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S U M M A RY

Seasonal influenza viruses cause substantial worldwide mortality and Predicting the
Antigenic Evolution
of Influenza Viruses
with Application to
Vaccination Strategy

David J. Pattinson

morbidity every year. The evolution of these viruses comprise unique
systems for studying natural evolutionary processes in real-time. Host
immune systems recognise pathogens based on binding affinities be-
tween host antibodies and pathogen antigens. Pathogens with similar
antibody binding are said to be antigenically similar. Seasonal influenza
viruses evolve antigenically over a timescale observable by humans.
Vertebrate immune responses also adapt rapidly, such that a single
infection usually leaves a host protected for life against antigenically
similar strains. In humans this imposes natural selection for antigenic
novelty in wild virus populations.

Influenza vaccines contain virus antigen which elicit the production
of antibodies that protect against antigenically similar strains. After
major antigenic evolution in wild viruses, vaccines must be updated
to remain effective. I use a simple model to show that even in best
case scenarios current influenza vaccination strategies cannot com-
pletely avoid antigenic mismatch. I then present the first study that
quantifies the link between degree of antigenic mismatch and vaccine
effectiveness.

Knowledge of the molecular variation responsible for major anti-
genic change in natural influenza viruses has improved greatly in
the last decade. I review this work, and present the application of a
computational approach from the field of quantitative genetics to this
problem. Subsequently, I show that patterns in biophysical features
of substitutions responsible for major antigenic change are far from
random, begging the question: how predictable are these amino acid
substitutions? I answer this question by developing a computational
framework to rank candidate substitutions by their biophysical sim-
ilarity to substitutions responsible for major antigenic change and
show that predictions can be made that are substantially better than
chance selections.

Finally, I discuss the application of these rankings to advanced in-
fluenza vaccination strategies based on the principle of immunity man-
agement. I expand on how this work should be the basis for further
investigation into the mechanisms that govern different components
of influenza virus fitness and ultimately the antigenic evolution of
seasonal influenza viruses.
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1
I N T R O D U C T I O N

The evolutionary biology of human seasonal influenza viruses is a
rich and fascinating field, in which basic research can have major
translational impact on global public health. Although notorious for
their ability to evolve, recent discoveries have demonstrated that the
antigenic evolution of seasonal influenza viruses is constrained in
several ways. In this thesis I demonstrate how these constraints may
be exploited in order to predict future antigenic variants of seasonal
influenza viruses, and discuss novel vaccination strategies which may
ameliorate the issue of antigenically mismatched influenza vaccines.

chapter outline I first introduce the basic ecology of influenza
viruses; how spillover events cause pandemics in secondary hosts
producing new subtypes that circulate as seasonal viruses. I explain
steps in influenza virus replication and how they are mediated by
viral proteins. This forms important knowledge for understanding
processes in the virus life cycle that can be blocked by host antibodies.
I describe the impact of seasonal and pandemic influenza viruses
on global human health and explain the role of antigenic variability
in this. Then, I detail how antigenic phenotypes are measured and
analysed using antigenic cartography. I introduce influenza vaccine
technology and outline how a better understanding of influenza virus
evolution would enable improved vaccination strategies.

Finally, I outline how the research in this thesis aims to 1) under-
stand more rigorously the relationship between antigenic mismatch
and Vaccine Effectiveness (VE) and 2) test how predictable the antigenic
evolution of seasonal influenza viruses are and what the implications
are for vaccination strategy.

1.1 influenza virus biology

Influenza viruses are part of the Orthomyxovirus family (the Or-
thomyxoviridae) which are characterised by a negative sense, single
stranded and segmented Ribonucleic Acid (RNA) genome. Negative
sense means that the genome is complementary to that of Messenger
RNA (mRNA), so that upon entry into the nucleus, Viral RNA (vRNA)
is transcribed directly into mRNA, from which viral proteins are trans-
lated. There are four types of influenza viruses: A, B, C and D. Types
A and B both have eight genome segments and cause the majority
of disease burden in humans (Krammer et al. 2018). Types C and D

1



2 introduction

have seven genome segments and do not cause substantial disease in
humans.

Within type A there are numerous subtypes that are categorised by
the antigenic properties of the two surface glycoproteins: Haemagglutinin
(HA) and Neuraminidase (NA). Subtypes are defined by their lack of
cross reactivity to one another. For example, if a naive animal was
infected with an A(H3N2) virus, its antisera would show very low or
non-detectable reactivity to a virus from any other subtype.

1.1.1 Nomenclature

Subtype names concatenate the type of HA and NA, e.g., “H12N5”.
Names for specific virus strains were standardised in 1980 (World
Health Organization 1980). For example “A/turkey/Ontario/7732/66

(H5N9)” refers to a type A, subtype H5N9, virus isolated from a
turkey in Ontario, Canada in 1966. The generic ID for the virus is
7732. Human isolates omit the host field, e.g., “A/Hong Kong/1/68

(H3N2)”.

1.1.2 Primary reservoirs

The primary reservoir for influenza A viruses are aquatic birds in
which many subtypes circulate continuously and cause little or no
disease (Webster et al. 1992). Birds in the order Anseriformes (espe-
cially ducks, geese and swans) and Charadriiformes (especially gulls,
terns and waders) are the main hosts (Fouchier and Guan 2013). To
date, 16 different HA subtypes (H1-H16) and nine different NA sub-
types (N1-N9) have been isolated from birds (Donatelli et al. 2016).
The segmented genome facilitates gene reassortment whereby a host
infected simultaneously with two strains can produce progeny virus
that inherit segments from both infecting strains. This has given rise

Primary (black) and
secondary (grey)

reservoirs for
influenza A viruses.

to the plethora of different combinations of HAs and NAs isolated from
wild birds (Fouchier and Guan 2013).

Recently two novel subtypes were detected not in aquatic birds, but
in new world bats (Tong et al. 2012; Tong et al. 2013). These bat viruses
show deep phylogenetic divergence between each other and to other
influenza A virus subtypes, suggesting that bats may also harbour
additional subtypes (Tong et al. 2013).

1.1.3 Secondary reservoirs

Influenza viruses also infect other mammals including horses, whales,
seals, cats, dogs, pigs, poultry and humans. All subtypes found in
these secondary reservoirs are also found in aquatic birds. Viruses
transmit between different hosts via cross-species transmission events.
For example, phylogenetic analysis suggests that the A(H1N1) virus
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that caused the 1918 influenza pandemic in humans originated from
an avian source, and that after the pandemic it crossed from humans
into swine (Worobey et al. 2014). Similar analyses have shown that the
2009 A(H1N1) influenza pandemic virus was transmitted from pigs to
humans (Smith et al. 2009). Reassortment of the segmented genome
often accompanies host switch events and the emergence of new
strains. For example, a virus that is adapted to replicate efficiently in a
mammalian host may acquire novel surface antigens from a different
subtype, producing an antigenically novel, mammalian adapted strain.
The emergence of the 1957 A(H2N2), 1968 A(H3N2) and 2009 A(H1N1)
pandemic strains were associated with genetic reassortment events
prior to their widespread circulation in humans (Lindstrom et al. 2004;
Smith et al. 2009).

1.1.4 Large scale evolutionary dynamics

Influenza pandemics occur when a host shift event introduces an anti-
genically novel strain into a host reservoir. One reason that influenza
pandemics can be so virulent is that the new host reservoir has very
low or no standing immunity to the pandemic strain. Therefore, once
infected the virus is able to replicate efficiently within a host without
the host adaptive immune response interfering. On subsequent expo-
sure to a similar strain, a host is able to mount an effective immune
response and the infection is either unsuccessful or attenuated.

Components of a pathogen recognised by the immune system are
called antigens, therefore ’similar’ here specifically refers to antigenic
similarity. Once a pandemic strain has infected most naive hosts in a
population it can no longer replicate and spread as effectively. There-
fore, host immune systems impose a natural selection for antigenic
variation in the virus population. If antigenic variants evolve, hosts
maintain a degree of cross protection from the prior exposure to
the pandemic strain. Epidemics of seasonal influenza ensue whereby
a particular antigenic variant circulates, immunity grows to it, and
eventually subtly different antigenic variant emerges.

These dynamics can be summarised as reservoirs of subtypes in
aquatic birds which spillover into other hosts causing pandemics; after
the initial spread of the pandemic virus, seasonal dynamics begin
whereby host immunity develops, selecting for continual antigenic
evolution.

1.1.5 Virus structure

Main sources on
influenza virus
structure and
replication were
Fields Virology
(Fields et al. 2013)
and the Textbook of
Influenza (Webster
et al. 2013).

Influenza virus particles can be spherical with a diameter of approxi-
mately 120 nm, or filamentous, with a length of several micrometres
(Chu et al. 1949; Choppin et al. 1960). Particles are contained by a
lipid bilayer taken from the host cell during the budding process
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(Figure 1.1). Embedded in the viral membrane are the HA and NA

glycoproteins which coat the majority of the outside of the particle in
a ratio of approximately three-to-one.

Figure 1.1: Schematic influenza virus particle. The virion is contained by
a lipid bilayer taken from the parent cell during budding. The
Haemagglutinin (HA) and Neuraminidase (NA) spike proteins are
embedded within the viral membrane and project away from
the virus. Matrix protein 2 (M2) forms an ion channel across the
membrane, allowing external pH changes to propagate inside the
virus. Matrix protein 1 (M1) forms a structural layer directly within
the virus membrane. The Nuclear Export Protein (NEP)/Non-
structural protein 2 (NS2) complex is associated with the internal
face of the membrane and the M1 layer. The core of the virion
contains eight Ribonucleoproteins (RNPs) that are each composed
of single RNA genome segments coated with Nucleoprotein (NP)
and bound at either end by the Polymerase Acid (PA), Polymerase
Basic 1 (PB1), Polymerase Basic 2 (PB2) polymerase complex.

HA binds to sialic acids expressed on the surface of host cells (Wiley
et al. 1981), and is responsible for fusing the viral and endosomal
membranes during replication (Skehel and Wiley 2000). Nascent HA

is a homotrimer; each monomer is expressed as a single polypeptide
(HA0) which after viral budding is cleaved by host proteases into HA1

and HA2. HA1 comprises the membrane-distal globular head domain
containing the Receptor Binding Site (RBS). Structurally, HA1 is com-
posed of several β-sheets. HA2 comprises the stem and transmembraneβ-sheets are common

secondary structure
motifs found in
proteins. They

consist of parallel
peptide chains held
together by regular

sequences of
hydrogen bonds

between backbone
NH and CO groups.

domains and also houses the fusion peptide and fusion machinery.
Structurally, it is composed of two main α-helices linked by the B-loop.
The B-loop has a strong propensity for an α helix conformation itself,
which acts as a molecular spring in the fusion mechanism.

NA has the complementary role of cleaving sialic acid moieties (Air
and Laver 1989). Recently the clear division of labour between HA and
NA has been blurred by the discovery of A(H3N2) strains in which
the NA possesses haemagglutination activity (Lin et al. 2010; Mögling
et al. 2017). The M2 protein channel is also embedded in the viral
membrane and acts as a hydrogen channel. M1 coats the inside of the
viral membrane; the NEP/NS2 complex is associated with the inside
of the viral membrane and M1. The eight vRNA segments are coated
by NP which has a non-specific RNA binding groove and a net positive
charge which facilitates binding to RNA, which has a negative charge.
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The ends of the vRNA are associated with the PA/PB1/PB2 polymerase
complex which pulls the vRNA into a distinctive loop. A single vRNA

sheathed in NP and bound to the polymerase complex is referred to as
an RNP.

1.1.6 Replication

Virus particles attach to host cells via interactions between HA and
sialic acids expressed on the cell surface (Figure 1.2). Binding interac-
tions between a single HA and sialic acids are relatively weak (Sauter
et al. 1989; Sauter et al. 1992). Binding events between many HAs on
a single virion with multiple sialic acids help initiate the engulfing
process. Four different modes of entry have been identified for in-
fluenza viruses: via clathrin-coated pits, caveolae, macropinocytosis
and non-clathrin, non-caveolae pathways (Fields et al. 2013). Indepen-
dent of the specific mode of entry, the virus particle ends up within
an endosome in the cell cytosol.

The endosome has a lower pH than the inside of the virus, so
protons begin to cross the viral membrane through the M2 proton
channel. The lower pH within the virus particle induces a conforma-
tional change in HA2, whereby two α helices that are folded back on
each other and linked by the B-loop, form a single long α helix (Skehel
and Wiley 2000; Colman and Lawrence 2003). Specifically, residue 106

of HA2, and surrounding residues in an inter-subunit cavity, become
protonated which unclamps the B-loop allowing it to adopt its α heli-
cal confirmation (Xu and Wilson 2011). This conformational change
moves the fusion peptide, which contains predominantly hydrophobic
residues, outside of its pocket and into proximity with the endosomal
membrane. The fusion peptide embeds in the endosomal membrane
which facilitates the fusing of the viral and endosomal membranes.
Eventually a pore opens and the RNPs are released into the cytosol.

NP contains nuclear localisation signals which hijack cellular ma-
chinery into trafficking RNPs to the nucleus where they are actively
imported. Inside the nucleus the polymerase complex copies the nega-
tive sense vRNA into positive sense mRNA and Copy RNA (cRNA). vRNA

is packaged in viral genomes and contains coding regions as well as
3‘ and 5‘ untranslated regions. cRNA is a complementary copy of the
entire vRNA which enables amplification of more vRNA. mRNA does not
contain the untranslated regions, it is 5‘ capped and polyadenylated
and gets exported from the nucleus and acts as a template from which
host ribosomes translate viral proteins. Virus polymerases require host
cellular RNA polymerase II to initiate RNA replication.

Once translated, viral membrane proteins (HA, NA and M2) get
incorporated into the cellular membrane. NEP, Non-structural protein
1 (NS1) and M1 also begin to accumulate in dense spots on the inside
of the cellular membrane, and small pits begin to form. Untranslated



6 introduction

Figure 1.2: Influenza virus replication. Virions attach via interactions between
HA and sialic acids expressed on the surface of host cells. Endocy-
tosis causes the virion to become fully encapsulated within the
host cell. Lower pH within the endosome causes a conformational
change within HA which forces the viral and endosomal mem-
branes to fuse and releases RNPs into the cytosol. RNPs are actively
transported to, and imported into, the nucleus, where positive
sense cRNA and mRNA are transcribed. Additional copies of
vRNA are generated from the cRNA and exported to the cytosol.
Viral mRNA is also exported to the cytosol, from which viral
proteins are translated. Viral membrane proteins are incorporated
into the host membrane. Denser regions of virus proteins in the
membrane form pits, which eventually bud into free virions. Host
proteases cleave HA0 to produce mature HA1 and HA2 which
activates the HA fusion sensitivity to low pH.

regions of vRNA contain packaging signals which identify segments
and allow complete sets of segments to be incorporated into budding
virions (White et al. 2019). Host proteases in the extracellular space
cleave the HA0 precursor into HA1 and HA2 which activates the pH-
sensitive fusion mechanism. This prevents premature release of the
fusion peptide before virions are fully budded. Sialic acid-destroying
activity of the NA cleaves external sialic acids, enabling efficient release
of virus particles.

1.2 human influenza viruses

In humans, influenza viruses cause seasonal epidemics and occasional
global pandemics. Influenza cases are variable, but symptoms can
include fever, cough, sore throat, muscle ache, runny nose, fatigue,
headaches, and occasionally vomiting and diarrhoea. Collectively these
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symptoms are referred to as Influenza-Like Illness (ILI). The severity
of cases range from being asymptomatic to fatal. Asymptomatic in-
fections can be inferred by detecting new antibodies or by detecting
vRNA in samples. The virus is spread by direct contact, indirect contact
via contaminated surfaces, and airborne transmission via aerosols
or larger respiratory droplets (Schrauwen et al. 2014; Neumann and
Kawaoka 2015).

Only influenza types A, B and C circulate in humans (Krammer
et al. 2018). The majority of the disease burden in humans is caused
by types A and B, although occasionally type C causes ILI in children
(Matsuzaki et al. 2006). Four seasonal subtypes currently circulate
in the human population: A(H3N2), introduced by the 1968 pan-
demic; A(H1N1), introduced by the 2009 pandemic and two lineages
of influenza B viruses. Human influenza B viruses split into two
phylogenetically and antigenically distinct lineages in the late 1980s
which are referred to as the B(Victoria) and B(Yamagata) lineages
(Rota et al. 1992; Kanegae et al. 1990; McCullers et al. 2004). Unlike
influenza A viruses, which infect many hosts, influenza B viruses are
primarily found in humans, where they exist at lower prevalence, and
tend to cause less severe disease than human type A viruses (Webster
et al. 1992).

1.2.1 Impact of influenza

The devastating impact of past influenza pandemics on global public
health are well-known. The last four influenza A pandemics killed on
average 0.70 % of the global population (Table 1.1). These pandemics
occurred over the course of a century, or one every 25 years, meaning
that this value corresponds to approximately 0.70/25 = 0.028% of the This calculation

should be interpreted
as a crude estimate.
It uses only four
observations which
range in value across
three orders of
magnitude
(Table 1.1).

global population per year. In terms of attack rates, it is estimated
that over half of school children in Hong Kong were infected during
the first wave of the 2009 A(H1N1) pandemic (Wu et al. 2010) and
that 28 % of the population of the U.S.A. was infected during the 1918

A(H1N1) pandemic (Frost 1920).
The global impact of seasonal influenza is less well appreciated.

The World Health Organisation (WHO) estimates that 5 % to 10 %
of adults and 20 % to 30 % of children are infected globally each
year (World Health Organisation 2014). Recently it was estimated
that between 1999 and 2015, seasonal influenza killed 290,000-650,000

people worldwide each year (Iuliano et al. 2018) which corresponds
to 0.004 % to 0.0088 % of the global population. The upper bound
of this range is only 3.2 times smaller than the global yearly death
toll of pandemic influenza, estimated in the previous paragraph. The
impacts of seasonal influenza are felt disproportionately in countries
with less well-developed health systems. An estimated 99 % of deaths
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Pandemic
Population
(billions)

Mortality
(millions)

Mortality
(%)

1918 A/H1N1 1.8 50 2.7

1957 A/H2N2 2.9 1.1 0.038

1968 A/H3N2 3.6 1.0 0.028

2009 A/H1N1 6.9 0.36 0.0053

Table 1.1: Global mortality of influenza A pandemics. Mortality estimates are
expressed as counts and as a percentage of the world population
when the pandemic occurred. Mortality estimates were obtained
from Viboud et al. (2005), Taubenberger and Morens (2006), Da-
wood et al. (2012), and Viboud et al. (2016). World population data
were obtained from Roser et al. (2019). All values are shown to two
significant figures.

of children under five years of age caused by seasonal influenza occur
in developing countries (Nair et al. 2011).

Summary statistics for pandemics are highly skewed by the 1918

pandemic. Most deaths during the 1918 pandemic occurred in the
second of three pandemic waves late in 1918 which left a dramatic
mark on the trend of increasing life expectancy in the U.K. at the
time (Figure 1.3). If the 1918 pandemic had the same mortality as
the average of the other three pandemics, then the total impact of
seasonal influenza on global mortality would be approximately 6.9
times greater than the total impact of pandemic influenza. These
statistics clearly have wide confidence intervals, and should not be
taken as highly precise. Instead, they serve to highlight that seasonal
influenza has a similar impact to pandemic influenza with respect to
global mortality.

The economic burden of seasonal influenza is also substantial. A
study estimated that lost earnings due to sickness and mortality plus
direct medical costs totalled 87 billion dollars in the U.S.A. in 2003

(Molinari et al. 2007). Improving the effectiveness of influenza vaccines
has potential to directly mitigate these economic burdens. It has been
estimated that a one percent improvement in Vaccine Effectiveness
(VE) would result in savings of $400 million p.a. in the U.S.A. aloneVE is introduced in

detail in
Subsection 3.1.2.

(Mosterín 2014).

1.3 antigenic variability

In 1926, it was shown that ferrets previously exposed to influenza
viruses were protected from subsequent infections with the same
strain (Smith et al. 1933). However, in 1936 it was demonstrated in
mice that exposure to one strain did not protect against all other
influenza virus strains (Magill and Francis 1936), and that therefore
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Figure 1.3: Life expectancy in the U.K. from 1880 to 1960. The drop in life
expectancy in 1918 was caused by the 1918 influenza pandemic.
Data from Roser (2019).

different antigenic variants must exist. Homologous and heterologous
are terms that describe a subsequent exposure that either matches
or differs from a prior exposure. Additional antigenic variants were
identified in 1938 and homologous vaccination was shown to be more
effective than heterologous vaccination (Smith and Andrewes 1938).
Antigenic variation in natural influenza viruses meant that the first
influenza vaccines had to be reformulated after only two years of use
(Salk and Suriano 1949; Payne 1953).

The antigenic variability of influenza viruses is notably different to
the many other pathogens which are antigenically static. There are
many examples of antigenically static pathogens, including Variola
virus (which causes small pox) and Measles virus. Effective vaccines
have been developed for both of these viruses, and they only have
to be administered once to confer life-long protection because the
pathogens do not evolve antigenically. Variola virus was eradicated Recent localised

increases in measles
are associated with
vaccine hesitancy
which increases the
risk of infection
(Salmon et al. 1999;
Salmon et al. 2015).

in a global vaccination effort in the mid-20
th century, and vaccination

caused global measles mortality to drop from 750,000 deaths in 2000

to 197,000 in 2007 (Philippe et al. 2009). Both of these achievements
were possible due to the development of effective vaccines, and an
antigenically static pathogen.

1.3.1 Immunological assays

Assays for measuring antigenic phenotypes have been in development
since the antigenic variability of influenza viruses was first established.
In 1941, George Hirst noticed that the allantoic fluid of chick em- Embryos are

associated with four
membranes: the yolk
sac, amnion,
allantois and chorion.
The allantois
contains allantoic
fluid.

bryos infected with influenza viruses agglutinated red blood cells



10 introduction

(Hirst 1941). Antiserum is blood with all cells and clotting factors
removed; it contains antibodies, antigens, hormones, and electrolytes.
Hirst showed that the agglutination was blocked when antisera from
a previously infected chick was added to the allantoic fluid. He recog-
nised that this reaction could act as an endpoint to measure binding
between an antisera and a particular influenza virus (Hirst 1942).
Since then, the Haemagglutination Inhibition (HI) assay has remained
largely unchanged for almost 80 years. Serial dilutions of antiserum
are made, typically across a 96-well plate. Virus and red blood cells
are added to the plate which is then incubated for a set time. The HI

titre is the dilution at which the antiserum is no longer able to block
the agglutination of the red blood cells. Hirst showed that HI titres
correlated with mouse lethal infection titres, and neutralisation titres
(Hirst 1942).

Many other assays are used to measure antigenic phenotypes. Virus
neutralisation is the process by which antiserum blocks some aspect
of virus function which reduces virus growth. Neutralisation assays
measure the extent to which a virus is neutralised by a particular
antiserum. A common neutralisation assay is the Plaque Reduction
Neutralisation Test (PRNT), which is also known as the Focus Reduction
Assay (FRA). Varying dilutions of antisera are mixed with virus and
spread on cell monolayers; the concentration of antiserum that is
able to reduce the plaque growth count by 50 % is referred to as the
PRNT50.

PRNTs which take several days are more time-consuming, cumber-
some and expensive than HI assays, which take only several hours. In
some respects, measuring an antiserum’s ability to neutralise virus,Neutralisation

assays are considered
to be functional

assays, compared to
HIs which are

considered binding
assays.

rather than simply to disrupt HA binding, may be a biologically more
useful measurement. Viruses may be neutralised by interfering with
any critical step in virus replication, whereas the HI assay measures
only the extent to which an antiserum blocks the binding of influenza
viruses to red blood cells. Despite the relative crudeness of HI assays,
an individual’s HI titre before exposure to influenza virus has a strong
inverse relationship with their risk of infection (Hobson et al. 1972;
Coudeville et al. 2010), and the HI assay remains the most appropriate
correlate of protection available today (Cox 2013).

1.3.2 Antigenic cartography

Immunological assays generate tables containing serial dilutions which
can be difficult to interpret for experts and non-experts alike, espe-
cially when the tables contain more than a handful of antigens and
antisera. Antigenic cartography aims to represent data from immuno-
logical assays in a way that is simple to interpret and that enables a
deeper understanding of the underlying data, whilst simultaneously
averaging out noise from multiple measurements to generate a more
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precise quantitative output (Smith et al. 2004). Antigens and antis-
era are represented as points in a Euclidean space in the same way
that the positions of towns are represented by points on geographical
maps. A titre between an antigen and antisera is conceptualised as a
measurement of the ideal antigenic distance between the antigen and
antisera. A high titre represents an antiserum that is able to block the
agglutination of the antigen it is measured against very effectively; the
antigen and antisera are deemed antigenically similar, and they are
therefore positioned closely in antigenic space. Conversely, lower titres
represent antisera that do not block the agglutination of an antigen
well, and therefore these antigens and antisera are placed further apart.
The problem becomes: what are the positions of antisera and antigens
that faithfully represent the titres in a table? This problem can be
posed as a computational optimisation of an error function.

error function The error function defines how well a particular
configuration of antigens and antisera represent target distances de-
rived from a table. A configuration with the lowest error (or stress) is
then searched for. The error for any configuration is:

e =
∑
ij

(Dij −dij)
2 (1.1)

Where Dij are the target distances derived from the table and dij are
the map distances based on the current configuration of antigens and
antisera. Specifically, dij is the distance in p dimensional Euclidean
space between antigen, i, and antisera, j, in the configuration. Antigen
positions are encoded in a matrix, X, with dimensions (n,p), where n
is the number of antigens. Similarly, antisera positions are encoded in
a matrix, Y , with dimensions (m,p). dij is computed as:

dij =

√√√√ p∑
k=1

(xk − yk)2

Xi = (xi1, ..., xip)

Yj = (yj1, ...,yjp)

(1.2)

Dij is the target distance specified by a titration, Tij, between antigen
i, and antisera j:

Dij = bj − log2(Tij)

bj = log2(max(Tj))
(1.3)

Titres represent serial two-fold dilutions, so possible readouts are
uniformly spaced on a log2 scale. The initial dilution of antisera is
often 1

10 , so that possible measurements in an assay containing n
serial dilutions would be: ( 110 , 120 , 140 , ..., 1

10×2n ). Inputs for antigenic
cartography are the reciprocals of dilutions, i.e. (10, 20, 40, ..., 10× 2n).
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column basis bj sets the titration that represents a target distance
of zero (bj is also referred to as the column basis). If the maximum
titration for an antiserum, max(Tj) = 1280, and the titre of interest,
Tij = 1280, then the target distance,Dij = 0. For an antiserum with the
same maximum titre, if the titre of interest is one serial dilution lower,
Tij = 640, then the target distance Dij = 1. The effect of Equation 1.3
is that one two-fold dilution difference in a titration represents a single
unit difference in target distance.

Sometimes a threshold is applied, such that bj cannot exceed a
particular value. This can be useful if, for example, there is one antigen
in the data that has very high titres to the majority of antisera (a high
avidity antigen). An artificial maximum titre can be used to prevent
such a strain distorting the majority of target distances. Likewise,
sometimes it is preferable to set a minimum for the column basis, so
that an antiserum with uncharacteristically low titres does not attract
antigens just by virtue of having a low maximum titre.

Bayesian implementations of antigenic cartography draw values of
bj during sampling of the posterior distribution of model parameters
(Bedford et al. 2014). Judging a suitable method for handling column
bases can be determined by comparing map errors, and inspecting
scatter plots of target distance against map distance (for a perfect map,
all points in this scatter would lie on the line y = x).

threshold values Antisera may bind so weakly to test virus
such that even the most concentrated dilution does not prevent virus
agglutination. Such titres are referred to as being below threshold.
In an HI assay, if even a concentration of 1

10 is unable to prevent
virus agglutination, then the result would be recorded as < 1

10 . Below
threshold values are handled such that they only contribute to the
error if the map distance is lower than the table distance minus one.
See (Smith et al. 2004) for details.

optimisation Optimal configurations of antigens and antisera,
X and Y , are searched for by passing the error function and its first
derivative to a gradient descent algorithm such as L-BFGS (Liu and
Nocedal 1989). Multiple optimisations using different randomly gen-
erated starting configurations are conducted in an attempt to find
globally optimal solutions.

applications of antigenic cartography Antigenic cartog-
raphy was initially applied to seasonal A(H3N2) influenza viruses
isolated from humans (Smith et al. 2004). The map enabled deep quan-
titative insight into the antigenic evolution of these viruses over a
35-year period (Figure 1.4). Most notably, it demonstrated that the
antigenic evolution of these viruses is punctuated. The map is charac-
terised by clusters of viruses, that evolved stepwise from one another.
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This is in contrast to the gradual genetic evolution of these viruses,
which immediately suggests that certain genetic changes must cause a
larger antigenic effect than others. Indeed, the authors showed, thanks
to a natural experiment whereby a pair of strains differed by a single
amino acid substitution, but were members of different antigenic clus-
ters, that a single amino acid change (N145K) was able to cause the
transition from the BE92 cluster to the WU95 cluster (Figure 1.4).

Figure 1.4: Antigenic map of human A(H3N2) influenza viruses isolated
between 1968 and 2002 (Smith et al. 2004). Antigens (coloured
shapes) and antisera (open shapes) are positioned such that dis-
tances between them represent measured titres. The shape of
each antigen and antiserum point shows the area that a point
can be moved such that map stress does not exceed a threshold.
Different colours show 11 clusters of antigens identified by a
k-means algorithm. Cluster abbreviations derive from a vaccine
strain used in each cluster: HK68, Hong Kong 1968; EN72, Eng-
land 1972; VI75, Victoria 1975; TX77, Texas 1977; BK79, Bangkok
1979; SI87, Sichuan 1987; BE89, Beijing 1989; BE92, Beijing 1992;
WU95, Wuhan 1995; SY97, Sydney 1997; FU02, Fujian 2002.

Assumptions made in antigenic cartography mean its use is not
restricted to use with only human A(H3N2) seasonal influenza viruses.
Since the initial publication in 2004, antigenic cartography has been
widely adopted to address questions in virology and evolutionary biol-
ogy in different types of influenza viruses including: swine A(H1N1),
(Nfon et al. 2011); swine A(H3N2), (Jong et al. 2007; Lewis et al. 2014;
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Abente et al. 2016); human A(H1N1), (Garten et al. 2009); human
A(H2N2), (Linster et al. 2019); human A(H3N2), (Fonville et al. 2014;
Fonville et al. 2016; Kawakami et al. 2019; Russell et al. 2008b); avian
A(H5N1), (Koel et al. 2014; Thi Nguyen et al. 2018); and equine
A(H3N8), (Lewis et al. 2011). Antigenic cartography is routinely used
by the WHO to inform strain choice for influenza vaccines in all major
types and subtypes that infect humans (Russell et al. 2008a). Anti-
genic cartography has also been applied to other antigenically variable
pathogens such as Dengue virus (Katzelnick et al. 2015).

1.3.3 Practicalities of measuring antigenic phenotypes

Measuring antigenic phenotypes of wild influenza viruses can be
hampered by: the fundamental need to passage viruses before they
can be assayed, variable agglutination behaviour of some influenza
viruses impacting the reliability of assays, and use of non-human
animal models to asses antigenic difference.

passaging Influenza viruses in clinical samples cannot be directly
assayed because the sample may contain a low concentration of virus,
and will contain additional constituents that may interfere with as-
says. Virus particles can be purified, and their quantity increased, by
growing the virus in a cell line, which is known as passaging (Fig-
ure 1.5). However, every time a virus is passaged the genome must be
copied giving opportunity for mutations to arise either by genetic drift
or adaptation to growth in the cells (Widjaja et al. 2006). Of course,
genetic mutations may impact phenotypes of interest. The only way
to check whether passaging has introduced mutations is to directly
sequence the clinical isolate and the passaged virus.

In 1935, it was shown that human influenza viruses could be grown
in embryonated chicken eggs (Burnet 1940). Ever since, eggs have
been used as a simple and cost effective method for growing in-
fluenza viruses. The first influenza vaccine, which was licensed in
the U.S.A. in 1945 was grown in chicken eggs (Francis et al. 1945),
and many influenza vaccines are still manufactured in chicken eggs
today (Krammer 2019). However, molecular adaptation to growth in
eggs can change antigenic properties (Chen et al. 2010). To generate
antigenic maps of wild type viruses particular care is required to con-
duct minimal passaging, and avoid passaging in chicken eggs (Smith
et al. 2004).

agglutination The HI assay relies on the ability of influenza
virus particles to agglutinate red blood cells in order to measure the
degree to which antibodies can bind virus, and block the agglutina-
tion. The agglutination behaviour itself is not directly related to the
antigenic phenotype: an antibody may exist which neutralises two
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Figure 1.5: Processes in-between virus isolation and antigenic characterisa-
tion. This schematic diagram illustrates processes that may occur
before antigens and antisera are displayed in an antigenic map.
Clinical samples are initially propagated in mammalian cell lines
or eggs. Viruses can be subsequently further passaged in mam-
malian cell lines or eggs. Antisera used in antigenic cartography
normally derives from first-infection ferrets.

different viruses equally well, one of which does agglutinate red blood
cells, one of which does not. In this case, the HI assay would be unable
to be used to measure antigenic properties of the virus which does
not agglutinate red blood cells.

Human A(H3N2) influenza viruses isolated after the 1968 pandemic
show high variation in binding affinity to different glycans, with
seemingly little consequence for virulence or transmission (Lin et
al. 2012; Gulati et al. 2013). In the mid 1990s human A(H3N2) influenza
viruses stopped binding to chicken red blood cells that were used
in HA assays, and a switch to the use of turkey red blood cells was
recommended (Gulati et al. 2013). Similarly, in the 2000s the avidity
of A(H3N2) influenza viruses to turkey red blood cells dropped, and
a switch to guinea pig red blood cells was recommended (Barr et
al. 2010; Gulati et al. 2013). Changes in virus avidity to the red blood
cells used in HI assays has impeded efforts to conduct comprehensive
assays containing representative human A(H3N2) strains from all
years from 2002 onwards.

ferrets Ferrets were the first species that human influenza viruses
were shown to be able to replicate in (Smith et al. 1933), and have
become a commonly used animal model to study influenza virus
infection. Ferrets exhibit many of the same disease symptoms as
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humans and influenza viruses can transmit efficiently between ferrets
(Oh and Hurt 2016). One factor that affects host tropism in influenza
viruses is the ability of the HA to bind glycans with different linkages
between the terminal sialic acid and adjacent carbohydrate ring. Avian
viruses preferentially bind α-2,3 linked sialic acids, whereas human
viruses preferentially bind α-2,6 linked sialic acids (Connor et al. 1994).
Ferrets posses α-2,6 linked sialic acids in their upper respiratory tracts,
which may increase their susceptibility to human influenza viruses
(Jia et al. 2014).

First infection ferret antisera are routinely used to measure the anti-
genic properties of human influenza viruses (Figure 1.5), making the
implicit assumption that the human and ferret immune response to
influenza virus infection are comparable. Several pieces of evidence
suggest this assumption is broadly justified. Ferret antisera show sim-
ilar patterns of titres to swine and avian antisera when measured
against swine A(H3N2) and avian A(H5N1) strains respectively (Jong
et al. 2007; Koel et al. 2014). This suggests that generally the immune
response of these three vertebrates is similar, and by extension that
ferrets may also be a good model for the human immune response.
To be well characterised, antisera is drawn a specific length of time
after infection with a known strain. It is unethical to give a human
its first influenza infection, making it difficult to test in a well con-
trolled manner whether human and ferret first responses to influenza
infection are similar. Nevertheless, highly reactive antisera from chil-
dren aged between nine and 24 months shows similar patterns to
first infection ferret antisera, and generates similar antigenic maps
(Fonville et al. 2016). There are however some well documented cases
of antigenic differences that are measurable using human antisera but
not using ferret antisera (Linderman et al. 2014).

1.4 antigenic evolution

As outlined in Subsection 1.1.4, influenza pandemics occur infre-
quently but when they do occur can infect between 20 % to 40 %
of the global population in a year (Taubenberger et al. 2001). The
initial wave of infection establishes immunity in the host population
which reduces the virulence of subsequent infections, and acts as a
selection pressure for antigenic novelty in the virus population. A
cyclical feedback loop then ensues whereby virus antigenic evolution
drives updated host immunity, and updated host immunity acts as a
selection pressure for additional antigenic change (Smith et al. 2004;
Nelson and Holmes 2007).
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1.4.1 What governs the antigenic evolution of seasonal influenza viruses?

Influenza viruses have among the fastest rates of molecular evolution
observed in nature (Duffy et al. 2008). The first measurement of the
rate of molecular change in influenza A viruses estimated a value of
over 7.3× 10−5 mutations per base, per genome replication (Drake
1993). Given this rate of molecular evolution, one might also expect For comparison, this

value in humans is
three orders of
magnitude slower:
2.5× 10−8
(Nachman and
Crowell 2000).

antigenic evolution to occur rapidly. However, in the last 51 years (1968-
2019) there have been only 16 antigenic clusters of human seasonal
A(H3N2) influenza viruses. This equates to a rate of approximately
0.31 clusters per year, or 0.29 cluster transitions per year.

In 2014 the amino acid substitutions responsible for cluster tran-
sitions that occurred between 1968 and 2002 were elucidated (Koel
et al. 2014). One surprising aspect of these results was that most cluster The Koel et al. (2014)

and similar work in
other subtypes is
reviewed in detail in
Chapter 4.

transitions (seven out of ten) were caused by single amino acid sub-
stitutions. Furthermore, all but one of the substitutions identified are
possible by mutating only a single nucleotide in a codon. Simulations
suggest that all possible single nucleotide mutant variants are sampled
in the virus progeny in every single influenza virus infection (Russell
et al. 2012). The simple molecular architecture of cluster transitions,
coupled with the high mutability of influenza viruses begs the ques-
tion: Why don’t new antigenic clusters evolve as soon as even slight
immunity to previous antigenic variants develops? More simply: Why
is antigenic evolution so slow? Several hypotheses have been proposed
to answer this question, which are not necessarily mutually exclusive.

neutral networks Neutral network theory posits that in fact the
molecular basis of antigenic change is not as simple as that presented
above. Although single substitutions cause antigenic change, they only
do so in specific genetic backgrounds, either because a compensatory
substitution is required to offset some detrimental functional or struc-
tural impact, or because the antigenic impact of a substitution is only
observed in a specific genetic background (Koelle et al. 2006). The
time delay is therefore explained as time spent by the virus popula-
tion performing a random walk on a network of evolutionary neutral
genotypes until one is sampled that permits the cluster transition
substitution.

fitness exchange The fitness exchange hypothesis suggests that
cluster transition substitutions negatively impact virus replication in
some way, and that the substitution is only selected when its negative
effects are outweighed by the positive effect of its antigenic escape. It
is useful to partition the fitness of virus strains into two components:
Extrinsic fitness relates to the degree to which a virus evades prior
immunity in the host population. A virus in a region of antigenic
space where many strains have already circulated would have low



18 introduction

extrinsic fitness because individuals in the host population would be
able to mount effective immune responses. A virus in a novel region
of antigenic space experiences higher extrinsic fitness because it has a
larger pool of susceptible hosts. Intrinsic fitness encompasses all other
aspects of influenza virus replication.

Of key importance to the fitness exchange mechanism is how in-
trinsic and extrinsic fitness change over the course of an antigenic
cluster. When a new antigenic cluster of strains begins to circulate,
there is little extrinsic fitness difference between viruses in the new
cluster, and viruses in an even more advanced cluster. However, over
time, immunity to the current cluster develops in the host population,
meaning that the extrinsic fitness of strains in the advanced cluster
grows. The fitness exchange mechanism predicts that cluster transition
substitutions occur only when the reduction in intrinsic fitness of
cluster transition substitutions are offset by the increase in extrinsic
fitness.

There is theoretical reason to suspect an interrelationship between
extrinsic and intrinsic fitness of substitutions. Cluster transition substi-
tutions in human seasonal A(H3N2) influenza viruses all occur on the
periphery of the HA RBS (Koel et al. 2013). Therefore, substitutions that
cause antigenic escape may also impact HA binding, and negatively
interfere with replication.

stochasticity The timing of cluster transition substitutions may
contain large stochastic components at both within and between host
level.

Although in simulations all possible single nucleotide variants are
sampled in every single influenza virus infection (Russell et al. 2012),
the same work also suggests that final progeny is dominated by
relatively few variants that arise early in the infection cycle. So, even
though many variants are generated, the vast majority do not get
transmitted, and therefore do not have a chance of being selected in
nature.

Then, even if an antigenically novel variant were transmitted to a
new host, stochastic effects at the host population level may prevent
that variant from spreading to fixation. For example, the variant may
evolve in a region with poor travel connections to other regions and
exhaust its local pool of susceptible hosts before spreading further.

1.5 vaccines

The first influenza virus vaccines were developed in the 1940s andKrammer and Palese
(2015) is an excellent

review of influenza
virus vaccine

technology.

termed whole-virus inactivated vaccines. Virions were propagated in
eggs and inactivated chemically (Burnet 1940). Some manufactures
started using Madin-Darby Canine Kidney (MDCK) cells and other
mammalian cell lines to reduce unwanted by-products from egg-
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based manufacture such as ovalbumin (the main protein in egg white).
A second reason was to prevent the selection of genetic adaptations
to growth in eggs, which can alter antigenic properties (Chen et
al. 2010). Not all egg adaptation mutations cause antigenic change;
some increase growth rate which is useful for vaccine manufacture
(Barman et al. 2015).

Nowadays there are several types of Inactivated Influenza Vac-
cines (IIVs). It is common to treat grown vaccine virus with detergent
which disrupts viral membranes and frees viral proteins to generate
split vaccines. Additional purification can also occur to extract or
remove specific protein domains to generate subunit vaccines. The de-
velopment of split and subunit vaccines aimed to increase the relative
proportion of the HA globular head in the vaccine, as these vaccines
function by eliciting the production of HA specific antibodies (Wood
1998), whilst also decreasing other reactogenic components of the virus.
Current IIVs contain strains from three or four different subtypes. Triva-
lent vaccines contain one A(H3N2) strain, one A(H1N1) strain and
one B virus strain. Quadrivalent vaccines contain strains from both
influenza B virus lineages and the A(H3N2) and A(H1N1) strains.
Vaccines are administered either intradermally, or intramuscularly
and contain 15 µg of HA from each subtype component. Quantities of
other viral proteins are not standardised.

Growth of vaccine antigen in either eggs of mammalian cell lines has
several undesirable side effects: 1) high growth reassortant virus which
may be genetically and antigenically different from the selected vaccine
strain must be identified and used; 2) high level bio-containment is
required because the process involves growth of actual influenza
viruses; 3) toxic chemicals are required to inactivate viruses; and 4)
concentrations of by-products such as ovalbumin, and antibiotics used
to keep the growth medium sterile are difficult to control, or require
additional downstream purification. The use of expression systems to
generate recombinant protein vaccine antigen circumvents all of these
issues. HA vaccine antigen used in Flublok is expressed in Sf9 cells
from the fall armyworm moth (Spodoptera frugiperda), and is licensed
for use in the U.S.A. (Cox et al. 2015).

Live Attenuated Influenza Vaccines (LAIVs) utilise cold adapted
strains that can replicate effectively in the upper respiratory tract but
not in the lungs. LAIVs are highly effective in young children (Belshe
et al. 2007).

Many novel vaccine technologies are currently in development or in
clinical trials: ∆NS1 second generation attenuated vaccines which lack
the NS1 gene; RNA-based and DNA-based vaccines whereby coding
sequences are administered and host cellular machinery generates and
presents antigen to immune cells; virus like particles; and intranasal
whole inactivated vaccines (Krammer 2019).
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1.5.1 Vaccine strain selection

Influenza viruses can spread quickly worldwide (Russell et al. 2008b;
Pybus et al. 2015). The importance of a global context for influenza
virus evolution was quickly acknowledged: in 1952 the WHO estab-
lished the Global Influenza Surveillance and Response System (GISRS)
to facilitate global collaboration in sharing influenza viruses, data and
research (Payne 1953). Currently, the GISRS comprises 115 National In-
fluenza Centres (NICs) in WHO member states which share surveillance
samples and data. Five Collaborating Centres in Melbourne, Australia;
Beijing, China; Tokyo, Japan; London, U.K.; and Atlanta, U.S.A., con-
duct centralised immunological assays and genetic sequencing on the
surveillance samples from NICs. These data are collated by the WHOA sixth

Collaborating Centre
in Memphis, U.S.A.,
specialises in animal

influenza viruses.

Collaborating Centre in Cambridge, U.K., and processed to gener-
ate antigenic maps and phylogenetic trees. A WHO committee meets
twice a year to evaluate these analyses and recommend a suitable
vaccine strain for each human subtype. After strain selection, roughly
eight months is required for vaccine manufacture, testing and distribu-
tion. This deployment lag means that strain selection must occur eight
months before the onset of the influenza season in each hemisphere. In
the Northern hemisphere the influenza season normally falls between
October and May, meaning that the vaccine strain selection must occur
in February. The Southern hemisphere season falls between April and
November, and vaccine strain selection occurs in September.

Current vaccines are licensed such that they must contain a strain
that is antigenically representative of the currently circulating viruses.
Influenza virus antigenic evolution is punctuated, so at a high level this
selection process can be summarised as selecting a strain that is in the
centre of the currently circulating cluster of viruses (Figure 1.4). This
system selects well-matched strains (Russell et al. 2008a). However,
if an antigenic cluster transition occurs after vaccine strain selection,
but before the onset of the influenza season then the subsequent
season can still be antigenically mismatched. Theoretically, reducing
deployment lag would reduce the incidence of mismatched vaccines
(Figure 1.6), however, vaccine deployment is highly optimised and
there is little room for improvement.

Surveillance lag is the delay in time between the evolution of a
new antigenic cluster in nature and its detection in surveillance such
that it can inform vaccine strain selection. Surveillance lag should be
reduced as much as possible, in order to have the most up to date
data for vaccine strain selection. However, even if there were zero
surveillance lag, cluster transitions could still occur during the more
substantial period of deployment lag (Figure 1.7b). Therefore, the
current vaccine strain selection procedure will not be able to avoid
antigenic mismatch between circulating strains and vaccines due to
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Cluster 1

Cluster 2

Figure 1.6: The effect of cluster transition timing and vaccine strain selection
timing on antigenic mismatch. Consider viruses evolving from
antigenic cluster one (green) to cluster two (orange). The top, and
bottom, of each cell indicates the cluster of circulating viruses,
and the vaccine strain, respectively. When the vaccine is matched,
the cell appears as a single colour; when it is mismatched, the cell
contains two colours. Each row demonstrates cluster transitions
occurring at the start of a different month, starting in October of
Season one. If the cluster transition occurs before vaccine strain
selection, then the vaccine strain can be updated to match in the
subsequent season. Table A illustrates the scenario where vaccine
strain selection occurs at the start of February, i.e. matching the
case in the Northern hemisphere currently. In Table B vaccine
strain selection occurs two months later, at the start of April. This
results in a higher number of matched cells in season two.

antigenic cluster transitions occurring during vaccine manufacture
and deployment.

1.5.2 Antigenically advanced influenza vaccines

One way to overcome the antigenic mismatch that the current vac-
cine strain selection procedure cannot avoid is to use antigenically
advanced influenza vaccines. Here, the aim is to vaccinate individuals
with strains that do not yet exist naturally, but that will exist in the
future. In doing so, individuals acquire immunity to antigenic variants
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(a) Effect of cluster transition timing on
mismatch in current and next season
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(b) Varying surveillance lag

Figure 1.7: Impact of cluster transition timing and surveillance lag on anti-
genic mismatch. The month that the cluster transition occurs is
plotted against the proportion of a season that is antigenically
mismatched as a result. (a) In the current season (blue), the later
the cluster transition occurs, the less the current season is mis-
matched. The next season (green) is either entirely matched or
mismatched, whether the cluster transition occurred before or af-
ter February when vaccine strain selection occurs. The combined
proportion of the current and next season mismatched is shown in
red. (b) Each trace shows the proportion of the combined (current
and next) season mismatched for different lengths of surveillance
lag.

that will circulate in the future. Clearly, this strategy relies on the
ability to know ahead of time what antigenic variants will circulate.

1.6 outline of thesis

The scope of this thesis is to (1) quantitatively determine the impact
of antigenic mismatch on vaccine effectiveness is and (2) test how
predictable the antigenic evolution of seasonal A(H3N2) influenza
viruses are.

In Chapter 3 I investigate what the quantitative relationship is
between antigenic mismatch and Vaccine Effectiveness (VE), using
empirical measurements of mismatch derived from antigenic maps
and VE estimates derived from the literature.

In Chapter 4 I review what is currently known about the genetic
basis for major antigenic change in influenza viruses. Furthermore, I
present a new quantitative method for testing which amino acids are
associated with major antigenic change based on a LMM framework
adapted from quantitative genetics. The LMM methods are detailed
in a second introductory chapter: Chapter 2. I also present analyses
consisting of identifying virus strains that comprise natural experi-
ments that test the impact of amino acid substitutions on antigenic
change. I show that these molecular changes contain a high degree of
non-randomness, and suggest that these patterns are associated with
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the biological mechanisms that underlie the evolution of antigenic
escape substitutions.

In Chapter 5 I develop a ranking framework that uses the patterns
identified in Chapter 4 to test how predictable future antigenic cluster
transitions would be using these patterns alone. In Chapter 6 I discuss
how these rankings could be used with additional experimentally
derived virus fitness data to substantially narrow down candidate
viruses that may circulate in the future. I go on to refine the concept
of antigenically advanced influenza vaccines and pre-emptive vaccine
updates through the lens of immunity management, and argue that
this strategy could be used in adults to ameliorate low VE caused by
antigenic mismatch.





2
I N T R O D U C T I O N T O L I N E A R M I X E D M O D E L S F O R
A N T I G E N I C P H E N O T Y P E S

chapter outline Linear Mixed Models (LMMs) are used in quan-
titative genetics to identify genetic markers associated with pheno-
types. LMMs are a work horse in this field because they provide a
framework to conduct statistical tests in large datasets with complex
patterns of relatedness between samples. These properties make LMMs

attractive for applying to questions in influenza virus biology. Here,
I briefly introduce LMMs and their application in quantitative genet-
ics, and explain how I have developed LMMs to antigenic coordinates
and amino acid sequences, how association tests are conducted, and
genotype to phenotype mapping using the Best Linear Unbiased Pre-
dictor (BLUP).

This chapter introduces methods used elsewhere in this thesis. In
Chapter 3 I use BLUP to predict antigenic coordinates of strains that
have been sequenced, but not titrated, to increase the size of datasets
from which mismatch distributions are derived. In Chapter 4 I use
a LMM to statistically test whether molecular changes are associated
with antigenic cluster transitions. Finally, BLUP is the basis for a novel
post-processing step, map sanitising, that I present in Appendix A.

2.1 what is a mixed model?

Before tackling Multivariate Linear Mixed Models (mvLMMs), and their
application in quantitative genetics, I will outline what the features
of a simple mixed model are, and why they are used. Simply put, a
mixed model contains both fixed effects, and random effects. A fixed
effect is a component in a model for which a parameter is estimated
that corresponds to a specific experimental treatment. This could be as
simple as estimating means for different groups in data, or estimating
the coefficient of a regression slope. In contrast, a random effect models
a variable by estimating the parameters of a probability distribution.

I will illustrate the difference between random and fixed effects
using a simple dataset consisting of measurements of the time taken
for ultrasonic waves to travel the length of six randomly selected Ultrasonic travel

time is used to asses
degradation in rail
microstructure.

railway rails (Pinheiro and Bates 2000; Devore 2000). Concepts taken
from this basic example will apply to more complex, and higher
dimensional models introduced later on.

25



26 introduction to linear mixed models for antigenic phenotypes

In this dataset, each rail was measured three times, so the data are
naturally grouped according to the rail the measurement was taken
from. One approach is to model individual rails as fixed effects:

yij = βi + εij

εij ∼ N(0,σ2)
(2.1)

where yij is the travel time for the jth repeat of the ith rail, εij captures
the per measurement error and βi is the mean travel time within rail
i:

βi =
1

n

n∑
j

yij (2.2)

This models the specific sample of rails sampled by computing the
mean travel time in each rail. Measurement error is assumed to be
drawn from one normal distribution for all rails, with variance σ2. It
estimates the central tendency of the travel time for each rail in the
sample, but does not provide insight on the between-rail variability or
the wider population that the rails were sampled from. The number
of parameters increases linearly with the number of rails sampled.

(a) Fixed effect model

(b) Random effect model

Figure 2.1: Rails dataset modelled using fixed and random effects. In the
fixed effect model, one parameter is estimated for each rail: the
mean travel time. In the random effect model, variance is decom-
posed into between rail (top) and within rail (bottom) compo-
nents.

Alternatively, each rail could be modelled as a random effect (Fig-
ure 2.1b). The focus changes from estimating parameters that describe
the particular rails sampled, to describing the data in terms of the
variance associated within a rail, and between rails:

yij = β+ bi + εij

bi ∼ N(0,σ2b)

εij ∼ N(0,σ2)

(2.3)
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β is now the grand mean of the travel time in all rails, and bi is a per-
rail random effect. bi is modelled using a normal distribution, with
mean zero, and variance σ2b, which captures between-rail variability.
bi are random, because they are associated with experimental units
(rails) drawn at random from a wider population of rails. bi are also
effects because they alter the measurements for rail i by a particular
amount away from the population mean, β.

In contrast to the fixed effect treatment, per-rail effect sizes are not
directly estimated. Rather, the total variance in the data is decomposed
into one component that captures within rail variability (σ2) and
another component that captures between rail variability (σ2b). An
important consequence of this is that as the number of samples in the
data grows, the number of parameters being estimated stays constant,
and degrees of freedom do not grow. This is not the case in the fixed
effect model, where each rail sampled requires an additional βi be
estimated.

2.2 mixed models in quantitative genetics

A foremost aim in genetics is to detect markers responsible for phe-
notypes. It was noted over 25 years ago that genetic samples are
often non-independent due to varying degrees of relatedness between
individuals which invalidates assumptions of most statistical tests
(Spielman et al. 1993). Structure in biological populations is common.
In humans, the average South American is likely to share more genetic
markers with another South American than with a European. This
poses a problem for association studies; if a phenotype is more preva-
lent in a group because of a shared causative locus, the group probably
also shares many additional markers. Therefore, it can be difficult to
distinguish causative markers from those that are just frequent in
the group (Balding 2006). Whilst other methods exist to adjust for
population stratification in Genome Wide Association Studies (GWAS)
(Devlin and Roeder 1999; Pritchard et al. 2000; Price et al. 2006), mixed
model approaches have come to dominate the field due to their ability
to correct for relatedness at different scales (Kang et al. 2010; Zhang et
al. 2010; Korte et al. 2012; Zhou and Stephens 2012; Lippert et al. 2011).

LMMs decompose a measured phenotype, y, into the sum of several
components:

y = βx+αF+g+ψ (2.4)

A genetic marker, usually a single Single Nucleotide Polymorphism Mixed models in
quantitative genetics
are normally linear
because the fixed
effects are included
as linear terms.

(SNP), is represented as a fixed effect, βx. β is the effect size, and x en-
codes the SNP under a particular inheritance model (also referred to as
the genetic profile). In diploid organisms, a dosage inheritance model
would encode a homozygote lacking the SNP as 0, a heterozygote as 1,
and a homozygote carrier as 2. Other covariates, F, that may influence



28 introduction to linear mixed models for antigenic phenotypes

the phenotype can also be included as fixed effects, with effect size
α. Typically, covariates include factors such as age, sex and weight.
Genetic kinship is included as a random effect, g, which expresses the
degree to which phenotypes of two individuals should covary based
on their relatedness. This is achieved by treating g as a multivariate
normally distributed random variable:

g ∼ N(0,σ2gR) (2.5)

with mean, 0, and covariance matrix, σ2gR. R measures the genetic
relatedness. It is the covariance matrix of the entire SNP matrix, X:

R =
1

S
XXT (2.6)

With N individuals, and S SNPs, X has dimensions (N,S). Therefore, R
is an (N,N) symmetric matrix where cell ij stores the genetic similarity
between individuals i and j. Residual variation not captured by the
other components is modelled as:

ψ ∼ N(0,σ2nIN) (2.7)

where IN is the identity matrix. The scalars σ2g and σ2n modulate the
contribution of the kinship, and error components respectively.

2.2.1 The essence of LMMs

The key feature of a LMM is modelling genetic kinship using a random
effect. This random effect encompasses the degree to which pheno-
types covary, based on overall genetic similarity. In the rail example,
groups are discreet, meaning that the measurement of a single sample
belongs to a single group. The degree to which a rail deviates from
the population mean is decomposed into a between-group term, and
within-group term, and the between rail variability is measured by
a single scalar, σ2b (Equation 2.3). R aims to do something similar,
but on a finer scale. Individuals that covary perfectly with each other
will have the maximal covariance value S/N, whereas individuals
who share no genetic markers whatsoever will have a value of 0. R
therefore flexibly models all degrees of relatedness on an individual
by individual basis.

2.2.2 Multivariate LMMs

The first LMMs used in GWAS were applied to datasets containing single
traits (Kang et al. 2010; Zhang et al. 2010; Zhou and Stephens 2012;
Lippert et al. 2011). The motivation behind the genetic random effect
in LMMs is to appropriately handle correlation in the genetic markers
of the samples. However, many biological datasets contain multiple
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correlated phenotype and some biological phenotypes are inherently
multi-dimensional. Conducting multiple separate tests on variables The antigenic

diversity of influenza
and dengue viruses
are good examples of
multidimensional
biological phenotypes
(Smith et al. 2004;
Lewis et al. 2011;
Katzelnick
et al. 2015; Lewis
et al. 2014).

that are correlated will result in a loss of statistical power so it can
be more desirable to model such variables jointly. This motivated
the development of LMMs that correctly handle multiple traits in the
response variable: mvLMMs (Korte et al. 2012; Lippert et al. 2014).

The univariate LMM (Equations 2.4-2.7) can be generalised to mul-
tiple traits. The mvLMM for P phenotypes, is modelled with a matrix-
variate distribution:

Y = xβT +G+ψ

G ∼ MNN,P(0,R,Cg)

ψ ∼ MNN,P(0, IN,Cn)

(2.8)

This differs to the univariate case in three ways: Firstly, the phenotype
Y is an (N,P) matrix and β is a length P effect size vector. Secondly,
the genetic random effect, G, is modelled using a matrix-variate dis-
tribution. R specifies the individual-to-individual covariance, and Cg

specifies the genetic trait-to-trait covariance. Finally, residual error ψ
is also modelled with a matrix-variate distribution with no individual-
to-individual covariance, IN, and Cn parametrises the trait-to-trait
covariance. Covariates can be included in mvLMMs but are omitted
from Equation 2.8 because they were not used in this thesis. For further
detail on LMMs, mvLMMs, their derivation and parameter estimation,
see (Lippert et al. 2014; Casale 2016; Meyer 2017) and the references
therein. All analyses in this thesis were conducted using the LIMIX
framework for LMM (Lippert et al. 2014).

2.3 adapting lmms for influenza virus antigenic pheno-
types

mvLMMs lend themselves well to modelling the molecular basis of
antigenic phenotypes in influenza viruses. Multiple dimensions are
typically required to embed antigenic coordinates and influenza virus
populations tend to have high degrees of structure. The degree to
which two influenza strains covary genetically, and the antigenic
distance between them are negatively correlated (Figure 2.2). Therefore,
it seems attractive to account for the degree to which virus strains
covary phenotypically based on the degree to which they covary
genetically.

2.3.1 AAPs vs. SNPs

The main difference between the standard use of LMMs and their use
in this thesis is that the independent variables derive from amino acid
alignments of the HA gene, rather than microarray-derived data that
encode the presence or absence of SNPs among individuals. Dummy
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Figure 2.2: Antigenic distance and genetic covariance between pairs of in-
fluenza virus strains. There are 2.01× 106 points in the scatter
plot (left), therefore a 2D histogram (right) is useful to show the
dense region of the data. Histogram bins are hexagons which
tessellate the space. The number of points within each hexagon is
shown with a colour scale. This is the Russell et al. (2008b) dataset
(see Section 2.4 for details).

variables encode the presence or absence of a particular amino acid
at a particular position in an HA alignment (Table 2.1). Invariant
dummies provide no information on differences between strains, so
are removed. It is not uncommon for multiple dummies to encode
identical patterns of presence or absence (e.g. 2K and 3S, Table 2.1B).
In these instances there is no way to separate the effects of one Amino
Acid Polymorphism (AAP) from the other, so the AAPs are merged.
AAPs can also be merged if they encode precisely the opposite pattern
of presence and absence from each other. Conceptually, there is no
basis to prefer encoding the presence of an AAP as a 0 rather than a 1.
Mathematically, using the alternate encoding requires transforming
the effect size by a factor of minus one. Merging identical or precisely
opposite AAPs decreases the computational burden by decreasing the
number of positions that have to be tested in association studies. More
importantly, decreasing the number of AAPs decreases the number
of statistical tests that have to be conducted. Commonly, p-values
are adjusted according to the number of tests that are conducted to
reduce false positives. Therefore, decreasing the number of statistical
tests reduces the factor by which p-values are adjusted, effectively
increasing statistical power.

2.3.2 Number of tests

Additional considerations make fitting mvLMMs to influenza datasets
practical. mvLMMs have been developed in the GWAS field, where
datasets containing 104 to 105 individuals and 107 SNPs are com-
mon. Therefore, mvLMMs implementations are computationally effi-
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(A) Molecular alignment

Strain 1 2 3 4

A D K S H

B D T F H

C E T G H

D E K S H

(B) Dummy variables

1D 1E 2K 2T 3S 3F 3G 4H

1 0 1 0 1 0 0 1

1 0 0 1 0 1 0 1

0 1 0 1 0 0 1 1

0 1 1 0 1 0 0 1

(C) Duplicates merged
and invariant removed

Strain D1E K2T|3S 3F 3G

A 1 1 0 0

B 1 0 1 0

C 0 0 0 1

D 0 1 0 0

Table 2.1: Representation of protein sequences in LMM. Positions in a molec-
ular alignment (A) are converted to dummy variables (B) which
encode the presence or absence of an amino acid at a position in
the alignment. (C) Duplicate columns are merged. Columns are
considered duplicate if their contents are identical (e.g. 2K and 3S),
or if their contents would be identical if inverse coding were used
(e.g. 1D and 1E). Invariant columns are also removed (e.g. 4H).

cient and run fast on datasets used in this thesis that typically contain
a similar number of individuals, but many fewer genetic markers.
Furthermore, the task of inferring molecular changes associated with
antigenic change in influenza viruses is substantially more specific
than the questions normally addressed using mvLMMs. Not only is
the influenza virus genome five orders of magnitude smaller than the
human genome, which would itself drastically decrease the number of
tests required, but we know that major antigenic change is mediated
by the HA gene (Wiley et al. 1981; Wilson and Cox 1990). Further,
Koel et al. (2013) used chimeric viruses to show that the antigenicity
of A(H3N2) influenza viruses is determined by HA positions 109-301

located in the globular head. It has also been shown in A(H5N1)
influenza viruses, that the HA globular head determines antigenic-
ity (Richard, 2017, pers. commun.). These data narrow down the HA

positions that have to be screened. The higher number of markers
that are tested in a typical GWAS requires more stringent methods for
correcting for multiple testing, which reduces effect sizes that can be
reliably detected.

Conversely, using AAPs rather than SNPs increases the number of
tests relative to standard GWAS. AAPs encode amino acid diversity (of
which there are 20 in the standard set) whereas SNPs encode nucleotide
diversity (of which there are four in standard DNA). n− 1 dummy
variables are required to encode data containing n categories, so, a
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single HA position may require as many as 19 AAPs to encode the
diversity in a dataset. It would be extremely rare to see such high
diversity at a single position. Even if there were five distinct AAPs that
had to be tested at all 301 positions in HA1, this would only require
running (301− 108)× 5 = 965 tests. Compared to questions normally
addressed using mvLMMs, the applications in this thesis can be more
specific, due to the small size of the influenza virus genome, and the
large amount of previous work that has pinpointed one region of one
gene as the major determinant of the phenotype of interest.

2.3.3 Association testing

Association testing aims to formally test the hypothesis that a marker
is associated with a phenotype, whilst accounting for confounding
factors like population structure, and covariates like age, sex or weight.
The association test is framed in typical frequentist form, whereby a
null hypothesis (H0 : β = 0) is competed against an alternate hypoth-In mvLMM β is a

length P vector
containing the effect

size in each
phenotype dimension

(Equation 2.8).

esis (H1 : β 6= 0). False positives occur when the null hypothesis is
incorrectly rejected. A threshold, α, is decided a priori for an accept-
able false positive rate. A p-value is then calculated which measures
the probability of observing the given, or more extreme data, under
the null hypothesis. The null hypothesis is rejected if p-value < α.
The log-likelihood ratio test statistic, D, can be used to compare the
likelihood of the alternate model, H1, to the null model, H0, from
which the p-value is derived:

D = L(Y|β̂, Ĉg, Ĉn) −L(Y|0, C̄g, C̄n) (2.9)

L(Y|β̂, Ĉg, Ĉn) is the likelihood given the maximum likelihood esti-
mates of the parameters under the alternate model, and L(Y|0, C̄g, C̄n)
is the likelihood given the maximum likelihood estimates of the pa-
rameters under the null model. 2D follows a χ2 distribution from
which a p-value can be derived.

mvLMMs test phenotypes jointly, which can increase statistical power
in two ways. Firstly, differences in phenotypes between groups of
individuals can be larger in joint dimensions, than individual dimen-
sions (Figure 2.3). In the Figure 2.3 example, the difference between
the red and blue individuals is smaller in Y1 and Y2 than in the joint
combination of Y1 and Y2. The joint dimension could be mapped to
an individual dimension by a 45° rotation about the origin in either di-
rection. However, this would require knowing a priori what particular
rotation should be conducted. Moreover, in more complex, and realis-
tic, cases it may not be possible to detect which dimensions are those
most strongly associated with particular genetic effects. Secondly, test-
ing all phenotype dimensions in a single analysis reduces the number
of tests, and therefore less stringent multiple testing correction has to
be conducted.
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Figure 2.3: Joint analyses can detect larger effect sizes. Phenotypes Y1 and
Y2 are plotted for eight samples which differ at a single marker,
shown with colour. The effect on each individual phenotype of
the genetic marker is 1, whereas the effect on the joint phenotypes
is
√
2.

2.3.4 Correcting for multiple tests

Detecting which out of a set of genetic markers may be associated with
a phenotype of interest inherently requires conducting multiple tests.
This presents a problem in that running more tests increases the risk
of one or more p-values being smaller than α purely by chance. For
example if α = 0.05 and twenty trials are conducted on a system that
generates random p-values, by chance you would expect one trial to
have a p-value lower than α. A common way to account for multiple
testing is to multiply p-values by a factor equal to the number of tests Or divide α by the

same factor.conducted, known as Bonferroni correction (Bonferroni 1936). In the
example, this would mean multiplying each p-value by 20.

For most genetic analyses this would penalise p-values too harshly,
due to potentially high degrees of correlation between genetic markers.
If in a study of 1000 individuals there were only two markers, and
their profiles only differed in one individual, you would expect their
p-values and effect sizes to be similar. Intuitively, in this case it seems
wrong to scale the p-values by a full factor of two, given that the inde-
pendent variables in both cases are highly correlated. Instead, p-values
are scaled by the effective number of tests, t, which is computed based
on correlation among genetic markers. In this thesis t is calculated
using the Galwey (2009) method. Adjusted p-values are computed by
scaling a raw p-value by a factor of t.

2.3.5 Per-test phenotype variance decomposition

A computationally intensive step in GWAS is to decompose the phe-
notype variance into a genetic and error component. Mathematically,
this step is equivalent to estimating σ2g and σ2n in Equations 2.5 and
2.7, and requires having estimated R. In human GWAS effect sizes
are small meaning that computing σ2g and σ2n once, and reusing the
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values for each test conducted, is a good approximation and saves
computation. Single substitutions can have large effects on influenza
virus antigenicity (Lewis et al. 2011; Koel et al. 2013; Abente et al. 2016;
Koel et al. 2014), meaning this is a bad approximation which may
cause p-value deflation. Furthermore, in GWAS studies it is not feasi-
ble to recompute R on a per marker basis. Due to the comparatively
small number of markers used in this thesis the phenotype variance
can be decomposed for each association test. For each test, the AAP

being tested is removed from X, R is recomputed and σ2g and σ2n are
re-estimated.

2.3.6 Epistasis

Epistasis has subtly different meanings in different fields (Lehner
2011). Geneticists often use epistasis to describe the effects of one
gene masking another (Bateson 1909). In population genetics, it refers
more generally to any deviation from an additive combination of two
markers and is also sometimes referred to as an interaction. Here, I use
the second more general definition.

Testing for interactions is not routinely conducted in GWAS due to
the large number of tests required, although the question has received
attention (Marchini et al. 2005; Hu et al. 2014). In a study with S

markers, (S− 1)2/2 additional tests are required to test all pairwise
interactions. As previously mentioned, the influenza virus genome is
five orders of magnitude smaller than the human genome, and the
major determinant of the molecular basis of antigenic change has been
honed down to a small region in HA. The relatively small number of
markers to screen makes hunting for epistatic effects in the molecular
basis of antigenic change feasible. Testing for epistasis can be achieved
by extending the mvLMM framework presented above.

Consider two markers, xA and xB. Their interaction, xAB, is the
pairwise logical ’and’ of their profiles (Table 2.2). We would like to
test whether a fixed effect coefficient for xAB is not equal to zero.
Equation 2.8 can be modified so that xA, xB and xAB are included as
fixed effects:

Y = xAβ
T
A + xBβ

T
B + xABβ

T
AB +G+ψ

G ∼ MNN,P(0,R,Cg)

ψ ∼ MNN,P(0, IN,Cn)

(2.10)

The genetic and error random effects components are the same as
before, except that when variance is decomposed for each association
test, the two markers comprising the interaction term being tested
are both omitted when recomputing the Realised Relationship Matrix
(RRM). The interaction term is tested by competing a null hypothesis
(H0 : βAB = 0) against an alternate hypothesis (H1 : βAB 6= 0) as
described above.
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xA xB xAB

1 1 1

0 1 0

1 0 0

0 0 0

Table 2.2: Coding genetic interaction. Interaction between markers xA and
xB is the pairwise logical ‘and ’of their profiles.

2.3.7 Phenotype prediction

LMMs can be trained and used to predict phenotypes from genetic
markers. Observations the model is trained on are referred to as
in-sample, those for which predictions are made are referred to as
out-of-sample. A combined matrix for the genetic markers is generated
by stacking the in-sample, X, and out-of-sample, X∗, markers:

Xall =

[
X

X∗

]
(2.11)

R is computed as before (Equation 2.6) but is now referred to as Rall.
Different sections of Rall correspond to covariance matrices of subsets
of the data:

Rall =

[
R RT×

R× R∗

]
(2.12)

R is the in-sample covariance matrix, R∗ is the out-of-sample covari-
ance matrix, and R× is the cross covariance matrix between in-sample
and out-of-sample markers. σ2g and σ2n are estimated having trained RT× is the transpose

of R×the model on the in-sample individuals. The joint distribution of the
known, y, and unknown, y∗, phenotype vectors are modelled as:[

y

y∗

]
∼ N

(
0,

[
σ2gR+ σ2n σ2gR

T
×

σ2gR× σ2gR∗

])
(2.13)

which allows the prediction of the out-of-sample phenotype, y∗:

y∗ = σ2gR
T
×(σ

2
gR+ σ2n)

−1y (2.14)

Equation 2.14 is known as the Best Linear Unbiased Predictor (BLUP).
BLUP has been applied extensively to predict phenotypes in animal
breeding (Robinson 1991). It also generalises to mvLMMs and can
include fixed effects. For more details see Casale (2016).

2.4 predicting antigenic coordinates of influenza viruses

I tested the accuracy of BLUP for predicting antigenic coordinates of
influenza viruses. I used three published human A(H3N2) influenza
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virus antigenic maps for which many antigens have an associated HA1

sequence: the Smith et al. (2004) map, which contains 273 antigensThe Russell
et al. (2008b) and Li

et al. (2016) maps
look qualitatively

different to the Smith
et al. (2004) map.

This is addressed in
detail in Appendix A.

isolated between 1968 and 2003 (Figure 1.4); the Russell et al. (2008b)
map, which contains approximately 13,000 antigens isolated between
2002 and 2007, 1,416 of which have HA1 sequences (Figure 2.4a); and
the Li et al. (2016) map, which contains 1,226 antigens with HA1

sequences that were isolated between the beginning of 2014 and July
2015 (Figure 2.4b).

2002

2003

2004

2005

2006

2007

Y
ea
r

WI05

CA04FU02

SY97

(a) Russell et al. (2008b).

2014-01

2014-05

2014-09

2014-12

2015-04

D
at
e

PE09 SW13SW13

HK14

(b) Li et al. (2016).

Figure 2.4: Human A(H3N2) influenza virus antigenic maps from Russell
et al. (2008b) and Li et al. (2016). Black egg symbols indicate
vaccine antigens; dashed lines delimit different antigenic variants
referred to in the text.

There is a gap in the time these maps cover from 2007 to 2014

between the Russell et al. (2008b) and Li et al. (2016) maps and from
2015 to the present day since the Li et al. (2016) data was published.
However, between 2007 and 2014, no major antigenic variants other
than Wisconsin/67/2005 A(H3N2)-like (WI05) and Perth/16/2009

A(H3N2)-like (PE09) circulated, and these variants are both repre-
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sented in these two maps. Similarly, since 2015, no major antigenic
variants other than those that are present in the Li et al. (2016) map
have circulated. Therefore, although there are temporal gaps, these
three datasets cover all major antigenic variants of human seasonal
A(H3N2) influenza viruses that have circulated since the A(H3N2)
subtype began circulating in humans in 1968. Attempts to generate a
single map containing A(H3N2) viruses from 1968 to the present day
are ongoing, but have been hampered by changes in the types of red
blood cells that agglutinate influenza viruses, and additional reasons
outlined in Subsection 1.3.3.

2.4.1 Measuring BLUP error

I used a four-fold approach to measure BLUP error on each dataset.
Each dataset was randomly partitioned into four as near to equal sized
folds. Then, antigenic coordinates of one fold (out-of-sample) were
computed having learnt the parameters in Equation 2.14 from the
remaining three folds (in-sample). Koel et al. (2013) showed that the
antigenicity of human A(H3N2) influenza viruses is determined by
HA positions 109-301. Therefore, I restricted all analyses to using only
HA positions 109-301. For more details see Section 2.3.

The error associated with a predicted antigenic coordinate can be
expressed as the Euclidean distance between the predicted position
and the true position. Distances, and therefore this error, cannot be
negative, which may contribute to the positive skew of prediction
error distributions (Figures 2.5–2.7). The median is a better measure
of central tendency than the mean for skewed distributions, although
both statistics are reported in Figures 2.5–2.7. The grand median of
the errors for each dataset are Smith et al. (2004): 1.02 AU; Russell
et al. (2008b): 1.54 AU; and Li et al. (2016): 1.03 AU. For comparison,
Smith et al. (2004) predicted unknown HI titres from an antigenic map
with an error of 0.83 AU.
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Figure 2.5: BLUP error estimated on the Smith et al. (2004) antigenic map.
Each row shows of of the four random folds of the data; antigenic
maps are shown on the right, histograms of the error distribution
on the left. In the map, the predicted position of each out-of-
sample antigen is connected to the true position by a line. Vertical
lines on histograms indicate the median. This map is the same as
in Figure 1.4 except it has been rotated 90° counter-clockwise and
the antisera are not shown.
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Figure 2.6: BLUP error estimated on the Russell et al. (2008b) antigenic map.
See Figure 2.5 for a description.
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Figure 2.7: BLUP error estimated on the Li et al. (2016) antigenic map. See
Figure 2.5 for a description.
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2.4.2 Discussion

BLUP yields highly accurate predictions of antigenic phenotypes in
the three datasets investigated here. This is true even for the Smith
et al. (2004) dataset which has notably sparser temporal sampling
than the other two datasets. This suggests there is sufficient signal in
even relatively small datasets to predict antigenic phenotypes from HA

sequences. Traditionally, surveillance centres have used an assay-first
approach where all surveillance samples were assayed, and a subset
of those were selected for genetic sequencing. Given that methods like
BLUP can accurately predict antigenic phenotypes from HA sequence,
the relatively low price and ease of sequencing makes a sequence-first
approach appealing.

The current need to assay many isolates may be made superfluous
by these methods. Research and surveillance effort may be better
utilised generating smaller, high quality maps, that would provide
quality training data for predicting antigenic phenotypes of all viruses
that are sequenced.

Any method for predicting antigenic phenotypes using HA sequence
may not accurately predict the phenotypes of viruses that are anti-
genically distinct from those the method has been trained on. An
extreme example to illustrate this point would to predict the antigenic
coordinates of a virus from the Hong Kong 1968 antigenic cluster
having trained a model on the Li et al. (2016) antigenic map. The true
antigenic position of the virus would be many tens of antigenic units
away from the Li et al. (2016) map which the model could not pre-
dict. Therefore, a sequence-first surveillance approach must prioritise
conducting titrations on viruses that exhibit genetic variation at and
around sequence positions known to cause antigenic change, in order
not to miss emerging antigenic variants. This is highly feasible given
our detailed understanding of HA positions responsible for antigenic
change in influenza viruses (Wiley et al. 1981; Wilson and Cox 1990;
Lewis et al. 2011; Koel et al. 2013; Koel et al. 2014; Lewis et al. 2014;
Abente et al. 2016).

Methods like BLUP may be able to extract components of antigenic
variation that can be explained by genetic variation, thereby removing
noise and easing interpretation. I have called this novel idea map
sanitising. It is currently untested and tangential to the main subject
of this thesis. I therefore introduce and discuss it more thoroughly in
Appendix A.

BLUP predictions are used in this thesis to predict the antigenic
coordinates of strains that were sequenced but not titrated in data
presented in Chapter 3. This allowed me to substantially increase the
number of viruses in those analyses.
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Q UA N T I F Y I N G T H E R E L AT I O N S H I P B E T W E E N
A N T I G E N I C M I S M AT C H A N D VA C C I N E
E F F E C T I V E N E S S

chapter outline In this chapter I perform a quantitative com-
parison of VE and antigenic mismatch, using published VE estimates
and antigenic mismatch measurements derived from antigenic maps.
I then model the relationship to estimate the increase in VE that can be
expected if antigenic mismatch in influenza vaccines were ameliorated.

3.1 introduction

It is widely acknowledged that influenza is an antigenically variable
pathogen, and that vaccine strains must be updated when antigenically
novel viruses emerge and circulate widely. When the vaccine strain is
antigenically dissimilar to circulating strains, the vaccine is said to be
antigenically mismatched. Throughout this chapter I will refer to this
phenomenon simply as mismatch.

It is often stated that mismatch reduces VE (Paules et al. 2017; Lyons
et al. 2018; Erbelding et al. 2018; Krammer 2019). There is strong
theoretical reasoning to support this claim; hosts develop antibodies
that are specific to strains previously encountered during infection or
vaccination, therefore closer antigenic matches between prior exposure
and a subsequent infection should yield higher affinity antibodies to
the infecting strain.

3.1.1 Existing data linking VE and mismatch

However, data linking mismatch to VE is complex and sometimes
contradictory. Some studies on individual influenza seasons do find
the negative relationship between mismatch and VE that is predicted
by the above mechanism (Zimmerman et al. 2016; Flannery et al. 2016).
Findings from other studies are either ambiguous or would imply a
positive relationship between mismatch and VE (Skowronski et al. 2007;
Belongia et al. 2011; Fielding et al. 2016). Aggregating these data is
difficult due to loose definitions of low or high VE and mismatch, and
methodological differences between studies, and biases in VE estimates
derived from studies that use the Test Negative Design (TND) (Jackson
and Nelson 2013; De Serres et al. 2013; Sullivan et al. 2016; Foppa
et al. 2013).

Studies that include multiple influenza seasons should exhibit lower
methodological variation, (but different TND biases between seasons

43
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may still exist). One study, spanning three influenza seasons, found
large variation in VE, and that the highest VE coincided with the lowest
proportion of mismatched strains (Belongia et al. 2009). A 2013 meta-
analysis attempted to clarify the link between vaccine efficacy and
mismatch (Tricco et al. 2013). The authors calculated separate Relative
Risk (RR) scores for matched and mismatched influenza infections from
published Randomly Controlled Trials (RCTs). Mismatch classification
was based on data in the primary sources, or on HI assays using
ferret antisera. The analysis showed a slight trend for increasing RR

(decreasing VE) during mismatch seasons, but with substantial overlap
between the distributions (Figure 3.1).
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Figure 3.1: RR from the Tricco et al. (2013) meta-analysis. RR measured in RCTs,
for (a) LAIVs and (b) Trivalent Inactivated Vaccines (TIVs). X-axis
labels refer to studies cited by Tricco et al. (2013). (c) Summary of
groups in (a) and (b) using Kernel Density Estimation (KDE). Indi-
vidual measurements within each group are shown as horizontal
lines inside the KDE.
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Tricco et al. (2013) highlight that their treatment of mismatch as
binary is overly simplistic and that “cross protection inferred by mis-
match strains should be analyzed as a continuum in the future”. There
are two components of mismatch that are often used without acknowl-
edging the difference.

C
o
u
n
t

Antigenic distance
from vaccine

Matched Mismatched Antigenic distance
from vaccine

C
o
u
n
t

(A) (B) (C)

Antigenic distance
from vaccine

Vaccine
Ant

ig
en

 1

Ant
ig

en
 2

Ant
ig

en
 3

Threshold

Figure 3.2: Components of antigenic mismatch. (A) Mismatch may relate to
the degree of cross reactivity between an antigen and antiserum.
Antigen 3 is more mismatched than antigen 1. (B) Mismatch
may also relate to the number of circulating strains that are
classified as either matched or mismatched. (C) This study uses
’mismatch distributions’ which flexibly represent the abundance
of circulating strains across the mismatch continuum.

The first component relates to the degree of reactivity between anti-
serum and antigen, which manifests itself as distance in an antigenic
map (Figure 3.2A). For instance, in the 1997-1998 influenza season anti-
genically novel A/Sydney/1997 (H3N2)-like (SY97) viruses replaced
A/Wuhan/1995 (H3N2)-like (WU95) viruses. Jong et al. (2000) showed
that antisera from ferrets vaccinated with WU95 had a substantially
lower HI titre to SY95. In an antigenic map, a WU95 antiserum would
be further away from a SY97 antigen than a SY97 antiserum. More
recently, Xie et al. (2015) show similar patterns for the transition from
A/Texas/2012 (H3N2)-like viruses to A/Switzerland/2013 (H3N2)-
like viruses. These studies stress the importance of the fold change in
reactivity between antisera raised against the vaccine antigen and the
antigens that circulated.

The second component is the proportion of circulating viruses that
are mismatched (Figure 3.2B). In the above example, if only 1 % of
circulation comprised the antigenically novel SY97-like viruses in
the ’97-’98 season, then the majority of strains would still have been
antigenically matched, and VE would (presumably) have been higher.
Numerous studies compute this by measuring the proportion of iso-
lates that exceed a threshold HI titre to reference antisera (Skowronski
et al. 2007; Belongia et al. 2009; Fielding et al. 2016; Skowronski et
al. 2017). These approaches require selecting a threshold titre and
classifying strains as either matched or mismatched.

To summarise, a season with ’low antigenic mismatch’ may be one
in which either the circulating strains are at a close antigenic distance
to the vaccine, or one in which only very few mismatched strains
circulated. In reality, both effects combine making a binary classifi-
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cation system unsuitable. Here, I use positions of vaccine antigens
and circulating strains estimated by antigenic cartography as the basis
for assessing mismatch distance (Figure 3.2C). Antigenic coordinates
vary continuously, therefore a threshold titre to define matched vs.
mismatched is not required. Further, I use sampling strategies that
allow variation in both the mismatch distance, and the proportion of
strains that circulated at different mismatch distances to filter through
to the fit of summary figures.

VE is typically measured by national bodies, so VE estimates relate
to specific influenza seasons within a country. Country- and season-
specific mismatch distributions were derived using knowledge of
the vaccine strains used in by a country in a particular season, and
isolation location and date of strains. These mismatch distributions
were paired with the associated VE measure for that country and
season. All analyses were conducted on the A(H3N2) influenza virus
subtype. These data allowed me to conduct the first quantitative
analysis on the relationship between mismatch and VE.

3.1.2 Measuring VE

This subsection briefly introduces how VE is estimated using the TND,
and how the raw data counts from a TND study are used to calculate
VE. The TND enables VE to be monitored across seasons using a case-
control strategy. TND studies are cheaper, and whilst RCTs are better
controlled, they only provide temporal-, geographic- and subtype-
specific estimates of VE (Fukushima and Hirota 2017).

Individuals that present at medical institutions with ILI are tested
for the presence of influenza virus. The gold-standard assay for this is
Polymerase Chain Reaction (PCR) to detect the presence of influenza
virus RNA in a clinical sample. Influenza positive individuals are
matched to influenza negative individuals and vaccination status
is ascertained by self reporting, or by reference to a database. This
strategy controls for medical seeking attention between vaccinees
and non-vaccinees, however the estimates may not extrapolate to
non-medical seeking sections of the population (Belongia et al. 2009).
Relative proportions of individuals that do and do not have influenza,
and whether of not they were or were not vaccinated are used to
estimate VE. Formally, a contingency table is constructed containing
counts in each group and VE is computed from the Odds Ratio (OR)
(Table 3.1, Equation 3.1).

VE% = 1−OR

= 1−
Iv/Uv

Iu/Uu

(3.1)
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Infected Uninfected

Vaccinated Iv Uv

Unvaccinated Iu Uu

Table 3.1: TND contingency table.

VE estimates are widely reported with a 95 % confidence interval
which is derived from the standard error of the OR (Morris and Gard-
ner 1988):

SE(logOR) =
√
1

Iv
+
1

Uv
+
1

Iu
+
1

Uu
(3.2)

The 100(1−α)% confidence interval is calculated by first computing
Y and Z:

Y = logOR− (N1−α/2 × SE(logOR))

Z = logOR+ (N1−α/2 × SE(logOR))
(3.3)

where N1−α/2 is the value from the standard normal distribution of
the 1− α/2 percentile. The range of the confidence interval is then
generated by exponentiating Y and Z.

3.2 methods

3.2.1 Mismatch distributions

Antigenic maps of data generated at the Centers for Disease Control
and Prevention (CDC), U.S.A., and Victorian Infectious Diseases Refer-
ence Laboratory (VIDRL), Australia, as part of routine work conducted
by the WHO GISRS (Russell et al. 2008a), were used as the source of
antigenic data. For each season (Table 3.2), an antigenic map was taken
from the subsequent WHO vaccine consultation meeting; i.e. for the
2016–2017 northern hemisphere season, a map from the meeting that
occurred in September 2017 was used.

Virus strains with a sequenced HA, but that were not titrated for
inclusion in an antigenic map had their antigenic coordinates pre-
dicted using BLUP (Chapter 2). BLUP can be used to accurately predict
antigenic coordinates (Subsection 2.4.1), and allowed larger sample
sizes to be used in this analysis (Figure 3.3 and Appendix C).

HA amino acid sequences were accessed from the Global Initiative
on Sharing All Influenza Data (GISAID) database on 9

th September 2018

(Shu and McCauley 2017) using the following query: type, A; H, 3; N,
2; host, human; submission from, 2000-01-01; submission to, 2018-09-
09; required segments, HA. One empty sequence was removed: EPI
ISL 285510. Three sequences labelled as influenza B viruses were also
removed: EPI ISL 170670, EPI ISL 301415, EPI ISL 255542. Sequences
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Country, Season Mean Median Titrated Predicted Total Figure

Australia, 2007 2.33 2.28 100 7 107 C.1

Australia, 2008 3.36 3.21 140 9 149 C.2

Australia, 2010 1.46 1.27 85 34 119 C.3

Australia, 2012 3.08 3.11 273 170 443 C.4

Canada, 2006–2007 1.26 1.08 16 29 45 C.5

Canada, 2007–2008 2.18 2.35 9 0 9 C.6

Canada, 2008–2009 3.47 3.26 17 11 28 C.7

Canada, 2010–2011 3.30 3.24 5 146 151 C.8

Canada, 2011–2012 2.75 2.81 4 72 76 C.9

Canada, 2012–2013 3.22 3.23 5 171 176 C.10

Canada, 2014–2015 3.72 4.13 14 493 507 C.11

Canada, 2016–2017 3.39 3.40 19 2109 2128 C.12

China, 2012–2013 3.17 3.23 11 43 54 C.13

New Zealand, 2013 2.22 2.36 4 17 21 C.14

South Africa, 2014 3.74 3.75 0 9 9 C.15

Spain, 2008–2009 2.83 2.90 0 212 212 C.16

Spain, 2011–2012 2.86 2.85 0 46 46 C.17

Spain, 2013–2014 3.34 3.31 0 248 248 C.18

Spain, 2014–2015 3.43 4.14 0 503 503 C.19

U.K., 2011–2012 2.74 2.82 1 41 42 C.20

U.K., 2012–2013 3.10 3.08 0 22 22 C.21

U.K., 2014–2015 3.35 4.14 0 392 392 C.22

U.S.A., 2007–2008 1.14 1.20 128 771 899 C.23

U.S.A., 2010–2011 3.12 3.17 699 475 1174 C.24

U.S.A., 2011–2012 3.04 2.95 1286 442 1728 C.25

U.S.A., 2012–2013 3.29 3.29 1362 1408 2770 C.26

U.S.A., 2014–2015 3.43 3.94 833 1965 2798 C.27

U.S.A., 2015–2016 2.43 2.39 422 968 1390 C.28

U.S.A., 2016–2017 3.54 3.45 820 2693 3513 C.29

U.S.A., 2017–2018 3.34 3.28 242 1370 1612 C.30

Table 3.2: Summary of antigenic mismatch measurements. Mean and Median
are summary statistics of antigenic distances between strains that
circulated in a country and season and the mean vaccine location.
Titrated, Predicted and Total are counts of strains of each type in
the map. Figure refers to the figure number showing the map and
full distribution of distances in Appendix C.
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were aligned in MAFFT version 7.407 (Katoh and Standley 2013). The
alignment was visually inspected and trimmed to positions 1–328 of
HA1 (Burke and Smith 2014) in AliView (Larsson 2014). This alignment
formed the sequence database from which antigenic coordinates of
strains that were not titrated were predicted from. A LMM was trained
on all antigens in a map that had a sequence in the database. Matching
strains between the antigenic map and sequence database was done
strictly whereby all fields in the virus identifier had to match. Then,
strains that circulated in a time period that the map is being used for
were predicted using BLUP (Chapter 2).

For each country-season combination I generated a ’mismatch dis-
tribution’ which consists of the set of antigenic distances between each
strain surveilled in a given country during a given season to that of
the vaccine strain. Sometimes there are multiple different passages
of the vaccine antigen and it was not possible to ascertain which spe-
cific passage was used by the vaccine manufacturer. In these cases,
mismatch distributions were measured against the mean antigenic
position of all vaccine antigens.

Sometimes multiple maps for a single season are available because
the titrations originate from different laboratories, or a single labo-
ratory conducted multiple assays using erythrocytes from different
species. In seasons with multiple maps, all variant maps were used
to generate independent mismatch distributions, which were then
compared. A decision on which antigenic map to use was made based
on the sample size and erythrocyte preference during that time period
(see Subsection 1.3.3). See Appendix B for a comparison of mismatch
distributions when multiple maps were available and an explanation
of all decisions made. Antigenic maps used to derive mismatch distri-
butions for the U.S.A. 2016–2017 and 2017–2018 influenza seasons are
shown in Figure 3.3. See Appendix C for similar figures for all country-
season combinations and Table 3.2 for a summary of all mismatch
distributions.

3.2.2 Sources of VE estimates

I used VE estimates from a 2016 meta-analysis (Belongia et al. 2016) and
additional VE estimates from subsequent studies (Table 3.3). The stan-
dard error of the OR, from which VE is derived, is normally distributed
on the log-scale, therefore, all regression analyses were conducted on
log-transformed OR values.
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Figure 3.3: Antigenic maps used to derive mismatch distributions. Orange
and green antigens circulated in the given season and country. Or-
ange antigens were titrated, green antigens were sequenced and
their antigenic coordinates were predicted using BLUP. Blue anti-
gens were titrated and sequenced so comprise the BLUP training
data. Vaccine antigens are pink, and the mean vaccine position is
shown by a cross. All other antigens in the map, which circulated
in a different season and/or in a different country are shown
in black. Maps also display marginal densities of each dataset
at the top and right. Mismatch distributions are shown in the
right panel. The lines trace the height of histogram bins which
have a width of 0.5 AU. Appendix C contains these figures for all
country-season combinations.
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Country, Season 1° 2° VE VE 95% CI

Australia, 2007 B-16 Belongia et al. (2016) 68 32–85

Australia, 2008 B-16 Belongia et al. (2016) -66 -349–39

Australia, 2010 B-52 Belongia et al. (2016) 3 -495–84

Australia, 2012 B-52 Belongia et al. (2016) 46 21–63

Australia, 2012 B-46 Belongia et al. (2016) 35 -11–62

Australia, 2012 B-54 Belongia et al. (2016) 13 -20–36

Canada, 2006-2007 SPSN (2017) - 41 6–63

Canada, 2007-2008 B-22 Belongia et al. (2016) 57 32–73

Canada, 2008-2009 SPSN (2017) - 55 33–70

Canada, 2010-2011 B-42 Belongia et al. (2016) 39 14–57

Canada, 2011-2012 B-43 Belongia et al. (2016) 51 10–73

Canada, 2012-2013 B-41 Belongia et al. (2016) 41 17–59

Canada, 2014-2015 B-62 Belongia et al. (2016) -8 -50–23

Canada, 2016-2017 SPSN (2017) - 42 18–59

China, 2012-2013 B-57 Belongia et al. (2016) 43 -30–75

New Zealand, 2013 B-55 Belongia et al. (2016) 61 32–77

South Africa, 2014 B-60 Belongia et al. (2016) -18 -172–48

Spain, 2008-2009 B-38 Belongia et al. (2016) 56 21–75

Spain, 2011-2012 Gherasim et al. (2017) - 29 -11–55

Spain, 2013-2014 Gherasim et al. (2017) - -18 -104–31

Spain, 2014-2015 Gherasim et al. (2017) - -15 -101–34

U.K., 2011-2012 B-35 Belongia et al. (2016) 23 -10–47

U.K., 2012-2013 B-49 Belongia et al. (2016) 26 -4–48

U.K., 2014-2015 B-61 Belongia et al. (2016) -2 -56–33

U.S.A., 2007-2008 Belongia et al. (2011) CDC (2019) 41 24–53

U.S.A., 2010-2011 B-47 Belongia et al. (2016) 54 42–64

U.S.A., 2010-2011 B-8 Belongia et al. (2016) 48 1–73

U.S.A., 2011-2012 B-34 Belongia et al. (2016) 39 23–52

U.S.A., 2012-2013 B-53 Belongia et al. (2016) 39 29–47

U.S.A., 2014-2015 Zimmerman et
al. (2016)

CDC (2019) 6 -5–17

U.S.A., 2015-2016 Jackson et al. (2017) CDC (2019) 43 4–66

U.S.A., 2016-2017 CDC (2017) CDC (2019) 34 —-

U.S.A., 2017-2018 Flannery et al. (2017) CDC (2019) 25 13–36

Table 3.3: Summary of VE data. ’1°’ refers to primary sources; those prefixed
’B-’ refer to reference within Belongia et al. (2016). ’2°’ refers to
secondary sources. Primary references from Belongia et al. (2016)
are not duplicated here.
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3.3 results

3.3.1 VE vs. antigenic mismatch

VE is independent of mismatch until approximately 3 AU, and then
declines with increasing mismatch (Figure 3.4). Figure 3.4 is probably
an overly simplistic representation of the data. Mismatch distributions
are often irregular (Appendix C) so the horizontal error bars, whilst
not symmetrical, are a poor summary of those distributions. Similarly,
it is difficult to asses the error in VE particularly around a mismatch
of 3 AU where there is a high amount of overlap.
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Figure 3.4: Relationship between VE, OR, and antigenic mismatch. Vertical
bars show to the 95 % confidence interval of the VE estimate.
Horizontal bars show the interquartile range of the mismatch
distribution. (A) VE vs. antigenic mismatch. VE is expressed as
a proportion of one. (B) OR vs. antigenic mismatch. A log-scale
is used which highlights the symmetrical distribution of the y
confidence interval.

3.3.2 Sampling from VE and mismatch distributions

In an attempt to better represent the data, for each country-season
combination I generated a sample of 1000 pairs of VE and mismatch
observations from their underlying distributions (Figure 3.5). For the
y variable I sampled from the log(OR) distribution specified by the
mean and 95 % confidence interval of the VE estimate. For the mis-
match distributions, I modelled the vaccine and circulation antigenic
coordinates using KDE. KDE is a non-parametric approach to estimate
the probability distributions from which data are derived. Here, they
flexibly capture the idiosyncratic distributions of antigenic coordinates
of circulating and vaccine antigens, and therefore suitably represent
confidence in the antigenic locations of viruses in a particular season.
If very few strains are known for a particular season the KDE becomes
broader (compare the KDEs for the nine strains known from Canada
2007–2008 to that of the 151 known for Canada 2010–2011, Figure 3.6).
When a dataset contained more than five strains, KDE bandwidth was
estimated using 3-fold cross validation. Otherwise, the bandwidth
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Figure 3.5: Joint distribution of VE and mismatch. (A) OR vs. antigenic mis-
match having sampled the underlying distributions of data in
both axes (see text for details). Red marks correspond to the point
estimates that are visualised in Figure 3.4B. (B) Data in (A) plotted
as a 2D histogram. The xy space is divided into hexagonal cells
and the number of data points inside each cell is indicated using
a colour scale (right). A cell with a count of zero is shown in black.
Point estimates of x and y are shown in red.

was derived from estimates of map error based on the variance of
antigenic coordinates of genetically identical strains (Figure A.1). KDEs

for each country-season combination were sampled according to their
probability density function, and used to generate 1000 pairs of vac-
cine and circulating strains. The antigenic distance within the pairs
was computed and matched to a random sample from the log(OR)
distribution (Figure 3.5).

Figure 3.5B shows that the distribution is tighter in y compared
to x than is implied by Figure 3.4. The region between 1.2 AU to
2.2 AU which is poorly sampled when viewing only median mismatch,
continues to show support for the approximately flat relationship
between VE and mismatch at mismatch distances of less than 3 AU.
Low VE outliers that are striking when looking at point estimates tend



54 vaccine effectiveness and antigenic mismatch

(a) Canada 2007–2008 (b) Canada 2010–2011

Figure 3.6: KDEs used to represent antigenic coordinates of circulating strains
and vaccine strains. (a) The top panel shows strains that circu-
lated in Canada in the 2007–2008 influenza season. The bottom
panel shows vaccine antigens used in this country and season.
Antigenic coordinates of individual strains are shown with grey
dots, contours display the probability density function of the KDE

of each dataset. Left sub-figures show a top down view of the
KDE. Right sub-figures show a 3D projection with the shape of the
KDE also projected onto the margins. (b) The Canada 2010–2011

season data plotted as in (a).

to have wide x and y distributions, meaning they do not contribute
strongly to the signal in the data.

3.4 modelling the relationship

A predictive model of influenza virus VE should include some measure
relating to mismatch (Figure 3.5). Additional factors such as subtype,
country and vaccine type may explain additional variance in the data.
Dissecting how different factors contribute to VE is clearly interest-
ing scientifically, and useful for optimising vaccine strain selection.
Parametrising these factors may inform the best areas to focus research
effort and funding. In lieu of a wider and more complete dataset, I
present here the first step in developing a more complete model. In all
subsequent analyses in this chapter, log(OR), y is the response variable,
and median antigenic mismatch, x, is the sole predictor.

3.4.1 Weighting

Confidence intervals on VE estimates are highly variable (Table 3.3).
Ideally, tighter confidence estimates should have a greater influence on
model fit. Conceptually, the likelihood of the model should increase if
there is less residual error for a high confidence observation, than for
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a low confidence observation. Given a predictor, x, and a response, y,
a standard, non-weighted, linear model can be cast as:

yi = α+βxi + εi

ε ∼ N(0,σ2)
(3.4)

Where α is the effect size, β is the intercept, and error, ε follows
a normal distribution with a mean of zero, and variance σ2. This
is known as Ordinary Least Squares (OLS) regression. In contrast,
Weighted Least Squares (WLS) regression incorporates the variance of
each observation by modelling the error with a multivariate normal
distribution:

yi = α+βxi + εi

ε ∼ N(0,Σ)

Σ =


σ21 0 · · · 0

0 σ22 · · · 0
...

...
. . .

...

0 0 · · · σ2n


(3.5)

The covariance matrix of the error distribution is filled with zeros,
except for the leading diagonal which contains the variance of each
observation, σ2i .

I conducted OLS and WLS using median antigenic mismatch as
the predictor and log(OR) as the response, and found that model
fit is insensitive to weighting (Figure 3.7). An explanation for this
is that although observations are heteroscedastic, no regions of the
data have particularly low variance to pull the WLS fit away from the
OLS fit. Therefore, although variance is not uniform it appears to be
randomly distributed throughout the dataset. Given the similarity
between the OLS and WLS fits, all subsequent analyses were conducted
using unweighted methods.

3.4.2 Alternative models

The relationship between mismatch and VE is clearly not linear (Fig-
ure 3.4). The bulk of the data between mismatch values of 2.5 AU to
3.5 AU fit well, but the data do not increase at low mismatch, nor
decrease at high mismatch as the model predicts. I conducted a model
comparison analysis to determine a more appropriate fit. Against the
linear model (Equation 3.4, Figure 3.8a) I compared three additional
models:

1. Offset linear:

yi

α+ εi xi 6 γ

α+β(xi − γ) + εi xi > γ

ε ∼ N(0,σ2)

(3.6)
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Figure 3.7: OLS and WLS fits to the VE vs. mismatch data. Vertical error bars
show the 95 % confidence interval in the VE estimate. The bottom
of some error bars are trimmed, see Table 3.3 and Figure 3.5
for untrimmed error bars. This figure is plotted in VE space, but
regressions are conducted on log(OR) which causes the non-linear
relationship in this figure. Figure 3.4 shows the mapping of VE to
log(OR).

where y is a constant, α, up to a particular x value, γ, where-
after it becomes linearly dependent on x (Figure 3.8b). This was
motivated a posteriori as a simple formulation with constant and
linear phases.

2. Inverse logit:

yi = γ−
δ

1+ eβ(xi−α)
+ εi

ε ∼ N(0,σ2)
(3.7)

Here, y has two constant phases at low and high x which are
linked sigmoidally (Figure 3.8c). The inverse logit model has
been used to model the relationship between pre-vaccination HI

titre and risk of influenza infection (Coudeville et al. 2010).

3. Exponential:

yi = α+ eβxi + εi

ε ∼ N(0,σ2)
(3.8)

One difference to the inverse logit model used by Coudeville
et al. (2010) is that the authors bounded the inverse logit function
such that it did not exhibit an inflection point. The exponential
model here exhibits a similar shape (Figure 3.8d).

I used a Bayesian framework to sample posterior distributions of
model parameters and used weak uninformative priors. A normal
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distribution with mean zero and standard deviation of ten was used as
the prior for parameters that can be any real number. A Half Cauchy
distribution with β = 10 was used for parameters only requiring
support for values greater than or equal to zero. Model parameters
were sampled one million times using the Sequential Monte Carlo
step algorithm implemented in PyMC3 (Salvatier et al. 2016). Param-
eter samples were assessed for convergence, and are summarised in
Figure 3.8.
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Figure 3.8: Model comparison of log(OR) as a function of mismatch. A ran-
dom 100 of the one million posterior distribution samples are
shown in light grey. The mean of each parameter was used to
visualise the average model, overlaid as a solid coloured line.
Dashed lines indicate plus and minus the mean of the sampled
standard deviation of error from the mean model.

Poor suitability of linear model is shown by a divergence between
the posterior samples and the data above 4 AU and below 2 AU mis-
match. Under the linear model, samples are drawn such that they go
through the bulk of the data at approximately 3.5 AU. This leads to
poor extrapolation at the mismatch extremes, and despite the slopes
being highly diverse, the linear model samples do not cover the ex-
treme mismatch values well. The three other models suffer less from
this issue, and have tighter distributions of samples at the extremes of
mismatch.

The y-intercept of the models can be interpreted as the VE given a
perfectly matched vaccine. y-intercepts of the offset linear and inverse
logit models are relatively consistent with each other (means of -0.61

and -0.56 respectively), in contrast to the exponential model (mean of
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Figure 3.9: Posterior distribution of y-intercepts for offset linear, inverse logit
and exponential models. The black dashed line indicates the
mean.
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Figure 3.10: Posterior distribution of error parameters from VE-mismatch
models. Each figure shows the distribution of σ for a different
model. The black dashed line indicates the mean.

-0.83) (Figure 3.9). Precise y-intercept estimates should not be taken
from this analysis due the paucity of data at low antigenic mismatch.

The VE predicted when mismatch tends to large values also has a
clear interpretation, in that it should correspond to a VE of a vaccine
with no cross reactivity to circulating strains. A vaccine that provides
no cross reactivity with circulating influenza strains should produce
VE = 0 or OR = 1. Conceptually, this could be a vaccine from a dif-
ferent influenza virus subtype, or even an entirely different pathogen.
Ideally then, as mismatch increases, VE should tend to zero, and OR

should tend to one. The only model investigated here that tends to a
constant value at high mismatch is the inverse logit. Furthermore, it is
encouraging that the constant value the inverse logit model tends to at
high mismatch is OR = 1. Predictions from the other three models of
VE given antigenic mismatch should not be extrapolated at mismatch
distances above the range of the data. The offset linear model could
be further extended such that it has a second constant phase at high
mismatch.

The standard deviation of the error term in the models, σ, captures
how much variance is not explained by mismatch in each model. The
offset linear, inverse logit and exponential models all explain a similar
amount of variance in VE as each other, and each explain a higher
amount than the linear model (Figure 3.10). Similar estimates of this
parameter, excluding the linear model, suggests other factors may be
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A

Linear Offset linear Inverse logit Exponential

B

Linear - 1.115 1.730 34.589

Offset linear 0.897 - 1.551 31.012

Inverse logit 0.578 0.645 - 19.996

Exponential 0.029 0.032 0.050 -

Table 3.4: VE-mismatch Bayes factors. Bayes factors are presented as the
marginal likelihood of model A divided by the marginal likelihood
of model B.

important in explaining variance in VE, rather than requiring a more
complex model that only incorporates mismatch.

3.4.3 Quantitative model comparison

Use of the Sequential Monte Carlo step algorithm enabled computation
of marginal likelihoods, which can be used for model comparison.
Ratios of marginal likelihoods between models (Bayes factors) quantify Bayes factors can be

approximated by the
Bayesian
Information
Criterion (BIC),
which is similar to
the Akaike
Information
Criterion (AIC).

the relative support for one model over another, whilst compensating
for model complexity.

Marginal likelihoods for each model were as follows: linear, 8.435E-
28; offset linear, 9.408E-28; inverse logit, 1.459E-27; exponential, 2.918E-
26. A widely used heuristic is to declare ’substantial support’ for the
model in the numerator of the Bayes factor if the Bayes factor is greater
than three (Kruschke 2014). All Bayes factors of all combinations of the
linear, offset linear and inverse logit are in between a value of one and
two (Table 3.4), suggesting there is no strong evidence to prefer any
one of these three models over another. The exponential:linear and
exponential:offset linear Bayes factors both exceed 30, and exponen-
tial:inverse logit is just under 20, which suggests a strong preference
for the exponential model.

Equivocal Bayes factors among the non-exponential models, despite
the inverse logit and offset linear models fitting the data better, and
having lower σ parameter estimates, is due to their higher model
complexity. The inverse logit and offset linear models require one and
two additional parameters relative to the linear model. In a Bayesian
framework, additional parameters penalise the marginal likelihood of
a model by having diluted the prior probability of parameter values
that are consistent with the data. The exponential model is preferred
because it fits the data approximately as well as the offset linear and
inverse logit models, but also has the lowest number of parameters
(equal to that of the linear model).



60 vaccine effectiveness and antigenic mismatch

3.4.4 Qualitative model comparison

The inverse-logit model is attractive despite having lower Bayes-factor
support than the exponential model. As mismatch increases beyond
the range of the data, the inverse-logit model is the only model that
matches theoretical understanding and predicts VE tending to zero.
Qualitatively, the inverse-logit and exponential models seem to fit the
data between 2 AU to 4 AU equally well. At low levels of antigenic
mismatch (below 2 AU) these two models diverge. Knowing which
model best captures the underlying process at low antigenic mismatch
is important because it enables prediction of the highest level of
mismatch that may still provide optimal VE. In this region of the
data the inverse-logit model does have lower residual error than the
exponential model, so should be slightly preferred. However, there
are only three data points with low antigenic mismatch, one of which
has a particularly wide confidence interval, meaning that there is not
a strong basis to prefer the inverse-logit over the exponential model.

3.5 discussion

In this chapter I have presented the first empirical data that provides
a quantitative link between antigenic mismatch and VE. This frame-
work has applications beyond refining our understanding of this long
known relationship. Influenza virus vaccine strain selection attempts to
select vaccine strains that are antigenically close to circulating viruses.
The majority of vaccine antigen is currently produced in embryonated
chicken eggs. Before the vaccine strain selection procedure, vaccine
manufacturers identify candidate vaccine strains that grow well in
eggs which are referred to as high-growth reassortant viruses. The
vaccine strain choice is not among all strains that have been surveilled
and antigenically characterised by the GISRS, but among the smaller
subset of high-growth reassortants generated by vaccine manufactur-
ers. Passaging influenza viruses in eggs can select for mutations in HA

that improve virus attachment to chicken cells. Due to the proximity
of positions that cause major antigenic change to the HA RBS (Koel
et al. 2013), such mutations may also alter antigenic properties (Zost
et al. 2017). Low VE has been attributed to antigenic mismatch derived
from egg passaging (Skowronski et al. 2014; Chen et al. 2018). The
quantitative framework presented in this chapter provides an oppor-
tunity to test the hypothesis that VE depends more on the antigenic
position of the egg than the cell isolate. Concretely, for seasons where
the antigenic positions of cell isolated and egg isolated vaccine strains
are known, separate mismatch distributions could be derived, and
which (if either) correlates better with VE could be tested.

Surveillance of human influenza isolates may be biased towards
more extreme cases. Infections yielding more severe symptoms may be
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more likely to cause individuals to seek medical care, and once seen
by a medical professional, may be more likely to have virus isolated
and submitted to surveillance programs. Antigenically novel influenza
viruses may produce more severe infections, and therefore may be
overly represented in surveillance. This may mean that mismatch
distributions estimated in this study are biased towards higher values.
This potential bias may contribute to the relative paucity of seasons
with low mismatch estimates (Table 3.2).

This framework could also be used to test the hypothesis that a sani-
tised map (Appendix A) better represents true antigenic phenotypes
than a raw antigenic map. If map sanitising removes noise, then sani-
tised maps should produce mismatch distributions with less variance,
but that still recover a similar relationship with VE.

Additional variables of interest should also be included in further
modelling that may either explain more variance in the data, or would
have interesting parameter estimates for vaccination strategies. VE

estimates are now routinely made for the main influenza types and
subtypes that circulate in humans: the Victoria and Yamagata type B
influenza virus lineages as well as the type A, H3N2 and H1N1 sub-
types (Belongia et al. 2016). This study was conducted on the A(H3N2)
subtype because it has shown greater antigenic variation in the past
decade than influenza B viruses or the A(H1N1) subtype. Lower levels
of antigenic variation in other types and subtypes may reduce the mis-
match signal in VE for these data. Including data from influenza virus
types and subtypes may enable more definitive estimation of precise
quantitative relationship between mismatch and VE, and may provide
measurements of type- and subtype-specific VE that are controlled for
antigenic mismatch.

VE estimates and mismatch distributions were both derived from
country specific data, which may lead to country-wise effects. For
instance, there may be known or unknown differences between the
application of TND in different countries. Likewise, there are large
differences in influenza virus surveillance intensity from country to
country, and differences in antigenic characterisation procedures in
different WHO collaborating centres.

In addition, recent studies have theorised and shown that VE may
wane through the course of an influenza season (Ray et al. 2019b),
and have demonstrated methods to correct for it (Ray et al. 2019a).
Therefore, time at which VE was estimated during a season should be
included as an additional covariate in future modelling studies.

This chapter highlights the importance of antigenic match to in-
fluenza vaccines in a novel quantitative fashion. This framework
should be used as a basis for elucidating variables that explain variance
in VE estimates. In Chapter 5 I present one component of a framework
to select antigenically advanced influenza vaccine strains and discuss
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how this framework could ameliorate mismatch issues caused by the
current WHO influenza vaccine strain selection process.



4
T H E M O L E C U L A R B A S I S O F A N T I G E N I C C H A N G E

chapter outline A detailed understanding of molecular changes
responsible for antigenic change in influenza viruses is fundamental
to investigate what governs the antigenic evolution of these viruses,
and any attempt to predict their antigenic evolution. In this chapter I
review current knowledge of the molecular basis of antigenic change
which has been derived from wet lab experiments that measure the
antigenic impact of introducing substitutions into virus strains. These
techniques have been applied to human A(H3N2) influenza viruses
as well as other human viruses (A(H1N1), B(Victoria), B(Yamagata)),
and non-human viruses (equine A(H3N8), swine A(H3N2), avian
A(H5N1)).

For human A(H3N2) viruses, these wet lab analyses have only been
conducted on strains that circulated between 1968 and 2003, so we
do not know definitively the substitutions responsible for antigenic
change in viruses that circulated since 2003. Therefore, in this chapter,
I also present analyses to elucidate the amino acid substitutions re-
sponsible for antigenic change from 2003 until the present day. These
analyses use published antigenic maps derived from GISRS data and
consist of systematically searching for natural experiments that test the
impact of substitutions, as well as applying association tests derived
from a LMM. Substitutions reviewed and identified in this chapter are
used as training data for the cluster transition substitution ranking
framework presented in Chapter 5.

4.1 previous work

4.1.1 Human A(H3N2) 1968–2003

Koel et al. (2013) determined the substitutions responsible for altering
the antigenic phenotype of viruses from one cluster to another, and
termed them cluster transition substitutions. To do so, Koel et al. (2013)
initially sought to reduce the number of HA positions under consid-
eration by transplanting large sections of HA1 between viruses to
test which regions determined antigenic phenotypes. These experi-
ments conclusively showed that antigenic phenotypes are determined
by amino acid positions 109–301 of HA1. Within this reduced search
space, Koel et al. (2013) then identified any positions where the con-
sensus sequences of viruses in two adjacent antigenic clusters had
different amino acids. They termed these substitutions cluster difference
substitutions. Importantly, not all cluster difference substitutions may

63



64 the molecular basis of antigenic change

be responsible for antigenic change. For instance, a substitution may
evolve due to another selective pressure, such to alter HA binding,
or due to genetic drift. The problem becomes identifying the cluster
transition substitutions among the cluster difference substitutions.

To do this, Koel et al. (2013) inserted each cluster difference substi-
tution into consensus strains from each cluster. Antigenic phenotypes
of mutant viruses were measured by HI assays and analysed using
antigenic cartography. In three out of ten cluster transitions, no single
cluster difference substitutions was able to cause the transition, so
combinations of multiple cluster difference substitutions were tested.
Cluster transition substitutions in human seasonal A(H3N2) influenzaKoel et al. (2013)

also identified two
accessory

substitutions, which
adjusted the

direction of the
antigenic change

towards the
subsequent cluster

but did not
substantially alter

the antigenic
distance.

viruses that were identified by Koel et al. (2014) are listed in Table 4.1.

Substitution(s) Cluster transition

T155Y HK68–EN72

Q189K EN72–VI75

D193N, G158E VI75–TX77

K156E TX77–BK79

K189R, S159Y, Y155H BK79–SI87

N145K SI87–BE89

E156K SI87–BE92

N145K BE92–WU95

E158K, K156Q WU95–SY97

Q156H SY97–FU02

Table 4.1: Cluster transition substitutions in human seasonal A(H3N2) in-
fluenza viruses isolated between 1968 and 2003 (Koel et al. 2013).

4.1.2 Human A(H1N1), human B(Victoria) and human B(Yamagata)

Koel et al. (2013) also identified cluster transition substitutions in hu-
man seasonal A(H1N1), B(Victoria) and B(Yamagata) influenza viruses
using the same methods described above. They are summarised in
Table 4.2.

4.1.3 Swine A(H3N2)

Lewis et al. (2014) assessed the antigenic diversity of influenza A(H3N2)
viruses isolated in swine populations in the U.S.A. using antigenic
cartography. Due to the low number of isolates analysed it was not
possible to unambiguously identify substitutions responsible for anti-
genic changes between clusters and outlier variants, except for N145K.
Abente et al. (2016) tested the antigenic impact of substitutions iden-
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tified by Lewis et al. (2014), as well as other substitutions, by intro-
ducing them into a prototypic virus from the Cyan antigenic cluster.
The molecular determinants of three cluster transitions were identified
(see Figures 1A, 1B, 1D, 1E (Abente et al. 2016), and Table 4.2).

4.1.4 Equine A(H3N8)

Lewis et al. (2011) conducted HI assays and antigenic cartography
on equine A(H3N8) viruses isolated between 1968 and 2007. Three
antigenic clusters were identified, and their molecular basis was elu-
cidated (Table 4.2). 189K distinguishes viruses in the green antigenic
cluster from viruses in the blue antigenic cluster, which have 189N,
189D, 189Q, or 189E (Lewis et al. 2011). The relative proportions of Colour names were

used to identify
antigenic variants by
Lewis et al. (2011).

viruses in the blue antigenic cluster with those amino acids at position
189 in the Lewis et al. (2011) alignment are 15.3%, 1.4%, 77.8% and
5.6%, respectively. I conclude the substitution responsible for the blue
to green transition as Q189K.

4.1.5 Avian A(H5N1) clade 2.1

Koel et al. (2014) elucidated substitutions responsible for antigenic
variation in avian A(H5N1) clade 2.1 influenza viruses using re-
verse genetics. D183N and R189M induced the antigenic change from
A/Indonesia/5/05 to A/Chicken/East Java/121/10 (Figure 3B in
Koel et al. (2014)). These two substitutions, combined with I151T and
∆129, also caused the antigenic change from A/Indonesia/5/05 to ∆N is notation for

an amino acid
deletion at site N.

A/Chicken/West Java/119/10 (see Figure 3C in Koel et al. (2014)).
A/Chicken/West Java/119/10 is at similar angle from A/Indone-
sia/5/05 as A/Chicken/East Java/121/10, but is at a greater antigenic
distance. We interpret D183N and R189M as having the same anti-
genic impact in both cases, which is modified by I151T and ∆129 to
produce the A/Chicken/West Java/119/10 phenotype. Thus, D183N
and R189M are both included once in the dataset with respect to
these phenotype transitions. These substitutions are summarised in
Table 4.2.

4.2 methods

In the previous section I reviewed substitutions responsible for anti-
genic change in a variety of seasonal influenza viruses that are derived
from wet lab experiments. Here I introduce computational approaches
to address the same question.

I apply these approaches to human seasonal A(H3N2) influenza
viruses, for which wet lab derived cluster transition substitution data
end at 2003 (Koel et al. 2013). The computational approaches I present
are strengthened by the large number of viruses now routinely se-
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Host Type Subtype/Lineage Substitution Source

Avian A H5N1

A185E

Koel et al. (2014)

D183N

I151T

R189K

R189M

S129L

S133A

Equine A H3N8

E189K
Lewis et al. (2011)

N159S

Human
A H1N1 K144E

Koel et al. (2013)
B

Victoria N159K

Yamagata N160Y

Swine A H3N2

H155Y

Abente
et al. (2016)

R189K

N145K

R189E

N156K

Table 4.2: Cluster transition substitutions in non-’human A(H3N2)’ influenza
viruses. Subtype-specific numbering is used throughout (Burke
and Smith 2014).

quenced and antigenically characterised by the GISRS. There is substan-
tial GISRS data from 2003 onwards which corresponds to when the wet
lab derived cluster transition substitution data end. Antigenic maps
using this data have been published (Russell et al. 2008b; Li et al. 2016)
and the datasets were described in Section 2.4. I use the same two
antigenic maps in this analysis.

I follow the same approach as Koel et al. (2013) to identify substitu-
tions responsible for cluster transitions. I identify cluster difference
substitutions and then test which among them are responsible for the
antigenic change.

I use the term cluster here in a loose sense. Antigens in the Russell
et al. (2008b) and Li et al. (2016) maps are not as distinctly clustered
as in the Smith et al. (2004) map (Figure A.3). Therefore, the k-meansDifferences between

the Smith
et al. (2004) map

and the Russell
et al. (2008b) and Li

et al. (2016) maps,
and potential reasons

for it, are discussed
in Appendix A.

clustering algorithm applied to the Smith et al. (2004) data to formally
define clusters would not identify biologically meaningful units if it
were applied to the Russell et al. (2008b) and Li et al. (2016) maps.

Nevertheless, it is useful to subdivide these maps into regions, and
there is an underlying biological basis to do so. Large regions in the
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Russell et al. (2008b) and Li et al. (2016) maps have strains with low
HA1 diversity. These regions are marked in Figure 2.4. Finding the
substitutions responsible for antigenic change across an entire map can
be broken down into testing what substitutions cause a change in the
antigenic phenotype from one of these regions to the next. Throughout
this chapter I use the term cluster to refer to these regions.

In all analyses, I use positions 109–301 in the HA globular head. This
is the large section of HA1 which Koel et al. (2013) demonstrated is
responsible for antigenic phenotypes in human A(H3N2) influenza
viruses.

I present two types of analysis. The first consists of looking for
combinations of influenza viruses in the datasets that represent natural
versions of experiments we would conduct in the lab. Within this first
category I use two slightly different approaches: identifying strains
that differ by a substitution, and identifying individually informative
strains. The second category uses a LMM to statistically test if molecular
changes are associated with antigenic change.

4.2.1 Strains that differ by single substitutions

The first type of natural experiment consists of identifying pairs of
strains, A and B, that differ by a single substitution, S = XNY. In other
words, A and B are genetically identical, except at position N where
A has amino acid X, and B has amino acid Y. The antigenic distance
between A and B can then be attributed to the substitution S.

A nuance is that there may be multiple strains that are genetically
identical to A, so A (and similarly B) can be multiple strains. In fact,
when A and/or B are multiple strains, more confidence can be placed
in the inferred antigenic impact of S because it is based on the positions
of more strains. When multiple strains for A or B are found, their
mean position (centroid) is computed and visualised.

Finally, for each substitution, there may be multiple groups of A and
B viruses, where different groups have different sequences at non-N
positions. Different groups therefore test the impact of the substitution
in different genetic contexts. In all analyses different groups are shown
on separate antigenic maps. Different groups test the effect of the same
substitution but in different genetic backgrounds.

4.2.2 Individually informative strains

The second type of natural experiment consists of identifying single
strains with informative combinations of amino acids at cluster dif-
ference substitution positions. At cluster difference positions, most
strains posses the full complement of amino acids that are typical for
either the parent cluster, or the child cluster. Informative strains have
a single position with an amino acid that is atypical of this pattern,
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and thus test whether that single molecular change has an antigenic
impact.

Consider a case with three cluster difference substitutions: X1N1Y1,
X2N2Y2, X3N3Y3. Xs refer to the amino acids possessed by strains in
the parent cluster, Ys refer to amino acids possessed by strains in the
child cluster, and subscripts index the different substitutions. Most
strains have either all Xs at these positions (N1X1 +N2X2 +N3X3),
or all Ys (N1Y1 +N2Y2 +N3Y3). However, if a strain has a single Y
amino acid at one position, and Xs at the remaining positions (e.g.
N1Y1+N2X2+N3X3), then it tests the impact of the associated cluster
difference substitution.

Specifically, a single Y among many Xs, tests a forwards cluster dif-
ference substitution, because Xs are amino acids in the parent cluster
and Ys are amino acids in the child cluster. Conversely, a single X
amino acid among multiple Ys tests a backwards cluster difference sub-
stitution. For n cluster difference substitutions, there are n forwards,
and n backwards possible combinations of strains with informative
amino acids.

4.2.3 LMM association testing

The final approach for identifying substitutions responsible for anti-
genic cluster transitions frames the problem as a statistical test in a
LMM framework. Section 2.3 contains detailed explanations of this
model, data representation, association testing, and multiple test cor-
rection.

Briefly, two-dimensional antigenic coordinates are jointly analysed
as the response variable in a mvLMM. The amino acid sequence align-
ment is converted to a binary matrix encoding AAPs at positions
109–301 in HA1 (Subsection 2.3.1). For each cluster transition, all AAPs

implicated in cluster difference substitutions are tested. For each test,
the test AAP is modelled as a fixed effect and the covariance matrix of
the remaining AAPs are treated as random effects. The model jointly
estimates the fixed effects in both antigenic dimensions, β0 and β1,
from which a joint fixed effect is computed:

βjoint =
√
β20 +β

2
1

A p-value was computed based on likelihoods of models fitted with
and without the fixed effect of the test AAP (Subsection 2.3.3). A
corrected p-value which takes into account non-independence of AAPs

was also computed (Subsection 2.3.4).

4.3 results

In the following sections I identify cluster difference substitutions
for the FU02–CA04, CA04–WI05, PE09–SW13 and PE09–HK14 cluster
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transitions (Figure 2.4). Then, for each cluster difference substitution
I identify groups of pairs of strains that test the impact of the substi-
tution, identify individual strains with informative combinations of
substitutions, and conduct association tests in the LMM framework.
Data for the WI05–PE09 cluster transition is not available, so it is
treated differently.

145

D 0.1%
K 36.3%

N 54.7%
Q 2.4%

R 0.1% S 6.4%

225

D 61.8% G 5.4% K 0.1% N 32.8%

193

F 33.9%
G 0.1%

N 1.9%
R 0.4%

S 63.5% Y 0.1%

227

P 66.8% S 33.2%

226

A 0.1% I 67.4% L 0.1% V 32.5%

189

D 0.1% N 70.2% S 29.5% Y 0.1%

159

D 0.1%
F 71.4%

N 0.8% S 0.1% Y 27.6%

Figure 4.1: Cluster difference substitutions in the Russell et al. (2008b) anti-
genic map. Strains are coloured according to the amino acid they
posses at a given HA position. FU02–CA04 cluster difference sub-
stitutions: N145K, S189N, Y159F, V226I and S227P. CA04–WI04

cluster difference substitutions: D225N and S193F.

4.3.1 FU02–CA04

Cluster difference substitutions are: N145K, S189N, Y159F, V226I and
S227P (Figure 4.1).

strains that differ by single substitutions

k145n Three groups were identified (Figure 4.2). (Group 1) The single
145K strain is FU02-like, and the single 145N strain is CA04-like.
(Group 2) Seven out of eight 145K strains are FU02-like and the
majority of the 84 145N strains are CA04-like. (Group 3) All
strains are FU02-like.

y159f Two groups were identified (Figure E.2). (Group 1) The single
159Y strain is FU02-like. Seven out of eight 159F strains are also
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FU02-like, and their centroid is FU02-like. (Group 2) The 44 159Y
and five 159F strains are FU02-like.

s189n No strains identified.

v226i 11 groups were identified (Figure E.3). Groups are either all
FU02-like (e.g. group 2) or SY97-like (e.g. group 10). No members
of any groups are CA04-like.

s227p Nine groups were identified (Figure E.4). (Groups 1, 3, 5) 227P
and 227S strains have similar, CA04-like, antigenic locations.
(Groups 4, 6) 227P and 227S strains have similar, FU02-like,
antigenic locations. (Groups 7–9) 227S strains are FU02-like and
227P strains are CA04-like. (Group 2) Strains differ but are both
CA04-like.

K145N (1/3)

K145 (1)
N145 (1)

K145N (2/3)

N145 (84)
K145 (8)

K145N (3/3)

N145 (5)
K145 (3)

Figure 4.2: Strains that differ by K145N. The three different groups identified
for this substitution are shown in separate panels.

individually informative strains Of strains that test indi-
vidual forwards substitutions, none show convincing evidence for
causing CA04-like phenotypes (Figure E.6). The two 145N-testing
strains remain FU02-like. No strains were identified that test 159F
alone. One out of six strains testing 189N are CA04-like, four remain
FU02-like and one is intermediate. All 226I- and 227P-testing strains
remain FU02-like. Of strains that test individual backwards substitu-
tions, 12 out of 22 identified cause a FU02-like phenotype and six are
in-between FU02 and CA04 (Figure E.7). No strains were identified
that test either 159Y or 189S. Four out of 15 strains that test 226V are
FU02-like and four out of 63 strains testing 227S are FU02-like.
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AAP p-value Corrected p-value β0 β1 βjoint

145N 2.59e-07 9.6e-07 1.94 0.486 2

145K 3.43e-05 0.000127 -1.39 0.568 1.51

159F 0.0137 0.0508 1.35 -0.00135 1.35

226V 0.0221 0.0821 -1.15 -0.568 1.28

159Y 0.101 0.374 0.286 0.792 0.842

189S 0.294 1 -0.819 -0.243 0.854

226I 0.465 1 0.517 0.277 0.587

227S 0.808 1 0.152 -0.189 0.242

227P 0.808 1 -0.152 0.189 0.242

189N 0.867 1 0.226 0.136 0.264

Table 4.3: FU02–CA04 cluster difference substitution LMM association test
results. See text for an explanation of each column.

summary In the pairs-of-strains analyses, K145N group 2 provides
the strongest evidence for a substitution that could be responsible
for this cluster transition (Figure 4.2). The majority of the eight 145K
strains are FU02-like, and the majority of the 84 145N strains are CA04-
like. K145N group 1 is also consistent with this. The only other substi-
tution in the pairs-of-strains analyses that is sometimes associated with
this cluster transition are S227P groups 7–9. However, these groups
collectively contain only four 227S strains and three 227P strains. In
the individually-informative analysis, the only forwards-testing strain
to become CA04-like are is out of the six 189N strains (another of the
189N strains is in-between FU02 and CA04). Of backwards-testing
strains, most 145K strains have a FU02 phenotype, and most 226V
and 227S strains are not FU02-like. In the LMM association test, both
K145N-testing AAPs have the lowest p-values and the highest joint
effect sizes. I conclude that K145N is most likely responsible for this
cluster transition.

4.3.2 CA04–WI05

Cluster difference substitutions are: D225N and S193F (Figure 4.1).

strains that differ by single substitutions

d225n Seven groups were found (Figure 4.3). (Groups 1–7) All groups
show low antigenic distance between 225D and 225N strains.

s193f One group was found (Figure 4.3). (Group 1) The majority of
the 84 193S strains are CA04-like, although five 193S strains are
WI05-like. All eight 193F strains are CA04-like.
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S193F (1/1)

S193 (84)
F193 (8)

Figure 4.3: Strains that differ by S193F.

individually informative strains There are only two cluster
difference substitutions for this cluster transition, so strains identified
that test forwards substitutions (Figure E.11) are equivalent to those
that test backwards substitutions (Figure E.12). Unfortunately, no
strains were identified that test the forwards substitution 225N (or
backwards substitution 193S). 16 strains were identified showing that
193F produces CA04-like viruses, and simultaneously that 225D does
not produce FU02-like viruses.

AAP p-value Corrected p-value β0 β1 βjoint

193F 0.00321 0.00626 1.06 -0.992 1.45

193S 0.00364 0.0071 -1.02 0.307 1.07

225N 0.314 0.613 0.598 -0.39 0.714

225D 0.874 1 0.107 -0.209 0.234

Table 4.4: CA04–WI05 cluster difference substitution LMM association test
results.

summary D225N does not cause a change from a CA04-like phe-
notype to WI05-like phenotype in any of the pairs-of-strains analyses.
The single group of strains that test S193F do cause this phenotype
change (Figure 4.3). Individual strains that possess 193F and 225N are
WI05-like. The S193F AAPs have lower p-values and higher joint effect
sizes. I conclude that S193F is most likely responsible for this cluster
transition.

4.3.3 WI05–PE09

The molecular basis of the WI05–PE09 cluster transition cannot be
inferred using the same approaches as other cluster transitions in this
analysis because no antigenic maps have been published that contain
antigens from both clusters. The WI05–PE09 transition straddles the
two antigenic maps used in this analysis; the last cluster in the Russell
et al. (2008b) map is WI05 and the first cluster in the Li et al. (2016)
map is PE09. Conducting an HI assay that includes viruses from both
clusters is required to make a map containing both clusters. This is
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difficult because no types of red blood cells are known which bind
WI05 and PE09 viruses, which is required for running an HI assay
containing viruses from both clusters.

Nonetheless, there is circumstantial data which can be used to inves-
tigate the molecular determinants of this cluster transition. PE09-like
viruses contained two phylogenetically distinct lineages represented
by A/Victoria/208/2009 (Victoria clade) and A/Perth/16/2009 (Perth
clade) (Klimov et al. 2012). Substitutions were mapped to the sepa-
rate branches leading to these clades (Klimov et al. 2012). Victoria
clade viruses are characterised by the substitutions K158N, N189K
and T212A. Perth clade viruses are characterised by E62K, N144K,
K158N and N189K. Both sets of substitutions independently generate
PE09-like phenotypes, therefore a parsimonious explanation is that
the substitutions that are shared between the sets, K158N and N189K,
are most likely responsible for this cluster transition.

142

G 52.7% K 3.4% R 43.9%

159

F 31.9% S 22.1% Y 46.0%

144

H 0.1%
K 0.1%

N 53.7%
R 0.4%

S 45.6%
T 0.1%

128

A 52.3%
D 0.1%

I 0.1%
N 1.1%

T 46.5%

160

A 1.0%
I 0.6%

K 59.9%
R 0.3%

S 0.1%
T 38.1%

225

D 70.0% N 30.0%

138

A 76.7% S 23.3%

157

L 76.8% S 23.2%

122

D 14.6%
N 85.2%

T 0.1% Y 0.1%

Figure 4.4: Cluster difference substitutions in the Li et al. (2016) antigenic
map. Strains are coloured according to their amino acid at a given
HA position. PE09–SW13 cluster difference substitutions: A138S,
F159S and N225D. PE09–HK14 cluster difference substitutions:
A128T, G142R, N144S, F159Y, K160T and N225D.
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4.3.4 PE09–SW13

Cluster difference substitutions are: A138S, F159S and N225D (Fig-
ure 4.4). S157L and D122N partially segregate with PE09-like and
SW13-like viruses and are included in this analysis. These two substi-
tutions were included in the pairs-of-strains analyses, but excluded
from the individually-informative analysis as their inclusion would
reduce the probability of identifying informative strains for the other,
clear, cluster difference substitutions.

strains that differ by single substitutions

a138s Two groups were identified (Figure E.13). (Group 1) Two out
of the three 138A strains remain PE09-like, and one is SW13-like.
(Group 2) The only 138S strain is HK14-like.

d122n Two groups were identified (Figure E.14). (Group 1) All strains
are PE09-like. (Group 2) All strains are SW13-like.

s157l Three groups were identified (Figure E.15). (Group 1) All
strains are PE09-like. (Group 2) Strains are antigenically different,
but both PE09-like. (Group 3) Strains are antigenically similar,
but also both PE09-like.

f159s One group of strains was identified (Figure E.16). (Group 1)
The single 159F strain is PE09-like, whilst the 164 159S strains
are SW13-like.

n225d Five groups were identified (Figure E.17). (Groups 1, 2) All
strains are PE09-like. (Group 3) All 225N strains are PE09-like,
two out of the three 225D strains are also PE09-like and a single
225D strain is SW13-like. (Group 4) The 225N strain is PE09-like
and the 225D strain is intermediate between the three clusters.
(Group 5) The 225N strain is in-between PE09 and SW13 and the
225D strain is in-between SW13 and HK14 strain.

F159S (1/1)

S159 (164)
F159 (1)

Figure 4.5: Strains that differ by F159S.

individually informative strains Strains were only iden-
tified that test one forwards substitution (Figure E.19). The majority
of the 16 225D-testing strains are PE09-like, whilst one is SW13-like.
Similarly, strains were only identified that test one of the backwards
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substitutions (Figure E.20). Both of the two 159F-testing strains are
PE09-like.

AAP p-value Corrected p-value β0 β1 βjoint

159F 1.91e-15 7.48e-15 -3.16 -0.168 3.16

159S 2.52e-13 9.85e-13 1.53 1.5 2.15

225D 0.00103 0.00403 0.136 -1.33 1.34

225N 0.00408 0.016 -0.414 0.96 1.05

138A 0.0353 0.138 -1.34 -0.382 1.39

122N 0.0731 0.286 0.948 0.362 1.01

122D 0.215 0.84 -0.691 -0.376 0.786

138S 0.459 1 -0.528 -0.468 0.706

157S 0.836 1 -0.235 -0.187 0.3

157L 0.836 1 0.235 0.187 0.3

Table 4.5: PE09–SW13 cluster difference substitution LMM association test
results.

summary There are only three groups in the pairs-of-strains analy-
ses that show substitutions associated with the PE09–SW13 transition:
F159S (group 1), N225D (group 3) and A138S (group 1). For N225D
and A138S, for each of their single SW13-like strains there are two
genetically identical strains that remain PE09-like, suggesting that the
strains with SW13-like phenotypes are erroneous. However, there is
only a single 159F substitution to support 159F strains being PE09-
like. Only 225D had strains identified in the individually-informative
forwards-testing analysis; 15 out of 16 strains remain PE09-like and
a single strain becomes SW13-like. In the backwards-testing analysis,
both 159F strains do revert to being PE09-like. In the LMM association
test the F159S AAPs have the lowest p-values and the largest joint effect
sizes. I conclude that F159S is most likely responsible for this cluster
transition.

4.3.5 PE09–HK14

Cluster difference substitutions are: A128T, G142R, N144S, F159Y,
K160T are N225D (Figure 4.4). D122N and S157L co-segregate par-
tially with either PE09-like or HK14-like viruses but are nonetheless
included in this analysis. As for the PE09–SW13 analyses, these two
substitutions were included in the pairs-of-strains analyses, but ex-
cluded from the individually-informative analysis as their inclusion
would reduce the probability of identifying informative strains for the
other, clear, cluster difference substitutions.
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strains that differ by single substitutions

d122n Two groups were identified (Figure E.21). (Groups 1, 2) No
strains are HK14-like.

a128t One group of strains was identified (Figure E.22). (Group 1)
The centroids of the 128T strains are antigenically similar to the
128A strain.

g142r One group of strains was identified (Figure E.23). (Group 1)
The two 142G strains are HK14-like and the majority of the 142R
strains are either SW13-like of HK14-like.

n144s No strains identified.

s157l See Subsection 4.3.4 and Figure E.24. There is no evidence that
this substitution causes this cluster transition.

f159y Three groups were identified (Figure E.25). (Group 1) All 159F
strains are PE09-like, and the 159Y strain is in-between PE09 and
HK14. (Group 2) All 159F strains are PE09-like, and the 159Y
strains are at the top of HK14. (Group 3) The single 159F strain
is PE09-like, two out of three 159Y strains are HK14-like and the
other is SW13-like.

k160t Six groups were identified (Figure E.26). (Groups 1, 2, 4, 5) The
centroids of the 160K and 160T strains are antigenically close
and there is no clear change from PE09-like to HK14-like. (Group
3) The 160K strain is HK14-like, and the 160T strain is PE09-like.
This is the opposite direction to the change in the majority of
strains with these amino acids at 160 (Figure 4.4). (Group 6) The
160T strain is on the edge of the HK14 cluster and the 160K
strain is on the outskirts of the map in-between the PE09 and
HK14 clusters.

n225d See Subsection 4.3.4 for a complete description and Figure E.27.
(Group 4) 225N is PE09-like and 225D is HK14-like.

F159Y (1/3)

F159 (53)
Y159 (1)

F159Y (2/3)

F159 (6)
Y159 (2)

F159Y (3/3)

Y159 (3)
F159 (1)

Figure 4.6: Strains that differ by F159Y.
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individually informative strains Only 159Y, 144S and 225D
had strains which tested their individual forward effects (Figure E.29).
None of the strains were HK14-like. 142G, 159F, 128A and 160K had
strains which tested their individual backwards effects (Figure E.30).
The single 159F strain reverts to being PE09-like, as does one of the 32

160K strains.

AAP p-value Corrected p-value β0 β1 βjoint

159F 1.91e-15 9.72e-15 -3.16 -0.168 3.16

160T 1.08e-11 5.51e-11 0.777 0.648 1.01

159Y 0.000617 0.00314 0.628 -1.1 1.27

225D 0.00103 0.00523 0.136 -1.33 1.34

225N 0.00408 0.0207 -0.414 0.96 1.05

160K 0.0194 0.0986 -0.33 0.428 0.54

122N 0.0731 0.372 0.948 0.362 1.01

142G 0.18 0.913 -0.401 -0.782 0.878

122D 0.215 1 -0.691 -0.376 0.786

144S 0.233 1 -0.696 -0.326 0.769

142R 0.317 1 -0.37 0.387 0.536

128T 0.482 1 -0.491 -0.222 0.539

128A 0.68 1 0.0594 0.35 0.355

157S 0.836 1 -0.235 -0.187 0.3

157L 0.836 1 0.235 0.187 0.3

144N 0.96 1 -0.0453 0.0894 0.1

Table 4.6: PE09–HK14 cluster difference substitution LMM association test
results.

summary In the pairs-of-strains analyses two out of three F159Y
groups and two out of five N225D groups show a change from PE09-
like viruses to HK14-like viruses. For individually informative strains,
the single 159Y forwards-testing strain is in-between PE09 and HK14.
The single 144S forwards-testing strain, and majority of the 225D
forwards-testing strains, remain PE09-like. For backwards-testing
strains only the single 159F strain, and one out of the 32 160K strains
become PE09-like. The F159Y AAPs have the first and third lowest
p-values in the LMM association test. 160T has the second lowest p-
value, however the other AAP in this substitution, 160K, has the sixth
lowest p-value. I conclude that F159Y is most likely responsible for
this cluster transition.
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4.4 discussion

In this chapter I reviewed substitutions that are known to cause major
antigenic change in influenza viruses from a variety of subtypes and
hosts, and identified substitutions responsible for antigenic cluster
transitions in human A(H3N2) influenza viruses that have circulated
since the early 2000s. The methods I used to identify these substitu-
tions differ from those in the work I reviewed (Lewis et al. 2011; Koel
et al. 2013; Koel et al. 2014; Lewis et al. 2014; Abente et al. 2016), After
identifying candidate substitutions, these studies used reverse genet-
ics to systematically test whether single, or combinations of multiple,
substitutions were responsible for an antigenic change. I used GISRS

data and looked for natural versions of the same experiments, as well
as conducting statistical association tests.

Both approaches have benefits. The reverse genetics approach gives
precise control of the substitutions and genetic background of the mu-
tant viruses, which reduces the risk of having no data for a particular
substitution. It does not remove this risk entirely; occasionally in-
fluenza virus mutants cannot be rescued in the laboratory. The reverse
genetics approach uses small panels of well characterised antisera and
reference antigens to measure antigenic phenotypes. The associated
antigenic maps can be more accurate and contain better coordinated
antigens than in GISRS maps. Looking for natural experiments also
has benefits: it leverages the substantial amount of data that is gener-
ated by the GISRS and substitutions are tested in a variety of genetic
backgrounds. These approaches are highly complementary. Natural
experiments could be a more refined way to identify substitutions
to test in the laboratory. The time and resources saved in screening
additional candidate substitutions could be spent testing substitutions
in a greater variety of genetic backgrounds.

The potential importance of testing substitutions in different ge-
netic backgrounds is illustrated by the K145N pairs-of-strains analyses
(Figure 4.2). Group two robustly shows that strains with 145K are
antigenically different to strains with 145N. This difference is sup-
ported by group one, albeit by only two strains. However, in group
three, the 145N strains remain FU02-like, near to the 145K strains.
One hypothesis explaining that an antigenic difference is observed in
groups one and two but not in group three is that the different genetic
background alters the antigenic impact of this substitution. This case
merits additional laboratory verification, but it may comprise an in-
teresting test case to investigate structural mechanisms of antigenic
context dependence.

One drawback of using GISRS derived data is the higher amount of
noise in the antigenic coordinates (discussed in Chapter 1 and Chap-
ter 2). The A138S pairs-of-strains analyses highlights this (Figure E.13).
Two out of three strains with 138A remain PE09-like, and the other
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strain becomes SW13-like. I interpreted the position of the SW13-like
strain to be erroneous because it is outnumbered by genetically identi-
cal PE09-like strains two:one. Clearly, inferences based on more strains
are more robust.

Repeating these analyses on sanitised maps would remove these
judgements (Appendix A). In sanitised maps genetically identical
strains are also antigenically identical. This would ease the interpreta-
tion of the natural experiments where genetically identical antigens
can be antigenically very different. Currently, map sanitising has not
been fully tested, and it is unknown if it is a valid post-processing
step for antigenic maps.

Despite some limitations of the natural experiments approach, it
allowed robust inferences of the molecular basis of antigenic change.
These inferences are made more robust in combination with the LMM

association tests which corroborate the substitutions identified.
Substitutions identified in this chapter continue trends in properties

of other human A(H3N2) cluster transition substitutions (Table 4.7).
In particular, all the substitutions occur in the same seven positions
on the periphery of the HA RBS. Furthermore, cluster transition substi-
tutions in other influenza viruses, reviewed at the start of this chapter,
also occur on the periphery of the HA RBS (Figure 4.7). The spatial clus-
tering of these substitutions around the rim of the HA RBS suggests a
shared mechanism of antigenic escape across diverse influenza viruses:
antibodies target the RBS region and so this region must change to
provide escape from host immune surveillance. However, the HA must
simultaneously retain receptor binding functionality which is critical
for virus replication. Such a process implicates constraints on the
nature of amino acid substitutions that cause antigenic change in
influenza viruses.

In the next chapter I quantitatively investigate features of cluster
transition substitutions, and test to what degree the features repeat. I
then apply the findings to ranking sets of candidate substitutions by
their similarity to previous cluster transition substitutions to aid the
prediction of antigenic evolution.

Substitution Cluster transition

K145N FU02–CA04

S193F CA04–WI05

K158N, N189K WI05–PE09

F159S PE09–SW13

F159Y PE09–HK14

Table 4.7: Cluster transition substitutions in human seasonal A(H3N2) in-
fluenza viruses isolated between 2004 and 2016.
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(a) Entire trimer. (b) RBS region.

Figure 4.7: HA positions that harbour cluster transition substitutions in dif-
ferent influenza virus subtypes and hosts. Individual monomers
are shown in white, grey and black. On the grey monomer, posi-
tions where cluster transition substitutions occurred are rendered
with sticks and shown in different colours for different influenza
viruses: red, human A(H3N2); blue, avian A(H5N1); green, swine
A(H3N2); purple, equine A(H3N8); orange, human A(H1N1);
yellow, human B(Victoria); brown, human B(Yamagata). This fig-
ure was rendered using PyMOL (Schrödinger LLC 2015) on the
A/Hong Kong/1/1968 (H3N2) crystal structure, PDB ID: 4FNK.
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C L U S T E R T R A N S I T I O N S U B S T I T U T I O N R A N K I N G S

chapter outline This chapter describes the development of
a framework to rank candidate substitutions by their similarity to
cluster transition substitutions. Koel et al. (2013) noted the pronounced
patterns in biophysical features of cluster transition substitutions.
In this chapter I quantify these patterns, and demonstrate that the
processes generating them are highly unlikely to be random. More
fundamentally, work in this chapter investigates the repeatability of
these patterns, and tests whether they can be used to predict cluster
transition substitutions.

5.1 introduction

This work is motivated from two angles. First is the basic science of test-
ing the predictability of evolution. Seasonal influenza viruses are an
excellent model system to investigate this question. Influenza viruses
have attracted substantial research effort, resources and surveillance
which has driven understanding in their virology, immunology, epi-
demiology and structural biology for almost a century. Furthermore,
they evolve on a timescale which allows predictions to be prospectively
tested.

Second are the implications for vaccination strategies. Currently,
most countries use the WHO choice for influenza vaccine strains. Due
to manufacturing, logistic and regulatory constraints, vaccine strain
choices must be made approximately eight months before the start of
the influenza season (Subsection 1.5.1). Cluster transitions may occur
during this period, and if they do, the vaccine would be antigenically
mismatched to viruses in the upcoming season. Mismatch events
could be ameliorated by predicting future antigenic variants and
applying a novel vaccination strategy based on the concept of immunity
management.

5.1.1 Immunity management

Unlike the current WHO vaccination strategy which selects vaccine
strains to antigenically match circulating strains, immunity manage-
ment prioritises generating population immunity ahead of the anti-
genic evolution of the virus. If an antigenic cluster has already circu-
lated, then instead of repeatedly using the same vaccine, this opportu-
nity could be used to vaccinate against future variants. If we predict a
particular antigenic variant, and that variant does go on to dominate

81
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Figure 5.1: Comparing the immune response to two vaccines. (A) SY97 vac-
cine. (B) WU95 vaccine. Plots show the height of the popula-
tion antibody landscape (y-axis), along a one dimensional sum-
mary path through antigenic space (x-axis). Grey areas show
pre-vaccination antibody landscapes, coloured areas show the
post-vaccination landscape. The response to each vaccine is shown
by the height of the coloured area above the grey area. Green
and blue dotted vertical lines show positions of the WU95 and
SY97 vaccines. The SY97 vaccine is more antigenically advanced.
Both vaccines generate a similar back-boost but SY97 generates
a higher response against antigenically advanced strains. This is
Figure 3 from Fonville et al. (2014); it is based on empirical data
from vaccine trials.

subsequent circulation, then we have successfully avoided a mismatch
event. However, what are the consequences if either no drift variants
circulate, or, if a variant different from that predicted circulates?

In the scenario where no drift variant circulates, evidence from
antibody landscape suggests the advanced strain would not be inferior
to a matched strain (Fonville et al. 2014). In an antibody landscape,
an individuals antisera is titrated against different viruses across
antigenic space. Then, a surface is fitted through the titrations, in
an extra dimension above the antigenic map. Antibody landscapes
therefore provide quantitative and visual insight into an individual’s
immune response against viruses across antigenic space. Antibody
landscapes revealed that influenza infection or vaccination induces a
broad response against all strains an individual has been exposed to
in their lifetime (Fonville et al. 2014). This phenomenon is referred to
as the back-boost. Thanks to the back-boost, an antigenically advanced
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strain generates the same protective responses against previously
encountered strains as an antigenically matched strain.

Empirical evidence supports this reasoning. In 1997 an antigenically
novel variant, A/Sydney/5/1997 (SY97), emerged, and the vaccine
strain was updated accordingly. However, there was very low circula-
tion of SY97-like viruses in Australia during the subsequent season.
Australians had effectively received an antigenically advanced vaccine.
Individuals that received the SY97 vaccine had the same back-boost as
individuals vaccinated in the previous year with the previous vaccine.
Importantly, the SY97 vaccine also generated higher titres against the
novel SY97-like viruses (Figure 5.1).

In the other scenario, major antigenic evolution occurs, but an
incorrect variant is predicted. Here again, antigenically advanced
strains would not be inferior to matched strains, as both vaccines
would be mismatched. Clearly, we aim to reduce the occurrence of this
case, and doing so requires improving our ability to predict antigenic
evolution.

5.1.2 Combinations of antigenic escape variants

Our ability to approach predicting the antigenic evolution of human
A(H3N2) viruses is based on a detailed understanding of the molec-
ular basis of their antigenic change, and a relatively low number of
potential variants to screen. As our knowledge has improved, this
number has shrunk.

Work in the 1980s suggested that major antigenic change required at
least four amino acid substitutions located within 131 HA amino acid
positions (Wiley et al. 1981; Wilson and Cox 1990). These 131 positions
were divided into five HA surface patches, termed antigenic sites A-E.
The work further implied that major antigenic change required the
four substitutions to not all occur in a single antigenic site.

Given these ’rules’, it is possible to compute how many combina-
tions of substitutions might cause major antigenic change. Antigenic
sites A–E contain 19, 22, 27, 41 and 22 HA positions, respectively. The
number of combinations of four substitutions distributed between
these antigenic sites, excluding combinations where all four occur in a
single antigenic site is:(

131

4

)
−

(
19

4

)
−

(
22

4

)
−

(
27

4

)
−

(
41

4

)
−

(
22

4

)
= 11, 579, 314

A substitution is a change from one amino acid to one of 19 other
possibilities, giving:

194 = 130, 321
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combinations of four substitutions. Each combination of four substitu-
tions could be distributed in any way among the combinations of HA

positions, giving:

11, 579, 314× 130, 321 = 1.51× 1012

total combinations. This number is large enough to prevent any efforts
attempting to predict which combination might cause future antigenic
change. Furthermore, these ’rules’ were recognised as the minimum
required; some cases required more than four substitutions, which
would increase the number of combinations.

In 2013, the substitutions that caused antigenic cluster transitions in
human seasonal A(H3N2) viruses that circulated between 1968 and
2003 were identified (Koel et al. 2013). Remarkably, all substitutionsThe HA positions

responsible are 145,
155, 156, 158, 159,
189 and 193 (Koel

et al. 2013). They are
sometimes referred to

as Koel-seven
positions.

identified occurred at only seven key positions on the periphery of
the HA RBS, and seven out of ten cluster transitions were caused by
single substitutions. If all antigenic cluster transitions are caused by
single amino acid substitutions at a Koel-seven position, then only:

19× 7 = 133

variants would have to be discriminated between to identify which
will cause a subsequent cluster transition. There are:(

7

2

)
× 192 = 7, 581

combinations of double substitutions distributed between seven posi-
tions.

Combinations of single (133) and double (7,581) variants to dis-
criminate between are eight and nine orders of magnitude smaller
than the 1980s estimate of 10

12, respectively. These data suggest that if
historical patterns repeat themselves, then in seven out of ten cases,
cluster transition substitutions may be predictable by discriminating
between only 133 influenza virus variants. The relatively small num-
ber of variants to discriminate between, coupled with their utility in
immunity management vaccination strategies is a strong motivator for
the ranking work in this chapter.

5.1.3 Virus fitness

Using current technology, a single researcher can generate an influenza
virus library containing all single amino acid variants at seven amino
acid positions in approximately three months. Viruses in the library
can then be subjected to assays which measure intrinsic and extrinsic
fitness (Subsection 1.4.1). Fitness measurements are a crucial compo-
nent of a framework to predict antigenic variants and are discussed in
Chapter 6.
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5.2 patterns in cluster transition substitutions

Cluster transitions substitutions in human A(H3N2) influenza viruses
identified by Koel et al. (2013) have features that appear to be non-
random: some amino acids occur frequently, the charge of the residue
usually changes, hydropathy of residues often remains similar, change
in residue side chain volume is variable, they are usually achievable by
mutating a single nucleotide and particular positions around the HA

RBS are repeatedly used. I defined these features and quantified how
likely it is that these patterns were generated by a random process.
Amino acid substitution features were defined as follows.

5.2.1 Categorical features

• The amino acid lost in the substitution. Abbreviated aa0.

• The amino acid gained in the substitution. Abbreviated aa1.

• Charge change. Any substitution that causes any change in
charge was encoded as 1, all others are encoded with a 0. The
charge of amino acids at physiological pH (7.4) was used. Neg-
ative amino acids are glutamic acid and aspartic acid, positive
amino acids are lysine, arginine and histidine, all others are
neutral. Abbreviated dC.

• Minimum mutation distance. Each codon has a minimum num-
ber of mutations to mutate into another codon—the Hamming
distance between the two codons. The minimum mutation dis-
tance of an amino acid substitution is the lowest Hamming
distance between the two sets of codons that encode the two
amino acids. Abbreviated mmd.

5.2.2 Continuous features

• The HA position that the substitution occurs at. This is repre-
sented by 3D Cartesian coordinates of the α-carbon of the HA

residue. This representation has two advantages compared to
treating each HA position categorically. Firstly, positions on a
protein are not spatially-independent: observing a cluster tran-
sition substitution at one position should raise the probability
of observing a future cluster transition substitution at nearby
positions. This is consistent with the observation that cluster
transition substitutions occur near to each another in 3D pro-
tein structure (Koel et al. 2013). An ordinal treatment where
HA positions are represented by their position in the primary
sequence is inferior because positions far away in protein pri-
mary structure can be close in tertiary and quaternary structure.
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Secondly, later in this study, I investigated using training data
from other influenza viruses (Subsection 5.3.7). Occasionally it is
impossible to identify unambiguously homologous positions in
influenza HA structures from different types, subtypes and hosts
due to backbone shifts, insertions and deletions. Representing
HA position continuously circumvents this issue, which would
be required for a categorical representation. Abbreviated xyz.

• Hydropathy and volume change. Hydrophobicity is a measure
of the tendency of a molecule to be repelled by water and is
measured on hydropathy scales (Kyte and Doolittle 1982). The
hydropathy change of substitution, s, from amino acid, aa0, to
amino acid, aa1, is:

∆Hs = Haa1 −Haa0

where H is hydropathy corrected for effects of self-solvation
between side chain and backbone atoms of a particular amino
acid residue (Roseman 1988). Similarly, the volume change of a
substitution is:

∆Vs = Vaa1 − Vaa0

where V is the normalised Van der Waals volume of the amino
acid side chain (Fauchère et al. 1988). The joint distribution of
hydropathy and volume changes was used as a feature. Abbrevi-
ated dHdV.

I generated network diagrams to visualise sets of substitutions and
their biophysical features (Figure 5.2). These diagrams consist of amino
acids as nodes in a hydropathy-volume plot where arrows between
nodes visualise substitutions from one amino acid to another. Charge
change and minimum mutation distance are also visualised in the
plot. Human A(H3N2) influenza virus cluster transition substitutions
contain interesting patterns (Figure 5.2D). Lysine is a heavily used
amino acid—of the 14 substitutions in only six do not involve lysine in
some way. In addition, the majority of substitutions comprise amino
acids that have similar values of hydropathy and volume as lysine. 11

out of the 14 substitutions involve a charge change, and two out of the
three that do not involve a charge change cause a large change in side
chain volume (TY, and SY). TY is the only substitution that does not
have a minimum mutation distance of one.

5.2.3 Empirical p-values of categorical features

Next I computed empirical p-values to measure the probability of
observing the patterns in Figure 5.2D, or more extreme patterns, if
amino acids in substitutions were selected at random. I did this firstly
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Figure 5.2: Cluster transition substitutions in different influenza viruses. (A),
Avian A(H5N1); (B), Equine A(H3N8); (C), Human A(H1N1);
(D), Human A(H3N2); (E), Human B/Victoria and B/Yamagata;
(F), Swine A(H3N2). Amino acids are points plotted according to
their hydropathy and normalised Van der Waals volume. Substitu-
tions are arrows between amino acids. Negatively and positively
charged amino acids are red and blue, respectively. Substitutions
with a minimum mutation distance of two have dashed arrows,
those with a value of one have solid arrows. (No substitutions in
this figure have a minimum mutation distance of three.)
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to quantify the qualitative descriptions of these patterns, and secondly
to act as inclusion criteria for features in the ranking framework
(Section 5.3).

A standard way to test whether counts in categorical data deviate
from expected frequencies is to use a χ2 test. This test is invalid when
counts in each category are low; an often used heuristic requires
a minimum count of five in each category. These data violate this
heuristic (Table 5.1), so instead I computed empirical p-values.

For each feature, the probability of the observed data, P(Do), was
computed using the multinomial distribution. The multinomial distri-
bution gives the probability of observing counts, Do, given probabil-
ities, p, for each category in the data. For example, consider the aa1

data of human A(H3N2) cluster transition substitutions (Table 5.1).
There are 20 standard amino acids, so for aa1, a uniform probabilityAn extension of this

analysis could use a
null distribution

derived from
empirical data. For

instance, the
observed frequencies

of amino acids in
human A(H3N2)

viruses could be used
to compute p.

distribution is a length 20 vector: p = ( 120 , ..., 120). Substituting the aa1

counts and a uniform probability distribution into the multinomial
probability mass function gives:

P(Do) = 5.54× 10−11

This is the probability of observing exactly these aa1 counts given a
uniform probability distribution. We are actually interested in know-
ing what the probability is that a random process would generate
this, or even more extreme, data. This is equivalent to computing how
likely it is that randomly generated data has a lower probability than
P(Do). To estimate this, n = 1× 107 sets of 14 random substitutions
were generated by selecting pairs of amino acids from a uniform
random distribution. 14 is used here because there are 14 human sea-
sonal A(H3N2) cluster transition substitutions in the Koel et al. (2013)
dataset. The probability of each sampled dataset, P(Di), was com-
puted using the multinomial distribution and a uniform probability
distribution. The proportion of times that P(Di) was less than P(Do)
is the empirical p-value:

pe = c/n (5.1)

where c is the number of sampled datasets with P(Di) < P(Do).

5.2.4 Empirical p-values of continuous features

Empirical p-values were also computed for continuous features. As for
categorical features, I sought to quantify how frequently a dataset more
extreme than the observed dataset is generated if amino acids were
selected at random. For categorical data extremeness was quantified
using the multinomial likelihood function and a uniform probability
distribution, which cannot be applied to continuous data.
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Figure 5.3: KDE of hydropathy and volume changes of amino acid substitu-
tions. Koel et al. (2013) cluster transition substitutions are shown
in black, all other possible substitutions are shown in grey. Con-
tours show KDE density of the cluster transition substitution.

Instead, the extremeness of a continuous feature from a set of substi-
tutions, s, was quantified as the likelihood of that feature for all 380

possible substitutions given a model trained on s, Ms:

LAll|Ms
=

380∏
j

P(Dj|Ms) (5.2)

KDE was used as the model. I used the SciPy KDE implementation
(Jones et al. 2001), Gaussian kernels, and Scott’s rule to estimate
bandwidths (Scott 1992).

As for categorical features, n = 1× 107 sets of 14 substitutions were
generated by selecting amino acids at random. For each set of 14

random substitutions, r, the likelihood of observing all substitutions
given a model trained on r was computed, LAll|Mr

. The empirical
p-value was then computed using Equation 5.1, where c is the number
of sampled datasets where LAll|Mr

< LAll|MDo
.

Empirical p-values corroborate the qualitative description of pat-
terns in amino acid features of cluster transition substitutions outlined
above (Table 5.1). Only data from aa0 is consistent with being gener-
ated from a random process.

5.3 a framework to rank cluster transition substitu-
tions

I will now describe the development of a framework to rank can-
didate substitutions by their similarity to historic cluster transition
substitutions. The aim is to predict which out of a set of candidate
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Feature Data pe

aa0 K,3; N,2; Q,2; E,2; D,1; S,1; G,1; Y,1; T,1; A,0; C,0;
F,0; H,0; I,0; L,0; M,0; P,0; R,0; V,0; W,0

0.196

aa1 K,5; H,2; E,2; Y,2; R,1; Q,1; N,1; A,0; C,0; D,0; F,0;
G,0; I,0; L,0; M,0; P,0; S,0; T,0; V,0; W,0

0.00282

dC 0,3; 1,11 0.00702

mmd 1,13; 2,1; 3,0 0.000182

dHdV (See Figure 5.2 and Figure 5.3.) 0.0000008

Table 5.1: Features and empirical p-values of Koel et al. (2013) cluster transi-
tion substitutions.

substitution(s) will cause the next cluster transition. Candidate substitu-
tions refer to substitutions that are possible given currently circulating
human seasonal A(H3N2) influenza viruses.

In this section I will outline: the formulation of a metric, hs, that is
used to rank substitutions; the computation of probability distributions
for substitution features; the generation of candidate substitution sets;
the development of the framework using one set of cluster transition
substitutions, and testing the framework using a separate, blinded test
set; bespoke visualisations (bumps plots) for visualising how rankings
change as training data accumulate and as the HA evolves; testing
whether additional training data improves rankings; and results from
relaxing the assumption that future cluster transition substitutions
will occur at a Koel-seven position.

5.3.1 A score to rank substitutions

This is a learning to rank problem with the goal of ranking candidate
substitutions by a score related to the likelihood that they will cause a
cluster transition. Due to the low amount of data available and without
a mechanistic understanding of what governs the molecular antigenic
evolution of human A(H3N2) seasonal influenza viruses, I do not aim
to accurately estimate this likelihood. Instead, I aim to take sets of
substitutions that have caused cluster transitions (training substitutions),
and make a framework that scores candidate substitutions by their
similarity to these training substitutions. This approach was motivated
by the pronounced patterns observed in features of human A(H3N2)
influenza virus cluster transition substitutions (Section 5.2).

One issue related to the low amount of training data is that there
is an absence of data for what cluster transition substitutions are
not like. When developing classification systems it is useful to have
positive examples (usually represented as 1s) as well as negative
examples (usually represented as 0s) in the training data. This partially
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motivated the design of the score, hs, where the score of substitution,
s is simply the product of the probabilities of its features:

hs =
∏
i

P(xis) (5.3)

where xis denotes the value of feature i in substitution s and P(xis)
derives from probability density functions parametrised from a set
of training substitutions (Subsection 5.3.2). hs for a set of candidate
substitutions are normalised such that they sum to one.

This formulation of hs assumes features are independent, which Two events, A and
B, are independent if
the probability of
observing both is
equal to the product
of the probabilities of
observing either
alone: P(A∩B) =
P(A)P(B).

strictly, is likely to be untrue for these data. This formulation is a
simple technique to quantitatively combine evidence from multiple
features in lieu of more data which could support a more sophisticated
model. The same treatment is used by naïve Bayes classifiers, which
generally perform well in cases, such as this one, with low amounts
of training data (Murphy 2012).

I excluded features which may have been generated by random
processes. Therefore, I use features with empirical p-values lower than
five percent: aa1, dC, mmd (Table 5.1), as well as HA position, for
which I did not conduct a statistical test. I note that all the features
with empirical p-values below this threshold would also be below a
threshold one order of magnitude lower.

5.3.2 Probability density functions of amino acid substitution features

Probability distributions for feature values are required to compute
hs (Equation 5.3). Categorical and continuous features were handled
separately.

Data for categorical features comprise an array of counts, D, cor-
responding to the number of times each value is observed in data.
Bayesian inference was used to derive probability distributions for
categorical features using the multinomial likelihood function. A
Dirichlet distribution, parametrised by an array, α, was used for the
prior, Dir(α). Plus one smoothing was used due to the low amount
of training data (Murphy 2012), which was implemented by using
α = (1, ..., 1). Due to multinomial-Dirichlet conjugacy, the posterior
distribution is also a Dirichlet distribution, Dir(α+D). Marginal pos-
terior distributions represent the probability distributions for each
category of the feature. Marginal distributions of a Dirichlet distribu-
tion, Dir(a), are Beta distributions, Beta(ai,

∑
a− ai), which were

summarised by computing the mean.
Probability distributions of continuous features were modelled using

KDE. The scikit-learn implementation with Gaussian kernels was used
(Pedregosa et al. 2011). When the number of data points was greater
than six, optimal bandwidths were determined via three-fold cross-
validation. Otherwise, a suitable bandwidth was selected using Scott’s
rule (Scott 1992).
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5.3.3 Candidate substitutions

For a particular antigenic cluster, rankings were generated by comput-
ing hs for all candidate substitutions given a set of training substitu-
tions, and then sorting the candidates by hs. Candidate substitutions
were generated from the consensus HA sequence of viruses in an anti-
genic cluster. As the HA, evolves the set of candidate substitutions that
is being ranked changes. For example if an asparagine (N) is present
at a particular position in one cluster, the candidate substitutions for
that position will constitute N to the 19 other possible amino acids. In
the next cluster, if that position has evolved into cysteine (C), then the
candidate substitution for that position will now constitute C to the
19 other possible amino acids. Initially candidate substitutions were
generated at Koel-seven positions only. Later, I extended the candidate
substitutions to include all surface exposed HA1 amino acid residues
less than 35 Å from a Koel-seven residue (Subsection 5.3.10).

5.3.4 Training data

Training data for each ranking consisted of only human A(H3N2)
cluster transition substitutions from preceding cluster transitions. For
example, the three clusters prior to TX77 are HK68, EN72 and VI75 so,
only cluster transition substitutions from the HK68–EN72, EN72–VI75

and VI75–TX77 transitions were used to rank the TX77 candidate sub-
stitutions. Omitting training data from subsequent cluster transitions
was done in order to better generalise the performance of this ranking
framework into the future.

I omitted BE89 which is thought to be an evolutionary dead-end,
thus has no cluster transition substitutions derived from it, and there-
fore has no training data to contribute.

The SI87 and BE92 antigenic clusters were also omitted. These are
the two clusters for which influenza virus libraries containing all single
amino acid variants at Koel-seven positions were generated for. The
results of this ranking framework were combined with experimental
measurements of virus fitness from these virus libraries. This was
done in order to test whether combining historical statistical patterns
with empirical measurements of virus fitness improved our ability to
predict cluster transition substitutions. In order to know how well this
method generalises to other cases, data from SI87 and BE92 should be
censored for training purposes.

5.3.5 Bumps plots

Rankings of candidate substitutions from multiple antigenic clustersBumps plots are
so-called because

similar charts are
used to display how
rankings of rowing

boats change
throughout ’bumps’

races.

are visualised with bumps plots (e.g. Figure 5.5a). A zoomed in section
of a bumps plot is shown in Figure 5.4. Rankings for each antigenic
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cluster are arranged in separate columns ordered chronologically,
left to right. Each row in each column shows a different candidate
substitution. The same candidate substitutions are joined by lines
if they appear in adjacent columns. This enables tracking how the
rank of candidate substitutions changes in different clusters. Rankings
change in different clusters for two reasons: (1) as amino acids in HA1

evolve, different substitutions are possible and (2) training data from
preceding cluster transitions accumulate, which alters the relative
probability associated with substitution features.
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Figure 5.4: Bumps plot detail. This figure shows a zoomed in section of a
bumps plot, in order to explain its elements. The top ten ranked
substitutions from the BK79, SI87 and BE92 antigenic clusters in
Figure 5.8. See Subsection 5.3.5 for a detailed description.

The thick main bar shows the value of hs for a particular substitu-
tion. If the substitution is known to have caused a cluster transition in
this antigenic cluster, it is coloured. Individual components of the hs
score from each feature are shown as circles to the left-hand side of
the main bar. The area of the circle is proportional to the probability
of the feature for that substitution, in that cluster. In the cluster that ’Probability of the

feature’ refers to
values of P(xis) in
Equation 5.3.

a substitution caused a transition from the main bar is coloured. For
example Q156H is coloured light blue in the SY97 column because
Q156H caused a cluster transition out of SY97 (Figure 5.5a). Substitu-
tions with identical hs are merged and shown in the same bar. This is
particularly noticeable in the HK68 rankings (Figure 5.5a) for which
there is no training data, and thus no basis to discriminate between
any candidate substitutions.

5.3.6 Baseline rankings

To serve as a baseline, I generated rankings for each antigenic cluster
from HK68 to SY97 except BE89, SI87 and BE92 (Figure 5.5a). Train-
ing data for the EN72 ranking contains just a single substitution-the
HK68–EN72 cluster transition substitution: T155Y. It is unsurprising
therefore that the actual cluster transition from EN72–VI75, Q189K
is ranked 98/133. By the final two cluster transitions, WU95–SY97

and SY97–FU02, enough training data has accumulated such that the
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(a) Bumps plot (zoomable). See Subsection 5.3.5 for a detailed explanation.
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(b) Number of cluster transition substitutions (y-axis) ranked
above n (x-axis).

Figure 5.5: Baseline rankings. Baseline rankings were generated with no
additional training data. Rankings in each column of (A) are
based solely on training data from columns to their left. Candidate
substitutions comprised only amino acid substitutions at Koel-
seven positions, giving 19× 7 = 133 candidates in each column.
(B) shows that only a single substitution is ranked in the top ten
positions.

rankings have improved modestly. The two substitutions responsible
for the WU95–SY97 cluster transition are ranked 1

st and 10
th, and the

substitution responsible for SY97–FU02 is ranked 18
th.
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The rankings are summarised in a count ranked above n plot (Fig-
ure 5.5b) where the y-axis shows the number of cluster transition
substitutions that are ranked above n, which is indicated on the x-axis.
For cluster transitions caused by multiple substitutions, the mean rank
of those substitutions is computed.

5.3.7 Additional training data

Next, I investigated whether using additional training data improved
the rankings of human A(H3N2) cluster transition substitutions. Clus-
ter transition substitutions are known in these non-’human A(H3N2)’
influenza viruses: avian A(H5N1), equine A(H3N8), human A(H1N1),
human B (Yamagata and Victoria lineages) and swine A(H3N2). These
substitutions are collectively referred to as additional training data.
They are visualised in network diagrams along with human A(H3N2)
cluster transition substitutions in Figure 5.2.

Rankings were generated using the same basic setup as for the
baseline rankings: the same set of candidate substitutions in the same
set of clusters was used, and as before, only human A(H3N2) data
from preceding cluster transitions was used. I first tested the impact
of including all additional training data on the rankings (Figure 5.6).
Seven out of eleven of the substitutions were ranked higher when all
additional training data were included (mean increase of 37.2 places),
the rank of one of the substitutions did not change, and three were
ranked lower (mean decrease of 4.33 places). Three cluster transitions
in the test set required multiple substitutions (VI75–TX77, BK79–SI87

and WU95–SY97). If for these cluster transitions, the mean rank of
the multiple cluster transition substitutions is computed, then five out
of seven were ranked higher when all additional training data are
included (mean increase of 39.4 places) and two out of seven were
ranked lower (mean decrease of 4.50 places). I conclude from this
investigation that use of the additional training data improved the
performance of the ranking framework.

5.3.8 Subsets of additional training data

I then investigated whether the signal in each dataset from a non-
’human A(H3N2)’ influenza virus was beneficial or detrimental to the
rankings by conducting two types of experiment. Each non-’human
A(H3N2)’ dataset was either used on its own as the additional training
data, or all non-’human A(H3N2)’ datasets except one were used as
additional training data. As before, the same candidate substitutions in
the same clusters were ranked; only the training data were modified.

Of the datasets used in isolation the avian and swine datasets per-
formed best (Figure 5.7a). This may relate to the observation that these
are the two largest datasets (Table 4.2). Ranks of cluster transition
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(a) Bumps plot (zoomable). See Subsection 5.3.5 for a detailed explanation.
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(b) Number of cluster transition substitutions (y-axis) ranked
above n (x-axis).

Figure 5.6: Rankings including all additional training data. This is the same
as Figure 5.5 except additional training data from cluster tran-
sition substitutions known in avian A(H5N1), equine A(H3N8),
human A(H1N1), human B (Yamagata and Victoria lineages) and
swine A(H3N2) influenza viruses were also included.

substitutions do not substantially decrease by using any individual
dataset alone (Figure 5.7a). Similarly, ranks of cluster transition sub-
stitutions do not substantially increase by excluding any individual
dataset (Figure 5.7b). I conclude that there is useful signal in all
non-’human A(H3N2)’ datasets, and therefore included all additional
training datasets in future rankings.
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(a) Each non-’human A(H3N2)’ dataset used alone.
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(b) All additional training data is used, and a single non-’human
A(H3N2)’ dataset is excluded. Here, None, means that no
datasets are excluded.

Figure 5.7: Rankings using subsets of additional training data. The number
of cluster transition substitutions (y-axis) ranked above n (x-axis)
(a) including each non-’human A(H3N2)’ training dataset alone
and (b) including all additional training data and excluding one
non-’human A(H3N2)’ dataset.
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Cluster transition Substitution Rank Mean rank for cluster transition

SI87–BE92 E156K 3 3

SI87–BE89 N145K 6 6

BE92–WU95 N145K 2 2

FU02–CA04 K145N 8 8

CA04–WI05 S193F 85 85

WI05–PE09 K158N 11 6

N189K 1

PE09–SW13 F159S 101 101

PE09–HK14 F159Y 59 59

Table 5.2: Rank of cluster transition substitutions in test rankings.

5.3.9 Testing

A subset of human A(H3N2) cluster transition substitutions were pur-
posefully withheld from the development of the framework in order
to act as a blinded test set. The test set contained nine substitutions
responsible for eight cluster transitions.

For testing, rankings were generated using the same strategy as
before: candidate substitutions from each of the clusters were ranked
according to hs. As well as the additional, non-’human A(H3N2)’
training data, human A(H3N2) cluster transition substitutions from
preceding antigenic cluster transitions were used to train feature
probability distributions to compute hs.

Five out of nine substitutions were ranked in the top ten substitu-
tions (Table 5.2, Figure 5.8). The test rankings are also visualised in an
alternate representation which highlights the substitution properties
(Figure 5.9).

If rankings were generated at random, the probability of achieving
a result at least this extreme is approximately:

9∑
k=5

(
9

k

)
· 10
130

k

= 3.57× 10−4 (3 s.f.)

This is approximate because for a cluster transition caused by two sub-
stitutions, the probability of observing both in the top ten at random
is actually 10

130 ·
9
129 . This additional complexity is not incorporated in

the calculation. I assume it would not impact the magnitude of the
result which is dominated by the

(
9
5

)
· 10130

5
term.
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Y155A
7.6E-05
N145V
7.6E-05
N145L
6.4E-05
K189F
5.8E-05
S159W
5.8E-05
N193F
5.1E-05
E158W
4.4E-05
E156F
4.2E-05
E158F
2.3E-05
N145F
1.9E-05
N193W
5.8E-06
Y155G
5.3E-06
N145W
2.1E-06

R189K
1.3E-01

N193K
1.1E-01

E156K
9.8E-02
H155Y
9.7E-02

E158K
5.5E-02

N145K
4.1E-02
H155N
3.2E-02

N193H
2.1E-02
N193Y
2.1E-02
R189H
1.9E-02
R189Q
1.8E-02
H155Q
1.6E-02
Y159H
1.5E-02
N193D
1.4E-02
N193S
1.3E-02
H155D
1.3E-02
H155E
1.3E-02
H155R
1.3E-02
E156Q
1.2E-02
H155K
1.2E-02
R189E
1.1E-02
N193E
1.1E-02
N193T
9.9E-03
H155P
9.2E-03
E156A
9.2E-03
H155L
9.0E-03
N145H
7.6E-03
N145Y
7.5E-03
E156D
7.5E-03
R189M
7.4E-03
E158Q
7.0E-03
R189Y
6.8E-03
R189T
6.0E-03
E158A
5.2E-03
N145D
5.2E-03
Y159K
5.0E-03
E156Y
4.9E-03
N145S
4.7E-03
E158D
4.3E-03
R189N
4.0E-03
R189L
4.0E-03
N145E
3.9E-03
E156N
3.9E-03
N145T
3.6E-03
H155T
3.4E-03
Y159N
3.4E-03
R189S
3.2E-03
Y159E
2.9E-03
E156V
2.9E-03
E156H
2.8E-03
E158Y
2.8E-03
E156G
2.7E-03
N193R
2.4E-03
E158N
2.2E-03
H155S
2.1E-03
R189P
2.0E-03
R189I
2.0E-03
E156T
1.9E-03
Y159D
1.9E-03
E156R
1.9E-03
E156S
1.8E-03
E158V
1.6E-03
E158H
1.6E-03
E158G
1.6E-03
R189C
1.5E-03
Y159F
1.5E-03
H155A
1.3E-03
N193Q
1.3E-03
E158T
1.1E-03
N193A
1.1E-03
E158R
1.1E-03
Y159S
1.1E-03
E158S
1.0E-03
R189D
1.0E-03
H155V
9.7E-04
Y159C
9.6E-04
H155C
9.5E-04
Y159R
8.8E-04
N145R
8.5E-04
H155M
8.0E-04
E156M
7.3E-04
N193I
6.5E-04
H155I
5.6E-04
E156P
4.9E-04
N193G
4.7E-04
N145Q
4.7E-04
E158M
4.2E-04
Y159T
4.1E-04
Y159L
3.9E-04
N193M
3.9E-04
N145A
3.9E-04
R189W
3.8E-04
E156L
3.4E-04
Y159Q
3.2E-04
H155F
3.1E-04
Y159M
2.9E-04
E158P
2.8E-04
N193P
2.6E-04
R189V
2.6E-04
H155G
2.4E-04
N193C
2.4E-04
N145I
2.3E-04
Y159I
2.0E-04
E158L
1.9E-04
N193V
1.9E-04
Y159V
1.8E-04
R189G
1.8E-04
Y159P
1.7E-04
N145G
1.7E-04
E156I
1.7E-04
N193L
1.6E-04
R189F
1.5E-04
Y159W
1.5E-04
E156C
1.4E-04
N145M
1.4E-04
R189A
1.4E-04
E158I
9.6E-05
N145P
9.5E-05
H155W
9.4E-05
N145C
8.7E-05
E158C
8.0E-05
N145V
6.7E-05
E156W
6.3E-05
Y159A
6.1E-05
N145L
5.8E-05
N193F
4.5E-05
E158W
3.6E-05
E156F
3.2E-05
E158F
1.8E-05
N145F
1.6E-05
N193W
5.9E-06
Y159G
5.8E-06
N145W
2.1E-06

H155Y
1.0E-01
N145K
1.0E-01

K156E
8.6E-02
E158K
7.7E-02

K156N
3.3E-02
S189T
3.3E-02
S189N
3.2E-02
S189A
3.0E-02
H155N
2.8E-02
S189Y
2.7E-02
K156R
1.8E-02
S193T
1.7E-02
S193N
1.6E-02
S193A
1.5E-02
H155Q
1.5E-02
K156Q
1.5E-02
S189K
1.5E-02
S189E
1.4E-02
S193Y
1.4E-02
N145H
1.4E-02
Y159H
1.4E-02
K156T
1.2E-02
S189G
1.2E-02
H155K
1.2E-02
N145Y
1.1E-02
H155D
1.1E-02
H155E
1.1E-02
H155R
1.0E-02
N145D
9.2E-03
S189P
8.9E-03
S189C
7.9E-03
H155P
7.9E-03
S193K
7.5E-03
E158Q
7.4E-03
S193E
7.4E-03
H155L
7.0E-03
N145S
6.9E-03
N145E
6.8E-03
S189L
6.5E-03
S189R
6.0E-03
S193G
6.0E-03
K156Y
5.8E-03
Y159K
5.1E-03
K156M
5.1E-03
N145T
5.0E-03
E158A
4.7E-03
S189H
4.6E-03
S193P
4.5E-03
S193C
4.1E-03
E158D
3.8E-03
S193L
3.3E-03
S189I
3.3E-03
S193R
3.1E-03
H155T
2.8E-03
S189D
2.8E-03
E158Y
2.7E-03
S193H
2.3E-03
Y159N
2.3E-03
Y159E
2.3E-03
E158N
2.0E-03
K156H
1.8E-03
H155S
1.7E-03
S193I
1.7E-03
K156I
1.6E-03
E158H
1.6E-03
S189M
1.5E-03
Y159D
1.5E-03
S193D
1.4E-03
N145R
1.4E-03
S189F
1.4E-03
E158V
1.4E-03
E158G
1.3E-03
K156D
1.2E-03
S189Q
1.2E-03
Y159F
1.1E-03
K156S
1.0E-03
E158R
1.0E-03
H155A
9.8E-04
E158T
9.6E-04
E158S
9.1E-04
S193M
7.7E-04
H155V
7.5E-04
S189V
7.4E-04
N145Q
7.4E-04
H155C
7.3E-04
Y159R
7.3E-04
S193F
7.2E-04
Y159S
6.7E-04
Y159C
6.7E-04
S193Q
6.3E-04
H155M
6.1E-04
N145A
5.0E-04
K156A
4.6E-04
H155I
4.0E-04
S193V
3.8E-04
K156L
3.7E-04
K156P
3.3E-04
E158M
3.2E-04
K156V
2.8E-04
N145I
2.8E-04
Y159T
2.7E-04
Y159L
2.7E-04
Y159Q
2.2E-04
E158P
2.2E-04
N145G
2.2E-04
Y159M
2.2E-04
H155F
2.2E-04
S189W
2.0E-04
N145M
1.7E-04
H155G
1.6E-04
E158L
1.4E-04
Y159I
1.3E-04
Y159V
1.2E-04
Y159P
1.1E-04
N145P
1.1E-04
S193W
1.0E-04
N145C
1.0E-04
Y159W
1.0E-04
K156G
9.9E-05
K156C
9.1E-05
N145V
7.6E-05
H155W
7.2E-05
E158I
7.0E-05
N145L
6.4E-05
E158C
6.4E-05
K156W
5.7E-05
Y159A
3.3E-05
E158W
2.7E-05
K156F
2.2E-05
N145F
1.9E-05
E158F
1.4E-05
Y159G
2.5E-06
N145W
2.1E-06

H155Y
1.1E-01

E158K
8.8E-02
K156E
8.6E-02

K145E
7.6E-02

S189T
3.3E-02
K156N
3.2E-02
S189N
3.1E-02
S189A
2.9E-02
K145N
2.8E-02
H155N
2.6E-02
S189Y
2.6E-02
K156R
1.8E-02
S193T
1.7E-02
K145R
1.6E-02
S189K
1.6E-02
S193N
1.6E-02
K156Q
1.5E-02
S189E
1.5E-02
S193A
1.5E-02
H155Q
1.5E-02
S193Y
1.3E-02
K145Q
1.3E-02
Y159H
1.3E-02
H155K
1.2E-02
K156T
1.1E-02
S189G
1.1E-02
H155D
1.1E-02
H155E
1.0E-02
K145T
1.0E-02
H155R
9.3E-03
S189P
8.1E-03
S193K
8.0E-03
H155P
7.7E-03
S193E
7.5E-03
E158Q
7.4E-03
S189C
7.1E-03
H155L
6.1E-03
S189L
5.9E-03
S193G
5.7E-03
K156Y
5.6E-03
S189R
5.4E-03
K145Y
4.9E-03
Y159K
4.9E-03
S189H
4.7E-03
E158A
4.4E-03
K156M
4.3E-03
S193P
4.1E-03
K145M
3.8E-03
S193C
3.6E-03
E158D
3.4E-03
S193L
3.0E-03
S189I
2.9E-03
S189D
2.9E-03
H155T
2.7E-03
S193R
2.7E-03
E158Y
2.6E-03
S193H
2.4E-03
Y159E
1.9E-03
E158N
1.9E-03
Y159N
1.8E-03
K156H
1.6E-03
K156I
1.5E-03
H155S
1.5E-03
E158H
1.5E-03
S193I
1.5E-03
S193D
1.5E-03
K145H
1.4E-03
S189M
1.4E-03
K145I
1.4E-03
S189F
1.2E-03
Y159D
1.2E-03
K156D
1.2E-03
S189Q
1.2E-03
E158V
1.2E-03
E158G
1.1E-03
K145D
1.0E-03
E158R
9.6E-04
K156S
9.2E-04
E158T
8.8E-04
H155A
8.5E-04
Y159F
8.4E-04
E158S
8.4E-04
K145S
8.1E-04
S193M
7.0E-04
H155V
6.8E-04
H155C
6.7E-04
S189V
6.4E-04
S193F
6.2E-04
Y159R
6.1E-04
S193Q
6.0E-04
H155M
5.4E-04
Y159C
5.2E-04
Y159S
4.6E-04
K156A
3.7E-04
K156L
3.4E-04
H155I
3.4E-04
K145A
3.3E-04
S193V
3.2E-04
K145L
3.0E-04
K156P
2.9E-04
K145P
2.5E-04
K156V
2.5E-04
E158M
2.4E-04
K145V
2.2E-04
Y159L
2.1E-04
Y159T
2.1E-04
Y159M
1.9E-04
E158P
1.9E-04
Y159Q
1.8E-04
H155F
1.7E-04
S189W
1.3E-04
H155G
1.2E-04
Y159I
1.1E-04
E158L
1.1E-04
Y159V
9.3E-05
Y159P
8.9E-05
K156C
8.0E-05
Y159W
7.9E-05
K156G
7.3E-05
K145C
7.0E-05
S193W
6.7E-05
H155W
6.5E-05
K145G
6.5E-05
E158C
5.4E-05
E158I
5.3E-05
K156W
4.6E-05
K145W
4.1E-05
E158W
2.1E-05
Y159A
2.0E-05
K156F
1.6E-05
K145F
1.4E-05
E158F
1.1E-05
Y159G
1.2E-06

Q156K
2.2E-01

Q156E
9.7E-02

H155Y
8.2E-02

K145E
5.8E-02

K158E
4.5E-02

Q156H
2.7E-02
Q156R
2.3E-02
H155Q
2.3E-02
S189T
2.3E-02
K145N
2.1E-02
S189N
2.0E-02
K145Q
2.0E-02
H155N
2.0E-02
S189A
2.0E-02
K158N
1.7E-02
S189Y
1.6E-02
K158Q
1.6E-02
S193T
1.1E-02
S189K
1.1E-02
K145R
1.1E-02
S193N
1.0E-02
S193A
1.0E-02
Y159H
1.0E-02
S189E
9.9E-03
H155K
8.4E-03
K158R
8.4E-03
H155D
8.2E-03
S193Y
8.1E-03
S189G
7.7E-03
H155E
7.5E-03
K145T
6.9E-03
H155R
6.2E-03
S193K
5.6E-03
H155P
5.4E-03
S189P
5.4E-03
K158T
5.3E-03
S193E
5.0E-03
S189C
4.7E-03
H155L
4.2E-03
S193G
3.9E-03
Y159K
3.8E-03
S189L
3.6E-03
S189R
3.6E-03
K145Y
3.3E-03
S189H
3.1E-03
S193P
2.7E-03
K145M
2.6E-03
K158Y
2.5E-03
Q156Y
2.5E-03
S193C
2.4E-03
Q156N
2.2E-03
K158M
2.0E-03
S189D
2.0E-03
H155T
1.9E-03
S193L
1.8E-03
S193R
1.8E-03
S189I
1.8E-03
S193H
1.6E-03
Q156P
1.5E-03
S189Q
1.4E-03
Q156D
1.4E-03
Y159E
1.3E-03
Y159N
1.2E-03
H155S
1.0E-03
S193D
1.0E-03
Q156L
9.7E-04
S193I
9.2E-04
K145H
9.1E-04
K145I
9.1E-04
Y159D
8.7E-04
S189M
8.1E-04
Q156T
7.7E-04
Q156S
7.5E-04
S189F
7.4E-04
K145D
7.2E-04
S193Q
7.2E-04
K158H
7.1E-04
K158I
7.0E-04
K158D
5.6E-04
H155A
5.6E-04
Y159F
5.2E-04
K145S
5.2E-04
H155V
4.4E-04
H155C
4.4E-04
Y159R
4.2E-04
S193M
4.1E-04
K158S
4.0E-04
S189V
3.8E-04
Q156A
3.8E-04
S193F
3.8E-04
H155M
3.6E-04
Y159C
3.2E-04
Y159S
2.9E-04
Y159Q
2.3E-04
H155I
2.2E-04
K145A
2.1E-04
Q156M
2.0E-04
S193V
1.9E-04
K145L
1.9E-04
K158A
1.6E-04
K145P
1.6E-04
K158L
1.5E-04
K145V
1.4E-04
Y159T
1.3E-04
K158P
1.2E-04
Y159L
1.2E-04
H155F
1.1E-04
Y159M
1.1E-04
Q156V
1.1E-04
K158V
1.1E-04
Q156G
1.0E-04
S189W
8.0E-05
H155G
7.9E-05
Y159I
6.2E-05
Y159V
5.4E-05
Y159P
5.1E-05
Q156I
5.0E-05
Y159W
4.6E-05
Q156C
4.4E-05
K145C
4.4E-05
H155W
4.1E-05
K145G
4.1E-05
S193W
4.0E-05
K158C
3.4E-05
K158G
3.2E-05
K145W
2.6E-05
K158W
2.0E-05
Q156W
1.7E-05
Y159A
1.2E-05
K145F
9.0E-06
Q156F
8.0E-06
K158F
7.0E-06
Y159G
6.7E-07

H156Y
1.4E-01

T155K
7.7E-02
K145E
7.6E-02

K158E
6.1E-02

H156Q
3.5E-02
H156N
2.9E-02
S189T
2.9E-02
K145N
2.7E-02
K145Q
2.6E-02
S189A
2.5E-02
S189N
2.3E-02
K158N
2.1E-02
K158Q
2.1E-02
Y159H
2.0E-02
S189Y
1.8E-02
T155S
1.6E-02
T155A
1.5E-02
S193T
1.5E-02
T155M
1.4E-02
K145R
1.3E-02
S193A
1.3E-02
S189K
1.3E-02
H156D
1.2E-02
H156K
1.2E-02
S189E
1.2E-02
S193N
1.2E-02
H156E
1.1E-02
K158R
1.0E-02
T155N
9.8E-03
S189G
9.3E-03
S193Y
9.3E-03
K145T
8.4E-03
T155P
8.4E-03
H156P
8.3E-03
H156R
8.2E-03
T155E
7.1E-03
K158T
6.7E-03
S189P
6.6E-03
S193K
6.4E-03
S193E
6.0E-03
H156L
5.7E-03
S189C
5.7E-03
S189H
5.5E-03
T155H
5.2E-03
S193G
4.7E-03
Y159K
4.4E-03
S189L
4.3E-03
K145Y
4.1E-03
S189R
3.8E-03
S193P
3.3E-03
K158Y
3.3E-03
H156T
2.9E-03
S193C
2.9E-03
S193H
2.8E-03
K145M
2.8E-03
T155I
2.7E-03
S189D
2.4E-03
T155Y
2.4E-03
T155R
2.4E-03
K158M
2.2E-03
S193L
2.2E-03
S189I
2.1E-03
S193R
1.9E-03
K145H
1.7E-03
S189Q
1.6E-03
Y159E
1.5E-03
H156S
1.5E-03
K158H
1.3E-03
S193D
1.2E-03
T155D
1.2E-03
Y159N
1.1E-03
K145I
1.1E-03
S193I
1.1E-03
Y159D
9.1E-04
S189M
9.0E-04
K158I
9.0E-04
K145D
8.9E-04
T155Q
8.8E-04
S193Q
7.9E-04
S189F
7.8E-04
T155C
7.6E-04
H156A
7.5E-04
K158D
7.1E-04
H156V
6.4E-04
H156C
6.3E-04
T155V
6.3E-04
K145S
5.9E-04
Y159F
5.7E-04
H156M
5.4E-04
T155L
5.3E-04
K158S
4.7E-04
Y159R
4.6E-04
S193M
4.6E-04
S189V
4.4E-04
S193F
4.0E-04
Y159C
3.3E-04
T155G
3.1E-04
H156I
2.9E-04
Y159S
2.5E-04
Y159Q
2.4E-04
K145L
2.3E-04
S193V
2.2E-04
K145A
2.1E-04
K158L
1.8E-04
K145P
1.7E-04
K158A
1.7E-04
T155F
1.6E-04
K145V
1.6E-04
H156F
1.5E-04
K158P
1.4E-04
Y159M
1.3E-04
Y159L
1.3E-04
Y159T
1.3E-04
K158V
1.3E-04
H156G
8.7E-05
Y159I
6.7E-05
H156W
5.9E-05
S189W
5.9E-05
Y159V
5.7E-05
Y159P
5.4E-05
Y159W
5.3E-05
K145C
4.9E-05
K158C
3.9E-05
K145G
3.7E-05
T155W
3.2E-05
S193W
3.0E-05
K158G
2.9E-05
K145W
2.6E-05
K158W
2.1E-05
Y159A
8.9E-06
K145F
8.3E-06
K158F
6.6E-06
Y159G
3.7E-07

N189K
2.5E-01

N145K
1.3E-01

H156Y
9.5E-02

T155K
5.3E-02

K158E
4.2E-02
N189H
3.9E-02

H156Q
2.4E-02
N145H
2.1E-02
H156N
2.0E-02
N189D
1.8E-02
K158N
1.5E-02
K158Q
1.5E-02
N189Y
1.4E-02
N189E
1.2E-02
T155S
1.1E-02
T155A
1.0E-02
N189S
1.0E-02
S193T
1.0E-02
N145D
9.7E-03
T155M
9.6E-03
S193A
8.9E-03
H156D
8.5E-03
H156K
8.3E-03
S193N
8.1E-03
H156E
7.8E-03
N145Y
7.6E-03
K158R
7.2E-03
T155N
6.7E-03
N189T
6.5E-03
N145E
6.4E-03
S193Y
6.4E-03
T155P
5.8E-03
H156P
5.7E-03
H156R
5.6E-03
N145S
5.4E-03
T155E
4.9E-03
K158T
4.6E-03
S193K
4.4E-03
F159L
4.1E-03
S193E
4.1E-03
H156L
3.9E-03
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(a) Bumps plot (zoomable). See Subsection 5.3.5 for a detailed explanation.
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(b) Number of cluster transition substitutions (y-axis) ranked
above n (x-axis).

Figure 5.8: Test rankings. Cluster transitions used for testing are SI87–BE92,
SI87–BE89, BE92–WU95, FU02–CA04, CA04–WI05, WI05–PE09,
PE09–SW13 and PE09–HK14. For completeness, all earlier clusters
that seeded another cluster are shown in the bumps plot.



100 cluster transition substitution rankings

S 14
5

T 15
5

K 15
6

G 15
8

S 15
9

Q 18
9

S 19
3

WYFMLIVAPGCQNTSEDHKR

Positive Negative Polar uncharged Special Hydrophobic

H
K

68
S 14

5
Y 15

5
K 15

6
G 15

8
S 15

9
Q 18

9
S 19

3

WYFMLIVAPGCQNTSEDHKR

Positive Negative Polar uncharged Special Hydrophobic

E
N

72
N 14

5
Y 15

5
K 15

6
G 15

8
S 15

9
K 18

9
D 19

3

WYFMLIVAPGCQNTSEDHKR

Positive Negative Polar uncharged Special Hydrophobic

V
I7

5
N 14

5
Y 15

5
K 15

6
E 15

8
S 15

9
K 18

9
N 19

3

WYFMLIVAPGCQNTSEDHKR

Positive Negative Polar uncharged Special Hydrophobic

T
X

77
N 14

5
Y 15

5
E 15

6
E 15

8
S 15

9
K 18

9
N 19

3

WYFMLIVAPGCQNTSEDHKR

Positive Negative Polar uncharged Special Hydrophobic

B
K

79
N 14

5
H 15

5
E 15

6
E 15

8
Y 15

9
R 18

9
N 19

3

WYFMLIVAPGCQNTSEDHKR

Positive Negative Polar uncharged Special Hydrophobic

S
I8

7
K 14

5
H 15

5
E 15

6
D 15

8
Y 15

9
R 18

9
S 19

3

WYFMLIVAPGCQNTSEDHKR

Positive Negative Polar uncharged Special Hydrophobic

B
E

89

N 14
5

H 15
5

K 15
6

E 15
8

Y 15
9

S 18
9

S 19
3

WYFMLIVAPGCQNTSEDHKR

Positive Negative Polar uncharged Special Hydrophobic

B
E

92
K 14

5
H 15

5
K 15

6
E 15

8
Y 15

9
S 18

9
S 19

3

WYFMLIVAPGCQNTSEDHKR

Positive Negative Polar uncharged Special Hydrophobic

W
U

95
K 14

5
H 15

5
Q 15

6
K 15

8
Y 15

9
S 18

9
S 19

3

WYFMLIVAPGCQNTSEDHKR

Positive Negative Polar uncharged Special Hydrophobic

S
Y

97
K 14

5
T 15

5
H 15

6
K 15

8
Y 15

9
S 18

9
S 19

3

WYFMLIVAPGCQNTSEDHKR

Positive Negative Polar uncharged Special Hydrophobic

F
U

02
N 14

5
T 15

5
H 15

6
K 15

8
F 15

9
N 18

9
S 19

3

WYFMLIVAPGCQNTSEDHKR

Positive Negative Polar uncharged Special Hydrophobic

C
A

04
N 14

5
T 15

5
H 15

6
K 15

8
F 15

9
N 18

9
F 19

3

WYFMLIVAPGCQNTSEDHKR

Positive Negative Polar uncharged Special Hydrophobic

W
I0

5
S 14

5
T 15

5
H 15

6
N 15

8
F 15

9
K 18

9
F 19

3

WYFMLIVAPGCQNTSEDHKR

Positive Negative Polar uncharged Special Hydrophobic

P
E

09

Figure 5.9: This is an alternate representation of the data visualised in Fig-
ure 5.8. Here, hs scores for each substitution in a set of rankings
are indicated by the area of a circle. Circles are arranged on a grid
whereby the columns show the HA position of the substitution,
and rows show the amino acid gained in the substitution. Crosses
indicate the amino acids that are lost in the substitution. Amino
acids are grouped loosely based on their properties. Red squares
indicate the substitutions that caused cluster transitions. Circle
areas are standardised such that the maximum size in each panel
is the same. Only the top 100 substitutions in each set of rankings
is shown.
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5.3.10 Extended candidate substitutions

Up to this section, all rankings were conducted on candidate substitu-
tions generated at the Koel-seven positions. Given the Koel et al. (2013)
data which covers human seasonal influenza A(H3N2) viruses that cir-
culated between 1968 and 2002, 14 cluster transition substitutions were
observed at seven HA positions, and the same seven positions were
repeatedly used. Furthermore, the substitutions identified in Chapter 4

that are responsible for the cluster transitions since 2002 also only
involved these Koel-seven HA positions. However, the possibility of
additional HA positions harbouring cluster transition substitutions
cannot be ruled out. A simple model may shed light on how likely
this is.

The process that selects cluster transition substitution positions can
be modelled similarly to rolling a die. The number of faces the die
has represents the number of HA positions that can harbour cluster
transition substitutions. We do not know how many positions cluster
transition substitutions can occur at, but in the data so far we have
seen seven positions. In the die analogy, we do not know how many
faces the die has, but we have rolled it several times and so far have
only observed seven faces. The question becomes: how likely is it
that the die actually only has seven faces, if we’ve seen seven faces?
Furthermore, how does this likelihood change as we see more data?

After 40 rolls only seeing seven faces, it is overwhelmingly likely
that there are only seven faces (Figure 5.10). After 14 rolls only seeing
seven faces, it is actually more likely that the die has eight faces,
although the probability that the die has seven or nine faces are only
slightly lower. This model assumes

an unbiased die,
which may not be
realistic. In the Koel
et al. (2013) data
position 156 is
observed four times,
whereas position 159
is observed only
once.

This model is extremely reductionist and therefore the exact proba-
bilities should not be used directly in additional calculations. I use it to
highlight that even in an extremely simple model, we should attribute
a non-zero probability to the possibility to there being additional
positions that can harbour cluster transitions.

In this section, I relax the assumption that future cluster transitions
can only be caused by amino acid substitutions at a Koel-seven po-
sitions. I achieve this by extending the number of HA positions that
candidate substitutions for rankings are generated at. Instead of only
Koel-seven positions, I included any solvent exposed position within
35 Å of a Koel-seven position in the A/Hong Kong/1/1968 (H3N2)
crystal structure (PDB ID: 4FNK (Ekiert et al. 2012)). The 116 positions
that meet these criteria were: 57, 58, 59, 60, 62, 63, 65, 74, 75, 77, 78, A(H3N2) specific

numbering was used
throughout (Burke
and Smith 2014).

80, 81, 82, 83, 85, 91, 92, 93, 94, 95, 96, 100, 101, 103, 104, 105, 106, 114,
119, 121, 122, 123, 124, 125, 126, 128, 129, 131, 132, 133, 134, 135, 136,
137, 140, 141, 142, 143, 144, 145, 146, 149, 150, 155, 156, 157, 158, 159,
160, 162, 163, 165, 166, 167, 168, 169, 171, 172, 173, 174, 175, 186, 187,
188, 189, 190, 192, 193, 194, 196, 197, 198, 199, 201, 207, 208, 209, 210,



102 cluster transition substitution rankings

5 10 15 20 25 30 35 40
Rolls

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

k
7
8
9
10
11

Figure 5.10: Probability a die has k sides having observed seven. If a fair
die has an unknown number of faces, repeatedly rolling it and
observing the faces can provide evidence on how many total
faces there are. Here, the y-axis shows the probability that a fair
die with k sides generated data containing exactly seven faces
for a varying number of rolls (x-axis).

211, 212, 213, 214, 219, 222, 223, 224, 225, 226, 227, 233, 234, 236, 238,
239, 240, 241, 242, 248, 255, 259, 261, 269, 271, 273, 274. See Figure 5.11

for these positions displayed on the A/Honk Kong/1/1968 (H3N2)
crystal structure.

Rankings were generated using candidate substitutions at all 116 of
these HA positions. Each ranking contains 116× 19 = 2, 204 substitu-
tions. See Figure 5.12a for a summary of the top 100 positions of each
of these rankings, and Figure 5.12b for a summary of the positions of
known cluster transition substitutions in these rankings. Similarly to
the test rankings, in over half of cases, cluster transition substitutions
were ranked in the top ten substitutions.

5.4 discussion

The ability to rank cluster transition substitutions as effectively as
demonstrated here stems from their pronounced biophysical patterns.
These patterns appear to be a general feature of amino acid substitu-
tions that cause major antigenic change in diverse influenza viruses
(Figure 5.2). This observation suggests that the patterns derive from
mechanisms that alter antigen-antibody interactions that are not spe-
cific to a particular influenza virus subtype or host. Large biophysical
changes, such as changes in side chain volume and formal charge,
may disrupt epitope-paratope complementarity regardless of host or
subtype. Similarly, the maintenance of residue hydropathy suggests
that maintaining solvent interactions is important regardless of host
or subtype. A pragmatic benefit of this similarity across different
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Figure 5.11: HA positions of extended candidate substitutions. (a) and (b)
are different rotations of the same crystal structure. The three
HA monomers are shown in black, grey and white. On the
grey monomer Koel-seven positions are yellow and the ex-
tended positions are red. This figure was rendered using PyMOL
(Schrödinger LLC 2015) on the A/Hong Kong/1/1968 (H3N2)
crystal structure, PDB ID: 4FNK (Ekiert et al. 2012).

hosts and subtypes is to increase the amount of training data which
improves retrospective rankings (Figure 5.8). This additional training
data probably also improves how generalisable into the future this
ranking framework will be.

The ranking framework is not based on a mechanistic understand-
ing of the processes which govern influenza virus antigenic evolution.
Instead, patterns are observed in training data, abstracted as probabil-
ity distributions, and naïvely applied to rank candidate substitutions.
The patterns observed are consistent with our expectations. For in-
stance, it is unsurprising that substitutions that induce large changes
in physicochemical properties disrupt epiotope-paratope complimen-
tary. However, although the rankings perform remarkably well, they
do not allow us to understand why the patterns seem to apply in
some cases, such as the many instances of involving lysine, but not
in others, such as T155Y, responsible for the HK68–EN72 cluster tran-
sition, which is ranked 72

nd in the test rankings (Figure 5.8). A more
detailed mechanistic understanding of the processes that govern the
antigenic evolution of influenza viruses may allow us to understand
why some cluster transition substitutions follow historical patterns
and others do not.
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(a) Bumps plot (zoomable). See Subsection 5.3.5 for a detailed explanation.
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(b) Number of cluster transition substitutions (y-axis) ranked
above n (x-axis).

Figure 5.12: Wider candidate substitution rankings. These rankings show
the top 100 out of 2,204 candidate substitutions generated for
an extended set of solvent exposed HA positions around the
globular head.

The rankings presented in this chapter are substantially better than if
substitutions were ranked at random. This is scientifically interesting,
but there are plenty of cases where the correct substitution is not
ranked first. Superficially, this may seem to prevent this work from
being useful to inform vaccination strategies. If there was even a very
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low chance that substitution ranked first was not going to cause the
next cluster transition substitution, would it be ethical to deploy a
strain with this substitution in a vaccine?

As outlined in the introduction to this chapter, an immunity man-
agement strategy does not require full confidence in predictions of
future antigenic variants. Thanks to the back-boost, an antigenically
advanced strain generates the same recall of prior immunity as using
a matched vaccine. Therefore, if the predicted antigenic variant does
not circulate, protection conferred by an advanced vaccine against
non-drifted strains may be the same as a matched vaccine.

In the next and final chapter I introduce experimental measurements
of intrinsic and extrinsic fitness that have been carried out on libraries
of influenza virus mutants containing all possible single substitution
mutants at the Koel-seven positions. Combining insights from the
rankings presented in this chapter and the fitness assessments yields
further improved predictions.
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chapter outline In this final chapter I summarise the thesis and
discuss it in the context of a wider body of work being carried out by
other members of my group and our collaborators.

6.1 summary

This thesis outlines the predictability of substitutions that cause major
antigenic change, and quantifies the impact that solving antigenic mis-
match would have on VE. In Chapter 3 I conducted the first detailed
analysis on the impact of antigenic mismatch on VE using measure-
ments of antigenic mismatch derived from antigenic maps. The results
suggest that there is a threshold value of approximately 3.5 AU mis-
match above which VE begins to drop steeply. Questions have been
raised about the legitimacy of VE measured by the TND. The observa-
tion of a clear pattern between seasons with higher antigenic mismatch
and lower VE broadly validates the VE signal measured by TND. Anti-
genic coordinates of some viruses in Chapter 3 were derived from
BLUP predictions, which I introduce in Chapter 2 as part of a novel
application of LMMs developed in the field of quantitative genetics.

In Chapter 4 I reviewed current knowledge on substitutions that
cause major antigenic change in diverse influenza viruses. I went on to
identify additional substitutions responsible for cluster transitions in
human A(H3N2) viruses using a combination of natural experiments
and statistical tests in the LMM framework. The substitutions I identi-
fied continued pronounced patterns in other known cluster transition
substitutions.

In Chapter 5 I demonstrated that cluster transition substitutions
are highly non-random, allowing me to develop a framework to rank
candidate substitutions by their similarity to cluster transition substi-
tutions. I also outlined a novel immunity management vaccination
strategy which proposes using antigenically advanced vaccines to
build immunity in the population ahead of the antigenic evolution of
the virus. I then summarised data from Fonville et al. (2014) showing
that antigenically advanced vaccines generate the same recall of prior
immunity as matched vaccines. Due to the back-boost, antigenically
advanced vaccines may not be inferior to antigenically matched vac-
cines, even if drift variants do not circulate. This implies that complete
confidence in the identity of future variants is not required for this
work to have translational impact.
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Of course, higher confidence predictions are desirable, and depend
on honing our understanding of the processes which govern the anti-
genic evolution of these viruses. The work presented in this thesis is
one component of a larger project to predict the antigenic evolution of
seasonal influenza viruses. This project is a collaboration between Prof.
Smith’s group at the University of Cambridge, U.K. and virologists
at the University of Wisconsin, Madison, U.S.A.; Erasmus Medical
Centre, Rotterdam, Netherlands; and the Peter Doherty Institute for
Infection and Immunity, Melbourne, Australia. I will now outline this
project and the role of this thesis in it.

6.2 all substitution experiment

Koel et al. (2013) showed that in most cases cluster transitions are
caused by single amino acid substitutions at only seven HA positions
in human A(H3N2) influenza viruses. This pattern continued to hold
for the later cluster transition substitutions I identify in Chapter 4.
These findings imply that only 19× 7 = 133 single amino acid variants
would need to be generated to conduct a screen containing the future
cluster transition substitution.

SI87

BE89
BE92

WU95

Schematic view of
clusters involved in
the all substitution

experiment.

Such mutant screens were conducted for two retrospective cases.
Shufang Fan at the University of Wisconsin, Madison, U.S.A. generated
all single amino acid variants at Koel-seven positions in a strain from
the SI87 antigenic cluster, and separately in a strain from the BE92

cluster. SI87 was selected because it is the source of a bifurcation in
the otherwise stepwise progression of clusters (Figure 1.4). Using SI87

therefore enabled investigating two antigenic cluster transitions with
a single set of mutants.

Antigenic phenotypes of these viruses were measured by Malet
Aban at the Peter Doherty Institute for Infection and Immunity, Mel-
bourne, Australia. A large HI assay was conducted using a panel of
16 antisera known to accurately coordinate viruses in this region of
antigenic space. Sarah James and I, at the Centre for Pathogen Evolu-
tion, Department of Zoology, University of Cambridge, U.K., used the
titrations to generate an antigenic map (Figure 6.1).

The maps comprise an exhaustive exploration of the antigenic space
accessible by single substitutions at Koel-seven positions. Surprisingly,
the majority of mutants did not escape the cluster of their parent
virus. From the SI87 virus, of the mutants that did escape the cluster,
only two directions are observed; either towards the subsequent BE89

cluster, or towards the subsequent BE92 cluster. Similarly, from the
BE92 strain, the majority of mutants do not escape the cluster, and
those that do, radiate towards the subsequent cluster, WU95. The BE92

K156E mutant does not head towards WU95, but towards SI87. K156E
is the reversion of E156K which caused the SI87–BE92 cluster transition.
Despite generating all possible single amino acid substitution mutants
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at Koel-seven positions, most substitutions show low antigenic impact.
Substitutions that do have an antigenic impact appear to be restricted
to certain areas of antigenic space.

Generally speaking, predictions are better when they combine data
from multiple different sources. This is the case here. Figure 6.1B–G
show smaller regions of the all substitution antigenic map. In Fig-
ure 6.1F and G the area of each mutant is proportional to hs. Many hs is described in

Chapter 5 and is
used to rank
substitutions.

substitutions with high hs are not antigenically novel. Therefore, al-
though they are ranked highly based on similarity to past cluster
transition substitutions, we would not expect them to cause a clus-
ter transition because they do not escape prior immunity. Conversely,
antigenically novel mutants that are dissimilar to historical cluster tran-
sition substitutions on the basis of hs can also be discounted. N145K
caused the SI87–BE89 cluster transition. Of the mutants that radiate
downwards from SI87 N145K has the second highest hs. Similarly, of
mutants that radiate to the right from SI87, E156K has the highest hs
and caused the SI87–BE92 cluster transition. Finally, of BE92 mutants
that radiate away from prior clusters, N145K, which was selected
in nature, also has the highest value of hs. Therefore, combining hs
with experimental measurements of antigenic phenotypes yields good
retrospective predictions of cluster transition substitutions.
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Figure 6.1: (Previous page). (A) Antigenic coordinates of the single substitu-
tion mutant viruses from the Sichuan 1987 (SI87) and Beijing 1992

(BE92) antigenic clusters are shown in black. Large dark red marks
show the wild type viruses (SI87, A/H3N2/Hong Kong/1/1989;
BE92, A/H3N2/Hong Kong/56/1994), and are connected to their
mutants by blue (SI87) and pink (BE92) lines. Three mutants had
no detectable titres and are therefore not shown on the map.
Surrounding surveillance strains are also shown and coloured
according to antigenic cluster Smith et al. (2004). (B, C) Zoomed-
in maps show the majority of the BE92 and SI87 all substitution
mutants separately. Strains in clusters that circulated directly af-
ter SI87 (BE89 and BE92), and BE92 (WU95) are shown as empty
circles in the SI87 and BE92 panels, respectively. Strains that cir-
culated in the first season of the subsequent clusters are filled in
lightly. (D, E) The area of each mutant is proportional to the me-
dian area of plaques in the plaque assay. Mutants not measured
in the plaque assay are shown with crosses. (F, G) The area of
each mutant is proportional to historical probability.
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6.3 fitness cost of antigenic change

Other data may also help improve predictions and our understanding
of processes that govern the antigenic evolution of seasonal influenza
viruses. Antigenic mapping measured the extrinsic fitness of the all
substitution mutant viruses, i.e. the degree to which a mutant escapes
host immunity built up to older clusters. Intrinsic fitness refers to
all other components of virus replicative fitness (Subsection 1.4.1).
Ramona Mögling at the Erasmus Medical Centre, Rotterdam, Nether-
lands, developed a specialised plaque assay to measure small differ-
ences in replicative fitness between viruses, and used this assay on
a selection of the all substitution mutants. Plaque size is shown in
Figure 6.1 D and E as the area of each mutant.Viruses which

replicate faster
produce larger

plaques.

Here, I am only showing plaque assay data. But, plaque growth
correlates well with other assays used to measure intrinsic fitness
including a competition assay and a next-generation sequencing FRA

assay currently under development in my lab in collaboration with
virologists at the Erasmus Medical Centre.

Plaque size appears to be less discriminatory than hs for predicting
cluster transition substitutions. There are several cases where antigeni-
cally novel strains have plaque sizes that are larger than the strain
that was selected in nature. However, a striking pattern emerges from
Figure 6.1 D and E: plaque sizes reduce with increasing distance from
the parent virus. This is visualised explicitly in Figure 6.2. There ap-
pears to be a replicative fitness threshold above which mutants do not
exist, and this threshold appears to decrease with increasing antigenic
distance. More simply, no mutants exist at high antigenic distance and
at high replicative fitness. Substitutions that produce gains in extrinsic
fitness appear to have an intrinsic fitness cost.

This relationship is expected given the position of cluster transition
substitutions on the periphery of the HA RBS. Any substitution in this
region is likely to impact receptor binding in some way, and therefore
impact replicative fitness. The observed relationship between intrinsic
and extrinsic fitness was actually hypothesised by Koel et al. (2013)
based on the HA positions of cluster transition substitutions. It also
has implications for our understanding of processes that govern the
antigenic evolution of seasonal influenza viruses.

In Chapter 1 I introduced the fitness exchange hypothesis. To reiter-
ate, the fitness exchange hypothesis explains cluster transition delay
as the time during which extrinsic fitness benefits of cluster transition
substitutions are outweighed by their intrinsic fitness costs. Therefore,
cluster transitions occur when sufficient host immunity has developed
in the population such that the intrinsic fitness loss is offset by the
extrinsic fitness gain. The empirical relationship between antigenic
escape and replicative fitness demonstrated in Figure 6.2 is entirely
consistent with this mechanism.
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Figure 6.2: In-vitro fitness cost of antigenic change. Median radius of plaques
from plaque assay versus antigenic distance to wild type for
SI87 (blue) and BE92 (pink) mutants. N145K caused the cluster
transition from the SI87 to BE89, E156K from SI87 to BE92, and
N145K from BE92 to WU95. The SI87 and BE92 wild type viruses
are the two larger dots with an antigenic distance of 0 AU.

Despite finding evidence consistent with the fitness exchange hy-
pothesis based on antigenic distance and replicative fitness, these
measurements alone do not yield predictions as good as when hs is
also included. hs must distil important factors regarding why partic-
ular substitutions cause cluster transitions in nature. In some cases
hs features have plausible mechanisms. For example, only a single
cluster transition substitution is known that required more than one
nucleotide mutation, which suggests that the rate at which substitu-
tions are sampled during an infection is an important factor. Plausible
mechanisms underlying other cluster transition substitution features
are outlined in Section 5.4. In other cases, patterns are stark, but
mechanisms are less obvious. Why do so many cluster transition
substitutions involve either the loss or a gain of a lysine residue?
Regardless, patterns abstracted in hs provide orthogonal signal to
extrinsic and intrinsic fitness assays. Strikingly, it is the combination
of computational and wet lab approaches that provides the most
powerful analysis.
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6.4 outlook

The all substitution experiment was conducted on two viruses from
different antigenic clusters. Although this required substantial work
in four laboratories, we still ’only’ have data relevant to three cluster
transitions. We are prospectively testing these methods on currently
circulating seasonal influenza viruses and are planning additional
retrospective tests. Of particular interest are cluster transitions where
the rankings perform poorly (e.g. HK68 and CA04, Figure 5.8). In the
case where two nucleotide mutations were required, did no single
mutation substitutions have suitable intrinsic and extrinsic fitness?
Developing higher throughput intrinsic and extrinsic fitness assays is
crucial for generating the data required to refine our understanding of
this system. This is also under active development in our consortium.

Ultimately, phenotypic effects of substitutions are mediated by the
structural biology of virus and host proteins. Changes in biophysical
properties of residues may disturb antigen-antibody interactions, or
alter complementarity between the RBS and sialic acid receptors. We
have a poor understanding of these processes at a structural level,
and how they impact virus fitness. This understanding would enable
more sophisticated screening of future antigenic variants, and more
powerful experiments to test processes that govern the evolution of
these viruses. Computational structural biology provides attractive
methods for addressing these questions.
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M A P S A N I T I S I N G

In this appendix I introduce the concept of map sanitising. This is
a novel filtering method based on BLUP, which can be used to dis-
play only the antigenic variation in a map which is associated with
molecular change, thereby ’removing’ some map error.

The Smith et al. (2004) antigenic map is qualitatively different to the
Russell et al. (2008b) and Li et al. (2016) antigenic maps. In the Smith
et al. (2004) map different antigenic variants are separated into distinct
separate clusters. Conversely, there is less obvious spatial separation
between the major antigenic variants in the Russell et al. (2008b) and
Li et al. (2016) maps. Close inspection of the Russell et al. (2008b) and
Li et al. (2016) maps reveals denser regions, delimited and labelled in
Figure 2.4, which seem to roughly correspond to the distinct clusters
in the Smith et al. (2004) map. Several hypotheses may explain these
differences.

Firstly, the Russell et al. (2008b) and Li et al. (2016) maps use assay
data derived from the GISRS which may contain additional sources
of error compared to the Smith et al. (2004) dataset. The surveillance
data are derived from hundreds of individual assays, which will intro-
duce additional variables such as different technicians, reagent stocks
and cell types used to passage viruses. Furthermore, due to the high
throughput of the GISRS, outlier measurements are not usually investi-
gated or repeated, and very rarely are additional titrations conducted
to improve map coordination. In contrast, the Smith et al. (2004) titra-
tions were conducted by a single technician in relatively few distinct
assays, outlier titrations were double-checked, and additional titra-
tions were conducted to improve the triangulation in specific regions
of the map.

Secondly, viruses isolated when the Russell et al. (2008b) dataset was
collected showed variable binding preferences to red blood cells. This
resulted in a change in the type of red blood cells recommended for
use in HI assays (Subsection 1.3.3). Altered binding preferences to red
blood cells may explain additional variance in HI assay measurements
during this period.

Thirdly, the Russell et al. (2008b) and Li et al. (2016) maps have
higher temporal sampling density than the Smith et al. (2004) map.
Smith et al. (2004) sampled 7.8 antigens per year; Russell et al. (2008b), These counts use the

number of antigens
that had their HA1
sequenced and were
also titrated for
inclusion in the map.

283.2 antigens per year; and Li et al. (2016), 774.3 antigens per year.
This may have caused fewer minor antigenic variants to be sampled
in the Smith et al. (2004) dataset, causing the major antigenic variants
to appear more distinct.
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One way to measure the amount of error in an antigenic map is to
consider groups of genetically identical strains. In a system with no
experimental error, if two genetically identical strains were titrated
against the same panel of antisera and included in an antigenic map,
then you may expect them to have identical antigenic coordinates. This
is not observed: strains with identical HA1 sequences have a median
intra-group distance of 1.21 AU in the Smith et al. (2004) map; 1.83

AU in the Russell et al. (2008b) map; and 1.15 AU in the Li et al. (2016)
map (Figure A.1d).

One explanation for this may be that variation in other segments
causes the antigenic differences. Indeed, although HA1 is the main
determinant of HI activity, NAs of recently circulating A(H3N2) in-
fluenza viruses have haemagglutinating activity (Mögling et al. 2017).
HA and NA are the two main glycoproteins on the surface of influenza
virus particles (Figure 1.1), so it is unlikely that other proteins would
influence HI activity. To test whether genetic variation in NA may cause
antigenic variation, I visualised groups of strains with identical HA1

and NA sequences in the Li et al. (2016) dataset (Figure A.2). Strains
with genetically identical HA1 and NA have a median intra-group
distance of 1.16 AU, which is similar to the value of 1.14 AU when
just considering groups with identical HA1. Therefore, NA variability
does not explain this antigenic variation.

Another explanation is that antigenic variation in genetically iden-
tical strains is caused by measurement error in the assay, and poor
coordination of antigens. This prompted the development of a frame-
work to ’sanitise’ antigenic maps based on the genetic sequences of
strains.

In map sanitising, a model which maps strain genotypes to antigenic
phenotypes is trained, and subsequently used to predict the antigenic
phenotypes of each strain in a dataset. Here, I use BLUP, but map
sanitising could be done by any model which maps genotype to
antigenic phenotype. Concretely, for map sanitising using BLUP, a
dataset containing antigenic coordinates and AAPs are used as the in-
sample dataset, and parameters in Equation 2.14 are learnt, as outlined
in Section 2.3. Then, the same dataset is treated as the out-of-sample
dataset, for which phenotype predictions are made.

I applied map sanitising to the Smith et al. (2004), Russell et al. (2008b)
and Li et al. (2016) datasets (Figure A.3). The Russell et al. (2008b) and
Li et al. (2016) maps look qualitatively more like the original Smith
et al. (2004) map. The size of the overall footprint of each of these maps
is highly reduced, and antigenic variants in different regions of the
map are more distinct, similar to the clusters in the Smith et al. (2004)
map. These differences are also observed comparing the original Smith
et al. (2004) map to its sanitised version, although the differences are
less extreme.
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(a) Smith et al. (2004). The largest eight out of 30 groups.

(b) Russell et al. (2008b). The largest 24 out of 140 groups.

(c) Li et al. (2016). The largest 24 out of 114 groups.
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Figure A.1: Antigenic positions of strains with identical HA1 sequences. (a-c)
Antigenic maps highlighting a group of strains with identical
HA1. Panels are ordered such that groups decrease in size from
left to right, top to bottom. (d) Distributions of median intra-
group distances for each dataset-.
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(a) Groups of strains with identical HA1 and NA sequences.
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(b) Median intra-group distances.

Figure A.2: Antigenic positions of strains with identical HA1 and NA se-
quences in the Li et al. (2016) antigenic map. (a) Each panel
shows an antigenic map with a group of strains with identical
HA1 and NA sequences highlighted in green. Panels are ordered
such that groups decrease in size from left to right, top to bottom.
84 groups were identified in total, only the largest 24 groups are
shown. (b) The distribution of median intra-group distances.

The smaller footprint of the sanitised maps suggest that the larger
footprint observed in the original maps do not have a strong un-
derlying molecular basis. This supports the hypothesis that these
large footprints are caused by assay error rather than the Russell et
al. (2008b) and Li et al. (2016) datasets containing many more addi-
tional antigenic variants due to more intensive sampling. One way to
test this further would be to create maps containing antigens covered
by the Russell et al. (2008b) and Li et al. (2016) datasets, but without
the methodological drawbacks implicit in the GISRS data: careful se-
lection of a panel of antisera that coordinate viruses well in antigenic
space; repeating outlier titrations; individual technicians; and individ-
ual batches of reagents. These projects are ongoing in my lab with
wet-lab collaborators. If such maps have smaller footprints, and are
more like the sanitised versions of the GISRS maps than the original
GISRS maps, then sanitising may become a useful post processing anal-
ysis to conduct when using GISRS data or any large dataset that may
contain substantial measurement noise.
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(f) Li et al. (2016) sanitised.

Figure A.3: Sanitised antigenic maps.
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Figure B.1: Australia 2007. Turkey vs. guinea
pig erythrocytes. Guinea pig ery-
throcytes were preferred during
this period (Barr et al. 2010). Fewer
titrations were conducted with
guinea pig erythrocytes, but there
are still a sufficient number to be
confident in the distribution of
mismatch distances.
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Figure B.2: Australia 2008. Turkey vs. guinea
pig erythrocytes. Guinea pig ery-
throcytes were preferred during
this period (Barr et al. 2010), how-
ever substantially fewer titrations
were conducted with them. No
strong evidence suggests these dis-
tributions are different. The turkey
map was used due to better sam-
pling.
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Figure B.3: Canada 2005–2006. Turkey vs.
guinea pig erythrocytes. The sam-
pling is too low in both maps. Nei-
ther were used.
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Figure B.4: Canada 2006–2007. Turkey vs.
guinea pig erythrocytes. Guinea
pig erythrocytes were preferred
during this period (Barr et
al. 2010), and were used despite
lower sampling.

0 2 4 6 8 10
Antigenic distance (AU)

0

1

2

3

4

5

F
re

qu
en

cy

Titrated cdcSep08turkey
Titrated cdcSep08gp

Figure B.5: Canada 2007–2008. Turkey vs.
guinea pig erythrocytes. Sampling
from both maps is low. Guinea pig
erythrocytes were preferred dur-
ing this period and were used here
(Barr et al. 2010).
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Figure B.6: China 2012–2013. VIDRL vs. CDC

antigenic map. Here, the CDC map
(red) has a higher number of
strains titrated (11 vs. 2) and was
used for that reason.
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Figure B.7: U.S.A. 2007–2008. Turkey vs.
guinea pig erythrocytes. Guinea
pig erythrocytes were preferred
during this period and were used
here (Barr et al. 2010).
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description of figures Orange and green antigens circulated in the given sea-
son and country. Orange antigens were titrated, whereas green antigens were only
sequenced, so their antigenic coordinates are predicted using BLUP. Blue antigens were
titrated and sequenced so comprise the BLUP training data. Vaccine antigens are pink,
and the mean vaccine position is shown by a cross. All other antigens in the map are
shown in black. The maps also show the marginal density of each dataset to the top
and right. Mismatch distributions are shown in the right panel. The lines trace the
height of histogram bins which have a width of 0.5 AU.
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Figure C.1: Australia 2007. Dataset: melbSep08gp.
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Figure C.2: Australia 2008. Dataset: melbSep09turkey.
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Figure C.3: Australia 2010. Dataset: melbSep11gp.
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Figure C.4: Australia 2012. Dataset: melbSep13.
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Figure C.5: Canada 2006–2007. Dataset: cdcSep08gp.
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Figure C.6: Canada 2007–2008. Dataset: cdcSep08gp.
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Figure C.7: Canada 2008–2009. Dataset: cdcSep09.
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Figure C.8: Canada 2010–2011. Dataset: cdcSep11.
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Figure C.9: Canada 2011–2012. Dataset: cdcSep12.
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Figure C.10: Canada 2012–2013. Dataset: cdcSep13.



antigenic maps used to derive mismatch measurements for all datasets 131

All
Training
Circulated 2014-2015, titrated
Circulated 2014-2015, predicted from sequence
Vaccine A(H3N2)/Texas/50/2012

0 2 4 6 8 10
Antigenic distance (AU)

0

50

100

150

200

250

300

Fr
eq

ue
nc

y

Figure C.11: Canada 2014–2015. Dataset: cdcSep15.
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Figure C.12: Canada 2016–2017. Dataset: cdcFeb18.

All
Training
Circulated 2012-2013, titrated
Circulated 2012-2013, predicted from sequence
Vaccine A(H3N2)/Victoria/361/2011
Mean vaccine position

0 2 4 6 8 10
Antigenic distance (AU)

0

10

20

30

Fr
eq

ue
nc

y

Figure C.13: China 2012–2013. Dataset: cdcSep13.
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Figure C.14: New Zealand 2013. Dataset: melbSep14.
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Figure C.15: South Africa 2014. Dataset: melbSep15.
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Figure C.16: Spain 2008–2009. Dataset: cdcSep09.
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Figure C.17: Spain 2011–2012. Dataset: cdcSep12.
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Figure C.18: Spain 2013–2014. Dataset: cdcSep14.
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Figure C.19: Spain 2014–2015. Dataset: cdcSep15.
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Figure C.20: U.K. 2011–2012. Dataset: cdcSep12.
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Figure C.21: U.K. 2012–2013. Dataset: cdcSep13.
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Figure C.22: U.K. 2014–2015. Dataset: cdcSep15.
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Figure C.23: U.S.A. 2007–2008. Dataset.: cdcSep08gp
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Figure C.24: U.S.A. 2010–2011. Dataset: cdcSep11.
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Figure C.25: U.S.A. 2011–2012. Dataset: cdcSep12.
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Figure C.26: U.S.A. 2012–2013. Dataset: cdcSep13.
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Figure C.27: U.S.A. 2014–2015. Dataset: cdcSep15.
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Figure C.28: U.S.A. 2015–2016. Dataset: cdcSep16.
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Figure C.29: U.S.A. 2016–2017. Dataset: cdcFeb18.
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Figure C.30: U.S.A. 2017–2018. Dataset: cdcFeb18.
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D I S T R I B U T I O N S F O R A L L D ATA S E T S

description of figures The top panels show strains that circulated in a country
in a given influenza season. The bottom panels show vaccine antigens used in this
country and season. Antigenic coordinates of individual strains are shown with grey
dots, contours display the probability density function of the KDE of each dataset. Left
panels show a top-down view of the KDE. Right panels show a 3D projection with the
shape of the KDE also projected onto the margins.

Figure D.1: Australia 2007.
Dataset: melbSep08gp.

Figure D.2: Australia 2008.
Dataset: melbSep09turkey.
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140 kernel density estimates used to derive mismatch distributions for all datasets

Figure D.3: Australia 2010.
Dataset: melbSep11gp.

Figure D.4: Australia 2012.
Dataset: melbSep13.

Figure D.5: Canada 2006–2007.
Dataset: cdcSep08gp.

Figure D.6: Canada 2007–2008.
Dataset: cdcSep08gp.
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Figure D.7: Canada 2008–2009.
Dataset: cdcSep09.

Figure D.8: Canada 2010–2011.
Dataset: cdcSep11.

Figure D.9: Canada 2011–2012.
Dataset: cdcSep12.

Figure D.10: Canada 2012–2013.
Dataset: cdcSep13.
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Figure D.11: Canada 2014–2015.
Dataset: cdcSep15.

Figure D.12: Canada 2016–2017.
Dataset: cdcFeb18.

Figure D.13: China 2012–2013.
Dataset: cdcSep13.

Figure D.14: New Zealand 2013.
Dataset: melbSep14.
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Figure D.15: South Africa 2014.
Dataset: melbSep15.

Figure D.16: Spain 2008–2009.
Dataset: cdcSep09.

Figure D.17: Spain 2011–2012.
Dataset: cdcSep12.

Figure D.18: Spain 2013–2014.
Dataset: cdcSep14.
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Figure D.19: Spain 2014–2015.
Dataset: cdcSep15.

Figure D.20: U.K. 2011–2012.
Dataset: cdcSep12.

Figure D.21: U.K. 2012–2013.
Dataset: cdcSep13.

Figure D.22: U.K. 2014–2015.
Dataset: cdcSep15.
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Figure D.23: U.S.A. 2007–2008. Dataset.: cd-
cSep08gp

Figure D.24: U.S.A. 2010–2011.
Dataset: cdcSep11.

Figure D.25: U.S.A. 2011–2012.
Dataset: cdcSep12.

Figure D.26: U.S.A. 2012–2013.
Dataset: cdcSep13.
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Figure D.27: U.S.A. 2014–2015.
Dataset: cdcSep15.

Figure D.28: U.S.A. 2015–2016.
Dataset: cdcSep16.

Figure D.29: U.S.A. 2016–2017.
Dataset: cdcFeb18.

Figure D.30: U.S.A. 2017–2018.
Dataset: cdcFeb18.
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Figure E.1: K145N
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Figure E.2: Y159F
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Figure E.3: V226I
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Figure E.4: S227P

e.1.2 Individually informative strains
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Figure E.5: Fully FU02-like and CA04-like.
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Figure E.6: FU02–CA04 single forwards substitutions.
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Figure E.7: FU02–CA04 single backwards substitutions.
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Figure E.8: D225N
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Figure E.12: CA04–WI05 single backwards substitutions.
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N225D (1/5)

N225 (81)
D225 (2)

N225D (2/5)

N225 (44)
D225 (2)

N225D (3/5)

N225 (48)
D225 (3)

N225D (4/5)

N225 (2)
D225 (1)

N225D (5/5)

N225 (1)
D225 (1)

Figure E.17: N225D
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Figure E.18: Fully PE09-like and fully SW13-like.
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Figure E.19: PE09–SW13 single forwards substitutions.
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Figure E.20: PE09–SW13 single backwards substitutions.
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Figure E.29: PE09–HK14 single forwards substitutions.
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Figure E.30: PE09–HK14 single backwards substitutions.
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