excitation. In the algorithm by Holmes et al.,20
a single excitation is attempted with probability

Hia
Hia+Hija

and a double excitation is attempted

with probability Hija
Hia+Hija

if Hia < Hija where
Hia = | 〈Dk| Ĥ |Dm〉 | with |Dm〉 and |Dk〉 con-
nected by the excitation i → a. However, if
Hia > Hija, both a double and a single excita-
tion are attempted6. In our implementation in
HANDE,51 that approach was modified to only
allow one excitation attempt per excitation gen-
erator call. IfHia ≥ Hija, instead of choosing to
attempt a single (i→ a) and a double (ij → ab)
excitation, a single or a double excitation is at-
tempted with probability 1

2
respectively. The

rest follows Holmes et al.20 Either a single ex-
citation i→ a is attempted now or b is selected
from pre-computed weights and a double exci-
tation ij → ab (provided b is not occupied) is
attempted.
The heat bath excitation generator relies on

single excitations being less significant. It has
the major drawback in that it potentially has
a bias if there exists no j to be selected after i
and before a if i→ a is valid. This is explained
in more detail in Ref.20 Our conservative but
robust test for bias as implemented in HANDE,
counts the number of j for which

∑
bHijab is

non zero for given ia. If this number is greater
than the number of virtual orbitals, then there
will always be an occupied j to be selected for
allowed i→ a and there is no bias. :q

6It is not clear from Holmes et al.20 what happens if
Hia = Hija

3.2 On-the-fly Power–Pitzer Ex-
citation Generators

While bringing |〈Dn|Ĥ|Dm〉|
pgen

closer to a constant
as uniform excitation generators,20 heat bath
excitation generators suffer from a large mem-
ory cost (O(M4)). Alavi and Smart et al.40 had
the idea of calculating approximate weights on-
the-fly in O(M) calculation time which has a
lower memory cost. This is for example men-
tioned by Blunt et al.,35 Holmes et al.20 and
Schwarz.64 They proposed calculating Cauchy–
Schwarz-like upper bounds on the two body
part of the Hamiltonian on-the-fly when doing
a double excitation. Here, we also describe an
excitation generator that uses an inequality de-
rived by Power and Pitzer45 instead. It effec-
tively differs from Cauchy–Schwarz excitation
generators as described here by the usage of ex-
change rather than Coulomb integrals. There is
little published documentation about existing
Cauchy–Schwarz excitation generators. A brief
description of a first generation of these excita-
tion generators is given by Schwarz,64 and these
have also been reported by Alavi et al.7 though
a full description of the precise algorithm has
yet to be published so our implementation will
almost certainly differ from existing versions.
Given that i, j, a and b are different, the

only non-zero part of the Hamiltonian ele-
ment 〈Dmmm|H |Dnnn〉 in a double excitation are
the Coulomb integral 〈ij|ab〉 and the exchange
integral 〈ij|ba〉 according to Slater-Condon
rules.65,66 Here, the notation

〈ij|ab〉 =

∫
φ∗i (rrr1)φ

∗
j(rrr2)φa(rrr1)φb(rrr2)drrr1drrr2

|rrr1 − rrr2|
,

(14)
is used with one electron orbitals/spinorbitals
φ that make up Slater determinants |Dx〉. en
example of such a weight used by Alavi and
others for ij → ab is a Cauchy–Schwarz upper
bound on 〈ij|ab〉 given by√

| 〈ia|ia〉 | | 〈jb|jb〉 | ≥ | 〈ij|ab〉 |. (15)

The weights are such that a can be chosen (al-
7Personal communication with Ali Alavi and Pablo

López Ríos.
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most) independently of b and vice versa which
makes the algorithm linear scaling in the num-
ber of spinorbitals. A Power–Pitzer45 inequal-
ity is√

| 〈ia|ai〉 | | 〈jb|bj〉 | ≥ | 〈ij|ab〉 |. (16)

Exchange integrals are lower or equal in mag-
nitude than Coulomb integrals (see e.g. Ref.67)
which means that exchange integrals are the
tighter upper bound for | 〈ij|ab〉 |. The two
body term in the Hamiltonian is 〈ij|ab〉 −
〈ij|ba〉. When a and b have opposite spin, the
two body term reduces to 〈ij|ab〉 and its Power–
Pitzer upper bound is used as the weight. If a
and b have the same spin, both orderings, ab
and ba will generate the same excitation, and
this is included in pgen. This section gives a
detailed description of the algorithm.
i and j can be selected uniformly or with

the heat bath weightings producing a family
of excitation generators. We denote by uni-
form Cauchy–Schwarz and uniform Power–
Pitzer excitation generators which select them
uniformly, like the renorm. excitation gener-
ator, and by heat bath Cauchy–Schwarz and
heat bath Power–Pitzer those which select them
as the heat bath excitation generators do with
pre-calculated weights with memory cost of
O(M2)8. The computational scaling is O(M)
in both cases.
The Power–Pitzer and Cauchy–Schwarz ex-

citation generators first decide whether to at-
tempt a single or a double excitation according
to psingle. For single excitations, the renorm. ex-
citation generator is employed. When attempt-
ing double excitations, i and j are selected ei-
ther uniformly or with heat bath weights out
of the occupied orbitals of |Dmmm〉. Then, a is
selected out of the set of virtual spinorbitals
aσi,virt. with the same spin as i. a is selected
with the probability of

p(a|ij) = p(a|i) =

√
| 〈ia|ai〉 |∑

a=aσi,virt.

√
| 〈ia|ai〉 |

(17)

8The idea of selecting ij like the heat bath excita-
tion generator was communicated by Pablo López Ríos
(personal communication).

when using Power–Pitzer excitation generators
or

p(a|ij) = p(a|i) =

√
| 〈ia|ia〉 |∑

a=aσi,virt.

√
| 〈ia|ia〉 |

(18)

when using Cauchy–Schwarz excitation gener-
ators. b, the second orbital to excite to, it se-
lected out of the set of spinorbitals b 6=a,σj ,sym. of
the same spin as j and the required symmetry
to conserve overall symmetry and not equal to
a. The weights are given by 〈jb|jb〉 (Cauchy–
Schwarz ) or 〈jb|bj〉 (Power–Pitzer). If the to-
tal weight when finding b is zero (i.e. there are
no spinorbitals with the required spin and sym-
metry or only the spinorbitals found as a has
that spin and symmetry) or if the found b is
already occupied, the spawn attempt is unsuc-
cessful. Again, orbitals a and b were selected
using their weights with the alias method.
The performance of the four excitation gen-

erators described in this subsection, uniform
Cauchy–Schwarz, heat bath Cauchy–Schwarz,
uniform Power–Pitzer, and heat bath Power–
Pitzer, were then tested, using a chain of three
water molecules in the cc-pVDZ basis,68 whose
molecular orbitals have been localized. The ex-
citation generators all come with a low mem-
ory cost, which is O(M) temporarily or O(M2)
and all scale as O(M) in computational time.
The distribution of |〈Dn|Ĥ|Dm〉|

pgen
, which should

ideally be constant, was compared for the four
excitation generators. Figure 1 shows the his-
tograms (excluding |〈Dn|Ĥ|Dm〉|

pgen
= 0) with lin-

ear and logarithmic frequency scales. The bot-
tom graph shows the all excitation generators
have similar looking tails to both sides, the heat
bath Power–Pitzer having the longest tail at big
|〈Dn|Ĥ|Dm〉|

pgen
. However, the number of events in

bins above the maximum |〈Dn|Ĥ|Dm〉|
pgen

filled bin
for the uniform Power–Pitzer excitation gener-
ator — which has the lowest maximum — is
fewer than 100 events which is not significant
relatively speaking so if not using initiator ap-
proximations there should not be a noticeable
effect. The top graph demonstrates that the
heat bath Power–Pitzer gives the sharpest peak
and makes |〈Dn|Ĥ|Dm〉|

pgen
closest to a constant of

8
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Figure 1: Comparison of the histograms of
|〈Dn|Ĥ|Dm〉|

pgen
for the Cauchy–Schwarz (C.S.) and

Power–Pitzer (P.P.) on-the-fly excitation gen-
erators. ij are either selected uniformly or using
heat bath. The bin middles on the |〈Dn|Ĥ|Dm〉|

pgen

axis are used for the data points. The com-
putational scaling of all excitation generators
here is O(M). CCSD was performed on three
water molecules in the cc-pVDZ basis using lo-
calized MOs. The values were logged for one
Monte Carlo iteration. The size of the bins is
logarithmic. Bottom graph took the log of the
frequency whereas the top graph did not. They
both show the same data. All of them were
restarted from the same calculation and then
equilibrated before taking data. |〈Dn|Ĥ|Dm〉|

pgen
= 0

data is not shown which includes forbidden ex-
citations. psingle was set to be the same when
running which was corrected in post-processing
to make the mean of finite |〈Dn|Ĥ|Dm〉|

pgen
for single

and double excitations approximately coincide
which did not change psingle values by more than
about 30%.

the excitation generators. Only non-zero al-

Table 2: Fraction of allowed and fraction of
non-zero allowed spawn events, both with re-
spect to total number of spawn events. The lat-
ter represents the spawn events depicted in fig-
ure 1. heat bath Cauchy–Schwarz and uniform
Cauchy–Schwarz and the Power–Pitzer excita-
tion generators have been combined to C.–S.
and P.–P. respectively. Individual data points
have been rounded to the second decimal place.
If a range is given they rounded to either value
in the range.

#allowed
#total

events #allowed non−zero
#total

events
C.–S. 0.80 0.69–0.72
P.–P. 0.68–0.69 0.68–0.69

lowed events are shown in figure 1. Table 2
shows what fraction that is of the total number
of events (second column) and what fraction of
events are allowed which includes the allowed
but zero |〈Dn|Ĥ|Dm〉|

pgen
events (first column). Both

the Cauchy–Schwarz and the Power–Pitzer ex-
citation generators have a similar fraction of
non-zero allowed events. The Power–Pitzer ex-
citation generators have more forbidden events
but of those that are allowed, more are non-
zero. A big source for forbidden events is the
selection of b which is selected from the set of
orbitals of required spin and symmetry which
can be occupied. An event is then forbidden if b
selected is occupied. Our implementation could
be further improved by excluding occupied or-
bitals from that selection. In the results section
we will let heat bath Power–Pitzer represent all
these four excitation generators introduced in
this subsection.

3.3 Pre-computed Power–Pitzer
Excitation Generator

Even with their reduced memory requirements,
the above excitation generators still add a con-
siderable cost to calculations, and we seek a way
to reduce this further. We now introduce an
O(N) Power–Pitzer excitation generator, heat
bath Power–Pitzer ref. , where N is the number
of electrons. This can even be modified to be

9



O(Nex.) where Nex. is the number of electrons
excited with respect to the reference if excita-
tions instead of determinants were stored in our
implementation. Within a routine coupled clus-
ter calculation, the maximum Nex. does not de-
pend on system size. This excitation generator
combines advantages of heat bath Power–Pitzer
where a bias check is not required beforehand
(but is with the “original” heat bath excitation
generator) and which has a significantly lower
memory cost with those of the the lower com-
putational scaling of the heat bath excitation
generators, further improving upon them. We
make use of the single-reference nature of cou-
pled cluster where the reference determinant
|D0〉 is more important than any other deter-
minant by pre-computing some weights based
on the reference determinant. Pre-computed
weights include heat bath and Power–Pitzer
weights, for selecting the orbitals to excite from
and to in a double excitation. Spinorbitals are
first found by pretending the reference deter-
minant is the determinant we are exciting from
and are then mapped between the current de-
terminant and the reference determinant when
it is appropriate. The memory cost is O(M2)
while the computational cost when spawning is
only the mapping of the reference |D0〉 to the
actual determinant |Dm〉 which is O(N). Since
weights are based on one determinant, it is not
costly to pre-calculate weights for single excita-
tions as well. This is a considerable advantage
over the on-the-fly Power–Pitzer and heat bath
excitation generators that either do single ex-
citations uniformly, exactly (which is costly) or
partly based on double excitation weights.
In this algorithm, two frames of reference are

considered. In the first frame, the reference
frame, which is denoted by a prime, excita-
tions are from the reference determinant, i.e.
|Dm′m′m′〉 = |D000〉. In this frame, a double excita-
tion would be i′j′ → a′b′. In the second frame,
the simulation frame, the actual frame the cal-
culation is in, excitations are from |Dmmm〉 and
that excitation is ij → ab. For selecting some
orbitals, the weights of the orbitals in the ref-
erence frame are used and its spinorbitals are
mapped to the simulation frame to find the ac-
tual excitation as explained in appendix B.

The following quantities for single excitations
are pre-computed:

wi′,s =
∑
a

(
1

njb

∑
j=jocc.ref.b=bvirt.ref.

〈Db
j| Ĥ |Dab

i′j〉
)
,

(19)
where i′ is an occupied orbital in the reference
and the sum over a is over all orbitals with al-
lowed excitation i′ → a. njb is N(M−N). |Db

j〉
differs from the reference determinant by the
single excitation j → b. We decided to not sum
over single excitations from the reference as in
the case of self-consistent field reference deter-
minants, Brillouin’s theorem would mean that
the weights would be (close to) zero. We as-
sume Brillouin’s theorem when evaluating the
weights. Assuming the system is single refer-
enced, we might assume that a doubly excited
determinant might be second most important
after the reference determinant. The sum is
therefore over all possible double excited de-
terminants trying to connect to a determinant
slightly closer to the reference via a single exci-
tation. For selecting a,

wa=aσ,sym.,i,s =
1

njb

∑
j=jocc.ref.,b=bvirt.ref.

〈Db
j| Ĥ |Dab

ij 〉 ,

(20)
is pre-computed where i is now an occupied
orbital in the current determinant which will
have been selected before wa=aσ,sym.i,s is needed.
Given that the current determinant is not
known at this stage, this is pre-computed for
any orbital i. a is then selected from the orbitals
of allowed spin and symmetry for which i → a
is valid. Alias tables are then pre-computed for
wi′,s and wa=aσ,sym.i,s.
When running the excitation generator, it is

first decided whether a single or double exci-
tation is attempted with probability psingle or
1−psingle respectively. If a single excitation was
chosen, i′ is first selected in the reference frame
from the occupied orbitals in the reference using
the alias table constructed with weights wi′,s. i′
is then mapped to the corresponding occupied
orbital in the current determinant i in the simu-
lation frame. Appendix B explains the mapping
between these two frames in detail.

10



Once i is known, a is selected using the
pre-computed alias table with wa=aσ,sym.i,s. Of
course, a could be occupied. If that is the case,
the excitation attempt was unsuccessful. Oth-
erwise, i→ a is found and the generation prob-
ability is

pgen,single =

psingle ×
wi′,s∑

i′=i′occ.ref.
wi′,s

× wa=aσ,sym.,i,s∑
a=aσ,sym.

wa=aσ,sym.,i,s
.

(21)

For double excitations, four weight tables are
pre-computed. For the selection of i and j, heat
bath weights are pre-computed, assuming the
reference determinant is fully occupied. Two
orbitals i′ and j′ occupied in the reference are
found and then mapped to the actual determi-
nant that is occupied. For the virtual orbitals
a and b, alias tables based on Power–Pitzer
weights are pre-calculated for all spinorbitals.
Before selecting a, the actual i is known and
can be substituted into pre-computed weights√
| 〈ia|ai〉 | to find a. The memory cost is
O(M2). No mapping is necessary for a and b.
Again, if a or b are occupied or b is equal to a or
if there is not suitable orbital for b, the spawn
attempt was unsuccessful. Double excitations
with this excitation generator are explained in
more detail in appendix C.
Overall, this is an excitation generator that

is both weighted and can scale as O(Nex.) in
CCMC which does not scale with system size.
In FCIQMC the scaling is still low, O(N). The
memory cost is also relatively small, O(M2).

4 Results and Discussion
To compare the effectiveness of the excitation
generators discussed, water chains were then
studied in a cc-pVDZ basis set68 whose MOs
have been localized. Figure 2 shows a his-
togram of |〈Dn|Ĥ|Dm〉|

pgen
for three waters with the

four uniform excitation generators, the heat
bath Power–Pitzer excitation generator (which
had the sharpest peak out of the O(M)/on-the-
fly excitation generators), the heat bath Power–
Pitzer ref. and the two heat bath excitation gen-

erators that do not suffer from bias. The “origi-
nal” heat bath excitation generator was rejected
by our bias test as it was not clear whether
all allowed single excitations can be created.
Considering a logarithmic scale in |〈Dn|Ĥ|Dm〉|

pgen
,

the top graph in figure 2 clearly shows that the
uniform excitation generators produce a bigger
spread in |〈Dn|Ĥ|Dm〉|

pgen
than weighted excitation

generators (Power–Pitzer or heat bath).
The heat bath excitation generators produce

the sharpest peak. The heat bath uniform sin-
gles excitation generator, that samples single
excitations uniformly, shares the main peak
with the heat bath exact singles excitation gen-
erator, that samples single excitations exactly,
but has a larger spread around that peak caused
by the uniform sampling of single excitations.
The heat bath exact singles excitation genera-
tor produces two sharp peaks, both containing
data from single excitations which were treated
exactly here. The reason why this is not one
sharp peak is that in an ideal case

pgen. =

∣∣∣∣∣ 〈Dn| Ĥ |Dm〉∑
n 〈Dn| Ĥ |Dm〉

∣∣∣∣∣ (22)

which means that

| 〈Dn| Ĥ |Dm〉 |
pgen

≈ 1

|∑n 〈Dn| Ĥ |Dm〉 |
(23)

in the case of an ideal excitation generator.
This quantity depends on |Dm〉 and can there-
fore not be a constant in general unless the
selection step in the CCMC or FCIQMC al-
gorithm is adapted as well. Both heat bath
excitation generators here have a large mem-
ory scaling (O(M4)) and heat bath exact sin-
gles which produces the sharpest peak in
the histogram has a computational scaling of
O(MN2) (FCIQMC and in this implemen-
tation) or O(MNNex.) (ideal implementation
CCMC) which makes the heat bath exact sin-
gles excitation generator not practical.
The main peak that the two Power–Pitzer

excitation generators produce is wider than
with the heat bath excitation generators but
it is significantly more compact that what the
uniform excitation generators give. The heat
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Figure 2: Comparison of the histograms of
|〈Dn|Ĥ|Dm〉|

pgen
for various excitation generators.

The bin middles on the |〈Dn|Ĥ|Dm〉|
pgen

axis are used
for the data points. CCSD was performed on
three water molecules in the cc-pVDZ basis us-
ing localized MOs. The values were logged for
one Monte Carlo iteration. The size of the bins
is logarithmic. Bottom graph took the log of the
frequency whereas the top graph did not. They
both show the same data. The frequency axis
in the case is truncated in the top graph. Most
of them were restarted from the same calcula-
tion and then equilibrated before taking data.
heat bath exact singles was restarted from an
equilibrated heat bath uniform singles but not
equilibrated since it is very slow. |〈Dn|Ĥ|Dm〉|

pgen
= 0

data is not shown which includes forbidden ex-
citations. psingle was set to be the same when
running which was corrected in post-processing
to make the mean of finite |〈Dn|Ĥ|Dm〉|

pgen
for single

and double excitations approximately coincide
which did not change psingle values by more than
30%.

bath Power–Pitzer ref. excitation generator has
a shorter tail on the low end but a slightly
wider tail on the higher end. It has fewer
than 250 events in bins with bigger |〈Dm|Ĥ|Dn〉|

pgen

than the highest bin that has an event with
the heat bath uniform singles excitation gener-
ator. The heat bath Power–Pitzer excitation
generator has fewer than 90 events above the
bin with highest |〈Dm|Ĥ|Dn〉|

pgen
in the heat bath

uniform singles case. The number of finite

Table 3: Fraction of non-zero allowed spawn
events, both with respect to total number of
spawn events. The latter represents the spawn
events depicted in figure 2. The renorm. and
renorm. spin have been combined to renorm.
and similarly for not. renorm.. P.–P. means
Power–Pitzer and heat b. is heat bath. Indi-
vidual data points have been rounded to the
second decimal place. If a range is given they
rounded to either value in the range.

#allowed non−zero
#total

events
heat b. P.–P. ref. 0.66–0.67
heat b. P.–P. 0.69
heat b. uniform singles 0.72
heat b. exact singles 0.72
renorm. 0.69–0.72
not. renorm. 0.54–0.57

|〈Dm|Ĥ|Dn〉|
pgen

, allowed events are shown in table 3.
The weighted excitation generators have simi-
lar fractions of allowed non-zero events and the
heat bath Power–Pitzer ref. excitation gener-
ator has the lower computational scaling com-
pared to heat bath Power–Pitzer and the heat
bath uniform singles excitation generator, at
least in the case of CCMC. It also does not have
the prohibitively large memory scaling of the
heat bath uniform singles excitation generator.
Next, we move away from abstract perfor-

mance considerations and consider how the dif-
ferent excitation generators affect the the ef-
ficiency (as described by Holmes et al.20), in-
efficiency,69 and the position of the shoulder7
which are all measures of the difficulty of the
calculation. The efficiency η is defined as η =
1/(σ2

ET ), where σE is the statistical error in
the energy (here projected energy) and T is the
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computational time taken to achieve error bar
σE. In our case here, T was estimated by the
CPU time, that sums over OpenMP threads,
as determined by the parent MPI process. It
is then multiplied by the number of MPI pro-
cesses. It is therefore to be treated as an ap-
proximation. T is the sum of individual times
for blocks of iterations and only times of iter-
ations actually used by the reblocking analysis
are summed up. We have found T to be highly
dependent on implementation so η must be con-
sidered carefully. We also consider the (theoret-
ical) algorithmic computational scaling in mind
and the inefficiency a as defined by Vigor et
al.,69 a = σE

√
δτNit.〈Ntot.〉 where Nit. is the

number of iterations considered in the block-
ing analysis and 〈Ntot.〉 is the mean number of
Monte Carlo particles. When estimating the er-
ror in the efficiency and inefficiency, we ignore
the correlation in the numerator and denomi-
nator of the Eproj..

4.1 Coupled Cluster Monte Carlo

All coupled cluster calculations are non-
initiator.7,13 Figure 3 shows the efficiency and
inefficiency for chains of two or three waters in
the cc-pVDZ basis performing CCSD/CCSDT
with localized or canonical molecular orbitals.
CCSDT was only run on the weighted exci-
tation generators. When localization has not
been applied, i.e. our canonical CCSD run,
symmetry has been ignored as it also does not
exist in the system with localized orbitals. The
systems to study where chosen not to be too
large to get small enough error bars on efficiency
and inefficiency. However, the basis set could
not be too small since the heat bath uniform
singles and the heat bath Power–Pitzer ref. ex-
citation generators assume that the number of
occupied orbitals is small relative to the number
of total orbitals, which reflects a realistic cal-
culation. Note that while all of the four types
of calculations were run with the same number
of MPI processes and OpenMP threads for the
different excitation generators, these numbers
varied between the types of calculations 9. The

9To be precise: The dimer calculations were done
with 2, 1 and 8 MPI processes for the CCSD localized,

heat bath exact singles excitation generator is so
slow that it was not possible to take sufficient
data with it to produce results.
We now discuss the trends shown in figure 3:

• System size: The overall trend is that the
weighted excitation generators are more
efficient and less inefficient than the uni-
form ones. This becomes more notice-
able in the larger system. As expected,
modelling three waters is less efficient and
more inefficient than two, the difference
being more distinct with the uniform ex-
citation generators.

• Coupled cluster level: When raising the
excitation level to CCSDT, which we
did for the weighted excitation genera-
tors, the inefficiency increases and the effi-
ciency decreases slightly compared to the
CCSD calculation. This is to be expected
as the Hilbert space to cover increases.
All three weighted excitation generators
are affected.

• Localization: Using orbitals that have not
been localized does not seem to affect the
efficiency of the uniform excitation gener-
ators and heat bath uni. singles. The heat
bath Power–Pitzer (ref.) excitation gen-
erators show a decline in efficiency and
increase in inefficiency. In fact, they seem
to drop to a similar efficiency level as
the uniform excitation generators, heat
bath Power–Pitzer ref. still being slightly
more efficient. The inefficiency means of
the heat bath Power–Pitzer (ref.) excita-
tion generators are lower than the ones
from the uniform excitation generators,
even though the error bars overlap. We
expect localization to primarily to affect
the weighted excitation generators as, in
a double excitation, the weights in the
heat bath uni. singles are calculated as
a sum of Coulomb and — if the spins

CCSD canonical and CCSDT localized calculation re-
spectively. The trimer calculation has been done with 4
MPI processes. The CCSD canonical calculation used
24 OpenMP threads for its MPI process, all the others
12 OpenMP threads per MPI process.

13



n
ot
.

re
n
or

m
.

n
ot
.

re
n
or

m
.

sp
in

re
n
or

m
.

re
n
or

m
.

sp
in

h
ea

t
b
at

h
u
n
i.
si

n
gl

es
h
ea

t
b
at

h
ex

ac
t

si
n
gl

es
h
ea

t
b
at

h
P
.P
.

h
ea

t
b
at

h
P
.P
.

re
f.

10−1

100

101

102

η
(E
−

2
h
s)

2 H2O CCSD

2 H2O CCSD− c.

3 H2O CCSD

2 H2O CCSDT

n
ot
.

re
n
or

m
.

n
ot
.

re
n
or

m
.

sp
in

re
n
or

m
.

re
n
or

m
.

sp
in

h
ea

t
b
at

h
u
n
i.
si

n
gl

es
h
ea

t
b
at

h
ex

ac
t

si
n
gl

es
h
ea

t
b
at

h
P
.P
.

h
ea

t
b
at

h
P
.P
.

re
f.

100

101

a
(E

1
/
2

h
)

2 H2O CCSD

2 H2O CCSD− c.

3 H2O CCSD

2 H2O CCSDT

Figure 3: Efficiency η (top) and inefficiency a (bottom) for chains of
two or three water molecules in a cc-pVDZ basis run with CCSD/CCSDT
using localized/canonical (‘-c.’) MOs. Error bars neglect the covariance
between numerator and denominator errors in the projected energy. The
heat bath exact singles excitation generator was too slow for data to be
taken. The different excitation generators were run under the same condi-
tions with the same time step etc. Only the target population was varied
between the calculations. The starting iteration for heat bath P.P. was
found such that three reblocks could be used in the trimer calculation. The
number of reblocks was raised for heat bath P.P. ref for the CCSDT cal-
culation by taking the result of the previous reblocking iteration for the
projected energy. The shift and the projected energy disagreed by more
than 2 standard errors in the canonical CCSD run with heat bath P.P. ref.
and (not.) renorm. spin and in the CCSDT run with heat bath P.P. ref.
excitation generators.

are parallel — exchange integrals whereas
the heat bath Power–Pitzer (ref.) exci-
tation generators only use exchange inte-
gral weights. Coulomb integrals decay as
the inverse of the distance but exchange
integrals are more affected by the local-
ization. This explains why the heat bath
Power–Pitzer (ref.) excitation generator
efficiencies are more strongly affected by
localization.

The heat bath uniform singles excitation gen-
erator performs best out of the weighted ones
which is expected due to the same low compu-
tational scaling as heat bath Power–Pitzer ref.
which is more favourable than heat bath Power–
Pitzer while using well approximated weights
for double excitations. heat bath Power–Pitzer
ref. also seems to have higher efficiencies than
heat bath Power–Pitzer, likely due to the bet-
ter computational scaling and possibly the more
accurate treatment of single excitations, and
this might yet be improved by a better heat bath
Power–Pitzer ref. implementation which scales
as O(Nex.) rather than O(N) computationally.
Next, we consider shoulder heights with

CCSDT on two water molecules with local-
ized orbitals. Shoulder heights indicate ap-
proximately the minimum number of particles
needed in the simulation. Figure 4 shows shoul-
der plots where the difference in shoulder posi-
tions between the excitation generators is very
clear. The weighted excitation generators again
perform best. Their shoulders are significantly
lower than those of uniform excitation genera-
tors, by a factor of just under 2. Of those stud-
ied, the heat bath Power–Pitzer ref. excitation
generator has the lowest shoulder.
With localized orbitals, the weighted excita-

tion generators all perform better than the uni-
form ones. The heat bath Power–Pitzer ref. ex-
citation generator can scale independently of
system size computationally which puts it at
a clear advantage over the heat bath Power–
Pitzer excitation generator. It also has a re-
duced memory scaling when comparing it to the
heat bath excitation generators which is signifi-
cant at bigger systems.
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Figure 4: Shoulder plots for two localized wa-
ters in a cc-pVDZ basis with CCSDT with
various excitation generators. P.P. stands for
Power–Pitzer, h.b. for heat bath and sp. for
spin. The different excitation generators were
run under similar conditions with the same time
step etc. The weighted excitations generators
started varying the shift after a total popula-
tion of 20 million whereas the uniform ones did
not vary the shift. The vertical lines represent
the “shoulder height”, the position of the max-
imum plus/minus of a standard deviation. To
determine the shoulder position, the mean and
standard error of the mean of the 10 highest
data points were taken.7

4.2 Full Configuration Interac-
tion Quantum Monte Carlo

Next, we turn to FCIQMC. The water chain
with two waters in cc-pVDZ basis with localized
MOs was considered with initiator FCIQMC.
The (in–)efficiencies were determined at one
point in the initiator curve (total population
against energy). All calculations were started
with the same parameters, which included the
population at which the shift started varying,
and so the eventual equilibrated population of
the system is dependent upon the excitation
generator. Blooms did happen. For uniform ex-
citation generators it was over 107 particles, for
the weighted ones 5.6×106. Use of a larger pop-
ulation may lead to a decrease in measured in-
efficiency,69 so the results from the uniform ex-
citation generators should be regarded as lower
bounds for inefficiency.
Figure 5 shows the efficiency and inefficiency

for that system with the particle populations
Ntot. explicitly indicated. The weighted exci-
tation generators perform comparably among
themselves and all outperform the uniform
ones. heat bath Power–Pitzer ref. and heat
bath uniform singles excitation generators both
scale linearly in the number of electrons when
using FCIQMC. This study has been done on
a single point in the initiator curve and we did
not investigate whether the behaviour of the ini-
tiator curve changed which can affect number
of particles needed for convergence. Holmes et
al.20 describe ways to reduce the memory cost
by considering spins (we just store zeroes in-
stead of considering the spin when selecting)
or by not storing all the weight to select b for
example. We have used double precision for
the weights. However, even if our implemen-
tation is not optimal, it is clear that the heat
bath excitation generators hit a memory ceil-
ing with big systems significantly earlier than
the heat bath Power–Pitzer ref. excitation gen-
erators. Also, as mentioned earlier, our heat
bath Power–Pitzer excitation generator imple-
mentation could be improved by making sure b
is only selected from virtual orbitals. However,
even with a more ideal code, the computational
scaling of O(M) remains which becomes pro-
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Figure 5: Efficiency η (top) and inefficiency a
(bottom) for a chain of two water molecules in
cc-pVDZ basis using localized MOs run with
initiator FCIQMC with approximate MC par-
ticle populations indicated. Error bars neglect
the covariance between numerator and denom-
inator errors in the projected energy and are
over-estimates. The heat bath exact singles ex-
citation generator was too slow for data to be
taken. The different excitation generators were
run under the same conditions with the same
time step etc. The spawning arrays of the not.
renorm. excitation generators ran out of mem-
ory so the space to store the spawned walkers
would need to be increased for those results.

hibitive in large systems.
This suggests that heat bath Power–Pitzer

ref. is an efficient excitation generator with a
low shoulder that can be used in CCMC and
FCIQMC as a weighted excitation generator
with low computational and memory cost.

4.3 Practical Advice

As long as the memory allows it, it makes sense
to make use of the heat bath (if no bias is
present) or heat bath uniform singles excitation
generator for FCIQMC as they have the same
computational scaling as the heat bath Power–
Pitzer ref. excitation generator and a better
scaling than the heat bath Power–Pitzer excita-
tion generator. The results in this paper sug-
gest that they are also at least as efficient as the
heat bath Power–Pitzer ref. excitation genera-
tor. For CCMC with an implementation where
the heat bath Power–Pitzer ref. excitation gen-
erator has a scaling of O(Nex.), the heat bath
Power–Pitzer ref. excitation generator using lo-
calized orbitals is suitable.
As the system size becomes more substan-

tial, the heat bath excitation generators will fail
due to memory requirements. In that case, the
heat bath Power–Pitzer ref. excitation genera-
tor should be considered, ideally with localized
orbitals.

5 Conclusion
We have shown that especially when using lo-
calized orbitals the heat bath Power–Pitzer ref.
excitation generator combines the advantages of
heat bath excitation generators, which are rel-
atively fast and use good weights but struggle
with a significant memory cost and a possible
bias, and the excitation generators that approx-
imate heat bath weights by inequalities which
are calculated on-the-fly reducing the memory
scaling but scaling prohibitively computation-
ally in big systems. The heat bath Power–Pitzer
ref. excitation generator has at worst a low
computational order and can be implemented
with computational cost independent of system
size in coupled cluster with a low memory cost.
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A Further Uniform Excita-
tion Generators

In the case of a double excitation, Hamiltonian
matrix elements tend to be bigger if i and j do
not have parallel spins. This is because follow-
ing Slater-Condon rules,65,66 the Hamiltonian
matrix element is reduced to a sum of two terms
of opposite sign in the case of parallel spins
(〈ij|ab〉 − 〈ij|ba〉) and one term if the spins are
not parallel (〈ij|ab〉). It might therefore be ad-
visable to select anti-parallel spin electrons with
a greater probability than parallel ij. Alavi,
Booth and others1910 had the idea of determin-
ing whether spins are antiparallel or parallel
first when selecting i and j. The no. renorm.
spin and renorm. spin excitation generators are
modifications of no. renorm. and renorm. exci-
tation generators, where instead of finding i and
j as a pair from the set of occupied orbitals, it
is first decided whether they should have paral-
lel spins or not. With probability pparallel, ij are
either selected as a pair from the set of occupied
α (probability Nα

N
) or from the set of occupied

10Personal Communication with Ali Alavi and Pablo
López Ríos. This is also implemented in NECI https:
//github.com/ghb24/NECI_STABLE.

β orbitals (probability 1− Nα
N

=
Nβ
N
) where Nα

and Nβ are the number of α and β electrons
respectively. This can lead to forbidden exci-
tations followed by failed spawning attempts if
there is only one electron of one type of spin.
Here, pparallel is set as the fraction of Hijab where
i and j have parallel spins.

B Mapping spinorbitals in
heat bath Power–Pitzer
ref. excitation generator

In HANDE, there is a list of orbitals that are oc-
cupied in the reference, usually approximately
ordered by one electron energies, and there is
an equivalent ordered list with orbitals occupied
in the current determinant |Dm〉. The localized
orbitals here were ordered by approximate or-
bital energies, given by the expectation value of
the Fock operator. Every time |Dm〉 is changed,
two new (energy ordered) lists RD and CD are
created, one (RD) containing all orbitals that
are occupied in the reference but not in |Dm〉
and another list (CD) of the same size with all
orbitals occupied in |Dm〉 but not the reference
determinant. Orbitals with the same positions
in these two lists are made to have the same spin
by swapping orbitals in the list CD if necessary.
If necessary, orbitals are translated by a one-to-
one mapping between these two lists. If i′ is not
only occupied in the reference but in |Dm〉 as
well, i′ = i. If not, the position i′ has in list
RD is translated to the orbital with the same
position in list CD. Figure 6 shows the trans-
lation of i and j in a double excitation in the
two frames of reference pictorially. Note that
this is the only part of the excitation generator
that is not O(1) but O(N), mainly arising due
to the creation of the two lists. The computa-
tional cost is reduced to O(1) if a determinant
is reused. Alternatively, if, as mentioned previ-
ously, each excitor is not represented by a de-
terminant but rather the lists RD or CD from
the beginning the scaling is reduced to O(Nex.)
which is the cost of finding the correct mapping
from one list to the other.
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Figure 6: Selecting i and j with heat bath
Power–Pitzer ref. excitation generator for a
double excitation. First i′ is selected, occupied
in the reference determinant |D0〉 and trans-
lated to i, occupied in the current determinant,
|Dm〉. i′ and i are shown with light blue solid
circles. In this case, i′ = i. Then j′ is found and
translated to j. As j′ is not occupied in |Dm〉, it
is mapped to the next orbital of the same spin
occupied in |Dm〉 but not in |D0〉. j′ and j are
shown with dashed purple circles. Here j′ 6= j.

C Details of double exci-
tations in the heat bath
Power–Pitzer ref. exci-
tation generator

Again, orbitals i′j′ are part of the reference
frame, where the reference determinant is occu-
pied, and ij are the equivalent spinorbitals in
the actual frame, where the actual determinant
we are exciting from is occupied. i′j′ are first
found in the reference frame using heat bath
weights and then they are mapped to the actual
frame as described in appendix B. ab are found
with Power–Pitzer weights in the actual frame.
All weights are pre-computed. This appendix
describes the details of generating the double
excitation. For i′, the pre-computed weights
are

wi′,d =
∑

j′=jocc.ref., 6=i′ ,a6={i′,j′},b6={i′,j′,a}

Hi′j′ab (24)

i′ is selected from the set of occupied orbitals
in the reference with a sum over j′, the set of
occupied orbitals in the reference other than i′.
a and b out of the set of all orbitals (not just
virtual) are summed over, provided they don’t
equal i′, j′ or each other. For j′,

wj′i,d =
∑

a6={i,j′},b 6={i,j′,a}

Hij′ab (25)

is pre-calculated which is of memory scaling or-
der O(NM). For both wi′,d and wj′i,d, a mini-
mum weight is set in case the total weight for
selecting i′ or j′ respectively in the reference
frame is zero but selecting the equivalent i and
j in the simulation frame would be allowed.
To select a and b, Power–Pitzer weights are

pre-calculated. For a,

wa,i,d =
√
| 〈ia|ai〉 | (26)

where wa,i,d is zero if i = a. ia are from the
set of all spinorbitals and a is restricted to the
set of the same spin as i. The memory cost is
simply O(M2). Similarly, for b

wb,j,sym.,d =
√
| 〈jb|bj〉 | (27)

where wb,j,d = 0 if b = j and b is from the
set of all spinorbitals with the same spin as j.
wb,j,d are arranged in such a way that b’s of the
required symmetry later can readily be looked
up. Alias tables for all these weights for single
and double excitations are pre-computed.
In the case of a double excitation, first i′, an

occupied orbital in the reference frame, is se-
lected using wi′,d. i′ → i is mapped to an
occupied orbital i in the simulation frame if
required. Then, j′ is found using the pre-
computed alias table for wj′i,d and map j′ → j
if needed. i and j are ordered so that j has
a higher or equal index in the determinant list
as i. Using i and wa,i,d, a is found using pre-
computed alias tables out of all spinorbitals
with the same spin as i. If a is occupied, the
spawn attempt was unsuccessful. The sym-
metry that b should have is then determined
and using the pre-calculated alias tables for
wb,j,sym.,d which give us a b of the correct sym-
metry (and spin), b is found from the set of all
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spinorbitals with required spin and symmetry.
Again, if b is occupied or equal to a or if there
is not suitable orbital for b, the spawn attempt
was unsuccessful.
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