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Abstract— Aim of this paper is proposing a stochastic model
for vesicle release process, a part of neuro-spike communication.
Hence, we study biological events occurring in this process and
use microphysiological simulations to observe functionality of
these events. Since the most important source of variability
in vesicle release probability is opening of voltage dependent
calcium channels (VDCCs) followed by influx of calcium ions
through these channels, we propose a stochastic model for this
event, while using a deterministic model for other variability
sources. To capture the stochasticity of calcium influx to pre-
synaptic neuron in our model, we study its statistics and find
that it can be modeled by a distribution defined based on
Normal and Logistic distributions.

I. INTRODUCTION

Understanding communication theoretical capabilities of
information transmission among neurons, known as neuro-
spike communication, is a significant step in developing bio-
inspired nano-networking solutions [1]. For this aim, the im-
pact of biological processes included in this communication
on its performance should be recognized. In the literature,
two extremes can be found for modeling these processes, (i)
strongly simplified deterministic ordinary differential equa-
tions, (ii) most detailed biophysiological models called mi-
crophysiological models [2], which attempt to model reality
as accurate as possible. Somewhere in-between, we find
more simple stochastic models including impacts of the most
important elements while ignoring others. Focus of this study
is deriving such a model for vesicle release process.

The influx of calcium ions upon arrival of a spike to
the pre-synaptic terminal is necessary for releasing vesicles
that contain neurotransmitters, i.e., information carriers in
neuro-spike communication [3]. Trial to trial variations in
calcium concentration upon spike arrival affects the vesicle
release probability. These fluctuations arise from (i) opening
of VDCCs, (ii) binding of calcium ions to buffers, calcium
sensors and pumps, (iii) diffusion of calcium ions and buffers
[4]. In this paper, we simulate the microphysiological model
of vesicle release process in 3D using Monte Carlo methods
(MCell version 3 [5], [6]1). Moreover, we use a deterministic
model to achieve the average concentration of calcium ions
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Fig. 1. Kinetic scheme of (a) VDCCs gating, (b) Calbindin buffer, (c)
PMCA pump, and (d) calcium sensor.

inside pre-synaptic terminal. Then, since the fluctuations in
influx of calcium ions through opened VDCCs has a strong
effect on the vesicle release probability [4], we consider
these fluctuations as noise and achieve their statistics by
microphysiological simulations. We observe that using Bi-
nomial distribution for modeling opening of VDCCs, which
is suggested in the literature [7], is insufficient for catching
the stochasticity of calcium influx process. Moreover, we find
that Normal and Logistic distributions can be used to model
the stochasticity of calcium influx process.

The remainder of this paper is organized as follows. In
Section II, the biological background of the vesicle release
process is presented. Using kinetic schemes, a deterministic
model for average changes in calcium concentration is de-
rived in Section III. Then, statistics of calcium influx process
is studied in Section IV, where fluctuations of calcium influx
rate is modeled by a random process whose distribution is
defined based on VDCCs gating and Normal and Logistic
distributions. Finally, the accuracy of the model is evaluated
in Section V and the paper is concluded in Section VI.

II. BIOLOGICAL BACKGROUND

Arrival of a spike to the axonal terminal changes its
membrane potential, which, in turn, affects the opening of
VDCCs. The kinetic scheme of VDCCs gating is given
in Fig. 1(a) [4], where v(t) is the membrane potential
at pre-synaptic terminal, {S0, S1, S2, S3} are closed
states and O is the open state. Voltage-dependent for-
ward and backward rates between states are calculated by

αi
(
v(t)

)
= αi exp

( v(t)

Vi+1

)
and βi

(
v(t)

)
= βi exp

(−v(t)

Vi

)
,



where αi, βi, and Vi for i ∈ {1, 2, 3, 4} are constants re-
lated to the type of VDCCs. When the membrane potential
changes are strong enough, the VDCCs open and allow
the entering of calcium ions to the pre-synaptic terminal.
Amount of spike evoked calcium influx through an open
VDCC can be calculated by

Ca2+
in (t) = 0.5e−1g(55mV − v(t)), (1)

where g and e are the conductance of VDCCs and the
elementary charge, respectively [8]. After entering the pre-
synaptic terminal, the calcium ions diffuse inside the termi-
nal, where they may bind to (i) buffers such as Calbindin,
which can bind up to 4 calcium ions as shown in Fig. 1(b),
(ii) the PMCA pumps, whose kinetic scheme is shown in
Fig. 1(c), and (iii) the calcium sensor that can bind up to
5 calcium ions as shown in Fig. 1(d) [9]. Note that when a
buffer is in state Bij for 0 ≤ i, j ≤ 2, i + j calcium ions
are bound to it and when calcium sensor is in state XCai it
has i calcium ions bound to it. Moreover, when the sensor
enters the state V r, a vesicle releases.

III. DETERMINISTIC MODELING OF VESICLE RELEASE

We model a segment of pre-synaptic terminal in Hip-
pocampal pyramidal neurons by a rectangular box with
0.5 µm width and 4 µm length [9]. Moreover, we discretize
the time and pre-synaptic domain by steps defined as ∆t and
∆~x, where ∆~x = [∆x1, ∆x2, ∆x3]′. Then, we calculate the
concentration of Calbindin buffers, PMCA pumps, calcium
sensors, and calcium ions in each voxel of this domain as
~B(~x, t), ~P (~x, t), ~Cs(~x, t), and Ca(~x, t), respectively.

a) Calbindin Buffers: The concentration of Calbindin
buffers changes by, (i) their binding to calcium ions and (ii)
diffusion of them inside pre-synaptic terminal. Impacts of re-
action between Calbindin and calcium ions on concentration

of Calbindin buffers is derived by

∂ ~B(~x, t)

∂t
= BFBFBFCa(~x, t) ~B(~x, t) +BBBBBB ~B(~x, t), (2)

where ~B(~x, t) is given by (3), Bij(~x, t) is the concentration
of Calbindin buffer in state Bij at place ~x and time t, and
matrices BFBFBF and BBBBBB , given by (4), (5), contain forward and
backward rate of reactions shown in Fig. 1(b), respectively.

Diffusion of Calbindin buffers inside the pre-synaptic
domain is defined based on the diffusion equation as

∂ ~B(~x, t)

∂t
= Dcb

3∑
i=1

∂2 ~B(~x, t)

∂x2
i

; ~x ∈ Ω, t > 0, (6)

where Dcb is diffusion coefficient of Calbindin buffers
and Ω corresponds to inside of pre-synaptic terminal, i.e.,
−xi,max ≤ xi ≤ xi,max for i ∈ {1, 2, 3} with x1,max =
2 µm
∆x1

, x2,max = 0.25 µm
∆x2

, and x3,max = 0.25 µm
∆x3

. Calbindin
buffers cannot pass boundaries of pre-synaptic terminal,
hence we use the Neumann boundary conditions as follows.

∂ ~B(~x, t)

∂xi
= 0; xi = ±xi,max, ∀xj , j 6= i, j ∈ {1, 2, 3}.

Using finite difference method, (6) is approximated by

~B(~x, t+ ∆t)− ~B(~x, t)

∆t
=

Dcb

3∑
i=1

~B(~x+ ei, t)− 2 ~B(~x, t) + ~B(~x− ei, t)
∆x2

i

,

(7)

where ei is the 3 × 1 vector with one at ith entry and
zero at other entries. Using backward difference at boundary
conditions with xi = −xi,max and forward difference at
boundary conditions with xi = xi,max, we reach

~B(~x− ei, t) = ~B(~x, t); xi = −xi,max
~B(~x+ ei, t) = ~B(~x, t); xi = xi,max.

(8)

~B(~x, t) = [B0
0(~x, t), B0

1(~x, t), B0
2(~x, t), B1

0(~x, t), B1
1(~x, t), B1

2(~x, t), B2
0(~x, t), B2

1(~x, t), B2
2(~x, t)]′ (3)

BFBFBF = −



2km+ + 2kh+ 0 0 0 0 0 0 0 0
−2km+ km+ + 2kh+ 0 0 0 0 0 0 0

0 −km+ 2kh+ 0 0 0 0 0 0
−2kh+ 0 0 2km+ + kh+ 0 0 0 0 0

0 −2kh+ 0 −2km+ km+ + kh+ 0 0 0 0
0 0 −2kh+ 0 −km+ kh+ 0 0 0
0 0 0 −kh+ 0 0 2km+ 0 0
0 0 0 0 −kh+ 0 −2km+ km+ 0
0 0 0 0 0 −kh+ 0 −km+ 0


(4)

BBBBBB = −



0 −km− 0 −kh− 0 0 0 0 0
0 km− −2km− 0 −kh− 0 0 0 0
0 0 2km− 0 0 −kh− 0 0 0
0 0 0 kh− −km− 0 −2kh− 0 0
0 0 0 0 km− + kh− −2km− 0 −2kh− 0
0 0 0 0 0 kh− + 2km− 0 0 −2kh−
0 0 0 0 0 0 2kh− −km− 0
0 0 0 0 0 0 0 2kh− + km− −2km−
0 0 0 0 0 0 0 0 2kh− + 2km−


(5)



Based on (2), (6), and (7) , the concentration of Calbindin
buffers at t+ ∆t is achieved by

~B(~x, t+ ∆t) = ~B(~x, t)+

∆t×Dcb

3∑
i=1

~B(~x+ ei, t)− 2 ~B(~x, t) + ~B(~x− ei, t)
∆x2

i

+

∆t×
(
BFBFBFCa(~x, t) ~B(~x, t) +BBBBBB ~B(~x, t)

)
.

b) PMCA Pumps and Calcium Sensors: The impact
of binding of calcium ions to PMCA pumps and calcium
sensors on their concentration is achieved same as (2). Then,
using finite difference method, the concentration of PMCA
pumps and calcium sensors at time t+ ∆t is derived as

~P (~x, t+ ∆t) = ~P (~x, t)+

∆t×
(
PFPFPFCa(~x, t)~P (~x, t) +PBPBPB ~P (~x, t)

)
,

~Cs(~x, t+ ∆t) = ~Cs(~x, t)+

∆t×
(
CsFCsFCsFCa(~x, t) ~Cs(~x, t) +CsBCsBCsB ~Cs(~x, t)

)
,

where PFPFPF and CsFCsFCsF contain the forward rate of reactions of
calcium ions with PMCA pumps and sensors, respectively,
and PBPBPB and CsBCsBCsB contain backward rate of these reactions.
These four matrices are achieved based on the kinetic
schemes given by Fig. 1(c) and Fig. 1(d) with same manner
used to find BFBFBF and BBBBBB .

c) Calcium Ions: Calcium ions enter the pre-synaptic
terminal from open VDCCs. A deterministic model for VD-
CCs opening is derived by considering their kinetic scheme
as Markov model. Then, state equations are achieved by

dS0(t)

dt
= −α0

(
v(t)

)
S0(t) + β1

(
v(t)

)
S1(t) (9)

dSi(t)

dt
= αi−1

(
v(t)

)
Si−1(t)− βi

(
v(t)

)
Si(t)−

αi

(
v(t)

)
Sn(t) + βi+1

(
v(t)

)
Si+1(t) (10)

O(t)

dt
= α3

(
v(t)

)
S3(t)− β4

(
v(t)

)
O(t). (11)

where i ∈ {1, 2, 3}. By solving (9)-(11) for spike shape, we
can derive average probability of having an open VDCC of a
given type, O(t). Then, the calcium influx at each time step
from VDCC located at ~xV DCC is found by using (1) as

HV DCC(~xV DCC , t+ ∆t) = nch O(t) Ca2+
in (t)∆t.

Binding to buffers, pumps, sensors and diffusion of cal-
cium ions are other factors that affect the concentration of
these ions. Hence, the concentration of calcium ions at time

t+ ∆t is derived by (12), where BF,iiBF,iiBF,ii, BB,iiBB,iiBB,ii, PF,iiPF,iiPF,ii, PB,iiPB,iiPB,ii,
CsF,iiCsF,iiCsF,ii, and CsB,iiCsB,iiCsB,ii are the diagonal entries of these matrices
and ~Bi(~x, t), ~Pi(~x, t), and ~Csi(~x, t) are the ith entry of
these vectors. Note that same as (8), we use the Neumann
boundary conditions for calcium concentration at boundaries
since these ions cannot pass boundaries.

d) Vesicle Release: When the Calcium sensor is in state
S∗5 with rate ρ releases the vesicle that is attached to it.
Hence, the average concentration of released vesicles at time
t+∆t is derived by V r(~x, t+∆t) = ρS∗5 (~x, t)∆t+V r(~x, t).

IV. STOCHASTICITY IN RELEASE PROCESS

In this section, we propose a stochastic model for vesi-
cle release based on the deterministic model introduced in
Section III and results of the microphysiological model.

A. Microphysiological model of Vesicle Release

We place VDCCs in a cluster at the center of one face of
the box used to model a segment of pre-synaptic terminal.
To achieve the rates of the uni-molecular reactions among
states of VDCCs, we use a piece-wise linear approximation
of spike shape as given in Fig. 2. Initially, PMCA pumps
are uniformly distributed on boundaries, Calbindin buffers
and 100 nM calcium ions are uniformly distributed inside
the pre-synapse. Using parameters tabulated in Table I, we
simulate following events in MCell, (i) VDCCs opening, (ii)
diffusion of calcium ions and calcium buffers inside pre-
synaptic terminal, (iii) binding of calcium ions to calcium
buffers, (iv) pumping of calcium ions to cell exterior by
calcium pumps, and (v) triggering of vesicle release by
binding of calcium ions to the calcium sensor.

B. Stochastic Model of Vesicle Release

The variation of calcium influx through open VDCCs is
the most important source of variability in vesicle release
process. Moreover, impact of other variability sources on
vesicle release probability are negligible [4]. Hence, we
propose a stochastic model for calcium influx rate upon
arrival of a spike and use the deterministic models described
in Section III for other processes.

The opening of each VDCC is suggested to be modeled
by Bernoulli distribution with mean O(t) [7]. However, by
comparing the standard deviation (STD) of the calcium influx
rate achieved by using this distribution and microphysiolog-
ical simulation shown in Fig. 3, we conclude that Binomial
distribution does not model the stochasticity of calcium
influx process accurately.

Ca(~x, t + ∆t) =Ca(~x, t) + HV DCC(~x, t + ∆t)

∆t×

[
9∑

i=1

(
BF,iiBF,iiBF,iiCa(~x, t) ~Bi(~x, t) +BB,iiBB,iiBB,ii

~Bi(~x, t)
)

+

3∑
i=1

(
PF,iiPF,iiPF,iiCa(~x, t)~Pi(~x, t) +PB,iiPB,iiPB,ii, ~Pi(~x, t)

)
+

6∑
i=1

(
CsF,iiCsF,iiCsF,iiCa(~x, t) ~Csi(~x, t) +CsB,iiCsB,iiCsB,ii

~Csi(~x, t)
)

+ DCa

3∑
i=1

Ca(~x + ei, t) − 2Ca(~x, t) + Ca(~x− ei, t)

∆x2
i

] (12)



TABLE I
PARAMETERS FOR VESICLE RELEASE MODEL

Parameter Symbol Value Ref.

w, tpeak and tunder , 4, 0.5 ms and w/2
Spike shape parameters

Vrest,Vpeak and Vunder −65, 40 and −80 mV
[9], [10]

The elementary charge e 1.602× 10−19 C

{α0, α1, α2, α3} {4.04, 6.7, 4.39, 17.33}ms−1

{β1, β2, β3, β4} {2.88, 6.39, 8.16, 1.84}ms−1 [4]VDCCs gating parameters
{V1, V2, V3, V4} {49.14, 42.08, 55.31, 26.55} mV

Conductance and Number of VDCCs g and nch 2.7 pS and 22 [8], [4]
Calcium and Calbindin diffusion constant DCa and Dcb 220 µm2/s and 28 µm2/s [9]
Resting intracellular calcium and Calbindin concentration 100 nM and 45 µM [9]

kh+, kh− 0.55× 107 M−1s−1, 2.6 s−1

Calbindin kinetic parameters
km+, km− 4.35× 107 M−1s−1, 35.8 s−1 [9]

PMCA surface density 180 µm−2 [9]
kpm1, kpm2 1.5× 107 M−1s−1, 20 s−1

PMCA kinetic parameters
kpm3, kpm4, kpmleak 20 s−1, 100 s−1, 12.5 s−1 [9]

α, β 0.3µM−1ms−1, 3ms−1

Calcium sensor kinetic parameters
γ, δ, ρ 30ms−1, 8ms−1, 40ms−1 [4]
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Fig. 2. Approximation of spike shape.
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Since we can achieve the average rate of calcium influx
from VDCCs based on the deterministic model explained
in Section III, we consider variations of this rate as channel
noise and derive its statistics using results of microphysiolog-
ical simulation. To find candidate distributions for modeling
this noise, we use Cullen and Frey graph, in which the ratio
of kurtosis to square of skewness of data is compared to
this ratio for various standard distributions [11]. Based on
Fig. 4 and the fact that our noise can get negative values, we
examine the goodness of fitting the channel noise by Normal
and Logistic distributions. For this aim, we use the quantile-
quantile (Q-Q) and probability-probability (P-P) plots as
shown in Fig. 5 and conclude that Normal distribution can be
used to model the probability density function (pdf) for nega-
tive channel noises while the Logistic distribution fits to pdf
for positive noises. Hence, we define f

(
x(t)|σn(t), sp(t)

)
as pdf for channel noise with parameters σn(t) and sp(t) as

f
(
x(t)|σn(t), sp(t)

)
=

fN
(
x(t)|µ(t), σn(t)

)
; x ≤ µ

fL

(
x(t)|µ(t), sp(t)

)
; x > µ

,

where σn(t) is the STD of negative noises and sp(t) is
the scale parameter of the Logistic distribution, which can
be found by

√
3σp(t)
π based on STD of positive noises, i.e.,

σp(t). fN
(
x(t)|µ(t), σn(t)

)
and fL

(
x(t)|µ(t), sp(t)

)
are

pdf of Normal and Logistic distributions whose mean and
STD are given by µ(t), σn(t) and µ(t), σp(t), respectively.
We model STD of negative and positive noises for each
VDCC type as σn(t) = an

√
O(t) Ca2+

in (t) and σp(t) =

ap

√
O(t) Ca2+

in (t), where nchO(t) Ca2+
in (t) is the average

rate of the calcium influx. Hence, both average of calcium
influx rate and parameters of channel noise are defined based
on the kinetic scheme of VDCCs. an = 250 and ap = 350
are derived based on data achieved by microphysiological
simulation with parameters given in Table I. Then, we derive
µ(t) such that the mean of our proposed distribution becomes
0, hence,

µ(t) =

∫ 0

−∞
yfN (y|0, σn(t))dy +

∫ ∞
0

yfL(y|0, sp(t))dy.

C. Experimental evaluation

We utilize the Kullback Leibler distance, i.e., DKL(P,Q),
which measures the distance between two probability distri-
butions given by P (x) and Q(x) to evaluate the accuracy of
calcium influx statistics achieved by our model.

DKL(P,Q) =

∫
P (x)log2(

P (x)

Q(x)
) +Q(x)log2(

Q(x)

P (x)
)dx



(a) (b) (c) (d)

Fig. 5. (a) and (b) Q-Q plots, (c) and (d) P-P plots for fitting channel noise with Normal and Logistic distributions, respectively.
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Fig. 6. Experimental results, (a) ratio of Kullback Leibler distances for the proposed distribution and the existing one in the literature, (b) and (c) normalized
difference between the statistics of total calcium ions entered the pre-synaptic terminal achieved by microphysiological simulations and stochastic models.

Using this metric, we evaluate changes of
DKL(PA, PLN )

DKL(PA, PB)
after spike arrival to pre-synaptic terminal, where PA is the
actual distribution of channel noise, PLN and PB are the dis-
tributions derived by our proposed model and using Binomial
distribution for VDCCs opening, respectively. This ratio is
depicted in Fig. 6(a) for parameters given in Table I, which
shows that our proposed stochastic model outperforms the
existing model in the literature. Moreover, we use different
spike shapes, i.e, spikes with various vpeak and w [12], and
examine the accuracy of our model for some of statistics
of total calcium ions entered the pre-synaptic terminal. As
shown in Fig. 6(b), changes in the spike shape does not
significantly affect the accuracy of first order statistics of
the total calcium ions entered to the neuron achieved by our
stochastic model, while the difference between the STD of
the total calcium ions achieved by our model and microphys-
iological simulation is sensitive to the spike shape variations.
However, based on Fig. 6, the maximum difference between
these statistics is less than %26 for our proposed model,
which shows a significant improvement compared to the
results achieved by existing model in the literature.

V. CONCLUSION

In this paper, we propose a stochastic model for vesicle
release process, in which trial to trial variability in calcium
influx is considered as channel noise. By studying statistics
of this noise based on the data derived by microphysiological
simulations, we investigate that the negative noises can be
fitted by a Normal distribution, while fitting a Logistic
distribution to the possitive ones is more appropriate. Hence,
we define a distribution based on Normal and Logistic

distributions and derive the parameters of this distribution
based on the kinetic of VDCCs. By comparing the statistics
of channel noises generated by our stochastic model and
microphysiological simulations, we conclude that proposed
distribution captures stochasticity of channel noise more
accurately compared to the existing model in the literature.
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