
A Tool for Producing Verified, Explainable
Proofs.
Edward William Ayers
Corpus Christi College
University of Cambridge
Submission Date: 2021-09-06
This thesis is submitted for the degree of Doctor of Philosophy.

This thesis is the result of my own work and includes nothing which is the outcome of work done in collaboration except as
declared in the preface and specified in the text. It is not substantially the same as any work that has already been submitted
before for any degree or other qualification except as declared in the preface and specified in the text. It does not exceed the
prescribed word limit for the Mathematics Degree Committee.

1

Abstract
Mathematicians are reluctant to use interactive theorem provers. In this thesis I argue that this is because proof assistants don't
emphasise explanations of proofs; and that in order to produce good explanations, the system must create proofs in a manner that
mimics how humans would create proofs. My research goals are to determine what constitutes a human-like proof and to
represent human-like reasoning within an interactive theorem prover to create formalised, understandable proofs. Another goal is
to produce a framework to visualise the goal states of this system.

To demonstrate this, I present HumanProof: a piece of software built for the Lean 3 theorem prover. It is used for interactively
creating proofs that resemble how human mathematicians reason. The system provides a visual, hierarchical representation of the
goal and a system for suggesting available inference rules. The system produces output in the form of both natural language and
formal proof terms which are checked by Lean's kernel. This is made possible with the use of a structured goal state system which
interfaces with Lean's tactic system which is detailed in Chapter 3.

In Chapter 4, I present the subtasks automation planning subsystem, which is used to produce equality proofs in a human-like
fashion. The basic strategy of the subtasks system is break a given equality problem in to a hierarchy of tasks and then maintain a
stack of these tasks in order to determine the order in which to apply equational rewriting moves. This process produces equality
chains for simple problems without having to resort to brute force or specialised procedures such as normalisation. This makes
proofs more human-like by breaking the problem into a hierarchical set of tasks in the same way that a human would.

To produce the interface for this software, I also created the ProofWidgets system for Lean 3. This system is detailed in Chapter 5.
The ProofWidgets system uses Lean's metaprogramming framework to allow users to write their own interactive, web-based user
interfaces to display within the VSCode editor and in an online web-editor. The entire tactic state is available to the rendering
engine, and hence expression structure and types of subexpressions can be explored interactively. The ProofWidgets system also
allows the user interface to interactively edit the proof document, enabling a truly interactive modality for creating proofs;
human-like or not.

In Chapter 6, the system is evaluated by asking real mathematicians about the output of the system, and what it means for a proof
to be understandable to them. The user group study asks participants to rank and comment on proofs created by HumanProof
alongside natural language and pure Lean proofs. The study finds that participants generally prefer the HumanProof format over
the Lean format. The verbal responses collected during the study indicate that providing intuition and signposting are the most
important properties of a proof that aid understanding.

2

Contents
1. Introduction

1.1 Mathematicians and proof assistants

1.2 Research questions

1.3 Contributions

1.4 Structure of this document

1.5 Previously published work and collaboration

1.6 Acknowledgements

2. Background
2.1 The architecture of proof assistants

2.2 Preliminaries

2.3 Inductive gadgets

2.4 Metavariables

2.5 Understandability and confidence

2.6 Human-like reasoning

2.7 Natural language for formal mathematics

2.8 Chapter summary

3. A development calculus
3.1 Motivation

3.2 Overview of the software

3.3 The Box datastructure

3.4 Creating valid proof terms from a Box

3.5 Human-like-tactics for Box.

3.6 Natural language generation of proofs

3.7 Conclusion

4. Subtasks
4.1 Equational reasoning

4.2 Example

4.3 Design of the algorithm

4.4 Qualitative comparison with related work

4.5 Evaluation

4.6 Conclusions and Further Work

5. A graphical user interface framework for formal verification
5.1 Survey of user interfaces for provers

5.2 Background on web-apps and functional GUIs

5.3 Research goals

5.4 System description

5.5 Interactive expressions

5.6 Related work

5.7 Implementation of Widgets in Lean

5.8 Visualising Boxes

5.9 Future work

6. Evaluation
6.1 Objectives

6.2 Methodology

6.3 Agenda of experiment

6.4 Results
3

6.5 Quantitative analysis of ratings

6.6 Qualitative analysis of verbal responses

6.7 Threats to validity and limitations

6.8 Conclusions and future work

7. Conclusion
7.1 Revisiting the research questions

7.2 Future work and closing remarks

A. Zippers and tactics for boxes
A.1 Typing of expressions containing metavariables

A.2 Zippers on Boxes

A.3 Running tactics in Boxes

B. ProofWidgets tutorial
C. The rendering algorithm of ProofWidgets

C.1 Motivating ProofWidgets with a todo list app

C.2 Abstracting the Html datatype

C.3 Holding a general representation of the UI state.

C.4 Reconciliation

C.5 Implementation

D. Material for evaluation study
D.1 Advertising email

D.2 Training Document

D.3 Proof scripts

D.4 Consent form

4

Chapter 1

Introduction
My first contact with the ideas of formalised mathematics came from reading the
anonymously authored QED Manifesto [Ano94] which envisions a 'QED system' in which
all mathematical knowledge is stored in a single, computer-verified repository.
This idea
dizzied me: perhaps review of mathematics will amount to remarking on style and interest,
with checking of proofs performed automatically from a machine readable document.

The general term that I will use for software that works towards this vision is proof
assistant or Interactive Theorem Prover ITP. A proof assistant at its most general is
a piece of software that allows users to create and verify mathematical proofs. In
Section 2.1 I will provide more detail how proof assistants are generally constructed.

In 2007, Freek Wiedijk [Wie07] pronounced the QED project to have "not been a success
(yet)", citing not enough people working on formalised mathematics and the severe
differences between formalised and 'real' mathematics, both at a syntactic level (formalised
mathematics resembles source code) and at a foundational level (formalised mathematics
is usually constructive and procedural as opposed to classical and declarative).
Similarly,
Alan Bundy [Bun11] notes that although mathematicians have readily adopted
computational tools such as [Knu86] and computer algebra systems , computer
aided proving has had very little impact on the workflow of a working mathematician.
Bundy cites several reasons for this which will be discussed in Section 1.1.

Now, a decade later, the tide may be turning.
In 2021, proof assistants are pretty good.
There are several well-supported large-scale systems such as Isabelle [Pau89], Coq [Coq],
Lean [MKA+15], HOL Light [Har09], Agda [Nor08], Mizar [GKN15], PVS [SORS01] and
many more. These systems are used to define and prove mathematical facts in a variety of
logics (e.g. FOL, HOL, CIC, univalent foundations). These systems are bridged to powerful,
automated reasoning systems (e.g. Vampire [RV02], Z3 [MB08], E [SCV19] and Leo-III
[SB18a]. Within these systems, many theorems big and small (4-colour theorem [Gon08],
Feit-Thompson theorem [GAA+13], Kepler conjecture [HAB+17]) have been proved in a
variety of fields, accompanied by large mathematical libraries (Isabelle's Archive of Formal
Proofs, Lean's mathlib, Coq's Mathematical Components, Mizar's Formalized
Mathematics) whose intersection with undergraduate and research level mathematics is
steadily growing .

However, in spite of these advances, we are still yet to see widespread adoption of ITP by
mathematicians outside of some (growing) cliques of enthusiasts.
In this thesis I wish to
address this problem through engaging with how mathematicians use and understand
proofs to create new ways of interacting with formalised proof.
Let's first expand on the
problem a little more and then use this to frame the research questions that I will tackle for
the remainder of the thesis.

1.1. Mathematicians and proof assistants
Here I offer 3 possible explanations for why mathematicians have not adopted proof
assistants.
Many have commented on these before: Bundy [Bun11] summarises the main
challenges well.

1. Differing attitudes towards correctness and errors.
Mathematicians don't worry
about mistakes in the same way as proof assistants do .
Mathematicians care deeply about
correctness, but historically the dynamics determining whether a result is considered to be
true are also driven by sociological mechanisms such as peer-review; informal
correspondences; 'folk' lemmas and principles; reputation of authors; and so on [MUP79].

[Ano94] Anonymous The
QED manifesto
(1994) Automated Deduction--
CADE

1

In this thesis, shortened citation
references will appear in the
sidebar, a full bibliography with
all reference details is provided at
the end of the document. Some
sidebar citations will be omitted if
there is not enough space.

1

[Wie07] Wiedijk, Freek The
QED manifesto revisited
(2007) Studies in Logic,
Grammar and Rhetoric

[Bun11] Bundy,
Alan Automated theorem
provers: a practical tool for the
working mathematician?
(2011) Annals of Mathematics
and Artificial Intelligence

T ​XE

[Knu86] Knuth, Donald
E. The TeXbook
(1986) publisher Addison-
Wesley

2

A computer algebra system
(CAS) is a tool for symbolic
manipulation of formulae and
expressions, without necessarily
having a formalised proof that the
manipulation is sound. Examples
of CASes include Maple and
Mathematica.

2

3 See, for example, the rate of
growth of the Lean 3
mathematical library https://lean
prover-community.github.io/mathli

b_stats.html.

3

4 I will present some evidence for
this in Section 2.5.
4

5

http://www.cse.chalmers.se/research/group/logic/TypesSS05/Extra/wiedijk_2.pdf
http://www.cs.ru.nl/~freek/pubs/qed2.pdf
https://doi.org/10.1007/s10472-011-9248-8
https://isabelle.in.tum.de/
https://doi.org/10.1007/BF00248324
https://coq.inria.fr/
https://coq.inria.fr/distrib/current/refman/#
https://leanprover.github.io/
https://kilthub.cmu.edu/articles/The_Lean_Theorem_Prover_system_description_/6492815/files/11937416.pdf
https://www.cl.cam.ac.uk/~jrh13/hol-light/
https://doi.org/10.1007/978-3-642-03359-9_4
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.1007/978-3-642-04652-0_5
http://mizar.org/
https://doi.org/10.1007/s10817-015-9345-1
https://pvs.csl.sri.com/
https://pvs.csl.sri.com/doc/pvs-prover-guide.pdf
https://vprover.github.io/
http://content.iospress.com/articles/ai-communications/aic259
https://github.com/Z3Prover/z3
https://doi.org/10.1007/978-3-540-78800-3_24
https://www.eprover.org/
http://wwwlehre.dhbw-stuttgart.de/~sschulz/bibliography.html#SCV:CADE-2019
http://page.mi.fu-berlin.de/lex/leo3/
https://doi.org/10.1007/978-3-319-94205-6_8
https://hal.inria.fr/docs/00/81/66/99/PDF/main.pdf
https://doi.org/doi:10.1017/fmp.2017.1
https://www.isa-afp.org/
https://github.com/leanprover-community/mathlib
https://math-comp.github.io/
https://fm.mizar.org/
https://doi.org/10.1007/s10472-011-9248-8
https://doi.org/10.1145/359104.359106
http://www.cse.chalmers.se/research/group/logic/TypesSS05/Extra/wiedijk_2.pdf
http://www.cs.ru.nl/~freek/pubs/qed2.pdf
https://doi.org/10.1007/s10472-011-9248-8
https://leanprover-community.github.io/mathlib_stats.html

A proxy for trustworthiness of a result is the number of other mathematicians that have
scrutinized the work.
That is, if the proof is found on an undergraduate curriculum, you
can predict with a high degree of confidence that any errors in the proof will be brought to
the lecturer's attention.
In contrast, a standalone paper that has not yet been used for any
subsequent work by others is typically treated with some degree of caution.

2. High cost.
Becoming proficient in an ITP system such as Isabelle or Coq can require a
lot of time.
And then formalising an area of maths can take around ten times the amount of
time required to write a corresponding paper or textbook on the topic.
This time quickly
balloons if it is also necessary to write any underlying assumed knowledge of the topic
(e.g., measure theory first requires real analysis).
This 'loss factor' of the space cost of
developing a formalised proof over that of a natural language proof was first noted by de
Bruijn in relation to his AUTOMATH prover [DeB80]. De Bruijn estimates a factor of 20
for AUTOMATH, and Wiedijk later estimates this factor to be closer to three or four in
Mizar [Wie00]. There are costs other than space too, the main one of concern here being
the time to learn to use the tools and the amount of work required per proof.

3. Low reward.
What does a mathematician have to gain from formalising their
research? In many cases, there is little to gain other than confirming something the
researcher knew to be true anyway. The process of formalisation may bring to light 'bugs'
in the work: perhaps there is a trivial case that wasn't accounted for or an assumption
needs to be strengthened.
Sometimes the reward is high enough that there is a clear case
for formalisation, particularly when the proof involves some computer-generated
component.
This is exemplified by Hales' proof [Hal05] and later formalised proof
[HAB+17] of the Kepler conjecture. The original proof involved lengthy computer
generated steps that were difficult for humans to check, and so Hales led the Flyspeck
project to formalise it, taking 21 collaborators around a decade to complete.
Another
celebrated example is Gonthier's formalisation of the computer-generated proof of the
four-colour theorem [Gon08].
Formalisation is also used regularly in formalising
expensive hardware and safety-critical computer software (e.g., [KEH+09, Pau98]).

The economics of the matter are such that the gains of using ITP are too low compared to
the benefits for the majority of cases. Indeed, since mathematicians have a different
attitude to correctness, there are sometimes no benefits to formalisation.
As ITP
developers, we can improve the situation by either decreasing the learning cost or
increasing the utility.

How can we make ITP easier to learn?
One way is to teach it in undergraduate
mathematics curricula (not just computer science).
An example of such a course is
Massot's Introduction aux mathématiques formalisées taught at the Université Paris Sud.
Another way is to improve the usability of the user interface for the proof assistant; I will
consider this point in more detail in Chapter 5.

How can we increase the utility that mathematicians gain from using a proof assistant?
In
this thesis I will argue that one way to help with these three issues is to put more emphasis
on interactive theorem provers providing explanations rather than a mere guarantee of
correctness.
We can see that explanations are important because mathematicians care
about new proofs of old results that treat the problem in a new way.
Proofs from the Book
[AZHE10] catalogues some particularly lovely examples of this.

Can computers also provide informal proofs with more emphasis on explanations?
Gowers
[Gow10 §2] presents an imagined interaction between a mathematician and a proof
assistant of the future.

Mathematician. Is the following true? Let . Then for sufficiently large,
every set of size at least contains a subset of the form

?

Computer. Yes. If is non-empty, choose and set .

M. All right all right, but what if is not allowed to be zero?

[MUP79] de Millo, Richard A;
Upton, Richard J; Perlis,
Alan J Social processes and
proofs of theorems and
programs
(1979) Communications of the
ACM

[DeB80] De Bruijn, Nicolaas
Govert A survey of the project
AUTOMATH (1980) To
H.B.Curry: Essays on
Combinatory Logic,Lambda
Calculus and Formalism

[Wie00] Wiedijk, Freek The
de Bruijn Factor (2000) http://w

ww.cs.ru.nl/F.Wiedijk/factor/fact

or.pdf

[Hal05] Hales, Thomas C A
proof of the Kepler conjecture
(2005) Annals of mathematics

[HAB+17] Hales, Thomas C;
Adams, Mark; Bauer,
Gertrud; et al. A formal proof
of the Kepler conjecture
(2017) Forum of Mathematics, Pi

[Gon08] Gonthier,
Georges Formal proof--the
four-color theorem (2008)

[KEH+09] Klein, Gerwin;
Elphinstone, Kevin; Heiser,
Gernot; et al. seL4: Formal
verification of an OS kernel
(2009) Proceedings of the ACM
SIGOPS 22nd symposium on
Operating systems principles

[Pau98] Paulson, Lawrence
C The inductive approach to
verifying cryptographic
protocols (1998) Journal of
Computer Security

[AZHE10] Aigner, Martin;
Ziegler, Günter M; Hofmann,
Karl H; et al. Proofs from the
Book (2010) publisher
Springer

[Gow10] Gowers, W.
T. Rough structure and
classification (2010) Visions in
Mathematics

δ > 0 N

A ⊆ {1, 2, ...,N} δN

{a, a + d, a + 2d}

A a ∈ A d = 0

d 6

https://research.tue.nl/files/2092478/597605.pdf
https://mizar.org/
http://www.cs.ru.nl/F.Wiedijk/factor/factor.pdf
http://annals.math.princeton.edu/wp-content/uploads/annals-v162-n3-p01.pdf
https://doi.org/doi:10.1017/fmp.2017.1
https://doi.org/10.1145/1629575.1629596
http://content.iospress.com/articles/journal-of-computer-security/jcs102
https://www.imo.universite-paris-saclay.fr/~pmassot/enseignement/math114/
https://doi.org/10.1007/978-3-662-57265-8
https://www.dpmms.cam.ac.uk/~wtg10/gafavisions.ps
https://doi.org/10.1145/359104.359106
https://research.tue.nl/files/2092478/597605.pdf
http://www.cs.ru.nl/F.Wiedijk/factor/factor.pdf
http://www.cs.ru.nl/F.Wiedijk/factor/factor.pdf
http://annals.math.princeton.edu/wp-content/uploads/annals-v162-n3-p01.pdf
https://doi.org/doi:10.1017/fmp.2017.1
https://doi.org/10.1145/1629575.1629596
http://content.iospress.com/articles/journal-of-computer-security/jcs102
https://doi.org/10.1007/978-3-662-57265-8
https://www.dpmms.cam.ac.uk/~wtg10/gafavisions.ps

C. Have you tried induction on , with some tending to zero?

M. That idea is no help at all. Give me some examples please.

C. The obvious greedy algorithm gives the set

An interesting feature of this conversation is that the status of the formal correctness of
any of the statements conveyed by the computer is not mentioned.
Similar notions are
brought to light in the work of Corneli et al. [CMM+17] in their modelling of informal
mathematical dialogues and exposition.

Why not have both explanatory and verified proofs? I suspect that if an ITP system is to be
broadly adopted by mathematicians, it must concisely express theorems and their proofs in
a way similar to that which a mathematician would communicate with fellow
mathematicians.
This not only requires constructing human-readable explanations, but
also a reimagining of how the user can interact with the prover.

In this thesis, I will focus on problems that are considered 'routine' for a mathematician.
That is, problems that a mathematician would typically do 'on autopilot' or by 'following
their nose' .
I choose to focus on this class of problem because I believe it is an area where
ITP could produce proofs that explain why they are true rather than merely provide a
certificate of correctness. The typical workflow when faced with a problem like this is to
either meticulously provide a low-level proof or apply automation such as Isabelle's auto ,
or an automation orchestration tool such as Isabelle's Sledgehammer [BN10]. In the case
of using an automation tactic like auto the tactic will either fail or succeed, leaving the
user with little feedback on why the result is true.
There are some tools for producing
intelligible proofs from formalised ones, for example, the creation of Isar [Wen99] proofs
from Sledgehammer by Blanchette et al. [BBF+16].
However, gaining an intuition for a
proof will be easier if the proof is generated in a way that reflects how a human would solve
the problem, and so translating a machine proof to a proof which a human will extract
meaning from is an uphill battle.

1.1.1. Types of understandability

The primary motivation of the work in this thesis is to help make ITP systems more
appealing to mathematicians.
The approach I chosen to take towards this is to research
ways of making ITP systems more understandable.
There are many components of ITP
that I consider with respect to understandability:

interaction: is the way in which the user interacts and creates a proof easy to
understand?

system-output: is the final proof rendered to the user easy to understand?

underlying representations: is the way in which the proof is stored similar to the
user's understanding of the proof?

automation: if a proof is generated automatically, is it possible for a user to follow
it?

The different parts of my thesis will address different sets of these ways in which a proof
assistant can be understandable.
With respect to the automation and underlying-
representation aspects of understandability, we will see in Section 2.6 that there is some
debate over whether prover automation needs to be easy to follow for a human or not
(machine-like vs. human-like).
In this thesis I take a pragmatic stance that the
understandability of automation and underlying-representation need not be human-like
provided that the resulting interaction and output is understandable. However, as I
investigate in Chapter 4, there may be ways of creating automation that are more
conducive to creating understandable output and interaction.

1.2. Research questions

N δ = δ(N)

{1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31...}

[CMM+17] Corneli, Joseph;
Martin, Ursula; Murray-
Rust, Dave; et al. Modelling
the way mathematics is actually
done (2017) Proceedings of the
5th ACM SIGPLAN International
Workshop on Functional Art,
Music, Modeling, and Design

5 For example, showing that
 from the

ring axioms.

5 (a +
b) =2 a +2 2ab + b2

[BN10] Böhme, Sascha;
Nipkow,
Tobias Sledgehammer:
judgement day
(2010) International Joint
Conference on Automated
Reasoning

6

Broadly, a tactic is a program for
creating proofs. I will drill down
on how this works in Chapter 2.

6

[Wen99] Wenzel,
Markus Isar - A Generic
Interpretative Approach to
Readable Formal Proof
Documents (1999) Theorem
Proving in Higher Order Logics

[BBF+16] Blanchette, Jasmin
Christian; Böhme, Sascha;
Fleury, Mathias; et al. Semi-
intelligible Isar proofs from
machine-generated proofs
(2016) Journal of Automated
Reasoning

7

https://doi.org/10.1145/3122938.3122942
https://doi.org/10.1007/978-3-642-14203-1_9
https://doi.org/10.1007/3-540-48256-3_12
https://doi.org/10.1007/s10817-015-9335-3
https://doi.org/10.1145/3122938.3122942
https://doi.org/10.1007/978-3-642-14203-1_9
https://doi.org/10.1007/3-540-48256-3_12
https://doi.org/10.1007/s10817-015-9335-3

In the context of these facets of an understandable ITP system, there arise some key
research questions that I seek to study.

Question 1. What constitutes a human-like, understandable proof?

Objectives:

Identify what 'human-like' and 'understandable' mean to different people.

Distinguish between human-like and machine-like proofs in the context of ITP.

Merge these strands to determine a working definition of human-like proof.

Question 2. How can human-like reasoning be represented within an interactive theorem
prover to produce formalised, understandable proofs?

Objectives:

Form a calculus of representing goal states and inference steps that act at the
abstraction layer that a human uses when solving proofs.

Create a system for producing natural language proofs from this calculus.

Evaluate the resulting system by performing a study on real mathematicians.

Question 3. How can this mode of human-like reasoning be presented to the user in an
interactive, multimodal way?

Objectives:

Investigate new ways of interacting with proof objects.

Make it easier to create novel graphical user interfaces (GUIs) for interactive
theorem provers.

Produce an interactive interface for a human-like reasoning system.

1.3. Contributions
This thesis presents a number of contributions towards the above research questions:

1. An abstract calculus for developing human-like proofs (Chapter 3).

2. An interface between this abstraction layer and a metavariable-driven tactic state, as
is used in theorem provers such as Coq and Lean, producing formally verified proofs
(Chapter 3 and Appendix A).

3. A procedure for generating natural language proofs from this calculus (Section 3.6).

4. The 'subtasks' algorithm, a system for automating the creation of chains of equalities
and inequalities. This work has been published in [AGJ19] (Chapter 4).

5. A graphical user interface framework for interactive theorem provers (Chapter 5).
This has been published in [AJG21].

6. An implementation of all of the above contributions in the Lean 3 theorem prover.

7. A study assessing the impact of natural language proofs with practising
mathematicians (Chapter 6).

The implementations for these contributions can be found at the following links:

https://github.com/edayers/lean-humanproof-thesis for the primary implementation of
HumanProof.

https://github.com/edayers/lean-subtask for a supplementary implementation of the
subtasks algorithm presented in Chapter 4 and originally presented at [AGJ19]

An implementation of the ProofWidgets code has been incorporated in to the
leanprover-community fork of the Lean theorem prover. The relevant pull requests
are:

https://github.com/leanprover-community/lean/pull/258

[AGJ19] Ayers, E. W.;
Gowers, W. T.; Jamnik,
Mateja A human-oriented
term rewriting system
(2019) KI 2019: Advances in
Artificial Intelligence - 42nd
German Conference on AI

[AJG21] Ayers, E. W.;
Jamnik, Mateja; Gowers,
W. T. A graphical user
interface framework for
formal verification
(2021) Interactive Theorem
Proving

8

https://www.repository.cam.ac.uk/bitstream/handle/1810/298199/main.pdf?sequence=1
https://doi.org/10.4230/LIPIcs.ITP.2021.4
https://github.com/edayers/lean-humanproof-thesis
https://github.com/edayers/lean-subtask
https://www.repository.cam.ac.uk/bitstream/handle/1810/298199/main.pdf?sequence=1
https://leanprover-community.github.io/
https://github.com/leanprover-community/lean/pull/258
https://www.repository.cam.ac.uk/bitstream/handle/1810/298199/main.pdf?sequence=1
https://doi.org/10.4230/LIPIcs.ITP.2021.4

https://github.com/leanprover/vscode-lean/pull/159

1.4. Structure of this document
In Chapter 2, I will provide an overview of the background material needed for the
remaining chapters.
Next, in Chapter 3, I introduce the HumanProof software for
producing human-like proofs within the Lean proof assistant.
I provide motivation of the
design in Section 3.1, an overview of the system in Section 3.2 and then dive in to the
details of how the system is designed, including the natural-language generation engine in
Section 3.6.
Chapter 4 discusses a system for producing equational reasoning proofs called
the subtask algorithm.
Chapter 5 details the ProofWidgets system, which is used to
produce the user interface of HumanProof.
Chapter 6 provides the design and results of a
user study that I conducted on mathematicians to determine whether HumanProof really
does provide understandable proofs.
Finally, Chapter 7 wraps things up with some
reflection on my progress and a look ahead to future work.

There are also four appendices:

Appendix A presents some additional technical detail on interfacing HumanProof
with Lean.

Appendix B is a tutorial for using ProofWidgets.

Appendix C is some additional detail on the algorithms used by ProofWidgets.

Appendix D provides supplementary material for Chapter 6.

1.5. Previously published work and
collaboration
The work in Chapter 3 is my own, although the box calculus presented is inspired through
many sessions of discussion with W.T. Gowers and the design of Gowers' previous
collaboration with Ganesalingam [GG17]. More on this will be given when it is surveyed in
Section 2.6 and Section 3.3.5.

The work in Chapter 4 is previously published at KI 2019 [AGJ19].

The work presented in Chapter 5 is pending publication in ITP 2021 [AJG21] and is also
merged in to the Lean 3 community repository. The design is strongly influenced by Elm
and React; however, there are a number of novel architectural contributions necessitated
by the unique challenges of implementing a portable framework within a proof assistant.

The user study presented in Chapter 6 is all my own work with a lot of advisory help from
Mateja Jamnik, Gem Stapleton and Aaron Stockdill on designing the study.

1.6. Acknowledgements
I thank my supervisors W. T. Gowers and Mateja Jamnik for their ideas, encouragement
and support and for letting me work on such a wacky topic.
I thank Gabriel Ebner and
Brian Gin-ge Chen for reading through my ProofWidgets PRs. I thank Patrick Massot,
Kevin Buzzard and the rest of the Lean Prover community for complaining about my PRs
after the fact.
I thank Jeremy Avigad for taking the time to introduce me to Lean at the Big
Proof conference back in 2017.
I thank Bohua Zhan, Chris Sangwin, and Makarius Wenzel
and many more for the enlightening conversations on automation for mathematicians at
Big Proof and beyond.
I thank Peter Koepke for being so generous in inviting me to Bonn
to investigate Naproche/SAD with Steffan Frerix and Andrei Paskevich.
I thank Larry
Paulson and the ALEXANDRIA team for letting me crash their weekly meetings.
I thank
my parents for letting me write up in the house during lockdown.

[GG17] Ganesalingam,
Mohan; Gowers, W. T. A fully
automatic theorem prover with
human-style output
(2017) Journal of Automated
Reasoning

[AGJ19] Ayers, E. W.;
Gowers, W. T.; Jamnik,
Mateja A human-oriented term
rewriting system (2019) KI
2019: Advances in Artificial
Intelligence - 42nd German
Conference on AI

[AJG21] Ayers, E. W.;
Jamnik, Mateja; Gowers, W.
T. A graphical user interface
framework for formal
verification (2021) Interactive
Theorem Proving

9

https://github.com/leanprover/vscode-lean/pull/159
https://doi.org/10.1007/s10817-016-9377-1
https://www.repository.cam.ac.uk/bitstream/handle/1810/298199/main.pdf?sequence=1
https://doi.org/10.4230/LIPIcs.ITP.2021.4
https://github.com/leanprover-community/lean
https://doi.org/10.1007/s10817-016-9377-1
https://www.repository.cam.ac.uk/bitstream/handle/1810/298199/main.pdf?sequence=1
https://doi.org/10.4230/LIPIcs.ITP.2021.4

I thank my friends and colleagues in the CMS. Andrew, Eric, Sammy P, Sven, Ferdia,
Mithuna, Kasia, Sam O-T, Bhavik, Wojciech, and many more.
In parallel, the Computer
Laboratory: Chaitanya, Botty, Duo, Daniel, Aaron, Angeliki, Yiannos, Wenda, Zoreh.

This research was supported by EPSRC and the Cantab Capital Institute for the
Mathematics of Information.

1.6.1. Typesetting acknowledgements

I decided to typeset this thesis as HTML-first, print second.
The digital copy may be found
at https://edayers.com/thesis.
The printed version of this thesis was generated by printing
out the website version and concatenating.

I was able to create the thesis in this way thanks to many open-source projects.
I will
acknowledge the main ones here. React, Gatsby, Tachyons, PrismJS. Thanks to Titus
Woormer for remarkJS and also adding my feature request in less than 24 hours!
The code
font is PragmataPro created by Fabrizio Schiavi.
The style of the site is a modified version
of the Edward Tufte Handout style.
The syntax colouring style is based on the VS theme by
Andrew Lock.
I also use some of the vscode-icons icons.

10

http://www.cms.cam.ac.uk/
https://www.cst.cam.ac.uk/
https://www.ccimi.maths.cam.ac.uk/
https://edayers.com/thesis
https://reactjs.org/
https://www.gatsbyjs.org/
https://tachyons.io/
https://prismjs.com/
https://github.com/wooorm
http://github.com/remarkjs
https://fsd.it/pp
https://github.com/edwardtufte/tufte-css
https://andrewlock.net/
https://github.com/microsoft/vscode-icons

Chapter 2

Background
In this chapter I will provide a variety of background material that will be used in later
chapters.
Later chapters will include links to the relevant sections of this chapter.
I cover a
variety of topics:

Section 2.1 gives an overview of how proof assistants are designed. This provides
some context to place this thesis within the field of ITP.

Section 2.2 contains some preliminary definitions and notation for types, terms,
datatypes and functors that will be used throughout the document.

Section 2.3 contains some additional features of inductive datatypes that I will make
use of in various places throughout the text.

Section 2.4 discusses the way in which metavariables and tactics work within the
Lean theorem prover, the system in which the software I write is implemented.

Section 2.5 asks what it means for a person to understand or be confident in a proof.
This is used to motivate the work in Chapter 3 and Chapter 4. It is also used to frame
the user study I present in Chapter 6.

Section 2.6 explores what the automated reasoning literature has to say on how to
define and make use of 'human-like reasoning'. This includes a survey of proof
planning (Section 2.6.2).

Section 2.7 surveys the topic of natural language generation of mathematical texts,
used in Section 3.6.

2.1. The architecture of proof assistants
In this section I am going to provide an overview of the designs of proof assistants for non-
specialist.
The viewpoint I present here is largely influenced by the viewpoint that Andrej
Bauer expresses in a MathOverflow answer [Bau20].

The essential purpose of a proof assistant is to represent mathematical theorems,
definitions and proofs in a language that can be robustly checked by a computer. This
language is called the foundation language equipped with a set of derivation rules.
The language defines the set of objects that formally represent mathematical statements
and proofs, and the inference rules and axioms provide the valid ways in which these
objects can be manipulated .
Some examples of foundations are first-order logic (FOL),
higher-order logic (HOL), and various forms of dependent type theory (DTT)
[Mar84, CH88, PP89, Pro13].

A component of the software called the kernel checks proofs in the foundation.
There are
numerous foundations and kernel designs.
Finding new foundations for mathematics is an
open research area but FOL, HOL and DTT mentioned above are the most well-established
for performing mathematics.
I will categorise kernels as being either 'checkers' or
'builders'.

A 'checker' kernel takes as input a proof expression and outputs a yes/no answer to
whether the term is a valid proof.
An example of this is the Lean 3 kernel [MKA+15].

A 'builder' kernel provides a fixed set of partial functions that can be used to build proofs.
Anything that this set of functions accepts is considered as valid.
This is called an LCF
architecture, originated by Milner [Mil72, Gor00]. The most widely used 'builder' is the
Isabelle kernel by Paulson [Pau89].

[Bau20] Bauer, Andrej What
makes dependent type theory
more suitable than set theory for
proof assistants? (2020) https:/

/mathoverflow.net/q/376973

7 At this point, we may raise a
number of philosophical
objections such as whether the
structures and derivations 'really'
represent mathematical
reasoning.
The reader may enjoy
the account given in the first
chapter of Logic for
Mathematicians by J. Barkley
Rosser [Ros53].

7

[MKA+15] de Moura,
Leonardo; Kong, Soonho;
Avigad, Jeremy; et al. The
Lean theorem prover (system
description) (2015) International
Conference on Automated
Deduction

11

https://mathoverflow.net/q/376973
https://en.wikipedia.org/wiki/First-order_logic
https://en.wikipedia.org/wiki/Higher-order_logic
http://people.csail.mit.edu/jgross/personal-website/papers/academic-papers-local/Martin-Lof80.pdf
https://doi.org/10.1016/0890-5401(88)90005-3
https://kilthub.cmu.edu/ndownloader/files/12096983
https://homotopytypetheory.org/book/
https://kilthub.cmu.edu/articles/The_Lean_Theorem_Prover_system_description_/6492815/files/11937416.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/785072.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.132.8662&rep=rep1&type=pdf
https://doi.org/10.1007/BF00248324
https://mathoverflow.net/q/376973
https://mathoverflow.net/q/376973
https://kilthub.cmu.edu/articles/The_Lean_Theorem_Prover_system_description_/6492815/files/11937416.pdf

Most kernels stick to a single foundation or family of foundations. The exception is
Isabelle, which instead provides a 'meta-foundation' for defining foundations, however the
majority of work in Isabelle uses the HOL foundation.

2.1.1. The need for a vernacular

One typically wants the kernel to be as simple as possible, because any bugs in the kernel
may result in 'proving' a false statement
 .
For the same reason, the foundation language
should also be as simple as possible.
However, there is a trade-off between kernel
simplicity and the usability and readability of the foundation language;
a simplified
foundation language will lack many convenient language features such as implicit
arguments and pattern matching, and as a result will be more verbose.
If the machine-
verified definitions and lemmas are tedious to read and write, then the prover will not be
adopted by users.

Proof assistant designers need to bridge this gap between a human-readable, human-
understandable proof and a machine-readable, machine-checkable proof.
A common
approach is to use a second language called the vernacular (shown on Figure 2.5).
The
vernacular is designed as a human-and-machine-readable compromise that is converted to
the foundation language through a process called elaboration (e.g., [MAKR15]).
The
vernacular typically includes a variety of essential features such as implicit arguments and
some form of type inference, as well as high-level programming features such as pattern
matching.
Optionally, there may be a compiler (see Figure 2.5) for the vernacular to also
produce runnable code, for example Lean 3 can compile vernacular to bytecode [EUR+17].

I discuss some work on provers with the vernacular being a restricted form of natural
language as one might find in a textbook in Section 2.7.2.

2.1.2. Programs for proving

Using a kernel for checking proofs and a vernacular structure for expressing theorems, we
now need to be able to construct proofs of these theorems.

An Automated Theorem Prover (ATP) is a piece of software that produces proofs for a
formal theorem statement automatically with a minimal amount of user input as to how to
solve the proof, examples include Z3, E and Vampire.

Interactive Theorem Proving (ITP) is the process of creating proofs incrementally
through user interaction with a prover.
I will provide a review of user interfaces for ITP in
Section 5.1.
Most proof assistants incorporate various automated and interactive theorem
proving components. Examples of ITPs include Isabelle [Pau89], Coq [Coq], Lean
[MKA+15], HOL Light [Har09], Agda [Nor08], Mizar [GKN15], PVS [SORS01].

A common modality for allowing the user to interactively construct proofs is with the
proof script (Figure 2.1), this is a sequence of textual commands, written by the user to
invoke certain proving programs called tactics that manipulate a state representing a
partially constructed proof.
An example of a tactic is the assume tactic in Figure 2.1, which
converts a goal-state of the form ⊢ X → Y to X ⊢ Y .
Some of these tactics my invoke
various ATPs to assist in constructing proofs.
Proof scripts may be purely linear as in
Figure 2.1 or have a hierarchical structure such as in Isar [Wen99] or HiProof [ADL10].

An alternative to a proof script is for the prover to generate an auxiliary proof object file
that holds a representation of the proof that is not intended to be human readable.
This is
the approach taken by PVS [SORS01] although I will not investigate this approach further
in this thesis because most of the ITP systems use the proof-script approach.

In the process of proving a statement, a prover must keep track of partially built proofs.
I
will refer to these representations of partially built proofs as development calculi. I will
return to development calculi in Section 2.4.

[Mil72] Milner, Robin Logic
for computable functions
description of a machine
implementation
(1972) Technical Report

[Gor00] Gordon, Mike From
LCF to HOL: a short history
(2000) Proof, language, and
interaction

[Pau89] Paulson, Lawrence
C The foundation of a generic
theorem prover (1989) Journal
of Automated Reasoning

8

An alternative approach is to
'bootstrap' increasingly complex
kernels from simpler ones. An
example of this is the
Milawa
theorem prover for ACL2
[Dav09].

8

[MAKR15] de Moura,
Leonardo; Avigad, Jeremy;
Kong, Soonho; et
al. Elaboration in Dependent
Type Theory (2015) CoRR

[EUR+17] Ebner, Gabriel;
Ullrich, Sebastian; Roesch,
Jared; et al. A
metaprogramming framework
for formal verification
(2017) Proceedings of the ACM
on Programming Languages

Figure 2.1. An example proof
script from the Lean 3 theorem
prover.
The script proper are the
lines between the begin and
end keywords.
Each line in the

proof script corresponds to a
tactic.

[Wen99] Wenzel,
Markus Isar - A Generic
Interpretative Approach to
Readable Formal Proof
Documents (1999) Theorem
Proving in Higher Order Logics

12

http://arxiv.org/abs/1505.04324
https://doi.org/10.1145/3110278
https://github.com/Z3Prover/z3
https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html
http://www.vprover.org/
https://isabelle.in.tum.de/
https://doi.org/10.1007/BF00248324
https://coq.inria.fr/
https://coq.inria.fr/distrib/current/refman/#
https://leanprover.github.io/
https://kilthub.cmu.edu/articles/The_Lean_Theorem_Prover_system_description_/6492815/files/11937416.pdf
https://www.cl.cam.ac.uk/~jrh13/hol-light/
https://doi.org/10.1007/978-3-642-03359-9_4
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.1007/978-3-642-04652-0_5
http://mizar.org/
https://doi.org/10.1007/s10817-015-9345-1
https://pvs.csl.sri.com/
https://pvs.csl.sri.com/doc/pvs-prover-guide.pdf
https://doi.org/10.1007/3-540-48256-3_12
https://doi.org/10.1007/s11786-010-0025-6
https://pvs.csl.sri.com/doc/pvs-prover-guide.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/785072.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.132.8662&rep=rep1&type=pdf
https://doi.org/10.1007/BF00248324
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index-seo.php/ACL2____MILAWA
https://search.proquest.com/openview/96fda9a67e5fa11fb241ebf4984c7368/1?pq-origsite=gscholar&cbl=18750
http://arxiv.org/abs/1505.04324
https://doi.org/10.1145/3110278
https://doi.org/10.1007/3-540-48256-3_12

2.1.3. Foundation

A foundation for a prover is built from the following pieces:

1. A language: defining inductive trees of data that we wish to talk about and also
syntax for these trees.

2. The judgements: meta-level predicates over the above trees.

3. The inference rules: a generative set of rules for deriving judgements from other
judgements.

To illustrate, the language of simply typed lambda calculus would be expressed as in (2.2).

𝑥, 𝑦, 𝑧 ::= X -- variable
α, β ::= A | α → β -- type
𝑠, 𝑡 ::= 𝑠 𝑡 | λ (𝑥 : α), 𝑠 | X -- term
Γ ::= ∅ | Γ, (𝑥 : α) -- context

In (2.2), the purple greek and italicised letters (𝑥 , 𝑦 , α , ...) are called nonterminals.
They say: "You can replace me with any of the | -separated items on the right-hand-side of
my ::= ".
So, for example, " α " can be replaced with either a member of A or " α → β ".
The green words in the final column give a natural language noun to describe the 'kind' of
the syntax.

In general terms, contexts Γ perform the role of tracking which variables are currently in
scope.
To see why contexts are needed, consider the expression 𝑥 + 𝑦 ; its resulting type
depends on the types of the variables 𝑥 and 𝑦 .
If 𝑥 and 𝑦 are both natural numbers,
𝑥 + 𝑦 will be a natural number, but if 𝑥 and 𝑦 have different types (e.g, vectors, strings,
complex numbers) then 𝑥 + 𝑦 will have a different type too.
The correct interpretation of
𝑥 + 𝑦 depends on the context of the expression.

Next, define the judgements for our system in (2.3). Judgements are statements about the
language.

Γ ⊢ ok Γ ⊢ 𝑡 : α

Then define the natural deduction rules (2.4) for inductively deriving these judgements.

∅-ok

∅ ok

Γ ok

(𝑥 : α) ∉ Γ
append-ok

[..Γ, (𝑥 : α)] ok

(𝑥 : α) ∈ Γ
var-typing

Γ ⊢ 𝑥 : α

Γ ⊢ 𝑠 : α → β

Γ ⊢ 𝑡 : α
app-typing

Γ ⊢ 𝑠 𝑡 : β

x ∉ Γ

Γ, (𝑥 : α) ⊢ 𝑡 : β
λ-typing

Γ ⊢ (λ (𝑥 : α), 𝑡) : α → β

And from this point, it is possible to start exploring the theoretical properties of the
system.
For example: is Γ ⊢ 𝑠 : α decidable?

Foundations such as the example above are usually written down in papers as a BNF
grammar and a spread of gammas, turnstiles and lines as illustrated in (2.2), (2.3) and
(2.4).
LISP pioneer Steele calls it Computer Science Metanotation [Ste17].

In implementations of proof assistants, the foundation typically doesn't separate quite as
cleanly in to the above pieces.
The language is implemented with a number of
optimisations such as de Bruijn indexing [deB72] for the sake of efficiency.
Judgements
and rules are implicitly encoded in algorithms such as type checking, or appear in forms
different from that in the corresponding paper.
This is primarily for efficiency and
extensibility.

[ADL10] Aspinall, David;
Denney, Ewen; Lüth,
Christoph Tactics for
hierarchical proof
(2010) Mathematics in
Computer Science

[SORS01] Shankar,
Natarajan; Owre, Sam;
Rushby, John M; et al. PVS
prover guide (2001) Computer
Science Laboratory, SRI
International, Menlo Park, CA

(2.2). Example of a BNF
grammar specification. A and X
are some sets of variables
(usually strings of unicode
letters).

(2.3). Judgements for an
example lambda calculus
foundation.
 Γ , 𝑡 and α may be
replaced with expressions drawn
from the grammar in (2.2)

(2.4). Judgement derivation
rules for the example lambda
calculus (2.2).
Each rule gives a
recipe for creating new
judgements: given the
judgements above the horizontal
line, we can derive the judgement
below the line (substituting the
non-terminals for the appropriate
ground terms).
In this way one
can inductively produce
judgements.

[Ste17] Steele Jr., Guy L. It's
Time for a New Old Language
(2017) http://2017.clojure-conj.

org/guy-steele/

13

http://2017.clojure-conj.org/guy-steele/
http://alexandria.tue.nl/repository/freearticles/597619.pdf
https://doi.org/10.1007/s11786-010-0025-6
https://pvs.csl.sri.com/doc/pvs-prover-guide.pdf
http://2017.clojure-conj.org/guy-steele/
http://2017.clojure-conj.org/guy-steele/

In this thesis the formalisation language that I focus on is the calculus of inductive
constructions (CIC)

This is the the type theory used by Lean 3 as implemented by de
Moura et al and formally documented by Carneiro [Car19].
A good introduction to
mathematical formalisation with dependent type theory is the first chapter of the HoTT
Book [Pro13 ch. 1].
Other foundations are also available: Isabelle's foundation is two-tiered
[Pau89]: there is a meta-level foundation upon which many foundations can be
implemented. A lot of the work in this thesis is independent of foundation and so I will try
to indicate how the contributions can be augmented to work in other foundations.

A typical architecture of a modern, full-fledged checker-style proof assistant is given in
Figure 2.5.

2.2. Preliminaries
This section contains a set of quick preliminary definitions for the concepts and notation
that I will be using later.
In this thesis I will be using a pseudo-language which should be
familiar to functional programming enthusiasts.
This pseudo-language is purely
presentational and is used to represent algorithms and datastructures for working with
theorem provers.

2.2.1. Some notation for talking about type theory and
algorithms

The world is built of types and terms.
New variables are introduced as " 𝑥 : A "; 𝑥 is the
variable and it has the type A .
Lots of variables with the same type can be introduced as
𝑥 𝑦 𝑧 : A .
Types A B C : Type start with an uppercase letter and are coloured turquoise.
Type is a special 'type of types'.
Meanwhile terms start with a lowercase letter and term
variables are purple and italicised.
 A → B is the function type. → is right associative
which means that 𝑓 : A → B → C should be read as 𝑓 : A → (B → C) .
This is called a
curried function, we may consider A and B to be the input arguments of 𝑓 and C to be
its return type.
Given 𝑎 : A we may apply 𝑓 to 𝑎 by writing 𝑓 𝑎 : B → C .
Functions are
introduced using maps-to notation (𝑎 : A) ↦ (𝑏 : B) ↦ 𝑓 𝑎 𝑏 .
Write the identity
function 𝑥 ↦ 𝑥 as 𝟙 : X → X .
Given 𝑓 : A → B , 𝑔 : B → C , write function composition
as 𝑔 ∘ 𝑓 : A → C .
Function application is left associative, so 𝑓 𝑎 𝑏 should be read as
(𝑓(𝑎))(𝑏) .
The input types of functions may optionally be given argument names, such as:
(𝑎 : A) → (𝑏 : B) → C .
We also allow 'dependent types' where the return value C is

[deB72] de Bruijn, Nicolaas
Govert Lambda calculus
notation with nameless
dummies, a tool for automatic
formula manipulation, with
application to the Church-Rosser
theorem (1972) Indagationes
Mathematicae (Proceedings)

9

Calculus of Inductive
Constructions. Inductive
datastructures (Section 2.2.3) for
the Calculus of Constructions
[CH88] were first introduced by
Pfenning et al [PP89].

9

[Car19] Carneiro,
Mario Lean's Type Theory
(2019) Masters' thesis (Carnegie
Mellon University)

[Pro13] The Univalent
Foundations
Program Homotopy Type
Theory: Univalent Foundations
of Mathematics
(2013) publisher Institute for
Advanced Study

[Pau89] Paulson, Lawrence
C The foundation of a generic
theorem prover (1989) Journal
of Automated Reasoning

Figure 2.5. Schematic overview
of a typical modern kernel-based
proof assistant.

14

https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf
https://homotopytypetheory.org/book/
https://doi.org/10.1007/BF00248324
http://alexandria.tue.nl/repository/freearticles/597619.pdf
https://doi.org/10.1016/0890-5401(88)90005-3
https://kilthub.cmu.edu/ndownloader/files/12096983
https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf
https://homotopytypetheory.org/book/
https://doi.org/10.1007/BF00248324

allowed to depend on these arguments: (𝑎 : A) → 𝒞 𝑎 where 𝒞 : A → Type is a type-
valued function.

Empty is the empty type.

Unit is the type containing a single element () .

Bool is the boolean type ranging over values true and false .

Option X is the type taking values some 𝑥 for 𝑥 : X or none . some will usually be
suppressed. That is, 𝑥 : X will be implicitly cast to some 𝑥 : Option X in the name of
brevity.

List X is the type of finite lists of X . Given 𝑥 𝑦 : X and 𝑙₁ 𝑙₂ : List X , we can
write 𝑥 :: 𝑙₁ for list cons and 𝑙₁ ++ 𝑙₂ for concatenating (i.e, appending) two lists.
For list construction and pattern matching, list spreads will be used. For
example [..𝑙₁, 𝑥, 𝑦, ..𝑙₂] denotes the list formed by concatenating 𝑙₁ , [𝑥, 𝑦]
and 𝑙₂ . Python-style list comprehensions are also used: [𝑖² for 𝑖 in 1..20] is a list
of the first 20 square numbers.

ℕ is the type of natural numbers. Individual numbers can be used as types: 𝑥 : 3
means that 𝑥 is a natural number taking any value 𝑥 < 3 , i.e, 𝑥 ∈ {0,1,2} .

A × B is the type of tuples over A and B .
Elements are written as (a, b) : A × B .
As usual we have projections π₁ (𝑎, 𝑏) := 𝑎 and π₂ (𝑎, 𝑏) := 𝑏 .
Members of tuples
may be given names as (a : A) × (b : B) .
In this case, supposing
p : (a : A) × (b : B) , we can write p.a and p.b instead of π₁ p and π₂ p .
Similarly to above, we can have a dependent tuple or 'sigma type'
(a : A) × (b : B(a)) .

A + B is the discriminated union of A and B with constructors inl : A → A + B

and inr : B → A + B .

2.2.2. Functors and monads

I will assume that the readers are already familiar with the motivation behind functors and
monads in category theory and as used in e.g. Haskell but I will summarise them here for
completeness.
I refer the unfamiliar reader to the Haskell Typeclassopedia .

Definition 2.6 (functor): A functor is a type-valued function F : Type → Type

equipped with a function mapper F (𝑓 : A → B) : F A → F B .
I always assume that the
functor is lawful, which here means it obeys the functor laws (2.7).

F (𝑓 ∘ 𝑔) = (F 𝑓) ∘ (F 𝑔) F (𝑥 ↦ 𝑥) 𝑦 = 𝑦

Definition 2.8 (natural function): A natural function a : F ⇒ G between functors
F G : Type → Type is a family of functions a[A] : F A → G A indexed by A : Type such
that a[B] ∘ F f = G f ∘ a[A] for all f : A → B . Often the type argument to a will be
suppressed.
It is quick to verify that the functors and natural functors over them form a
category.

Definition 2.9 (monad): A monad M : Type → Type is a functor equipped with two
natural functions pure : 𝟙 ⇒ M and join : M M ⇒ M obeying the monad laws (2.10).
Write 𝑚 >>= 𝑓 := join (M 𝑓 𝑚) for 𝑚 : M A and 𝑓 : A → M B .
 do notation is used in
places .

join[X] ∘ (M join[X]) = join[X] ∘ (join[M X]) join[X] ∘ (M pure[X]) = pure X

join[X] ∘ (pure[M X]) = pure X

Definition 2.11 (applicative): An applicative functor [MP08 §2] M : Type → Type is
equipped with pure : A → M A and seq : M (A → B) → M A → M B .
Write
𝑓 <*> 𝑎 := seq 𝑓 𝑥 and 𝑎 *> 𝑏 := seq (_ ↦ 𝑎) 𝑏 . Applicative functors obey the laws
given in (2.12).

10 https://wiki.haskell.org/Typecl

assopedia

10

11 Here, the word 'functor' is used
to mean the special case of
category-theoretical functors with
the domain and codomain
category being the category of
Type .

11

(2.7). Laws for functors.

12 For learning about
programming with monads, see h
ttps://wiki.haskell.org/All_About

_Monads

12

13
https://wiki.haskell.org/Keywor

ds#do

13

(2.10). Laws for monads.

[MP08] McBride, Conor;
Paterson, Ross Applicative
programming with effects
(2008) J. Funct. Program.14

15

https://en.wikipedia.org/wiki/Tuple
https://wiki.haskell.org/Typeclassopedia
https://personal.cis.strath.ac.uk/conor.mcbride/IdiomLite.pdf
https://wiki.haskell.org/Typeclassopedia
https://wiki.haskell.org/All_About_Monads
https://wiki.haskell.org/Keywords#do
https://personal.cis.strath.ac.uk/conor.mcbride/IdiomLite.pdf

(pure 𝟙) <*> 𝑢 = 𝑢 (pure (∘)) <*> 𝑢 <*> 𝑣 <*> 𝑤 = 𝑢 <*> (𝑣 <*> 𝑤)

(pure 𝑓) <*> (pure 𝑥) = pure (𝑓 𝑥) 𝑢 <*> pure 𝑥 = pure (𝑓 ↦ 𝑓 𝑥) <*> 𝑢

2.2.3. Inductive datatypes

New inductive datatypes are defined with a GADT-like syntax (2.13).

List (X : Type) ::=
| nil
| cons (x : X) (l : List X)

In cases where it is obvious which constructor is being used, the tag names are suppressed.
Function definitions with pattern matching use the syntax given in (2.14).

f : Bool + (X × Y) → ℕ
 | true ↦ 3
 | false ↦ 0
 | (𝑥, 𝑦) ↦ 2

One can express inductive datatypes D as fixpoints of functors D = Fix P where
Fix P := P (Fix P) .
Depending on the underlying category, Fix P may not exist for all
P .

Definition 2.15 (base functor): When a D : Type is written as Fix P for some P (and
there is no Q such that P = Q ∘ Q ∘ ... ∘ Q), P is called the base functor for D .
This
conceptualisation is useful because we can use the base functor to make related types
without needing to explicitly write down the constructors for the modified versions. For
example we can make the list lazy with Lazy P X := Fix ((X ↦ Unit → X) ∘ P) .

2.3. Inductive gadgets
For the rest of this thesis, I will make use of a few motifs for discussing inductive
datastructures, particularly in Section 2.4, Chapter 3, Appendix A and Appendix C.
In this
section I will lay some background material for working with inductive datatypes.

2.3.1. Traversable functors

Given a monad M , a common task is performing a monad-map with f : A → M B over a
list of objects l : List X .
This is done with the help of a function called mmap (2.16).

mmap (𝑓 : A → M B)
 : List A → M (List B)
 | [] ↦ pure []
 | (ℎ::𝑙) ↦ pure cons <*> 𝑓 ℎ <*> mmap 𝑓 𝑙

But we can generalise List to some functor T : Type → Type ; when can we equip an
analogous mmap to T ?
For example, in the case of binary trees (2.17).

Tree A ::=
| leaf : Tree A
| branch : Tree A → A → Tree A → Tree A

mmap (𝑓 : A → M B)
 : Tree A → M (Tree B)
 | leaf ↦ pure leaf
 | (branch 𝑙 𝑎 𝑟) ↦
 pure branch <*> mmap 𝑓 𝑙 <*> 𝑓 𝑎 <*> mmap 𝑓 𝑟

Definition 2.18 (traversable): A functor T : Type → Type is traversable when for all
applicative functors (Definition 2.11) M : Type → Type ,
there is a natural function
d[M] : (T ∘ M) ⇒ (M ∘ T) .
That is, for each X : Type we have

<*> is left associative:
𝑢 <*> 𝑣 <*> 𝑤 = (𝑢 <*> 𝑣) <*> 𝑤 .

14

(2.12). Laws for applicative
functors. I use the same laws as
presented by McBride [MP08]
but other equivalent sets are
available.

(2.13). Example inductive
definition of List using a
nil : List X and
cons : X → List X → List X are

the constructors.

(2.14). Example of the definition
of a function f using pattern
matching.
The inl and inr
constructors are suppressed in
the pattern.
Provocative spacing
is used instead to suggest which
case is being matched on.

15 Smyth and Plotkin are the first
to place some conditions on when
the fixpoint exists [SP82], see
Adámek et al for a survey
[AMM18].

15

[SP82] Smyth, Michael B;
Plotkin, Gordon D The
category-theoretic solution of
recursive domain equations
(1982) SIAM Journal on
Computing

[AMM18] Adámek, Jiří;
Milius, Stefan; Moss,
Lawrence S Fixed points of
functors (2018) Journal of
Logical and Algebraic Methods in
Programming

(2.16). Definition of a 'monad
map' for over lists for an
applicative functor
M : Type → Type and
A B : Type .

(2.17). Inductive definition of
binary trees and a definition of
mmap to compare with (2.16).

16

https://wiki.haskell.org/Generalised_algebraic_datatype
https://hackage.haskell.org/package/recursion-schemes-5.2.2/docs/Data-Functor-Base.html
https://wiki.haskell.org/Typeclassopedia#Traversable
https://personal.cis.strath.ac.uk/conor.mcbride/IdiomLite.pdf
http://wrap.warwick.ac.uk/46312/1/WRAP_Smyth_cs-rr-014.pdf
https://doi.org/10.1016/j.jlamp.2017.11.003
http://wrap.warwick.ac.uk/46312/1/WRAP_Smyth_cs-rr-014.pdf
https://doi.org/10.1016/j.jlamp.2017.11.003

d[M][X] : T (M X) → M (T X) .
In addition to being natural, d must obey the traversal laws
given in (2.19) [JR12 Definition 3.3].

Given a traversable functor T and a monad M , we can recover
mmap : (A → M B) → T A → M (T B) as mmap 𝑓 𝑡 := d[M][B] (T 𝑓 𝑡) .

2.3.2. Functors with coordinates

Bird et al [BGM+13] prove that (in the category of sets) the traversable functors are
equivalent to a class of functors called finitary containers.
Their theorem states that there
is a type Shape T 𝑛 : Type for each traversable T and 𝑛 : ℕ such that that each 𝑡 : T X
is isomorphic to an object called a finitary container on Shape T shown in (2.20).

T X ≅
 (length : ℕ)
 × (shape : Shape T length)
 × (children : Vec length X)

map and traverse may be defined for the finitary container as map and traverse over the
children vector.
Since 𝑡 : T X has 𝑡.length child elements, the children of 𝑡 can be
indexed by the numbers {𝑘 : ℕ | 𝑘 < length} .
We can then define operations to get and
set individual elements according to this index 𝑘 .

Usually, however, this numerical indexing of the children of 𝑡 : T X loses the semantics of
the datatype.
As an example; consider the case of a binary tree Tree in (2.21). A tree
𝑡 : Tree X with 𝑛 branch components will have length 𝑛 and a corresponding
children : Vec 𝑛 X , but indexing via numerical indices {𝑘 | 𝑘 < 𝑛} loses information
about where the particular child 𝑥 : X can be found in the tree.

TreeBase A X ::=
| leaf : TreeBase X
| branch : TreeBase X → A → TreeBase X → TreeBase X

Tree A := Fix (TreeBase A)

Now I will introduce a new way of indexing the members of children for the purpose of
reasoning about inductive datatypes.
This idea has been used and noted before many
times, the main one being paths in universal algebra [BN98 Dfn. 3.1.3].
However, I have
not seen an explicit account of this idea in the general setting of traversable functors and
later to general inductive datatypes (Section 2.3.3).

Definition 2.22 (coordinates): A traversable functor T has coordinates when
equipped with a type C : Type and a function coords[𝑛] : Shape T 𝑛 → Vec 𝑛 C .
The
coords function amounts to a labelling of the 𝑛 children of a particular shape with
members of C .

Often when using traversals, working with the children list Vec (length 𝑡) X for each
shape of T can become unwieldy, so it is convenient to instead explicitly provide a pair of
functions get and set (2.23) for manipulating particular children of a given 𝑡 : T X .

[JR12] Jaskelioff, Mauro;
Rypacek, Ondrej An
Investigation of the Laws of
Traversals (2012) Proceedings
Fourth Workshop on
Mathematically Structured
Functional Programming,
MSFP@ETAPS 2012, Tallinn,
Estonia

(2.19). Commutative diagrams
for the traversal laws.
The
leftmost diagram must hold for
any natural function a : F ⇒ G .

[BGM+13] Bird, Richard;
Gibbons, Jeremy; Mehner,
Stefan; et al. Understanding
idiomatic traversals backwards
and forwards
(2013) Proceedings of the 2013
ACM SIGPLAN symposium on
Haskell

16

An explicit definition of
Shape T 𝑛 is the pullback of
children[1] : T Unit ⟶ List Unit

and !𝑛 : Unit ⟶ List Unit , the
list with 𝑛 elements.

16

(2.20). A finitary container is a
count 𝑛 , a shape
𝑠 : Shape T length and a vector
children .
 Vec length X is the

type of lists in X with length
length .

(2.21). Definition of binary trees
using a base functor. Compare
with the definition (2.17).

[BN98] Baader, Franz;
Nipkow, Tobias Term
rewriting and all that
(1998) publisher Cambridge
University Press

17

https://doi.org/10.4204/EPTCS.76.5
https://lirias.kuleuven.be/retrieve/237812
https://doi.org/10.4204/EPTCS.76.5
https://lirias.kuleuven.be/retrieve/237812

get : C → T X → Option X
set : C → T X → X → T X

get 𝑐 𝑡 = if ∃ 𝑖, (coords 𝑡)[𝑖] = 𝑐
 then some 𝑡.children[𝑖]
 else none

set 𝑐 𝑡 𝑥 = if ∃ 𝑖, (coords 𝑡)[𝑖] = 𝑐
 then Vec.set 𝑖 𝑡.children 𝑥
 else 𝑡

C is not unique, and in general should be chosen to have some semantic value for thinking
about the structure of T .
Here are some examples of functors with coordinates:

List has coordinates ℕ . coords 𝑙 for 𝑙 : List X returns a list
[0, ⋯, 𝑙.length - 1] . get 𝑖 𝑙 is some 𝑙[𝑖] and set 𝑖 𝑙 𝑥 returns a new list with
the 𝑖 th element set to be 𝑥 .

Vec n , lists of length n , has coordinates {k : ℕ | k < n} with the same methods as
for List above.

Option has coordinates Unit . coords (some 𝑥) := [()] and coords none := [] .
get _ 𝑜 := 𝑜 and set replaces the value of the option.

Binary trees have coordinates List D as shown in (2.24).

D ::= | left | right

coords
 : Tree X → List (List D)
 | leaf ↦ []
 | branch 𝑙 𝑥 𝑟 ↦
 [..[[left, ..𝑐] for 𝑐 in coords 𝑙]
 , []
 , ..[[right , ..𝑐] for 𝑐 in coords 𝑟]
]

get : List (List Bool) → Tree X → Option X
 | _ ↦ leaf ↦ none
 | [] ↦ branch 𝑙 𝑥 𝑟 ↦ some 𝑥
 | [left, ..𝑐] ↦ branch 𝑙 𝑥 𝑟 ↦ get 𝑐 𝑙
 | [right , ..𝑐] ↦ branch 𝑙 𝑥 𝑟 ↦ get 𝑐 𝑟

2.3.3. Coordinates on initial algebras of traversable functors

Given a functor F with coordinates C , we can induce coordinates on the free monad
Free F : Type → Type of F .
The free monad is defined concretely in (2.25).

Free F X ::=
| pure : X → Free F X
| make : F(Free F X) → Free F X

join : (Free F (Free F X)) → Free F X
 | pure 𝑥 ↦ pure 𝑥
 | (make 𝑓) ↦ make (F join 𝑓)

We can write Free F X as the fixpoint of A ↦ X + F A .
 Free F has coordinates List C
with methods defined in (2.26).

(2.23). Getter and setter
signatures and equations. Here
𝑙[𝑖] is the 𝑖 th member of
𝑙 : List X and
 Vec.set 𝑖 𝑣 𝑥

replaces the 𝑖 th member of the
vector 𝑣 : Vec 𝑛 X with 𝑥 : X .

(2.24). Defining the List Bool
coordinates for binary trees. Here
the left / right items in the
C = List D can be interpreted as

a sequence of "take the left/right
branch" instructions.
 set is
omitted for brevity but follows a
similar patter to get .

(2.25). Definition of a free
monad Free F X and join for a
functor F : Type → Type and
X : Type .

17 As mentioned in Section 2.2.3,
these fixpoints may not exist.
However for the purposes of this
thesis the F s of interest are
always polynomial functors.

17

18

coords : Free F X → List (List C)
 | pure 𝑥 ↦ []
 | make 𝑓 ↦
 [[𝑐, ..𝑎]
 for 𝑎 in coords (get 𝑐 𝑓)
 for 𝑐 in coords 𝑓]

get : List C → Free F X → Option X
 | [] ↦ pure 𝑥 ↦ some 𝑥
 | [𝑐, ..𝑎] ↦ make 𝑓 ↦ (get 𝑐 𝑓) >>= get 𝑎
 | _ ↦ _ ↦ none

set : List C → Free F X → X → Free F X
 | [] ↦ pure _ ↦ 𝑥 ↦ pure 𝑥
 | [𝑐, ..𝑎] ↦ make 𝑓 ↦ 𝑥 ↦ (set 𝑐 𝑓)
 | _ ↦ _ ↦ none

In a similar manner, List C can be used to reference particular subtrees of an inductive
datatype D which is the fixpoint of a traversable functor D = F D .
Let F have coordinates
C .
 D here is not a functor, but we can similarly define coords : D → List (List C) ,
get : List C → Option D and set : List C → D → D → D .

The advantage of using coordinates over some other system such as optics [FGM+07] or
other apparati for working with datatypes [LP03] is that they are much simpler to reason
about.
A coordinate is just an address of a particular subtree.
Another advantage is that the
choice of C can convey some semantics on what the coordinate is referencing (for
example, C = left | right in (2.24)), which can be lost in other ways of manipulating
datastructures.

2.4. Metavariables
Now with a way of talking about logical foundations, we can resume from Section 2.1.2 and
consider the problem of how to represent partially constructed terms and proofs given a
foundation.
This is the purpose of a development calculus: to take some logical system

 and produce some new system such that one can incrementally build terms and
proofs in a way that provides feedback at intermediate points and ensures that various
judgements hold for these intermediate terms.
In Chapter 3, I will create a new
development calculus for building human-like proofs, and in Appendix A this system will
be connected to Lean.
First we look at how Lean's current development calculus behaves.
Since I will be using Lean 3 in this thesis and performing various operations over its
expressions, I will follow the same general setup as is used in Lean 3.
The design presented
here was first developed by Spiwack [Spi11] first released in Coq 8.5.
It was built to allow
for a type-safe treatment of creating tactics with metavariables in a dependently-typed
foundation.

2.4.1. Expressions and types

In this section I will introduce the expression foundation language that will be used for the
remainder of the thesis.
The system presented here is typical of expression structures
found in DTT-based provers such as Lean 3 and Coq. I will not go into detail on induction
schema and other advanced features because the work in this thesis is independent of
them.

Definition 2.27 (expression): A Lean expression is a recursive datastructure Expr
defined in (2.28).

(2.26). Definitions of the
coordinate methods for Free F
given F has coordinates C .
Compare with the concrete binary
tree definitions (2.24).

[FGM+07] Foster, J Nathan;
Greenwald, Michael B;
Moore, Jonathan T; et
al. Combinators for
bidirectional tree
transformations: A linguistic
approach to the view-update
problem (2007) ACM
Transactions on Programming
Languages and Systems
(TOPLAS)

[LP03] Lämmel, Ralf; Peyton
Jones, Simon Scrap Your
Boilerplate
(2003) Programming Languages
and Systems, First Asian
Symposium, APLAS 2003,
Beijing, China, November 27-29,
2003, ProceedingsL DL

[Spi11] Spiwack,
Arnaud Verified computing in
homological algebra, a journey
exploring the power and limits of
dependent type theory
(2011) PhD thesis (INRIA)

19

http://hackage.haskell.org/package/lens
https://hal.inria.fr/inria-00484971/file/lenses-toplas-final.pdf
https://doi.org/10.1007/978-3-540-40018-9_23
https://pastel.archives-ouvertes.fr/pastel-00605836/document
https://hal.inria.fr/inria-00484971/file/lenses-toplas-final.pdf
https://doi.org/10.1007/978-3-540-40018-9_23
https://pastel.archives-ouvertes.fr/pastel-00605836/document

ExprBase X ::=
| lambda : Binder → X → ExprBase X -- function abstraction
| pi : Binder → X → ExprBase X -- dependent function type
| var : Name → ExprBase X -- variables
| const : Name → ExprBase X -- constants
| app : X → X → ExprBase X -- function application
| sort : Level → ExprBase X -- type universe

Binder := (name : Name) × (type : Expr)

Context := List Binder

Expr := Fix ExprBase

In (2.28), Level can be thought of as expressions over some signature that evaluate to
natural numbers.
They are used to stratify Lean's types so that one can avoid Girard's
paradox [Hur95].
 Name is a type of easily distinguishable identifiers;
in the case of Lean
Name s are lists of strings or numbers.
I sugar lambda 𝑥 α 𝑏 as λ (𝑥 ∶ α), 𝑏 , pi 𝑥 α 𝑏 as
Π (𝑥 ∶ α), 𝑏 , app 𝑓 𝑎 as 𝑓 𝑎 and omit var and const when it is clear what the
appropriate constructor is.

Using ExprBase , define pure expressions Expr := Fix ExprBase as in Section 2.2.3.
Note
that it is important to distinguish between the meta-level type system introduced in
Section 2.2 and the object-level type system where the 'types' are merely instances of
Expr . That is, 𝑡 : Expr is a meta-level statement indicating that 𝑡 is an expression, but
⊢ 𝑡 ∶ α is an object-level judgement about expressions stating that 𝑡 has the type α ,
where α : Expr and ⊢ α ∶ sort .

Definition 2.29 (variable binding): Variables may be bound by λ and Π
expressions. For example, in λ (𝑥 ∶ α), 𝑡 , we say that the expression binds 𝑥 in 𝑡 .
If 𝑡
contains variables that are not bound, these are called free variables.
Now, given a partial
map σ : Name ⇀ Expr and a term 𝑡 : Expr , we define a substitution subst σ 𝑡 : Expr
as in (2.30).
This will be written as σ 𝑡 for brevity.

subst σ : Expr → Expr
 | var 𝑥 ↦ if 𝑥 ∈ dom σ then σ 𝑥 else 𝑥
 | 𝑒 ↦ ExprBase (subst σ) 𝑒

I will denote substitutions as a list of Name ↦ Expr pairs. For example, ⦃𝑥 ↦ 𝑡, 𝑦 ↦ 𝑠⦄

where 𝑥 𝑦 : Name are the variables which will be substituted for terms 𝑡 𝑠 : Expr
respectively.

Substitution can easily lead to badly-formed expressions if there are variable naming
clashes.
I need only note here that we can always perform a renaming of variables in a
given expression to avoid clashes upon substitution.
These clashes are usually avoided
within prover implementations with the help of de-Bruijn indexing [deB72].

2.4.2. Assignable datatypes

Given an expression structure Expr and 𝑡 : Expr , we can define a traversal over all of the
immediate subexpressions of 𝑡 .

child_traverse (M : Monad) (𝑓 : Context → Expr → M Expr)
 : Context → Expr → M Expr
 | Γ ↦ (Expr.var 𝑛) ↦ (Expr.var 𝑛)
 | Γ ↦ (Expr.app 𝑙 𝑟) ↦
 pure (Expr.app) <*> 𝑓 Γ 𝑙 <*> 𝑓 Γ 𝑟
 | Γ ↦ (Expr.lambda 𝑛 α 𝑏) ↦
 pure (Expr.lambda 𝑛) <*> 𝑓 Γ α <*> 𝑓 [..Γ, (𝑛:α)] 𝑏

The function child_traverse defined in (2.31) is different from a normal traversal of a
datatructure because the mapping function 𝑓 is also passed a context Γ indicating the
current variable context of the subexpression. Thus when exploring a λ-binder, 𝑓 can take
into account the modified context. This means that we can define context-aware

(2.28). Definition of a base
functor for pure DTT expressions
as used by Lean.

[Hur95] Hurkens, Antonius
J. C. A simplification of Girard's
paradox (1995) International
Conference on Typed Lambda
Calculi and Applications

18 This distinction can always be
deduced from syntax, but to give
a subtle indication of this
distinction, object-level type
assignment statements such as
(𝑥 ∶ α) are annotated with a

slightly smaller variant of the
colon ∶ as opposed to : which is
used for meta-level statements.

18

(2.30). Definition of substitution
on an expression.
Here,
ExprBase (subst σ) 𝑒 is mapping

each child expression of 𝑒 with
subst σ ; see Section 2.2.3.

(2.31). Illustrative code for
mapping the immediate
subexpressions of an expression
using child_traverse .

20

https://doi.org/10.1007/BFb0014058
http://alexandria.tue.nl/repository/freearticles/597619.pdf
https://doi.org/10.1007/BFb0014058

expression manipulating tools such as counting the number of free variables in an
expression (fv in (2.32)).

instantiate : Name → Expr → Context → Expr → Expr
| 𝑥 ↦ 𝑟 ↦ Γ ↦ (Expr.var 𝑛) ↦ if (𝑥 = 𝑛) then 𝑟 else Expr.var 𝑛
| 𝑥 ↦ 𝑟 ↦ Γ ↦ 𝑡 ↦ child_traverse 𝟙 (instantiate 𝑥 𝑟) Γ 𝑡

fv : Context → Expr → Set Name
| Γ ↦ (Expr.var 𝑛) ↦ if 𝑛 ∈ Γ then ∅ else {𝑛}
| Γ ↦ 𝑡 ↦ child_traverse Set (fv) Γ 𝑡

The idea here is to generalise child_traverse to include any datatype that may involve
expressions.
Frequently when building systems for proving, one has to make custom
datastructures. For example, one might wish to create a 'rewrite-rule' structure (2.33) for
modelling equational reasoning (as will be done in Chapter 4).

RewriteRule := (lhs : Expr) × (rhs : Expr)

Definition 2.34 (telescope): Another example might be a telescope of binders
Δ : List Binder a list of binders is defined as a telescope in Γ : Context when each
successive binder is defined in the context of the binders before it. That is, [] is a
telescope and [(𝑥∶α), ..Δ] is a telescope in Γ if Δ is a telescope in [..Γ, (𝑥∶α)] and
Γ ⊢ 𝑥 ∶ α .

But now if we want to perform a variable instantiation or count the number of free
variables present in 𝑟 : RewriteRule , we have to write custom definitions to do this.
The
usual traversal functions from Section 2.3.1 are not adequate for telescopes, because we
may need to take into account a binder structure. Traversing a telescope as a simple list of
names and expressions will produce the wrong output for fv , because some of the
variables are bound by previous binders in the context.

Definition 2.35 (assignable): To avoid having to write all of this boilerplate, let's make
a typeclass assignable (2.36) on datatypes that we need to manipulate the expressions in.
The expr_traverse method in (2.36) traverses over the child expressions of a datatype
(e.g., the lhs and rhs of a RewriteRule or the type expressions in a telescope).
expr_traverse also includes a Context object to enable traversal of child expressions which
may be in a different context to the parent datatype.

class assignable (X : Type) :=
(expr_traverse :
 (M : Monad) →
 (Context → Expr → M Expr) →
 Context → X → M X
)

expr_traverse M 𝑓
 : Context → RewriteRule → RewriteRule
 | Γ ↦ (𝑙, 𝑟) ↦ do
 𝑙' ← 𝑓 Γ 𝑙;
 𝑟' ← 𝑓 Γ 𝑟;
 pure ⟨𝑙, 𝑟⟩

expr_traverse M 𝑓
 : Context → Telescope → Telescope
 | Γ ↦ [] ↦ pure []
 | Γ ↦ [(𝑥∶α), ..Δ] ↦ do
 α' ← 𝑓 Γ α;
 Δ' ← expr_traverse M 𝑓 [..Γ, (𝑥∶α)] Δ;
 pure [(𝑥∶α'), ..Δ']

Now, provided expr_traverse is defined for X : fv , instantiate and other expression-
manipulating operations such as those in (2.32) can be modified to use expr_traverse
instead of child_traverse .
This assignable regime becomes useful when using de-Bruijn
indices to represent bound variables [deB72] because the length of Γ can be used to
determine the binder depth of the current expression.
Examples of implementations of
assignable and expression-manipulating operations that can make use of assignable can
be found in my Lean implementation of this concept .

(2.32). Some example
implementations of expression
manipulating tools with the
child_traverse construct.
The

monad structure on Set is
pure := 𝑥 ↦ {𝑥} and
join (𝑠 : Set Set X) := ⋃ 𝑠

and map 𝑓 𝑠 := 𝑓[𝑠] .
 fv stands
for 'free variables'.

(2.33). Simple RewriteRule
representation defined as a pair
of Expr s, representing
lhs = rhs .
This is to illustrate the

concept of assignable datatypes.

(2.36). Say that a type X is
assignable by equipping X with
the given expr_traverse
operation.
Implementations of
expr_traverse for RewriteRule

(2.33) and telescopes are given as
examples.

19

21

http://alexandria.tue.nl/repository/freearticles/597619.pdf
https://github.com/leanprover-community/mathlib/pull/5719

2.4.3. Lean's development calculus

In the Lean source code, there are constructors for Expr other than those in (2.30).
Some
are for convenience or efficiency reasons (such as Lean 3 macros), but others are part of
the Lean development calculus.
The main development calculus construction is mvar or a
metavariable, sometimes also called a existential variable or schematic variable.
An mvar ?m acts as a 'hole' for an expression to be placed in later.
There is no kernel
machinery to guarantee that an expression containing a metavariable is correct; instead,
they are used for the process of building expressions.

As an example, suppose that we needed to prove P ∧ Q for some propositions P Q ∶ Prop .
The metavariable-based approach to proving this would be to declare a new metavariable
?𝑡 ∶ P ∧ Q .
Then, a prover constructs a proof term for P ∧ Q in two steps; declare two
new metavariables ?𝑡₁ ∶ P and ?𝑡₂ ∶ Q ; and then assign ?𝑡 with the expression
and.make ?𝑡₁ ?𝑡₂ where and.make ∶ P → Q → P ∧ Q is the constructor for ∧ .
After this,
?𝑡₁ and ?𝑡₂ themselves are assigned with p ∶ P and q ∶ Q .
In this way, the proof term
can be built up slowly as ?𝑡 ⟿ and.make ?𝑡₁ ?𝑡₂ ⟿ and.make p ?𝑡₂ ⟿ and.make p q .
This process is more convenient for building modular programs that construct proofs than
requiring that a pure proof term be made all in one go because a partially constructed
proof is represented as a proof term where certain subexpressions are metavariables.

Lean comes with a development calculus that uses metavariables.
This section can be
viewed as a more detailed version of the account originally given by de Moura et al
[MAKR15 §3.2] with the additional details sourced from inspecting the Lean source code.
Lean's metavariable management system makes use of a stateful global 'metavariable
context' with carefully formed rules governing valid assignments of metavariables.
While
all automated provers make use of some form of metavariables, this specific approach to
managing them for use with tactics was first introduced in Spiwack's thesis [Spi11], where
the tactic monad for Coq was augmented with a stateful global metavariable context.

The implementation of Lean allows another Expr constructor for metavariables:

Expr ::=
| ExprBase Expr
| ?Name

Metavariables are 'expression holes' and are denoted as ?𝑥 where 𝑥 : Name .
They are
placeholders into which we promise to substitute a valid pure expression later.
Similarly to
fv(𝑡) being the free variables in 𝑡 : Expr , we can define mv(𝑡) to be the set of
metavariables present in 𝑡 .
However, we still need to be able to typecheck and reduce
expressions involving metavariables and so we need to have some additional structure on
the context.

The idea is that in addition to a local context Γ , expressions are inspected and created
within the scope of a second context called the metavariable context 𝑀 : MvarContext .
The metavariable context is a dictionary MvarContext := Name ⇀ MvarDecl where each
metavariable declaration 𝑑 : MvarDecl has the following information:

identifier : Name A unique identifier for the metavariable.

type : Expr The type of the metavariable.

context : Context The local context of the metavariable.
This determines the set of
local variables that the metavariable is allowed to depend on.

assignment : Option Expr An optional assignment expression. If assignment is not
none , we say that the metavariable is assigned.

The metavariable context can be used to typecheck an expression containing metavariables
by assigning each occurrence ?𝑥 with the type given by the corresponding declaration
𝑀[𝑥].type in 𝑀 .
The assignment field of MvarDecl is used to perform instantiation. We can
interpret 𝑀 as a substitution.

https://github.com/leanprover-c

ommunity/mathlib/pull/5719

19

[MAKR15] de Moura,
Leonardo; Avigad, Jeremy;
Kong, Soonho; et
al. Elaboration in Dependent
Type Theory (2015) CoRR

(2.37). Redefining Expr with
metavariables using the base
functor given in (2.28).

22

http://arxiv.org/abs/1505.04324
https://github.com/leanprover-community/lean
https://pastel.archives-ouvertes.fr/pastel-00605836/document
https://github.com/leanprover-community/mathlib/pull/5719
http://arxiv.org/abs/1505.04324

As mentioned in Section 2.1.2, the purpose of the development calculus is to represent a
partially constructed proof or term.
The kernel does not need to check expressions in the
development calculus (which here means expressions containing metavariables), so there
is no need to ensure that an expression using metavariables is sound in the sense that
declaring and assigning metavariables will be compatible with some set of inference rules
such as those given in (2.4).
However, in Appendix A.1, I will provide some inference rules
for typing expressions containing metavariables to assist in showing that the system
introduced in Chapter 3 is compatible with Lean.

2.4.4. Tactics

A partially constructed proof or term in Lean is represented as a TacticState object.
For
our purposes, this can be considered as holding the following data:

TacticState :=
 (result : Expr)
 × (mctx : MvarContext)
 × (goals : List Expr)

Tactic (A : Type) := TacticState → Option (TacticState × A)

The result field is the final expression that will be returned when the tactic completes.
goals is a list of metavariables that are used to denote what the tactic state is currently
'focussing on'.
Both goals and result are in the context of mctx .

Tactic s may perform actions such as modifying the goals or performing assignments of
metavariables.
In this way, a user may interactively build a proof object by issuing a stream
of tactics.

2.5. Understandability and confidence
This section is a short survey of literature on what it means for a mathematical proof to be
understandable. This is used in Chapter 6 to evaluate my software and to motivate the
design of the software in Chapter 3 and Chapter 4.

2.5.1. Understandability of mathematics in a broader context

What does it mean for a proof to be understandable?
An early answer to this question
comes from the 19th century philosopher Spinoza.
Spinoza [Spi87] supposes 'four levels' of
a student's understanding of a given mathematical principle or rule, which are:

1. mechanical: The student has learnt a recipe to solve the problem, but no more than
that.

2. inductive: The student has verified the correctness of the rule in a few concrete
cases.

3. rational: The student comprehends a proof of the rule and so can see why it is true
generally.

4. intuitive: The student is so familiar and immersed in the rule that they cannot
comprehend it not being true.

For the purposes of this thesis I will restrict my attention to type 3 understanding.
That is,
how the student digests a proof of a general result.
If the student is at level 4, and treats the
result like a fish treats water, then there seems to be little an ITP system can offer other
than perhaps forcing any surprising counterexamples to arise when the student attempts
to formalise it.

Edwina Michener's Understanding Understanding Mathematics [Mic78] provides a wide
ontology of methods for understanding mathematics.
Michener (p. 373) proposes that
"understanding is a complementary process to problem solving" and incorporates

(2.38).

[Spi87] Spinoza,
Benedict The chief works of
Benedict de Spinoza
(1887) publisher Chiswick
Press

[Mic78] Michener, Edwina
Rissland Understanding
understanding mathematics
(1978) Cognitive science

23

https://books.google.co.uk/books?id=tnl09KVEd2UC&ots=WiBRHdjSjY&dq=the%20philosophy%20of%20benedict%20spinoza&lr&pg=PA3#v=onepage&q&f=false
https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709cog0204_3
https://books.google.co.uk/books?id=tnl09KVEd2UC&ots=WiBRHdjSjY&dq=the%20philosophy%20of%20benedict%20spinoza&lr&pg=PA3#v=onepage&q&f=false
https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709cog0204_3

Spinoza's 4-level model.
She also references Poincaré's thoughts on understanding
[Poi14 p. 118], from which I will take an extended quote from the original:

What is understanding? Has the word the same meaning for everybody? Does
understanding the demonstration of a theorem consist in examining each of the
syllogisms of which it is composed and being convinced that it is correct and
conforms to the rules of the game? ...

Yes, for some it is; when they have arrived at the conviction, they will say, I
understand. But not for the majority... They want to know not only whether the
syllogisms are correct, but why there are linked together in one order rather than
in another. As long as they appear to them engendered by caprice, and not by an
intelligence constantly conscious of the end to be attained, they do not think they
have understood.

In a similar spirit; de Millo, Lipton and Perlis [MUP79] write referring directly to the
nascent field of program verification (here referred to 'proofs of software')

Mathematical proofs increase our confidence in the truth of mathematical
statements only after they have been subjected to the social mechanisms of the
mathematical community.
These same mechanisms doom the so-called proofs of
software, the long formal verifications that correspond, not to the working
mathematical proof, but to the imaginary logical structure that the mathematician
conjures up to describe his feeling of belief.
Verifications are not messages; a
person who ran out into the hall to communicate his latest verification would
rapidly find himself a social pariah.
Verifications cannot really be read; a reader
can flay himself through one of the shorter ones by dint of heroic effort, but that's
not reading.
Being unreadable and - literally - unspeakable, verifications cannot be
internalized, transformed, generalized, used, connected to other disciplines, and
eventually incorporated into a community consciousness.
They cannot acquire
credibility gradually, as a mathematical theorem does; one either believes them
blindly, as a pure act of faith, or not at all.

Poincaré's concern is that a verified proof is not sufficient for understanding.
De Millo et al
question whether a verified proof is a proof at all!
Even if a result has been technically
proven, mathematicians care about the structure and ideas behind the proof itself.
If this
were not the case, then it would be difficult to explain why new proofs of known results are
valued by mathematicians.
I explore the question of what exactly they value in Chapter 6.

Many studies investigating mathematical understanding within an educational context
exist, see the work of Sierpinska [Sie90, Sie94] for a summary. See also Pólya's manual on
the same topic [Pól62].

2.5.2. Confidence

Another line of inquiry suggested by Poincaré's quote is distinguishing confidence in a
proof from a proof being understandable.
By confidence in a proof, I do not mean
confidence in the result being true, but instead confidence in the given script actually being
a valid proof of the result.

As an illustrative example, I will give my own impressions on some proofs of the Jordan
curve theorem which states that any non-intersecting continuous loop in the 2D Euclidean
plane has an interior region and an exterior region.
Formal and informal proofs of this
theorem are discussed by Hales [Hal07].
I am confident that the proof of the Jordan curve
theorem formalised by Hales in the HOL Light proof assistant is correct although I can't
claim to understand it in full.
Contrast this with the diagrammatic proof sketch
(Figure 2.39) given in Hales' paper (originating with Thomassen [Tho92]). This sketch is
more understandable to me but I am less confident in it being a correct proof (e.g., maybe
there is some curious fractal curve that causes the diagrammatic proofs to stop being

[Poi14] Poincaré,
Henri Science and method
(1914) publisher Amazon (out
of copyright)

[MUP79] de Millo, Richard A;
Upton, Richard J; Perlis,
Alan J Social processes and
proofs of theorems and
programs
(1979) Communications of the
ACM

[Sie90] Sierpinska,
Anna Some remarks on
understanding in mathematics
(1990) For the learning of
mathematics

[Sie94] Sierpinska,
Anna Understanding in
mathematics (1994) publisher
Psychology Press

[Pól62] Pólya,
George Mathematical
Discovery (1962) publisher
John Wiley & Sons

24

https://archive.org/details/sciencemethod00poinuoft
https://doi.org/10.1145/359104.359106
https://www.flm-journal.org/Articles/43489F40454C8B2E06F334CC13CCA8.pdf
https://archive.org/details/GeorgePolyaMathematicalDiscovery
https://en.wikipedia.org/wiki/Jordan_curve_theorem
https://www.maths.ed.ac.uk/~v1ranick/papers/hales3.pdf
https://www.jstor.org/stable/2324180
https://archive.org/details/sciencemethod00poinuoft
https://doi.org/10.1145/359104.359106
https://www.flm-journal.org/Articles/43489F40454C8B2E06F334CC13CCA8.pdf
https://archive.org/details/GeorgePolyaMathematicalDiscovery

obvious...).
In the special case of the curve being a polygon, the proof involves "walking
along a simple polygonal arc (close to but not intersecting)" and Hales notes:

Nobody doubts the correctness of this argument. Every mathematician knows how
to walk without running in to walls. Detailed figures indicating how to "walk along
a simple polygonal arc" would be superfluous, if not downright insulting.
Yet, it is
quite another matter altogether to train a computer to run around a maze-like
polygon without collisions...

These observations demonstrate how one's confidence in a mathematical result is not
merely a formal affair, but includes ostensibly informal arguments of correctness. This
corroborates the attitude taken by De Millo et al in Section 2.5.1. Additionally, as noted in
Section 1.1, confidence in results also includes a social component: a mathematician will be
more confident that a result is correct if that result is well established within the field.

There has also been some empirical work on the question of confidence in proofs.
Inglis
and Alcock [IA12] performed an empirical study on eye movements in undergrads vs
postgrads. A set of undergraduates and post-graduate researchers were presented with a
set of natural language proofs and then asked to judge the validity of these proofs. The
main outcomes they suggest from their work are that mathematicians can disagree about
the validity of even short proofs and that post-graduates read proofs in a different way to
undergraduates: moving their focus back and forth more. This suggests that we might
expect undergraduates and postgraduates to present different reasons for their confidence
in the questions.

2.5.3. Understandability and confidence within automated
theorem proving.

The concepts of understandability and confidence have also been studied empirically
within the context of proof assistants. This will be picked up in Chapter 6.

Stenning et al. [SCO95] used the graphical Hyperproof software (also discussed in
Section 5.1) to compare graphical and sentence-based representations in the teaching of
logic.
They found that both representations had similar transferability and that the best
teaching representation (in terms of test scores) was largely dependent on the individual
differences between the students.
This suggests that in looking for what it means for a
proof to be understandable, we should not forget that people have different ways of
thinking about proofs, and so there is not going to be a one-size-fits-all solution. It also
suggests that providing multiple ways of conceptualising problems should help with
understandability.

In Grebing's thesis [Gre19], a set of focus group studies are conducted to ask a set of users
with a variety of experience-levels in Isabelle and KeY, to reflect on the user interfaces.
One
of her main findings was that due to the extensive levels of automation in the proving
process, there can arise a 'gap' between the user's model of the proof state and the proof
state created through the automation.
Grebing then provides a bridge for this gap in the
form of a proof scripting language and user interface for the KeY prover at a higher level of
abstraction than the existing interface.
Grebing also provides a review of other empirical
studies conducted on the user interfaces of proof assistants [Gre19 §6.2.0].

2.6. Human-like reasoning
How should a prover work to produce human-like mathematical reasoning?
The easiest
answer is: however humans think it should reason!

The very earliest provers such as the Boyer-Moore theorem prover [BM73, BM90, BKM95]
take this approach to some extent; the design is steered through a process of introspection
on how the authors would prove theorems.
Nevertheless, with their 'waterfall' architecture,
the main purpose is to prove theorems automatically, rather than creating proofs that a

Figure 2.39. A cartoon
illustrating a component of the
proof of the Jordan curve
theorem for polygons as
described by Hales [Hal07].
Call
the edge of the purple polygon
, then the claim that this cartoon
illustrates is that given any disk

 in red and for any point not
on , we can 'walk along a
simple polygonal arc' (here in
green) to the disk .

C

D x

C

D

[Hal07] Hales, Thomas C The
Jordan curve theorem, formally
and informally (2007) The
American Mathematical Monthly

[Tho92] Thomassen,
Carsten The Jordan-Schönflies
theorem and the classification of
surfaces (1992) The American
Mathematical Monthly

C

C C

[IA12] Inglis, Matthew;
Alcock, Lara Expert and
novice approaches to reading
mathematical proofs
(2012) Journal for Research in
Mathematics Education

[SCO95] Stenning, Keith;
Cox, Richard; Oberlander,
Jon Contrasting the cognitive
effects of graphical and
sentential logic teaching:
reasoning, representation and
individual differences
(1995) Language and Cognitive
Processes

20

That is, do lessons learnt in one
domain transfer to anologous
problems in other domains?
The
psychological literature identifies
this as a difficult problem in
teaching.

20

[Gre19] Grebing, Sarah
Caecilia User Interaction in
Deductive Interactive Program
Verification (2019) PhD thesis
(Karlsruhe Institute of
Technology)

[BM73] Boyer, Robert S.;
Moore, J. Strother Proving
Theorems about LISP Functions
(1973) IJCAI

25

https://pdfs.semanticscholar.org/494e/7981ee892d500139708e53901d6260bd83b1.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.3906&rep=rep1&type=pdf
https://d-nb.info/1198309989/34
https://d-nb.info/1198309989/34
http://ijcai.org/Proceedings/73/Papers/053.pdf
https://www.cs.utexas.edu/users/boyer/ftp/cli-reports/054.pdf
https://www.maths.ed.ac.uk/~v1ranick/papers/hales3.pdf
https://www.maths.ed.ac.uk/~v1ranick/papers/hales3.pdf
https://www.jstor.org/stable/2324180
https://pdfs.semanticscholar.org/494e/7981ee892d500139708e53901d6260bd83b1.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.3906&rep=rep1&type=pdf
https://d-nb.info/1198309989/34
http://ijcai.org/Proceedings/73/Papers/053.pdf

human could follow.
Indeed Robinson's machine-like resolution method [BG01] was such
a dominant approach that Bledsoe titled his paper non-resolution theorem proving
[Ble81].
In this paper, Bledsoe sought to show another side of automated theorem proving
through a review of alternative methods to resolution. A quote from this paper stands out
for our current study:

It was in trying to prove a rather simple theorem in set theory by paramodulation
and resolution, where the program was experiencing a great deal of difficulty, that
we became convinced that we were on the wrong track. The addition of a few
semantically oriented rewrite rules and subgoaling procedures made the proof of
this theorem, as well as similar theorems in elementary set theory, very easy for
the computer. Put simply: the computer was not doing what the human would do
in proving this theorem. When we instructed it to proceed in a "human-like" way,
it easily succeeded. Other researchers were having similar experiences.

This quote captures the concept of 'human-like' that I want to explore. Some piece of
automation is 'human-like' when it doesn't get stuck in a way that a human would not.

Another early work on human-oriented reasoning is that of Nevins [Nev74].
Similar to this
thesis, Nevins is motivated by the desire to make proofs more understandable to
mathematicians.
Some examples of prover automation that are designed to perform steps
that a human would take are grind for PVS [SORS01] and the waterfall algorithm in ACL2
[KMM13].

All of the systems mentioned so far came very early in the history of computing, and had a
miniscule proportion of the computing power available to us today.
Today, the concern
that a piece of automation may not find a solution in a human-like way or finds a
circumlocuitous route to a proof is less of a concern because computers are much more
powerful.
However I think that the resource constraints that these early pioneers faced
provides some clarity on why building human-like reasoning systems matters.
The
designers of these early systems were forced to introspect carefully on how they themselves
were able to prove certain theorems without needing to perform a large amount of
compute, and then incorporated these human-inspired insights in to their designs.

My own journey into this field started with reading the work of Gowers and Ganesalingam
(G&G) in their Robot prover [GG17] .
G&G's motivation was to find a formal system that
better represented the way that a human mathematician would solve a mathematics
problem, demonstrating this through the ability to generate realistic natural-language
write-ups of these proofs.
The system made use of a natural-deduction style hierarchical
proof-state with structural sharing.
The inference rules (which they refer to as 'moves') on
these states and the order in which they were invoked were carefully chosen through an
introspective process.
The advantage of this approach is that the resulting proofs could be
used to produce convincing natural language write-ups of the proofs. However, the system
was not formalised and was limited to the domains hard-coded in to the system. The work
in this thesis is a reimagining of this system within a formalised ITP system.

A different approach to exploring human-like reasoning is by modelling the process of
mathematical discourse.
Pease, Cornelli, Martin, et al [CMM+17, PLB+17] have
investigated the use of graphical discourse models of mathematical reasoning.
In this
thesis, however I have restricted the scope to human-like methods for solving simple
lemmas that can produce machine-checkable proofs.

Another key way in which humans reason is through the use of diagrams [Jam01] and
alternative representations of mathematical proofs. A prima facie unintuitive result such
as snaps together when presented with the appropriate
representation in Figure 2.40.
Jamnik's previous work explores how one can perform
automated reasoning like this in the domain of diagrams
Some recent work investigating
and automating this process is the rep2rep project [RSS+20].
This is an important feature
of general human-like reasoning, however in the name of scope management I will not
explore representations further in this thesis.

[BM90] Boyer, Robert S;
Moore, J Strother A theorem
prover for a computational logic
(1990) International Conference
on Automated Deduction

[BKM95] Boyer, Robert S;
Kaufmann, Matt; Moore, J
Strother The Boyer-Moore
theorem prover and its
interactive enhancement
(1995) Computers &
Mathematics with Applications

[BG01] Bachmair, Leo;
Ganzinger, Harald Resolution
theorem proving
(2001) Handbook of automated
reasoning

[Ble81] Bledsoe, Woodrow
W Non-resolution theorem
proving (1981) Readings in
Artificial Intelligence

[Nev74] Nevins, Arthur J A
human oriented logic for
automatic theorem-proving
(1974) Journal of the ACM

[SORS01] Shankar,
Natarajan; Owre, Sam;
Rushby, John M; et al. PVS
prover guide (2001) Computer
Science Laboratory, SRI
International, Menlo Park, CA

[KMM13] Kaufmann, Matt;
Manolios, Panagiotis;
Moore, J Strother Computer-
aided reasoning: ACL2 case
studies (2013) publisher
Springer

[GG17] Ganesalingam,
Mohan; Gowers, W. T. A fully
automatic theorem prover with
human-style output
(2017) Journal of Automated
Reasoning

21

A working fork of this can be
found at https://github.com/edaye
rs/robotone.

21

[CMM+17] Corneli, Joseph;
Martin, Ursula; Murray-
Rust, Dave; et al. Modelling
the way mathematics is actually
done (2017) Proceedings of the
5th ACM SIGPLAN International
Workshop on Functional Art,
Music, Modeling, and Design

[PLB+17] Pease, Alison;
Lawrence, John; Budzynska,
Katarzyna; et al. Lakatos-
style collaborative mathematics
through dialectical, structured
and abstract argumentation
(2017) Artificial Intelligence

1 + 2 + 3 + ⋯ + n = ​n(n +2
1 1)

26

https://doi.org/10.1016/0004-3702(77)90012-1
https://doi.org/10.1145/321850.321858
http://pvs.csl.sri.com/
https://pvs.csl.sri.com/doc/pvs-prover-guide.pdf
https://www.cs.utexas.edu/users/moore/acl2/
https://doi.org/10.1007/s10817-016-9377-1
https://doi.org/10.1145/3122938.3122942
https://www.sciencedirect.com/science/article/pii/S0004370217300267
https://doi.org/10.1109/ICTAI50040.2020.00185
https://www.cs.utexas.edu/users/boyer/ftp/cli-reports/054.pdf
https://doi.org/10.1016/0004-3702(77)90012-1
https://doi.org/10.1145/321850.321858
https://pvs.csl.sri.com/doc/pvs-prover-guide.pdf
https://doi.org/10.1007/s10817-016-9377-1
https://github.com/edayers/robotone
https://doi.org/10.1145/3122938.3122942
https://www.sciencedirect.com/science/article/pii/S0004370217300267

2.6.1. Levels of abstraction

There have been many previous works which add higher-level abstraction layers atop an
existing prover with the aim of making a prover that is more human-like.

Archer et al. developed the TAME system for the PVS prover [AH97].
Although they were
focussed on proving facts about software rather than mathematics, the goals are similar:
they wish to create software that produces proofs which are natural to humans.
TAME
makes use of a higher abstraction level.
However, it is only applied to reasoning about
timed automata and doesn't include a user study.

As part of the auto2 prover tactic for Isabelle, Zhan [Zha16] developed a high-level proof
script syntax to guide the automation of auto2 .
A script takes the form of asserting several
intermediate facts for the prover to prove before proving the main goal.
This script is used
to steer the auto2 prover towards proving the result. This contrasts with tactic-based proof
and structural scripts (e.g. Isar [Wen99]) which are instead instructions for chaining
together tactics.
With the auto2 style script, it is possible to omit a lot of the detail that
would be required by tactic-based scripts, since steps and intermediate goals that are easy
for the automation to solve can be omitted entirely.
A positive of this approach is that by
being implemented within the Isabelle theorem prover, the results of auto2 are checked by
a kernel. However it is not a design goal of auto2 to produce proofs that a human can read.

2.6.2. Proof planning

Proof planning originated with Bundy [Bun88, Bun98] and is the application of
performing a proof with respect to a high-level plan (e.g., I am going to perform induction
then simplify terms) that is generated before low-level operations commence (performing
induction, running simplification algorithms). The approach follows the general field of AI
planning.

AI planning in its most general conception [KKY95] is the process of searching a graph G
using plan-space rather than by searching it directly.
In a typical planning system, each
point in plan-space is a DAG of objects called ground operators or methods, each of
which has a mapping to paths in G .
Each ground operator is equipped with predicates on
the vertices of G called pre/post-conditions.
Various AI planning methods such as
GRAPHPLAN [BF97] can be employed to discover a partial ordering of these methods,
which can then be used to construct a path in G .
This procedure applied to the problem of
finding proofs is proof planning.
The main issue with proof planning [Bun02] is that it is
difficult to identify sets of conditions and methods that do not cause the plan space to be
too large or disconnected. However, in this thesis we are not trying to construct plans for
entire proofs, but just to model the thought processes of humans when solving simple
equalities.
A comparison of the various proof planners is provided by Dennis, Jamnik and
Pollet [DJP06].

Proof planning in the domain of finding equalities frequently involves a technique called
rippling [BSV+93, BBHI05], in which an expression is annotated with additional
structure determined by the differences between the two sides of the equation that directs
the rewriting process.
The rippling algorithm captures some human intuitions about which
parts of a rewriting expression are salient.
In the system for equational rewriting I
introduce in Chapter 4, I avoid using rippling because the techniques are tied to peforming
induction.

Another technique associated with proof planning is the concept of proof critics [Ire92].
Proof critics are programs which take advantage of the information from a failed proof
plan to construct a new, amended proof plan.
An interactive version of proof critics has
also been developed [IJR99].
In the work in Chapter 3, this concept of revising a proof
based on a failure is used.

Another general AI system that will be relevant to this thesis is hierarchical task
networks [MS99, Tat77] which are used to drive the behaviour of artificial agents such as

Figure 2.40. A visual
representation of summing the
first integers with counters.
The lower black triangle's rows
comprise , , , , from which
a human can quickly see

.

n

1 2 3 4 5

​n(n +2
1 1)

[Jam01] Jamnik,
Mateja Mathematical
Reasoning with Diagrams: From
Intuition to Automation
(2001) publisher CSLI Press

[AH97] Archer, Myla;
Heitmeyer,
Constance Human-style
theorem proving using PVS
(1997) International Conference
on Theorem Proving in Higher
Order Logics

[Zha16] Zhan, Bohua AUTO2,
a saturation-based heuristic
prover for higher-order logic
(2016) International Conference
on Interactive Theorem Proving

[Bun88] Bundy, Alan The use
of explicit plans to guide
inductive proofs
(1988) International conference
on automated deduction

[Bun98] Bundy, Alan Proof
Planning (1998) publisher
University of Edinburgh,
Department of Artificial
Intelligence

[KKY95] Kambhampati,
Subbarao; Knoblock, Craig
A; Yang, Qiang Planning as
refinement search: A unified
framework for evaluating design
tradeoffs in partial-order
planning (1995) Artificial
Intelligence

22

Directed Acyclic Graph22

[BSV+93] Bundy, Alan;
Stevens, Andrew; Van
Harmelen, Frank; et
al. Rippling: A heuristic for
guiding inductive proofs
(1993) Artificial Intelligence

[BBHI05] Bundy, Alan;
Basin, David; Hutter, Dieter;
et al. Rippling: meta-level
guidance for mathematical
reasoning (2005) publisher
Cambridge University Press

27

https://doi.org/10.1007/BFb0028384
https://en.wikipedia.org/wiki/Timed_automaton
https://doi.org/10.1007/978-3-319-43144-4_27
https://doi.org/10.1007/3-540-48256-3_12
https://doi.org/10.1007/BFb0012826
https://books.google.co.uk/books?id=h7hrHAAACAAJ
https://doi.org/10.1016/0004-3702(94)00076-D
https://doi.org/10.1016/S0004-3702(96)00047-1
https://doi.org/10.1007/3-540-45632-5_7
https://www.cl.cam.ac.uk/~mj201/publications/comp_pp_final.pdf
https://doi.org/10.1016/0004-3702(93)90079-Q
https://books.google.co.uk/books?id=dZzbL-lnjVEC
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.3546&rep=rep1&type=pdf
https://doi.org/10.1007/s001650050052
https://doi.org/10.1016/S0004-3702(99)00076-4
https://dl.acm.org/doi/abs/10.5555/1622943.1623021
https://doi.org/10.1007/BFb0028384
https://doi.org/10.1007/978-3-319-43144-4_27
https://doi.org/10.1007/BFb0012826
https://books.google.co.uk/books?id=h7hrHAAACAAJ
https://doi.org/10.1016/0004-3702(94)00076-D
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://doi.org/10.1016/0004-3702(93)90079-Q
https://books.google.co.uk/books?id=dZzbL-lnjVEC

the ICARUS architecture [LCT08].
In a hierarchical task network, tasks are recursively
refined into subtasks, which are then used to find fine-grained methods for achieving the
original tasks, eventually bottoming out in atomic actions such as actuating a motor.
HTNs
naturally lend themselves to human-like reasoning, and I will make use of these in
designing a hierarchical algorithm for performing equational reasoning.

2.7. Natural language for formal
mathematics
In this section I will survey the background and related work on using natural language to
generate proofs.
The material in this chapter will be used in Section 3.6 and Chapter 6.

2.7.1. Natural language generation in a wider context

Data-to-text natural language generation (NLG) is a subfield of natural language
processing (NLP) that focusses on the problem of computing intelligible natural language
discourses and text from some non-textual object (without a human in the loop!). An
example is producing an English description of the local weather forecast from
meteorological data.
NLG techniques can range from simple 'canned text' and 'mail-merge'
applications right up to systems with aspirations of generality such as modern voice
recognition in smartphones.

There are a wide variety of architectures available for modern NLG [GK18], however they
usually carry a modular structure, with a backbone [RD00] being split in to three pipeline
stages as shown in Figure 2.41.

Macro-planner or discourse planner: dictates how to structure the general flow
of the text, that is, serialising the input data.
These often take the form of 'expert
systems' with a large amount of domain specific knowledge encoded.

Micro-planner: determines how the stream of information from the macro-
planner should be converted into individual sentences, how sentences should be
structured and determining how the argument should 'flow'.

Realiser: produces the final text from the abstracted output of the micro-planner,
for example, applying punctuation rules and choosing the correct conjugations.

These choices of stages are mainly motivated through a desire to reuse code and to
separate concerns (a realiser does not need to know the subject of the text it is correcting
the punctuation from). I make use of this architecture in Section 3.6.

An alternative approach to the one outlined above is to use statistical methods for natural
language generation.
The advent of scalable machine learning (ML) and neural networks
(NNs) of the 2010s has gained dominance in many NLG tasks such as translation and
scene description.
The system developed for this work in Section 3.6 is purely classical,
with no machine learning component.
In the context of producing simple write-ups of
proofs, there will likely be some gains from including ML, but it is not clear that a
statistical approach to NLG is going to assist in building understandable descriptions of
proofs, because it is difficult to formally confirm that the resulting text generated by a
black-box NLG component is going to accurately reflect the input.

2.7.2. Natural language generation for mathematics

[Ire92] Ireland, Andrew The
use of planning critics in
mechanizing inductive proofs
(1992) International Conference
on Logic for Programming
Artificial Intelligence and
Reasoning

[MS99] Melis, Erica;
Siekmann, Jörg Knowledge-
based proof planning
(1999) Artificial Intelligence

[Tat77] Tate,
Austin Generating project
networks (1977) Proceedings of
the 5th International Joint
Conference on Artificial
Intelligence.

[GK18] Gatt, Albert;
Krahmer, Emiel Survey of the
state of the art in natural
language generation: Core tasks,
applications and evaluation
(2018) Journal of Artificial
Intelligence Research

Figure 2.41. Outline of a
common architecture for general
NLG systems.

[RD00] Reiter, Ehud; Dale,
Robert Building natural
language generation systems
(2000) publisher Cambridge
University Press

28

http://www.isle.org/~langley/papers/manual.pdf
https://doi.org/10.1613/jair.5477
https://dl.acm.org/doi/book/10.5555/331955
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.3546&rep=rep1&type=pdf
https://doi.org/10.1016/S0004-3702(99)00076-4
https://dl.acm.org/doi/abs/10.5555/1622943.1623021
https://doi.org/10.1613/jair.5477
https://dl.acm.org/doi/book/10.5555/331955

The first modern study of the linguistics of natural language mathematics is the work of
Ranta [Ran94, Ran95] concerning the translation between dependent type theory and
natural language and I will use some of his insights in Section 3.6. Ganesalingam's thesis
[Gan10] is an excellent reference for understanding the linguistics of mathematics in
general, however it is more concerned with natural language input.

There have been numerous previous attempts at creating natural language output from a
theorem prover:
Felty-Miller [FM87], Holland-Minkley et al within the NuPrl prover
[HBC99], and also in Theorema [BCJ+06].
A particularly advanced NLG for provers was
Proverb [HF97] for the Ωmega theorem prover [BCF+97], this system's architecture uses
the pipeline in Figure 2.41 and takes as input a proof term generated by the Ωmega
toolchain and outputs a natural language sentence.
An issue with these generation tools is
that their text will often produce text that does not appear natural at the macro-level. That
is, the general structure of the argument will be different to what would be found in a
mathematical textbook. G&G illustrate some examples of this in their paper [GG17 §2].

The process of synthesising natural language is difficult in the general case.
But as G&G
[GG17] note, the language found in mathematical proofs is much more restricted than a
general English text.
At its most basic, a natural language proof is little more than a string
of facts from the assumptions to the conclusion.
There is no need for time-sensitive tenses
or other complexities that arise in general text.
Proofs are written this way because
mathematical proofs are written to be checked by a human and so a uniformity of prose is
used that minimises the chance of 'bugs' creeping in.
This, combined with a development
calculus designed to encourage human-like proof steps, makes the problem of creating
mathematical natural language write-ups much more tenable.
I will refer to these non-
machine-learning approaches as 'classical' NLG.

A related problem worth mentioning here is the reverse process of NLG: parsing formal
proofs and theorem statements from a natural language text.
The two problems are
interlinked in that they are both operating on the same grammar and semantics, but
parsing raises a distinct set of problems to NLG, particularly around ambiguity
[Gan10 ch. 2].
Within mathematical parsing there are two approaches. The first approach
is controlled natural language [Kuh14] as practiced by ForTheL [Pas07] and
Naproche/SAD [CFK+09].
Here, a grammar is specified to parse text that is designed to
look as close to a natural langauge version of the text as possible.
The other approach
(which I will not make use of in this thesis) is in using machine learning techniques, for
example the work on parsing natural mathematical texts is in the work of Stathopoulos et
al [ST16, SBRT18].

In Section 3.6 I will make use of some ideas from natural language parsing, particularly the
concept called notion by ForTheL and non-extensional type by Ganesalingam. A non-
extensional type is a noun-phrase such as "element of a topological space" or "number"
which is assigned to expressions, these types are not used by the underlying logical
foundation but are used to parse mathematical text. To see why this is needed consider the
syntax x y . This is parsed to an expression differently depending on the types of x and y
(e.g., if x is a function vs. an element of a group). Non-extensional types allow this parse
to be disambiguated even if the underlying foundational language does not have a concept
of a type.

2.8. Chapter summary
In this chapter I have provided the necessary background information and prior work
needed to frame the rest of the thesis.
I have explained the general design of proof
assistants (Section 2.1).
I have described a meta-level pseudolanguage for constructing
algorithms (Section 2.2) and provided some gadgets for working with inductive types
within it (Section 2.3).
I have also presented the philosophy and social aspects of
understandability in mathematics (Section 2.5); human-like automated reasoning
(Section 2.6); and natural language generation of mathematical text (Section 2.7).

[Ran94] Ranta,
Aarne Syntactic categories in
the language of mathematics
(1994) International Workshop
on Types for Proofs and
Programs

[Ran95] Ranta,
Aarne Context-relative
syntactic categories and the
formalization of mathematical
text (1995) International
Workshop on Types for Proofs
and Programs

[Gan10] Ganesalingam,
Mohan The language of
mathematics (2010) PhD thesis
(University of Cambridge)

[FM87] Felty, Amy; Miller,
Dale Proof explanation and
revision (1987) Technical Report

[HBC99] Holland-Minkley,
Amanda M; Barzilay, Regina;
Constable, Robert
L Verbalization of High-Level
Formal Proofs.
(1999) AAAI/IAAI

[BCJ+06] Buchberger,
Bruno; Crǎciun, Adrian;
Jebelean, Tudor; et
al. Theorema: Towards
computer-aided mathematical
theory exploration
(2006) Journal of Applied Logic

[HF97] Huang, Xiaorong;
Fiedler, Armin Proof
Verbalization as an Application
of NLG (1997) International
Joint Conference on Artificial
Intelligence

[BCF+97] Benzmüller,
Christoph; Cheikhrouhou,
Lassaad; Fehrer, Detlef; et
al. Omega: Towards a
Mathematical Assistant
(1997) Automated Deduction -
CADE-14

[Kuh14] Kuhn, Tobias A
survey and classification of
controlled natural languages
(2014) Computational linguistics

[Pas07] Paskevich,
Andrei The syntax and
semantics of the ForTheL
language (2007) http://citeseer

x.ist.psu.edu/viewdoc/download?do

i=10.1.1.211.8865&rep=rep1&type=

pdf

[CFK+09] Cramer, Marcos;
Fisseni, Bernhard; Koepke,
Peter; et al. The Naproche
Project: Controlled Natural
Language Proof Checking of
Mathematical Texts
(2009) Controlled Natural
Language, Workshop on
Controlled Natural Language

[ST16] Stathopoulos,
Yiannos A; Teufel,
Simone Mathematical
information retrieval based on
type embeddings and query
expansion (2016) COLING 2016

29

https://doi.org/10.1007/3-540-60579-7_9
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.8663&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.9027&rep=rep1&type=pdf
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1660&context=cis_reports
https://nuprl.org/
http://www.aaai.org/Library/AAAI/1999/aaai99-041.php
https://doi.org/10.1016/j.jal.2005.10.006
http://ijcai.org/Proceedings/97-2/Papers/025.pdf
https://doi.org/10.1007/3-540-63104-6_23
https://doi.org/10.1007/s10817-016-9377-1
https://doi.org/10.1007/s10817-016-9377-1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.9027&rep=rep1&type=pdf
https://doi.org/10.1162/COLI_a_00168
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.8865&rep=rep1&type=pdf
https://doi.org/10.1007/978-3-642-14418-9_11
https://www.aclweb.org/anthology/C16-1221/
https://doi.org/10.18653/v1/n18-1028
https://doi.org/10.1007/3-540-60579-7_9
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.8663&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.9027&rep=rep1&type=pdf
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1660&context=cis_reports
http://www.aaai.org/Library/AAAI/1999/aaai99-041.php
https://doi.org/10.1016/j.jal.2005.10.006
http://ijcai.org/Proceedings/97-2/Papers/025.pdf
https://doi.org/10.1007/3-540-63104-6_23
https://doi.org/10.1162/COLI_a_00168
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.8865&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.8865&rep=rep1&type=pdf
https://doi.org/10.1007/978-3-642-14418-9_11
https://www.aclweb.org/anthology/C16-1221/

[SBRT18] Stathopoulos,
Yiannos; Baker, Simon; Rei,
Marek; et al. Variable Typing:
Assigning Meaning to Variables
in Mathematical Text
(2018) NAACL-HLT 2018

30

https://doi.org/10.18653/v1/n18-1028

Chapter 3

A development calculus
Now that we have reviewed the requisite background material, I can define the moving
parts of a human-like theorem prover.
The driving principle is to find ways of representing
proofs at the same level of detail that a human mathematician would use to communicate
to colleagues.

The contributions of this chapter are:

The Box datastructure, a development calculus (Section 3.3) designed to better
capture how humans reason about proofs while also being formally sound.

A set of inference rules on Box which preserve this soundness (Section 3.5).

A natural language write-up component converting proof objects created with this
layer to an interactive piece of text (Section 3.6).

In the supplementary Appendix A, an 'escape hatch' from the Box datastructure to a
metavariable-oriented goal state system as used by Lean (Section 3.4.4, Appendix A).
This enables compatibility between Box -style proofs and existing automation and
verification within Lean.

HumanProof integrates with an existing proof assistant (in this case Lean).
By plugging in
to an existing prover, it is possible to gain leverage by utilising the already developed
infrastructure for that prover such as parsers, tactics and automation.
Using an existing
prover also means that the verification of proofs can be outsourced to the prover's kernel.

The first research question of Section 1.2 was to investigate what it means for a proof to be
human-like.
I provided a review to answer this question in Section 2.6.
Humans think
differently to each other, and I do not wish to state that there is a 'right' way to perform
mathematics.
However, I argue that there are certain ways in which the current methods
for performing ITP should be closer to the general cluster of ways in which humans talk
about and solve problems.

In this chapter I investigate some ways in which the inference rules that provers use could
be made more human-like, and then introduce a new proving abstraction layer,
HumanProof, written in the Lean 3 theorem prover, implementing these ideas.
Later, in
Chapter 6, I gather thoughts and ratings from real mathematicians about the extent to
which the developed system achieves these goals.

In Section 3.1, I first present an example proof produced by a human to highlight the key
features of 'human-like' reasoning that I wish to emulate.
Then in Section 3.2 I give an
overview of the resulting designs and underline the primary design decisions and the
evidence that drives them.
In Section 3.3 I provide the details and theory of how the
system works through defining the key Box structure and tactics on Box es.
The theory
behind creating valid proof terms from Box es is presented in Section 3.4 as well as how to
run standard tactics within Box es (Section 3.4.4).
This theoretical basis will then be used
to define the human-like tactics in Section 3.5.
Then, I will detail the natural language
generation pipeline for HumanProof in Section 3.6.

3.1. Motivation
Building on the background where I explored the literature on the definition of 'human-
like' (Section 2.6) and 'understandable' (Section 2.5.1) proofs, my goal in this section is
find some specific improvements to the way in which computer aided mathematics is done.
I use these improvements to motivate the design choices of the HumanProof system.

31

3.1.1. The need for human-like systems

In Section 1.1, I noted that non-specialist mathematicians have yet to widely accept proof
assistants despite the adoption of other tools such as computer algebra systems.
Section 1.1
presented three problems that mathematicians have with theorem provers: differing
attitudes on correctness, a high learning cost to learning to use ITP and a low resulting
reward -- learning the truth of something that they 'knew' was true anyway.
One way in
which to improve this situation is to reduce the cost of learning to use proof assistants
through making the way in which they process proofs more similar to how a human would
process proofs, making the proofs more closely match what the mathematician already
knows.
Making a prover which mimics a human's thought process also helps overcome the
problem of differing attitudes of correctness.

Requiring a human-like approach to reasoning means that many automated reasoning
methods such as SMT-solvers and resolution (see Section 2.6) must be ruled out.
In these
machine-oriented methods, the original statement of the proposition to be proved is first
reduced to a normal form and mechanically manipulated with a small set of inference
rules.
The resulting proof is scarcely recognisable to a mathematician as a proof of the
proposition, even if it is accepted by the kernel of a proof assistant.
As discussed in
Section 1.1, Section 2.5 and as will be confirmed in Chapter 6, mathematicians do not care
just about a certificate that a statement is correct but also about the way in which the
statement is correct.

Given some new way of creating proofs; how can we determine whether these created
proofs are more 'human-like' than some other system?
The way I propose here is to require
that the program be able to imitate the reasoning of humans at least well enough to
produce convincing natural language write-ups of the proofs that it generates, and then to
test how convincing these write-ups are through asking mathematicians.
This approach is
shared by the previous work of Gowers and Ganesalingam [GG17] , where they use a
similar framework to the HumanProof system presented in this thesis to produce natural
language write-ups of proofs for some lemmas in the domain of metric space topology.
The
work presented in this thesis builds significantly on the work of G&G.

3.1.2. Modelling human-like reasoning

One of the key insights of Gowers and Ganesalingam is that humans reason with a
different 'basis' of methods than the logical operations and tactics that are provided to the
user of an ITP.
For example, a hypothesis such as a function being continuous
expands to a formula (3.39) with interlaced quantifiers.

However in a mathematical text, if one needs to prove , the hypothesis
that is continuous will be applied in one go. That is, a step involving (3.39) would be
written as "Since is continuous, there exists a such that
whenever ". Whereas in an ITP this process will need to be separated in to
several steps: first show , then obtain , then show .

Another example with the opposite problem is the automated tactics such as the tableaux
prover blast [Pau99].
The issue with tactics is that their process is opaque and leaves little
explanation for why they succeed or fail.
They may also step over multiple stages that a
human would rather see spelled out in full.
The most common occurrence of this is in
definition expansion; two terms may be identical modulo definition expansion but a proof
found in a textbook will often take the time to point out when such an expansion takes
place.

This points towards creating a new set of inference rules for constructing proofs that are
better suited for creating proofs by corresponding better to a particular reasoning step as
might be used by a human mathematician.

[GG17] Ganesalingam,
Mohan; Gowers, W. T. A fully
automatic theorem prover with
human-style output
(2017) Journal of Automated
Reasoning

23

Gowers and Ganesalingam is
abbreviated G&G.
23

f : X → Y

(3.1). Definition of a continuous
function for metric
spaces , . Here is the
distance metric for or .

f : X → Y

X Y d
X Y

∀ε > 0, ∀x ∈ X, ∃δ > 0, ∀y ∈ X,d(x, y) < δ ⇒ d(f(x), f(y)) < ε

d(f(x), f(y)) < ε

f

f δ > 0 d(f(x), f(y)) < ε

d(x, y) < δ

x ∈ X δ d(x, y) < δ

[Pau99] Paulson, Lawrence
C A generic tableau prover and
its integration with Isabelle
(1999) Journal of Universal
Computer Science

32

https://doi.org/10.1007/s10817-016-9377-1
https://doi.org/10.3217/jucs-005-03-0073
https://doi.org/10.1007/s10817-016-9377-1
https://doi.org/10.3217/jucs-005-03-0073

3.1.3. Structural sharing

Structural sharing is defined as making use of the same substructure multiple times in a
larger structure.
For example, a tree with two branches being the same would be using
structural sharing if the sub-branches used the same object in memory.
Structural sharing
of this form is used frequently in immutable datastructures for efficiency.
However here I
am interested in whether structural sharing has any applications in human-like reasoning.

When humans reason about mathematical proofs, they often flip between forwards
reasoning and backwards reasoning .
The goal-centric proof state used by ITPs can make
this kind of reasoning difficult.
In the most simple example, suppose that the goal is
P ∧ Q ⊢ Q ∧ P .
One solution is to perform a split on the goal to produce P ∧ Q ⊢ Q and
P ∧ Q ⊢ P .
However, performing a conjunction elimination on the P ∧ Q hypothesis will
then need to be performed on both of the new goals.
This is avoided if the elimination is
performed before splitting P ∧ Q .
In this simplified example it is clear which order the
forwards and backwards reasoning should be performed.
But in more complex proofs, it
may be difficult to see ahead how to proceed.
A series of backwards reasoning steps may
provide a clue as to how forwards reasoning should be applied.
The usual way that this
problem is solved is for the human to edit an earlier part of the proof script with the
forwards reasoning step on discovering this.
I reject this solution because it means that the
resulting proof script no longer represents the reasoning process of the creator.
The fact
that the forwards reasoning step was motivated by the goal state at a later point is lost.

The need to share structure among objects in the name of efficiency has been studied at
least as far back as Boyer and Moore [BM72]. However, the motivation behind introducing
it here is purely for the purpose of creating human-like proofs.

The solution that I propose here is to use a different representation of the goal state that
allows for structural sharing.
This alteration puts the proof state calculus more in the camp
of OLEG [McB00], and the G&G prover.
The details of the implementation of structural
sharing are presented later in Section 3.5.4.

Structural sharing can also be used to implement backtracking and counterfactuals.
For
example, suppose that we need to prove A ⊢ P ∨ Q , one could apply the ∨ -left-
introduction rule P ⇒ P ∨ Q , but then one might need to backtrack later in the event that
really the right-introduction rule Q ⇒ P ∨ Q should be used instead.
Structural sharing
lets us split a goal into two counterfactuals.

3.1.4. Verification

One of the key benefits of proof assistants is that they can rigorously check whether a proof
is correct.
This distinguishes the HumanProof project from the prior work of G&G, where
no formal proof checking was present.
While I have argued in Section 2.5 (and will later be
suggested from the results of my user study in Section 6.6) that this guarantee of
correctness is less important for attracting working mathematicians, there need not be a
conflict between having a prover which is easy for non-specialists to understand and which
is formally verified.

3.1.5. What about proof planning?

Proof planning is the process of creating proofs using abstract proof methods that are
assembled with the use of classical AI planning algorithms .
The concept of proof
planning was first introduced by Bundy [Bun88].
A review of proof planning is given in
Section 2.6.2.
The advantage of proof planning is that it represents the way in which a
problem will be solved at a much more abstract level, more like human mathematicians.

The primary issue with proof planning is that there is a sharp learning curve.
In order to
get started with proof plans, one must learn a great deal of terminology and a new way of
thinking about formalised mathematics.
The user has to familiarise themselves with the

24 Broadly speaking, forwards
reasoning is any mode of
modifying the goal state that acts
only on the hypotheses of the
proof state. Whereas backwards
reasoning modifies the goals.

24

25

That is, given the hypothesis
P ∧ Q , prove Q ∧ P where P and
Q are propositions and ∧ is the

logical-and operation.

25

[BM72] Boyer, R. S.; Moore,
J. S. The sharing structure in
theorem-proving programs
(1972) Machine intelligence

[McB00] McBride,
Conor Dependently typed
functional programs and their
proofs (2000) PhD thesis
(University of Edinburgh)

[RN10] Russell, Stuart J.;
Norvig, Peter Artificial
Intelligence - A Modern
Approach (2010) publisher
Pearson Education

26

An introduction to classical AI
planning can be found in Russel
and Norvig [RN10 Pt.III].

26

33

https://www.cs.utexas.edu/~moore/publications/structure-sharing-mi7.pdf
http://hdl.handle.net/1842/374
https://doi.org/10.1007/BFb0012826
https://www.cs.utexas.edu/~moore/publications/structure-sharing-mi7.pdf
http://hdl.handle.net/1842/374
http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/

way in which proof methods are used to construct proof plans and how to diagnose
malformed plans for their particular problems.
Bundy presents his own critique of proof
planning [Bun02] which goes in to more detail on this point.

The study of proof planning has fallen out of favour for the 21st century so far, possibly in
relation to the rise of practical SMT solvers such as E prover [SCV19] and Z3 prover
[MB08] and their incorporation in to ITP through the use of 'hammer' software like
Isabelle's Sledgehammer [BN10].
I share a great deal of the ideals that directed proof
planning and the equational reasoning system presented in Chapter 4 is inspired by it.
I
take a more practical stance; the additional abstractions that are placed atop the
underlying tactic system should be transparent, in that they are understandable without
needing to be familiar with proof planning and with easy 'escape hatches' back to the tactic
world if needed.
This design goal is similar to that of the X-Barnacle prover interface
[LD97] (discussed later in Section 5.1), where a GUI is used to present an explorable
representation of a proof plan.

3.2. Overview of the software
The software implementation of the work presented in this thesis is called 'HumanProof'
and is implemented using the Lean 3 prover.
The source code can be found at https://githu
b.com/edayers/lean-humanproof-thesis.
In this section I give a high-level overview of the
system and some example screenshots.
A general overview of the system and how it relates
to the underlying Lean theorem prover is shown in Figure 3.2.

Given a theorem to prove, HumanProof is invoked by indicating a special begin [hp]
script block in the proof document (see Figure 3.3).
This initialises HumanProof's Box
datastructure with the assumptions and goal proposition of the proof.
The initial state of
the prover is shown in the goal view of the development environment, called the Info View
(the right panel of Figure 3.3).
Using the ProofWidgets framework (developed in
Chapter 5), this display of the state is interactive: the user can click at various points in the
document to determine their next steps.
Users can then manipulate this datastructure
either through the use of interactive buttons or by typing commands in to the proof script
in the editor.
In the event of clicking the buttons, the commands are immediately added to
the proof script sourcefile as if the user had typed it themselves (the left panel of
Figure 3.3).
In this way, the user can create proofs interactively whilst still preserving the
plaintext proof document as the single-source-of-truth; this ensures that there is no hidden
state in the interactive view that is needed for the Lean to reconstruct a proof of the
statement.
While the proof is being created, the system also produces a natural language
write-up (labelled 'natural language writeup' in Figure 3.2) of the proof (Section 3.6) that is

[Bun88] Bundy, Alan The use
of explicit plans to guide
inductive proofs
(1988) International conference
on automated deduction

[Bun02] Bundy, Alan A
critique of proof planning
(2002) Computational Logic:
Logic Programming and Beyond

[SCV19] Schulz, Stephan;
Cruanes, Simon;
Vukmirović, Petar Faster,
Higher, Stronger: E 2.3
(2019) Proc. of the 27th CADE,
Natal, Brasil

[MB08] de Moura,
Leonardo; Bjørner,
Nikolaj Z3: An efficient SMT
solver (2008) International
conference on Tools and
Algorithms for the Construction
and Analysis of Systems

[BN10] Böhme, Sascha;
Nipkow,
Tobias Sledgehammer:
judgement day
(2010) International Joint
Conference on Automated
Reasoning

[LD97] Lowe, Helen;
Duncan, David XBarnacle:
Making Theorem Provers More
Accessible (1997) 14th
International Conference on
Automated Deduction

Figure 3.2. High-level overview
of the main modules that
comprise the HumanProof
system and how these interface
with Lean, ProofWidgets and the
VSCode text editor.
The green
parts of the diagram are
contributions given in this thesis.
ProofWidgets (Chapter 5) was
spun out from HumanProof for
use as a general-purpose GUI
system so that it could be used in
other community projects (see
Figure 5.18).

34

https://doi.org/10.1007/3-540-45632-5_7
https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html
http://wwwlehre.dhbw-stuttgart.de/~sschulz/bibliography.html#SCV:CADE-2019
https://github.com/Z3Prover/z3
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-14203-1_9
https://doi.org/10.1007/3-540-63104-6_39
https://leanprover-community.github.io/
https://github.com/edayers/lean-humanproof-thesis
https://doi.org/10.1007/BFb0012826
https://doi.org/10.1007/3-540-45632-5_7
http://wwwlehre.dhbw-stuttgart.de/~sschulz/bibliography.html#SCV:CADE-2019
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-14203-1_9
https://doi.org/10.1007/3-540-63104-6_39

displayed alongside the proof state. As the proof progresses, users can see the incomplete
natural language proof get longer too.

The system also comes equipped with a module for solving equalities using the 'subtasks
algorithm' (Chapter 4); labelled 'subtasks' on Figure 3.2.
The subtasks algorithm uses a
hierarchical planning (see Section 2.6.2) system to produce an equality proof that is
intended to match the way that a human would create the proof, as opposed to a more
machine like approach such as E-matching [BN98 Ch. 10].
The output of this subsystem is
a chain of equations that is inserted into the natural language writeup.

3.3. The Box datastructure
At the heart of HumanProof is a development calculus using a datastructure called Box .
The considerations from Section 3.1.3 led to the development of an 'on-tree' development
calculus.
Rather than storing a flat list of goals and a metavariable context alongside the
result, the entire development state is stored in a recursive tree structure which I call a
Box .
The box tree, to be defined in Section 3.3.2, stores the proof state as an incomplete
proof tree with on-tree metavariable declarations which is then presented to the user as a
nested set of boxes.

3.3.1. An example of Box in action.

Before defining boxes in Section 3.3.2, let's look at a simple example.
Boxes are visualised
as a tree of natural-deduction-style goal states.
Let's start with a minimal example to get a
feel for the general progression of a proof with the Box architecture.
Let's prove
P ∨ Q → Q ∨ P using Box es.
The initial box takes the form (3.4).

?𝑡 : P ∨ Q → Q ∨ P

And we can read (3.4) as saying "we need to show P ∨ Q → Q ∨ P ".
The ?𝑡 is the name of
the metavariable that the proof of this will be assigned to.
The first action is to perform an
intro step to get (3.5).

𝑕 : P ∨ Q

?𝑡: Q ∨ P

To be read as "Given P ∧ Q , we need to show Q ∨ P ".
So far the structure is the same as
would be observed on a flat goal list structure.
The idea is that everything above a

[BN98] Baader, Franz;
Nipkow, Tobias Term
rewriting and all that
(1998) publisher Cambridge
University Press

Figure 3.3. Screenshot of
HumanProof in action on a test
lemma.
To the left is the code
editor. The user invokes
HumanProof with the begin [hp]
command.
The blue apply H
button can be clicked to
automatically insert more
proofscript.

(3.4).

(3.5).

35

horizontal line is a hypothesis (something that we have) and everything below is a goal
(something we want).
When all of the goals are solved, we should have a valid proof of the
original goal.
At this point, we would typically perform an elimination step on ℎ (e.g.,
cases ℎ in Lean) (3.6).

𝑕₁ : P

?𝑡₁: Q ∨ P

𝑕₂ : Q

?𝑡₂: Q ∨ P

Here in (3.6) we can see nested boxes, each nested box below the horizontal line must be
solved to solve the parent box.
However, in the box architecture there is an additional step
available; a branching on the goal (3.7).

𝑕 : P ∨ Q

?𝑡₁ : Q
⋁
 ?𝑡₂ : P

If a pair of boxes appear with a ⋁ between them, then either of the boxes can be solved to
solve the parent box.
And then we can eliminate h on the branched box:

𝑕₁ : P

?𝑡₁₁ : Q
⋁
 ?𝑡₁₂ : P

𝑕₂ : Q

?𝑡₂₁ : Q
⋁
 ?𝑡₂₂ : P

Now at this point, we can directly match 𝑕₁ with ?𝑡₁₂ and 𝑕₂ with ?𝑡₂₁ to solve the box.
Behind the scenes, the box is also producing a result proof term that can be checked by
the proof assistant's kernel.

3.3.2. Definition of Box

The above formulation is intended to match with the architecture designed in G&G, so that
all of the same proof-steps developed in G&G are available.
Unlike G&G, the system also
interfaces with a flat goal-based development calculus, and so it is possible to use both
G&G proof-steps and Lean tactics within the same development calculus.
To do this, let's
formalise the system presented above in Section 3.3.1 with the following Box datatype
(3.9).
Define a Binder := (name : Name) × (type : Expr) to be a name identifier and a type
with notation (name∶type) , using a smaller colon to keep the distinction from a meta-level
type annotation.

Box ::=
| ℐ (x : Binder) (b : Box) : Box
| 𝒢 (m : Binder) (b : Box) : Box
| 𝒭 (r : Expr) : Box
| 𝒜 (b₁ : Box) (r : Binder) (b₂ : Box) : Box
| 𝒪 (b₁ : Box) (b₂ : Box) : Box
| 𝒱 (x : Binder) (t : Expr) (b : Box) : Box

I will represent instances of the Box type with a 2D box notation defined in (3.10) to make
the connotations of the datastructure more apparent.

(3.6).

(3.7).

(3.8).

(3.9). Inductive definition of
Box .

36

ℐ (𝑥 ∶ α) 𝑏 ⟼

𝑥 : α

...𝑏
 𝒢 (𝑥 ∶ α) 𝑏 ⟼

?𝑥 : α

...𝑏

𝒭 𝑟 ⟼ ▸ 𝑟

𝒜 𝑏₁ (𝑥 ∶ α) 𝑏₂ ⟼

[𝑥 :=] ...𝑏₁

...𝑏₂

𝒪 𝑏₁ 𝑏₂ ⟼ ...𝑏₁ ⋁ ...𝑏₂

𝒱 (𝑥 ∶ α) 𝑡 ...𝑏 ⟼

𝑥 := 𝑡

...𝑏

These visualisations are also presented directly to the user through the use of the widgets
UI framework presented in Chapter 5.
The details of this visualisation are given in
Section 5.8.

To summarise the roles for each constructor:

ℐ 𝑥 𝑏 is a variable introduction binder, that is, it does the same job as a lambda
binder for expressions and is used to introduce new hypotheses and variables.

𝒢 𝑚 𝑏 is a goal binder, it introduces a new metavariable ?𝑚 that the child box
depends on.

𝒭 𝑟 is the result box, it depends on all of the variables and goals that are declared
above it. It represents the proof term that is returned once all of the goal
metavariables are solved. Extracting a proof term from a well-formed box will be
discussed in Section 3.4.

𝒜 𝑏₁ (𝑥 ∶ α) 𝑏₂ is a conjunctive pair of boxes. Both boxes have to be solved to
complete the proof. Box b₂ depends on variable 𝑥 . When 𝑏₁ is solved, the 𝑥 value
will be replaced with the resulting proof term of 𝑏₁ .

𝒪 𝑏₁ 𝑏₂ is a disjunctive pair, if either of the child boxes are solved, then so is the
total box. This is used to implement branching and backtracking.

𝒱 𝑥 𝑏 is a value binder. It introduces a new assigned variable.

Box es also have a set of well-formed conditions designed to follow the typing judgements
of the underlying proof-assistant development calculus.
This will be developed in
Section 3.4.

3.3.3. Initialising and terminating a Box

Given an expression representing a theorem statement P : Expr , ∅ ⊢ P ∶ Prop , we can
initialise a box to solve P as 𝑏₀ := 𝒢 (𝑡 ∶ P) (𝒭 𝑡) (3.11).

?𝑡 : P

▸ ?𝑡

In the case that P also depends on a context of hypotheses Γ ⊢ P ∶ Prop , these can be
incorporated by prepending to the initial 𝑏₀ in (3.11) with an ℐ box for each 𝑕 ∈ Γ .
For
example, if Γ = [(𝑥∶α), (𝑦∶β)] then send 𝑏₀ to ℐ (𝑥∶α), ℐ (𝑦∶β), 𝑏₀ .

Say that a Box is solved when there are no 𝒢 -binders remaining in the Box . At this point,
the proving process ceases and a proof term and natural language proof may be generated.

3.3.4. Transforming a Box

(3.10). Visualisation rules for the
Box type.
Each visualisation rule

takes a pair 𝐿 ⟼ 𝑅 where 𝐿 is a
constructor for Box and 𝑅 is the
visualisation.
Everything above
the horizontal line in the box is
called a hypothesis.
Everything
below a line within a box is a 𝒢 -
box, called a goal.
This
visualisation is also implemented
in Lean using the widgets
framework presented in
Section 5.8.

(3.11). Initial 𝑏₀ : Box given
⊢ P ∶ Prop .

37

The aim is to solve a box through the use of a sequence of sound transformations on it.
Define a box-tactic is a partial function on boxes BoxTactic := Box → Option Box .
Box-
tactics act on Box es in the same way that tactics act on proof states.
That is, they are
functions which act on a proof-state (i.e., a representation of an incomplete proof) in order
to prove a theorem.
This is to make it easier to describe how box-tactics interface with
tactics in Section 3.4 and Appendix A.

In Section 3.3.1 we saw some examples of box-tactics to advance the box state and
eventually complete it.
A complete set of box-tactics that are implemented in the system
will be given in Section 3.5.

As with tactics , there is no guarantee that a particular box-tactic will produce a sound
reasoning step; some box-tactics will be nonsense (for example, a box-tactic that simply
deletes a goal) and not produce sound proofs.
In Section 3.4 I will define what it means for
a box-tactic to be sound and produce a correct proof that can be checked by the ITP's
kernel.

3.3.5. Relation to other development calculi

Thee Box calculus's design is most similar to McBride's OLEG [McB00] and G&G's prover
[GG17].
A more abstract treatment can be found in the work of Sterling and Harper
[SH17], implemented within the RedPRL theorem prover.

The novel contribution of the Box calculus developed here is that it works within a
Spiwack-style [Spi11] flat metavariable context model as is used in Lean.
That is, it is a
layer atop the existing metavariable context system detailed in Section 2.4.3.
This means
that it is possible for the new calculus to work alongside an existing prover, rather than
having to develop an entirely new one as was required for OLEG and the G&G prover.
This
choice opens many possibilities: now one can leverage many of the advanced features that
Lean offers such as a full-fledged modern editor and metaprogramming toolchain
[EUR+17].
This approach also reduces some of the burden of correctness pressed upon
alternative theorem provers, because we can outsource correctness checking to the Lean
kernel.
Even with this protection, it is still frustrating when a development calculus
produces an incorrect proof and so I will also provide some theoretical results in
Section 3.4 and Appendix A on conditions that must be met for a proof step to be sound.
The design of the Box calculus is independent of any particular features of Lean, and so a
variant of it may be implemented in other systems.

The central datatype is the Box . This performs the role of holding a partially constructed
proof object and a representation of the goals that remain to be solved.
As discussed in
Section 3.1.3, the purpose is to have a structurally shared tree of goals and assumptions
that is also compatible with Lean tactics.

McBride's OLEG [McB00] is the most similar to the design presented here.
OLEG 'holes'
are functionally the same as metavariables.
That is, they are specially tagged variables that
will eventually be assigned with expressions.
OLEG provides an additional constructor for
expressions called 'hole-bindings' or ' -bindings'.
Because OLEG is a ground-up
implementation of a new theorem prover, hole-bindings can be added directly as
constructors for expressions. This is not available in Lean (without reimplementing Lean
expressions and all of the algorithms) .
These hole-bindings perform the same role as the
𝒢 constructor in that they provide the context of variables that the hole/metavariable is
allowed to depend on.
But if the only purpose of a hole-binding is to give a context, then
why not just explicitly name that context as is done in other theorem provers?
The Box
architecture given above is intended to give the best of both worlds, in that you still get a
shared goal-tree structure without needing to explicitly bind metavariables within the
expression tree.
Instead they are bound in a structure on top of it.

Lean and Coq's proof construction systems make use of the metavariable context approach
outlined in Section 2.4.
The metavariable context here performs the same role as the 𝒢
goal boxes, however this set of goals is flattened in to a list structure rather than stored in a

27 At least, tactics in a 'checker'
style proof assistant such as Lean.
See Section 2.1 for more
information.

27

[McB00] McBride,
Conor Dependently typed
functional programs and their
proofs (2000) PhD thesis
(University of Edinburgh)

[GG17] Ganesalingam,
Mohan; Gowers, W. T. A fully
automatic theorem prover with
human-style output
(2017) Journal of Automated
Reasoning

[SH17] Sterling, Jonathan;
Harper, Robert Algebraic
Foundations of Proof Refinement
(2017) CoRR

[Spi11] Spiwack,
Arnaud Verified computing in
homological algebra, a journey
exploring the power and limits of
dependent type theory
(2011) PhD thesis (INRIA)

28

See Section 2.4 for more
background information.
28

[EUR+17] Ebner, Gabriel;
Ullrich, Sebastian; Roesch,
Jared; et al. A
metaprogramming framework
for formal verification
(2017) Proceedings of the ACM
on Programming Languages

[McB00] McBride,
Conor Dependently typed
functional programs and their
proofs (2000) PhD thesis
(University of Edinburgh)

?

29 It might be possible to use
Lean's expression macro system
to implement hole-bindings, but
doing so would still require
reimplementing a large number
of type-context-centric
algorithms such as unification
[SB01].

29

[SB01] Snyder, Wayne;
Baader, Franz Unification
theory (2001) Handbook of
automated reasoning

38

http://hdl.handle.net/1842/374
https://doi.org/10.1007/s10817-016-9377-1
http://arxiv.org/abs/1703.05215
https://redprl.org/
https://pastel.archives-ouvertes.fr/pastel-00605836/document
https://doi.org/10.1145/3110278
http://hdl.handle.net/1842/374
http://hdl.handle.net/1842/374
https://doi.org/10.1007/s10817-016-9377-1
http://arxiv.org/abs/1703.05215
https://pastel.archives-ouvertes.fr/pastel-00605836/document
https://doi.org/10.1145/3110278
http://hdl.handle.net/1842/374

tree as in Box .
This makes many aspects such as unification easier but means that
structural sharing (Section 3.1.3) is lost.
In Section 3.4.4 I show that we do not have to
forgo use of the algorithms implemented for a flat metavariable structure to use Box es.

In Isabelle, proofs are constructed through manipulating the proof state directly through
an LCF-style [Mil72] kernel of available functions . Schematic variables are used to create
partially constructed terms.

Sterling and Harper [SH17] provide a category-theoretical theory of partially constructed
proofs and use these principles in the implementation of RedPRL.
They are motivated by
the need to create a principled way performing refinement of proofs in a dependently-
typed foundation.
They develop a judgement-independent framework for describing
development calculi within a category-theoretical setting.

Another hierarchical proof system is HiProof [ADL10]. HiProof makes use of a tree to
write proofs. The nodes of a tree are invocations of inference rules and axioms and an edge
denotes the flow of evidence in the proof. These nodes may be grouped to provide varying
levels of detail. These hierarchies are used to describe a proof, whereas a Box here
describes a partially completed proof and a specification of hypotheses and goals that must
be set to construct the proof.

3.4. Creating valid proof terms from a
Box

Note that because we are using a trusted kernel, the result of producing an invalid proof
with Box is a mere inconvenience because the kernel will simply reject it.
However, in
order for the Box structure defined in Section 3.3.2 to be useful within a proof assistant
such as Lean as motivated by Section 3.1.4, it is important to make sure that a solved Box
produces a valid proof for the underlying trusted kernel.
To do this, I will define a typing
judgement 𝑀;Γ ⊢ 𝑏 ∶ α and then present a method for extracting a proof term 𝑀;Γ ⊢ 𝑟 ∶ α
from 𝑏 with the same type provided 𝑏 is solved.

3.4.1. Assignability for Box

In Section 2.4.2, I introduced the concept of an assignable datastructure for generalising
variable-manipulation operations to datatypes other than expressions.
We can equip a
datatype containing expressions with an assignability structure assign (3.12).
This is a
variable-context-aware traversal over the expressions present for the datatype.
For Box ,
this traversal amounts to traversing the expressions in each box, while adding to the local
context if the subtree is below a binder.
The definition of assign induces a definition of
variable substitution and abstraction over Box es.

assign (𝑓 : Context → Expr → M Expr) (Γ : Context)
 : Box → M Box
 | ℐ 𝑥 𝑏 ↦ pure ℐ <*> assign 𝑓 Γ 𝑥 <*> assign 𝑓 [..Γ, 𝑥] 𝑏
 | 𝒢 𝑚 𝑏 ↦ pure 𝒢 <*> assign 𝑓 Γ 𝑚 <*> assign 𝑓 [..Γ, 𝑚] 𝑏
 | 𝒭 𝑟 ↦ pure 𝒭 <*> assign 𝑓 Γ 𝑟
 | 𝒜 𝑏₁ 𝑥 𝑏₂ ↦ pure 𝒜 <*> assign 𝑓 Γ 𝑏₁ <*> assign 𝑓 Γ 𝑥 <*> assign 𝑓 [..Γ, 𝑥] 𝑏₂
 | 𝒪 𝑏₁ 𝑏₂ ↦ pure 𝒪 <*> assign 𝑓 Γ 𝑏₁ <*> assign 𝑓 Γ 𝑏₂
 | 𝒱 𝑥 𝑡 𝑏 ↦ pure 𝒱 <*> assign 𝑓 Γ 𝑥 <*> assign 𝑓 Γ 𝑡 <*> assign 𝑓 [..Γ, 𝑥≔𝑡] 𝑏

3.4.2. Typing judgements for Box

In Section 2.4, I defined contexts Γ , metavariable contexts 𝑀 .
As covered in Carneiro's
thesis [Car19], Lean's type theory affords a set of inference rules on typing judgements
Γ ⊢ 𝑡 ∶ α , stating that the expression 𝑡 has the type α in the context Γ .
However, these
inference rules are only defined for expressions 𝑡 : Expr that do not contain
metavariables.
In Appendix A.1, I extend these judgements (A.10), (A.11) to also include
expressions containing metavariable contexts 𝑀;Γ ⊢ 𝑡 ∶ α .

[Mil72] Milner, Robin Logic
for computable functions
description of a machine
implementation
(1972) Technical Report

30

As can be seen in the source htt
ps://isabelle-dev.sketis.net/sour

ce/isabelle/browse/default/src/Pu

re/thm.ML.

30

[SH17] Sterling, Jonathan;
Harper, Robert Algebraic
Foundations of Proof Refinement
(2017) CoRR

[ADL10] Aspinall, David;
Denney, Ewen; Lüth,
Christoph Tactics for
hierarchical proof
(2010) Mathematics in
Computer Science

(3.12). Definition of assign for
Box .
See Section 2.4.2 for a

description of assignability.
The
<*> operator is the applicative

product for some applicative
functor M (see Section 2.2.2).
Note that goal 𝒢 declarations are
bound, so for the purposes of
assignment they are treated as
simple variable binders.

[Car19] Carneiro,
Mario Lean's Type Theory
(2019) Masters' thesis (Carnegie
Mellon University)

39

https://apps.dtic.mil/dtic/tr/fulltext/u2/785072.pdf
http://arxiv.org/abs/1703.05215
https://redprl.readthedocs.io/en/latest/
https://doi.org/10.1007/s11786-010-0025-6
https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/785072.pdf
https://isabelle-dev.sketis.net/source/isabelle/browse/default/src/Pure/thm.ML
http://arxiv.org/abs/1703.05215
https://doi.org/10.1007/s11786-010-0025-6
https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf

In a similar way, we can repeat this for Box : given contexts 𝑀 and Γ we can define a
typing judgement 𝑀;Γ ⊢ 𝑏 ∶ β where 𝑏 : Box and β is a type.
The inference rules for this
are given in (3.13).
These have been chosen to mirror the typings given in Section 2.4.3.

𝑀;(..Γ, 𝑥∶α) ⊢ 𝑏 ∶ β
ℐ-typing

𝑀;Γ ⊢ (ℐ (𝑥∶α), 𝑏) ∶ (Π (𝑥∶α), β)

𝑀;Γ ⊢ 𝑡 ∶ α
𝒭-typing

𝑀;Γ ⊢ 𝒭 𝑡 ∶ α

[..𝑀, ⟨𝑚,α,Γ⟩];Γ ⊢ 𝑏 ∶ β
𝒢-typing

𝑀;Γ ⊢ (𝒢 (?𝑥∶α), 𝑏) ∶ β

𝑀;Γ ⊢ 𝑏₁ ∶ α

𝑀;[..Γ, (𝑥∶α)] ⊢ 𝑏₂ ∶ β
𝒜-typing

𝑀;Γ ⊢ (𝒜 𝑏₁ (𝑥∶α) 𝑏₂) ∶ β

𝑀;Γ ⊢ 𝑏₁ ∶ α

𝑀;Γ ⊢ 𝑏₂ ∶ α
𝒪-typing

𝑀;Γ ⊢ (𝒪 𝑏₁ 𝑏₂) ∶ α

𝑀;Γ ⊢ 𝑣 ∶ α

𝑀;[..Γ, (𝑥∶α)] ⊢ 𝑏 ∶ β
𝒱-typing

𝑀;Γ ⊢ (𝒱 (𝑥∶α≔𝑣), 𝑏) ∶ β

These typing rules have been designed to match the typing rules (A.10) of the underlying
proof terms that a Box produces when solved, as I will show next.

3.4.3. Results of a Box

The structure of Box is designed to represent a partially complete expression without the
use of unbound metavariables.
 Box es can be converted to expressions containing unbound
metavariables using results : Box → Set Expr as defined in (3.14).

results
 : Box → Set Expr
 | ℐ (𝑥∶α) 𝑏 ↦ {(Expr.λ (𝑥∶α) 𝑟[𝑥]) for 𝑟 in results 𝑏}
 | 𝒢 (𝑥∶α) 𝑏 ↦ results 𝑏
 | 𝒭 𝑡 ↦ {𝑡}
 | 𝒜 𝑏₁ (𝑥∶α) 𝑏₂ ↦
 {𝑠 for 𝑠 in results ⦃𝑥 ↦ 𝑟⦄ 𝑏₂
 for 𝑟 in results 𝑏₁}
 | 𝒪 𝑏₁ 𝑏₂ ↦ results 𝑏₁ ∪ results 𝑏₂
 | 𝒱 (𝑥∶α) 𝑏 ↦ {(Expr.let 𝑥 𝑏 𝑟) for 𝑟 in results 𝑏}

A 𝑏 : Box is solved when there are no remaining 𝒢 entries in it.
When 𝑏 is solved, the
set of results for 𝑏 does not contain any metavariables and hence can be checked by the
kernel.
In the case that 𝑏 is unsolved, the results of 𝑏 contain unbound metavariables.
Each of these metavariables corresponds to a 𝒢 -binder that needs to be assigned.

Lemma 3.15 (compatibility): Suppose that 𝑀;Γ ⊢ 𝑏 : α for 𝑏 : Box as defined in
(3.13).
Then [..𝑀, ..goals 𝑏];Γ ⊢ 𝑟 ∶ α .
(Say that 𝑏 is compatible with 𝑟 ∈ results 𝑏 .)
Here, goals 𝑏 is the set of metavariable declarations formed by accumulating all of the 𝒢 -
binders in 𝑏 .
(3.16) shows a formal statement of Lemma 3.15.

𝑀;Γ ⊢ 𝑏 ∶ α

𝑟 ∈ results 𝑏

[..𝑀, ..goals 𝑏];Γ ⊢ 𝑟 ∶ α

Lemma 3.15 states that given a box 𝑏 and an expression 𝑟 that is a result of 𝑏 ,
then if 𝑏
is a valid box with type α then 𝑟 will type to α too in the metavariable context including
all of the goals in 𝑏 .

Lemma 3.15 is needed because it ensures that our Box will produce well-typed expressions
when solved.
Using Lemma 3.15, we can find box-tactics m : Box → Option Box - partial
functions from Box to Box - such that 𝑀;Γ ⊢ 𝑏 ∶ α ⇒ 𝑀;Γ ⊢ m 𝑏 ∶ α whenever 𝑏 ∈ dom m .

(3.13). Typing inference rules for
Box .
Compare with (A.10) and

(A.11) in Appendix A.1.

(3.14). Definition of results .
𝑟[𝑥] denotes a delayed

abstraction (Appendix A.3.1)
needed in the case that 𝑟
contains metavariables.

(3.16). Statement of
Lemma 3.15. That is, take a
𝑏 : Box and α : Expr , then if
𝑏 ∶ α in the context 𝑀;Γ and
𝑟 : Expr is a result of 𝑏 (3.14);

then 𝑟∶α in the context 𝑀;Γ with
additional metavariables added
for each of the goals in 𝑏 .

40

Hence a chain of such box-tactic applications will produce a result that satisfies the initial
goal.

Proof: Without loss of generality, we only need to prove Lemma 3.15 for a 𝑏 : Box with no
𝒪 boxes and a single result [𝑟] = results 𝑏 .
To see why, note that any box containing an
𝒪 can be split as in (3.17) until each Box has one result.
Then we may prove Lemma 3.15
for each of these in turn.

results(

...𝑝

...𝑏₁ ⋁ ...𝑏₂) = results(

...𝑝

...𝑏₁) ∪ results(

...𝑝

...𝑏₂)

Write result 𝑏 to mean this single result 𝑟 .
Performing induction on the typing
judgements for boxes, the most difficult is 𝒜-typing , where we have to show (3.18).

𝑀;Γ ⊢ 𝑏₁ ∶ α

𝑀;[..Γ, (𝑥∶α)] ⊢ 𝑏₂ ∶ β

𝑀';Γ ⊢ result 𝑏₁ ∶ α

𝑀';[..Γ, (𝑥∶α)] ⊢ result 𝑏₂ ∶ β

𝑀';Γ ⊢ result (𝒜 𝑏₁ (𝑥∶α) 𝑏₂) ∶ β

where 𝑀' := [..𝑀, ..goals (𝒜 𝑏₁ (𝑥∶α) 𝑏₂)] .
To derive this it suffices to show that result
is a 'substitution homomorphism':

𝑀;Γ ⊢ σ ok

𝑀;Γ ⊢ σ (result 𝑏) ≡ result (σ 𝑏)

where σ is a substitution in context Γ and
 ≡ is the definitional equality judgement
under Γ .
Then we have

𝑀';Γ ⊢
 result (𝒜 𝑏₁ (𝑥∶α) 𝑏₂)
 ≡ result (⦃𝑥 ↦ result 𝑏₁⦄ 𝑏₂)
 ≡ ⦃𝑥 ↦ result 𝑏₁⦄ (result 𝑏₂)
 ≡ (λ (𝑥∶α), result 𝑏₂) (result 𝑏₁)

We can see the substitution homomorphism property of result holds by inspection on the
equations of result , observing that each LHS expression behaves correctly.
Here is the
case for ℐ :

𝑀';Γ ⊢
 result (σ (ℐ (𝑥∶α) 𝑏))
 ≡ result $ ℐ (𝑥∶(σ α)) (σ 𝑏)
 ≡ (λ (𝑥∶(σ α)), (result (σ 𝑏))[𝑥])
 ≡ (λ (𝑥∶(σ α)), (σ (result 𝑏))[𝑥]) -- ∵ induction hypothesis
 ≡ σ (λ (𝑥∶α), (result 𝑏))
 ≡ σ (result (ℐ (𝑥∶α) 𝑏))

This completes the proof of Lemma 3.15. By using compatibility, we can determine
whether a given box-tactic m : Box → Option Box is sound.
Define a box-tactic m to be
sound when for all 𝑏 ∈ dom m we have some α such that 𝑀;Γ ⊢ (m 𝑏) ∶ α whenever
𝑀;Γ ⊢ 𝑏 ∶ α .

Hence, to prove a starting proposition P , start with an initial box
𝑏₀ := 𝒢 (?t₀∶P) (𝒭 ?t₀) .
Then if we only map 𝑏₀ with sound box-tactics to produce a
solved box 𝑏ₙ , then each of results 𝑏ₙ always has type α and hence is accepted by Lean's
kernel.

Given a box-tactic m that is sound on 𝑏 , then we can construct a sound box-tactic on
ℐ (𝑥∶α) 𝑏 too that acts on the nested box 𝑏 .

(3.17).

(3.18). The induction step that
must be proven for the 𝒜 -box
case of Lemma 3.15.

(3.19). result is a substitution
homomorphism.

31 See Section 2.4.1.
A
substitution is a partial map from
variables to expressions.

31

(3.20). Here, ⦃𝑥 ↦ 𝑒⦄ 𝑏 is used
to denote substitution applied to
𝑏 . That is, replace each

occurrence of 𝑥 in 𝑏 with 𝑒 .

(3.21). result and σ obey the
'substitution homomorphism'
property on the case of ℐ . Here
λ is used to denote the internal

lambda constructor for
expressions.
Note here we are
assuming dom σ ⊆ Γ , so
𝑥 ∉ dom σ , otherwise dom σ .

32 Or, in general, a type α .32

41

3.4.4. Escape-hatch to tactics

As discussed in Section 2.4.4, many provers, including Lean 3, come with a tactic
combinator language to construct proofs through mutating an object called the
TacticState comprising a metavariable context and a list of metavariables called the goals.
In Section 3.1 I highlighted some of the issues of this approach, but there are many built-in
and community-made tactics which can still find use within a HumanProof proof.
For this
reason, it is important for HumanProof to provide an 'escape hatch' allowing these tactics
to be used within the context of a HumanProof proof seamlessly.
I achieve this
compatibility system between Box es and tactics through defining a zipper [Hue97]
structure on Box es (Appendix A.2) and then a set of operations for soundly converting an
underlying TacticState to and from a Box object.
The details of this mechanism can be
found in Appendix A.2.
It is used to implement some of the box-tactics presented next in
Section 3.5, since in some cases the box-tactic is the same as its tactic-based equivalent.

3.4.5. Summary

In this section, I defined assignability on Box es and the valid typing judgement inference
rules on Box . I used these to define the soundness of a box-tactic and showed that for a
box-tactic to be sound, it suffices to show that its typing judgement is preserved through
the use of Lemma 3.15.
I also briefly review Appendix A, which presents a mechanism for
converting a tactic-style proof to a box-tactic.

3.5. Human-like-tactics for Box .
Using the framework presented above we can start defining sound tactics on Box es and
use Box to actualise the kinds of reasoning discussed in Section 3.1.
Many of the box-
tactics here are similar to inference rules that one would find in a usual system, and so I do
not cover these ones in great detail.
I also skip many of the soundness proofs, because in
Appendix A I instead provide an 'escape hatch' for creating sound box-tactics from tactics
in the underlying metavariable-oriented development calculus.

3.5.1. Simplifying box-tactics

We have the following box-tactics for reducing Box es, these should be considered as
tidying box-tactics.

𝒪-reduce₁ := ▸ 𝑒 ⋁ ...𝑏₂ ⟼ ▸ 𝑒

𝒪-reduce₂ := ...𝑏₁ ⋁ ▸ 𝑒 ⟼ ▸ 𝑒

𝒜-reduce :=

𝑡₀ := ▸ 𝑒

...𝑏 ⟼ ...(⦃𝑡₀ ↦ 𝑒⦄ 𝑏)

𝒢-reduce :=

?𝑡₀ : α

▸ 𝑒 ⟼ ▸ 𝑒 if ?𝑡₀ ∉ 𝑒

3.5.2. Deleting tactics

[Hue97] Huet,
Gérard Functional Pearl: The
Zipper (1997) Journal of
functional programming

(3.22). Reduction box-tactics for
Box .
These are box-tactics which

should always be applied if they
can and act as a set of reductions
to a box.
Note that these are not
congruent; for example
𝒪-reduce₁ and 𝒪-reduce₂ on
𝒪 (𝒭 𝑒₁) (𝒭 𝑒₂) produce

different terminals.

42

http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/huet-zipper.pdf
http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/huet-zipper.pdf

These are box-tactics that cause a Box to become simpler, but which are not always 'safe'
to do, in the sense that they may lead to a Box which is impossible to solve. That is, the
Box may still have a true conclusion but it is not possible to derive this from the
information given on the box. For example, deleting a hypothesis 𝑝 ∶ P , may prevent the
goal ?𝑡 ∶ P from being solved. The rules for deletion are presented in (3.23).

To motivate 𝒪-revert tactics, recall that an 𝒪 -box 𝑏₁ ⋁ b₂ represents the state that
either 𝑏₁ or 𝑏₂ needs to be solved, so 𝒪 -reversion amounts to throwing away one of the
boxes.
This is similar to 𝒪-reduce in (3.22) with the difference being that we do not need
one of the boxes to be solved before applying.
These are useful when it becomes clear that a
particular 𝒪 -branch is not solvable and can be deleted.

𝒪-revert₁ := ...𝑏₁ ⋁ ...𝑏₂ ⟼ ...𝑏₂

𝒪-revert₂ := ...𝑏₁ ⋁ ...𝑏₂ ⟼ ...𝑏₁

𝒱-delete :=

𝑥 : α := 𝑒

...𝑏 ⟼ ...(⦃𝑥 ↦ 𝑒⦄ 𝑏)

3.5.3. Lambda introduction

In tactics, an intro tactic is used to introduce Π -binders .
That is, if the goal state is
⊢ Π (𝑥 : α), β[𝑥] the intro tactic produces a new state (𝑥 : α) ⊢ β[𝑥] .
To perform this,
it assigns the goal metavariable ?t₁ : Π (𝑥 : α), β[𝑥] with the expression λ (𝑥 : α), ?t₂
where ?t₂ : β[𝑥] is the new goal metavariable with context including the additional local
variable 𝑥 : α .

The intro tactic on Box is analogous, although there are some additional steps required to
ensure that contexts are preserved correctly.
The simplified case simple_intro (3.24),
performs the same steps as the tactic version of intro .

simple_intro :=

?t₁ : Π (𝑥 : α), β

▸ ?t₁ ⟼

𝑥 : α

?t₂ : β

▸ ?t₂

The full version (3.25) is used in the case that the ℐ -box is not immediately followed by an
𝒭 -box.
In this case, a conjunctive 𝒜 -box must be created in order to have a separate
context for the new (𝑥 : α) variable.

intro :=

?t₀ : Π (𝑥 : α), β

...𝑏 ⟼

t₀ :=

𝑥 : α

?t₁ : β

▸ ?t₁

...𝑏

The fact that intro is sound follows mainly from the design of the definitions of ℐ :

Structural sharing is defined as making use of the same substructure multiple times in a
larger structure.
For example, a tree with two branches being the same would be using
structural sharing if the sub-branches used the same object in memory.
Define 𝑏' to be
ℐ (𝑥 : α), 𝒢 (?t₁ : β), 𝒭 ?t₁ , represented graphically in (3.26). The typing judgement
(3.26) follows from the typing rules (3.13).

(3.23). Deletion box-tactics.
𝒪-revert₁ and 𝒪-revert₂ take an
𝒪 -box and remove one of the

branches of the 𝒪 -box.
 𝒱-delete
removes a 𝒱-box and replaces
each reference to the variable
bound by the 𝒱 -box with its
value.

33 Π -binders Π (𝑥 : α), β are
the dependent generalisation of
the function type α → β where
the return type β may depend on
the input value α .

33

(3.24). A simple variable
introduction box-tactic. Note that
that the new goal ?t₂ is not
wrapped in a lambda abstraction
because it is abstracted earlier by
the ℐ box.

(3.25). The full version of the
lambda introduction box-tactic.
The box on the rhs of ⟼ is an 𝒜
box: 𝒜 (ℐ 𝑥, 𝒢 ?t, 𝒭 ?t₁) t₀ 𝑏 .

43

⊢

𝑥 : α

?t₁ : β

▸ ?t₁ : Π (𝑥 : α), β

By the definition of a sound box-tactic we may assume ⊢ (𝒢 ?t₀, 𝑏) : γ for some type γ .
From the 𝒢 typing rule (3.13) we then have [?t₀];∅ ⊢ 𝑏 : γ .
Then it follows from 𝒜
typing (3.13) that ⊢ 𝒜 𝑏' (t₀ : Π (𝑥 : α), β) 𝑏 : γ where
𝑏' := ℐ (𝑥 : α), 𝒢 (?t₁ : β), 𝒭 ?t₁ .

3.5.4. Split and cases tactics

Here I present some box-tactics for performing introduction and elimination of the ∧
type.
The Box version of split performs the same operation as split in Lean:
introducing a conjunction.
A goal ?t₀ : P ∧ Q is replaced with a pair of new goals
(?t₁,?t₂) .
These can be readily generalised to other inductive datatypes with one
constructor .
In the implementation, these are implemented using the tactic escape-hatch
described in Appendix A.

split :=

?t₀ : P ∧ Q

...𝑏 ⟼

?t₁ : P

?t₂ : Q

...(⦃?t₀ ↦ ⟨?t₁,?t₂⟩⦄ 𝑏)

Similarly we can eliminate a conjunction with cases .

cases :=

h₀ : P ∧ Q

...𝑏 ⟼

h₀ : P ∧ Q

h₁ : P := fst h₀

h₂ : Q := snd h₀

...𝑏

3.5.5. Induction box-tactics

∧ -elimination (3.28) from the previous section can be seen as a special case of induction
on datatypes.
Most forms of dependent type theory use inductive datatypes (see
Section 2.2.3) to represent data and propositions, and use induction to eliminate them.
To
implement induction in CIC , each inductive datatype comes equipped with a special
constant called the recursor.
This paradigm broadens the use of the words 'recursion' and
'induction' to include datastructures that are not recursive.

For example, we can view conjunction A ∧ B : Prop as an inductive datatype with one
constructor mk : A → B → A ∧ B .
Similarly, a disjunctive A ∨ B has two constructors
inl : A → A ∨ B and inr : B → A ∨ B . Interpreting → as implication, we recover the
basic introduction axioms for conjunction and disjunction. The eliminators for ∧ and ∨
are implemented using recursors given in (3.29).

∧-rec : ∀ (A B C : Prop), (A → B → C) → (A ∧ B) → C
∨-rec : ∀ (A B C : Prop), (A → C) → (B → C) → (A ∨ B) → C

Performing an induction step in a CIC theorem prover such as Lean amounts to the
application of the relevant recursor.
Case analysis on a disjunctive hypothesis makes for a
good example of recursion, the recursor ∨-rec : (P → C) → (Q → C) → (P ∨ Q) → C is
used.
Given a box ℐ (h₀ : P ∨ Q), 𝑏 where h₀ ⊢ 𝑏 ∶ α , the ∨-cases box-tactic sends this
to the box defined in (3.30).
This is visualised in (3.31).

(3.26). The judgement that 𝑏'
has type Π (𝑥 : α), β . β may
possibly depend on 𝑥 .

34 One caveat is that the use of ∃
requires the use of a non-
constructive axiom of choice with
this method. This is addressed in
Section 3.5.8

34

(3.27). Box-tactic for
introducing conjunctions.

(3.28). Box-tactic for
eliminating conjunctions.
fst : P ∧ Q → P and
snd : P ∧ Q → Q are the ∧ -

projections.
In the
implementation; h₀ is hidden
from the visualisation to give the
impression that the hypothesis
h₀ has been 'split' in to h₁ and
h₂ .

35 Calculus of Inductive
Constructions. The foundation
used by Lean 3 and Coq
(Section 2.1.3). See [Car19 §2.6]
for the axiomatisation of
inductive types within Lean 3's
type system.

35

(3.29). Recursors for
conjunction and disjunction.

44

https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf

𝒜 (ℐ (h₁∶P), 𝑏₁) (𝑐₁∶P → α) (
 𝒜 (ℐ (h₂∶Q), 𝑏₂) (𝑐₂∶Q → α) (
 𝒭 (∨-rec 𝑐₁ 𝑐₂ h₀)
)
)
where 𝑏₁ := ⦃h₀ ↦ inl h₁⦄ 𝑏
 𝑏₂ := ⦃h₀ ↦ inr h₂⦄ 𝑏

cases :=

h₀ : P ∨ Q

...𝑏 ⟼

h₁ : P

...𝑏₁

h₂ : Q

...𝑏₂

Note that the 𝑏 : Box in (3.31) may contain multiple goals. When the cases box-tactic is
applied to ℐ (h₀∶P ∨ Q), 𝑏 , the resulting Box on the rhs of (3.31) results in two copies of
these goals. This implements structural sharing of goals as motivated in Section 3.1.3.
Structural sharing has a significant advantage over the goal-state style approach to tactics,
where the equivalent cases tactic would have to be applied separately to each goal if there
were multiple goals.

This structurally-shared induction step also works on recursive datastructures such as lists
and natural numbers. These datatypes' recursors are more complicated than non-recursive
datastructures such as those in (3.29) in order to include induction hypotheses. The
recursor for natural numbers is shown in (3.32). (3.33) is the corresponding box-tactic that
makes use of (3.32). (3.34) is the detailed Box structure for the right-hand side of (3.33).

ℕ-rec :
 (𝒞 : ℕ → Type) -- motive
 → (𝒞 0) -- zero case
 → ((𝑖 : ℕ) → 𝒞 𝑖 → 𝒞 (𝑖 + 1)) -- successor case
 → (𝑖 : ℕ) → 𝒞 𝑖

induction :=

𝑛 : ℕ

...𝑏 ⟼ ...⦃𝑛 ↦ 0⦄𝑏

𝑛 : ℕ

𝑕 : α

...⦃𝑛 ↦ 𝑛+1⦄𝑏

𝒜 (⦃𝑛 ↦ 0⦄𝑏) (𝑐₁ ∶ ⦃𝑛 ↦ 0⦄α) (
 𝒜 (ℐ (𝑛 ∶ ℕ), ℐ (𝑕 ∶ α), ⦃𝑛 ↦ 𝑛+1⦄𝑏) (𝑐₂∶ ⦃𝑛 ↦ 𝑛+1⦄α) (
 𝒭 (ℕ-rec (𝑛 ↦ α) 𝑐₁ 𝑐₂ 𝑛)
)
)

In general, finding the appropriate motive 𝒞 for an induction step amounts to a higher
order unification problem which was shown to be undecidable [Dow01 §3].
However, in
many practical cases 𝒞 can be found and higher-order provers come equipped with
heuristics for these cases, an early example being Huet's semidecidable algorithm.
Rather
than reimplementing these heuristics, I implement induction box-tactics on Box by using
the 'escape hatch' feature (Section 3.4.4).

3.5.6. Introducing 𝒪 boxes

The purpose of 𝒪 boxes is to enable backtracking and branches on Box es that enables
structural sharing.
The G&G prover [GG17] takes a similar approach.
For example,
suppose that we had a goal x ∈ A ∪ B for some sets A , B . We might have some lemmas of
the form h₁ : P → x ∈ A and h₂ : Q → x ∈ B but we are not yet sure which one to use.
In
a goal-based system, if you don't yet know which injection to use, you have to guess and
manually backtrack.
However, there may be some clues about which lemma is correct that
only become apparent after applying an injection.
In the above example, if only h₃ : P is
present as a hypothesis, it requires first performing injection before noticing that h₁ is the
correct lemma to apply.
In [#future-work] I discuss more advanced, critic-like workflows
that 𝒪 -boxes also enable.

(3.30). Explicit datastructure
showing the resulting Box after
performing ∨-cases on
ℐ (h₀ : P ∨ Q), 𝑏 .

(3.31). Special case of recursion
for eliminating ∨ statements.
The right-hand side of ⟼ is
simplified for the user, but is
represented as a nested set of 𝒜
boxes as explicitly written in
(3.30). 𝑏₁ and 𝑏₂ are defined in
(3.30).

(3.32). Recursor for natural
numbers.
 ℕ-rec can be seen to
have the same signature as
mathematical induction on the
natural numbers.

(3.33). Induction box-tactic on
natural numbers. Implemented
using the 'escape hatch' detailed
in Appendix A.
Here, α is the
result type of 𝑏 (Section 3.4.2).
That is, (𝑛:ℕ) ⊢ 𝑏 ∶ α .

(3.34). Detail on the rhs of
(3.33).
The signature for ℕ-rec is
given in (3.32).

[Dow01] Dowek,
Giles Higher-order unification
and matching (2001) Handbook
of automated reasoning

[GG17] Ganesalingam,
Mohan; Gowers, W. T. A fully
automatic theorem prover with
human-style output
(2017) Journal of Automated
Reasoning

45

https://doi.org/10.1007/s10817-016-9377-1
https://doi.org/10.1007/s10817-016-9377-1

The 𝒪 box allows us to explore various counterfactuals without having to perform any
user-level backtracking (that is, having to rewrite proofs).
The primitive box-tactic that
creates new 𝒪 -boxes is shown in (3.35).
This is used to make more 'human-like' box-
tactics such as ∨-split (3.36).

𝒪-intro := ...𝑏 ⟼ ...𝑏 ⋁ ...𝑏

∨-intro :=

?𝑡 : P ∨ Q

...𝑏 ⟼

?𝑡 : P

...𝑏 ⋁

?𝑡 : Q

...𝑏

3.5.7. Unification under a Box

Unification is the process of taking a pair of expressions 𝑙 𝑟 : Expr within a joint context
𝑀;Γ and finding a valid set of assignments of metavariables σ in 𝑀 such that
(𝑀 + σ);Γ ⊢ 𝑙 ≡ 𝑟 .
Rather than develop a whole calculus of sound unification for the Box
system, I can use the 'escape hatch' tactic compatibility layer developed in Appendix A to
transform a sub- Box to a metavariable context and then use the underlying theory of
unification used for the underlying development calculus of the theorem prover (in this
case Lean).
This is a reasonable approach because unifiers and matchers for theorem
provers are usually very well developed in terms of both features and optimisation, so I
capitalise on a unifier already present in the host proof assistant has a perfectly good one
already.

3.5.8. Apply

In textbook proofs of mathematics, often an application of a lemma acts under ∃ binders.
For example, let's look at the application of fs 𝑛 being continuous from earlier.

h₁ :
 ∀ (𝑥 : X) (ε : ℝ) (h₀ : ε > 0),
 ∃ (δ : ℝ) (h₁ : δ > 0),
 ∀ (𝑦 : X) (h₂ : dist 𝑥 𝑦 < δ), dist (f 𝑥) (f 𝑦) < ε

In the example the application of h₁ with 𝑁, ε, h₃ , and then eliminating an existential
quantifier δ and then applying more arguments y , all happen in one step and without
much exposition in terms of what δ depends on. A similar phenomenon occurs in
backwards reasoning. If the goal is dist (f 𝑥) (f 𝑦) < ε , in proof texts the continuity of f
is applied in one step to replace this goal with dist x y < δ , where δ is understood to be
an 'output' of applying the continuity of f .

Contrast this with the logically equivalent Lean tactic script fragment (3.38):

...
show dist (f x) (f y) < ε,
obtain ⟨δ, δ_pos, h₁⟩ : ∃ δ, δ > 0 ∧ ∀ y, dist x y < δ → dist (f x) (f y) < ε,
 apply ‹continuous f›,
apply h₁,
show dist x y < δ,
...

In order to reproduce this human-like proof step, we need to develop a theory for
considering 'complex applications'.
A further property we desire is that results of the
complex application must be stored such that we can recover a natural language write-up
to explain it later (e.g., creating "Since f is continuous at x , there is some δ ...").

The apply subsystem works by performing a recursive descent on the type of the
assumption being applied.
For example, applying the lemma given in (3.37) to a goal
𝑡 : P attempts to unify P with dist (f ?𝑥) (f ?𝑦) < ?ε with new metavariables
?𝑥 ?𝑦 : X , ε : ℝ .
If the match is successful, it will create a new goal for each variable in a
Π -binder above the matching expression and a new 𝒱 -binder for each introduced ∃ -

(3.35). Box-tactic for
introducing an 𝒪 -box by
duplication.

(3.36). Box-tactic for
introducing an 𝒪 -box by
duplication.

(3.37). An example lemma h₁ to
apply. h₁ is a proof that fs 𝑛 is
continuous.

(3.38). A Lean tactic-mode proof
fragment that is usually
expressed in one step by a
human, but which requires two
steps in Lean.
The show lines can
be omitted but are provided for
clarity to show the goal state
before and after the obtain and
apply steps.
The
obtain ⟨_,_,_⟩ : 𝑃 tactic creates

a new goal 𝑡 : 𝑃 and after this
goal is solved, performs case-
elimination on 𝑡 .
Here,
obtain ⟨δ, δ_pos, h₁⟩ introduces
δ : ℝ , δ_pos : δ > 0 and h₁ to

the context.

36 Note that ∀ is sugar for Π .36

46

variable and each conjunct.
These newly introduce nested boxes appear in the same order
as they appear in the applied lemma.

This apply system can be used for both forwards and backwards reasoning box-tactics.
Above deals with the backwards case, in the forwards case, the task is reversed, with now a
variable bound by a Π -binder being the subject to match against the forwards-applied
hypothesis.

An example of applying (3.37) to the goal dist (f x) (f y) < ε can be seen in (3.39).

apply ‹continuous f› :

𝑥 𝑦 : X

ε : ℝ

?t₁ : dist (f 𝑥) (f 𝑦) < ε ⟼

𝑥 𝑦 : X

ε : ℝ

?t₂ : ε > 0

δ : ℝ := _

h₂ : δ > 0 := _

?t₃ : dist 𝑥 𝑦 < δ

3.5.8.1. A note on using apply with existential statements

One complication with this approach to apply is performing many logical inference steps
when applying a lemma in one go.
There is a technical caveat with applications of
existential statements such as ∃ (δ : ℝ), d(𝑥, 𝑦) < δ :
by default, Lean is a non-classical
theorem prover, which here amounts to saying that the axiom of choice is not assumed
automatically.
Without the axiom of choice, it is not generally possible to construct a
projection function ε : ∃ (𝑥 : α), P [𝑥] → α such that P[ε ℎ] is true for all
ℎ : ∃ (𝑥 : α), P . There are two ways to overcome this limitation:

1. Assume the axiom of choice and make use of the nonconstructive projector ε .

2. When an apply step encounters an existential quantifier, wrap the entire proof in an
existential quantifier recursor
∃-rec (C : Prop) : (∀ (𝑥 : α), P 𝑥 → C) → (∃ (𝑥 : α), P 𝑥) → C using 𝒜 -boxes.
This is performed in exactly the same manner that induction box-tactics are applied
in Section 3.5.5.

HumanProof, as it is currently implemented, uses strategy 1.
This prevents proofs from
being constructive, but is otherwise not so great a concession, since mathematicians
regularly make use of this in fields outside logic.
There was some effort to also implement
strategy 2, but I dropped it.

3.5.9. Summary

This section introduced a set of sound box-tactics that are implemented for the
HumanProof system. In the next section we will see how these box-tactics can be used to
create natural language write-ups of proofs.

3.6. Natural language generation of
proofs
In this section I detail how the above box architecture is used to produce natural language
writeups as the proof progresses.
The general field is known as Natural Language
Generation (NLG).
You can find a background survey of NLG both broadly and within the
context of generating proofs in Section 2.7.

Here I lean on the work of Ganesalingam, who in his thesis [Gan10] has specified a
working theory of the linguistics of natural language mathematics.
As well as generating a
formally verifiable result of a proof, I also extend on G&G by providing some new
mechanisms for converting Lean predicates and typeclasses in to English language

(3.39). An example of applying
(3.37) to t₁ . It produces a set of
nested goals in accordance with
the structure of the binders in
(3.37).
Result Box es are omitted.

37 Recursors are discussed in
Section 3.5.5.
37

[Gan10] Ganesalingam,
Mohan The language of
mathematics (2010) PhD thesis
(University of Cambridge)

47

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.9027&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.9027&rep=rep1&type=pdf

sentences.
That is, in the implementation of the G&G theorem prover, many natural
language constructs such as " is a metric space" were hard-coded in to the system.
In this
work I provide a general framework for attaching verbalisations of these kinds of
statements to typeclasses and predicates within Lean.
I also make the resulting write-up
interactive; emitting a partial proof write-up if the proof-state is not yet solved and also
inspecting the natural language write-up through the widgets system are possible.
In
contrast G&G's output was a static file.

The goal of this section is to demonstrate that the Box architecture above is representative
of human-like reasoning by constructing natural language writeups of the proofs created
using Box es. As such the NLG used here is very simple compared to the state of the art and
doesn't make use of any modern techniques such as deep learning. The output of this
system is evaluated by real, human mathematicians in Chapter 6.
An example of a proof
generated by the system is shown below in Output 3.40.
There are some challenges in
converting a Box proof to something that reads like a mathematical proof that I will detail
here.

Let , and be metric spaces, let be a function and let be a
function .
Suppose is continuous and is continuous.
We need to
show that is continuous.
Let and let .
We must choose

 such that .
Since is
continuous, there exists a such that
whenever .
Since is continuous, there exists a such
that whenever .
Since , we are done
by choosing to be .

3.6.1. Overview

The architecture of the NLG component is given in Figure 3.41.
The design is similar to the
standard architecture discussed in Section 2.7.1.
In Section 3.1.2 I explained the decision to
design the system to permit only a restricted set of box-tactics on a Box representing the
goal state of the prover.
To create the natural language write-up from these box-tactics,
each box-tactic also emits an Act object.
This is an inductive datatype representing the
kind of box-tactic that occurred.
So for example, there is an Intro : List Binder → Act

that is emitted whenever the intro box-tactic is performed, storing the list of binders that
were introduced.
A list of Act s is held in the state monad for the interactive proof session.
This list of acts is then fed to a micro-planner, which converts the list of acts to an abstract
representation of sentences .
These sentences are converted to a realised sentence with
the help of Run which is a form of S-expression [McC60] containing text and expressions
for interactive formatting.
This natural language proof is then rendered in the output
window using the widgets system (Chapter 5).

3.6.2. Grice's laws of implicature

X

LT ​XA E

Output 3.40. Output from the
HumanProof natural language
write-up system for a proof that
the composition of continuous
functions is continuous.

X Y Z f X → Y g

Y → Z f g

g ∘ f ε > 0 x ∈ X δ >
0 ∀(y : X), d(x, y) ≤ δ ⇒ d((g ∘ f)(x), (g ∘ f)(y)) ≤ ε g

η > 0 d((g ∘ f)(x), (g ∘ f)(y)) ≤ ε

d(f(x), f(y)) ≤ η f θ > 0
d(f(x), f(y)) ≤ η d(x, y) ≤ θ d(x, y) ≤ δ

δ θ

38 Sometimes referred to as a
phrase specification
38

[McC60] McCarthy,
John Recursive functions of
symbolic expressions and their
computation by machine, Part I
(1960) Communications of the
ACM

Figure 3.41. Overview of the
pipeline for the NLG component
of HumanProof.
A Box has a
series of box-tactics performed
upon it, each producing an
instance of Act , an abstract
representation of what the box-
tactic did.
A list of all of the Act s
from the session is then
converted in to a list of sentences,
which is finally converted to an S-
expression-like structure called
Run .
Compare this with the

standard architecture given in
Figure 2.41; the main difference
being that the macroplanning
phase is performed by the choice
of box-tactics performed on boxes
as detailed in Section 3.5.

48

https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/367177.367199

One resource that has proven useful in creating human-like proofs is the work of the Grice
on implicature in linguistics [Gri75].
To review, Grice states that there is an unwritten rule
in natural languages that one should only provide as much detail as is needed to convey the
desired message. For example, the statement "I can't find my keys" has the implicature "Do
you know where my keys are?", it implies that the keys may have been lost at the current
location and not in a different part of town and so on.
If superfluous detail is included, the
reader will pick this up and try to use it to infer additional information. Saying "I can't find
my keys at the moment" interpreted literally has the same meaning as "I can't find my
keys", but implicitly means that I have only just realised the key loss or that I will be able to
find them soon. Grice posits four maxims that should be maintained in order for a
sentence or phrase to be useful:

1. Quantity The contribution should contain no more or less than what is required.
Examples: "Since and is prime, ". "Let be a positive real such that

."

2. Quality Do not say things for which you don't have enough evidence or things that
are not true. An example here would be a false proof.

3. Relation The contributed sentence should be related to the task at hand. Example;
putting a true but irrelevant statement in the middle of the proof is bad.

4. Manner The message should avoid being obscure, ambiguous and long-winded.

Mathematical texts are shielded from the more oblique forms of implicature that may be
found in general texts, but Grice's maxims are still important to consider in the
construction of human-readable proofs and serve as a useful rule-of-thumb in determining
when a generated sentence will be jarring to read.

With respect to the quantity maxim, it is important to remember also that what counts as
superfluous detail can depend on the context of the problem and the skill-level of the
reader. For example, one may write:

Suppose and are open subsets of . Since is continuous, is
open.

A more introductory text will need to also mention that is a topological space and so
 is open. Generally these kinds of implicit lemma-chaining can become arbitrarily

complex, but it is typically assumed that these implicit applications are entirely familiar to
the reader.
Mapping ability level to detail is not a model that I will attempt to write
explicitly here. One simple way around this is to allow the proof creator to explicitly tag
steps in the proof as 'trivial' so that their application is suppressed in the natural language
write-up.
Determining this correct level of detail may be a problem in which ML models
may have a role to play.

3.6.3. Microplanning symbolic mathematics

From a linguistic perspective, a remarkable property of mathematical texts is the
interlacing of mathematical symbols and natural language.
In the vast majority of cases,
each symbolic construct has a natural language equivalent (else verbalising that symbol in
conversation would be difficult).
For example: " " versus " plus ".
Sometimes
multiple verbalisations are possible: can be " implies " or " whenever ".
Sometimes the the symbolic form of a statement is not used as frequently: " is prime"
versus .
In making text flow well, the decision of when to move between symbolic and
textual renderings of a mathematical proof is important.
The rule-of-thumb that I have
arrived at is to render the general flow of the proof's reasoning using text and to render the
objects that are being reasoned about using symbols.
The idea here is that one should be
able to follow the rough course of argument whilst only skimming the symbolic parts of the
proof.

3.6.4. Microplanning binders with class predicate collections

[Gri75] Grice, Herbert
P Logic and conversation
(1975) Speech acts

x > 5 x x > 6 x

x > 0

A B X f f [A ∪−1 B]

X

A ∪ B

x + y x y

P ⇒ Q P Q Q P

p

p ∈ P

49

http://rrt2.neostrada.pl/mioduszewska/course_265_reading%201b.pdf
http://rrt2.neostrada.pl/mioduszewska/course_265_reading%201b.pdf

In mathematics, it is common that a variable will be introduced in a sentence and then
referenced in later sentences.
For example, one will often read sentences such as "Let be
a metric space and let and be points in ".
This corresponds to the following
telescope of binders: (X : Type) (_ : metric_space X) (x y : X) .
These effectively act as
'linguistic variable binders'.

In this subsection I will highlight how to convert lists of binders to natural language
phrases of this form.
To the best of my knowledge this is an original contribution so I will
explain this mechanism in more detail.
This approach is inspired by the idea of 'notions' as
first used in the ForTheL controlled natural language parser for the SAD project
[VLP07, Pas07, VLPA08] also used by Naproche/SAD [DKL20].
Ganesalingam [Gan10]
refers to these as non-extensional types and Ranta [Ran94] as syntactic categories.
The
act of
The PROVERB system [HF97] and the G&G system [GG17] provide a mechanism for
generating natural language texts using a similar technique for aggregating assumptions,
however these approaches do not allow for the handling of more complex telescopes found
in dependent type theory.
Table 3.42 presents some examples of the kinds of translations
in question.

Telescope Generated text

(X : Type) [metric_space X] (𝑥 𝑦 : X) Let X be a metric space and let 𝑥 and 𝑦 be
points in X .

(G : Type) [group G] (𝑥 𝑦 : G) Let G be a group and let 𝑥 and 𝑦 be elements
of G .

(G : Type) [group G] (H : set G) (h₁ : subgroup.normal G H) Let G be a group and H be a normal subgroup
of G .

(𝑎 𝑏 : ℤ) (h₁ : coprime 𝑎 𝑏) Let 𝑎 and 𝑏 be coprime integers.

(𝑓 : X → Y) (h₁ : continuous 𝑓) Let 𝑓 : X → Y be a continuous function.

(T : Type) [topological_space T] (U : set T) (h₁ : open U) Let T be a topological space and let U be an
open set in T .

(ε : ℝ) (h₁ : ε > 0) Let ε > 0 .

The variable introduction sentences in Table 3.42 take the role of a variable binder for
mathematical discourse.
This variable is then implicitly 'in scope' until its last mention in
the text. Some variables introduced in this way can remain in scope for an entire book.
For
example, the choice of underlying field k in a book on linear algebra.
As Ganesalingam
notes [Gan10 §2.5.2], "If mathematicians were not able to use variables in this way, they
would need to write extremely long sentences!"

Let's frame the problem as follows: take as input a telescope of binders (e.g,
[(𝑎 : ℤ), (𝑏 : ℤ), (h₁ : coprime 𝑎 𝑏)]) and produce a 'variable introduction text' string
as shown in the above table.
The problem involves a number of challenges:

There is not a 1-1 map between binders and pieces of text: in "Let 𝑎 , 𝑏 be coprime",
the binder h₁ : coprime 𝑎 𝑏 is not named but instead treated as a property of 𝑎 and
𝑏 .

The words that are used to describe a variable can depend on which typeclass
[HHPW96] their type belongs to. For instance, we write "let 𝑥 and 𝑦 be points"
or "let 𝑥 and 𝑦 be elements of G " depending on whether the type of 𝑥 and 𝑦 is
an instance of group or metric_space .

Compare " 𝑥 and 𝑦 are prime" versus " 𝑥 and 𝑦 are coprime". The first arises from
(𝑥 𝑦 : ℕ) (h₁ : prime 𝑥) (h₂ : prime 𝑦) whereas the second from
(𝑥 𝑦 : ℕ) (h₁ : coprime 𝑥 𝑦) . Hence we need to model the adjectives "prime" and
"coprime" as belonging to distinct categories.

To solve this I introduce a schema of class predicate collections. Each binder in the
input telescope is converted to two pieces of data; the subject expression 𝑥 and the
class predicate 𝑐𝑝 ; which is made from one of the following constructors.

X

x y X
39 A telescope is a list of binders

where the type of a binder may
depend on variables declared
ealier in the list. Telescopes are
equivalent to a well-formed
context (see Section 2.1.3) but the
term telescope is also used to
discuss lists of binders that
appear in expressions such as
lambda and forall bindings.

39

[VLP07] Verchinine,
Konstantin; Lyaletski,
Alexander; Paskevich,
Andrei System for Automated
Deduction (SAD): a tool for proof
verification (2007) International
Conference on Automated
Deduction

[Pas07] Paskevich,
Andrei The syntax and
semantics of the ForTheL
language (2007) http://citeseer

x.ist.psu.edu/viewdoc/download?do

i=10.1.1.211.8865&rep=rep1&type=

pdf

[VLPA08] Verchinine,
Konstantin; Lyaletski,
Alexander; Paskevich,
Andrei; et al. On correctness
of mathematical texts from a
logical and practical point of
view (2008) International
Conference on Intelligent
Computer Mathematics

[DKL20] De Lon, Adrian;
Koepke, Peter; Lorenzen,
Anton Interpreting
Mathematical Texts in Naproche-
SAD (2020) Intelligent
Computer Mathematics

[Gan10] Ganesalingam,
Mohan The language of
mathematics (2010) PhD thesis
(University of Cambridge)

[Ran94] Ranta,
Aarne Syntactic categories in
the language of mathematics
(1994) International Workshop
on Types for Proofs and
Programs

[HF97] Huang, Xiaorong;
Fiedler, Armin Proof
Verbalization as an Application
of NLG (1997) International
Joint Conference on Artificial
Intelligence

[GG17] Ganesalingam,
Mohan; Gowers, W. T. A fully
automatic theorem prover with
human-style output
(2017) Journal of Automated
Reasoning

40

50

https://doi.org/10.1007/978-3-540-73595-3_29
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.8865&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.8865&rep=rep1&type=pdf
https://doi.org/10.1007/978-3-030-53518-6_19
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.9027&rep=rep1&type=pdf
https://doi.org/10.1007/3-540-60579-7_9
http://ijcai.org/Proceedings/97-2/Papers/025.pdf
https://doi.org/10.1007/s10817-016-9377-1
https://doi.org/10.1007/978-3-540-85110-3_47
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.9027&rep=rep1&type=pdf
https://doi.org/10.1145/227699.227700
https://doi.org/10.1007/978-3-540-73595-3_29
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.8865&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.8865&rep=rep1&type=pdf
https://doi.org/10.1007/978-3-540-85110-3_47
https://doi.org/10.1007/978-3-030-53518-6_19
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.9027&rep=rep1&type=pdf
https://doi.org/10.1007/3-540-60579-7_9
http://ijcai.org/Proceedings/97-2/Papers/025.pdf
https://doi.org/10.1007/s10817-016-9377-1

adjective : "continuous", "prime", "positive"

fold_adjective : "coprime", "parallel"

symbolic_postfix : " ∈ A ", " > 0 ", " : X → Y "

class_noun : "number", "group", "points in X ", "elements of G ", "function", "open set
in T "

none : a failure case. For example, if the binder is just for a proposition that should be
realised as an assumption instead of a predicate about the binder.

The subject expression and the class predicate for a given binder in the input telescope are
assigned by consulting a lookup table which pattern-matches the binder type expressions
to determine the subject expression and any additional parameters (for example T in
"open set in T "). Each pair ⟨𝑥, 𝑐𝑝⟩ is mapped to
⟨[𝑥], [𝑐𝑝]⟩ : List Expr × List ClassPredicate . I call this a class predicate collection
(CPC). The resulting list of CPCs is then reduced by aggregating [DH93] adjacent pairs of
CPCs according to (3.43).

⟨𝑥𝑠, 𝑐𝑝𝑠 ⟩, ⟨𝑦𝑠, 𝑐𝑝𝑠 ⟩ ↝ ⟨𝑥s ++ 𝑦𝑠, 𝑐𝑝𝑠⟩
⟨𝑥𝑠, 𝑐𝑝𝑠₁⟩, ⟨𝑥𝑠, 𝑐𝑝𝑠₂⟩ ↝ ⟨𝑥s, 𝑐𝑝𝑠₁ ++ 𝑐𝑝𝑠₂⟩

In certain cases, the merging operation can also delete class predicates that are superseded
by later ones.
An example is that if we have (𝑥 : X) (h₁ : 𝑥 ∈ A) , this can be condensed
directly to ⟨[𝑥], [symbolic_postfix "∈ A"]⟩ which realises to "Let 𝑥 ∈ A " instead of the
redundant "Let 𝑥 ∈ A be an element of X " which violates Grice's maxim of quantity
(Section 3.6.2).

Additionally, the resulting class predicate collection list is partitioned into two lists so that
only the first mention of each subject appears in the first list.
For example; 𝑥 : X and
h : 𝑥 ∈ A both have the subject 𝑥 , but "Let 𝑥 be a point and let 𝑥 ∈ A "

These class predicate collections can then be realised for a number of binder cases:

Let: "Let U be open in X "

Forall: "For all U open in X "

Exists: "For some U open in X "

class_noun can be compared to the concept of a 'notion' in ForTheL and Naproche/SAD
and a 'non-extensional type' in Ganesalingam [Gan10].
It takes the role of a noun that the
introduced variable belongs to, and is usually preceded with an indefinite article: "let 𝑥 be
an element of G ".

Will some mechanism like CPCs be necessary in the future, or are they a cultural artefact of
the way that mathematics has been done in the past? When designing mathematical
definitions in formalised mathematics, one must often make a choice in how new datatypes
are defined: should there be a new type 'positive real number' or just use the real numbers
ℝ and add a hypothesis ε > 0 ? In natural language mathematics, one is free to move
between these bundled and unbundled representations without concern. The CPC
structure reflects this; " ε is a positive real" can be interpreted as either a "real that is
positive" or as a single semantic type "positive real". Natural mathematics does not
disambiguate between these two because they are both equivalent within its informal rules,
similar to how the representation of 𝑎 + 𝑏 + 𝑐 does not need to disambiguate between
(𝑎 + 𝑏) + 𝑐 and 𝑎 + (𝑏 + 𝑐) since they are equal.

3.6.5. Handling 'multi-apply' steps

The specialised apply box-tactic discussed in Section 3.5.8 requires some additional
processing.
The apply box-tactic returns a datatype called ApplyTree that indicates how a
given lemma was applied, resulting in parameters, goals and values obtained through
eliminating an existential statement.
These are converted in to "since" sentences:

Table 3.42. Examples of
generating natural language
renderings of variable
introductions from type-theory
telescopes.
Square brackets on a
binder such as [group G] denote
a typeclass binder.
This typeclass
binder is equivalent to the binder
(𝔤 : group G) where the binder

name 𝔤 is omitted.
Typeclasses
were first introduced by Hall et al
for use with the Haskell
programming language
[HHPW96].
Typeclasses are used
extensively in the Lean 3 theorem
prover. A description of their
implementation can be found in
[MAKR15 §2.4].

[HHPW96] Hall, Cordelia V;
Hammond, Kevin; Peyton
Jones, Simon L; et al. Type
classes in Haskell (1996) ACM
Transactions on Programming
Languages and Systems
(TOPLAS)

[MAKR15] de Moura,
Leonardo; Avigad, Jeremy;
Kong, Soonho; et
al. Elaboration in Dependent
Type Theory (2015) CoRR

[Gan10] Ganesalingam,
Mohan The language of
mathematics (2010) PhD thesis
(University of Cambridge)

See the caption of Table 3.42
for more information on
typeclasses.

40

[DH93] Dalianis, Hercules;
Hovy, Eduard Aggregation in
natural language generation
(1993) European Workshop on
Trends in Natural Language
Generation

(3.43). Rules for aggregating
class predicate collections.

[Gan10] Ganesalingam,
Mohan The language of
mathematics (2010) PhD thesis
(University of Cambridge)

51

https://doi.org/10.1007/3-540-60800-1_25
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.9027&rep=rep1&type=pdf
https://doi.org/10.1145/227699.227700
http://arxiv.org/abs/1505.04324
https://doi.org/10.1145/227699.227700
http://arxiv.org/abs/1505.04324
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.9027&rep=rep1&type=pdf
https://doi.org/10.1007/3-540-60800-1_25
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.9027&rep=rep1&type=pdf

"Since f is continuous, there exists some δ > 0 such that d (f 𝑥) (f 𝑦) < 0
whenever d 𝑥 𝑦 < δ "

The code that produces this style of reasoning breaks down in to a Reason component
indicating where the fact came from and a restatement of the fact with the parameters set
to be relevant to the goal.
In most cases, the Reason can simply be a restatement of the fact
being used.
However, it is also possible to produce more elaborate reasons.
For example,
apply ℎ for some hypothesis ℎ will also match preconditions on ℎ if they appear in
context.
That is, if h₀ ∶ P → Q , then apply h₀ in the box in (3.44) will automatically
include the propositional assumption h₁ : P to solve the Box , instead of resulting in a
new goal ?t₂ : P .
This will produce the reason "Since P → Q and P , we have Q ".

h₀ : P → Q

h₁ : P

?t₁ : Q

3.6.6. Multiple cases

Some problems branch into multiple cases. For example, the A ∪ B problem.
Here, some
additional macroplanning needs to occur, since it usually makes sense to place each of the
cases in their own paragraph.
When cases is performed, the resulting 𝒜 -box contains two
separate branches for each case as discussed in (3.28).

When a new box-tactic is performed to create an Act , box-tactics that are performed
within one of these case blocks causes the Act to be tagged with the case.
This is then used
to partition the resulting rendered string into multiple paragraphs.

3.6.7. Realisation

As shown in Figure 3.41, the set of Acts is compiled to a sequence of Sentence objects and
these are converted to a run of text. As detailed in Section 2.7 this last step is called
realisation.
In the realisation phase, each sentence is converted to a piece of text
containing embedded mathematics.
Each statement is constructed through recursively
assembling canned phrases representing each sentence.
This means that longer proofs can
become monotonous but the application of synonymous phrases could be used to add
variation.
However, the purpose of this NLG system is to produce 'human-like' reasoning
and so if the proofs read as too monotonous, it suggests that less detail should have been
included in the Act list structure.

When realising logical statements, the prose would become unnatural or ambiguous after a
certain depth.
After a depth of two these statements switch to being entirely symbolic.
For
example: (P → Q) → X → Y would recursively render in natural language naïvely as " Y
whenever X and Q whenever P ", even with some more sophisticated algorithm to remove
the clunkiness, writing " Y whenever X and P → Q is just much clearer.

Mathematical expressions were pretty printed using Lean's pretty printing engine.
However, the Lean 3 pretty printer needs a metavariable context in order to render, so it
was necessary to add a tactic state object alongside the Act objects.
It was necessary to
store this context separately for each act because some metavariables would become solved
through the course of the proof and cause confusing statements such as "by setting ε to be
ε ", where it should read "by setting η to be ε ".
Another printing issue was in the printing
of values created through destructuring existential variables, which would be rendered as
classical.some .

3.6.8. Summary

In this section, I detailed the workings of the natural language write-up component of the
HumanProof system.
I gave an overview of the standard architecture pipeline and then

(3.44).

52

discussed the areas of novelty, namely the approach to producing suitable noun-phrase
string from type-theoretical telescopes and on the verbalisations multi-apply steps.

3.7. Conclusion
In this chapter, I have introduced a new Box development calculus for human-like
reasoning and demonstrated its compatibility (Section 3.4, Appendix A) with the
development calculus of the Lean theorem prover.
I have outlined the structure of a set of
box-tactics within this calculus that allow for the creation of both formal and natural-
language proofs of this output.

I then detailed the natural language generation component of HumanProof.
The
component can produce readable proofs of simple lemmas. Supporting larger projects is
left for future work.

In the next chapter, we will discuss a new component to enhance the Box system for use
with equational reasoning.
I will make use of the work presented in this chapter in the
evaluation (Chapter 6).

I will finish this chapter with some thoughts on future directions for the Box datastructure.
A more general outlook on future work can be found in Section 7.2, where I also discuss
potential future directions in applying deep learning to natural language generation.

3.7.1. Future work: 𝒪 -critics

An avenue for future research is the definition of some additional box-tactics for the Box
datastructure that allow it to work in a similar fashion to Ireland's proof critics [Ire92].
Recall from Section 2.6.2 that proof critics (broadly speaking) are a proof planning
technique that can revise a proof plan in light of information gained from executing a
failed plan. 𝒪 -boxes can support a similar idea as I will now exemplify in (3.45), where the
statement to prove is ∀ 𝑎 𝑏 : ℝ, ∃ 𝑥 : ℝ, (𝑎 ≤ 𝑥) ∧ (𝑏 ≤ 𝑥) . The proof requires spotting
the trichotomy property of real numbers: ∀ 𝑥 𝑦 : ℝ, 𝑥 ≤ 𝑦 ∨ 𝑦 < 𝑥 , however it is difficult
to see whether this will apply from the goal state.

𝑎 𝑏 : ℝ

?𝑥 : ℝ

?𝑡₁ : 𝑎 ≤ ?𝑥

?𝑡₂ : 𝑏 ≤ ?𝑥

①↝

𝑎 𝑏 : ℝ

?𝑥 : ℝ

?𝑡₁ : 𝑎 ≤ ?𝑥

?𝑡₂ : 𝑏 ≤ ?𝑥
⋁

?𝑥 : ℝ

?𝑡₁ : 𝑎 ≤ ?𝑥

?𝑡₂ : 𝑏 ≤ ?𝑥

②↝

𝑎 𝑏 : ℝ

?𝑥 : ℝ

?𝑡₁ : 𝑎 = ?𝑥

?𝑡₂ : 𝑏 ≤ ?𝑥
⋁

?𝑥 : ℝ

?𝑡₁ : 𝑎 ≤ ?𝑥

?𝑡₂ : 𝑏 ≤ ?𝑥

③↝

𝑎 𝑏 : ℝ

?𝑡₂ : 𝑏 ≤ 𝑎
⋁

?𝑥 : ℝ

?𝑡₁ : 𝑎 ≤ ?𝑥

?𝑡₂ : 𝑏 ≤ ?𝑥

At this point, one can spot that the lefthand Box is no longer possible to solve unless one
assumes 𝑏 ≤ 𝑎 . However, rather than deleting the left-hand box, we can instead use this
information as in (3.46).

[Ire92] Ireland, Andrew The
use of planning critics in
mechanizing inductive proofs
(1992) International Conference
on Logic for Programming
Artificial Intelligence and
Reasoning

(3.45). Sketch of some future
work making use of 𝒪 -boxes to
perform a speculative application
of the lemma 𝑎 = 𝑥 → 𝑎 ≤ 𝑥

(highlighted).
The box-tactics
are: ① 𝒪-intro (3.36); ② apply
𝑎 = 𝑥 → 𝑎 ≤ 𝑥 to the left

instance of ?𝑡₁ ; ③ apply
reflexivity to the left ?𝑡₁ , causing
𝑎 and ?𝑥 to be unified (see

Section 3.5.7).

53

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.3546&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.3546&rep=rep1&type=pdf

③↝

𝑎 𝑏 : ℝ

?𝑡₂ : 𝑏 ≤ 𝑎
⋁

?𝑥 : ℝ

?𝑡₁ : 𝑎 ≤ ?𝑥

?𝑡₂ : 𝑏 ≤ ?𝑥

④↝

𝑎 𝑏 : ℝ

ℎ : 𝑏 ≤ 𝑎 ∨ ¬ 𝑏 ≤ 𝑎

?𝑡₂ : 𝑏 ≤ 𝑎
⋁

?𝑥 : ℝ

?𝑡₁ : 𝑎 ≤ ?𝑥

?𝑡₂ : 𝑏 ≤ ?𝑥

⑤↝

𝑎 𝑏 : ℝ

ℎ : 𝑏 ≤ 𝑎

?𝑡₂ : 𝑏 ≤ 𝑎
⋁

ℎ : 𝑎 < 𝑏

?𝑥 : ℝ

?𝑡₁ : 𝑎 ≤ ?𝑥

?𝑡₂ : 𝑏 ≤ ?𝑥

⑥↝

𝑎 𝑏 : ℝ

ℎ : 𝑎 < 𝑏

?𝑥 : ℝ

?𝑡₁ : 𝑎 ≤ ?𝑥

?𝑡₂ : 𝑏 ≤ ?𝑥

⑦↝

𝑎 𝑏 : ℝ

ℎ : 𝑎 < 𝑏

?𝑡₂ : 𝑏 ≤ 𝑏

⑧↝ done!

The remaining research question for putting (3.45) and (3.46) into practice is to determine
some heuristics when it is appropriate to perform 𝒪-intro (step ②) and step ④ , where
an instance ℎ : 𝑏 ≤ 𝑎 ∨ ¬ 𝑏 ≤ 𝑎 is introduced. What is an appropriate trigger for
suggesting the manoeuvre in ④,⑤,⑥ to the user?

(3.46). Continuation of (3.45) to
perform an 'informed
backtracking'.
The key step is ④ ,
the inclusion of an instance of the
LEM axiom triggered by the
insolubility of the goal
?𝑡₂ : 𝑏 ≤ 𝑎 on the left-hand

branch of the 𝒪 box.
 ⑤ is an
amalgamation of two box-tactics;
∨-cases (3.31) and 𝒪 -hoisting

(A.42) as described in
Definition A.39. ⑥ is application
of ℎ : 𝑎 ≤ 𝑏 in the left-hand box
and 𝒪-reduce₁ (3.22). ⑦ is an
application of ¬(𝑏 ≤ 𝑎) → 𝑎 ≤ 𝑏

and ⑧ is an application of
𝑏 ≤ 𝑏 .

54

Chapter 4

Subtasks
4.1. Equational reasoning
Equality chains are ubiquitous in mathematics.
Here, by equality chain, I mean parts of
proofs found in mathematical literature that consist of a list of expressions separated by =
or some other transitive relation symbol.
The chains are chosen such that each pair of
adjacent expressions are clearly equal to the reader, in the sense that the equality does not
need to be explicitly justified. And hence, by transitivity, the chain shows that the first
expression is equal to the last one.

For example, take some vector space V . Suppose that one wishes to prove that given a
linear map 𝐴 : V ⟶ V , its adjoint 𝐴† : V → V is linear .
To do so one typically provides
the equality chain (4.1) for all vectors 𝑥 𝑢 𝑣 : V .

⟨𝐴† (𝑢 + 𝑣), 𝑥⟩
 = ⟨𝑢 + 𝑣, 𝐴 𝑥⟩
 = ⟨𝑢, 𝐴 𝑥⟩ + ⟨𝑣, 𝐴 𝑥⟩
 = ⟨𝐴† 𝑢, 𝑥⟩ + ⟨𝑣, 𝐴 𝑥⟩
 = ⟨𝐴† 𝑢, 𝑥⟩ + ⟨𝐴† 𝑣, 𝑥⟩
 = ⟨𝐴† 𝑢 + 𝐴† 𝑣, 𝑥⟩​

The equations that one can compose the reasoning chain from (e.g., ⟨𝐴† 𝑎, 𝑏⟩ = ⟨𝑎, 𝐴 𝑏⟩)
are called
rewrite rules.
For the example (4.1), there are a large number of axiomatic
rewrite rules available (4.2) and still more rules derived from these.
We can formulate the
equation rewriting problem for two expressions Γ ⊢ 𝑙 = 𝑟 as finding a path in the graph E
whose vertices are expressions in Γ and whose edges are generated by a set of rewrite
rules 𝑅 (such as those in (4.2)). Any free variables in 𝑅 are substituted with correctly
typed expressions to produce ground rewrite rules that are then closed under symmetry,
transitivity, congruence .

𝑎 + 𝑏 = 𝑏 + 𝑎 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 0 + 𝑎 = 𝑎 𝑎 + - 𝑎 = 0 - 𝑎 + 𝑎 = 0

𝑎 * 𝑏 = 𝑏 * 𝑎 𝑎 * (𝑏 * 𝑐) = (𝑎 * 𝑏) * 𝑐 1 * 𝑎 = 𝑎 𝑎 ≠ 0 → 𝑎 * 𝑎⁻¹ = 1

𝑎 ≠ 0 → 𝑎⁻¹ * 𝑎 = 1 𝑎 * (𝑏 + 𝑐) = 𝑎 * 𝑏 + 𝑎 * 𝑐 𝑦 + 𝑥 = 𝑥 + 𝑦

𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 𝑥 + 0 = 0 1 • 𝑥 = 𝑥 (𝑎 + 𝑏) • 𝑥 = 𝑎 • 𝑥 + 𝑏 • 𝑥

(𝑎 * 𝑏) • 𝑥 = 𝑎 • (𝑏 • 𝑥) 𝑎 • (𝑥 + 𝑦) = 𝑎 • 𝑥 + 𝑎 • 𝑦

⟨𝑢 + 𝑣, 𝑥⟩ = ⟨𝑢, 𝑥⟩ + ⟨𝑣, 𝑥⟩ ⟨𝑢, 𝑥 + 𝑦⟩ = ⟨𝑢, 𝑥⟩ + ⟨𝑢, 𝑦⟩

𝑎 * ⟨𝑢, 𝑥⟩ = ⟨𝑎 • 𝑢, 𝑥⟩ 𝑎 * ⟨𝑢, 𝑥⟩ = ⟨𝑢, 𝑎 • 𝑥⟩ 𝐴 (𝑥 + 𝑦) = 𝐴 𝑥 + 𝐴 𝑦

𝑎 • 𝐴 𝑥 = 𝐴 (𝑎 • 𝑥) ⟨𝐴† 𝑢, 𝑥⟩ = ⟨𝑢, 𝐴 𝑥⟩

A central part of automated theorem proving (ATP) is constructing equality proofs such as
(4.1) from (4.2) automatically.
This can be done with well-researched techniques from the
field of term rewriting systems [BN98].
These techniques take advantage of the fact
that computers can perform many operations per second, and large search spaces can be
explored quickly, though heuristic functions are still needed to prevent a combinatorial
explosion.
Many domains - such as checking that two expressions are equal using the ring
axioms - also have specialised decision procedures available for them.
I'll call these
approaches to solving equalities machine-oriented; this contrasts with human-oriented
as discussed in Section 2.6.

41 In general, the adjoint should
act on the dual space
𝐴† : V* → V* .

41

(4.1). The running example
problem for this chapter.
Here,
⟨_, _⟩ : V × V → ℂ is the inner

product taking a pair of vectors to
a complex number.

42 A relation ~ is congruent
when 𝑥 ~ 𝑦 implies
𝑡⦃𝑧 ↦ 𝑥⦄ ~ 𝑡⦃𝑧 ↦ 𝑦⦄ for all

valid expressions 𝑥 , 𝑦 and 𝑡
where 𝑡 has a free variable 𝑧 .

42

(4.2). A possible set of rewrite
rules relevant to (4.1).
Where
𝑎 𝑏 𝑐 : ℂ for some field ℂ ;
𝑥 𝑦 𝑧 : V for some ℂ -vector

space V ; and A : V ⟶ V is a
linear map in V .
Note that the
vector space laws are over an
arbitrary vector space and so can
also apply to the dual space V .
This list is for illustrative
purposes rather than being
exhaustive:
the details within an
ITP can vary. For example, in
Lean, there is a single
commutativity rule
 ∀ (𝑎 𝑏 : α)
[comm_monoid α], 𝑎 * 𝑏 = 𝑏 * 𝑎

which applies to any type with an
instance of the comm_monoid
typeclass.

[BN98] Baader, Franz;
Nipkow, Tobias Term
rewriting and all that
(1998) publisher Cambridge
University Press

55

https://en.wikipedia.org/wiki/Dual_space

In accordance with the research goals of this thesis (Section 1.2), the purpose here is to
investigate alternative, human-like ways of producing equality proofs.
As motivated in
Section 1.1, this serves the purpose of improving the usability of proof assistants by making
the proofs generated more understandable (Section 2.5).
The goal of this chapter is not to
develop methods that compete with machine-oriented techniques to prove more theorems
or prove them faster.
Instead, I want to focus on the abstract reasoning that a human
mathematician typically carries out when they encounter an equality reasoning problem
such as (4.1).

With this in mind, the goal of this chapter is to create an algorithm which:

can solve simple equality problems of the kind that an undergraduate
might find
easy;

does not encode any domain-specific knowledge of mathematics. That is,
it does not
invoke specialised procedures if it detects that the
problem lies in a particular
domain such as Presburger arithmetic;

is efficient in the sense that it does not store a large state and
does not perform a
significant search when a human would not.

Typically, existing ATP methods do not scale well with the number of competing rules
introduced, as one would expect of algorithms that make use of significant amounts of
brute-force search.
If we can devise new architectures that solve simple equalities with less
search, then it may be possible to scale up these techniques to larger problems and
improve the efficiency of established ATP methods.

This chapter presents the subtask algorithm which has some success with respect to the
above goals.
The algorithm is written in Lean 3 [MKA+15] and can be found on GitHub.
The work in this chapter also appears as a paper published in KI 2019 [AGJ19].
In the
remainder of the chapter I give a motivating example (Section 4.2) followed by a
description of the algorithm (Section 4.3).
The algorithm is then contrasted with existing
approaches (Section 4.4) and evaluated against the above goals (Section 4.5).

4.2. Example
Let us begin with a motivating example (4.1) in elementary linear algebra.
We have to solve
the goal of the Box (4.3) using the rewrite rules given in (4.2).

V : VectorSpace ℂ

𝑥 𝑢 𝑣 : V

𝐴 : V ⟶ V

⟨𝐴† (𝑢 + 𝑣), 𝑥⟩ = ⟨𝐴† 𝑢 + 𝐴† 𝑣, 𝑥⟩

To do this, a human's proving process might proceed as follows:

[MKA+15] de Moura,
Leonardo; Kong, Soonho;
Avigad, Jeremy; et al. The
Lean theorem prover (system
description) (2015) International
Conference on Automated
Deduction

[AGJ19] Ayers, E. W.;
Gowers, W. T.; Jamnik,
Mateja A human-oriented term
rewriting system (2019) KI
2019: Advances in Artificial
Intelligence - 42nd German
Conference on AI

(4.3). The Box representing the
task to solve in this instance.
Full
detail on Box is given in
Chapter 3. For the purposes of
this chapter, a Box represents a
theorem to prove with a list of
variables and hypotheses above
the line and a goal proposition to
prove below the line.

56

https://en.wikipedia.org/wiki/Presburger_arithmetic
https://kilthub.cmu.edu/articles/The_Lean_Theorem_Prover_system_description_/6492815/files/11937416.pdf
https://github.com/EdAyers/lean-subtask
https://www.repository.cam.ac.uk/bitstream/handle/1810/298199/main.pdf?sequence=1
https://kilthub.cmu.edu/articles/The_Lean_Theorem_Prover_system_description_/6492815/files/11937416.pdf
https://www.repository.cam.ac.uk/bitstream/handle/1810/298199/main.pdf?sequence=1

① I need to create the expression ⟨𝐴† 𝑢 + 𝐴† 𝑣, 𝑥⟩ .

② In particular, I need to make the subexpressions 𝐴† 𝑢 and 𝐴† 𝑣 . Let's focus on
𝐴† 𝑢 .

③ The only sensible way I can get this is to use the definition ⟨𝑢, 𝐴 ?𝑧⟩ = ⟨𝐴† 𝑢, ?𝑧⟩ ,
presumably with ?𝑧 = 𝑥 .

④ In particular, I'll need to make the subterm 𝐴 ?𝑧 for some ?𝑧 .

⑤ I can do that straight away: ⟨𝐴† (𝑢 + 𝑣), 𝑥⟩ = ⟨𝑢 + 𝑣, 𝐴 𝑥⟩ using the rewrite rule
∀ 𝑤 𝑧, ⟨𝐴† 𝑤, 𝑧⟩ = ⟨𝑤, A 𝑧⟩ .

⑥ Now I'm in a position to obtain the subexpression ⟨𝑢, 𝐴 𝑥⟩ I wanted in step 3, so let
me do that using bilinearity: ⟨𝑢 + 𝑣, 𝐴 𝑥⟩ = ⟨𝑢, 𝐴 𝑥⟩ + ⟨𝑣, 𝐴 𝑥⟩ .

⑦ And now I can get the subexpression 𝐴† 𝑢 I wanted even earlier in step 2, so let me
do that: ⟨𝑢, 𝐴 𝑥⟩ + ⟨𝑣, 𝐴 𝑥⟩ = ⟨𝐴† 𝑢, 𝑥⟩ + ⟨𝑣, 𝐴 𝑥⟩ .

⑧ In step 2 I also wanted to create 𝐴† 𝑣 , which I can now get too:
⟨𝐴† 𝑢, 𝑥⟩ + ⟨𝑣, 𝐴 𝑥⟩ = ⟨𝐴† 𝑢, 𝑥⟩ + ⟨𝐴† 𝑣, 𝑥⟩ .

⑨ And with one application of bilinearity I'm home:
⟨𝐴† 𝑢, 𝑥⟩ + ⟨𝐴† 𝑣, 𝑥⟩ = ⟨𝐴† 𝑢 + 𝐴† 𝑣, 𝑥⟩ .

The key aspect of the thought process in List 4.4 is the setting of intermediate aims, such
as obtaining certain subexpressions when one does not immediately see how to obtain the
entire expression.
Let's do this by creating a tree of subtasks Figure 4.5.

The tree in Figure 4.5 represents what the algorithm does with the additivity-of-adjoint
problem (4.3).
It starts with the subtask create_all ⟨𝐴† 𝑢 + 𝐴† v, x⟩ at ① .
Since it
cannot achieve that in one application of an available rule, it creates a set of subtasks and
then chooses the one that is most promising: later in Section 4.3, I will explain how it
generates and evaluates possible subtasks.
In this case the most promising subtask is
create 𝐴† 𝑢 , so it selects that in ② and identifies a rewrite rule - the definition of adjoint:
∀ 𝑤 𝑧, ⟨𝐴† 𝑤, 𝑧⟩ = ⟨𝑤, 𝐴 𝑧⟩ - that can achieve it; adding use ⟨𝑢, 𝐴 ?𝑧⟩ = ⟨𝐴† 𝑢, ?𝑧⟩ to
the tree at ③ .
The ?𝑧 that appears at ③ in Figure 4.5 is a metavariable that will in due
course be assigned to 𝑥 .
Now the process repeats on ③ , a set of subtasks are again
created for the lhs of ⟨𝑢, 𝐴 ?𝑧⟩ = ⟨𝐴† 𝑢, ?𝑧⟩ and the subtask create 𝐴 ?𝑧 is selected (④).
Now, there does exist a rewrite rule that will achieve create 𝐴 ?𝑧 :
⟨𝐴† (𝑢 + 𝑣), 𝑥⟩ = ⟨𝑢 + 𝑣, 𝐴 𝑥⟩ , so this is applied and now the algorithm iterates back up
the subtask tree, testing whether the new expression ⟨𝑢 + 𝑣, 𝐴 𝑥⟩ achieves any of the
subtasks and whether any new rewrite rules can be used to achieve them.

In the next section, I will provide the design of an algorithm that behaves according to
these motivating principles.

List 4.4. A sketch of a human's
possible thought process when
constructing an equality proof for
(4.3).

Figure 4.5. The subtask tree for
solving (4.3):
⟨𝐴† (𝑢 + 𝑣), 𝑥⟩ = ⟨𝐴† 𝑢 + 𝐴† 𝑣, 𝑥⟩ .

Circled numbers correspond to
steps in List 4.4, so the 'focus' of
the algorithm travels around the
tree as it progresses.
Details on
how this tree is generated will
follow in Section 4.3.

43 That is, a placeholder for an
expression to be chosen later. See
Section 2.4 for background
information on metavariables.

43

57

4.3. Design of the algorithm
The subtasks algorithm may be constructed as a search over a directed graph S .

The subtask algorithm's state 𝑠 : S has three components ⟨𝑡, 𝑓, 𝑐⟩ :

a tree 𝑡𝑠 : Tree(Task) of tasks (as depicted in Figure 4.5)

a 'focussed' node 𝑓 : Address(𝑡𝑠) in the tree .

an expression 𝑐 : Expr called the current expression (CE) which represents the
current left-hand-side of the equality chain.
The subtasks algorithm provides the
edges between states through sound manipulations of the tree and current
expression.
Each task in the tree corresponds to a predicate or potential rule
application that could be used to solve an equality problem.

Given an equational reasoning problem Γ ⊢ 𝑙 = 𝑟 , the initial state 𝑠₀ : S consists of a
tree with a single root node CreateAll 𝑟 and a CE 𝑙 . We reach a goal state when the
current expression 𝑐 is definitionally equal to 𝑟 .

The first thing to note is that if we project 𝑠 : S to the current expression 𝑐 , then we can
recover the original equational rewriting problem E by taking the edges to be all possible
rewrites between terms. One problem with searching this space is that the number of edges
leaving an expression can be infinite .
The typical way that this problem is avoided is to
first ground all available rewrite rules by replacing all free variables with relevant
expressions.
The subtasks algorithm does not do this, because this is not a step that
humans perform when solving simple equality problems.
Even after grounding, the
combinatorial explosion of possible expressions makes E a difficult graph to search
without good heuristics.
The subtasks algorithm makes use of the subtasks tree 𝑡 to guide
the search in E in a manner that is intended to match the process outlined in List 4.4 and
Figure 4.5.

A task 𝑡 : Task implements the following three methods:

refine : Task → (List Task) creates a list of subtasks for a given task. For
example, a task create (𝑥 + 𝑦) would refine to subtasks create 𝑥 , create 𝑦 . The
refinement may also depend on the current state 𝑠 of the tree and CE. The word
'refinement' was chosen to reflect its use in the classic paper by Kambhampati
[KKY95]; a refinement is the process of splitting a set of candidate solutions that may
be easier to check separately.

test : Task → Expr → Bool which returns true when the given task 𝑡 : Task is
achieved for the given current expression 𝑒 : Expr . For example, if the current
expression is 4 + 𝑥 , then create 𝑥 is achieved. Hence, each task may be viewed as a
predicate over expressions.

Optionally, execute : Task → Option Rewrite which returns a Rewrite object
representing a rewrite rule from the current expression 𝑐ᵢ to some new expression
𝑐ᵢ₊₁ (in the context Γ) by providing a proof 𝑐ᵢ = 𝑐ᵢ₊₁ that is checked by the
prover's kernel. Tasks with execute functions are called strategies. In this case,
test must return true when execute can be applied successfully, making test a
precondition predicate for execute . As an example, the use (𝑥 = 𝑦) task performs
the rewrite 𝑥 = 𝑦 whenever the current expression contains an instance of 𝑥 .

This design enables the system to be modular, where different sets of tasks and strategies
can be included.
Specific examples of tasks and strategies used by the algorithm are given
in {#the-main-subtasks}.
Given a state 𝑠 : S , the edges leading from 𝑠 are generated
using the flowchart shown in Figure 4.6.

Let 𝑓 be the focussed subtask for 𝑠 .
In the case that test(𝑓) is true the algorithm
'ascends' the task tree.
In this branch, 𝑓 is tagged as 'achieved' and the new focussed task
is set as parent of 𝑓 .
Then, it is checked whether any siblings of 𝑓 that were marked as
achieved are no longer achieved (that is, there is a sibling task 𝑡 tagged as achieved but

44 𝑡𝑠 and 𝑓 are implemented
as a zipper [Hue97]. Zippers
are described in Appendix A.

44

45 That is, the two expressions are
equal by reflexivity.
45

46 For example, the rewrite rule
∀ 𝑎 𝑏, 𝑎 = 𝑎 - 𝑏 + 𝑏 can be

applied to any expression with
any expression being substituted
for 𝑏

46

[KKY95] Kambhampati,
Subbarao; Knoblock, Craig
A; Yang, Qiang Planning as
refinement search: A unified
framework for evaluating
design tradeoffs in partial-
order planning
(1995) Artificial Intelligence

58

https://doi.org/10.1016/0004-3702(94)00076-D
http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/huet-zipper.pdf
https://doi.org/10.1016/0004-3702(94)00076-D

test(𝑡) is now false).
The intuition behind this check on previously achieved subtasks is
that once a sibling task is achieved, it should not be undone by a later step because the
assumption is that all of the child subtasks are needed before the parent task can be
achieved.

In the case that test(𝑓) is false, meanwhile, the algorithm 'explores' the task tree by
finding new child subtasks for 𝑓 .
To do this, refine(𝑓) is called to produce a set of
candidate subtasks for 𝑓 . For each 𝑡 ∈ refine(𝑓) , 𝑡 is inserted as a child of 𝑓 provided
that test(𝑡) is false and 𝑡 does not appear as an ancestor of 𝑓 . Duplicate children are
removed. Finally, for each subtask 𝑡 , a new state is yielded with the focus now set to 𝑡 .
Hence 𝑠 's outdegree in the graph will be the number of children that 𝑓 has after
refining.

Now that the state space S , the initial state 𝑠₀ , the goal states and the edges on S are
defined, we can perform a search on this graph with the help of a heuristic function
h : S → [0, ∞] to be discussed in Section 4.3.2.
The subtasks algorithm uses greedy best-
first search with backtracking points.
However, other graph-search algorithms such as A⋆

or hill-climbing may be used.

4.3.1. The defined subtasks

In this section I will provide a list of the subtasks that are implemented in the system and
some justification for their design.

4.3.1.1. create_all 𝑒

The create_all : Expr → Task task is the root task of the subtask tree.

Refine: returns a list of create 𝑏 subtasks where each 𝑏 is a minimal subterm of 𝑒
not present in the current expression.

Test: true whenever the current expression is 𝑒 . If this task is achieved then the
subtasks algorithm has succeeded in finding an equality chain.

Execute: none.

The motivation behind the refinement rule is that since 𝑏 appears in 𝑒 but not in the
current expression, then it must necessarily arise as a result of applying a rewrite rule.
Rather than include every subterm of 𝑒 with this property, we need only include the
minimal subterms with this property since if 𝑏 ⊂ 𝑏' , then
test(create 𝑏) ⇐ test(create 𝑏') . In the running example (4.3), the subtasks of
create_all ⟨𝐴† 𝑢 + 𝐴† 𝑣, 𝑥⟩ are create (𝐴† 𝑢) and create (𝐴† 𝑣) .

4.3.1.2. create 𝑒

The create task is achieved if the current expression contains 𝑒 .

Refine: returns a list use (𝑎 = 𝑏) subtasks where 𝑒 overlaps with 𝑏 (see further
discussion below). It can also return reduce_distance subtasks in some
circumstances.

Test: true whenever the current expression is 𝑒 .

Execute: none.

47 The outdegree of a vertex 𝑣 in
a directed graph is the number of
edges leaving 𝑣 .

47

Figure 4.6. Flowchart for
generating edges for a starting
state 𝑠 : S .
Here, each call to
yield state will produce another

edge leading from 𝑠 to the new
state.

59

Given a rewrite rule 𝑟 : ∀ (..𝑥𝑠), 𝑎 = 𝑏 , say that an expression 𝑒 overlaps with the right
hand side of 𝑟 when there exists a most-general substitution σ on 𝑟 's variables 𝑥𝑠 such
that

𝑒 appears in σ(𝑏) ;

𝑒 does not appear in σ(𝑎) ;

𝑒 does not appear in σ .
This last condition ensures that the expression comes about
as a result of the term-structure of the rule 𝑟 itself rather than as a result of a
substitution.
The process of determining these rules is made efficient by storing the
available rewrite rules in a term indexed datastructure [SRV01].

Additionally, as mentioned, create 𝑒 can sometimes refine to yield a reduce_distance
subtask. The condition for this depends on the distance between two subterms in a parent
expression 𝑐 : Expr , which is defined as the number of edges between the roots of the
subterms -- viewing 𝑐 's expression tree as a graph. If two local variables 𝑥 , 𝑦 are present
exactly once in both the current expression and 𝑒 , and the distance between them is
greater in the current expression, then reduce_distance 𝑥 𝑦 is included as a subtask.

In order to handle cases where multiple copies of 𝑒 are required, create has an optional
count argument that may be used to request an n th copy of 𝑒 .

4.3.1.3. use (𝑎 = 𝑏)

This is the simplest strategy. It simply represents the subtask of using the given rewrite
rule.

Refine: Returns a list of create 𝑒 subtasks where each 𝑒 is a minimal subterm of
𝑎 not present in the current expression. This is the same refinement rule that is used
to create subtasks of the create_all task.

Test: True whenever the rule 𝑎 = 𝑏 can be applied to the current expression.

Execute: Apply 𝑎 = 𝑏 to the current expression. In the event that it fails (for
example if the rule application causes an invalid assignment of a metavariable) then
the strategy fails.

4.3.1.4. reduce_distance (𝑥, 𝑦)

reduce_distance is an example of a greedy, brute-force strategy. It will perform any rewrite
rule that moves the given variables closer together and then terminate.

Refine: returns the empty list. That is, there are no subtasks available.

Test: True whenever there is only one instance of 𝑥 and 𝑦 in the current expression
and there exists a rewrite rule that will move 𝑥 closer to 𝑦 .

Execute: repeatedly applies rewrite rules greedily moving 𝑥 and 𝑦 closer together,
terminating when they can move no further together.

4.3.2. Heuristics

In this section I present the heuristic function developed for the subtasks algorithm.
The
ideas behind this function are derived from introspection on equational reasoning and
some degree of trial and error on a set of equality problems.

There are two heuristic functions that are used within the system, an individual strategy
heuristic and an 'overall-score' heuristic that evaluates sets of child strategies for a
particular task.
Overall-score is used on tasks which are not strategies by performing a
lookahead of the child strategies of the task.
The child strategies 𝑆₁, 𝑆₂ ⋯ are then scored
individually through a scoring system, scoring higher if they:

achieve a task higher in the task tree;

achieve a task on a different branch of the task tree;

[SRV01] Sekar, R;
Ramakrishnan, I.V.;
Voronkov, Andrei Term
Indexing (2001) Handbook of
automated reasoning

60

have a high degree of term overlap with the current expression. This
is measured
using symbol counting and finding largest common
subterms;

use local variables and hypotheses;

can be achieved in one rewrite step from the current expression.

The intuition behind all of these is to give higher scores to strategies that are salient in
some way, either by containing subterms that are present in the current expression or
because other subtasks are achieved.

From these individual scores, the score for the parent task of 𝑆₁, 𝑆₂ ... is computed as
follows:
If there is only one strategy then it scores 10 .
If there are multiple strategies, it
discards any scoring less than -5 .
If there are positive-scoring strategies then all negative-
scoring strategies are discarded.
The overall score is then set to be 5 minus the number of
strategies in the list.
The intention of this procedure is that smaller sets of strategies should
be preferred, even if their scores are bad because it limits choice in what to do next.

The underlying idea behind the overall-scoring heuristic is that often the first sensible
strategy found is enough of a signpost to solve simple problems.
That is, once one has
found one plausible strategy of solving a simple problem it is often fruitful to stop looking
for other strategies which achieve the same thing and to get on with finding a way of
performing the new strategy.

4.3.3. Properties of the algorithm

The substasks algorithm is sound provided sound rewrite rules are produced by the
function execute : Task → Option Rewrite .
That is, given an equation to solve Γ ⊢ 𝑙 = 𝑟
and given a path 𝑠₀ ↝ 𝑠₁ ↝ ... ↝ 𝑠ₙ in S where 𝑠₀ is the initial state defined in
By
forgetting the subtask tree, a solution path in S can be projected to a solution path in E ,
the equational rewriting graph. This projected path is exactly a proof of 𝑙 = 𝑟 ; it will be
composed of a sequence 𝑙 ≡ 𝑐₀ = 𝑐₁ = ... = 𝑐ₙ ≡ 𝑟 where 𝑐ᵢ is the current expression of
𝑠ᵢ .
Each equality in the chain holds either by the assumption of the proofs returned from
execute being sound or by the fact that the current expression doesn't change between
steps otherwise.

The next question to ask is whether S is complete with respect to E . That is, does S
contain a path to the solution whenever E contains one?
The answer to this depends on
the output of refine . If refine always returns an empty list of subtasks then S is not
complete, because no subtasks will ever be executed.
The set of subtasks provided in
Section 4.3.1 are not complete. For example the problem 1 - 1 = 𝑥 + - 𝑥 will not solve
without additional subtasks since the smallest non-present subterm is 𝑥 , so create 𝑥 is
added which then does not refine further using the procedure in Section 4.3.1.
In
Section 4.6 I will discuss some methods to address this.

4.4. Qualitative comparison with related
work
There has been a substantial amount of research on the automation of solving equality
chain problems over the last decade.
The approach of the subtasks algorithm is to combine
these rewriting techniques with a hierarchical search.
In this section I compare subtasks
which with this related work.

4.4.1. Term Rewriting

One way to find equality proofs is to perform a graph search using a heuristic.
This is the
approach of the rewrite-search algorithm by Hoek and Morrison [HM19], which uses the
heuristic of string edit-distance between the strings' two pretty-printed expressions.
The
rewrite-search algorithm does capture some human-like properties in the heuristic, since

61

https://github.com/semorrison/lean-rewrite-search

the pretty printed expressions are intended for human consumption.
The subtasks
algorithm is different from rewrite-search in that the search is guided according to
achieving sequences of tasks.
Since both subtasks and rewrite-search are written in Lean,
some future work could be to investigate a combination of both systems.

A term rewriting system (TRS) 𝑅 is a set of oriented rewrite rules.
There are many
techniques available for turning a set of rewrite rules in to procedures that check whether
two terms are equal.
One technique is completion, where 𝑅 is converted into an
equivalent TRS 𝑅' that is convergent.
This means that any two expressions 𝑎 , 𝑏 are
equal under 𝑅 if and only if repeated application of rules in 𝑅' to 𝑎 and 𝑏 will produce
the same expression.
Finding equivalent convergent systems, if not by hand, is usually
done by finding decreasing orderings on terms and using Knuth-Bendix completion
[KB70].
When such a system exists, automated rewriting systems can use these techniques
to quickly find proofs, but the proofs are often overly long and needlessly expand terms.

Another method is rewrite tables, where a lookup table of representatives for terms is
stored in a way that allows for two terms to be matched through a series of lookups.

Both completion and rewrite tables can be considered machine-oriented because they rely
on large datastructures and systematic applications of rewrite rules.
Such methods are
certainly highly useful, but they can hardly be said to capture the process by which humans
reason.

Finally, there are many normalisation and decision procedures for particular domains, for
example on rings [GM05].
Domain specific procedures do not satisfy the criterion of
generality given in Section 4.1.

4.4.2. Proof Planning

Background information on proof planning is covered in Section 2.6.2.

The subtasks algorithm employs a structure that is similar to a hierarchical task
network (HTN) [Sac74, Tat77, MS99]. The general idea of a hierarchical task network is
to break a given abstract task (e.g., "exit the room") in to a sequence of subtasks ("find a
door" then "go to door" then "walk through the door") which may themselves be
recursively divided into subtasks ("walk through the door" may have a subtask of "open the
door" which may in turn have "grasp doorhandle" until bottoming out with a ground
actuation such as "move index finger 10°").
This approach has found use for example in the
ICARUS robotics architecture [CL18, LCT08].
HTNs have also found use in proof planning
[MS99].

The main difference between the approach used in the subtasks algorithm and proof
planning and hierarchical task networks is that the subtasks algorithm is greedier: the
subtasks algorithm generates enough of a plan to have little doubt what the first rewrite
rule in the sequence should be, and no more.
I believe that this reflects how humans
reason for solving simple problems: favouring just enough planning to decide on a good
first step, and then planning further only once the step is completed and new information
is revealed.

A difference between HTNs and subtasks is that the chains of subtasks do not necessarily
reach a ground subtask (for subtasks this is a rewrite step that can be performed
immediately).
This means that the subtasks algorithm needs to use heuristics to determine
whether it is appropriate to explore a subtask tree or not instead of relying on the task
hierarchy eventually terminating with ground tasks. The subtasks algorithm also inherits
all of the problems found in hierarchical planning: the main one being finding heuristics
for determining whether a subtask should be abandoned or refined further. The heuristics
given in Section 4.3.2 help with this but there are plenty more ideas from the hierarchical
task planning literature that could be incorporated also. Of particular interest for me are
the applications of hierarchical techniques from the field of reinforcement learning .

[HM19] Hoek, Keeley;
Morrison, Scott lean-rewrite-
search GitHub repository
(2019) https://github.com/semorr

ison/lean-rewrite-search

[KB70] Knuth, Donald E;
Bendix, Peter B Simple word
problems in universal algebras
(1970) Computational Problems
in Abstract Algebra

[GM05] Grégoire, Benjamin;
Mahboubi, Assia Proving
equalities in a commutative ring
done right in Coq
(2005) International Conference
on Theorem Proving in Higher
Order Logics

[Sac74] Sacerdoti, Earl
D Planning in a hierarchy of
abstraction spaces
(1974) Artificial intelligence

[Tat77] Tate,
Austin Generating project
networks (1977) Proceedings of
the 5th International Joint
Conference on Artificial
Intelligence.

[MS99] Melis, Erica;
Siekmann, Jörg Knowledge-
based proof planning
(1999) Artificial Intelligence

[CL18] Choi, Dongkyu;
Langley, Pat Evolution of the
ICARUS cognitive architecture
(2018) Cognitive Systems
Research

[LCT08] Langley, Pat; Choi,
Dongkyu; Trivedi,
Nishant Icarus user’s manual
(2008)

[MS99] Melis, Erica;
Siekmann, Jörg Knowledge-
based proof planning
(1999) Artificial Intelligence

48

62

https://www.cs.tufts.edu/~nr/cs257/archive/don-knuth/knuth-bendix.pdf
http://cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf
https://doi.org/10.1016/0004-3702(74)90026-5
https://dl.acm.org/doi/abs/10.5555/1622943.1623021
https://doi.org/10.1016/S0004-3702(99)00076-4
https://doi.org/10.1016/j.cogsys.2017.05.005
http://www.isle.org/~langley/papers/manual.pdf
https://doi.org/10.1016/S0004-3702(99)00076-4
https://github.com/semorrison/lean-rewrite-search
https://github.com/semorrison/lean-rewrite-search
https://www.cs.tufts.edu/~nr/cs257/archive/don-knuth/knuth-bendix.pdf
http://cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf
https://doi.org/10.1016/0004-3702(74)90026-5
https://dl.acm.org/doi/abs/10.5555/1622943.1623021
https://doi.org/10.1016/S0004-3702(99)00076-4
https://doi.org/10.1016/j.cogsys.2017.05.005
http://www.isle.org/~langley/papers/manual.pdf
https://doi.org/10.1016/S0004-3702(99)00076-4

4.5. Evaluation
The ultimate motivation behind the subtasks algorithm is to make an algorithm that
behaves as a human mathematician would.
I do not wish to claim that I have fully achieved
this, but we can evaluate the algorithm with respect to the general goals that were given in
Section 4.1.

Scope: can it solve simple equations?

Generality: does it avoid techniques specific to a particular area of mathematics?

Reduced search space: does the algorithm avoid search when finding proofs that
humans can find easily without search?

Straightforwardness of proofs: for easy problems, does it give a proof that an
experienced human mathematician might give?

The method of evaluation is to use the algorithm implemented as a tactic in Lean on a
library of thirty or so example problems.
This is not large enough for a substantial
quantitative comparison with existing methods, but we can still investigate some
properties of the algorithm.
The source code also contains many examples which are
outside the abilities of the current implementation of the algorithm.
Some ways to address
these issues are discussed in Section 4.6.

Table 4.7 gives some selected examples.
These are all problems that the algorithm can
solve with no backtracking.

Problem Steps Location

𝑕 : α

𝑙 𝑠 : List α

rev(𝑙 ++ 𝑠) = rev(𝑠) ++ rev(𝑙)

∀ 𝑎, rev(𝑎 :: 𝑙) = rev(𝑙) ++ [𝑎]

rev(𝑕 :: 𝑙 ++ 𝑠) = rev(𝑠) ++ rev(𝑕 :: 𝑙) 5 datatypes.lean/rev_app_rev

A : Monoid

𝑎 : A

𝑚 𝑛 : ℕ

𝑎 ^ (𝑚 + 𝑛) = 𝑎 ^ 𝑚 * 𝑎 ^ 𝑚

𝑎 ^ (succ(𝑚) + 𝑛) = 𝑎 ^ succ(𝑚) * 𝑎 ^ 𝑛 8 groups.lean/my_pow_add

R : Ring

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 : R

𝑎 * 𝑑 = 𝑐 * 𝑑

𝑐 * 𝑓 = 𝑒 * 𝑏

𝑑 * (𝑎 * 𝑓) = 𝑑 * (𝑒 * 𝑏) 9 rat.lean

R : Ring

𝑎 𝑏 : R

(𝑎 + 𝑏) * (𝑎 + 𝑏) = 𝑎 * 𝑎 + 2 * (𝑎 * 𝑏) + 𝑏 * 𝑏 7 rings.lean/sumsq_with_equate

𝐵 𝐶 𝑋 : set

𝑋 \ (𝐵 ∪ 𝐶) = (𝑋 \ 𝐵) \ 𝐶 4 sets.lean/example_4

From this Table 4.7 we can see that the algorithm solves problems from several different
domains.
I did not encode any decision procedures for monoids or rings.
In fact I did not
even include reasoning under associativity and commutativity, although I am not in
principle against extending the algorithm to do this.
The input to the algorithm is a list of
over 100 axioms and equations for sets, rings, groups and vector spaces which can be
found in the file equate.lean in the source code .
Thus, the algorithm exhibits
considerable generality.

A good introductory text to
modern reinforcement learning is
Reinforcement Learning; An
Introduction by Sutton and Barto
[SB18b]. Readers wishing to learn
more about hierarchical
reinforcement learning may find
this survey article by Flet-Berliac
to be a good jumping-off point
[Fle19].

48

[SB18b] Sutton, Richard S;
Barto, Andrew
G Reinforcement learning: An
introduction (2018) publisher
MIT press

[Fle19] Flet-Berliac,
Yannis The Promise of
Hierarchical Reinforcement
Learning (2019) The Gradient

Table 4.7. subtask 's
performance on some example
problems. Steps gives the
number of rewrite steps in the
final proof. Location gives the
file and declaration name of the
example in the source code.

49 https://github.com/EdAyers/lean

-subtask

49

63

http://incompleteideas.net/book/the-book-2nd.html
https://thegradient.pub/the-promise-of-hierarchical-reinforcement-learning/
https://thegradient.pub/the-promise-of-hierarchical-reinforcement-learning
http://incompleteideas.net/book/the-book-2nd.html
https://thegradient.pub/the-promise-of-hierarchical-reinforcement-learning
https://github.com/EdAyers/lean-subtask

All of the solutions to the above examples are found without backtracking, which adds
support to the claim that the subtasks algorithm requires less search.
There are, however,
other examples in the source where backtracking occurs.

The final criterion is that the proofs are more straightforward than those produced by
machine-oriented special purpose tactics. This is a somewhat subjective measure but there
are some proxies that indicate that subtasks can be used to generate simpler proofs.

To illustrate this point, consider the problem of proving
(𝑥 + 𝑦)² + (𝑥 + 𝑧)² = (𝑧 + 𝑥)² + (𝑦 + 𝑥)² within ring theory.
I choose this example
because it is easy for a human to spot how to do it with three uses of commutativity, but it
is easy for a program to be led astray by expanding the squares. subtask proves this
equality with 3 uses of commutativity and with no backtracking or expansion of the
squares.
This is an example where domain specific tactics do worse than subtask , the ring
tactic for reasoning on problems in commutative rings will produce a proof by expanding
out the squares.
The built-in tactics ac_refl and blast in Lean which reason under
associativity and commutativity both use commutativity 5 times.
If one is simply interested
in verification, then such a result is perfectly acceptable.
However, I am primarily
interested in modelling how humans would solve such an equality, so I want the subtasks
algorithm not to perform unnecessary steps such as this.

It is difficult to fairly compare the speed of subtask in the current implementation because
it is compiled to Lean bytecode which is much slower than native built-in tactics that are
written in C++.
However it is worth noting that, even with this handicap, subtask takes
1900ms to find the above proof whereas ac_refl and blast take 600ms and 900ms
respectively.

There are still proofs generated by subtask that are not straightforward.
For example, the
lemma (𝑥 * 𝑧) * (𝑧⁻¹ * 𝑦) = 𝑥 * 𝑦 in group theory is proved by subtask with a
superfluous use of the rule e = 𝑥 * 𝑥⁻¹ .

4.6. Conclusions and Further Work
In this chapter, I introduced a new, task-based approach to finding equalities in proofs and
provided a demonstration of the approach by building the subtask tactic in Lean.
I show
that the approach can solve simple equality proofs with very little search.
I hope that this
work will renew interest in proof planning and spark interest in human-oriented reasoning
for at least some classes of problems.

In future work, I wish to add more subtasks and better heuristics for scoring them. The
framework I outlined here allows for easy experimentation with such different sets of
heuristics and subtasks.
In this way, I also wish to make the subtask framework extensible
by users, so that they may add their own custom subtasks and scoring functions.

Another possible extension of the subtasks algorithm is to inequality chains. The subtasks
algorithm was designed with an extension to inequalities in mind, however there are some
practical difficulties with implementing it.
The main difficulty with inequality proofs is that
congruence must be replaced by appropriate monoticity lemmas. For example, 'rewriting'
𝑥 + 2 ≤ 𝑦 + 2 using 𝑥 < 𝑦 requires the monotonicity lemma
∀ 𝑥 𝑦 𝑧, 𝑥 ≤ 𝑦 → 𝑥 + 𝑧 ≤ 𝑦 + 𝑧 .
Many of these monotonicity lemmas have additional
goals that need to be discharged such as 𝑥 > 0 in 𝑦 ≤ 𝑧 → 𝑥 * 𝑦 ≤ 𝑥 * 𝑧 , and so the
subtasks algorithm will need to be better integrated with a prover before it can tackle
inequalities.

There are times when the algorithm fails and needs guidance from the user.
I wish to study
further how the subtask paradigm might be used to enable more human-friendly
interactivity than is currently possible.
For example, in real mathematical textbooks, if an
equality step is not obvious, a relevant lemma will be mentioned.
Similarly, I wish to
investigate ways of passing 'hint' subtasks to the tactic.
For example, when proving

64

𝑥 * 𝑦 = (𝑥 * 𝑧) * (𝑧⁻¹ * 𝑦) , the algorithm will typically get stuck (although it can solve
the flipped problem), because there are too many ways of creating 𝑧 .
However, the user -
upon seeing subtask get stuck - could steer the algorithm with a suggested subtask such as
create (𝑥 * (𝑧 * 𝑧⁻¹)) .

Using subtasks should help to give better explanations to the user.
The idea of the subtasks
algorithm is that the first set of strategies in the tree roughly corresponds to the high-level
actions that a human would first consider when trying to solve the problem.
Thus, the
algorithm could use the subtask hierarchy to determine when no further explanation is
needed and thereby generate abbreviated proofs of a kind that might be found in
mathematical textbooks.

Another potential area to explore is to perform an evaluation survey where students are
asked to determine whether an equality proof was generated by the software or a machine.

65

Chapter 5

A graphical user interface
framework for formal
verification
In this chapter I present the 'ProofWidgets' framework for implementing general user
interfaces within an interactive theorem prover.
The framework uses web technology and
functional reactive programming (FRP), as well as the metaprogramming features of
advanced interactive theorem proving (ITP) systems such as Lean [EUR+17] to allow
arbitrary interactive graphical user interfaces (GUIs) to represent the goal state of a
theorem prover.
Users of the framework can create user interfaces declaratively within the
ITP's metaprogramming language, without having to develop in multiple languages and
without coordinated changes across multiple projects, which improves development time
for new designs.
The ProofWidgets framework also allows GUIs to make use of the full
context of the theorem prover and the specialised libraries that ITP systems offer, such as
methods for dealing with expressions and tactics.
The framework also includes an
extensible structured pretty-printing engine that enables advanced interaction with
expressions such as interactive term rewriting.

I have created an implementation of this framework: the ProofWidgets framework for the
leanprover-community fork of Lean 3.
Throughout the chapter I will use this
implementation as an illustration of the principles of the framework. I also provide a
practical tutorial to get started with the ProofWidgets framework in Appendix B.

The research contributions of this chapter are:

A new and general framework for creating portable, web-based, graphical user
interfaces within a theorem prover.

A functional API for creating widgets within the meta-programming framework of
a theorem prover.

An implementation of this framework for the Lean theorem prover.

A new representation of structured expressions for use with ProofWidgets.

A description and implementation of a goal-state widget used to interactively show
and explore goal states within the Lean theorem prover.

A paper based on the content of this chapter has been published in ITP 2021.
I would like
to thank Gabriel Ebner, Brian Gin-ge Chen, and Daniel Fabian for helping with and
reviewing the changes to Lean 3 and the VSCode extension needed to make the
implementation possible.
I would also like to thank Robert Y. Lewis; Markus Himmel;
Minchao Wu; Kendall Frey; Patrick Massot; and Angela Li for providing feedback and
creating their own ProofWidgets (shown in Figure 5.18).

Section 5.1 provides a survey of existing user interfaces for theorem provers.
Section 5.2
provides some additional information on the structure of web-apps and GUI frameworks.
I
state the research goals of ProofWidgets and how the system addresses research questions
of the thesis in Section 5.3.
Section 5.4 details the abstract architecture of the framework.
Section 5.5 presents a closer look at the mechanism for interactive pretty printing.
Section 5.6 compares ProofWidgets to related systems introduced in Section 5.1.
Section 5.7 provides an overview of some of the practical considerations to do with
implementation within a theorem prover, and in particular Lean.
Section 5.8 details how

50 In general software parlance, a
widget is a graphical component
from which to build GUIs.
It can
also sometimes mean a small
piece of interactive user interface
that is embedded in another
application, for example iPhone
widgets.

50

[EUR+17] Ebner, Gabriel;
Ullrich, Sebastian; Roesch,
Jared; et al. A
metaprogramming framework
for formal verification
(2017) Proceedings of the ACM
on Programming Languages

51 Application programming
interface. A set of protocols to
allow two applications to
communicate with each other.

51

66

https://doi.org/10.1145/3110278
https://leanprover-community.github.io/
http://easyconferences.eu/itp2021/
https://github.com/leanprover/vscode-lean
https://en.wikipedia.org/wiki/Graphical_widget
https://doi.org/10.1145/3110278

ProofWidgets are applied to the task of creating a user interface for HumanProof.
Section 5.9 looks at ways in which the system may be extended in the future.

5.1. Survey of user interfaces for provers
Here, I review user interfaces of theorem provers.
One research question in Section 1.2 is
to investigate how human-like reasoning can be enabled through the use of interactive
graphical user interfaces (GUIs).
The field of ITP has a rich history of using graphical user
interfaces to represent and interact with proofs and expressions.
Here I will provide a brief
review of these.
The background covered in this section will then be picked up in
Chapter 5, where I introduce my own GUI framework for ITP.

An early general user interface for interactive proving was Aspinall's Proof General
[Asp00, ALW07]. This took the form of an Emacs extension that offered a general purpose
API for controlling proof assistants such as Isabelle. A typical Proof General session
would make use of two text buffers: the proof script buffer and the goal state buffer (see
Figure 5.1).
Users type commands in to the script buffer, and observe changes in the goal
state buffer. This two-panel setup remains the predominant workflow for proof assistants
today.
The two-buffers method has stood the test of time, and so I keep this design in
pursuit of my research goals.
However, I modernise the goal state buffer and make it able
to render non-textual user interfaces such as graphs and plots.
Proof General also offers
the ability to perform interaction with the goal state, for example 'proof-by-pointing' with
subexpressions in the output window.

The idea of proof-by-pointing will play a key role in Section 5.5.
It was first described by
Bertot and Théry [BT98].
Proof-by-pointing preserves the semantics of pretty-printed
expressions so that a user may inspect the tree structure of the expression through
pointing to different parts of the string.
A pretty-printed expression is a string of
characters that represents an expression in the underlying foundation of a prover.
For
example the string 𝑥 + 𝑦 is the pretty printed form of the expression
app (app (const "plus") (var "𝑥")) (var "𝑦") .
This form of interaction, where the user can
interact graphically with expressions, is a powerful tool. For example, it enables
'interactive rewriting' of expressions, where equations can be manipulated by applying
rewrite rules (for example, commutativity 𝑥 + 𝑦 = 𝑦 + 𝑥) at exactly the subexpression
where they are needed, all with the click of a mouse.
I incorporate this tool and adapt it to
a more modern, web-based situation.

[Asp00] Aspinall,
David Proof General: A generic
tool for proof development
(2000) International Conference
on Tools and Algorithms for the
Construction and Analysis of
Systems

[ALW07] Aspinall, David;
Lüth, Christoph;
Winterstein, Daniel A
framework for interactive proof
(2007) Towards Mechanized
Mathematical Assistants

52

Application programming
interface. A set of protocols to
allow two applications to
communicate with each other.

52

Figure 5.1. Proof General with
an Isabelle/Isar file open. The top
buffer is the theory sourcefile and
the lower buffer is the goal state.
Image source: [Asp00].

[BT98] Bertot, Yves; Théry,
Laurent A generic approach to
building user interfaces for
theorem provers (1998) Journal
of Symbolic Computation

67

https://link.springer.com/content/pdf/10.1007/3-540-46419-0_3.pdf
https://doi.org/10.1007/978-3-540-73086-6_15
https://www.gnu.org/software/emacs/
https://doi.org/10.1006/jsco.1997.0171
https://link.springer.com/content/pdf/10.1007/3-540-46419-0_3.pdf
https://doi.org/10.1007/978-3-540-73086-6_15
https://link.springer.com/content/pdf/10.1007/3-540-46419-0_3.pdf
https://doi.org/10.1006/jsco.1997.0171

The most advanced specially-created IDE for proving is Isabelle's Prover IDE (PIDE)
[Wen12] (see Figure 5.2), developed primarily by Makarius Wenzel in Scala and based on
the JEdit text editor.
PIDE richly annotates Isabelle documents and proof states to provide
inline documentation; interactive and customisable commands; and automatic insertion of
text among other features. PIDE uses a Java GUI library called Swing.
Isabelle's
development environment allows users to code their own GUI in Scala.
There have been
some recent efforts to support VSCode as a client editor for Isabelle files.
A web-based
client for Isabelle, called Clide [LR13] was developed, although it provided only a subset of
the functionality of the JEdit version.
The design of PIDE also facilitates the development
of new GUI designs from within its inbuilt Scala framework with instant changes in the
GUI in response to changes in code.
In Chapter 5, I adapt this idea to provide this same
'hot-reloading' functionality for Lean.

SerAPI [Gal16] is a library for machine-machine interaction with the Coq theorem prover.
The project supports some web-based IDE projects such as jsCoq [GPJ17] and PeaCoq.
Very recently, a framework called Alectryon [Pit20] has been released for Coq that enables
users to embed web-based representations of data (see the link for more details).
Alectryon
offers the polish of a modern, graphical UI that I am aiming for, however it only produces a
page showing the state of the proof script after the fact, and doesn't implement any
interactive proof-creation system.

There are some older GUI-centric theorem provers that have fallen out of use: LΩUI
[SHB+99], HyperProof [BE92] and XBarnacle [LD97].
These tools were all highly
innovative for including graphical and multimodal representations of proofs, however the
code for these seems to have been lost, paywalled or succumbed to bit rot, to the extent
that I can only view them through the screenshots (Figure 5.3) that are included with the
papers.
Source code for Ωmega and CLAM (which LΩUI and XBarnacle use respectively)
can be found in the Theorem Prover Museum .
In my work I hope to recapture some of
the optimism and experimental verve of these early systems by providing a GUI framework
that makes it simple and reproducible to re-create these graphical and multimodal
representations.
(To peek ahead: some examples of community made representations can
be seen in Section 5.7.4).

Figure 5.2. Screenshot of
Isabelle2021. The main text
buffer is adorned with the goal
state window below and a sidebar
with the current prover status of
the open theories. All aspects of
the IDE can be modified from
within Isabelle through writing
Scala code.
Image source: own
screenshot.

53 Integrated Development
Environment
53

[Wen12] Wenzel,
Makarius Isabelle/jEdit-A
Prover IDE within the PIDE
Framework. (2012) Intelligent
Computer Mathematics - 11th
International Conference

[Gal16] Gallego Arias, Emilio
Jesús SerAPI: Machine-
Friendly, Data-Centric
Serialization for Coq
(2016) Technical Report

Figure 5.3. Screenshots for
LΩUI and X-Barnacle
respectively. Note the use of
graphical and multimodal
representations of proofs.
Image
source: [SHB+99] [Low97].

54 https://theoremprover-museum.gi

thub.io/

54

68

https://doi.org/10.1007/978-3-642-31374-5_38
https://www.scala-lang.org/
http://jedit.org/
https://docs.oracle.com/javase/8/docs/technotes/guides/swing/
https://isabelle.in.tum.de/repos/isabelle/file/tip/src/Tools/VSCode
http://www.informatik.uni-bremen.de/~clueth/papers/cicm2013.pdf
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408/file/serapi.pdf
https://arxiv.org/pdf/1701.07125
http://goto.ucsd.edu/peacoq/
https://doi.org/10.1145/3426425.3426940
https://doi.org/10.1007/s001650050053
https://www.aaai.org/Papers/Symposia/Spring/1992/SS-92-02/SS92-02-016.pdf
https://doi.org/10.1007/3-540-63104-6_39
https://en.wikipedia.org/wiki/Software_rot
https://theoremprover-museum.github.io/
https://doi.org/10.1007/978-3-642-31374-5_38
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408/file/serapi.pdf
https://doi.org/10.1007/s001650050053
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.2318&rep=rep1&type=pdf
https://theoremprover-museum.github.io/

Other contemporary proof assistants with specially made GUIs are Theorema [BJK+16]
and KeY [ABB+16].
Theorema is built upon the computer algebra system Wolfram
Mathematica and makes use of its inbuilt GUI framework. However a problem is that it is
tied to proprietary software.
KeY is a theorem prover for verifying Java applications. KeY
embraces multimodal views of proofs and offers numerous interactive proof discovery
features and interactive proof-by-pointing inspection of subexpressions. In her thesis,
Grebing investigates the usability of KeY [Gre19] through the use of focus groups, an
approach relevant for my evaluation study in Chapter 6.
I was particularly inspired by the
interactivity made by KeY, however I want this to work in a more general ITP whereas KeY
is more geared to verifying Java programs.

Another source of inspiration for me are the theorem prover web-apps: Vicary's Globular
[VKB18] and Breitner's Incredible Proof Machine [Bre16] (see Figure 5.4).
These tools are
natively web-based and offer a visual representation of the proof state for users to
manipulate. However they are both limited to particular domains of reasoning: Globular
categories and simple problems in first order logic. They also do not offer anything in the
way of automation, whereas I am interested in GUIs that assist in directing automation.

These tools all demonstrate an ongoing commitment by the ITP community to produce
graphical user interfaces which explore new ways of respresenting and interacting with
proof assistants. It is with these previous works in mind that I design a new kind of general
purpose approach to a GUI framework for a prover.
Further comparison of the system that
I have developed with the systems discussed here is given in Section 5.6.

5.2. Background on web-apps and
functional GUIs
In this section I give some background information on web-apps (Section 5.2.1), functional
UI frameworks (Section 5.2.2) and code-editing language servers Section 5.2.3 that is
needed to frame the design considerations discussed in the remainder of the chapter.

5.2.1. Anatomy of a web-app

Web-apps are ubiquitous in modern software. By a web-app, we mean any software that
uses modern browser technology to implement a graphical application.
Web-apps are
attractive targets for development because they are platform independent and can be
delivered from a server on the internet using a browser or be packaged as an entirely local
app using a packaging framework such as Electron.
Many modern desktop and mobile
applications such as VSCode are thinly veiled browser windows.

The structure of a web-page is dictated by a tree structure called the Document Object
Model (DOM), which is an abstract representation of the tree structure of an XML or
HTML document with support for event handling as might occur as a result of user
interaction.

[Gre19] Grebing, Sarah
Caecilia User Interaction in
Deductive Interactive Program
Verification (2019) PhD thesis
(Karlsruhe Institute of
Technology)

Figure 5.4. Screenshots of
Globular (left) and The
Incredible Proof Machine (right).
Image source: own screenshots.

[VKB18] Vicary, Jamie;
Kissinger, Aleks; Bar,
Krzysztof Globular: an online
proof assistant for higher-
dimensional rewriting
(2018) Logical Methods in
Computer Science

[Bre16] Breitner,
Joachim Visual theorem
proving with the Incredible Proof
Machine (2016) International
Conference on Interactive
Theorem Proving

69

https://doi.org/10.6092/issn.1972-5787/4568
https://doi.org/10.1007/978-3-319-49812-6
https://www.wolfram.com/mathematica/
https://d-nb.info/1198309989/34
http://globular.science/
https://core.ac.uk/download/pdf/79162392.pdf
http://incredible.pm/
https://www.info.uni-karlsruhe.de/uploads/publikationen/breitner16incredible.pdf
https://www.electronjs.org/
https://dom.spec.whatwg.org/
https://d-nb.info/1198309989/34
https://core.ac.uk/download/pdf/79162392.pdf
https://www.info.uni-karlsruhe.de/uploads/publikationen/breitner16incredible.pdf

A fragment is a valid subtree structure that is not the entire document (Figure 5.5).
So for
example, an 'HTML fragment' is used to denote a snippet of HTML that could be
embedded within an HTML document.

With the help of a CSS style sheet, the web browser paints this DOM to the screen in a way
that can be viewed and interacted with by a user (see Figure 5.6).
Through the use of
JavaScript and event handlers, a webpage may manipulate its own DOM in response to
events to produce interactive web-applications.
The performance bottleneck in web-apps is
usually the layout and painting stages of the browser rendering pipeline; the process by
which the abstract DOM is converted to pixels on a screen.

Modern browsers support W3C standards for many advanced features: video playback,
support for touch and ink input methods, drag and drop, animation, 3D rendering and
many more.
HTML also has a set of widely supported accessibility features called ARIA
which can be used to ensure that apps are accessible to all.
The power of web-apps to
create portable, fully interactive user interfaces has clear applications for ITP some of the
systems studied in Section 5.1 such as Globular and Incredible Proof Machine already
make use of web technologies.

The ProofWidgets framework places an ITP system within this interaction loop by
providing a metaprogramming interface to create DOM fragments and to update the DOM
in response to user interaction. Here, a fragment is any potential subtree of a full
document.
These fragments are then sent to the client editor which mounts this fragment
within an embedded web-browser for viewing. If the user interacts with the resulting view,
these interactions are sent back to the server and used to compute a new DOM fragment
and update the interface.

5.2.2. Functional GUI frameworks

Most meta-level programming languages for ITPs are functional programming
languages .
However GUIs are inherently mutable objects that need to react to user
interaction.
Fortunately, there is a long tradition of user interface frameworks for pure-
functional programming.
Reactive programming [BCC+13] enables the control of the
inherently mutating GUI within a pure functional programming interface.
The ideas of
reactive programming have achieved a wide level of adoption in web-app development

55 See this chromium
documentation entry for more
information on critical paths in
browser rendering. https://www.ch
romium.org/developers/the-renderi

ng-critical-path

55

Figure 5.5. Anatomy of an
HTML fragment.

Figure 5.6. Interaction loop for
a typical web-app.
A DOM tree is
painted using a CSS file to
produce a viewable webpage.
User interaction invokes event
handlers which manipulate the
DOM, causing a repaint.

56

ML and Scala for Isabelle,
OCaml for Coq, Lean for Lean.
56

57

70

https://www.w3.org/
https://developer.mozilla.org/en-US/docs/Web/API
https://www.w3.org/WAI/standards-guidelines/aria/
https://doi.org/10.1145/2501654.2501666
https://www.chromium.org/developers/the-rendering-critical-path

thanks to the popularity of tools such as the React JavaScript library and the Elm
programming language [CC13].

Elm and React are UI frameworks for creating web-apps.
The programming model used by
these reactive frameworks is to model a user interface as a pure view function from a data
source (e.g., a shopping list is rendered to an HTML fragment) to a representation of
the DOM called the Virtual DOM (VDOM).
The VDOM is a tree that represents the target
state of the DOM.

To modify the UI's data in response to user interactions, an update function for
converting user input events to a new version of the data is defined.
For example, an
update function for a shopping list defines how the list should be updated in response to
recieving an 'action' such as deleting and adding a new item.
Once the update function is
applied and the data has been updated, the system reevaluates the view function on the
new data to create a new VDOM.
The browser's real DOM is then mutated to match this
updated VDOM tree.
This may sound inefficient - recomputing the entire VDOM tree each
time - but there is an optimisation available: if the view function contains nested view
functions, one can memoise these functions and avoid updating the parts of the VDOM
that have not changed.

The VDOM is used because directly updating the browser's DOM is costly: as mentioned in
Section 5.2.1, a bottleneck in performance for websites can be the repainting phase.
When
the data updates, the view function creates a new VDOM tree.
This tree is then diffed with
the previous VDOM tree to produce a minimal set of changes to the real DOM.
A diff
between a pair of trees 𝑡₁ and 𝑡₂ is a list of tree editing operations (move, add, delete)
that transforms 𝑡₁ to 𝑡₂ .
General tree diffing is known to be NP-hard [Bil05], so a
simplified algorithm is used.
In React, this diffing algorithm is called reconciliation.

In turn, Elm and React are inspired by ideas from Functional Reactive Programming
(FRP).
FRP was first invented by Elliot [EH97].
FRP is distinguished from general reactive
programming by the explicit modelling of time.
FRP has found use in UI programming but
also more broadly in fields such as robotics and signal processing.
A modern example of a
FRP framework is netwire .

I have elected to use an API for creating user interfaces that is closer to the features of a
functional user interface framework.
I found that the full-FRP paradigm, where the
programmer has to explicitly create programs with time, was too complex for the purposes
of making a simple UI framework.
In any case, the design requirement that the UI logic
take place in the Lean VM but rendered by the client means that the modes of iteration are
limited to the point where FRP offers no advantages over simpler paradigms.
If not used
carefully, full-FRP can also introduce 'time-leaks': a cycle of events trigger each other,
causing the program to max out CPU and lock up.
As is investigated in Lemma C.14,
ProofWidgets use a weaker algebra than FRP which prevents time-leaks from occurring.

5.2.3. Code editors and client-server protocols

Some modern code editors such as Atom and VSCode are built using web technology.
In
order to support tooling features such as go-to-definition and hover information, these
editors act as the client in a client/server relationship with an independently running
process called a language server.
As the user modifies the code in the client editor, the
client communicates with the server: notifying it when the document changes and sending
requests for specific information based on the user's interactions.
In ITP this
communication is more elaborate than in a normal programming language, because the
process of proving is inherently interactive: the user is constantly observing the goal state
of the prover and using this information to inform their next command in the construction
of a proof.

The most important thing to note here is that changing the communication protocol
between the client and the server is generally hard, because the developer has to update
the protocol in both the server and the client.
There may even be multiple clients. This

[BCC+13] Bainomugisha,
Engineer; Carreton, Andoni
Lombide; Cutsem, Tom van;
et al. A survey on reactive
programming (2013) ACM
Computing Surveys (CSUR)

The term 'reactive
programming' generally refers to
a kind of declarative
programming where calculated
values are automatically updated
when its dependant values
update.
The classic example is an
Excel spreadsheet, where value
changes in cells propagate to
dependent cells.

57

58

https://reactjs.org58

[CC13] Czaplicki, Evan;
Chong,
Stephen Asynchronous
functional reactive
programming for GUIs
(2013) ACM SIGPLAN
Conference on Programming
Language Design and
Implementation

[Bil05] Bille, Philip A survey
on tree edit distance and related
problems (2005) Theoretical
computer science

[EH97] Elliott, Conal;
Hudak, Paul Functional
reactive animation
(1997) Proceedings of the second
ACM SIGPLAN international
conference on Functional
programming

59

http://hackage.haskell.org/pack

age/netwire

59

71

https://reactjs.org/
https://elm-lang.org/
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1016/j.tcs.2004.12.030
https://reactjs.org/docs/reconciliation.html
https://doi.org/10.1145/258948.258973
http://hackage.haskell.org/package/netwire
https://atom.io/
https://code.visualstudio.com/
https://doi.org/10.1145/2501654.2501666
https://en.wikipedia.org/wiki/Declarative_programming
https://reactjs.org/
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1016/j.tcs.2004.12.030
https://doi.org/10.1145/258948.258973
http://hackage.haskell.org/package/netwire

makes it difficult to quickly iterate on new user interface designs.
A way of solving this
protocol problem is to offer a much tighter integration by combining the codebases for the
editor and the ITP. This is the approach taken by Isabelle/PIDE/jEdit [Wen12] and has its
own trade-offs as discussed in Section 5.1.

5.3. Research goals
In terms of the broader research questions for the thesis given in Section 1.2, this chapter
is mainly concerned with enabling Question 3: presenting human-like reasoning
interactively.
Specifically, ProofWidgets enables the interactive presentation of the Box
calculus developed in Chapter 3.
The application of ProofWidgets to HumanProof is
covered in Section 5.8.

5.3.1. Architecture design goals

APIs between ITP systems and code editors such as Emacs or VSCode are large and
difficult to extend and port.
The ProofWidgets protocol addresses this problem by allowing
an ITP user to develop new interfaces for users to interact with provers without having to
learn specialised knowledge of a particular editor or technology other than basic HTML
and CSS .

Modern ITP systems such as Isabelle, Coq and Lean use advanced language servers and
protocols to interface with text editors to produce a feature-rich proving experience.
These
systems feature standard helpers such as syntax highlighting and type hover information
as would be found in normal programming language tooling.
They additionally include
prover-specific features such as displaying the goal state and providing interactive
suggestions of tactics to apply.
ITP offers some additional UI challenges above what one
might find in developing an editor extension for a standard programming language,
because the process of proving is inherently interactive: the user is constantly observing
the goal state of the prover and using this information to inform their next command.

The original motivation for ProofWidgets was to create a specific user interface for Box .
However, while developing I became frustrated with the development workflow for
prototyping the user interface in Lean: each time the interface changed, I would need to
coordinate changes across three different codebases; the Lean core, the VSCode editor
extension and the repository for Box .
It became clear that any approach to creating user
interfaces in which the editor code needed to be aware of the datatypes used within the ITP
metalogic was doomed to require many coordinated changes across multiple codebases.
This inspired my alternative approach; write a full-fledged GUI framework in the
metalogic of the ITP itself.
This approach has the advantage of tightening the development
loop and has more general use outside of my particular project (as I will show in
Section 5.7.4).

As Bertot and Théry [BT98] note, there are two approaches available to create a reusable
user interface for a theorem prover:

A deep integration between a code editor and a specific prover. This is the approach
taken by Isabelle/PIDE/jEdit [Wen12], although more recently VSCode support has
become available [Wen18 §3]. I call this the monolithic approach.

Stipulate a protocol between client editors and provers. Here we can either have
many clients to one prover (e.g., the Lean 3 server protocol is supported by both
Emacs and VSCode extensions); or one client to many provers, as Proof General
[Asp00] achieved. I call this the protocol approach.

Focussing on the second approach, the protocol used is typically high level.
That is, the
protocol is stated in terms of concepts in the prover; for example, the SerAPI protocol
[Gal16] used by Coq provides a high level of granularity for extracting goal states and
inspecting Coq expressions and proof objects.
While such an API enables fine control over

[Wen12] Wenzel,
Makarius Isabelle/jEdit-A
Prover IDE within the PIDE
Framework. (2012) Intelligent
Computer Mathematics - 11th
International Conference

60 Hypertext Markup Language
and Cascading Style Sheets.
These are the languages that
control the content and styling of
webpages.

60

61 Graphical User Interface,
pronounced 'gooey'.
61

[BT98] Bertot, Yves; Théry,
Laurent A generic approach to
building user interfaces for
theorem provers (1998) Journal
of Symbolic Computation

[Wen12] Wenzel,
Makarius Isabelle/jEdit-A
Prover IDE within the PIDE
Framework. (2012) Intelligent
Computer Mathematics - 11th
International Conference

[Wen18] Wenzel,
Makarius Isabelle/PIDE
after 10 years of development
(2018) UITP workshop: User
Interfaces for Theorem Provers.

72

https://doi.org/10.1007/978-3-642-31374-5_38
https://www.gnu.org/software/emacs/
https://www.edayers.com/full-thesis/code.visualstudio.com
https://isabelle.in.tum.de/
https://coq.inria.fr/
https://leanprover.github.io/
https://doi.org/10.1006/jsco.1997.0171
https://doi.org/10.1007/978-3-642-31374-5_38
https://sketis.net/wp-content/uploads/2018/08/isabellepide-uitp2018.pdf
https://www.gnu.org/software/emacs/
https://marketplace.visualstudio.com/items?itemName=jroesch.lean
https://link.springer.com/content/pdf/10.1007/3-540-46419-0_3.pdf
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408/file/serapi.pdf
https://doi.org/10.1007/978-3-642-31374-5_38
https://doi.org/10.1006/jsco.1997.0171
https://doi.org/10.1007/978-3-642-31374-5_38
https://sketis.net/wp-content/uploads/2018/08/isabellepide-uitp2018.pdf

the prover through an external tool such as an editor, the API is large and any changes to
the API or additional features require changes in multiple places and potentially introduce
incompatibilities.

I argue here that having a wide protocol such as this is detrimental to the agility of prover
development.
In contrast, the ProofWidgets framework provides a "prover ↔ editor"
protocol that removes the need for an editor to be aware of the internal representations of
the prover.
This protocol works by reworking the "client ↔ server" API to instead support
the rendering of arbitrary interactive user interfaces.
In the ProofWidgets protocol, the
code responsible for the layout and event handling of these interfaces is moved to the core
ITP, instead of being the responsibility of the editor.
This has the effect of creating a full,
general purpose GUI framework within a theorem prover.

Here is a concrete example to motivate this design choice: in the development of the Lean
VSCode extension, it was requested that it should be possible to filter some of the variables
in the goal state to declutter the output window (see Figure 5.7).
The Lean community
originally achieved this by reparsing the textual goal state emitted by the Lean server
component and removing the filtered items using regular expressions.
This worked, but it
required adding some specific code for the VSCode client -- supporting this feature in other
editors would require rewriting this filtering code.
Additionally, if the Lean server changes
how the goal state is formatted, this filtering code would need to be rewritten.
Even if an
API which allows more semantic access to the expression structure is used such as SerAPI
[Gal16], we still have the problem that the filtering code has to be written multiple times
for each supported editor.
Using ProofWidgets, this filtering code can be written once in
Lean itself and it works in any editor that supports the ProofWidgets API (at the time of
writing VSCode and a prototype version of the web editor).
Furthermore, Lean users are
free to make any custom tweaks to the UI without needing to make any changes to editor
code.

Another motivation for ProofWidgets was to add 'structural pretty printing' or 'proof-by-
pointing' as Théry and Bertot call it [BT98].
This is where pretty-printed strings have
information attached to them that provides detail on the structure of the original
expression that produced the string.
In other frameworks that implement proof-by-
pointing such as KeY [ABB+16] and later versions of Proof General [Asp00], a tight
integration between the code editor used by the ITP and the pretty-printing system is
required.
As is shown in Section 5.5, the design of ProofWidgets means that all of the code
for creating and interacting with these complex structures can be handled within the ITP
system's metalogic.

The three enabling technologies of the ProofWidgets framework are:

the introduction of web-based code editors such as Atom and Microsoft Visual Studio
Code (VSCode);

metaprogramming frameworks for creating programs that manipulate and inspect
expressions and tactic states from within theorem provers. The primary example
here is the Lean metaprogramming framework [EUR+17]. However other
metaprogramming systems such as those found in Isabelle are also available.

modern, functional, reactive user interface frameworks for the web such as Elm and
React.

5.3.2. Design goals

[Asp00] Aspinall,
David Proof General: A
generic tool for proof
development
(2000) International
Conference on Tools and
Algorithms for the
Construction and Analysis of
Systems

[Gal16] Gallego Arias, Emilio
Jesús SerAPI: Machine-
Friendly, Data-Centric
Serialization for Coq
(2016) Technical Report

[Gal16] Gallego Arias, Emilio
Jesús SerAPI: Machine-
Friendly, Data-Centric
Serialization for Coq
(2016) Technical Report

Figure 5.7. Demonstration of
hypothesis filtering in Lean.
Selecting the items from the
dropdown menu with show or
hide the hypotheses of the goal
state according to their type. The
original version of this feature
was implemented in JavaScript
as part of the VSCode Lean.
Now
the same thing is implemented
within Lean as a ProofWidget.
The effect of this choice is that
the menu is now implemented
entirely within Lean and without
needing to update the VSCode
extension.

[BT98] Bertot, Yves; Théry,
Laurent A generic approach to
building user interfaces for
theorem provers (1998) Journal
of Symbolic Computation

[ABB+16] Ahrendt,
Wolfgang; Beckert,
Bernhard; Bubel, Richard; et
al. Deductive Software
Verification - The KeY Book
(2016) publisher Springer

[Asp00] Aspinall,
David Proof General: A generic
tool for proof development
(2000) International Conference
on Tools and Algorithms for the
Construction and Analysis of
Systems

73

https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408/file/serapi.pdf
https://doi.org/10.1006/jsco.1997.0171
https://doi.org/10.1007/978-3-319-49812-6
https://link.springer.com/content/pdf/10.1007/3-540-46419-0_3.pdf
https://atom.io/
https://code.visualstudio.com/
https://doi.org/10.1145/3110278
https://elm-lang.org/
https://reactjs.org/
https://link.springer.com/content/pdf/10.1007/3-540-46419-0_3.pdf
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408/file/serapi.pdf
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408/file/serapi.pdf
https://doi.org/10.1006/jsco.1997.0171
https://doi.org/10.1007/978-3-319-49812-6
https://link.springer.com/content/pdf/10.1007/3-540-46419-0_3.pdf

The ProofWidgets framework has the following design goals. The principle behind these
goals is ease-of-use for people creating their own ProofWidgets, as well as ensuring that as
much code as possible is present in Lean itself.

Programmers write GUIs using the metaprogramming framework of the ITP.

Programmers are given an API that can produce arbitrary DOM fragments, including
inline CSS styles.

No cross-compilation to JavaScript or WebAssembly: the GUI-generating code must
run in the same environment as the tactic system. This ensures that the user
interaction handlers have full access to the tactic execution context, including the full
database of definitions and lemmas, as well as all of the metaprogramming library.
In a cross-compilation based approach (implementation difficulty notwithstanding),
the UI programmer would have to choose which parts of this context to export to the
client.

To support interactively discoverable tactics, the system needs to be able to
command the client text editor to modify its sourcetext. I'll expand on this point in
Section 5.3.3.

The pretty printer must be extended to allow for 'interactive expressions':
expressions whose tree structure may be explored interactively. I'll expand on this
point in Section 5.3.4.

Programmers should be able to create visualisations of their data and proofs.

It should be convenient for programmers to be able to style their GUIs in a consistent
manner.

The GUI programming model should include some way of managing local UI state,
for example, whether or not a tooltip is open.

The GUI should be presented in the same output panel that the plaintext goal state
was presented in. This ensures that the new features are discoverable and do not
change the workflow of existing users.

The framework should be backwards compatible with the plaintext goal state system.
Users should be able to opt out of the GUI if they do not like it or want to use a non
web-app editor such as Emacs.

While all of these could be implemented by suitably extending the Lean server and client,
this would cause the size of the API to balloon significantly as discussed in Section 5.3.1.
These features require the context of Lean's goal state and tactics engine.
To produce a UI
would need this context to be propagated from the server to the client.
The server/client
API would become wide.
Any new idea for improving the interface would require inventing
a new part of the server/client API and an implementation spanning many different
languages: Lean, C++, JavaScript, and possibly other dependants such as the web-editor
and the Python API.
Further, the implementation would have to occur in the Lean 3 core
codebase, not an external library.

Instead, the goal of the ProofWidgets system is to sidestep this by giving the ITP system's
metaprogramming framework full control over the UI of the goal state.
By choosing this
lower level of abstraction, the time required to create new and experimental interactive
features is drastically reduced, because ProofWidgets can be developed in real time by just
editing the code in a single code file within the prover's project.
This has already proved
useful several times in the Lean implementation of this protocol, for example, a go-to-
definition button for expressions in the type information viewer was added by just
changing a few lines of code in the mathlib codebase.

5.3.3. Discoverable tactics

Often a beginner to ITP is confronted with a goal state where they don't know which tactic
could be used to progress in the proof.
A key tenet of making a user interface intuitive to
use is to make available actions discoverable (also called learnability within the HCI

[EUR+17] Ebner, Gabriel;
Ullrich, Sebastian; Roesch,
Jared; et al. A
metaprogramming framework
for formal verification
(2017) Proceedings of the
ACM on Programming
Languages

74

https://github.com/leanprover-community/lean-web-editor
https://github.com/leanprover-community/lean-client-python
https://github.com/leanprover-community/mathlib/pull/3982/files
https://doi.org/10.1145/3110278

literature [GFA09]).
As shown in Figure 5.8, ProofWidgets allow one to make a goal state
which actively suggests available tactics to the user.

5.3.4. Interactive term rewriting

Currently in Lean, if one wants to solve an equality problem such as
(x + 3) * (x + 1) = x * x + 4 * x + 3 without resorting to a specialised tactic such as
ring or a full-blown solver, you have the option of using a general equational rewriting
tactic rewrite or simp .
The tactic rewrite h where h : Π ..𝑥𝑠, 𝑙𝑕𝑠 = 𝑟𝑕𝑠 finds a subterm
of the goal which the 𝑙𝑕𝑠 of h matches with and replaces it with the 𝑟𝑕𝑠 with
appropriate substitutions of the variables 𝑥𝑠 . Similarly, simp repeatedly performs rewrites
of the goal from a curated set of lemmas.

These tactics do not give an easy way to explore subterms of an expression to interactively
find where to apply rewrites.
With ProofWidgets, one can build a tool where one can click
directly on a subterm of a goal state and see the available rewrites at that point, or to see
what an expression will look like after applying simp .
An example of this is shown in
Figure 5.9.

Since the widgets system is also able to influence the code editor, it is also possible to build
user interfaces that interactively build the proof script in the Lean document.

5.3.5. Non-goals

In order to scope the design of the system, I specify some features that are not a
requirement for the design of ProofWidgets.

No animation and time-continuous interactions: I don't address the task of
creating a framework that is capable of complex reactive animation or continuous, mouse
and touch driven interactions like pinching and dragging. Although many existing FRP
frameworks are built for these, it seems unlikely that Lean 3's VM is going to be efficient
enough to support them.
This does not mean that no animations are possible in
ProofWidgets, however. Complex animations are possible through CSS transitions without
needing to involve a programmatic event at all.

No concurrency and asynchronous tasks: By this I mean the ability for the Lean
server to 'push' events to the client after some long-running task has completed. This is not

Figure 5.8. Example of a
suggested tactic widget for a goal.
Clicking the apply H₁ button will
insert apply H₁ into the proof
document and advance the tactic
state.

62 Left Hand Side62

Figure 5.9. A widget goal view
with subterm-sensitive
suggestions of rewriting lemmas.
Clicking on the subterm
(x * y)⁻¹ suggests the rewrite

rule shown in purple.

63 Functional Reactive
Programming, see Section 5.2.2
for more details.

63

64

Virtual Machine. Lean 3
compiles to bytecode which is run
in its VM.

64

75

https://doi.org/10.1145/1518701.1518803
https://developer.mozilla.org/en-US/docs/Web/CSS/transition

a requirement mainly in the name of keeping the implementation simple enough for a first
proof-of-concept version. In Section 5.9 I offer some thoughts on how this could be
implemented.

No compilation to javascript: This may become possible in Lean 4 with the help of
Lean 4's compiler and WebAssembly, but for now the UI logic of ProofWidgets should run
entirely on the (local) Lean server. This has a number of advantages: it is much less
complex than a cross-compilation approach and it allows for the entirety of Lean's proof
state and prover apparatus to be available.

Don't support all user interface modalities: Modern browser user interfaces offer
many different methods of interaction; drag and drop, touch gestures such as pinch to
zoom.
For now, the ProofWidgets framework only offers a small subset of these, namely
mouse events and text input.
However HTML ARIA attributes are supported by
ProofWidgets so that they can be made accessible to differently-abled people.

Performance should be 'good enough': As mentioned in Section 5.2.1, the
performance bottleneck for web apps is typically the layout and painting stages of the
browser rendering pipeline.
Using a client-side framework such as ReactJS to minimise
the number of changes to the browser's DOM gives acceptable performance for most use
cases.
In Section 5.9 I also provide some ideas on how to improve the performance of
ProofWidgets.

5.4. System description
The design goals discussed in Chapter 1 led me to design ProofWidgets to use a declarative
VDOM-based architecture (see Section 5.2.2) similar to that used in the Elm programming
language [CC13] and the React JavaScript library as discussed in Section 5.2.2.
By using
the same programming model, I can leverage the familiarity of potential users with
commonly used React and Elm APIs.
In the following sections I detail the design of
ProofWidgets, starting with the UI programming model Section 5.4.1 and the client/server
protocol Section 5.4.2.

5.4.1. UI programming model

This section is about the API that users of the ITP system can use to implement user
interfaces created with the protocol given in Section 5.4.2.

Most meta-level programming languages for ITPs are functional programming
languages .
So the mutable DOM paradigm shown in Section 5.2.1 is going to not be
suitable for our purposes because functional programming languages act predominantly
on immutable datastructures.
Fortunately, as discussed in Section 5.2.2, there are a
number of functional paradigms available for building user interfaces in an immutable
way.
I summarise their operation here and a more detailed overview of the API is given in
Appendix C.
The design of the UI building API is inspired by the design used in the Elm
programming language [CC13].

New user interfaces are created using the Html and Component types.
A user may define an
HTML fragment by constructing a member of the inductive datatype Html , which is either
an element (e.g., <div></div>), a string or a Component object to be discussed shortly.

These fragments can have event handlers attached to them.
For example, in (5.10), a
button is created by defining a handler ℎ : Unit → α sending the unit type to a member
of some type α .
When this interface is rendered in the client and the button is clicked, the
server is notified and causes the node to emit the element ℎ() : α .
In (5.10), when the
button is pressed it will emit 4 : ℕ .
The value of ℎ() is then propagated towards the root
of the Html tree until it reaches a component.

[CC13] Czaplicki, Evan;
Chong,
Stephen Asynchronous
functional reactive
programming for GUIs
(2013) ACM SIGPLAN
Conference on Programming
Language Design and
Implementation

65

ML and Scala for Isabelle,
OCaml for Coq, Lean for Lean
65

[CC13] Czaplicki, Evan;
Chong,
Stephen Asynchronous
functional reactive
programming for GUIs
(2013) ACM SIGPLAN
Conference on Programming
Language Design and
Implementation

76

https://www.edayers.com/full-thesis/webassembly.org
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://doi.org/10.1145/2491956.2462161
https://reactjs.org/
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/2491956.2462161

button : (ℎ : Unit → α) → String → Html α

exampleButton : Html ℕ := button (() ↦ 4) "click me"

Now we need to provide a mechanism for doing something with this emitted object.
A
component is an inductive datatype taking two type parameters: π (the props type) and
α (the action type) .
It represents a stateful object in the user interface tree where the
state s : σ can change as a result of a user interaction event.
By 'stateful' we mean an
object which holds some mutating state for the lifetime of the user interface.
Through the
use of components, it is possible to describe the behaviour of this state without having to
leave the immutable world of a pure functional programming language.
Three functions
determine the behaviour of a component:

init : π → σ initialises the state.

view : π → σ → Html α maps the state to a VDOM tree.

update : π → α → σ → σ × Option β is run when a user event is triggered in the
child HTML tree returned by view . The emitted value 𝑎 : α is used to produce a
tuple σ × Option β consisting of a new state 𝑠 : σ and optionally, a new event
𝑏 : β to emit. If the new event is provided, it will propagate further towards the root
of the VDOM tree and be handled by the next component in the sequence.

A simple example of a counter component is shown in (5.11) and Figure 5.12.
In (5.11), the
component has an integer s : ℤ for a state, and updating the state is done through
clicking on the 'increment' and 'decrement' buttons which will emit 1 and -1 when
clicked. The values a are used to update the state to a + s . Creating stateful components
in this way has a variety of practical uses when building user interfaces for inspecting and
manipulating the goal state. We will see in Section 5.5 that a state is used to represent
which expression the user has clicked.
Indeed, an entire tactic state can be stored as the
state of the component.
Then the update function runs various tactics to update the tactic
state and output the new result.

⟨ σ := ℤ
, s₀ := 0
, view := s ↦
 <div>
 button (() ↦ 1) "increment"
 {to_string s}
 button (() ↦ -1) "decrement"
 </div>
, update := (a : ℤ) ↦ (s : ℤ) ↦ a + s
⟩

increment 0 decrement

5.4.2. The server protocol

The communication protocol between the client editor and the ITP server is illustrated in
Figure 5.13. A more detailed overview on the specifics for the Lean implementation can be
found in the leanprover-community documentation.

(5.10). Simple example of an
event handler. The function
button takes an event handler ℎ

and some text for the button
content.
The value the handler
returns will be emitted in the
event of a button click.

66 This is designed to be familiar
to those who use React
components: https://reactjs.org/
docs/components-and-props.html.

66

(5.11). Code for a simple counter
app showcasing statefulness. The
output is shown in Figure 5.12

Figure 5.12. The resulting view
of a simple counter component.

77

https://github.com/leanprover-community/lean/blob/master/doc/widget_server.md
https://reactjs.org/docs/components-and-props.html

Once the programmer has built an interface using the API introduced in Section 5.4.1, it
needs to be rendered and delivered to the browser output window.
ProofWidgets extends
the architecture discussed in Section 5.2.3 with an additional protocol for controlling the
life-cycle of a user interface rendered in the client editor.
When a sourcefile for the prover
is opened (in Figure 5.13, myfile.lean), the server begins parsing, elaborating and
verifying this sourcefile as usual.
The server incrementally annotates the sourcetext as it is
processed and these annotations are stored in memory.
The annotations include tracing
diagnostics messages as well as thunks of the goal states at various points in a proof.
When the user clicks on a particular piece of sourcecode in the editor ('text cursor move' in
Figure 5.13), the client makes an info request for this position to the server, which
responds with an ok response containing the logs at that point.

The ProofWidgets protocol extends the info messages to allow the prover to similarly
annotate various points in the document with VDOM trees (see Section 5.2.2) created from
components.
These annotating components (see Section 5.4.1) have the type
Component TacticState Empty where TacticState is the current state of the prover and
Empty is the uninhabited type.
A default component for rendering goals of proof scripts is
provided, but users may override this with their own components.
The VDOM trees are
derived from this component, where the VDOM has the same tree structure as the Html
datatype (i.e., a tree of elements, strings and components), but the components in the
VDOM tree also contain the current state and the current child subtree of the component.
This serves the purpose of storing a model of the current state of the user interface.
These
VDOMs can be rendered to HTML fragments that are sent to the client editor and
presented in the editor's output window.

There are two ways to create a VDOM tree from a component: from scratch using
initialisation or by updating an existing VDOM tree using reconciliation.

Initialisation is used to create a fresh VDOM tree.
To initialise a component, the system
first calls init to produce a new state 𝑠 .
 𝑠 is fed to the view method to create an Html
tree 𝑡 .
Any child components in 𝑡 are recursively initialised.

The inputs to reconciliation are an existing VDOM tree 𝑣 and a new Html tree 𝑡 . 𝑡 is
created when the view function is called on a parent component.
The goal of reconciliation
is to create a new VDOM tree matching the structure of 𝑡 , but with the component states
from 𝑣 transferred over.
The tree diffing algorithm that determines whether a state should

Figure 5.13. The architecture of
the ProofWidgets client/server
communication protocol.
My
contribution is present in the
section marked 'ProofWidgets
protocol'.
Arrows that span the
dividing lines between the client
and server components are API
requests and responses.
The
arrows crossing the boundary
between the client and server
applications are sent in the form
of JSON messages.
Rightward
arrows are requests and
leftward arrows are responses.

67 A thunk is a lazily evaluated
expression.
67

78

be transferred is similar to the React reconciliation algorithm and so I will omit a
discussion of the details here.
The main point is that when a user interface changes, the
states of the components are preserved to give the illusion of a mutating user interface.

For interaction, the HTML fragment returned from the server may also contain event
handlers.
Rather than being calls to JavaScript methods as in a normal web-app, the client
editor intercepts these events and forwards them to the server using a widget_event
request. The server then updates the component according to the event to produce a new
Html tree that is reconciled with the current VDOM tree.
The ProofWidgets framework
then responds with the new HTML fragment derived from the new VDOM tree.
In order to
ensure that the correct event handler is fired, the client receives a unique identifier for
each handler that is present on the VDOM and returns this identifier upon receiving a user
interaction.
So, in effect, the ITP server performs the role of an event handler: processing a
user interaction and then updating the view rendered to the screen accordingly.
In
addition to updating the view, the response to a widget_event request may also contain
effects.
These are commands to the editor, for example revealing a certain position in the
file or inserting text at the cursor position.
Effects are used to implement features such as
go-to definition and modifying the contents of sourcefiles in light of a suggested
modification to advance the proof state.
If a second user interaction event occurs while the
first is being handled, the server will queue these events.

The architecture design presented above is a different approach to how existing tools
handle the user interface. It offers a much smaller programming API consisting of
Component and Html and a client/server protocol that supports the operation of arbitrary
user interfaces controlled by the ITP server. Existing tools (Section 5.1) instead give fixed
APIs for interaction with the ITP, or support rendering of custom HTML without or with
limited interactivity.

To implement ProofWidgets for an ITP system, it is necessary to implement the three
subsystems that have been summarised in this section: a programming API for
components; the client editor code (i.e., the VSCode extension) that receives responses
from the server and inserts HTML fragments to the editors output window; and the server
code to initialise, reconcile and render these components.

5.5. Interactive expressions
This section is about using ProofWidgets to perform 'interactive pretty printing' where
expressions are rendered to HTML with explicit structure information.
As discussed in
Section 5.1, structural pretty printing is not a novel feature, however the way in which it is
designed here makes structural pretty printing extensible and accessible to the
metaprogramming framework.
The ability to interactively pretty print expressions is a
critical part of implementing the design goal of interactive term rewriting discussed in
Section 5.3.4.

An example of the system in operation is given in Figure 5.14: as one hovers over the
various expressions and subexpressions in the infoview, one gets semantically correct
highlighting for the expressions, and when you click on a subexpression, a tooltip appears
containing type information.
This tooltip is itself a widget and so can also be interacted
with, including opening a nested tooltip.

79

https://reactjs.org/docs/reconciliation.html

A number of other features are demonstrated in Figure 5.14:

Hovering over subterms highlights the appropriate parts of the pretty printed string.

The buttons in the top right of the tooltip activate effects including a "go to
definition" button and a "copy type to clipboard" button.

Expressions within the tooltip can also be explored in a nested tooltip. This is
possible thanks to the state tracking system detailed in the previous section.

Note that the Lean editor already had features for displaying type information for the
source document with the help of hover info, however this tooltip mechanism is only
textual (not interactive) and only works on expressions that have been written in the
source document.
Prior to ProofWidgets there was no way to inspect expressions as they
appeared in the infoview.

All of the code which dictates the appearance and behaviour of the infoview widget is
written in Lean and reloads in real time when its code is changed.
This means that users
can produce their own custom tooltips and improve upon the infoview experience without
needing to leave the project.

5.5.1. Tagged strings

Before ProofWidgets, the Lean pretty-printer would take an expression and a context for
the expression and produce an member of the format type.
This is implemented as a
symbolic expression (shortened to 'sexpr') a la LISP [McC60].

For ProofWidgets, I modified Lean's C++ pretty printer so that it would also tag certain
sexprs with two pieces of data: the subexpression that produced the substring and an
expression address indicating where the subexpression lies in the parent expression.
The expression address is a list of expression coordinates used to reference subterms
of an expression.
An expression coordinate is a number that indexes the recursive
arguments in the constructors for an expression.
In this sense it is doing the same job as
the coordinates defined in Section 2.3.2.
That is, is parametrises the lenses that are
available for subexpressions.
A simplified example of the pseudocode is shown in (5.15).

Figure 5.14. Screenshot
showing the interactive
expression view in action within
the Lean theorem prover. The
left-hand pane is the Lean source
document and the right-hand
pane is the infoview showing the
context and expected type at the
editor's cursor. There are two
black tooltips giving information
about an expression in the
infoview.

[McC60] McCarthy,
John Recursive functions of
symbolic expressions and their
computation by machine, Part I
(1960) Communications of the
ACM

80

https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/367177.367199

Expr ::=
| var : String → Expr
| app : Expr → Expr → Expr
| lam : String → Expr → Expr
| const : String → Expr

Coord ::=
| f | a | lam_body

Address := List Coord

get : Address → Expr → Option Expr
 | [] ↦ 𝑒 ↦ some 𝑒
 | [f, ..𝑡] ↦ app 𝑙 𝑟 ↦ get 𝑡 𝑙
 | [a, ..𝑡] ↦ app 𝑙 𝑟 ↦ get 𝑡 𝑟
 | [lam_body, ..𝑡] ↦ lam 𝑠 𝑏 ↦ get 𝑡 𝑏
 | _ ↦ _ ↦ none

set : Address → Expr → Expr → Expr := ...

coords : Expr → List Address := ...

TaggedString ::=
| tag : (Expr × Address) → TaggedString → TaggedString
| append : TaggedString → TaggedString → TaggedString
| of_string : String → TaggedString

pretty_print : Expr → Tactic TaggedString

In this way, the TaggedString acts as a reversed source-map between the resulting sexpr
and the original expression, even when using specialised syntax such as lists [1,2,3] and
set comprehensions.
This tagged string is used to create widgets that allow users to
interactively inspect various parts of the expression in the infoview.

In the case of a subexpression being below a binder (e.g., in the body of a lambda
expression) the pretty printer instantiates the de-Bruijn variable with a dummy local
variable, so the given subexpression doesn't contain free de-Bruijn variables and still
typechecks without having to know the binders above the subexpression.

Below are some diagrams to illustrate the relationship between a TaggedString and an
Expr .

(5.15). Pseudocode for
implementing tagged strings
from expressions.
The
TaggedString datastructure

expands on a Wadler-style
formatting tree by including
'tagged' portions of the
expression. A tag includes the
subexpression that the string
represents and an Address object
allowing one to determine which
subtree of the parent expression
is being represented.

68 In the context of compilers, a
source-map is a file that identifies
parts of the compiler-output with
the source code. This enables the
use of diagnostic tools such as
debuggers.

68

Figure 5.16. An expression tree
for (x ++ y) ++ [1,2] . Each f or
a above the lines is an

expression coordinate.
The red
[a,a,f,a] example of an

expression address,
corresponding to the red line on
the tree.
Each green circle in the
tree will pretty-print to a string
independent of the expression
tree above it.
While the pretty-
printed expression involves infix
operators, these expression trees
are stored internally as function
application trees.
The pretty-
printer is responsible for
determining whether these trees
should be printed in infix form or
not.

81

There are two versions of the code for interactive expression rendering: the original core
Lean version and the more experimental mathlib version.

To render an interactive expression given a TaggedString , define a stateful
Component (TacticState × Expr) Empty . The TacticState object includes the metavariable
context and a local context in which the given expression is valid.
The state of the
component includes an optional Address of the subexpression.
When the user hovers over
a particular point in the printed TaggedString , the expression address corresponding to
that part of the string is calculated using the tag s and this address is set as the state of the
component.
This address is then used to colour in the portion of the string that is currently
hovered over by the user's mouse cursor which gives the semantic-aware highlighting
effect.

When the user clicks on a subexpression, a tooltip appears containing type information as
well as some details on it such as the type and the available explicit arguments. Users can
create their own tooltips using attr.popper .
The stateful component framework developed
in the last section means that these expressions can themselves be interactive expressions
and we can recursively expand the selection, as shown in Figure 5.14 earlier.

5.6. Related work
In Section 5.1 I covered other graphical user interfaces for proof assistants.
Here I will
relate them to ProofWidgets.
As discussed in Section 5.3.1, the main differentiating feature
of ProofWidgets is its use of web technology for rendering and allowing the
metaprogramming language of the thoerem prover to take full responsibility for
constructing the DOM of the GUI and handling user interactions.
This contrasts with the
two other approaches to constructing GUIs for theorem provers; which I dubbed the
monolithic approach and protocol approach in Section 5.3.1.

The first related architecture is Isabelle's Prover IDE (PIDE).
An advantage of the
ProofWidgets approach compared to PIDE's is that the API between the editor and the
prover can be smaller since, in ProofWidgets, the appearance and behaviour is entirely
dictated by the server.
In contrast, the implementation of PIDE is tightly coupled to the
bundled jEdit editor, which has some advantages over ProofWidgets in that it gives more
control to the developer to create new GUIs. The downside of PIDE's approach here is that
one must maintain this editor and so supporting any other editor with feature-parity
becomes difficult.
ProofWidgets also makes use of modern web technology which is
ubiquitously supported. In contrast, PIDE uses a Java GUI library called
Swing.
Creating
custom UIs in PIDE requires coding in both Scala and StandardML. The result does not
easily generalise to the VSCode Isabelle extension because VSCode is based on web-
technology instead of the Swing framework, so if the custom UI is to also support the
VSCode extension, some JavaScript must also be written.

The example of the protocol approach that I will elect to compare ProofWidgets with is the
SerAPI protocol for Coq. SerAPI is a library for machine-machine interaction with the Coq
theorem prover.
SerAPI contrasts to ProofWidgets in that it expects another program to be

Figure 5.17. The TaggedString
tree produced by pretty-printing
the expresssion
(x ++ y) ++ [1,2] .
The green

circles are TaggedString.tag
constructors and the blue address
text within is the relative address
of the tag in relation to the tag
above it.
So that means that the
full expression address for a
subterm can be recovered by
concatenating the Address es
above it in the tree. E.g., the 2
subexpression is at
[] ++ [a] ++ [a,f,a] = [a,a,f,a]

82

https://github.com/leanprover-community/lean/blob/master/library/init/meta/widget/interactive_expr.lean
https://github.com/leanprover-community/mathlib/blob/master/src/tactic/interactive_expr.lean
https://docs.oracle.com/javase/8/docs/technotes/guides/swing/
https://www.scala-lang.org/
https://smlfamily.github.io/
https://marketplace.visualstudio.com/items?itemName=makarius.isabelle

responsible for displaying graphical elements such as goal states and visualisations; in the
ProofWidgets architecture all of the UI appearance and behaviour code is also written in
Lean, and the web-app client can render general GUIs emitted by the system.

Theorema [BJK+16] is a tool integrated into Wolfram Mathematica, a proprietary
computer algebra system. Mathematica comes with its own widget system, which can also
be used in a web setting, and so by allowing Mathematica do the heavy-lifting, Theorema is
able to have fine-grained control over its GUI whilst remaining portable. However, this
approach means that it is tied to the proprietary Mathematica ecosystem, whereas
ProofWidgets only depends on web standards which are open.

As discussed in Section 5.1, there is a cohort of now extinct theorem provers that had a
great deal of focus on graphical, multimodal representations of data; LΩUI for Ωmega
[BCF+97, SHB+99], HyperProof [BE92] and XBarnacle [LD97] for the CLAM prover.
I
hope that ProofWidgets can enable a rekindling of research into these more inventive and
visual representations of proof states.

5.7. Implementation of Widgets in Lean
This section explains the underlying model for how ProofWidgets are created and mutated
as the user interacts with them.

As discussed in Section 5.4.2 Lean has a server mode in which Lean works with a code
editor such as VSCode or Emacs to provide an interactive editing environment.
In server
mode, Lean monitors open sourcefiles in the open project and maintains a structure called
the log tree which attaches information providers to locations in the sourcefiles.
For
instance, the log tree holds the goal state of an interactive-mode proof and logging
information which is revealed to the user when they navigate their cursor to that position.

Thanks to Lean's extensive meta-programming features [EUR+17], the Lean programmer
can attach their own messages with the
tactic.save_info_thunk : thunk format → tactic unit function.
 save_info_thunk attaches
a thunk to the log tree containing a procedure to generate a logging message.
When the
user clicks over that particular part of the document in the client, the Lean server evaluates
the thunk and produce a formatted piece of text to display to the user in the infoview.
This
process is shown in the dashed part of Figure 5.13.

The ProofWidgets framework adds an additional kind of object to the log tree using
tactic.save_widget : (tactic_state ⇨ empty) → tactic unit with a component as its
argument.
As discussed in Section 5.4.1, the log tree entry that is created through
save_widget attaches some state to the object which does mutate.
In this way, it is possible
to model ephemeral UI state such as whether the user has opened a tooltip.
The
implementation code can be found in the widget.cpp file in the leanprover-
community/lean GitHub repository.

5.7.1. Reconciliation of HTML

Informally, the purpose of the reconciliation step is to compare an old tree and a new tree
and try to find a way of matching up the new tree to the old tree.
This is required to make
sure that the internal states of sub-components in the tree are preserved even if the
ordering of the components is changed.
For example, suppose we had a list of counter
subcomponents each with an integer state.
Then if we reorder these components in the list
we should expect that these counter states are not lost or scrambled.
The general version of
this problem is a tree-editing problem, which is known to be NP-hard [Bil05], however as
noted by ReactJS, we can get acceptable performance with heuristics and by allowing the
created UI to add an identifying attribute called a key to elements.

In the Lean implementation, if the system is reconciling a list of child attributes, it will
reconcile pairs of elements from the old and the new tree that share a key.
Behaviour in the

[BJK+16] Buchberger,
Bruno; Jebelean, Tudor;
Kutsia, Temur; et
al. Theorema 2.0: computer-
assisted natural-style
mathematics (2016) Journal of
Formalized Reasoning

[BCF+97] Benzmüller,
Christoph; Cheikhrouhou,
Lassaad; Fehrer, Detlef; et
al. Omega: Towards a
Mathematical Assistant
(1997) Automated Deduction -
CADE-14

[SHB+99] Siekmann, Jörg;
Hess, Stephan; Benzmüller,
Christoph; et al. LOUI:
Lovely OMEGA user interface
(1999) Formal Aspects of
Computing

[BE92] Barwise, Jon;
Etchemendy,
John Hyperproof: Logical
reasoning with diagrams
(1992) Working Notes of the
AAAI Spring Symposium on
Reasoning with Diagrammatic
Representations

[LD97] Lowe, Helen;
Duncan, David XBarnacle:
Making Theorem Provers More
Accessible (1997) 14th
International Conference on
Automated Deduction

[EUR+17] Ebner, Gabriel;
Ullrich, Sebastian; Roesch,
Jared; et al. A
metaprogramming framework
for formal verification
(2017) Proceedings of the ACM
on Programming Languages

[Bil05] Bille, Philip A survey
on tree edit distance and related
problems (2005) Theoretical
computer science

83

https://doi.org/10.6092/issn.1972-5787/4568
https://https//www.wolfram.com/mathematica/
https://doi.org/10.1007/3-540-63104-6_23
https://doi.org/10.1007/s001650050053
https://www.aaai.org/Papers/Symposia/Spring/1992/SS-92-02/SS92-02-016.pdf
https://doi.org/10.1007/3-540-63104-6_39
https://doi.org/10.1145/3110278
https://github.com/leanprover-community/lean/blob/master/src/frontends/lean/widget.cpp
https://doi.org/10.1016/j.tcs.2004.12.030
https://reactjs.org/docs/reconciliation.html
https://doi.org/10.6092/issn.1972-5787/4568
https://doi.org/10.1007/3-540-63104-6_23
https://doi.org/10.1007/s001650050053
https://www.aaai.org/Papers/Symposia/Spring/1992/SS-92-02/SS92-02-016.pdf
https://doi.org/10.1007/3-540-63104-6_39
https://doi.org/10.1145/3110278
https://doi.org/10.1016/j.tcs.2004.12.030

unrecommended case of more than a pair having the same key is handled by pairing off the
first in the list.
Any remaining pairs of elements are reconciled in the order they appear in
the list.

5.7.2. CSS

The Lean ProofWidgets system per se only emits JSON that is converted to HTML.
But for
the web-client and viewer implementations it also necessary to include a style sheet to
make it look visually appealing.
Rather than providing a mechanism for including
stylesheets, the implementations load a stylesheet library called Tachyons.

Tachyons is a 'functional CSS' library, which means that CSS classes each perform one very
precise job.
So for example, if you want to render a purple button with rounded corners
and padding you would include the attribute className "link pa2 br2 white bg-purple" .
Tachyons then has some small CSS class selectors (e.g., .pa2 { padding: .5rem; }) that
style the DOM element appropriately.
These CSS classes have a couple of benefits over
inline styles: they are terser and they enforce a set of standardised colours and spacing that
make it easier to provide a more consistent appearance.
By using this approach to styling
one can remove the need for a specially tailored stylesheet, which is perfect for the use case
of ProofWidgets.

One drawback of rendering expressions in HTML is that the CSS typesetting paradigm is
very different to the Wadler-style linebreaking algorithm [Wad03] that Lean's normal
pretty printer uses.
Daniel Fabian discovered a CSS trick to automatically linebreak
expressions properly if the content box is too narrow.

5.7.3. Supported Effects

There is an additional hook for dealing with side-effects: changes to the client editor
document state in response to widget events.
Currently the supported effects are:
highlighting a portion of the document; inserting text into the document; putting text into
the paste buffer; opening a file (to implement go-to-definition).

This is the final piece of the puzzle to produce an interactive proof production experience:
allowing ProofWidgets to affect the proof script.
In the context of the Lean
implementation, ProofWidgets allows a Lean programmer to embed an interactive GUI at
any point in the Lean document. Thanks to Lean's extensive metaprogramming features
[EUR+17], the user can write their GUI code in Lean itself. Widgets are already being used
in mathlib , the Lean mathematics library [Com20].

5.7.4. Community-built ProofWidgets

ProofWidgets has already found use within the wider Lean community.
See Figure 5.18 for
a quilt of projects that people have made using ProofWidgets.
Of particular note is the
Mathematica Bridge by Lewis and Wu [Lew17], which connects Lean to Wolfram
Mathematica and uses the ProofWidgets framework to show Lean functions plotted by
Mathematica.

[Wad03] Wadler, Philip A
prettier printer (2003) The Fun
of Programming, Cornerstones of
Computing

[EUR+17] Ebner, Gabriel;
Ullrich, Sebastian; Roesch,
Jared; et al. A
metaprogramming framework
for formal verification
(2017) Proceedings of the ACM
on Programming Languages

[Com20] The Mathlib
Community The Lean
Mathematical Library
(2020) Proceedings of the 9th
ACM SIGPLAN International
Conference on Certified Programs
and Proofs

[Lew17] Lewis, Robert Y. An
Extensible Ad Hoc Interface
between Lean and Mathematica
(2017) Proceedings of the Fifth
Workshop on Proof eXchange for
Theorem Proving, PxTP 2017,
Brasília, Brazil, 23-24 September
2017

84

https://tachyons.io/
http://www.cs.ox.ac.uk/publications/books/fop
https://github.com/leanprover-community/mathlib/pull/3764
https://doi.org/10.1145/3110278
https://github.com/leanprover-community/mathlib/
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.4204/EPTCS.262.4
http://www.cs.ox.ac.uk/publications/books/fop
https://doi.org/10.1145/3110278
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.4204/EPTCS.262.4

5.8. Visualising Box es
In this section, I am going to discuss how ProofWidgets are used to create an interactive
Box element.
 Box es were introduced in Chapter 3 and are the development calculus of the
HumanProof system.
The first component, the visualisation system, follows the same
visual rules as defined in (3.10).
This is used to create a visualisation of a box.

In order to correctly print bound variables, the visualisation code has a metavariable
context as an input.
This is updated with new metavariables and local contexts as 𝒤 and 𝒢
Box es are traversed.
This is simple to implement in ProofWidgets because all of the usual
theorem proving apparati are available whilst constructing the user interface.
In contrast,
implementing the same would be cumbersome to achieve with the 'wide API' approach
discussed in Section 5.3.1.

To implement interactivity, the main component for rendering the Box is stateful, with the
state being a Box and an undo stack of Box es indicating the box-tactics that have been
applied so far.
Interactivity is implemented by defining a precondition test for each box-
tactic.
For example, the intro box-tactic (Section 3.5.3) has a precondition of the goal type
being a ∀ binder.
If the precondition holds, the view function renders a button next to the
selected goal indicating that a box-tactic is available for application on that goal or
hypothesis.
The button's event handler (Section 5.4.1) then performs the box-tactic and
produces a new Box which is emitted to be picked up by the main component and added to
the undo stack.
An example of this can be seen in Figure 5.8.

The precondition system is needed because in some cases the box-tactic applications can
take a long enough time that a noticeable lag will appear in the system .

The contextual bookkeeping of performing box-tactics on a Box Zipper as worked out in
Appendix A is needed to ensure that the box-tactic is sound.

5.9. Future work
In the future, I wish to improve Lean ProofWidgets in a number of ways. One simple way is
in improving documentation, Appendix B provides a tutorial on using ProofWidgets in

Figure 5.18. Community-made
projects using ProofWidgets, in
order these are:
 explode proof
viewer by Minchao Wu.
Mathematica bridge by Robert Y
Lewis and Minchao Wu.
Sudoku
solver and visualiser by Markus
Himmel.
Rubik's cube
formalisation by Kendall Frey.

69 The rule of thumb that I use is
that any delay of more than half a
second without a visual cue after
clicking a button is jarring.

69

85

https://github.com/leanprover-community/mathlib/pull/4718
http://robertylewis.com/leanmm/lean_mm.pdf
https://github.com/TwoFx/sudoku
https://github.com/kendfrey/rubiks-cube-group

Lean that I hope to expand to more examples later.

In terms of performance, in order to produce responsive interfaces that use long-running
tactics (e.g., searching a library or running a solver) it will be necessary to provide a
mechanism for allowing concurrency.
At the moment, if a long-running operation is
needed to produce output, this blocks the rendering process and the UI becomes
unresponsive for the length of the operation.
Currently Lean has a task type which
represents a 'promise' to the result of a long-running operation, which could be used to
solve this problem.
This could be cleanly integrated with ProofWidgets by providing an
additional hook with_task :

component.with_task
 (get_task : π → task τ)
 : (Component ((option τ) × π) α) → (Component π α)

Here (5.19), get_task would return a long-running task object and the props for the inner
component would transition from none to some 𝑡 upon the completion of the task.
Cancelling a task is implemented simply by causing a rerender.

There are also many features of web-browsers that would be worth implementing such as
drag-and-drop, sliders and mouse position events.
There is also currently no support for
adding third party libraries such as the data visualisation library D3.
Allowing support for
including arbitrary JavaScript libraries to run on the client would allow this, but making
such a system portable and robust is more challenging, because they would require
JavaScript glue code in order to work correctly with the system.
Another aesthetic
consideration is finding a principled way of implementing a Wadler-style pretty printer
[Wad03] within CSS and HTML.

Currently, the server sends an entire DOM tree in every event loop, this could be replaced
with a JSON patch file to save bandwidth.

I wish to reimplement ProofWidgets in Lean 4.
Lean 4 has a bootstrapped compiler, so the
reconciling code can be written in Lean 4 itself without having to modify the core codebase
as was necessary for Lean 3.
I hope that the pseudocode written in Appendix C will assist
in this project.
Lean 4 has an overhauled, extensible parser system [UM20] which should
allow a JSX-like HTML syntax to be used directly within Lean documents.

(5.19). Adding concurrency to
components with the help of
with_task .

[Wad03] Wadler, Philip A
prettier printer (2003) The Fun
of Programming, Cornerstones of
Computing

[UM20] Ullrich, Sebastian;
de Moura, Leonardo Beyond
Notations: Hygienic Macro
Expansion for Theorem Proving
Languages (2020) Automated
Reasoning

86

https://d3js.org/
http://www.cs.ox.ac.uk/publications/books/fop
https://doi.org/10.1007/978-3-030-51054-1_10
https://reactjs.org/docs/introducing-jsx.html
http://www.cs.ox.ac.uk/publications/books/fop
https://doi.org/10.1007/978-3-030-51054-1_10

Chapter 6

Evaluation
Up to this point, I have developed the various parts of the HumanProof software.
The focus
of this chapter is my study to investigate how mathematicians think about the
understandability of proofs and to evaluate whether the natural language proofs generated
by HumanProof aid understanding.

6.1. Objectives
This chapter addresses the third objective of Question 2 in my set of research questions
(Section 1.2): evaluating HumanProof by performing a study on real mathematicians.
Let
me break this objective down into a number of hypotheses and questions.

The hypotheses that I wish to test are:

1. Users will (on average) rank HumanProof natural language proofs as more
understandable than Lean proofs.

2. Users will (on average) rank HumanProof natural language proofs as less
understandable than proofs from a textbook. This hypothesis is a control: a textbook
proof has been crafted by a human for teaching and so I would expect it to be more
understandable than automatically-generated proofs.

3. Users will (on average) be more confident in the correctness of a Lean proof.

In addition to testing these hypotheses, I wish to gather qualitative answers to the
following two questions:

1. What properties of a proof contribute to, or inhibit, understandability?

2. How does having a computer-verified proof influence a mathematician's confidence
in the correctness of the proof?

6.2. Methodology
The goal of this study is to evaluate the hypotheses and gain answers to the questions
above.

To do this, I found a set of mathematicians and showed them sets of proof scripts written
using Lean, HumanProof and a proof script taken from a mathematics textbook.
I recorded
the sessions and performed a qualitative analysis of the verbal responses given by
participants.
I also asked participants to score the proof scripts on a Likert scale (that is,
rank from 1 to 5) according to two 'qualities':

1. How understandable are the proofs for the purpose of verifying correctness? This is
to assess hypotheses 1 and 2.

2. How confident is the participant that the proofs are correct? Note that a proof
assistant gives a guarantee of correctness. This is to assess hypothesis 3.

In Section 2.5, I discussed some of the literature in the definitions of understandability and
distinguished between a person finding a proof understandable and a person being
confident that a proof is correct. In this experiment, instead of using these definitions I
asked the participants themselves to reflect on what understandable means to them in the
context of the experiment.

A similar methodology of experimentation to the one presented here is the work of
Jackson, Ireland and Reid [IJR99] in developing interactive proof critics .
Their study70

87

https://en.wikipedia.org/wiki/Likert_scale
https://doi.org/10.1007/s001650050052

sought to determine whether users could productively interact with their software, and
they adopted a co-operative evaluation methodology [MH93] where participants are asked
to 'think aloud' when using their software.

In overview, each experiment session lasted about an hour and was split into three phases:

1. Participants were given a training document and a short presentation on how to read
Lean proofs. They were also told the format of the experiment. (10 minutes)

2. Over 4 rounds, the participant was given a statement of a lemma in Lean code and
then shown three proofs of the same lemma in a random order. They were asked to
rate these and also to 'think aloud' about their reasons for choosing these ratings. (40
minutes)

3. A debrief phase, where 3 demographic questions were asked as well as a brief
discussion on what understandability means to them. (5 minutes)

Due to the COVID19 pandemic, each experiment session was conducted using video
conferencing software with the participants submitting ratings using an online form.
As
well as the data that the participants filled in the form with, the audio from the sessions
was recorded and transcribed to methodically extract the explanations for why the
participants assigned the ratings they did.

The study was ethically approved by the Computer Laboratory at the University of
Cambridge before commencing. The consent form that participants were asked to sign can
be found in Appendix D.4.

6.2.1. Population

I wish to understand the population of working mathematicians, which here means people
who work professionally as mathematicians or students of mathematics or mathematical
sciences such as physics.
That is, people who are mathematically trained but who do not
necessarily have experience with proof assistants.

Postgraduates and undergraduates studying mathematics at the University of Cambridge
were recruited though an advert posted to the university's mathematics mailing list,
resulting in 11 participants. The first participant was used in a pilot study, however the
experiment was not changed in light of the results of the pilot and so was included in the
main results.
All participants were rewarded with a £10 gift card.

6.2.2. Choice of theorems to include

I will include proofs that involve all of the aspects of HumanProof discussed in Chapter 3
and Chapter 4.
These are:

Natural language write-up (Section 3.6)

Branching on disjunctive goals (Section 3.5.6).

Advanced rule application automatically unrolling existential quantifiers
(Section 3.5.8).

Subtasks engine for solving equalities (Chapter 4).

Note that the GUI developed in Chapter 5 was not included in this study. This is primarily
due to the difficulty of performing user-interface studies remotely.

The proofs should be drawn from a context with which undergraduates and postgraduates
are familiar and be sufficiently accessible that participants have ample time to read and
consider the proofs.
The four problems are:

1. The composition of group homomorphisms is a group homomorphism.

2. If A and B are open sets in a metric space, then A ∪ B is also open.

3. The kernel of a group homomorphism is a normal subgroup.

[IJR99] Ireland, Andrew;
Jackson, Michael; Reid,
Gordon Interactive proof
critics (1999) Formal Aspects of
Computing

Proof critics are discussed in
Section 2.6.2.
70

[MH93] Monk, Andrew;
Haber, Jeanne Improving
your human-computer interface:
a practical technique
(1993) publisher Prentice Hall

88

https://books.google.co.uk/books?id=JN9QAAAAMAAJ
https://doi.org/10.1007/s001650050052
https://books.google.co.uk/books?id=JN9QAAAAMAAJ

4. If A and B are open sets in a metric space, then A ∩ B is also open.

Lemma 1 (g ∘ h is a group homomorphism) is simple but will be a 'teaching' question
whose results will be discarded.
This serves to remove any 'burn-in' effects to do with
participants misunderstanding the format of the experiment and to give the participant
some practice.

6.2.3. Choice of proofs

The main part of the experiment is split into 4 tasks, one for each of the lemmas given
above.
Each task consists of

A theorem statement in natural language and in Lean. For example, Lemma 1
appears as "Lemma 1: the composition of a pair of group homomorphisms is a group
homomorphism" and also is_hom f → is_hom g → is_hom (g ∘ f) .

A brief set of definitions and auxiliary propositions needed to understand the
statement and proof.

Three proof scripts;
A Lean tactic sequence, written so that it is not necessary to see the tactic state
to understand the proof.

A HumanProof generated natural language write-up.

A natural language proof taken from a textbook.

These proofs can be viewed in Appendix D.3.

Both of the metric space problems use the same definitions, so this will save some time in
training the participant with notation and background material.
They also produce
different HumanProof write-ups.

In Lemma 4 (Appendix D.3.4), the statement to prove is that the intersection of two open
sets is open.
The HumanProof proof for this differs from the Lean and textbook proofs in
that an existential variable ε : ℝ needs to be set to the minimum of two other variables.
In
the Lean and textbook proofs, ε is explicitly assigned when it is introduced. But
HumanProof handles this differently as discussed in Section 3.5.8: ε is transformed into a
metavariables and is assigned after it can be deduced from unification later.

Two group theory problems (Lemmas 1 and 3) are given which are performed using a
chain of equalities.
These use the subtasks engine detailed in Chapter 4.

There are usually many ways of proving a theorem.
Each of the three proofs for a given
theorem have been chosen so that they follow the same proof structure, although the level
of detail is different, and in the equality chains different sequences are used.
This should
help to ensure that the participant's scores are informed by the presentation of the proof,
rather than the structure of the proof.

For all proofs, variable names were manually adjusted to be the same across all three
proofs.
So for example, if HumanProof decides to label a variable ε but it is η in the
textbook, ε is changed to be η .
Stylistic choices like this were arbitrated by me to be
whichever choice I considered to be most conventional.

The study was originally intended to be face-to-face, showing users an on-screen Lean
proof with the help of the Lean infoview to give information on the intermediate proof
state.
However, due to the study being remote, the material was presented using static
images within a web-form instead.
This meant that all of the proofs needed to be read
without the help of any software.
So I wrote the Lean proofs in a different style to the one
that would be found in the Lean mathematics library.
The following list gives these stylistic
changes.
I will discuss the validity implications of this in Section 6.7.

All variable introductions had their types explicitly written even though Lean infers
them.

89

Before and after a complex tactic I insert a show G statement with the goal being
shown.

French quotes ‹x ∈ A› to refer to proofs are used wherever possible (as opposed to
using assumption or the variable name for the proof).

When proving A ∪ B is open, one needs to perform case analysis on y ∈ A ∪ B where
the reasoning for either case is very similar. While it is possible to use a wlog tactic
to reduce the size of the proof, I decided against using it because one must also
provide an auxiliary proof for converting the proof on the first case to the second
case.

In the textbook proof all was replaced with Lean-style pretty printed expressions.
This is to make sure that the participants are not biased towards the human-made proof
due to their familiarity with -style mathematical typesetting.
Another issue with the
metric space proofs is that the original textbook proofs that I found were written in terms
of open balls around points, but I wanted to keep the definitions used by the proofs as
similar as possible so I used ∀,∃-style arguments.
Thus the parts of the textbook proofs
that mention open balls were replaced with the equivalent ∀,∃ definition.
This might have
caused the textbook proofs to become less understandable than the original. This concern
is revisited in Section 6.7.

6.3. Agenda of experiment
In this subsection I provide more detail on the design and structure of my empirical study.
The session for each participant was designed to take less than an hour and be one-to-one
over Zoom, a video conferencing application.
Zoom was also used to schedule and record
the sessions.

6.3.1. Pre-session

Before the session starts, a time is scheduled and participants are asked to sign a consent
form which may be viewed in Appendix D.4.
This consent form makes sure that the
participants are aware of and accept how the data generated from the session will be used.
Namely, I record their names and emails, however only the anonymised answers to the
forms and some selected quotes are publicly released. All recording data and identification
data were deleted after the course of the experiment.

6.3.2. Preparatory events

Once the session starts, I greet the participant, double-check that they have signed the
consent form and give them an overview of the agenda of the study.
I also remind them
that their mathematical ability is not being tested.

6.3.3. Training phase

In this phase, the training document given in Appendix D.2 is sent to the participant as a
PDF, and the participant is asked to share their screen with me so that I can see the
training document on their desktop.
Participants were told that the purpose of the training
document was to get them familiar enough with the new syntax so that they could read
through a Lean proof and understand what is being done, even if they might not be able to
write such a proof.

Then I walk the participant through the training document, answering any questions they
have along the way.
The purpose of the training document is to get the participant used to
the Lean syntax and tactic framework.

For example, the right associativity of function/implication arrows f : P → Q → R and
the curried style of function application (f p q versus f(p,q)).
The final part of the
training document is a reference table of tactics.
Participants are informed that this table is

T ​XE

T ​XE

90

https://zoom.us/

only for reference and that it is covered in the training phase.
The training phase is
designed to take around 10 to 15 minutes.

The participant is informed that they can refer back to this training document at any time
during the experiment, although in the name of reducing browser-tab-juggling, I would
also offer to verbally explain any aspects of the material that participants were unsure
about.

6.3.4. Experiment phase

After the training phase, I ask the participant if I can start recording their screen and send
them a link to a Google Form containing the material and questions for phases 2 and 3.

The first page of the form is a landing page with some checkboxes to double check that the
participant is ready, has signed the consent form, and understands the format of the
experiment.

The participant then proceeds to the first in a sequence of four pages. Each page contains a
lemma, some necessary definitions, a set of three proofs and two sets of Likert scale radio
buttons for the participant to rate their understandability and confidence scores for each
proof. The lemmas are presented in a random order, although the first lemma - the
composition of two group homomorphisms is a group homomorphism - always appears
first because it is used to counter the learning effect as discussed in Section 6.2.2.
The
proofs are also presented in a random order on the page.

The form page given for each task is presented in Figure 6.1, each page is laid out in a
vertical series of boxes, the first box contains the lemma number and the statement of the
lemma to be proven.
The next box contains the definitions, written in both natural
language and Lean syntax.
Then come three boxes containing the proof scripts in a random
order.
Each proof script is presented as a PNG image to ensure that the syntax and line-
breaks render the same on all browsers and screen sizes.

91

At the bottom of the page, participants were presented with two more boxes containing a
set of radio buttons allowing the participant to rate each proof as shown in Figure 6.2.

Figure 6.1. Annotated overview of a task page in Google forms.
The content present in the form can be read in
full in Appendix D.3.

92

The title questions for these sets of buttons are "How understandable do you find each of
the above proofs?" and "How confident are you that the above proofs are correct?".
Each
column of the radio buttons has a phrase indicating the Likert scoring level that that
column represents.

The participants were reminded that:

They could assume that the Lean proof was valid Lean code and had been checked by
Lean.

That the confidence measure should not be about the confidence in the result itself
being true but instead confidence that the proof given actually proves the result.

The interpretation of the concept of 'understandable' is left to the participant.

Once the participant filled out these ratings, I would prompt them to give some
explanation for why they had chosen these ratings - although usually they would volunteer
this information without prompting. In the case of a tie, I also asked how they would rank
the tied items if forced to choose.

If I got the impression that the participant was mixing up the labels during the rating
phase, I planned to interject about the label ordering. This did not occur in practice
though.

6.3.5. Debriefing phase

In this final phase, the user is presented with a series of multiple choice questions. Namely;

What is the level of education that you are currently studying? (Undergraduate 1st
year, Undergraduate 2nd year, Undergraduate 3rd year, Masters student, PhD
student, Post-doc and above, Other)

Which of the below labels best describes your area of specialisation? (Pure
Mathematics, Applied Mathematics, Theoretical Physics, Statistics, Computer
Science, Other)

How much experience with automated reasoning or interactive theorem proving do
you have? (None, Novice, Moderate, Expert)

Figure 6.2. A filled out form.

93

Finally, there is a text-box question entitled "What does it mean for a proof to be
'understandable' to you?".
At this point, I would tell the participant that they could also
answer verbally and I would transcribe their answer.

After the participant has submitted the form, I thanked them and stoped recording.
In
some cases, the participant wanted to know more about interactive theorem proving and
Lean, and in this case I directed them towards Kevin Buzzard's Natural Numbers Game.

6.4. Results
Full results are given in Table 6.3. In the remainder of this section the proof scripts are
coded as follows:
L is the Lean proof; H is the natural language HumanProof-generated
proof; T is the textbook proof.
Similarly, the lemmas are shortened to their number (i.e.,
"Lemma 2" is expressed as "2"). The 'Question ordering' and 'Ordering' columns give the
order in which the participant saw the lemmas and proofs respectively.
So an ordering of
1432 means that they saw Lemma 1, then Lemma 4, then 3, then 2. And within a lemma,
an ordering of HTL means that they saw the HumanProof proof followed by textbook
proof, followed by the Lean proof.
The columns are always arranged in the LHT order, so
the L column is always the rating that they assigned to the Lean proof.
'Unders.' and
'Conf.' are the understandability and confidence qualities, respectively. Figure 6.4 and
Figure 6.5 plot these raw results as bar charts with various groupings.
These results are
interpreted and analysed in Section 6.5.

Table 6.3. The full (anonymised) results table of the quantitative data collected from the experiment.
Print note:
a full, selectable version of this table can be found at https://www.edayers.com/thesis/evaluation#full-results-tabl
e.

94

http://wwwf.imperial.ac.uk/~buzzard/xena/natural_number_game/
https://www.edayers.com/thesis/evaluation#full-results-table

6.5. Quantitative analysis of ratings
6.5.1. Initial observations

On all the lemmas, people on average ranked the understandability of HumanProof and
Textbook proofs to be the same.
On Lemma 3, people on average ranked the Lean proof as
more understandable than the HumanProof and Textbook proofs.
But on Lemmas 2 and 4,
they on average ranked understandability of the Lean proof to be less than the
HumanProof and Textbook proofs.
For participants' confidence in the correctness of the
proof, the participants were generally certain of the correctness of all of the proofs.
On
Lemma 2, confidence was ranked Textbook < HumanProof < Lean.
On Lemma 3 the

Figure 6.4. Bar chart of the
ratings grouped by lemma. That
is, each row is a different lemma
and for each of the values [1,5]
the number of people who
assigned that rating are plotted as
a bar, with a different colour for
each of the proofs. The columns
correspond to the two 'qualities'
that the participants rated
understandability and
confidence.

Figure 6.5. Bar chart of the
ratings grouped by proof. The
same data is used as in Figure 6.4
but with separate vertical plots
for each of the types.

95

confidence was almost always saturated at 5 for all three proofs, meaning that this result
had a ceiling effect.
On Lemma 4, confidence was ranked Lean < HumanProof < Textbook.

6.5.2. Likelihood of preferences

Now consider the hypotheses outlined in Section 6.1.
There are not enough data to use
advanced models like ordinal regression, but we can compute some simple likelihood
curves for probabilities of certain propositions of interest for a given participant.

Let's find a likelihood curve for the probability that some participant will rank proof
above proof , where and are from the set .
Fixing
a statistical model with parameters and dataset , define the likelihood as a
function of proportional to the probability of seeing the data given parameters .

Take a pair of proofs and a fixed lemma
 and quality .
Write to

be the number of data in the dataset that evaluate to true.
Hence from the data we
get three numbers , and .
In the case of a tie , let's
make the assumption that the participants 'true preference' is either or , but
that them reporting a tie means that the result could go either way.
So let's model the
proposition that for a random mathematician being drawn from a Bernoulli
distribution with parameter .
For example, if the true value for was 0.4 for

 on Lemma 2, we would expect a new participant to rank Lean below Textbook
40% of the time and Textbook below Lean 60% of the time.
Our goal is to find a likelihood
function for given the data.
We can write this as

How to implement ? The assumption above tells us to break ties randomly. So
that means that if there is one tie, there is a 50% chance of that being evidence for
or 50% for . Hence

Plotting the normalised likelihood curves for for each lemma, quality and pair of
proofs is shown in Figure 6.8.

A

B A B {Lean, HumanProof, Textbook}
θ x L(x∣θ)

θ x θ

A,B ∈ {Lean, HumanProof, Textbook} T ∈
{Lemma 2, Lemma 3, Lemma 4} Q ∈ {Unders., Conf.} #(A < B)

A < B

#(A < B) #(B < A) #(A = B) A = B

A < B B < A

A < B

π π Lean <
Textbook

π

(6.6).

​ ​

L(x∣π) = ​L(x∣π)
x∈x

∏
= π (1 − π) P (tie∣π)#(A<B) #(B<A) #(A=B)

P (tie∣π)
A < B

B < A

(6.7).
L(tie∣π) = ​(π +

2
1

(1 − π)) = ​

2
1

L(x∣π)

96

https://en.wikipedia.org/wiki/Ordinal_regression

Each curve has been scaled to have an area of .
However each of the six plots have a
different y-axis scaling to make the shapes as clear as possible.
These graphs encapsulate
everything that the data can tell us about each independent .
We can interpret them as
telling us how to update our prior to a posterior .
A curve
skewed to the right for means that it is more likely that a participant will rank
above . A curve with most of the mass in the center means that participants could rank
and either way.

In the confidence plot for (mid right of Figure 6.8), the
horizontal line for "kernel is normal" means that the given data tell us nothing about
whether users prefer HumanProof or the Textbook proof. Consulting the raw data in
Table 6.3, we can see that all 11 participants ranked these proofs equally, so the data can't
tell us anything about which one they would really prefer if they had to choose a strict
ordering.

6.5.3. Testing the hypotheses

We can interpret the likelihood curves in Figure 6.8 to test the three hypotheses given in
Section 6.1.
Each of the hypotheses takes the form of a comparison between how the
participants ranked pairs of proof script types.
The external validity of the conclusions (i.e.,
do the findings tell us anything about whether the hypothesis is true in general?) is
considered in Section 6.7.

For the first hypothesis, I ask whether HumanProof natural language proofs are rated as
more understandable than Lean proofs.
The top left plot comparing the ratings of Lean to
HumanProof proofs in Figure 6.8 contains the relevant likelihoods.
To convert each of
these likelihood functions on in to a posterior distribution , first multiply by a
prior since .
In the following analysis I choose a uniform prior

.

Figure 6.8. Normalised
likelihood curves for the
probability that a random
mathematician will rate A less
then B for a given lemma and
quality. Note that each plot has a
different scale, what matters is
where the mass of the
distribution is situated.
This plot
is analysed in Section 6.5.3.

1

π

p(π) p(π∣x) ∝ p(π)L(x∣π)
A < B B

A A

B

HumanProof < Textbook

π

π p(π∣x)
p(π) p(π∣x) ∝ p(π)L(x∣π)

p(π) ∝ 1

97

One way to answer the hypothesis is to take each posterior and compute the area
under the curve where . This will be the prior probability that the statement
"HumanProof natural language proofs is preferred" for that particular lemma. The full set
of these probabilities are tabulated in Table 6.9.

1. The participants ranked HumanProof natural language proofs as more
understandable than Lean proofs. (The top-left plot in Figure 6.8.)
Reading this gives
a different conclusion for Lemma 3 versus Lemmas 2 and 4 . For Lemma 3, we can see
that users actually found the Lean proof to be more understandable than the natural
language proofs , we will see some hints as to why in Section 6.6.2. For
Lemmas 2 and 4: and of the mass is above .

2. The participants rank HumanProof natural language proofs as less
understandable than proofs from a textbook.
(The middle-left plot in Figure 6.8.)
For all three lemmas a roughly equal amount of the area is either side of ,
suggesting that participants do not have a rating preference of textbook proofs versus
HumanProof proofs for understandability.
Hence there is no evidence to support
hypothesis 2 from this experiment. As will be discussed in Section 6.7, I suspect that
finding evidence for hypothesis 2 requires longer, more advanced proofs.

3. The participants are more confident in the correctness of a Lean proof to
the natural language-like proofs.
(The top-right and bottom-right plots in
Figure 6.8.)
For Lemma 3: the straight line indicates that only one participant gave a
different confidence score for the proofs. As such a significant amount of the area lies on
either side of , and so the evidence is inconclusive.
For Lemma 2: we have an 89%
chance that they are more confident in HumanProof over Lean and a 25% chance that they
are more confident in Textbook over Lean. So this hypothesis resolves differently
depending on whether it is the HumanProof or Textbook proofs.
Finally with Lemma 4:
the numbers are 85% and 94%, so the hypothesis resolves negatively; on Lemma 4 we
should expect mathematicians to be more confident in the natural-language-like proofs,
even though there is a guarantee of correctness from the Lean proof. The verbal reasons
that participants gave when justifying this choice are explored in Section 6.6.1.

Understandability Confidence

p(Lean < HumanProof) Lemma 2 96% 89%

Lemma 3 6% 75%

Lemma 4 99.8% 85%

p(HumanProof < Textbook) Lemma 2 50% 11%

Lemma 3 50% 50%

Lemma 4 62% 75%

p(Lean < Textbook) Lemma 2 99.7% 25%

Lemma 3 3% 75%

Lemma 4 99.95% 94%

So here, we can see that how the hypotheses resolve are dependent on the lemma in
question.
In order to investigate these differences, let us now turn to the verbal comments
and responses that participants gave during each experiment session.

6.6. Qualitative analysis of verbal
responses
In this section, I seek answers to the questions listed in Section 6.1.
That is, what do the
participants interpret the word 'understandable' to mean and what are their reasons for
scoring the proofs as they did?

p(π∣x)
π > 0.5

71 Lemma 3: the kernel of a group
homomorphism is a normal
subgroup (Appendix D.3.3).

71 72

Lemma 2: If A and B are open
then A ∪ B is open
(Appendix D.3.2). Lemma 4: If A
and B are open then A ∩ B is
open (Appendix D.3.4).

72 P (π > ​) =2
1 6%

96% 99.8% π = ​2
1

π = 0.5

π = 0.5

Table 6.9. A table of
probabilities for whether a new
participant will rank for
different pairs of proof scripts.
As
detailed in Section 6.5.2 and
Section 6.5.3, these numbers are
found by computing
on a uniform prior . For a
fixed , and quality : is the
parameter of a Bernoulli
distribution modelling the
probability that a particular
participant will rate for .

X < Y

p(π > ​∣x)2
1

p(π)
X Y q π

X < Y q

98

Schreier's textbook on qualitative content analysis [Sch12] was used as a reference for
determining the methodology here.
There are a few different techniques in sociology for
qualitative analyses: 'coding', 'discourse analysis' and 'qualitative content analysis'.
The
basic idea in these is to determine the kinds of responses that would help answer ones
research question (coding frame) and then systematically read the transcripts and
categorise responses according to this coding frame.

To analyse the verbal responses, I transcribed the recordings of each session and
segmented them into sentences or sets of closely related sentences. The sentences that
expressed a reason for a preference between the proofs or a general comment about the
understandability were isolated and categorised. If the same participant effectively
repeated a sentence for the same Lemma, then this would be discarded.

6.6.1. Verbal responses on understandability

In the debriefing phase, participants gave their opinions on what it means for a proof to be
understandable.
I have coded these responses into four categories.

Syntax: features pertaining to the typesetting and symbols used to present the
proof.

Level of detail (LoD): features to do with the amount of detail shown or hidden
from the reader, for example, whether or not associativity steps are presented in a
calculation. Another example is explicitly vs. implicitly mentioning that A ⊆ A ∪ B .

Structure: features to do with the wider layout of the arguments and the ordering
of steps in the proof. I also include here the structure of exposition. So for example,
when picking a value for introducing an exists statement, is the value fixed
beforehand and then shown to be correct or is it converted to a metavariable to be
assigned later?

Signposting: features to do with indicating how the proof is going to progress
without actually performing any steps of the proof, for example, explaining the
intuition behind a proof or pausing to restate the goal.

Other: anything else.

The presence of the 'other' category means that these codings are exhaustive. But are they
mutually exclusive? We can answer this by comparing the categories pairwise:

Syntax/LoD: An overlap here would be a syntactic device which also changes the
level of detail. There are a few examples of this which are supported by Lean: implicit
arguments and casting . Both casting and implicit arguments hide unnecessary
detail from the user to aid understanding. However since these devices are used by
both Lean and natural language proofs they shouldn't be the reason that one is
preferred over the other.

Syntax/Structure: the larger layout of a proof document could be mediated by
syntax such as begin/end blocks, but here a complaint on syntax would be a
complaint against the choices of token used to represent the syntax. If the comment
is robust to changing the syntax for another set of tokens, then it is not a comment
about the syntax.

Syntax/Signposting: similarly to Syntax/Structure, signposting has syntax
associated with it, but we should expect any issue with signposting to be independent
of the syntax used to denote it.

LoD/Structure: LoD is different to structure in that if a comment is still valid after
adding or removing detail (e.g., steps in an equality chain or an explanation for a
particular result) then it is not a comment about LoD.

LoD/Signposting: There is some overlap between LoD and signposting, because if
a signpost is omitted, then this could be considered changing the level of detail.
However I distinguish them by stipulating that signposts are not strictly necessary to
complete the proof, whereas the omitted details are necessary but are not
mentioned.

[Sch12] Schreier,
Margrit Qualitative content
analysis in practice
(2012) publisher SAGE
Publications

73 For example, for the syntax
representing a group product
𝑎 * 𝑏 , the carrier group is

implicit.

73 74

In 0.5 + 1 , the 1 is
implicitly cast from a natural
number to a rational number.

74

99

https://uk.sagepub.com/en-gb/eur/qualitative-content-analysis-in-practice/book234633
https://uk.sagepub.com/en-gb/eur/qualitative-content-analysis-in-practice/book234633

Structure/Signposting: Similarly to LoD/Signposting, signposts can be removed
while remaining a valid proof.

The verbal answers to the meaning of understandability are coded and tabulated in
Table 6.10.

A proof is understandable when ... count category

"it provides intuition or a sketch of the proof" 6 signposting

"it clearly references lemmas and justifications" 4 level of detail

"it emphasises the key difficult steps" 4 signposting

"each step is easy to check" 3 level of detail

"it is aimed at the right audience" 3 other

"it allows you to easily reconstruct the proof without remembering all of the details" 2 structure

"it hides bits that don't matter" (for example, associativity rewrites) 2 level of detail

"it explains the thought process for deriving 'inspired steps' such as choosing ε" 2 structure

"it is clear" 1 syntax, structure

"it is concise" 1 syntax, structure

"it has a balance of words and symbols" 1 syntax

Additionally, 4 participants claimed that just being easy to check does not necessarily
mean that a proof is understandable.
So the data show that signposting and getting the
right level of detail are the most important aspects of a proof that make it understandable.
The syntax and structure of the proof mattered less in the opinion of the participants.

6.6.2. Reasons for rating proofs in terms of understandability

Now I turn to the two qualitative questions asked in Section 6.1:

1. What properties of a proof contribute to, or inhibit, understandability?

2. How does having a computer-verified proof influence a mathematician's confidence
in the correctness of the proof?

In order to answer these, we need to find general reasons why respondents ranked certain
proofs above others on both the understandability and confidence quality.

The main new category to introduce here is whether the participants' reasons for choosing
between the proofs are an intrinsic part of the proof medium or a presentational choice
that can be fixed easily.
For example, it may be preferred to skip a number of steps in an
equality calculation, but it might be awkward to get this to verify in Lean in a way that
might not be true for smaller proofs.

Since the numerical results for the metric space lemmas tell a different story to the group
theory lemma, I separate the analysis along these lines.

For the group homomorphism question, the Lean proof was usually preferred in terms of
understandability to the HumanProof and textbook proofs.
The main reasons given are
tabulated in Table 6.11. I write H+ or L- and so on to categorise whether the comment is a
negative or positive opinion on the given proof. So T+ means that the quote is categorised
as being positive about the textbook proof.
Write = to mean that the statement applies to
all of the proofs.

Table 6.10. Verbal responses prompted by 'What does it mean for a proof to be understandable to you?'. Each
phrase in the first column is paraphrased to be a continuation of 'A proof is understandable when...'.

100

paraphrased quote count category judgement

1 "I would rather that f (g * k * g⁻¹) = f g * f k * (f g)⁻¹ be performed in one step" 2 level of detail L-

2 "I would rather that f (g * k * g⁻¹) = f g * f k * (f g)⁻¹ be performed in two steps" 2 level of detail L+

3 "I like how the HumanProof proof does not need to apply (f g)⁻¹ = f (g⁻¹) " 2 structure H+

4 "I prefer the Lean proof because it explains exactly what is happening on each step with the rewrite tactics" 2 level of detail L+

5 "I don't like how none of the proofs explicitly state that proving f (g * k * g⁻¹) = e implies that the kernel is
therefore normal"

2 level of detail =

6 Express a lack of difference between the proofs of Lemma 3 2 structure =

7 "The textbook proof is too hard to read because the equality chain is all placed on a single line" 2 syntax, level of
detail

T-

8 "In the textbook proof, I dislike how applying f (g * k * g⁻¹) = f g * f k * (f g)⁻¹ together with
(f g)⁻¹ = f (g⁻¹) is performed in one step

1 level of detail T-

9 "It is not clear in the equality chain exactly where the kernel property is used in the HumanProof proof" 1 level of detail H-

Rows 2, 4 and 7 in Table 6.11 suggest that the main reason why Lean tended to rank higher
in understandability for Lemma 3 is because the syntax of Lean's calc block requires that
the proof terms for each step of the equality chain be included explicitly.
Participants
generally found these useful for understandability, because it meant that each line in the
equality chain had an explicit reason instead of having to infer which rewrite rule was used
by comparing expressions
(this is a case where the Lean proof's higher level of detail was
actually a good thing rather than getting in the way).
This suggests that future versions of
HumanProof should include the option to explicitly include these rewrite rules.

Rows 1 and 2 in Table 6.11 show that there is also generally disagreement on what the most
understandable level of detail is in terms of the number of steps that should be omitted in
the equality chain.

Now let us turn to the metric space lemmas in Table 6.12.

paraphrase quote count category judgement

1 "The textbook proof of Lemma 2 is too terse" 5 level of detail T-

2 "The textbook proof is what I would see in a lecture but if I was teaching I would use HumanProof" 5 structure, level of detail H+

3 Expressing shock or surprise upon seeing the Lean proof 5 level of detail L-

4 "I like the use of an explicit 'we must show' goal statement in the HumanProof proof" 3 structure H+

5 "The Lean proof includes too much detail" 3 level of detail L-

6 "In Lemma 2, the last paragraph of HumanProof is too wordy / useless" 3 level of detail, structure H-

7 "It is difficult to parse the definition of is_open " 2 syntax =

8 "I prefer ' x ∈ A whenever dist y x < ε for all x ' to ' ∀ x, dist y x < ε → x ∈ A '" 2 syntax =

9 "In the Lean proof, it is difficult to figure out what each tactic is doing to the goal state" 2 structure, syntax L-

10 "Lean gives too much detail to gain any intuition on the proof" 2 level of detail L-

11 "I prefer HumanProof's justification of choosing ε, generally" 2 structure H+

12 "I prefer HumanProof's justification of choosing ε, but only for the purposes of teaching" 2 structure H+

13 "I prefer the lack of justification of choosing ε" 2 structure T+

14 "It is difficult to parse the definition of is_open " 2 syntax =

15 "I prefer ' ∀ x, dist y x < ε → x ∈ A ' to ' x ∈ A whenever dist y x < ε for all x '" 1 syntax =

16 "Knowing that the 'similarly' phrase in Textbook proof of Lemma 2 requires intuition" 1 level of detail T

17 "Both HumanProof and textbook proofs of Lemma 4 are the same" 1 structure H=T

Table 6.11. Table of reasons participants gave for their ranking of the understandability of proofs for Lemma 3.

Table 6.12. Table of reasons participants gave in their ranking of the understandability of proofs for Lemmas 2
and 4.

101

Here, most of the criticisms of Lean are on the large level of detail that the proof needs
(rows 1, 2, 3, 5, 6, 10, 16 of Table 6.12).
Now, to some extent the amount of detail included
has been inflated by my representation of the lemma to ensure that the participants can
read through the proof without having an interactive window open, so this might be more
of a complaint about how I have written the proof than an intrinsic problem with Lean.

Another common talking point (rows 12, 13, 14 in Table 6.12) was the way in which
HumanProof structured proofs by delaying the choice of ε to when it is clear what the
value should be, rather than the Lean and Textbook proofs which choose ε up-front.
There was not agreement among the participants about which structure of proof is better.
One participant noted that they preferred proofs where ' ε is pulled out of a hat and
checked later'.

Row 1 of Table 6.12 shows that participants generally struggled with the textbook proof of
Lemma 2 (Appendix D.3.2).
This might be because the original proof was stated in terms
of open ε -balls which I replaced with a ∀∃ expression, and this change unfairly marred
the understandability of the textbook proof. This was done to ensure that the same
definitions were used across all versions of the proof.

I also provide below in Table 6.13 some general remarks on the proofs that weren't specific
to a particular lemma.

Paraphrase quote count category judgement

1 "I am finding Lean difficult to read mostly because I am not used to the syntax rather than because the underlying
structure is hard to follow"

6 syntax L-

2 "The Lean proof makes sense even though I don't know the tactic syntax well" 5 syntax L+

3 "I am getting used to reading Lean", "This is much easier now that I am familiar with the syntax" 4 syntax L+

4 "Lean really focusses the mind on what you have to prove" 2 level of
detail

L+

5 "In HumanProof and textbook proofs I find reading the Lean-like expressions to be difficult" 1 syntax =

The trend in Table 6.13 is syntax. Many participants were keen to state that they found the
Lean tactic syntax difficult to read, but they also stated that this shouldn't be a reason to
discount a proof as being difficult to understand because it is just a matter of not being
used to the syntax rather than an intrinsic problem with the proof.
When asked to give a
reason why the Lean proof was found to be less understandable for Lemmas 2 and 4, the
reason was usually about level of detail and syntax rather than about the structure of the
proof.
The take-home message here is that while newcomers are likely to find the new
syntax of Lean strange, they are willing to learn it and do not see it as a problem with
formal provers.

6.6.3. Verbal responses for confidence

When the participants gave a rating of their confidence in the correctness of the proofs, I
reminded them that the Lean proofs had been verified by Lean's kernel.
Looking at the
numerical results in the right column of Figure 6.8 and the results of Section 6.5.3, we can
see that participants are more likely to be confident in the HumanProof proofs than the
Lean proofs, and more likely to be confident in the Textbook proofs over the Lean proofs
(with the exception of Lemma 2). As discussed, the signal is not very strong but this
suggests that knowing that a proof is formally verified does not necessarily make
mathematicians more confident that the proof is correct.

Three participants volunteered that they were less certain of Lean because they don't know
how it works and it might have bugs. Meanwhile one participant, after ranking their
confidence in Lean lower, stated

Table 6.13. Table of general reasons participants gave in their ranking of the understandability of proofs that
apply to all of the Lemmas.

102

"I can't tell if the reason I said that I am less confident was just an irrational
suspicion or something else...
I can't figure out what kind of mistake... in my mind
there might exist some kind of mistake where it would logically
be fine but
somehow the proof doesn't work, but I don't know if that's a real thing or not."

This suggests a counterintuitive perspective; convincing mathematicians to have more
confidence in formal methods such as provers is not a problem of verifying that a given
proof is correct. Instead they need to be able to see why a proof is true.

6.6.4. Summary of verbal responses

To wrap up, in this section we have explored the evidence that the verbal responses of
participants provide for the research questions laid out in Section 6.1.

What properties of a proof contribute to, or inhibit, the understandability of a
proof? The most commonly given property is on signposting a proof by providing an
intuition or sketch of the proof, followed by getting the level of detail right; skipping over
parts of the proof that are less important while remaining easy to check.
Syntactic clarity
was less important.

Does having a formal guarantee of correctness increase a mathematician's
confidence in the correctness of the proof? The answer seems to be no, but perhaps
this will change as the mathematicians have more experience with an interactive theorem
prover.

6.7. Threats to validity and limitations
Here, I list some of the ways in which the experiment could be invalidated. There are two
kinds of threats: internal and external. An internal threat is one which causes the
experiment to not measure what it says it is measuring. An external threat is about
generalisation; do the results of the experiment extend to broader claims about the whole
system?

Below I list the threats to validity that I have identified for this study.

Confounding – Some other aspect of how the proofs are presented might be causing
participants to be biased towards one or the other (e.g., if one uses typeset
mathematics vs monospace code, or dependent on the choice of variable names). Because
of this I have changed the human-written natural language proof scripts to use Lean
notation for mathematical expressions instead of .
Another defence against this threat
is to simply ask the participants about why they chose to rate the proofs as they did.
However, it is possible that this bias is subconscious and therefore would not be picked up
in the verbal responses ("I don't know why I prefer this one"...).

Selection bias – Participants are not drawn randomly from the population but are drawn
from people who answer an advert for a study. This could cause a bias towards users who
are more interested in ITP and ATP . I defend against this with the question in the debrief
phase asking what their prior experience is with ITP and ATP. Additionally, it is not
mentioned that the HumanProof-generated proof is generated by a machine, so being
biased towards ITP would cause the bias to be towards the Lean proof rather than towards
the generated proof.

Maturation/ learning effects – During the course of the experiment, the participants
may become used to performing the rankings and reading the two Lean-based proofs.
The
training phase and throwing away the results of the first task should help remove any
effects from the participants being unfamiliar with the material.
The lemmas and proofs
are presented in a randomised order so at least any learning effect bias is distributed
evenly over the results.

T ​XE

T ​XE

75 Interactive Theorem Proving
and Automated Theorem Proving,
see Section 2.1.2.

75

103

'Cached' scoring – Similar to maturation, participants may remember their scores to
previous rounds and use that as a shortcut to thinking about the new problem presented to
them. This is partly the purpose of asking the participants to explain why they ranked as
they do, which should cause them to think about their rating more than relying on cached
ratings.

Experimenter bias – I have a bias towards the HumanProof system because I built it.
This could cause me to inadvertently behave differently when the participant is interacting
with the HumanProof proof script. In order to minimise this, I tried to keep to the
experimenter script as much as possible. I have also introduced bias in how I have selected
the example questions.
The textbook proofs were chosen from existing mathematical
textbooks, but I perhaps introduced bias when I augmented them to bring them in line
with the other two proofs.
To some extent the Lean proofs are not representative of a Lean
proof that one would find 'in the wild'. I couldn't use an existing mathlib proof of the
same theorem because Lean proofs in mathlib can be difficult to read without the Lean
goal-state window visible and without first being familiar with the definitions and
conventions which are highly specific to Lean. Although this bias may cause participants
perceptions to be changed, an impression I got during the sessions was that the
participants were generally sympathetic to the Lean proofs, possibly because they assumed
that I was primarily interested in the Lean proof scripts as opposed to the HumanProof
proof which was not declared to be computer generated.

Generalisation - The lemmas that have been selected are all elementary propositions
from the Cambridge undergraduate mathematics course.
This was necessary to make sure
that the proofs could be understood independently of the definitions and lemmas that are
required to write down proofs of later results and to ensure that the participants could
review the proofs quickly enough to complete each session in under an hour.
However this
choice introduces a threat to external validity, in that it is not clear whether any results
found should generalise to more advanced lemmas and proofs.
More experiments would
need to be done to confirm whether the results and responses generalise to a more diverse
range of problems and participants.
Do we have a strong prior reason to expect that
participants would answer differently on more advanced lemmas and proofs?
My personal
prior is that they would rank Lean even worse, most notably because the result would rely
on some unfamiliar lemmas and concepts such as filters and type coercions.
I also suspect
that HumanProof would perform worse on more advanced proofs, since the proofs would
be longer and hence a more sophisticated natural language generation system would be
needed to generate the results.

Ceiling effects - Some of the ratings have ceiling effects, where the ratings data mostly
occurs around the extrema of the scale. This can be seen to occur for the understandability
and confidence scores for Lemma 3.

Sample size - There were only 11 participants in the study. This low sample size
manifests in the results as the fat likelihood curves in Figure 6.8. However, the study was
designed to be fairly informal, with the quantitative test's purpose mainly to spark
discussion, so it is not clear to me that any additional insight would be gained from
increasing the study size.

6.8. Conclusions and future work
In this chapter I have evaluated the natural language write-up component of HumanProof
by asking mathematicians to compare it against Lean proofs and proofs derived from
textbooks.
The results give different answers for equational reasoning proofs as opposed to
the more structural natural language proofs and Lean proofs. This suggests that we should
come to two conclusions from this experiment.

In the case of structural proofs, users generally prefer HumanProof and textbook proofs to
Lean proofs for understandability. The participants reported that to some extent it was

76 Mathlib is Lean's mathematical
library.
76

104

because they found the natural language proofs more familiar, but also because the Lean
proofs were considered too detailed.

However the qualitative, verbal results showed (Section 6.6.2) that participants were
usually sympathetic towards the Lean structure, only wishing that the proofs be a little
more terse, provide signposts and hide unnecessary details.

In the wider sense, we can use the results from this study to see that mathematicians are
willing to move to different syntax, but that the high-level structure and level of detail of
formalised proofs needs to be improved in order for them to adopt ITP.
The study confirms
that producing natural language proofs at a more human-like level of detail is useful for
mathematicians.
It also provides some surprising complaints about how proofs are
typically laid out in textbooks where a more formal and detailed approach would actually
be preferred, as we saw for the group homomorphisms question, where the Textbook
version of the proof was considered to be too terse.

Within the wider scope of the thesis and the research questions in Section 1.2, the study
presented in this chapter seeks to determine whether software can produce formalized,
understandable proofs. The study shows that HumanProof system developed in Chapter 3
and Chapter 4 can help with understandability (as shown in Section 6.5 for the case of
Lemmas 2 and 4).

105

Chapter 7

Conclusion
In this thesis, I have presented the design and evaluation for HumanProof and
ProofWidgets.
In this chapter I will conclude the thesis by reflecting on the research
questions given in Chapter 1 and talking about further work.

7.1. Revisiting the research questions
Let's review the research questions that I set out to answer in Section 1.2 and outline the
contributions that I have made towards them.

7.1.1. What constitutes a human-like, understandable proof?

Identify what 'human-like' and 'understandable' mean to different people.

In Section 2.5, I investigated the work of other mathematicians and mathematics
educators on the question of what it means to understand a proof of a theorem.
This
review took me from educational research to the works of Spinoza, but yielded little in the
way of explicit answers to this question.
In Chapter 6, I asked some students of
mathematics at the University of Cambridge what features of a proof made it
understandable to them. The participants remarked that a proof being understandable is a
function of numerous factors: providing the intuition or motivation of a proof first,
signposting the purpose of various sections of a proof and providing the right level of
detail.
One thing that was frequently stressed, however, was that syntax and notation of
proofs only played a minor role in how understandable a proof is; while unfamiliar syntax
only hinders understanding temporarily and may be overcome by becoming familiar with
the notation.

Distinguish between human-like and machine-like in the context of ITP.
A
similar review was undertaken in Section 2.6 for what constitutes 'human-like' reasoning.
The topic has received attention from early efforts to create proof assistants and automated
theorem provers up to the present day.
My conclusion from this review is that 'human-like'
is best understood as referring to a general approach to ATP algorithm design, in contrast
to 'machine-like'.
Human-like proving techniques emphasise reasoning methods that are
compatible with how humans reason, in the sense that a proof is intelligible for a human.
Pre-80s, for example, Robinson's resolution theorem proving was the dominant
architecture of provers [BG01]. However as noted by Bledsoe [Ble81], repeated application
of the resolution rule (A ∨ B) ∧ (¬A ∨ C) ⊢ B ∨ C can hardly be called 'human-like', and
such a proof would not be found in a mathematical textbook.
Since human-like is defined
more in terms of what it is not, there are a wide variety of approaches which may all be
described as human-like: proof planning, diagrammatic reasoning, and graphical discourse
models.
I chose to focus on human-like logical reasoning and modelling how an
undergraduate may approach writing a proof.

Merge these strands to create and determine a working definition of human-
like.
In Section 3.1, I decided that I would deem the design of the system as human-like if
it was similar enough to the reasoning of humans and could produce natural language
write-ups that were convincing enough for mathematicians.
I also restricted myself to only
look at elementary 'follow your nose' proofs. That is, simple proofs where at each step of
the proof the number of sensible steps (according to a human) is highly restricted.

[BG01] Bachmair, Leo;
Ganzinger, Harald Resolution
theorem proving
(2001) Handbook of automated
reasoning

[Ble81] Bledsoe, Woodrow
W Non-resolution theorem
proving (1981) Readings in
Artificial Intelligence

106

https://doi.org/10.1016/0004-3702(77)90012-1
https://doi.org/10.1016/0004-3702(77)90012-1

7.1.2. How can human-like reasoning be represented within an
interactive theorem prover to produce formalised,
understandable proofs?

Form a calculus of representing goal states and inference steps that acts at the
abstraction layer that a human uses when solving proofs.
In Chapter 3 I detail a
development calculus created for the purpose of representing human-like goal states in
accordance with the working definition given in Section 7.1.2.
The calculus (defined in
Section 3.3.2) makes use of a hierarchical proof state structure that also incrementally
constructs a formal proof term in dependent type theory.
The calculus is compared with
other designs (Section 3.3.5), of which the closest is the design to Gowers and
Ganesalingam's Robot prover [GG17] and McBride's OLEG [McB00].
I then provided a set
of tactics for manipulating these proof states and provide proofs that these tactics are
sound (Section 3.4 and Appendix A).

In Chapter 4, I also introduce a new algorithm for creating human-like equational
reasoning proofs.
This algorithm makes use of a hierarchical set of 'subtasks' to find
equality proofs. This system can solve simple equational reasoning tasks in a novel way. It
works well as a prototype but the subtasks system will need more improvement before it
can be used in a practical setting.

Create a system for also producing natural language proofs from this calculus.
The component that performs this is detailed in Section 3.6. The system for verbalising
HumanProof-constructed proofs to natural language made use of a classical NLG pipeline.
This component need only be good enough to demonstrate that the calculus of
HumanProof can create human-like proofs, and so I did not focus on innovating beyond
existing work in this field, notably Gowers & Ganesalingam [GG17] and earlier systems
such as PROVERB [HF97]. However I did contribute a system for verbalising sequences of
binders in dependent type theory in Section 3.6.4.

Evaluate the resulting system by performing a study on real mathematicians.
This was discussed in Chapter 6. The study found that mathematicians generally prefer
HumanProof proofs to Lean proofs with the exception of equality proofs, where the
additional information required to specify each step in an equality chain was preferred. A
surprising result of the study was that non-specialist mathematicians do not trust proofs
backed with a formal guarantee more than natural language proofs. This result suggests
that - considering a proof assistant as a tool for working mathematicians - formalisation
can't be a substitute for an understanding of the material.

I made some significant progress towards this research goal, however the solution that I
have implemented can be found to stumble upon given harder examples, both in terms of
automation and in the write-ups getting progressively clunkier upon growing in size.
The
implementation as it stands also does not extend to more difficult domains where some
detail must be hidden in the name of brevity.
I will outline some specific solutions to these
issues in Section 7.2.
In the end, I chose to focus less on extending the automation of
tactics beyond what was available in Robot and instead focus on subtasks described in
Chapter 4 and interactive theorem proving through a graphical user interface.

I believe that these defects could be fixed with more research, however one has to ask
whether such a human-research-intensive approach is going to be a good long-term
solution. This question becomes particularly salient when faced with the advent of large-
scale deep learning language models:

Very recently, we are starting to see applications of attention based models [VSP+17] (also
known as transformers) to the problem of predicting human-written proofs of
mathematics with promising results: Li et al direct transformer models towards predicting
steps in Isabelle/Isar proofs [LYWP21]. See also Lample and Charton's work on applying
transformers to algebraic reasoning and integration [LC20].
Some work in this space that I
have been involved with is with Han, Rute, Wu and Polu [HRW+21] on training GPT3

[GG17] Ganesalingam,
Mohan; Gowers, W. T. A fully
automatic theorem prover with
human-style output
(2017) Journal of Automated
Reasoning

[McB00] McBride,
Conor Dependently typed
functional programs and their
proofs (2000) PhD thesis
(University of Edinburgh)

[GG17] Ganesalingam,
Mohan; Gowers, W. T. A fully
automatic theorem prover with
human-style output
(2017) Journal of Automated
Reasoning

[HF97] Huang, Xiaorong;
Fiedler, Armin Proof
Verbalization as an Application
of NLG (1997) International
Joint Conference on Artificial
Intelligence

[VSP+17] Vaswani, Ashish;
Shazeer, Noam; Parmar,
Niki; et al. Attention is All you
Need (2017) Neural Information
Processing Systems77

[Wen99], see Section 2.6.177

107

https://doi.org/10.1007/s10817-016-9377-1
http://hdl.handle.net/1842/374
https://doi.org/10.1007/s10817-016-9377-1
http://ijcai.org/Proceedings/97-2/Papers/025.pdf
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=Pzj6fzU6wkj
https://openreview.net/forum?id=S1eZYeHFDS
https://arxiv.org/pdf/2102.06203
https://doi.org/10.1007/s10817-016-9377-1
http://hdl.handle.net/1842/374
https://doi.org/10.1007/s10817-016-9377-1
http://ijcai.org/Proceedings/97-2/Papers/025.pdf
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1007/3-540-48256-3_12

[BMR+20] to predict Lean 3 tactics.
The success of this approach strongly suggests that
deep learning methods will play a critical role to the future of human-like automated
reasoning. Through the use of statistical learning, the nuances of generating natural
language and determining a precise criterion for what counts as 'human-like' can be
avoided by simply providing a corpus of examples of human-like reasoning.
Deep learning
models are notorious for being data-hungry, and so there are still many questions
remaining on how the data will be robustly extracted from our mathematical texts and
formal proof archives. Perhaps few-shot techniques (see [BMR+20]) will help here.
The
research touched on above indicates that this method is not incompatible with also
producing formalised proofs, although some care will need to be taken to be sure that the
formal proofs and the human-readable accounts correspond correctly to each other.

7.1.3. How can this mode of human-like reasoning be presented
to the user in an interactive, multimodal way?

Investigate new ways of interacting with proof objects.
The result of working on
this subgoal was the interactive expression engine of the ProofWidgets framework as
discussed in Chapter 5. This system follows a long history of research on 'proof-by-
pointing' starting with Bertot and Théry [BT98], and my approach mainly follows similar
work in other systems, for example, the system found in KeY [ABB+16].
My approach is
unique in the coupling of the implementation of proof-by-pointing with the general
purpose ProofWidgets framework.

Make it easier to create novel GUIs for interactive theorem provers.
This was
the primary mission of Chapter 5.
As noted in Section 5.1, there are many existing GUI
systems that are used to create user interfaces for interactive theorem proving.
In
Chapter 5 I contribute an alternative paradigm for creating user interfaces where the
metalanguage of the prover itself is used to create proofs.
The ProofWidgets system as
implemented in Lean 3 is already in use today.

Produce an interactive interface for a human-like reasoning system.
In
Section 5.8, I connected the ProofWidgets framework to the Box datastructure developed
in Chapter 3 to create an interactive, formalised human-like proof assistant.
This serves as
a prototype to achieve the research goal.
There are many more implementation
improvements that could be made and future directions are provided in Section 7.2.

I hope that this work will be viewed as a modern revival of the spirit and approach taken by
the older, proof-planning-centric provers such as LΩUI for Ωmega [SHB+99, BCF+97] and
XBarnacle for CLAM [LD97].
This spirit was to make proof assistants accessible to a wider
userbase through the use of multi-modal user interfaces that could represent the proofs in
many different ways. I want to rekindle some of this optimism that better user interfaces
can lead to wider adoption of ITP.

7.2. Future work and closing remarks
There are still many things that I want to do to HumanProof and to investigate the world of
human-like automated reasoning.
Some of the more technical and chapter-specific ideas
for future work are covered in their respective chapters (Section 3.7, Section 4.6,
Section 5.9, Section 6.8), in this section I restrict my attention to future research directions
in a broader sense.

In this thesis, the purpose of the natural language generator was to demonstrate that the
system was human-like.
However, one question that arises from the evaluation study in
Chapter 6 is whether natural language generation is useful for creating accessible ITPs.
Participants were generally willing to learn to use a new syntax and language for
mathematics , which suggests that the main hurdle to adoption is not the use of a
technical language.
An additional focus group or study investigating whether natural
language proofs play a role in easing the use of a theorem prover would be helpful in

[Wen99] Wenzel,
Markus Isar - A Generic
Interpretative Approach to
Readable Formal Proof
Documents (1999) Theorem
Proving in Higher Order Logics

[LYWP21] Li, Wenda; Yu, Lei;
Wu, Yuhuai; et al. IsarStep: a
Benchmark for High-level
Mathematical Reasoning
(2021) International Conference
on Learning Representations

[LC20] Lample, Guillaume;
Charton, François Deep
Learning For Symbolic
Mathematics (2020) ICLR

[HRW+21] Han, Jesse
Michael; Rute, Jason; Wu,
Yuhuai; et al. Proof Artifact
Co-training for Theorem Proving
with Language Models
(2021) arXiv preprint
arXiv:2102.06203

[BMR+20] Brown, Tom B.;
Mann, Benjamin; Ryder,
Nick; et al. Language Models
are Few-Shot Learners
(2020) NeurIPS

[BT98] Bertot, Yves; Théry,
Laurent A generic approach to
building user interfaces for
theorem provers (1998) Journal
of Symbolic Computation

[ABB+16] Ahrendt,
Wolfgang; Beckert,
Bernhard; Bubel, Richard; et
al. Deductive Software
Verification - The KeY Book
(2016) publisher Springer

[SHB+99] Siekmann, Jörg;
Hess, Stephan; Benzmüller,
Christoph; et al. LOUI:
Lovely OMEGA user interface
(1999) Formal Aspects of
Computing

[BCF+97] Benzmüller,
Christoph; Cheikhrouhou,
Lassaad; Fehrer, Detlef; et
al. Omega: Towards a
Mathematical Assistant
(1997) Automated Deduction -
CADE-14

[LD97] Lowe, Helen;
Duncan, David XBarnacle:
Making Theorem Provers More
Accessible (1997) 14th
International Conference on
Automated Deduction

78 Although note that this may be
due to sample selection bias (see
Section 6.7).

78

108

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1006/jsco.1997.0171
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/s001650050053
https://doi.org/10.1007/3-540-63104-6_23
https://doi.org/10.1007/3-540-63104-6_39
https://doi.org/10.1007/3-540-48256-3_12
https://openreview.net/forum?id=Pzj6fzU6wkj
https://openreview.net/forum?id=S1eZYeHFDS
https://arxiv.org/pdf/2102.06203
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1006/jsco.1997.0171
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/s001650050053
https://doi.org/10.1007/3-540-63104-6_23
https://doi.org/10.1007/3-540-63104-6_39

determining whether natural language generation of mathematics should be pursued in
the future.

The evaluation showed that mathematicians value signposting , motivation and the right
level of detail.
I didn't focus on these aspects so much in the design of HumanProof.
Is
there a way of automating these more expository aspects of human-written proofs?
The
question of determining the right level of exposition has some subjective and audience-
specific component to it, however I suspect that it is still possible to make some progress in
this direction: the gap in comprehensibility between a human-written proof and a
generated proof for any non-trivial example is undeniable.
Rather than trying to build an
'expert system' of determining the right level of exposition, I think that the right appraoch
is to use modern machine learning approaches as touched on in Section 7.1.2.

7.2.1. Closing remarks

HumanProof is a prototype and thus not production-ready software for day-to-day
formalisation.
I do hope that HumanProof will provide some ideas and inspiration in how
the theorem provers of the future are designed.

79 As discussed in Section 6.6.1,
signposting here means an
indication of how the proof is
going to progress without actually
performing any inference

79

109

Appendix A

Zippers and tactics for boxes
This is a technical appendix on soundly running Lean tactics within a Box . It also provides
some of the more technical background omitted from Section 2.4, such as the inference
rules for the development calculus of Lean.
In this I appendix I describe an 'escape-hatch'
to use Lean tactics within a Box proof, meaning that we don't have to forgo using any
prexisting tactic libraries by using the Box framework.
Ultimately, these meta-level proofs
are not critical to the thesis because the resulting object-level proofs produced through
these box-tactics is also checked by the Lean kernel.

A.1. Typing of expressions containing
metavariables
In this section I provide a set of formal judgements describing a theory of the metavariable
system of Lean.
When Lean typechecks a proof or term (described in Section 2.1), it is
checked with respect to a dependent type theory called the calculus of constructions
[CH88].
However, Lean also allows terms to contain special variables called metavariables
for producing partially constructed proofs.
Background on metavariables is provided in
Section 2.4.
Although Lean's kernel does not check expressions containing metavariables,
it is nevertheless important to have an understanding of the theory of metavariables to
assist in creating valid expressions.

In this section I extend the Lean typing rules presented by Carneiro [Car19] to also handle
typing judgements over expressions containing metavariables.
These definitions are used
in Appendix A.2 and Appendix A.3 to run Lean's native tactics within a Box context.
I used
the knowledge written in this section to implement an interface in the Lean 3
metaprogramming framework [EUR+17] for fine-grained control over the metavariable
context.

The work in this section is not an original contribution, because de Moura and the other
designers of Lean 3 had to produce this theory to create the software in the first place.
To
my knowledge, however, there is currently no place where the theory is written down in the
same manner as Carneiro's work.
There are also many accounts of the theories of
development calculi similar to this [SH17, McB00, Spi11].
I also do not offer a
comprehensive account of the theory of Lean's development calculus, instead only
including the parts that are needed to prove later results.
The information in this section is
gleaned from [EUR+17] and [MAKR15], the sourcecode of the Lean 3 theorem prover and
through many informal chats with the community on the leanprover Zulip server.

I start by repeating some definitions (A.1) that were given in Section 2.4.
An explanation of
the notation used in this appendix can be found in Section 2.2.

[CH88] Coquand, Thierry;
Huet, Gérard P. The Calculus
of Constructions
(1988) Information and
Computation

[Car19] Carneiro,
Mario Lean's Type Theory
(2019) Masters' thesis (Carnegie
Mellon University)

[EUR+17] Ebner, Gabriel;
Ullrich, Sebastian; Roesch,
Jared; et al. A
metaprogramming framework
for formal verification
(2017) Proceedings of the ACM
on Programming Languages

[SH17] Sterling, Jonathan;
Harper, Robert Algebraic
Foundations of Proof Refinement
(2017) CoRR

[McB00] McBride,
Conor Dependently typed
functional programs and their
proofs (2000) PhD thesis
(University of Edinburgh)

[Spi11] Spiwack,
Arnaud Verified computing in
homological algebra, a journey
exploring the power and limits of
dependent type theory
(2011) PhD thesis (INRIA)

[MAKR15] de Moura,
Leonardo; Avigad, Jeremy;
Kong, Soonho; et
al. Elaboration in Dependent
Type Theory (2015) CoRR

110

https://doi.org/10.1016/0890-5401(88)90005-3
https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf
https://github.com/leanprover-community/lean/pull/69
https://doi.org/10.1145/3110278
http://arxiv.org/abs/1703.05215
http://hdl.handle.net/1842/374
https://pastel.archives-ouvertes.fr/pastel-00605836/document
https://doi.org/10.1145/3110278
http://arxiv.org/abs/1505.04324
https://github.com/leanprover/lean
https://leanprover.zulipchat.com/
https://doi.org/10.1016/0890-5401(88)90005-3
https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf
https://doi.org/10.1145/3110278
http://arxiv.org/abs/1703.05215
http://hdl.handle.net/1842/374
https://pastel.archives-ouvertes.fr/pastel-00605836/document
http://arxiv.org/abs/1505.04324

Binder := Name × Expr

Context := List Binder

Expr ::=
| app : Expr → Expr → Expr
| lam : Binder → Expr → Expr
| pi : Binder → Expr → Expr
| var : Name → Expr
| mvar : Name → Expr
| const : Name → Expr
| sort : {Level} → Expr

MvarDecl :=
 (name : Name)
 × (type : Expr)
 × (ctx : Context)
 × (assignment : Option Expr)

MvarContext := List MvarDecl

Let 𝑀 : MvarContext and Γ : Context .
 Binder s are sugared as (𝑥 ∶ α) for
⟨𝑥, α⟩ : Binder .
Unassigned MvarDecl s (⟨𝑥, α, Γ, none⟩ : MvarDecl) are sugared as
(Γ ⊢ ?𝑥 ∶ α) and assigned MvarDecl s (⟨𝑥, α, Γ, some 𝑡⟩ : MvarDecl) are sugared as
(Γ ⊢ ?𝑥 ∶ α ≔ 𝑡) (the Γ ⊢ may be omitted if not relevant).
I use the convention that
metavariable names always begin with question marks.
Given 𝑥 : Name , write 𝑥 ∈ Γ when
𝑥 appears in Γ : Context .

To simplify analysis, I assume that all contexts do not include variable clashes.
That is to
say, there are no two binders with the same name in Γ or 𝑀 .
Since there are infinitely
many variable names to choose from, these kinds of variable clashes can be avoided
through renaming.

Each of the definitions in (A.1) are assignable as defined in Definition 2.35 in Section 2.4.2.

Definition A.2: Also define the following for 𝑟 : R where R is assignable.

fv(𝑟) are the free variables in 𝑟 .

mv(𝑟) are the metavariables in 𝑟 .

umv(𝑀, 𝑟) are the unassigned metavariables in 𝑟 (according to context 𝑀).

amv(𝑀, 𝑟) are the assigned metavariables in 𝑟 .

Definition A.3 (substitution): In Definition 2.29, a substitution σ is defined as a
partial map Sub := Name ⇀ Expr sending variable names to expressions.
Given σ : Sub
and an 𝑟 : R where R is assignable, σ 𝑟 replaces each variable in 𝑟 with the
corresponding expression in σ .
The notation for substitutions I use is ⦃𝑥 ↦ 𝑡⦄ where
𝑥 : Name is the variable to be substituted and 𝑡 : Expr is the replacement expression .
I
extend this definition to include metavariable substitutions; ⦃?𝑚 ↦ 𝑡⦄ is the substitution
replacing each instance of ?𝑚 with the expression 𝑡 .

A metavariable context 𝑀 can be viewed as a substitution mapping ?𝑚 to 𝑡 for each
assigned declaration ⟨?𝑚, α, Γ, some 𝑡⟩ ∈ 𝑀 .
That is, 𝑀 acts by replacing each instance of
an assigned metavariable with its assignment.

Definition A.4 (instantiation): Given an assignable 𝑒 , write 𝑀 𝑒 to be the 𝑀 -
instantiation of 𝑒 , created by performing this substitution to 𝑒 .
 𝑒 is 𝑀 -instantiated
when all of the metavariables present in 𝑒 are unassigned with respect to 𝑀 .

Definition A.5 (flat): Say that a metavariable context 𝑀 is flat when amv(𝑀, 𝑀) = ∅ .
That is, when there are no assigned metavariables in the expressions found in 𝑀 .

Definition A.6 (dependency ordering): Given an assignable 𝑟 , say that 𝑟 depends
on ?𝑚 when ?𝑚 ∈ mv(𝑟) .
Given a pair of declarations 𝑑₁ = ⟨?𝑚₁, α₁, Γ₁, 𝑜₁⟩ and
𝑑₂ = ⟨?𝑚₂, α₂, Γ₂, 𝑜₂⟩ in 𝑀 , write 𝑑₁ ▸ 𝑑₂ when 𝑑₂ depends on ?𝑚₁ .
That is 𝑑₁ ▸ 𝑑₂
when α₂ or Γ₂ or 𝑜₂ depend on ?𝑚₁ . I will write ?𝑚₁ ▸ ?𝑚₂ as a shorthand for 𝑑₁ ▸ 𝑑₂
when it is clear what the declarations are from context.

(A.1). Recap of the definitions of
contexts. A Name is a list of
strings and numbers and acts as
an identifier.
In Lean 3, a
distinction is made between free
and bound var s, but this is
simplified here.
Under the hood,
MvarContext is implemented as a

dictionary keyed on Name instead
of as a List .
The sort
expression represents the type of
types or propositions depending
on the value of the Level
parameter.

80 Note the use of a smaller colon
∶ for typing judgements vs : for

meta-level type assignments.

80

81 With the usual caveats for
variable clashes as noted in
Definition 2.29

81

82

The reader may enjoy alist of
substitution notations collected
by Steele: https://youtu.be/dCuZka
aou0Q?t=1916.[Ste17]. Link to
slides: http://groups.csail.mit.ed
u/mac/users/gjs/6.945/readings/St

eele-MIT-April-2017.pdf.

82

[Ste17] Steele Jr., Guy L. It's
Time for a New Old Language
(2017) http://2017.clojure-conj.

org/guy-steele/

111

https://youtu.be/dCuZkaaou0Q?t=1916
http://2017.clojure-conj.org/guy-steele/
http://groups.csail.mit.edu/mac/users/gjs/6.945/readings/Steele-MIT-April-2017.pdf
http://2017.clojure-conj.org/guy-steele/
http://2017.clojure-conj.org/guy-steele/

Given the list of declarations 𝑀 : MvarContext as vertices, ▸ forms a directed graph.
Assuming that this graph is acyclic, there exists a topological ordering of the declarations.
That is, there is an ordering of the declarations in 𝑀 such that each declaration only
depends on earlier declarations.

Definition A.7 (well-formed context): This substitution operation on 𝑀 helps
motivate the constraints that make a metavariable context well-formed. In particular,
define 𝑀 to be well-formed when

𝑀 's dependency graph is acyclic. For example, the metavariable declaration
⟨?𝑚, α, Γ, some ?𝑚⟩ assigning ?𝑚 to itself would cause a loop. More perniciously,
the assignment could cause an infinitely growing term as in ⦃?𝑚 ↦ ?𝑚 + ?𝑚⦄ . The
no-loop property depends on the entire 𝑀 , as we may have a multi-declaration
dependency cycle such as ⦃?𝑚 ↦ f(?𝑛), ?𝑛 ↦ g(?𝑛)⦄ .

Performing 𝑀 on an expression 𝑡 : Expr (or other assignable object) should
preserve the type of 𝑡 in a suitable context Γ . This requirement will be formalised in
Appendix A.1.1 when typing judgements are introduced for expressions. To illustrate
with some examples:

Performing ⦃?𝑚 ↦ "hello"⦄ to ?𝑚 + 4 would produce a badly typed
expression "hello" + 4 , so assignments must have the same type as their
metavariables.

Performing ⦃?𝑚 ↦ 𝑥 + 2⦄ to ?𝑚 + (λ 𝑥, 𝑥 - ?𝑚) 5 will produce
(𝑥 + 2) + (λ 𝑥, 𝑥 - (𝑥 + 2)) 5 . But this is badly formed because the variable
𝑥 escapes the scope of its lambda binder.
Hence there needs to be a way of
making sure that a metavariable assignment can't depend on variables that
would cause these malformed expressions.
This is why the MvarDecl definition
includes a context Γ for each declaration.

Definition A.8 (assign): Given a metavariable context 𝑀 with an unassigned
metavariable ?𝑚 and a candidate expression 𝑡 : Expr , we need a way of updating 𝑀 so
that ?𝑚 is assigned to 𝑡 .
Call this function
assign : MvarContext → Name → Expr → Option MvarContext .
The procedure of
assign 𝑀 ?𝑚 𝑡 is as follows :

1. Find the corresponding declaration ⟨?𝑚, α, Γ, none⟩ ∈ 𝑀 . If it doesn't exist in 𝑀 or it
is already assigned, fail by returning none .

2. Assert that instantiating ?𝑚 with 𝑣 does not introduce dependency cycles. That is,
for each ?𝑥 ∈ mv(𝑀 𝑡) (𝑀 𝑡 is the 𝑀 -instantiation of 𝑡), adding ?𝑥 ▸ ?𝑚 does not
introduce a cycle to 𝑀 's dependency graph.

3. Assert that typings and contexts are correct with 𝑀;Γ ⊢ 𝑡 ∶ α (to be defined in
Appendix A.1.1).

4. Delete ?𝑚 from 𝑀 .

5. Update 𝑀 to be ⦃?𝑚 ↦ 𝑀 𝑡⦄ 𝑀 . That is, each occurrence of ?𝑚 in 𝑀 is replaced with
the 𝑀 -instantiation of 𝑡 . Now ?𝑚 ∉ mv(𝑀) .

6. Insert ⟨?𝑚, α Γ, some 𝑡⟩ into 𝑀 .

Note that performing the assignment operation introduced in Definition A.8 causes the
dependency ordering to change: for example supposing 𝑑₁ ▸ 𝑑₂ in 𝑀 and then if 𝑑₁ is
assigned with a term 𝑡 not containing a metavariable, then 𝑑₂ will no longer depend on
?𝑚₁ and so 𝑑₁ ▸̷ 𝑑₂ .
An assignment may also cause a declaration to depend on
metavariables that it did not previously depend on.
As such, when an assignment is
performed it may be necessary to reorder the declarations to recover the topological
ordering.
A reordering always exists, because step 2 of Definition A.8 ensures that the
resulting metavariable context has no cycles.

Given 𝑀 : MvarContext , we will often be adding additional declarations and assignments to
𝑀 to make a new 𝑀 + Δ : MvarContext .
Let's define Δ : MvarContextExtension as in (A.9).

83 The implementation in core
Lean can be found at https://gith
ub.com/leanprover-community/lean/

blob/05dd36d1717649932fccaafa0868

321fb87f916d/src/library/type_con

text.cpp#L2175.

83

112

https://en.wikipedia.org/wiki/Topological_sorting
https://github.com/leanprover-community/lean/blob/05dd36d1717649932fccaafa0868321fb87f916d/src/library/type_context.cpp#L2175

MvarContextExtension ::=
| declare (mvar_name : Name) (type : Expr) (context : Context)
| assign (mvar_name : Name) (assignment : Expr)

extend : MvarContext → MvarContextExtension → MvarContext
| 𝑀 ↦ declare ?𝑚 α Γ ↦ [..𝑀, ⟨?𝑚, α, Γ, none⟩]
| 𝑀 ↦ assign ?𝑚 𝑣 ↦ assign 𝑀 ?𝑚 𝑣

In order for a declare ?𝑚 α Γ to be valid for 𝑀 , require that 𝑀;Γ ⊢ α : Type and that
?𝑚 ∉ 𝑀 .
Then we have that performing a valid declaration preserves the acylicity of 𝑀 with
respect to ▸ .
An assignment extension also preserves acyclicity; since step 2 of the
procedure in Definition A.8 explicitly forbids dependency loops.

Hence, given a sequence of extensions to 𝑀 , the ▸ relation is still acyclic and hence there
exists a topological ordering of the declarations in 𝑀 for ▸ .

A.1.1. Judgements and inference rules for metavariables

Now let's define the following judgements (in the same sense as in Section 2.1.3):

𝑀;Γ ⊢ 𝑠 ∶ α when 𝑠 has type α under 𝑀 and Γ .

𝑀;Γ ⊢ 𝑠 ≡ 𝑡 when 𝑠 : Expr and 𝑡 : Expr are definitionally equal (see

[Car19 §2.2]).

ok 𝑀 when the metavariable context 𝑀 is well-formed.

𝑀 ⊢ ok Γ when the given local context Γ is well-formed under 𝑀 .

The inference rules for these are given in (A.10).

I'll reproduce the list of (non-inductive) typing axioms here for completeness, but please
see Carneiro's thesis [Car19] for a more comprehensive version, including a full set of
inference rules for let binders, reductions, definitional equality and inductive constructions
among others.

𝑀;Γ ⊢ α ∶ sort

𝑀;Γ ⊢ 𝑠 ∶ β
Γ-widening

𝑀;[..Γ,(𝑥∶α)] ⊢ 𝑠 ∶ β

𝑀;Γ ⊢ α ∶ sort
var-typing

𝑀;[..Γ,(𝑥∶α)] ⊢ 𝑥 ∶ α

sort-typing

∅;∅ ⊢ sort ∶ sort'

𝑀;Γ ⊢ 𝑠 ∶ Π (𝑥∶α), β

𝑀;Γ ⊢ 𝑡 ∶ α
app-typing

𝑀;Γ ⊢ 𝑠 𝑡 ∶ ⦃𝑥 ↦ 𝑡⦄β

𝑀;Γ ⊢ α ∶ sort

𝑀;[..Γ,(𝑥∶α)] ⊢ 𝑠 ∶ β
λ-typing

𝑀;Γ ⊢ (λ (𝑥∶α), 𝑠) ∶ (Π (𝑥∶α), β))

𝑀;Γ ⊢ α ∶ sort

𝑀;[..Γ,(𝑥∶α)] ⊢ β ∶ sort
Π-typing

𝑀;Γ ⊢ (Π (𝑥∶α), β) ∶ sort

𝑀;Γ ⊢ 𝑒 ∶ α

𝑀;Γ ⊢ α ≡ β
defeq-typing

𝑀;Γ ⊢ 𝑒 ∶ β

empty-ctx-ok

𝑀 ⊢ ∅ ok

𝑀;Γ ⊢ α : sort
cons-ctx-ok

𝑀 ⊢ [..Γ, 𝑥∶α] ok

I now extend the above analysis to include an account of the metavariable development
calculus that Lean uses to represent partially constructed proofs.

(A.9). Definition of
MvarContextExtension . That is, an

extension is either a declaration
or an assignment.

(A.10). Non-development typing
rules for Lean 3 CIC.
Rules
relating to inductive datatypes
are omitted, see [Car19 §2.6] for
the full set.
The rules here differ
from those in [Car19] through the
addition of a spectating
metavariable context 𝑀 .
In all
cases, it is assumed that there are
no variable clashes, so for
example writing [..Γ, (𝑥∶α)]
implicitly assumes that 𝑥 ∉ Γ .
Note that in the rule sort-typing ,
one of the sort s is primed.
This
is because the presentation given
here introduces a Russel-style
paradox called Girard's paradox
[Hur95] unless the sort
expressions are parameterised by
a natural number such that
sort n ∶ sort (n + 1) , but these

are omitted here for brevity.

[Hur95] Hurkens, Antonius
J. C. A simplification of Girard's
paradox (1995) International
Conference on Typed Lambda
Calculi and Applications

113

https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf
https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf
https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf
https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf
https://doi.org/10.1007/BFb0014058
https://doi.org/10.1007/BFb0014058

𝑀;Γ ⊢ α ∶ sort

𝑀;Δ ⊢ 𝑠 ∶ β
𝑀-widening₁

[..𝑀,⟨?𝑥,α,Γ⟩];Δ ⊢ 𝑠 ∶ β

𝑀;Γ ⊢ 𝑡 ∶ α

𝑀;Δ ⊢ 𝑠 ∶ β
𝑀-widening₂

[..𝑀, ⟨?𝑥,α,Γ,𝑡⟩];Δ ⊢ 𝑠 ∶ β

𝑀;Γ ⊢ α ∶ sort
metavariable₁

[..𝑀, ⟨?𝑥,α,Γ,none⟩];Γ ⊢ ?𝑥 ∶ α

𝑀;Γ ⊢ 𝑡 ∶ α
metavariable₂

[..𝑀, ⟨?𝑥,α,Γ,𝑡⟩];Γ ⊢ ?𝑥 ∶ α

𝑀;Γ ⊢ 𝑡 ∶ α
assignment-eq

[..𝑀, ⟨?𝑥,α,Γ,𝑡⟩];Γ ⊢ ?𝑥 ≡ 𝑡

empty-mctx-ok

⊢ ∅ ok

𝑀;Γ ⊢ α ∶ sort
declare-ok

⊢ [..𝑀, ⟨?𝑥,α,Γ⟩] ok

𝑀;Γ ⊢ 𝑡 ∶ α
assign-ok

⊢ [..𝑀, ⟨?𝑥,α,Γ,𝑡⟩] ok

A.1.2. Properties of the Lean development calculus

In this subsection I note some regularity lemmas for the extended development calculus
similarly to Carneiro [Car19 §3.2]. The first thing to note is that a judgement 𝑀;Γ ⊢ J is
invariant under a reordering of the declarations of Γ or 𝑀 that preserves the dependency
ordering.

Lemma A.13 (Γ -regularity): Using (A.10) and some additional rules for definitional
equality (≡ , not printed here) and inductive datatypes, Carneiro proves various properties
of the type system, of which the following regularity lemmas are relevant for the analysis
here:

(Γ ⊢ 𝑒 ∶ α) ⇒ ⊢ Γ ok . If the context is not well formed, then we can't make any
typing judgements.

Γ ⊢ 𝑒 ∶ α ⇒ fv(𝑒) ⊆ Γ ∧ fv(α) ⊆ Γ . If a term is well typed in Γ then all of the free
variables are present.

Proof: these lemmas are proven by induction on the premiss judgments;
any
ℎ : (Γ ⊢ 𝑒 ∶ α) must be constructed from one of the judgements in (A.10) and (A.11).

Lemma A.14 (𝑀 -regularity): These regularity lemmas can be extended to include
metavariables and a metavariable context 𝑀 .

(𝑀;Γ ⊢ 𝑡 ∶ α) ⇒ (⊢ 𝑀 ok)

(𝑀;Γ ⊢ 𝑡 ∶ α) ⇒ (𝑀 ⊢ Γ ok)

(𝑀;Γ ⊢ 𝑡 ∶ α) ⇒ mv(𝑡) ⊆ 𝑀

Proof: by applications of induction in a similar way to Lemma A.13.

Lemma A.15: The metavariables in 𝑀 are topologically ordered on ▸ (Definition A.6)

Proof: induction on ⊢ 𝑀 ok . Each successive declaration can't depend on those that
precede it.

Lemma A.16: A well-formed (Definition A.7) metavariable context 𝑀 preserves typing
judgements.

𝑀;𝐵 ⊢ 𝑏 ∶ β

𝑀;𝐵 ⊢ (𝑀 𝑏) ≡ 𝑏

Proof: This follows from the congruence rule for ≡ and the assignment-eq rule in (A.11).

(A.11). Metavariable typing
rules.

(A.12). Context well-formedness
rules.

(A.22). Formal statement of
Lemma A.16.

84

114

https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf

Lemma A.18: ⊢ 𝑀 ok ⇒ ⊢ (𝑀 𝑀) ok where 𝑀 𝑀 is the instantiation (Definition A.4) of 𝑀
with itself.

Proof: 𝑀 𝑀 is defined to be 𝑀 with every occurrence of the 𝑀 -assigned metavariables
replaced with itself. Hence through repeated applications of Lemma A.16, we have
⊢ (𝑀 𝑀) ok .

⊢ 𝑀 ok does not imply that 𝑀 is flat (Definition A.5), however any such 𝑀 with ⊢ 𝑀 ok can
be flattened through repeated instantiation of 𝑀 on itself.

Lemma A.19: If ⊢ 𝑀 ok , then a finite number of self-instantiations of 𝑀 will be flat.

Proof: This follows from 𝑀 's declarations being a topological ordering on ▸
(Lemma A.15).
Let ⟨?𝑥, α, Γ, some 𝑡⟩ be an assignment in 𝑀 . Then ?𝑚 ▸ ?𝑥 for all
?𝑚 ∈ mv(𝑡) by Definition A.6.
Now, for any declaration 𝑑 ∈ 𝑀 where ?𝑥 ▸ 𝑑 , we have
?𝑥 ▸̸ 𝑀 𝑑 and ?𝑚 ▸ 𝑀 𝑑 for all ?𝑚 ∈ mv(𝑡) since each occurrence of ?𝑥 in 𝑑 has been
replaced with 𝑡 . Hence after each instantiation of 𝑀 , all declarations that depend on an
assigned metavariable ?𝑥 will be replaced with declarations that depend on strictly earlier
metavariables in the dependency ordering, and so by well-founded induction on ▸ ,
eventually there will be no assigned metavariables in 𝑀ₙ .

Is it possible to create an 𝑀 such that there is a dependency (Definition A.6) cycle among
the metavariable declarations in 𝑀 ?
For example, can we declare a recursive pair of
metavariables ?n : {i : ℕ | i ≤ ?m} and ?m : {i : ℕ | i ≤ ?n} ?
This follows from the
typing rules (A.11) because a metavariable context is only ok when there is an explicit
ordering on the metavariables such that each does not depend on the last .

However, in the definition of assign (Definition A.8), step 5 is to perform an update
𝑀 ↦ ⦃?𝑚 ↦ 𝑀 𝑣⦄ 𝑀 .
Note that ⊢ 𝑀 ok ⇏ ⊢ ⦃?𝑚 ↦ 𝑀 𝑣⦄ 𝑀 ok : set
𝑀 = [(?𝑚₁∶α),(?𝑚₂∶β(?𝑚₁),(?𝑚₃∶α))] ; the resulting substitution ⦃?𝑚₁ ↦ ?𝑚₃⦄ sends 𝑀 to
𝑀' := [(?𝑚₁∶α),(?𝑚₂∶β(?𝑚₃)),(?𝑚₃∶α))] where now ?𝑚₃ ▸ ?𝑚₂ and so ⊬ 𝑀 ok .
Fortunately,
as noted after Definition A.8, there is a reordering π of declarations in 𝑀' which keeps the
dependency ordering.

Lemma A.20: Assuming the conditions of assignment for assign 𝑀 ?𝑚 𝑣 hold
(Definition A.8), there is a permutation π such that ⊢ π (⦃?𝑚 ↦ 𝑀 𝑣⦄ 𝑀) ok .

Proof: Let π be the topological ordering of (⦃?𝑚 ↦ 𝑀 𝑣⦄ 𝑀) with respect to ▸ . This
ordering exists by the 'no loops' assumption in Definition A.8.
We can show
⊢ π (⦃?𝑚 ↦ 𝑀 𝑣⦄ 𝑀) ok by noting that every declaration 𝑑 ∈ 𝑀 has a corresponding
⦃?𝑚 ↦ 𝑀 𝑣⦄ 𝑑 ∈ 𝑀' .
We can then perform induction on 𝑀' .
Assuming that ⊢ 𝑀' ok , we
have ⊢ [..𝑀', ⦃?𝑚 ↦ 𝑀 𝑣⦄⟨?𝑏,β,B⟩] ok and need to show
𝑀';⦃?𝑚 ↦ 𝑀 𝑣⦄𝐵 ⊢ ⦃?𝑚 ↦ 𝑀 𝑣⦄β ∶ sort .
By assign 's second condition, we have
𝑀;Γ ⊢ 𝑣 : α , and so by a similar argument to Lemma A.16, we have that ⦃?𝑚 ↦ 𝑀 𝑣⦄

preserves typing judgements.
It is also clear that typing judgements are preserved by
reordering, provided that dependencies are respected.

Lemma A.21: The function assign 𝑀 ?𝑚 𝑣 (Definition A.8) with valid arguments
preserves typing judgements. That is, the inference (A.22) holds.

⟨?𝑚, α, Γ, none⟩ ∈ 𝑀

𝑀;Γ ⊢ 𝑣 ∶ α

no loops

𝑀;𝐵 ⊢ 𝑏 ∶ β

(assign 𝑀 ?𝑚 𝑣);𝐵 ⊢ 𝑏 ∶ β

Proof: WLOG we may assume that 𝑀 is flat. This is because instantiating preserves typing
judgements by Lemma A.16 and repeated instantiation has a fixpoint by Lemma A.19.
The
result of performing the steps in Definition A.8 is that assign 𝑀 ?𝑚 𝑣 returns 𝑀 with the
?𝑚 declaration removed, each instance of ?𝑚 substituted with 𝑀 𝑣 and appended with

I.e., 𝑓₁ ≡ 𝑓₂ and 𝑎₁ ≡ 𝑎₂
imply 𝑓₁ 𝑎₁ ≡ 𝑓₂ 𝑎₂ , see
[Car19 §2.6].

84

85 In Lean's actual
implementation, it is possible to
do this through the
tactic.unsafe.type_context

monad using an unsafe
assignment, in this case an
infinite-descending expression
will form which will not
typecheck (because Lean's
typechecker has a finite depth).

85

(A.22). Formal statement of
Lemma A.21.

115

https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf

⟨?𝑚, α, Γ, 𝑣⟩ .
I will prove this by first showing that ⊢ (assign 𝑀 ?𝑚 𝑣) ok .
We have that
𝑀₁ := ⦃?𝑚 ↦ 𝑀 𝑣⦄ 𝑀 does not introduce any dependency cycles by the 'no loops' condition,
so reorder
And so as noted in Lemma A.20, there exists a permutation 𝑀₂ := π 𝑀₁ of the
declarations in 𝑀₁ such that ⊢ 𝑀₂ ok .
We have that ?𝑥 ∉ mv(𝑀₂) (since 𝑀₂ is flat and
?𝑚 ∉ mv(𝑀 𝑣)), so we can remove the declaration for ?𝑥 in 𝑀₂ and append ⟨?𝑚, α, Γ, 𝑣⟩
without changing the validity.
Hence ⊢ (assign 𝑀 ?𝑚 𝑣) ok .
Finally, we can show
(assign 𝑀 ?𝑚 𝑣);𝐵 ⊢ 𝑏 ∶ β by induction on the declarations in 𝑀₃ := (assign 𝑀 ?𝑚 𝑣) .
The
metavariables in 𝑀₃ are the same as those in 𝑀 , so it suffices to show that
𝑀;E ⊢ 𝑡 : γ ⇒ 𝑀₃;E ⊢ 𝑡 : γ for all 𝑡 , γ , E .
Which can be shown by noting that the
substitution ⦃?𝑚 ↦ 𝑀 𝑣⦄ preserves typing judgements.

A.2. Zippers on Box es
In order to run Lean tactics at various points in the Box structure defined in Chapter 3, we
need to navigate to a certain point in a Box , and build up a metavariable context 𝑀
containing all of the metavariables from the 𝒢 -binders and a local context Γ comprising
the variables given in the ℐ -binders above the given point in the Box .
The way to
implement this plan is to define a context-aware zipper [Hue97] on a Box .

Let's first create a coordinate system for Box . Coordinates for functors and inductive
datatypes were introduced in Section 2.3.2.

Coord ::=
| ℐ | 𝒢 | 𝒱 | 𝒜₁ | 𝒜₂ | 𝒪₁ | 𝒪₂

Address := List Coord

Where here 𝒜₁ is the coordinate for the b₁ argument of the 𝒜 constructor.
That is,
get 𝒜₁ (𝒜 𝑏₁ 𝑥 𝑏₂) = some 𝑏₁ . Similarly for the other coordinates.
Definition A.24: A list
of Coord instances can be interpreted as an address to a certain point in an expression
(see Section 2.3.3).

Definition A.25 (zipper): Next, define a datastructure called a path (using the same
constructor names as Box es) as shown in (A.26).
A zipper is a tuple consisting of a Path
and a Box .

PathItem ::=
| ℐ : Binder → PathItem
| 𝒢 : Binder → PathItem
| 𝒱 : Binder → Expr → PathItem
| 𝒜₁ : Unit → Binder → Box → PathItem
| 𝒜₂ : Box → Binder → Unit → PathItem
| 𝒪₁ : Unit → Box → PathItem
| 𝒪₂ : Box → Unit → PathItem

Path := List PathItem

Zipper :=
 (path : Path)
× (cursor : Box)

We can visualise the zipper as in Figure A.27: a Box is annotated with an additional blob of
paint ⬤ at some point in the tree.
The ancestors of ⬤ are in the zipper's path , and
everything below is the cursor .

[Hue97] Huet,
Gérard Functional Pearl: The
Zipper (1997) Journal of
functional programming

(A.23). Coordinate type for Box .
Each constructor of Coord
corresponds to a recursive
argument for a constructor in
Box (3.9). Hence there is no 𝒭

coordinate.

(A.26). Type definitions for
Zipper s and Path s.
Definition of
Zipper and Path over an

expression. See Figure A.27 for a
visualisation.
The constructors of
Path are created to match the

signatures of the constructors in
Box (3.9).
 Unit is used as a

placeholder.

116

http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/huet-zipper.pdf
http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/huet-zipper.pdf

h₁ : P → R

𝑕₁ : P

?𝑡₁: R

𝑕₂ : Q

⬤

?𝑡₂: R

On the zipper, we can perform the up : Zipper → Option Zipper and
down : Coord → Zipper → Option Zipper operations as defined in (A.28) and (A.29).
Applying up to this zipper will move the ⬤ up to the next node in the Box tree (or return
none otherwise). Similarly, down 𝑐 𝑧 (A.26) will inspect the cursor of 𝑧 and move the ⬤
down on its 𝑐 th recursive argument.
The use of a zipper datastructure is used over an
address for ⬤ because the zipper system allows us to modify the cursor in place and then
'unzip' the zipper to perform an operation on a sub-box.

unwrap : Coord → Box → Option (PathItem × Box)
 | ℐ ↦ ℐ (𝑥∶α) 𝑏 ↦ some (ℐ (𝑥∶α) , 𝑏)
 | 𝒢 ↦ 𝒢 (?𝑚:α) 𝑏 ↦ some (𝒢 ?𝑚 , 𝑏)
 | 𝒱 ↦ 𝒱 (𝑥∶α) 𝑣 𝑏 ↦ some (𝒱 (𝑥∶α) 𝑣 , 𝑏)
 | 𝒜₁ ↦ 𝒜 𝑏₁ (𝑥∶α) 𝑏₂ ↦ some (𝒜₁ () (𝑥∶α) 𝑏₂, 𝑏₁)
 | 𝒜₂ ↦ 𝒜 𝑏₁ (𝑥∶α) 𝑏₂ ↦ some (𝒜₂ 𝑏₁ (𝑥∶α) (), 𝑏₂)
 | 𝒪₁ ↦ 𝒪 𝑏₁ 𝑏₂ ↦ some (𝒪₁ () 𝑏₂, 𝑏₁)
 | 𝒪₂ ↦ 𝒪 𝑏₁ 𝑏₂ ↦ some (𝒪₂ 𝑏₁ (), 𝑏₂)

wrap : PathItem → Box → Box
 | ℐ (𝑥∶α) ↦ 𝑏 ↦ ℐ (𝑥∶α) 𝑏
 | 𝒢 ?𝑚 ↦ 𝑏 ↦ 𝒢 (?𝑚:α) 𝑏
 | 𝒱 (𝑥∶α) 𝑣 ↦ 𝑏 ↦ 𝒱 (𝑥∶α) 𝑣 𝑏
 | 𝒜₁ () (𝑥∶α) 𝑏₂ ↦ 𝑏₁ ↦ 𝒜 𝑏₁ (𝑥∶α) 𝑏₂
 | 𝒜₂ 𝑏₁ (𝑥∶α) () ↦ 𝑏₂ ↦ 𝒜 𝑏₁ (𝑥∶α) 𝑏₂
 | 𝒪₁ () 𝑏₂ ↦ 𝑏₁ ↦ 𝒪 𝑏₁ 𝑏₂
 | 𝒪₂ 𝑏₁ () ↦ 𝑏₂ ↦ 𝒪 𝑏₁ 𝑏₂

up : Zipper → Option Zipper
 | ⟨[], 𝑏⟩ ↦ none
 | ⟨[..𝑝, 𝑖], 𝑏⟩ ↦ some ⟨𝑝, wrap 𝑖 𝑏⟩

down : Coord → Zipper → Option Zipper
 | 𝑐 ↦ ⟨𝑝, 𝑏⟩ ↦ do
 ⟨𝑖, 𝑏₂⟩ ← (unwrap 𝑐 𝑏)
 pure ⟨[..𝑝, 𝑖], 𝑏₂⟩

down : List Coord → Zipper → Option Zipper
 | [] ↦ 𝑧 ↦ some 𝑧
 | [𝑐, ..𝑎] ↦ 𝑧 ↦ down 𝑐 𝑧 >>= down 𝑎

unzip : Zipper → Box
| ⟨[], 𝑏⟩ ↦ 𝑏
| ⟨[..𝑝, 𝑖], 𝑏⟩ ↦ unzip ⟨𝑝, wrap 𝑖 𝑏⟩

zip : Box → Zipper
 | b ↦ ⟨∅, [], b⟩

Motivated by Figure A.27, it may be readily verified that down 𝑐 (up 𝑧) = some 𝑧 provided
𝑧 's path is not empty and if 𝑐 is the coordinate corresponding to 𝑧 's rightmost path
entry.
With similar conditions: up (down 𝑐 𝑧) = some 𝑧 .

Definition A.30 (zipper contexts): Define the context of a zipper 𝑧.ctx as:

ctx : PathItem → Context
 | ℐ 𝑥 ↦ [𝑥]
 | 𝒜₂ 𝑏₁ 𝑥 _ ↦ [𝑥]
 | _ ↦ []

ctx : Zipper → Context
 | ⟨_,𝑝,_⟩ ↦ [..(ctx 𝑥) for 𝑥 in 𝑝]

Figure A.27. Visualisation of a
zipper. The box to the left shows
an example Box with a red blob
indicating the position of the
zipper's cursor. The right figure
shows the underlying tree of Box
constructors. All blue nodes are
Box constructors and all orange

nodes are Path constructors.

(A.28). Helper definitions wrap
and unwrap for converting
between Box es and PathItem s.
These follow the standard schema
found in [Hue97].

(A.29). Definitions for up , down
and some helper methods for
navigating Zipper .
The
definitions for wrap and unwrap
are given in (A.28).

(A.31).

117

http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/huet-zipper.pdf

That is, 𝑧.ctx returns the list of the variables that are bound in the path. For the example
𝑧 in Figure A.27, 𝑧.ctx = [h₁] .

Similarly, define the metavariable context 𝑧.mctx of a zipper as

mctx : PathItem → List Binder
 | 𝒢 𝑚 ↦ [𝑚]
 | _ ↦ []

mctx : Zipper → MvarContext
 | ⟨_,𝑝,_⟩ ↦ {..(mctx 𝑥) for 𝑥 in 𝑝}

So 𝑧.mctx is a metavariable context containing all of the goals defined above the cursor of
𝑧 .

Now, given a zipper 𝑧 , write 𝑧 ⊢ 𝑡 ∶ α to mean 𝑧.mctx;𝑧.ctx ⊢ 𝑡 ∶ α . Similarly for
𝑝 : Path , 𝑝 ⊢ 𝑡 ∶ α .

Lemma A.33 (zipping is sound): Suppose that
𝑓 : MvarContext → Context → Box → Option Box is a sound box tactic parametrised by the
contexts 𝑀 and Γ , then given 𝑏 : Box and a valid address 𝑎 : List Coord , we get another
sound box-tactic 𝑓@𝑎 defined in (A.34).

𝑓@𝑎 : Box → Option Box
 | 𝑏₁ ↦ do
 ⟨𝑝, 𝑏₂⟩ ← down 𝑎 𝑏₁
 𝑏₃ ← 𝑓 𝑝.mctx 𝑝.ctx 𝑏₂
 pure (unzip ⟨𝑝, 𝑏₃⟩)

Proof: Suppose that ⊢ 𝑏₁ ∶ α , then by induction on the typing laws for Box given in
Section 3.4.2, we can show 𝑝 ⊢ 𝑏₂ ∶ ζ for some ζ : Expr .
Since 𝑓 is sound and assuming
𝑓(𝑏₂) doesn't fail, we also have 𝑝 ⊢ 𝑏₃ ∶ ζ .
Then finally the typing laws Section 3.4.2 can
be applied in reverse to recover ⊢ (unzip ⟨𝑝, 𝑧⟩) ∶ α .

Here we are working towards being able to soundly run a tactic in the context provided by
a Box zipper 𝑧 by finding ways to manipulate zippers that preserve the inference rules
given in (A.10) and (A.11).
We also need to perform some modifications to the paths of
Zipper s.

Definition A.35 (path soundness): A path modification ρ : 𝑝 ↦ 𝑝' is sound on a
zipper 𝑧 = ⟨𝑝, 𝑏⟩ if 𝑀;Γ ⊢ unzip ⟨𝑝, 𝑏⟩ ∶ β and 𝑀;Γ ⊢ unzip ⟨𝑝', 𝑏⟩ ∶ β .
Hence to show
soundness, one simply needs to show that corresponding box-tactic unzip ∘ ρ is sound.

We have the following sound path-based box-tactics:

ℎ : α

?𝑡 : β

⬤

...𝑏 ⟼

?𝑡 : β

ℎ : α

⬤

...𝑏 provided ℎ ∉ fv(β)

?𝑡₁ : α

?𝑡₂ : β

⬤

...𝑏 ⟼

?𝑡₂ : β

?𝑡₁ : α

⬤

...𝑏 provided ?𝑡₁ ∉ mv(β)

(A.32). Defining the induced
metavariable context 𝑀 for a
zipper.

(A.34). Operation to perform the
box-tactic
𝑓 𝑀 Γ : Box → Option Box

'under' the address
𝑎 : List Coord .
 do notation is

used.

(A.36). Restriction. Note that
the context of ?𝑡 has changed.

(A.38). Goal swapping.

118

https://wiki.haskell.org/Keywords#do

[𝑥 :=]

?𝑡₁ : α

⬤

...𝑏₁

...𝑏₂ ⟼

?𝑡₁ : α

[𝑥 :=]

⬤

...𝑏₁

...𝑏₂

[𝑥 :=] ...𝑏₁

?𝑡₁ : α

⬤

...𝑏₂ ⟼

?𝑡₁ : α

[𝑥 :=] ...𝑏₁

⬤

...𝑏₂ provided 𝑥 ∉ fv(α)

A.3. Running tactics in Box es
Now that we have the inference rules for metavariables and a definition of a zipper over a
Box , we can define how to run a tactic within a Box .

Definition A.39 (hoisting 𝒪 boxes): Before defining how to make a tactic act on a Box
zipper we need to define an additional operation, called 𝒪 -hoisting.
This is where an 𝒪 -
box is lifted above its parent box.
This definition extends to 𝒪 -hoisting path entries.

𝒪-lift
 : Box ⇀ Box
 | (ℐ 𝑕 (𝒪 𝑏₁ 𝑏₂)) ↦ 𝒪 (ℐ 𝑕 𝑏₁) (ℐ 𝑕 𝑏₂)
 | (𝒢 𝑚 (𝒪 𝑏₁ 𝑏₂)) ↦ 𝒪 (𝒢 𝑚 𝑏₁) (𝒢 𝑚 𝑏₂)
 | (𝒜 𝑏₀ 𝑥 (𝒪 𝑏₁ 𝑏₂)) ↦ 𝒪 (𝒜 𝑏₀ 𝑥 𝑏₁) (𝒜 𝑏₀ 𝑥 𝑏₂)
 | (𝒜 (𝒪 𝑏₁ 𝑏₂) 𝑥 𝑏₀) ↦ 𝒪 (𝒜 𝑏₁ 𝑥 𝑏₀) (𝒜 𝑏₂ 𝑥 𝑏₀)
 | (𝒱 𝑥 𝑣 (𝒪 𝑏₁ 𝑏₂)) ↦ 𝒪 (𝒱 𝑥 𝑣 𝑏₁) (𝒱 𝑥 𝑣 𝑏₂)
 | _ ↦ none

?t : α

...𝑏₁
⋁
 ...𝑏₂ ⟼

?t : α

...𝑏₁
⋁

?t : α

...𝑏₂

h₀ : α

...𝑏₁
⋁
 ...𝑏₂ ⟼

h₀ : α

...𝑏₁
⋁

h₀ : α

...𝑏₂

Lemma A.43: 𝒪 -hoisting is a sound box-tactic.

Proof: by compatibility (Lemma 3.15) it suffices to show that the results are equal, but then
this is a corollary of the WLOG proof from the compatibility lemma (3.17).

The motivation behind the hoisting is that 𝒪 boxes are a form of backtracking state in a
similar spirit to a logic monad [KSFS05]. However by including the branching 𝒪 box on
the tree, it is possible to structurally share any context that is shared among the
backtracking branches. Hoisting an 𝒪 box has the effect of causing the backtracking
branches to structurally share less of the context with each other. In the most extreme
case, we can repeatedly apply 𝒪 -hoisting to move all of the branches to the top of the box
structure, at which point we arrive at something isomorphic to what would arise as a result
of using the logic monad form of backtracking.

Given 𝑧 : Zipper , define 𝑧.goal to be first metavariable declared on 𝑧.path .
Hence given
a 𝑧 : Zipper with the cursor having shape 𝒢 , we can extract a metavariable context
𝑀 = mctx 𝑧 and a special goal metavariable 𝑧.goal , from these, create 𝑡𝑠 : TacticState .

(A.38). 𝒜 -goal-hoisting.

(A.40). Definition of 𝒪 -lifting.

(A.41). Diagrammatic example
of 𝒪-lift acting on a 𝒢 box.

(A.42). Example of 𝒪-lift
acting on an ℐ -box.

[KSFS05] Kiselyov, Oleg;
Shan, Chung-chieh;
Friedman, Daniel P; et
al. Backtracking, interleaving,
and terminating monad
transformers: (functional pearl)
(2005) ACM SIGPLAN Notices

86 See Section 2.4.4.86

119

https://doi.org/10.1145/1086365.1086390
https://doi.org/10.1145/1086365.1086390

We can now run a tactic 𝑡 : Tactic on 𝑡𝑠 .
If successful, this will return a new tactic state
𝑡𝑠' .
 𝑡𝑠' will have an extension of 𝑀 , call this 𝑀 + Δ where Δ is a list of declarations
and assignments successively applied to 𝑀 . The task here is to create a new 𝑧': Zipper
which includes the new goals and assignments in Δ .

The crux of the task here is to use Δ to construct a new 𝑝' : Path such that unzipping
⟨𝑝', (M + Δ) 𝑧.cursor⟩ : Zipper will result in a sound box-tactic. In general, this will
mean placing new metavariable declarations from Δ as new 𝒢 entries in the path and
deleting 𝒢 entries which are assigned in Δ . Additionally, it may be necessary to hoist 𝒪
boxes and re-order existing 𝒢 entries.
This has to be done carefully or else we can
introduce ill-formed boxes.

For example, take the zipper shown in (A.44) with metavariable context 𝑀 containing one
metavariable ?𝑚 : ℕ .
There is a tactic apply List.length that will act on the goal ?𝑚 by
declaring a pair of new metavariables ?α : sort and ?𝑙 : List ?α and assigning ?𝑚 with
List.length ?𝑙 .
After perfroming this tactic, the new metavariable context 𝑀 + Δ is (A.45).

?𝑚 : ℕ

⬤

▸ ?𝑚

𝑀 + Δ = { ⟨?𝑚 := length ?𝑙, Γ⟩
 , ⟨?α, Type, Γ⟩
 , ⟨?𝑙, List ?α, Γ⟩
 }

But now if our 𝑧.path is [𝒢 (?𝑚 : ℕ)] , unzipping ⟨[𝒢 (?𝑚 : ℕ)], (𝑀 + Δ) 𝑧.cursor⟩ (A.46)
will not result in a valid 𝑏 : Box (i.e. one that we can derive a judgement ⊢ 𝑏 : β) because
the result will depend on metavariables ?α and ?𝑙 which do not have corresponding 𝒢 -
binders.

?𝑚 : ℕ

⬤

▸ length ?𝑙

We need to make sure that the new metavariables ?α and ?𝑙 are abstracted and added to
the Path as shown in (A.47), so when we unzip we end up with a well-formed Box .

?α : Type

?𝑙 : List ?α

⬤

▸ length ?𝑙

We can find additional complications if the tactic declares new metavariables in a context
E other than the current local context Γ .
This may happen as a result of calling intros or
performing an induction step. In these cases, some additional work must be done to ensure
that the newly declared metavariable is placed at the correct point in the Box such that the
context produced by the path above it is the same as E .
This is tackled in the next section
through the definition of a function called update .

The procedure for correctly adjusting the path to produce valid boxes as exemplified by
(A.47) is as follows.
Define a function
update : MvarContextExtension → Path → Option Path .
Here, MvarContextExtension (see
(A.9)) is either a metavariable assignment or a metavariable declaration for 𝑀 .

Definition A.48 (update): update Δ 𝑝 is defined such that
(update Δ 𝑝).mctx = extend Δ 𝑝.mctx where extend is defined in (A.9).
To do this, update
will either insert a new 𝒢 path entry or delete a 𝒢 according to whether Δ is a declaration

87 See (A.9).87

(A.44). Initial zipper.

(A.45). The metavariable
context after performing the
apply List.length tactic at

(A.44).

(A.46). Result of applying 𝑀 + Δ
from (A.45) to (A.44).
This is not
a well-formed Box because the
metavariable ?𝑙 is not bound.

(A.47). Correct update of the
zipper to reflect 𝑀 + Δ .

120

or an assignment.
Then it will reorder the 𝒢 declarations such that it respects the
dependency ordering ▸ .

In general, this is not always possible since there there may be a pair of declarations
𝑑₁ 𝑑₂ : MvarDecl such that 𝑑₁ ▸ 𝑑₂ but 𝑑₂.context ≤ 𝑑₁.context , and so there is not
necessarily an ordering of the declarations which is topological on both ≤ and ▸ .
This case
can be handled in theory through redeclaring metavariables and using delayed
abstractions as I discuss in Appendix A.3.1, however I do not analyse or implement this
case here because it arises rarely in practice: most of the newly declared metavariables will
not be in a different context or in a subcontext of 𝑝.ctx .
Furthermore most of the tactics
which do cause complex declarations to appear such as intro have an equivalent box-
tactic.

update : MvarContextExtension → Zipper → Option Zipper
update (declare ?𝑚 α Γ) ⟨𝑝,𝑏⟩ :=
 assert 𝑝.mctx;Γ ⊢ α ∶ sort
 if (Γ ≤ 𝑝.ctx):
 obtain E such that [..Γ, ..E] = 𝑝.ctx
 obtain [..𝑝₀, ..𝑝₁] = 𝑝 such that
 𝑝₀.ctx = Γ and 𝑝₀ ⊢ α ∶ sort
 𝑝 ← [..𝑝₀, 𝒢 ?𝑚∶α, ..𝑝₁]
 reorder 𝑝
 return ⟨𝑝, 𝑏⟩
 else if (Γ > 𝑝.ctx):
 obtain E such that [..𝑝.ctx, 𝑥₀, ..., 𝑥ₙ] = Γ
 𝑝 ← [..𝑝, 𝒜₂ (ℐ 𝑥₀ $... $ ℐ 𝑥ₙ $ 𝒢 ?𝑚) 𝑦]
 reassign ?𝑚 in 𝑏 with (?𝑚 𝑥₀ ... 𝑥ₙ)
 reorder 𝑝
 return ⟨𝑝,𝑏⟩
 else (Γ ≹ 𝑝.ctx):
 -- that is, Γ and 𝑝.ctx are incomparable
 fail -- this case is not supported

update (assign ?𝑚 𝑣) ⟨𝑝, 𝑏⟩ :=
 assert (𝑝.mctx.assign ?𝑚 𝑣) is valid
 delete (𝒢 ?𝑚) from 𝑝
 assign 𝑣 to ?𝑚 in 𝑝
 reorder 𝑝
 return 𝑝

Some remarks on (A.49):

reorder 𝑝 performs a reordering on the 𝒢 binders in 𝑝 to respect ▸ and contexts.
As noted earlier, in certain circumstances this may not be possible, in which case fail.

To account for 𝒪 -boxes: before performing the above reorder ing, lift all 𝒪 items
in 𝑝 so that the resulting ..𝑝₁ does not contain any 𝒪 -binders.

In the case that Δ = declare ?𝑚 α Γ and Γ ≤ 𝑝.ctx , I am making the assumption that
α doesn't depend on any metavariables whose context is outside Γ . This can occur if
the offending metavariable is wrapped in a delayed abstraction. I discuss this caveat
in Appendix A.3.1.

The case where Γ > 𝑝.ctx works by reassigning the newly declared metavariable ?𝑚
with it's skolemised version and wrapping the declaration in a series of ℐ boxes. A
circumstance where this can occur is if the intros tactic was used.
I do not analyse
the soundness of this case in further detail because it is expected that in these cases
the intro move on Box es (3.25) should be used instead.

An example of performing the assign case of (A.49) is given in (A.50):

?𝑡₁ : ℕ

?𝑡₂ : P ?𝑡₁

?𝑡₃ : ℕ

Suppose that a tactic assigned ?𝑡₁ with ?𝑡₃ + 4 . Then without any reordering the box
would look like (A.51):

(A.49). Pseudocode definition of
update . See the remarks after

this code block for more
information.

88 Analogously to (A.40).88

(A.50).

121

?𝑡₂ : P (?𝑡₃ + 4)

?𝑡₃ : ℕ

However this is not a valid box because the 𝒢 -binder for ?𝑡₂ depends on a variable that is
not in scope.
Fortunately as discussed in Lemma A.20 a total dependency ordering of
metavariables in the same context always exists, and so in update we can use the 'goal-
swap' (A.38) path-reordering box-tactic to rearrange the goals to obey this. This is
performed in the reorder step in update (A.49).

The way that update is defined means that

(update (declare ?𝑚 α Γ) 𝑧).mctx = extend (declare ?𝑚 α Γ) 𝑧.mctx for a valid
declaration with Γ ≤ 𝑝.ctx (up to reordering of the declarations in 𝑧.mctx). As
mentioned above, the other case Γ > 𝑝.ctx is not considered here. Let
⟨𝑝', 𝑏'⟩ = update (declare ?𝑚 α Γ) ⟨𝑝, 𝑏⟩ and 𝑝 ⊢ 𝑏 ∶ α . Then 𝑝' ⊢ 𝑏 ∶ α too
because 𝑝'.ctx = 𝑝.ctx and 𝑝'.mctx = extend Δ 𝑝.mctx . And we saw in
Appendix A.1.2 that adding a declaration to a metavariable context preserves type
judgements.

Similarly, we have (update (assign ?𝑚 𝑣) 𝑧).mctx = extend (assign ?𝑚 𝑣) 𝑧.mctx for
a valid assignment. Now let ⟨𝑝', 𝑏'⟩ = update (assign ?𝑚 𝑣) ⟨𝑝, 𝑏⟩ and 𝑝 ⊢ 𝑏 ∶ α .
Then similarly 𝑝' ⊢ ⦃?𝑚 ↦ 𝑣⦄ 𝑏 ∶ ⦃?𝑚 ↦ 𝑣⦄ α .

We can now put together the components
Now let zz : Zipper → Zipper be some function
that navigates to a certain point in a Box and let tac be a tactic, we can define the 'escape
hatch' tactic procedure, depicted below in Figure A.52.

A.3.1. A variant of 𝒜 supporting delayed abstraction

A delayed abstraction 𝑒[𝑥] is a special type of expression constructed with a local
variable 𝑥 and an expression 𝑒 which may depend on 𝑥 .
A delayed abstraction represents
an abstraction of 𝑥 on 𝑒 .
This is used when 𝑒 depends on a metavariable ?𝑚 whose
declaration context contains 𝑥 . In this case, performing the abstraction immediately
would be premature because the metavariable ?𝑚 might need to depend on 𝑥 .

There are a few possible variants and extensions of the design of 𝒜 boxes which I
considered.
The main limitation of 𝒜 boxes as detailed above is that the structure of b₁ is
inscrutable when zipped on b₂ .
So in the above example we could not infer the structure
of the function through reasoning on b₂ .
In order to model this, it is necessary to invoke
delayed abstractions.

To get this to work, when zipping to b₂ , one needs to first zip to the final 𝒭 r in b₁ , and
then instantiate b₂ with a delayed abstraction of r .
Then, when performing up 𝒜₂ , if a
metavariable under a delayed abstraction has been assigned you need to unzip back
through the entirety of b₁ and add any new goals to the path.
So a variant PathItem.𝒜₁
would change to Path → Expr → List Name → Expr .

(A.51).

Figure A.52. Data-flow of a Box
having a tactic applied at a
certain point. The Box is first
zipped to produce a Path , cursor
Box and metavariable context. A

monad is run on this state to
produce a Zipper at the required
location at which point a tactic is
run with the goal being the goal
at the cursor. The resulting
metavariable context is then used
to instantiate the Zipper and
unzipped to produce a new Box .89

Lean 3 calls it a delayed
abstraction macro.
89

90
An abstraction is when free

variables are replaced with bound
variables.

90

122

Appendix B

ProofWidgets tutorial
This appendix introduces you to the design of the widgets framework through a series of
simple examples.

The code here is written in Lean 3. If you wish to try out the code examples yourself, I
recommend that you install Lean 3 and Microsoft Visual Studio Code -- henceforth
referred to as VSCode.
Any installation guide I place here runs the risk of becoming out of
date, and so I refer the reader to the leanprover-community installation instructions.

Making a widget is as simple as opening a Lean file in VSCode and adding the following
snippet:

open widget

#html "hello world!"

Clicking on #html will reveal the widget in the infoview panel.
The infoview is the output
window for Lean, containing the goal state and messages from the Lean server. If you can't
see it you can open it by clicking the display goal button . If you can't see this button then
you may need to install the Lean extension for VSCode, consult the community installation
instructions for more information.

However the above example is scarcely more impressive than #print "hello world!" , so
let's start with:

#html h "div" [className "purple f3 pa3"] ["hello world!"]

This effectively generates the following HTML:

<div class="purple f3 pa3">hello world!</div>

which is then rendered in the infoview:

h is a shorthand alias to create a new HTML element.
The mysterious "purple f3 pa3"
string is a set of CSS class identifiers. The infoview client comes with a stylesheet called
Tachyons that watches for these identifiers and uses them to change the appearance of the
div . The codes can appear cryptically terse but one gets used to them; "f3" means 'use
font size 3' and "pa3" means 'add some padding'.

We can view the type signature of h :

#check @h
-- h : Π {α : Type}, string → list (attr α) → list (html α) → html α

The type parameter α is called the action type. It is the type of the data that will be
returned when the user interacts with the interface in some way. To see this, consider this
example with a button;

(B.1).

(B.2).

(B.3).

Figure B.4. A hello world
widget.

(B.5).

123

https://code.visualstudio.com/
https://leanprover-community.github.io/get_started.html#regular-install
https://leanprover-community.github.io/get_started.html#regular-install
https://tachyons.io/

h "button" [on_click (λ _, "I got clicked!")] ["click me!"]

on_click : (unit → α) → α is called an event handler and allows the widget writer to
specify an action to be emitted when the given button is clicked. However in order to have
this action do something, we need to connect it to a component :

meta def my_button : component unit empty :=
 component.ignore_action
 $ component.with_effects (λ ⟨⟩ x,
 [widget.effect.insert_text x]
)
 $ component.pure (λ ⟨⟩,
 h "button" [on_click (λ ⟨⟩, "/- I got clicked! -/")
 , className "ma3"
] ["click me!"]
)

#html html.of_component () my_button

Clicking the resulting button causes the text "/- I got clicked! -/" to be inserted on a
new line above the cursor.

So how does this work?
 component s are responsible for handling all of the non-pure aspects
of widgets. That is, statefulness and side-effects.
I will discuss state later, in the above
example we can see an example of a side-effect.
Let us write π ⇨ α to mean
component π α .

The first part of the above definition uses component.pure :

component.pure : (Props → list (html Action)) → (Props ⇨ Action)

This creates a 'pure' component that takes a view function mapping Props (in our
example Props = unit) to a list of html elements, in our case a single button with action
type string .
The next component in the list tells us what to do in the event of an action

component.with_effects :
 (Props → Action → list effect)
 → (Props ⇨ Action) → (Props ⇨ Action)

Here, effect is a built-in datatype used to represent the side effects that widgets offer.
effect.alert : string → effect indicates that the client app should display an alert
message to the user. Other effects include copying a string to the clipboard or inserting
some text in the current Lean file. The function passed to with_effects is called whenever
the user causes an action to occur and the effects in the returned list are executed by the
client in the order they appear.

Finally, component.ignore_action : (Props ⇨ Action) → (Props ⇨ empty) throws away all
actions that might by emitted by the inner component.

B.0.1. Statefulness

(B.6).

(B.7).

Figure B.8. Window state after
clicking the button.

(B.9).

(B.10).

124

The final piece of the puzzle is statefulness, most apps require some concept of local state.
For example:

the position in a scrollable panel

the open/closed state of a collapsible panel

These are all parts of the state which matter for the UI, rather than data-centric states.
There might also be some state that should be reflected in the data, such as the state of a
document. This is not what a stateful component is for.

A simple counter component is given below.

open widget

variables {π α : Type}

inductive counter_action
| increment
| decrement

open counter_action

meta def counter_init : π → ℤ
| _ := 0

meta def counter_props_changed : π → π → ℤ → ℤ
| _ _ i := i

meta def counter_update : π → ℤ → counter_action → ℤ × option α
| _ i increment := (i + 1, none)
| _ i decrement := (i - 1, none)

meta def counter_view : (ℤ × π) → list (html counter_action)
| (i, _) :=
 h "div" [] [
 h "button" [on_click (λ ⟨⟩, increment)] ["+"],
 html.of_string $ to_string $ i,
 h "button" [on_click (λ ⟨⟩, decrement)] ["-"]
]

meta def simple_counter : component π α :=
component.with_state
 counter_action
 ℤ
 counter_init
 counter_props_changed
 counter_update
$ component.pure counter_view

#html simple_counter

Let's unpack what this is doing. The main things to focus on are the arguments to
with_state :

component.with_state
 (InnerAction State : Type)
 (init : Props → State)
 (props_changed : Props → Props → State → State)
 (update : Props → State → InnerAction → State × option Action)
 : ((State × Props) ⇨ InnerAction) → (Props ⇨ Action)

(B.11).

Figure B.12. The counter
widget.

(B.13).

125

The essential idea is to maintain a local state s that wraps the inner component
c : (State × Props) ⇨ InnerAction .
The other arguments dictate how this state should be
initialised and mutate over the lifecycle of the component.

init p provides the initial value of s given props p .

props_changed p₀ p₁ s₀ gives the system a chance to update the state if the props of
the component change from p₀ to p₁ .

update p s a updates the state in the event that the inner component c emits an
action a . It may optionally return its own action that should be emitted by the outer
component.

So in the case of the counter above, the Props type π is ignored.
The State type is an
integer and the InnerAction is counter_action , whose values are either 'increment' or
'decrement'.
 init produces the initial counter value 0 . props_changed just keeps the state
the same.
 counter_update increments or decrements the state depending on the value of
the given counter_action .

Note that the state is local to an individual counter, so for example we can write

#html h "div" [] [
 html.of_component () simple_counter,
 html.of_component () simple_counter
]

and the ProofWidgets framework will automatically track an independent state for the two
different counters, even when more components are added or taken away.
The
ProofWidgets system does this by assigning each component an identity and then holding a
persistent, mutating state for each of these components.

Even when there is no need for state, components serve an important role of avoiding
recomputing unchanged parts of the widget tree. This is done with
component.with_should_update .

component.with_should_update
 (comp : Props → Props → bool)
 : (Props ⇨ Action) → (Props ⇨ Action)

Every time the component is recomputed, as for example in a view method, the given comp
function is used to compare the previous value for Props with the new value.
If it returns
false, then the widgets rendering system does not re-render the inner component and
instead uses the cached value.

(B.14).

Figure B.15. Multiple counters
with independent state.

(B.16).

126

Appendix C

The rendering algorithm of
ProofWidgets
In this appendix I will detail the algorithm used to create interactive, browser-renderable
HTML from a user's implementation of a component .
The design of the algorithm is largely
a simplified variant of the 'tree reconciliation' algorithm used in web-based FRP
frameworks such as React and Elm.
The React reconciliation algorithm has been
generalised many times and the algorithm has been documented on the React website .
I hope that this appendix will prove useful to people who wish to implement ProofWidgets
for themselves.

The pseudocode language described in Section 2.2 will be used throughout to make the
relevant parts as salient as possible.
I'm going to first walk through a simple todo-list
example to make the setting clear and concrete.

C.1. Motivating ProofWidgets with a todo
list app
A first approximation to a user interface is as a way of rendering information. So suppose
that we have some datatype M that we care about, for example M could be the list of items
in a todo list. Then we could write a function view : M → UI to express the process of
creating an image on the screen. The most general formulation of UI would be an image
ℝ² → colour and indeed some FRP frameworks explore this [Ell01], however we will
content ourselves with an abstract tree of HTML [I will call this abstract tree the DOM in
accordance with Section 5.2 to be converted to pixels on a screen by a web-browser.

Attr A ::=
| val (key : String) (value : String)
| click (handler : Unit → A)

Html A ::=
| element (tag : String) (attrs : List (Attr A)) (children : List (Html A))
| of_string (value : String)

So here the html <div id="x">hello</div> would be represented as
element "div" [val "id" "x"] [of_string "hello"] : Html A .
However, let's keep using the
XML style <div/> notation.

As before the A type is the action type and represents the type of objects that the tree can
emit when the user interacts with it.
Now we can create a button as
element "button" [click (() ↦ 3)] ["click me!"] : Html ℕ or
<button click={() ↦ 3}>click me!</button> .
This emits the number 3 whenever the
button is clicked.

As before, let's introduce Component s. A Component : Type → Type → Type allows us to
encapsulate state at a particular point in the tree.

91 An example is the react-three-
fiber project which lets one build
declarative scenegraphs for a 3D
scene. https://docs.pmnd.rs/react
-three-fiber

91 92

https://reactjs.org/docs/reconc

iliation.html

92

[Ell01] Elliott,
Conal Functional Image
Synthesis (2001) Proceedings of
Bridges

93

93

(C.1).

127

http://conal.net/papers/bridges2001/
https://docs.pmnd.rs/react-three-fiber
https://reactjs.org/docs/reconciliation.html
http://conal.net/papers/bridges2001/

of_component : Component P A → P → Html A

pure : (P → Html A) → Component P A

with_state
 (init : P → S)
 (props_changed : P → P → S → S)
 (update : P → S → B → S × Option A)
 (c : Component (S × P) B)
 : Component P A

map_action (A → B) : Html A → Html B := ... -- reader exercise

The arguments P and A are called the prop type and the action type.
The actions of a
component perform the same role as with Html A , that is, they are the type of object that is
returned when the user interacts with the UI in some way. The props are effectively the
input arguments to the component.
The reason for including P as a type argument
(instead of writing something representable like P → Component A) is that it allows the
component to update the state in the case of the props changing. That is, it allows the
component to model the input p : P as a stream of values to pull from rather than as a
single value.
An example use of this is adding a custom check that the component needs to
update; a component showing the contact information for a single student doesn't need to
re-render when the entire database updates, only when the entry for that student changes.

So for example we can make a textbox using components:

namespace textbox

 Action ::=
 | add
 | text_change (s : String)

 State := String

 init : Unit → String
 | () ↦ ""

 props_changed : Unit → Unit → State → State
 | () ↦ () ↦ 𝑠 ↦ 𝑠

 update : Unit → State → Action → (State × Option String)
 | () ↦ 𝑠 ↦ add ↦ ("", some 𝑠)
 | () ↦ 𝑠₀ ↦ text_change 𝑠₁ ↦ (𝑠₁, none)

 view : (State × Unit) → Html Action
 view (𝑠, ()) :=
 <div>
 <input type="text" onchange={𝑠₁ ↦ text_change 𝑠₁} value={𝑠}/>
 <button click={() ↦ add}>+</button>
 </div>

 comp : Component Unit String :=
 with_state Action State init props_changed update $ pure view

end textbox

textbox : Html String := of_component textbox.comp ()

The resulting textbox element contains some hidden state, namely the text content of the
textbox before the "+" button is pressed.
We could then place this within a larger
component such as a todolist:

(C.2).

(C.3).

128

TodoItem := (label : String) × (done : Bool)
TodoList := List TodoItem

TodoAction ::=
| mark_as_done (index : ℕ)
| add_task (value : String)

initial : TodoList :=
 [("get groceries", false)
 , ("put on instagram", false)
]

update : TodoList → TodoAction → TodoState
 | 𝑠 ↦ (mark_as_done 𝑖) ↦ (𝑠 with 𝑠.l[𝑖].done ← true)
 | 𝑠 ↦ (add_task 𝑣) ↦ (𝑠 with 𝑠.l ← 𝑠.l ++ [(𝑣, false)])

view : TodoList → Html TodoAction
view l :=

 {l.mapi $ (i, label, done) ↦

 {if done then "[x]" else "[]"}
 {label}
 {if not done then
 <button click={() ↦ mark_as_done i}>
 mark done
 </button>
 else []}

 }
 <hr/>
 {textbox}

C.2. Abstracting the Html datatype
So now we have a framework for building apps. However now before explaining how to
create a model for a widget, I want to generalise this a little further.
Because really the
algorithm for maintaining the view model is more general than with Html and instead is
more about trees where events on the trees can cause changes.
This work differs from
React, Elm and similar functional UI frameworks in that it generalises the algorithm to an
arbitrary tree structure.

So let's generalise Html A to instead be some arbitrary inductive datatype. To do this, note
that we can write

HtmlBase A X ::=
| element : String → List (Attr A) → List X → HtmlBase A X
| of_string : String → HtmlBase A X

And now Html A is the fixpoint of HtmlBase A . That is, Html A = HtmlBase A (Html A) .

In this section we will abstract HtmlBase A to an arbitrary 'base functor'
Q (E : Type) (X : Type) : Type .
The E type parameter represents the points where event
handlers should exist on the tree.

(C.4).

Figure C.5. A todo list
component implemented in Lean
3 using an inner textbox
component, demonstrating state
encapsulation. As we type "read
twitter" in the textbox, the state
of the textbox component is
updating but the external
component's state does not
change.

(C.6).

129

Further, choose some type EventArgs to represent the data that the UI can send back to an
event handler as a result of an interaction with the user.
In the todo-list example in the
previous section, this was Unit for the click events and String for the textbox change
events.
For simplicity let's assume that all of the event args are the same.
So in the case of
Html we would choose Q such that Fix (Q (EventArgs → A)) is isomorphic to Html A .

In this section I will assume that Q is traversable on both arguments and has coordinates
C .

Then our input will be an object UTree :

UTree A :=
| mk (v : Q (EventArgs → A) (UTree A))
| of_component (c : Component P A) (p : P)

Hook Pₒ Aₒ Pᵢ Aᵢ :=
 (S : Type)
 × (init : Pₒ → S × Pᵢ)
 × (reconcile : Pₒ → S → S × Option Pᵢ)
 × (update : Aᵢ → S → S × Option Pᵢ × Option Aₒ)

Component P A ::=
| pure (view : P → UTree A)
| with_hook (h : Hook P A P' A') (c : Component P' A')

C.3. Holding a general representation of
the UI state.
So our goal here is to make a VComponent type that represents the UI state of a given
system.

ComponentId := ℕ

VTree A
| mk (v : Q (EventArgs → A) (VTree A))
| of_component
 (id : ComponentId)
 (c : Component P A)
 (p : P)
 (vc : VComponent P A)

VComponent P A :=
| pure (view : P → UITree A) (render : VTree A)
| with_hook (h : Hook P A P' A') (s : h.S) (vc : VComponent P' A')

So here, the UTree is a tree that the programmer creates to specify the behaviour of the
widget and the VTree is this tree along with the states produced by each Hook .
To create a
VTree from a UTree , we use init :

mutable id_count ← 0

init : UTree A → VTree A :=
 | mk 𝑣 ↦ mk (init <$> 𝑣)
 | of_component 𝑐 𝑝 ↦ of_component (id_count++) 𝑐 𝑝 (init 𝑐 𝑝)

init : Component P A → P → VComponent P A
 | pure 𝑓 ↦ 𝑝 ↦ pure 𝑓 $ 𝑓 𝑝
 | with_hook 𝑕 𝑐 ↦ 𝑝 ↦
 let (𝑠, 𝑝') := 𝑕.init 𝑝 in with_hook 𝑕 𝑠 $ init 𝑐 𝑝'

Where id_count++ returns the current value of id_count and increments it.
A pure
functional implementation would avoid this mutability by wrapping everything in a state
monad, but I have omitted this in the name of reducing clutter.

C.4. Reconciliation

94 Please refer to Section 2.3.2.94

(C.7).

(C.8).

(C.9).

130

Once the states are initialised, we need a way of updating a tree. This is the process where
we have a 𝑣 : VTree representing the current state of the application and an 𝑢 : UTree
representing some new tree that should replace 𝑣 . For example 𝑢 might be a tree created
for the todo-list app with a new task in the list.
However all of the states on 𝑣 must be
'carried over' to the new tree 𝑢 . In our todo-list example, this is the constraint that the text
in the new-todo textbox should not be reset if we interact with some other part of the app.

Sticking with the lingo of ReactJS, let's call this reconciliation, however ReactJS
reconciliation is a more specialised affair.
The purpose of reconciliation is to compare the
UI tree from before the change with a new UI tree and to match up any components whose
state needs to be preserved.
Additionally, it is used as an efficiency measure so that
components whose props have not changed do not need to be recomputed.

Q_reconcile
 (init : Y → X)
 (rec : X → Y → X)
 (old : Q E X)
 (new : Q E Y)
 : Q E X

reconcile
 : VTree A → UITree A → VTree A
 | mk 𝑣 ↦ mk 𝑢 ↦
 mk $ Q_reconcile init reconcile 𝑣 𝑢

 | of_component 𝑖 𝑐₀ _ 𝑣𝑐 ↦ of_component 𝑐 𝑝 ↦
 if 𝑐 ≠ 𝑐₀ then init (of_component 𝑐 𝑝)
 else of_component 𝑖 𝑐 𝑝 (reconcile 𝑣𝑐 𝑐 𝑝)

 | _ ↦ 𝑡 ↦ init 𝑡

reconcile
 : VComponent P A → P → VComponent P A
 | pure 𝑓 𝑣 ↦ 𝑝 ↦ pure 𝑓 $ reconcile 𝑣 $ 𝑓 𝑝
 | with_hook 𝑕 𝑠 𝑣𝑐 ↦ 𝑝 ↦
 match 𝑕.reconcile 𝑝 𝑠 with
 | (𝑠', none) ↦ with_hook 𝑕 𝑠' 𝑣𝑐
 | (𝑠', some 𝑝') ↦ with_hook 𝑕 𝑠' $ reconcile 𝑣𝑐 𝑝'

Here, Q_reconcile is a function that must be implemented per Q . It should work by
comparing old : Q E X and new : Q E Y and then pairing off children of x : X , y : Y of
old and new and applying the recursive rec x y to reconcile the children. In the case of
children y that can't be paired with a child from the old tree, they should be converted
using init y .

For example, in the case of Q being HtmlBase , an algorithm similar to the one given by
ReactJS is used.

There is a little fudge in the above code, namely that c ≠ c₀ is not technically decidable:
view f = view g would require checking equality on functions f = g .
So the necessary
fudge is to instead perform a reference equality check on the components or to demand
that each Component is also constructed with some unique identifier for checking.
In the
actual Lean implementation, the equality check is performed by comparing the hashes of
the VM objects for c and c₀ .

Once we have built a VTree representing the current interaction state of the widget, we
need to convert this to pixels on the screen.
The first step here is to strip out the
components and produce a pure tree representing the UI tree that will be displayed.
For
the implementation of ProofWidgets in Lean, the final format to be sent to the client is a
JSON object representing the HTML DOM that will then be rendered using React and the
web browser.

Suppose that the functor Q _ X has coordinates CE .
This means that we can make get
and coords for VTree A , with the type List C × CE .

(C.10).

131

https://reactjs.org/docs/reconciliation.html
https://reactjs.org/docs/reconciliation.html

get : (List C × CE) → VTree X → Option (EventArgs → A)
 | ([], 𝑒) ↦ mk 𝑣 ↦ get 𝑒 𝑣
 | (𝑕 :: 𝑡, 𝑒) ↦ mk 𝑣 ↦ do
 𝑢 : VTree X ← get 𝑕 𝑣,
 get (𝑡, 𝑒) 𝑢
 | _ ↦ _ ↦ none

coords : VTree X → List (List C × CE)
 | (mk 𝑣) ↦
 for (𝑒 : CE) in coords 𝑣:
 yield ([], 𝑒)
 for (𝑐 : C) in coords 𝑣:
 some (𝑥 : VTree X) ← get 𝑣 𝑐
 for (𝑙, 𝑒) in coords 𝑥:
 yield ([𝑐, ..𝑙], 𝑒)

We will use this to attach to each event handler in the VTree a distinct, serialisable
address.
This is needed because we will be sending the output tree via JSON to the client
program and then if the user clicks on a button or
hovers over some text, we will need to be
able to discover which part of the interface they used.

HandlerId := (adr : (List C × CE)) × (route : List ComponentId)

OutputTree := Q (HandlerId) (OutputTree)

render : List ComponentId → VTree A → OutputTree
 | 𝑙 ↦ mk 𝑣 ↦
 𝑢 : Q HandlerId (VTree A) ← traverse_with_coord (𝑎 ↦ 𝑕 ↦ (𝑎, 𝑙)) 𝑣,
 render 𝑙 <$> 𝑢
 | 𝑙 ↦ (of_component 𝑖 𝑐 𝑝 𝑣𝑐) ↦ render ([..𝑙, 𝑖]) 𝑣𝑐

render : List ComponentId → VComponent P A → OutputTree
 | 𝑙 ↦ pure 𝑣 𝑟 ↦ render 𝑙 𝑟
 | 𝑙 ↦ with_hook 𝑕 𝑠 𝑣𝑐 ↦ render 𝑙 𝑣𝑐

Now that the output tree is generated, we can send it off to the client for turning in to
pixels.
Then the system need only wait for the user to interact with it.
When the user does
interact, the client will find out through the browser's API, and this will in turn be used to
track down the HandlerId that was assigned for this event.
The client will then send a
widget_event payload back to the ProofWidgets engine consisting of 𝑒: EventArgs and a
handler 𝑖 : HandlerId .
The handle_event routine takes 𝑒 and 𝑖 and updates the VDOM
object by finding the event handler addressed by 𝑖 , running the event handler and then
propagating the resulting action back up to the root node of the tree.

handle_event (𝑒 : EventArgs) (𝑖 : HandlerId)
 : VComponent P A → (Option A) × (VComponent P A)
 | pure 𝑓 𝑣 ↦ let (𝑎, 𝑣) := handle_event 𝑒 𝑖 𝑣 in (𝑎, pure 𝑣)
 | with_hook 𝑕 𝑠 𝑣 ↦
 let (𝑏, 𝑣) := handle_event 𝑒 𝑖 𝑣 in
 match b with
 | none := (none, with_hook 𝑕 𝑠 𝑣)
 | (some 𝑏) :=
 match 𝑕.update 𝑏 𝑠 with
 | (𝑠, none , 𝑎) := (𝑎, with_hook 𝑕 𝑠 𝑣)
 | (𝑠, some 𝑝, 𝑎) := (𝑎, with_hook 𝑕 𝑠 $ reconcile 𝑣 𝑝)

handle_event (𝑒 : EventArgs)
 : HandlerId → VTree A → (Option A) × VTree A
 | (𝑙, []) ↦ mk 𝑣 ↦
 (some 𝑕) ← get 𝑙 𝑣
 handle_action (𝑕 𝑒)
 | (𝑙, [𝑖, ..𝑟]) ↦ 𝑣 ↦
 for 𝑥 in get_component_coords 𝑣:
 some (of_component 𝑖 𝑐 𝑝 𝑣𝑐) ← get 𝑐𝑜 𝑣
 (𝑜𝑎, 𝑣𝑐) ← handle_event 𝑒 (𝑙, 𝑟) 𝑣𝑐
 return (𝑜𝑎, set 𝑥 𝑣 $ of_component 𝑖 𝑐 𝑝 𝑣𝑐)
 | _ ↦ _ ↦ throw "event handler not found"

This completes the definition of the core abstract widget loop.

Lemma C.14: The above recursive definitions are all well-founded. And so the
reconciliation algorithm will not loop indefinitely.

(C.11).

(C.12).

(C.13).

132

Proof: By inspecting the structure of the above recursive function definitions. One can
verify that at each recursive call, the size of the UTree , VTree , Component and VComponent
instances being recursed over is strictly decreasing.
This means that the algorithm will
terminate by a routine application of well-founded recursion. I have confirmed this by
implementing a simplified version of the presented algorithm in Lean 3 and making use of
Lean's automation on checking the well-foundedness of recursive functions.

C.5. Implementation
The implementation of these algorithms is in C++, and the Lean-facing API is decorated
with the meta keyword to indicate that it is untrusted by the kernel.
The actual API for
ProofWidgets in the Lean 3 theorem prover needs to be untrusted because:

It is convenient to allow HTML attributes to take values in untrusted datatypes such
as float .

The C++ implementation needs to handle additional component types not
mentioned in the previous subsection such as effects.

Inductive type declarations in Lean do not have good support for having lists of
recursive arguments (eg inductive T | mk : (list T) → T), but it makes most sense
to implement the API with lists to match the XML document model.

The only consumer of the ProofWidgets API is the Lean source, so we don't lose
much by not trusting the definitions.

init , reconcile and handle_event terminate by inspection since the each recursive call
acts on a strictly smaller subtree.

Suppose that the user triggers two events in rapid succession, it might be the case that the
second event is triggered before the UI has updated, and so the HandlerId of the second
event refers to the old VTree which may have been updated.
If the latency of the
connection between client and server is low, then this is not much of an issue. However it
may become apparent when using ProofWidgets remotely such as with VSCode's develop-
over-SSH feature. Or if ProofWidget's rendering methods rely on a long-running task such
as running some proof automation. In these cases the UI may become unresponsive or
behave in unexpected ways.
There are two approaches to dealing with this:

Simply throw away all of these queued events. However this generally leads to
unresponsive UI, particularly for mouse movement driven events such as hovering
over subterms.

Attempt to call handle_event with the out-of-date HandlerId anyway. This makes the
app more responsive, because multiple events can be queued during handle_event
instead of dropped. If the second event' s HandlerId is no longer a valid address for
the VTree , then it will harmlessly error and be ignored. The difficult case is when the
HandlerId 's address is valid but points to a different handler than the one rendered
in the DOM. For example, there could be a pair of buttons, and clicking the first
button swaps the order of the buttons. If the user clicks this button rapidly, then the
second click will apply to the swapped button instead of the same button twice.

Currently, the Lean 3 implementation uses the first approach in this list, however this can
cause unresponsiveness if a long-running tactic is used in the rendering method. As noted
in Section 5.9, I intend to overcome this by adding a task-based system to components
(5.19) rather than fix the event model.

133

Appendix D

Material for evaluation study
For the experimental user study, the participants were given a training document and a
form to fill in.
In this appendix I reproduce the form that they saw with some formatting
changes.

D.1. Advertising email
Sent on the 5th October 2020 to the University of Cambridge mathematics mailing list.

Help us learn how mathematicians think and get a £10 amazon voucher!

We are looking for undergraduate and postgraduate mathematics students to
participate in a study to help us understand how mathematicians think about
proofs.

In the study, we will be asking you to read and rate various proofs of some lemmas
from Part IA Group Theory and IB Metric and Topological Spaces, including some
proofs which have been formally checked by a computer.
You won't need to prove
any of the lemmas yourself.
The experiment will be on Zoom and take about an
hour.
As sweetening, you will recieve a £10 Amazon voucher for participating!

To find out more, or to be part of our study, email Edward Ayers at
e.w.ayers@maths.cam.ac.uk

D.2. Training Document
Lean is a computer program that can be used to create and verify mathematical proofs.

This document is a reference to help understand the proofs given in the experiment.

D.2.1. Expressions

Some of the proofs will use a logical system called dependent type theory. In contrast to set
theory, this means that every term x has a type T written as x : T . For example

-- this is a comment

4 : ℕ -- 4 is natural number
ε : ℝ -- ε is a real number
f : X → Y -- f has the type of a function from X to Y

Definitions are created with the def command:

def my_function (x y : ℕ) := x * x + y

my_function 4 5 -- returns 21

D.2.2. Propositions

Propositions have the type Prop , and given P : Prop and Q : Prop , we can write:

P ∧ Q for P and Q

P ∨ Q for P or Q

P → Q for P implies Q . Note arrows associate on the right, so P → Q → R is
P → (Q → R) .

(D.1).

(D.2).

134

∀ (x : X) (ε : ℝ), P for all x : X and ε : ℝ we have P .

∃ (x : X), P : there exists an x such that P

Propositions are themselves types, so if we have h : P , we can read this as saying h is a
proof of P . Instead of using a name like h , we can also reference propositions using ‹ › :
for example ‹4 < 5› to refer to the proof that 4 is less than 5 .

D.2.3. Sets

Given a type X , we can make the type set X of sets of elements of X . Given A : set X ,
and a : X we can write a ∈ A to be the proposition that a belongs to set A . The usual set
theoretical operations still apply;

the empty set ∅ : set X

union A ∪ B

intersection A ∩ B

set comprehension {a : ℕ | a > 4} to mean the set of naturals a : ℕ such that
a > 4 .

D.2.4. Tactic notation

Tactic notation is used to prove theorems, there are many tactics which will be explained
as they come up.

The lines between begin and end are called commands and are used to change the goal
state of the proof.

theorem an_example : (∃ (x : ℕ), x > 3) → (∃ (y : ℕ), y > 4) :=
begin
 -- introduce an assumption
 assume h₁ : (∃ x, x > 3),

 -- obtain x from the assumption
 obtain ⟨x, h₂⟩ : ∃ x, x > 3,
 { from h₁,
 },

 -- remind ourselves of the goal
 show ∃ (y : ℕ), y > 4,

 -- choose y to be x + 1
 use x + 1,

 -- show that x + 1 > 4 using a calculation
 calc x + 1 > 3 + 1 : by apply nat.add_lt_add_right h₂ 1
 ... = 4 : by norm_num
end

D.2.5. Reference table for tactics

(D.3).

135

D.3. Proof scripts
note: any paragraphs prepended with "note:" are not seen by the experiment
participants. Additionally, the order in which they were presented the proofs and lemmas
was randomised for each participant, with the exception of Lemma 1 which was always
shown first.

D.3.1. Lemma 1. The composition of group homomorphisms is a
group homomorphism.

The composition of two group homomorphisms is a group homomorphism.

D.3.1.1. Definitions

Table D.4.

Table D.5. Table D.4 continued.

136

Here we write the group product on two group elements x y : G as x * y and write
x⁻¹ :G as the inverse element of x . The identity is written as e : G .

Given a pair of groups G , H , a function f : G → H is a group homomorphism
whenever f (x * y) = f x * f y for all x y ∈ G .

variables {G H I : Type} [group G] [group H] [group I]
variables {f : G → H} {g : H → I}

def is_hom (f : G → H) := ∀ (x y : G), f (x * y) = f x * f y

(g ∘ f) x := g (f (x))

D.3.1.2. Proof A

theorem hom_composition : is_hom f → is_hom g → is_hom (g ∘ f) :=
begin
 assume hf : is_hom f,
 assume hg : is_hom g,
 assume x y : G,
 calc g (f (x * y)) = g (f x * f y) : by rewrite hf
 ... = (g (f x)) * (g (f y)) : by rewrite hg,
end

D.3.1.3. Proof B

Let G , H and I be groups and let f : G → H and g : H → I where f and g are group
homomorphisms. Let x and y be elements of G . Since f and g are group
homomorphisms, we have

(g ∘ f)(x * y) = g(f(x * y))
 = g(f(x) * f(y))
 = g(f(x)) * g(f(y))
 = (g ∘ f)(x) * g(f(y))
 = (g ∘ f)(x) * (g ∘ f)(y)

We are done.

D.3.1.4. Proof C

note: Adapted from Dexter Chua's notes on IA Group Theory [Chu18].

Let f : G → H and g : H → I be group homomorphisms and let x and y be elements of
G . Then we have

(g ∘ f)(x * y) = g(f(x * y))
 = g(f(x) * f(y))
 = g(f(x)) * g(f(y))
 = (g ∘ f)(x) * (g ∘ f)(y)

and we are done.

D.3.2. Lemma 2. The union of two open sets is open.

D.3.2.1. Definitions

Recall that a metric space is a type X equipped with a distance function

dist : X → X → ℝ

such that the following properties hold:

dist x x = 0 for all x : X

dist x y = dist y x for all x y : X

dist x z ≤ dist x y + dist y z for all x y z : X

We say a subset A : set X is open when

∀ (x : X), (x ∈ A) → ∃ (ε : ℝ), (ε > 0) ∧ ∀ (y : X), dist y x < ε → y ∈ A

(D.6).

(D.7).

(D.8).

[Chu18] Chua,
Dexter Cambridge Notes
(2018) https://dec41.user.srcf.n

et/notes

(D.9).

(D.10).

(D.11).

137

https://dec41.user.srcf.net/notes/
https://dec41.user.srcf.net/notes
https://dec41.user.srcf.net/notes
https://dec41.user.srcf.net/notes

D.3.2.2. Proof A

example : is_open A → is_open B → is_open (A ∪ B) :=
begin
 assume h₁ : is_open A
 assume h₂ : is_open B,
 assume y : X,
 assume h₃ : y ∈ A ∪ B,
 cases ‹y ∈ A ∪ B›,
 { -- in the case that y ∈ A
 obtain ⟨η, η_pos, h₄⟩ : ∃ η, (η > 0) ∧ ∀ x, dist x y < η → x ∈ A,
 { apply ‹is_open A›,
 apply ‹y ∈ A›,
 },
 show ∃ ε, (ε > 0) ∧ ∀ x, dist x y < ε → x ∈ A ∪ B,
 use [η, η_pos],
 show ∀ x, dist x y < η → x ∈ A ∪ B,
 assume x : X,
 assume h₅ : dist x y < η,
 show x ∈ A ∪ B,
 apply set.subset_union_left, -- A ⊆ A ∪ B
 show x ∈ A,
 finish,
 }, { -- in the case that y ∈ B
 obtain ⟨θ, θ_pos, h_θ⟩ : ∃ θ, (θ > 0) ∧ ∀ x, dist x y < θ → x ∈ B,
 { apply ‹is_open B›,
 apply ‹y ∈ B›,
 },
 use [θ, θ_pos],
 assume x : X,
 assume h₅ : dist x y < θ,
 apply set.subset_union_right, -- B ⊆ A ∪ B
 finish,
 }
end

D.3.2.3. Proof B

Let X be a metric space and A , B be sets on X . Assume A and B are open. Let y ∈ A ∪ B .
We must choose ε > 0 such that ∀ (x : X), dist x y < ε → x ∈ A ∪ B . Let x be a point
in X where dist x y < ε . We must show that x ∈ A ∪ B . Since y ∈ A ∪ B , either y ∈ A or
y ∈ B .

In the case y ∈ A : Since A ⊆ A ∪ B , it suffices to show x ∈ A . Since A is open and y ∈ A ,
there exists η > 0 such that x ∈ A whenever dist x y < η . Therefore, setting ε to be η
we are done.

In the case y ∈ B : Since B ⊆ A ∪ B , it suffices to show x ∈ B . Since B is open and y ∈ B ,
there exists θ > 0 such that x ∈ B whenever dist x y < θ . Therefore, setting ε to be θ
we are done.

D.3.2.4. Proof C

note: Adapted from Measure, Topology and Fractal Geometry by Gerald Edgar [Edg07].

Let y ∈ A ∪ B . Then either y ∈ A or y ∈ B . In the case that y ∈ A , there is some ε > 0
such that for all x : X , dist x y < ε implies x ∈ A . Similarly for y ∈ B . So A ∪ B is an
open set.

D.3.3. Lemma 3. The kernel of a group homomorphism is a
normal subgroup.

D.3.3.1. Definitions

Given groups G and H and a function f : G → H , f is a group homomorphism if we
have f (x * y) = (f x) * (f y) for all x , y in G . If f is a group homomorphism then it
may also be shown that f e = e (where e is the identity element) and f (x⁻¹) = (f x)⁻¹ .

Define the kernel of f to be the set {k : G | f k = e} . It can be shown that the kernel of
f is a subgroup of G .

(D.12).

[Edg07] Edgar,
Gerald Measure, topology, and
fractal geometry
(2007) publisher Springer

138

A subgroup K of G is said to be normal when for all k ∈ K and all g : G , we have
g * k * g⁻¹ ∈ K .

variables {G : Type} [group G]
variables {H : Type} [group H]

def is_hom (f : G → H) :=
∀ (x y : G), f (x * y) = f x * f y

variables {f : G → H} [is_hom f]

def is_hom.one : f e = e := -- proof ommitted

def is_hom.inv : ∀ (x : G), f (x⁻¹) = (f x)⁻¹ := -- proof ommitted

def kernel (f : G → H) [is_hom f] : subgroup G :=
{k : G | f k = e},
... -- proof that the kernel is a subgroup ommitted

def is_normal (K : subgroup G) :=
∀ (k : G), (k ∈ K) → ∀ (g : G), g * k * g⁻¹ ∈ K

D.3.3.2. Proof A

theorem kernel_is_normal : is_normal (kernel f) :=
begin
 assume k : G,
 assume h₁ : k ∈ kernel f,
 assume g : G,
 calc f (g * k * g⁻¹) = f (g * k) * f g⁻¹ : by rewrite ‹is_hom f›
 ... = f g * f k * f g⁻¹ : by rewrite ‹is_hom f›
 ... = f g * e * f g⁻¹ : by rewrite ‹k ∈ kernel f›
 ... = f g * e * (f g)⁻¹ : by rewrite (is_hom.inv f)
 ... = e : by simplify
end

D.3.3.3. Proof B

Let k ∈ kernel f and g be an element of G . We must show f (g * k * g⁻¹) = e . Since
f k = e , we have

 f (g * k * g⁻¹) = f (g * k) * f g⁻¹
 = f g * f k * f g⁻¹
 = f g * e * f g⁻¹
 = f g * f g⁻¹
 = f (g * g⁻¹)
 = f e
 = e

We are done.

D.3.3.4. Proof C

note: Adapted from Dexter Chua's notes on IA Group Theory

Given homomorphism f : H → G , and some g : G , for all k ∈ kernel f , we have
f (g * k * g⁻¹) = f g * f k * (f g)⁻¹ = f g * e * (f g)⁻¹ = e . Therefore
g * k * g⁻¹ ∈ kernel f by definition of the kernel.

D.3.4. Lemma 4. The intersection of two open sets is open.

D.3.4.1. Proof A

(D.13).

(D.14).

(D.15).

139

https://dec41.user.srcf.net/notes/

theorem intersection_is_open {A B : set X} : is_open A → is_open B → is_open (A ∩ B) :=

begin
 assume h₁ : is_open A,
 assume h₂ : is_open B,
 assume y : X,
 assume h₃ : y ∈ A ∩ B,
 cases ‹y ∈ A ∩ B›,
 obtain ⟨η, η_pos, h_η⟩ : ∃ η, (η > 0) ∧ ∀ x, dist x y < η → x ∈ A,
 apply ‹is_open A›, apply ‹y ∈ A›,
 obtain ⟨θ, θ_pos, h_θ⟩ : ∃ θ, (θ > 0) ∧ ∀ x, dist x y < θ → x ∈ B,
 apply ‹is_open B›, apply ‹y ∈ B›,
 let ε := min η θ,
 have ε_pos : ε > 0,
 apply lt_min ‹η > 0› ‹θ > 0›,
 show ∃ (ε : ℝ), ε > 0 ∧ ∀ (x : X), (dist x y < ε) → (x ∈ (A ∩ B)),
 use [ε, ‹ε > 0›],
 assume x : X,
 assume h₄ : dist x y < ε,
 have : dist x y < η,
 calc dist x y < min η θ : ‹dist x y < ε›
 ... ≤ η : min_le_left _ _,
 have : dist x y < θ,
 calc dist x y < min η θ : ‹dist x y < ε›
 ... ≤ θ : min_le_right _ _,
 show x ∈ A ∩ B,
 split,
 show x ∈ A,
 apply h_η, apply ‹dist x y < η›,
 show x ∈ B,
 apply h_θ, apply ‹dist x y < θ›,
end

D.3.4.2. Proof B

Let y be an element of A ∩ B . Then y ∈ A and y ∈ B . Therefore, since A is open, there
exists η > 0 such that x ∈ A whenever dist x y < η and since B is open, there exists
θ > 0 such that x ∈ B whenever dist x y < θ . We must choose ε > 0 such that
x ∈ A ∩ B whenever dist x y < ε . Suppose dist x y < ε . Then dist x y < η if ε ≤ η
and dist x y < θ if ε ≤ θ . We are done by setting ε to be min η θ .

D.3.4.3. Proof C

note: Adapted from Measure, Topology and Fractal Geometry by Gerald Edgar [Edg07].

Suppose A and B are both open. Let y ∈ A ∩ B . Since A is open, there is η > 0 with
dist x y < η → x ∈ A for all x . Also, since B is open, there is θ > 0 with
dist x y < θ → x ∈ B for all x . Therefore, if ε is the minimum of η and θ , then we
have x ∈ A ∩ B whenever dist x y < ε for all x . So A ∩ B is an open set.

D.4. Consent form
Each participant signed this form before their session started.

This study is part of my PhD research on creating better proof assistant tools for
mathematicians.

I am interested in how people compare proofs of theorems created using a proof assistant
and created using natural language.

The experiment consists of 4 rounds. In each round you will be asked to compare and
evaluate a set of proofs for the same mathematical lemma. Some of the proofs are written
in Lean, software for creating formally verified proofs and others are written in the style of
natural language. Before the experiment starts there will be a brief training phase on the
syntax of Lean. After the experiment, there will be a debrief phase involving some
discussion and a brief questionnaire.

Please note that none of the tasks are a test of you or your mathematical ability; the goal is
to understand the properties of proofs that you find understandable and useful.

(D.16).

[Edg07] Edgar,
Gerald Measure, topology, and
fractal geometry
(2007) publisher Springer

140

The experiment will be conducted remotely via Zoom. Please use a desktop OS such as
Linux, macOS or Windows with a copy of Zoom installed. Please make sure that you are in
a quiet environment suitable for a meeting.

D.4.1. Confidentiality

The following data will be recorded:

name

email address

audio or video recording of the experiment

These will only be used to communicate with you, or better understand your responses and
will only be visible to me, the experimenter. If video is recorded, it will be deleted
immediately after the experiment and only the audio will be kept. Your name, email and
recordings will never be publicly released and will be deleted by 1st February 2021.

Additionally, the following data during the experiment will be textually recorded and
anonymised.

Your answers to the forms and surveys during the experiment.

Any verbal answers and comments you give during the experiment. Note that you
can explicitly request for me to discard any of these if you wish.

Transcripts of quotes from the audio recording may be publicly released.

These may be released publicly but your anonymity will be protected in any papers, peer
review, institutional repositories and presentations that result from this work.

D.4.2. Finding out about the results

If interested, you can email me at edward.ayers@outlook.com in 2021 to hear about the
results of the study.

D.4.3. Record of consent

Your signature below indicates that you have understood the information about the
experiment and consent to your participation. The participation is voluntary and you may
refuse to answer certain questions and withdraw from the study and request your data be
deleted at any time with no penalty. This does not waive your legal rights. You should have
received a copy of the consent form for your own record. If you have further questions
related to this research, please contact me at edward.ayers@outlook.com.

141

Bibliography
[ABB+16] Ahrendt, Wolfgang; Beckert, Bernhard; Bubel, Richard; Hähnle, Reiner; Schmitt, Peter H.; Ulbrich,
Mattias Deductive Software Verification - The KeY Book (2016) publisher Springer doi 10.1007/978-3-319-49812-6 isbn
978-3-319-49811-9 https://doi.org/10.1007/978-3-319-49812-6

[ADL10] Aspinall, David; Denney, Ewen; Lüth, Christoph Tactics for hierarchical proof (2010) Mathematics in
Computer Science volume 3 number 3 pages 309--330 publisher Springer doi 10.1007/s11786-010-0025-6 https://doi.org/

10.1007/s11786-010-0025-6

[AGJ19] Ayers, E. W.; Gowers, W. T.; Jamnik, Mateja A human-oriented term rewriting system (2019) KI 2019:
Advances in Artificial Intelligence - 42nd German Conference on AI volume 11793 pages 76--86 editors Benzmüller,
Christoph; Stuckenschmidt, Heiner organization Springer publisher Springer doi 10.1007/978-3-030-30179-8_6 https://www

.repository.cam.ac.uk/bitstream/handle/1810/298199/main.pdf?sequence=1

[AH97] Archer, Myla; Heitmeyer, Constance Human-style theorem proving using PVS (1997) International Conference
on Theorem Proving in Higher Order Logics pages 33--48 editors Gunter, Elsa L.; Felty, Amy P. organization Springer doi
10.1007/BFb0028384 https://doi.org/10.1007/BFb0028384

[AJG21] Ayers, E. W.; Jamnik, Mateja; Gowers, W. T. A graphical user interface framework for formal verification
(2021) Interactive Theorem Proving volume 193 pages 4:1--4:16 editors Cohen, Liron; Kaliszyk, Cezary publisher Schloss
Dagstuhl - Leibniz-Zentrum für Informatik doi 10.4230/LIPIcs.ITP.2021.4 https://doi.org/10.4230/LIPIcs.ITP.2021.4

[ALW07] Aspinall, David; Lüth, Christoph; Winterstein, Daniel A framework for interactive proof (2007) Towards
Mechanized Mathematical Assistants pages 161--175 editors Kauers, Manuel; Kerber, Manfred; Miner, Robert; et al. publisher
Springer doi 10.1007/978-3-540-73086-6_15 https://doi.org/10.1007/978-3-540-73086-6_15

[AMM18] Adámek, Jiří; Milius, Stefan; Moss, Lawrence S Fixed points of functors (2018) Journal of Logical and
Algebraic Methods in Programming volume 95 pages 41--81 doi 10.1016/j.jlamp.2017.11.003 https://doi.org/10.1016/j.jlamp.2

017.11.003

[AZHE10] Aigner, Martin; Ziegler, Günter M; Hofmann, Karl H; Erdos, Paul Proofs from the Book (2010) publisher
Springer isbn 978-3-662-57264-1 https://doi.org/10.1007/978-3-662-57265-8

[Ano94] Anonymous The QED manifesto (1994) Automated Deduction--CADE volume 12 pages 238--251 http://www.cse.ch

almers.se/research/group/logic/TypesSS05/Extra/wiedijk_2.pdf Unofficially credited as Robert Boyer

[Asp00] Aspinall, David Proof General: A generic tool for proof development (2000) International Conference on Tools and
Algorithms for the Construction and Analysis of Systems volume 1785 pages 38--43 editors Graf, Susanne; Schwartzbach,
Michael I. organization Springer publisher Springer doi 10.1007/3-540-46419-0_3 https://link.springer.com/content/pdf/10.

1007/3-540-46419-0_3.pdf

[BBF+16] Blanchette, Jasmin Christian; Böhme, Sascha; Fleury, Mathias; Smolka, Steffen Juilf; Steckermeier,
Albert Semi-intelligible Isar proofs from machine-generated proofs (2016) Journal of Automated Reasoning volume
56 number 2 pages 155--200 publisher Springer doi 10.1007/s10817-015-9335-3 https://doi.org/10.1007/s10817-015-9335-3

[BBHI05] Bundy, Alan; Basin, David; Hutter, Dieter; Ireland, Andrew Rippling: meta-level guidance for
mathematical reasoning (2005) volume 56 publisher Cambridge University Press isbn 978-0-521-83449-0 https://books.goo

gle.co.uk/books?id=dZzbL-lnjVEC

[BCC+13] Bainomugisha, Engineer; Carreton, Andoni Lombide; Cutsem, Tom van; Mostinckx, Stijn; Meuter,
Wolfgang de A survey on reactive programming (2013) ACM Computing Surveys (CSUR) volume 45 number 4 pages 1-
-34 editor Hankin, Chris publisher ACM New York, NY, USA doi 10.1145/2501654.2501666 https://doi.org/10.1145/2501654.25

01666

[BCF+97] Benzmüller, Christoph; Cheikhrouhou, Lassaad; Fehrer, Detlef; Fiedler, Armin; Huang, Xiaorong;
Kerber, Manfred; Kohlhase, Michael; Konrad, Karsten; Meier, Andreas; Melis, Erica; Schaarschmidt, Wolf;
Siekmann, Jörg H.; Sorge, Volker Omega: Towards a Mathematical Assistant (1997) Automated Deduction - CADE-
14 volume 1249 pages 252--255 editor McCune, William publisher Springer doi 10.1007/3-540-63104-6_23 https://doi.org

/10.1007/3-540-63104-6_23

[BCJ+06] Buchberger, Bruno; Crǎciun, Adrian; Jebelean, Tudor; Kovács, Laura; Kutsia, Temur; Nakagawa,
Koji; Piroi, Florina; Popov, Nikolaj; Robu, Judit; Rosenkranz, Markus; Windsteiger, Wolfgang Theorema:
Towards computer-aided mathematical theory exploration (2006) Journal of Applied Logic volume 4 number 4 pages 470-
-504 editor Benzmüller, Christoph publisher Elsevier doi 10.1016/j.jal.2005.10.006 https://doi.org/10.1016/j.jal.2005.10.006

142

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/s11786-010-0025-6
https://www.repository.cam.ac.uk/bitstream/handle/1810/298199/main.pdf?sequence=1
https://doi.org/10.1007/BFb0028384
https://doi.org/10.4230/LIPIcs.ITP.2021.4
https://doi.org/10.1007/978-3-540-73086-6_15
https://doi.org/10.1016/j.jlamp.2017.11.003
https://doi.org/10.1007/978-3-662-57265-8
http://www.cse.chalmers.se/research/group/logic/TypesSS05/Extra/wiedijk_2.pdf
https://link.springer.com/content/pdf/10.1007/3-540-46419-0_3.pdf
https://doi.org/10.1007/s10817-015-9335-3
https://books.google.co.uk/books?id=dZzbL-lnjVEC
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1007/3-540-63104-6_23
https://doi.org/10.1016/j.jal.2005.10.006

[BE92] Barwise, Jon; Etchemendy, John Hyperproof: Logical reasoning with diagrams (1992) Working Notes of the
AAAI Spring Symposium on Reasoning with Diagrammatic Representations https://www.aaai.org/Papers/Symposia/Spring/1992/SS-

92-02/SS92-02-016.pdf

[BF97] Blum, Avrim L; Furst, Merrick L Fast planning through planning graph analysis (1997) Artificial
intelligence volume 90 number 1-2 pages 281--300 editor Bobrow, Daniel G. publisher Elsevier doi 10.1016/S0004-
3702(96)00047-1 https://doi.org/10.1016/S0004-3702(96)00047-1

[BG01] Bachmair, Leo; Ganzinger, Harald Resolution theorem proving (2001) Handbook of automated reasoning pages
19--99 editors Robinson, J. A.; Voronkov, A. publisher Elsevier

[BGM+13] Bird, Richard; Gibbons, Jeremy; Mehner, Stefan; Voigtländer, Janis; Schrijvers, Tom Understanding
idiomatic traversals backwards and forwards (2013) Proceedings of the 2013 ACM SIGPLAN symposium on Haskell pages 25-
-36 https://lirias.kuleuven.be/retrieve/237812

[BJK+16] Buchberger, Bruno; Jebelean, Tudor; Kutsia, Temur; Maletzky, Alexander; Windsteiger,
Wolfgang Theorema 2.0: computer-assisted natural-style mathematics (2016) Journal of Formalized Reasoning volume
9 number 1 pages 149--185 doi 10.6092/issn.1972-5787/4568 https://doi.org/10.6092/issn.1972-5787/4568

[BKM95] Boyer, Robert S; Kaufmann, Matt; Moore, J Strother The Boyer-Moore theorem prover and its interactive
enhancement (1995) Computers & Mathematics with Applications volume 29 number 2 pages 27--62 publisher Elsevier

[BM72] Boyer, R. S.; Moore, J. S. The sharing structure in theorem-proving programs (1972) Machine
intelligence volume 7 pages 101--116 editors Meltzer, B.; Michie, D. publisher Edinburgh University Press https://www.cs.ute

xas.edu/~moore/publications/structure-sharing-mi7.pdf

[BM73] Boyer, Robert S.; Moore, J. Strother Proving Theorems about LISP Functions (1973) IJCAI pages 486-
-493 editor Nilsson, Nils J. publisher William Kaufmann http://ijcai.org/Proceedings/73/Papers/053.pdf

[BM90] Boyer, Robert S; Moore, J Strother A theorem prover for a computational logic (1990) International Conference
on Automated Deduction pages 1--15 organization Springer https://www.cs.utexas.edu/users/boyer/ftp/cli-reports/054.pdf

[BMR+20] Brown, Tom B.; Mann, Benjamin; Ryder, Nick; Subbiah, Melanie; Kaplan, Jared; Dhariwal, Prafulla;
Neelakantan, Arvind; Shyam, Pranav; Sastry, Girish; Askell, Amanda; Agarwal, Sandhini; Herbert-Voss, Ariel;
Krueger, Gretchen; Henighan, Tom; Child, Rewon; Ramesh, Aditya; Ziegler, Daniel M.; Wu, Jeffrey; Winter,
Clemens; Hesse, Christopher; Chen, Mark; Sigler, Eric; Litwin, Mateusz; Gray, Scott; Chess, Benjamin; Clark,
Jack; Berner, Christopher; McCandlish, Sam; Radford, Alec; Sutskever, Ilya; Amodei, Dario Language Models are
Few-Shot Learners (2020) NeurIPS editors Larochelle, Hugo; Ranzato, Marc'Aurelio; Hadsell, Raia; et al. https://proceedings.n
eurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[BN10] Böhme, Sascha; Nipkow, Tobias Sledgehammer: judgement day (2010) International Joint Conference on
Automated Reasoning pages 107--121 editors Giesl, Jürgen; Hähnle, Reiner organization Springer doi 10.1007/978-3-642-
14203-1_9 https://doi.org/10.1007/978-3-642-14203-1_9

[BN98] Baader, Franz; Nipkow, Tobias Term rewriting and all that (1998) publisher Cambridge University Press isbn
978-0-521-45520-6

[BSV+93] Bundy, Alan; Stevens, Andrew; Van Harmelen, Frank; Ireland, Andrew; Smaill, Alan Rippling: A
heuristic for guiding inductive proofs (1993) Artificial Intelligence volume 62 number 2 pages 185--253 publisher
Elsevier doi 10.1016/0004-3702(93)90079-Q https://doi.org/10.1016/0004-3702(93)90079-Q

[BT98] Bertot, Yves; Théry, Laurent A generic approach to building user interfaces for theorem provers (1998) Journal of
Symbolic Computation volume 25 number 2 pages 161--194 publisher Elsevier doi 10.1006/jsco.1997.0171 https://doi.org/1

0.1006/jsco.1997.0171

[Bau20] Bauer, Andrej What makes dependent type theory more suitable than set theory for proof assistants? (2020) https:

//mathoverflow.net/q/376973 MathOverflow answer

[Bil05] Bille, Philip A survey on tree edit distance and related problems (2005) Theoretical computer science volume
337 number 1-3 pages 217--239 publisher Elsevier doi 10.1016/j.tcs.2004.12.030 https://doi.org/10.1016/j.tcs.2004.12.030

[Ble81] Bledsoe, Woodrow W Non-resolution theorem proving (1981) Readings in Artificial Intelligence pages 91-
-108 editor Meltzer, Bernard publisher Elsevier doi 10.1016/0004-3702(77)90012-1 https://doi.org/10.1016/0004-3702(77)9001

2-1

[Bre16] Breitner, Joachim Visual theorem proving with the Incredible Proof Machine (2016) International Conference on
Interactive Theorem Proving pages 123--139 editors Blanchette, Jasmin Christian; Merz, Stephan publisher Springer doi
10.1007/978-3-319-43144-4_8 https://www.info.uni-karlsruhe.de/uploads/publikationen/breitner16incredible.pdf

143

https://www.aaai.org/Papers/Symposia/Spring/1992/SS-92-02/SS92-02-016.pdf
https://doi.org/10.1016/S0004-3702(96)00047-1
https://lirias.kuleuven.be/retrieve/237812
https://doi.org/10.6092/issn.1972-5787/4568
https://www.cs.utexas.edu/~moore/publications/structure-sharing-mi7.pdf
http://ijcai.org/Proceedings/73/Papers/053.pdf
https://www.cs.utexas.edu/users/boyer/ftp/cli-reports/054.pdf
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1007/978-3-642-14203-1_9
https://doi.org/10.1016/0004-3702(93)90079-Q
https://doi.org/10.1006/jsco.1997.0171
https://mathoverflow.net/q/376973
https://doi.org/10.1016/j.tcs.2004.12.030
https://doi.org/10.1016/0004-3702(77)90012-1
https://www.info.uni-karlsruhe.de/uploads/publikationen/breitner16incredible.pdf

[Bun02] Bundy, Alan A critique of proof planning (2002) Computational Logic: Logic Programming and Beyond pages 160-
-177 editors Kakas, Antonis C.; Sadri, Fariba publisher Springer doi 10.1007/3-540-45632-5_7 https://doi.org/10.1007/3-540-

45632-5_7

[Bun11] Bundy, Alan Automated theorem provers: a practical tool for the working mathematician? (2011) Annals of
Mathematics and Artificial Intelligence volume 61 number 1 pages 3--14 doi 10.1007/s10472-011-9248-8 https://doi.org/10.1

007/s10472-011-9248-8

[Bun88] Bundy, Alan The use of explicit plans to guide inductive proofs (1988) International conference on automated
deduction volume 310 pages 111--120 editors Lusk, Ewing L.; Overbeek, Ross A. organization Springer publisher
Springer doi 10.1007/BFb0012826 https://doi.org/10.1007/BFb0012826

[Bun98] Bundy, Alan Proof Planning (1998) publisher University of Edinburgh, Department of Artificial Intelligence https:

//books.google.co.uk/books?id=h7hrHAAACAAJ

[CC13] Czaplicki, Evan; Chong, Stephen Asynchronous functional reactive programming for GUIs (2013) ACM SIGPLAN
Conference on Programming Language Design and Implementation pages 411--422 editors Boehm, Hans-Juergen; Flanagan,
Cormac publisher ACM doi 10.1145/2491956.2462161 https://doi.org/10.1145/2491956.2462161

[CFK+09] Cramer, Marcos; Fisseni, Bernhard; Koepke, Peter; Kühlwein, Daniel; Schröder, Bernhard; Veldman,
Jip The Naproche Project: Controlled Natural Language Proof Checking of Mathematical Texts (2009) Controlled Natural
Language, Workshop on Controlled Natural Language volume 5972 pages 170--186 editor Fuchs, Norbert E. publisher
Springer doi 10.1007/978-3-642-14418-9_11 https://doi.org/10.1007/978-3-642-14418-9_11

[CH88] Coquand, Thierry; Huet, Gérard P. The Calculus of Constructions (1988) Information and Computation volume
76 number 2/3 pages 95--120 publisher Elsevier doi 10.1016/0890-5401(88)90005-3 https://doi.org/10.1016/0890-5401(88)9

0005-3

[CL18] Choi, Dongkyu; Langley, Pat Evolution of the ICARUS cognitive architecture (2018) Cognitive Systems
Research volume 48 pages 25--38 publisher Elsevier doi 10.1016/j.cogsys.2017.05.005 https://doi.org/10.1016/j.cogsys.2017

.05.005

[CMM+17] Corneli, Joseph; Martin, Ursula; Murray-Rust, Dave; Pease, Alison; Puzio, Raymond; Rino Nesin,
Gabriela Modelling the way mathematics is actually done (2017) Proceedings of the 5th ACM SIGPLAN International
Workshop on Functional Art, Music, Modeling, and Design pages 10--19 editors Sperber, Michael; Bresson,
Jean organization ACM publisher ACM doi 10.1145/3122938.3122942 https://doi.org/10.1145/3122938.3122942

[Car19] Carneiro, Mario Lean's Type Theory (2019) https://github.com/digama0/lean-type-theory/releases/download/v1.0/main

.pdf

[Chu18] Chua, Dexter Cambridge Notes (2018) https://dec41.user.srcf.net/notes GitHub: https://github.com/dalcde/cam-notes

[Com20] The Mathlib Community The Lean Mathematical Library (2020) Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs pages 367–381 publisher Association for Computing
Machinery doi 10.1145/3372885.3373824 isbn 9781450370974 https://doi.org/10.1145/3372885.3373824

[Coq] The Coq Development Team The Coq Reference Manual (2021) https://coq.inria.fr/distrib/current/refman/#

[DH93] Dalianis, Hercules; Hovy, Eduard Aggregation in natural language generation (1993) European Workshop on
Trends in Natural Language Generation volume 1036 pages 88--105 editors Adorni, Giovanni; Zock, Michael organization
Springer publisher Springer doi 10.1007/3-540-60800-1_25 https://doi.org/10.1007/3-540-60800-1_25

[DJP06] Dennis, Louise A; Jamnik, Mateja; Pollet, Martin On the Comparison of Proof Planning Systems:
lambdaCLAM, Ωmega and IsaPlanner (2006) Proceedings of the 12th Symposium on the Integration of Symbolic Computation
and Mechanized Reasoning volume 151 number 1 pages 93--110 editors Carette, Jacques; Farmer, William M. publisher
Elsevier doi 10.1016/j.entcs.2005.11.025 https://www.cl.cam.ac.uk/~mj201/publications/comp_pp_final.pdf

[DKL20] De Lon, Adrian; Koepke, Peter; Lorenzen, Anton Interpreting Mathematical Texts in Naproche-SAD
(2020) Intelligent Computer Mathematics pages 284--289 editors Benzmüller, Christoph; Miller, Bruce publisher Springer
International Publishing doi 10.1007/978-3-030-53518-6_19 isbn 978-3-030-53518-6 https://doi.org/10.1007/978-3-030-53518-

6_19

[Dav09] Davis, Jared Curran A self-verifying theorem prover (2009) https://search.proquest.com/openview/96fda9a67e5fa11f

b241ebf4984c7368/1?pq-origsite=gscholar&cbl=18750

[DeB80] De Bruijn, Nicolaas Govert A survey of the project AUTOMATH (1980) To H.B.Curry: Essays on Combinatory
Logic,Lambda Calculus and Formalism pages 579-606 editors Hindley, J.R.; Seldin, J.P. publisher Academic Press https://re

search.tue.nl/files/2092478/597605.pdf

144

https://doi.org/10.1007/3-540-45632-5_7
https://doi.org/10.1007/s10472-011-9248-8
https://doi.org/10.1007/BFb0012826
https://books.google.co.uk/books?id=h7hrHAAACAAJ
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1007/978-3-642-14418-9_11
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/j.cogsys.2017.05.005
https://doi.org/10.1145/3122938.3122942
https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf
https://dec41.user.srcf.net/notes
https://doi.org/10.1145/3372885.3373824
https://coq.inria.fr/distrib/current/refman/#
https://doi.org/10.1007/3-540-60800-1_25
https://www.cl.cam.ac.uk/~mj201/publications/comp_pp_final.pdf
https://doi.org/10.1007/978-3-030-53518-6_19
https://search.proquest.com/openview/96fda9a67e5fa11fb241ebf4984c7368/1?pq-origsite=gscholar&cbl=18750
https://research.tue.nl/files/2092478/597605.pdf

[Dow01] Dowek, Giles Higher-order unification and matching (2001) Handbook of automated reasoning volume 2 pages
1009--1063 editors Robinson, Alan; Voronkov, Andrei publisher Elsevier

[EH97] Elliott, Conal; Hudak, Paul Functional reactive animation (1997) Proceedings of the second ACM SIGPLAN
international conference on Functional programming pages 263--273 editors Peyton Jones, Simon L.; Tofte, Mads; Berman, A.
Michael doi 10.1145/258948.258973 https://doi.org/10.1145/258948.258973

[EUR+17] Ebner, Gabriel; Ullrich, Sebastian; Roesch, Jared; Avigad, Jeremy; de Moura, Leonardo A
metaprogramming framework for formal verification (2017) Proceedings of the ACM on Programming Languages volume
1 number ICFP pages 1--29 editor Wadler, Philip publisher ACM New York, NY, USA doi 10.1145/3110278 https://doi.org/1

0.1145/3110278

[Edg07] Edgar, Gerald Measure, topology, and fractal geometry (2007) publisher Springer

[Ell01] Elliott, Conal Functional Image Synthesis (2001) Proceedings of Bridges http://conal.net/papers/bridges2001/

[FGM+07] Foster, J Nathan; Greenwald, Michael B; Moore, Jonathan T; Pierce, Benjamin C; Schmitt,
Alan Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem (2007) ACM
Transactions on Programming Languages and Systems (TOPLAS) volume 29 number 3 pages 17--es publisher ACM New
York, NY, USA https://hal.inria.fr/inria-00484971/file/lenses-toplas-final.pdf

[FM87] Felty, Amy; Miller, Dale Proof explanation and revision (1987) number MS-CIS-88-17 institution University of
Pennsylvania https://repository.upenn.edu/cgi/viewcontent.cgi?article=1660&context=cis_reports

[Fle19] Flet-Berliac, Yannis The Promise of Hierarchical Reinforcement Learning (2019) The Gradient https://thegradient.
pub/the-promise-of-hierarchical-reinforcement-learning

[GAA+13] Gonthier, Georges; Asperti, Andrea; Avigad, Jeremy; Bertot, Yves; Cohen, Cyril; Garillot, François; Le
Roux, Stéphane; Mahboubi, Assia; O’Connor, Russell; Biha, Sidi Ould; others A machine-checked proof of the odd
order theorem (2013) International Conference on Interactive Theorem Proving pages 163--179 organization Springer https:/

/hal.inria.fr/docs/00/81/66/99/PDF/main.pdf

[GFA09] Grossman, Tovi; Fitzmaurice, George W.; Attar, Ramtin A survey of software learnability: metrics,
methodologies and guidelines (2009) Proceedings of the 27th International Conference on Human Factors in Computing
Systems pages 649--658 editors Olsen, Dan R. Jr.; Arthur, Richard B.; Hinckley, Ken; et al. publisher ACM doi
10.1145/1518701.1518803 https://doi.org/10.1145/1518701.1518803

[GG17] Ganesalingam, Mohan; Gowers, W. T. A fully automatic theorem prover with human-style output (2017) Journal
of Automated Reasoning volume 58 number 2 pages 253--291 doi 10.1007/s10817-016-9377-1 https://doi.org/10.1007/s10817

-016-9377-1

[GK18] Gatt, Albert; Krahmer, Emiel Survey of the state of the art in natural language generation: Core tasks,
applications and evaluation (2018) Journal of Artificial Intelligence Research volume 61 pages 65--170 doi 10.1613/jair.5477 h

ttps://doi.org/10.1613/jair.5477

[GKN15] Grabowski, Adam; Korniłowicz, Artur; Naumowicz, Adam Four decades of Mizar (2015) Journal of
Automated Reasoning volume 55 number 3 pages 191--198 editors Trybulec, Andrzej; Trybulec Kuperberg,
Krystyna publisher Springer doi 10.1007/s10817-015-9345-1 https://doi.org/10.1007/s10817-015-9345-1

[GM05] Grégoire, Benjamin; Mahboubi, Assia Proving equalities in a commutative ring done right in Coq
(2005) International Conference on Theorem Proving in Higher Order Logics volume 3603 pages 98--113 editors Hurd, Joe;
Melham, Thomas F. organization Springer doi 10.1007/11541868_7 http://cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.304

1.pdf

[GPJ17] Gallego Arias, Emilio Jesús; Pin, Benoît; Jouvelot, Pierre jsCoq: Towards Hybrid Theorem Proving Interfaces
(2017) Proceedings of the 12th Workshop on User Interfaces for Theorem Provers volume 239 pages 15-27 editors Autexier,
Serge; Quaresma, Pedro publisher Open Publishing Association doi 10.4204/EPTCS.239.2 https://arxiv.org/pdf/1701.07125

[Gal16] Gallego Arias, Emilio Jesús SerAPI: Machine-Friendly, Data-Centric Serialization for Coq (2016) institution
MINES ParisTech https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408/file/serapi.pdf

[Gan10] Ganesalingam, Mohan The language of mathematics (2010) publisher Springer doi 10.1007/978-3-642-37012-
0 isbn 978-3-642-37011-3 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.9027&rep=rep1&type=pdf

[Gon08] Gonthier, Georges Formal proof--the four-color theorem (2008) Notices of the AMS volume 55 number
11 pages 1382--1393 editor Magid, Andy

[Gor00] Gordon, Mike From LCF to HOL: a short history (2000) Proof, language, and interaction pages 169--186 editors
Plotkin, Gordon D.; Stirling, Colin; Tofte, Mads doi 10.1.1.132.8662 isbn 9780262161886 http://citeseerx.ist.psu.edu/viewdoc/d

ownload?doi=10.1.1.132.8662&rep=rep1&type=pdf 145

https://doi.org/10.1145/258948.258973
https://doi.org/10.1145/3110278
http://conal.net/papers/bridges2001/
https://hal.inria.fr/inria-00484971/file/lenses-toplas-final.pdf
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1660&context=cis_reports
https://thegradient.pub/the-promise-of-hierarchical-reinforcement-learning
https://hal.inria.fr/docs/00/81/66/99/PDF/main.pdf
https://doi.org/10.1145/1518701.1518803
https://doi.org/10.1007/s10817-016-9377-1
https://doi.org/10.1613/jair.5477
https://doi.org/10.1007/s10817-015-9345-1
http://cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf
https://arxiv.org/pdf/1701.07125
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408/file/serapi.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.9027&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.132.8662&rep=rep1&type=pdf

[Gow10] Gowers, W. T. Rough structure and classification (2010) Visions in Mathematics pages 79--117 publisher
Springer https://www.dpmms.cam.ac.uk/~wtg10/gafavisions.ps

[Gre19] Grebing, Sarah Caecilia User Interaction in Deductive Interactive Program Verification (2019) https://d-nb.info/1

198309989/34

[Gri75] Grice, Herbert P Logic and conversation (1975) Speech acts pages 41--58 publisher Brill http://rrt2.neostrada.pl/
mioduszewska/course_265_reading%201b.pdf

[HAB+17] Hales, Thomas C; Adams, Mark; Bauer, Gertrud; Dang, Dat Tat; Harrison, John; Hoang, Truong Le;
Kaliszyk, Cezary; Magron, Victor; McLaughlin, Sean; Nguyen, Thang Tat; Nguyen, Truong Quang; Nipkow,
Tobias; Obua, Steven; Pleso, Joseph; Rute, Jason M.; Solovyev, Alexey; Ta, An Hoai Thi; Tran, Trung Nam;
Trieu, Diep Thi; Urban, Josef; Vu, Ky Khac; Zumkeller, Roland A formal proof of the Kepler conjecture (2017) Forum
of Mathematics, Pi volume 5 organization Cambridge University Press doi doi:10.1017/fmp.2017.1 https://doi.org/doi:10.101

7/fmp.2017.1

[HBC99] Holland-Minkley, Amanda M; Barzilay, Regina; Constable, Robert L Verbalization of High-Level Formal
Proofs. (1999) AAAI/IAAI pages 277--284 editors Hendler, Jim; Subramanian, Devika publisher AAAI Press / The MIT
Press http://www.aaai.org/Library/AAAI/1999/aaai99-041.php

[HF97] Huang, Xiaorong; Fiedler, Armin Proof Verbalization as an Application of NLG (1997) International Joint
Conference on Artificial Intelligence pages 965--972 http://ijcai.org/Proceedings/97-2/Papers/025.pdf

[HHPW96] Hall, Cordelia V; Hammond, Kevin; Peyton Jones, Simon L; Wadler, Philip L Type classes in Haskell
(1996) ACM Transactions on Programming Languages and Systems (TOPLAS) volume 18 number 2 pages 109-
-138 publisher ACM New York, NY, USA doi 10.1145/227699.227700 https://doi.org/10.1145/227699.227700

[HM19] Hoek, Keeley; Morrison, Scott lean-rewrite-search GitHub repository (2019) https://github.com/semorrison/lean-r

ewrite-search

[HRW+21] Han, Jesse Michael; Rute, Jason; Wu, Yuhuai; Ayers, Edward W; Polu, Stanislas Proof Artifact Co-
training for Theorem Proving with Language Models (2021) arXiv preprint arXiv:2102.06203 https://arxiv.org/pdf/2102.06203

[Hal05] Hales, Thomas C A proof of the Kepler conjecture (2005) Annals of mathematics pages 1065--1185 publisher
Mathematics Department, Princeton University http://annals.math.princeton.edu/wp-content/uploads/annals-v162-n3-p01.pdf

[Hal07] Hales, Thomas C The Jordan curve theorem, formally and informally (2007) The American Mathematical
Monthly volume 114 number 10 pages 882--894 publisher Taylor & Francis https://www.maths.ed.ac.uk/~v1ranick/papers/hal

es3.pdf

[Har09] Harrison, John HOL Light: An Overview. (2009) TPHOLs volume 5674 pages 60--66 editors Berghofer, Stefan;
Nipkow, Tobias; Urban, Christian; et al. organization Springer doi 10.1007/978-3-642-03359-9_4 https://doi.org/10.1007/978

-3-642-03359-9_4

[Hue97] Huet, Gérard Functional Pearl: The Zipper (1997) Journal of functional programming volume 7 number 5 pages
549--554 publisher Cambridge University Press http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/huet-zipper.pdf

[Hur95] Hurkens, Antonius J. C. A simplification of Girard's paradox (1995) International Conference on Typed Lambda
Calculi and Applications pages 266--278 editors Dezani-Ciancaglini, Mariangiola; Plotkin, Gordon D. organization
Springer doi 10.1007/BFb0014058 https://doi.org/10.1007/BFb0014058

[IA12] Inglis, Matthew; Alcock, Lara Expert and novice approaches to reading mathematical proofs (2012) Journal for
Research in Mathematics Education volume 43 number 4 pages 358--390 publisher National Council of Teachers of
Mathematics https://pdfs.semanticscholar.org/494e/7981ee892d500139708e53901d6260bd83b1.pdf

[IJR99] Ireland, Andrew; Jackson, Michael; Reid, Gordon Interactive proof critics (1999) Formal Aspects of
Computing volume 11 number 3 pages 302--325 publisher Springer doi 10.1007/s001650050052 https://doi.org/10.1007/s

001650050052

[Ire92] Ireland, Andrew The use of planning critics in mechanizing inductive proofs (1992) International Conference on
Logic for Programming Artificial Intelligence and Reasoning pages 178--189 editor Voronkov, Andrei organization
Springer doi 10.1007/BFb0013060 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.3546&rep=rep1&type=pdf

[JR12] Jaskelioff, Mauro; Rypacek, Ondrej An Investigation of the Laws of Traversals (2012) Proceedings Fourth
Workshop on Mathematically Structured Functional Programming, MSFP@ETAPS 2012, Tallinn, Estonia volume 76 pages 40-
-49 editors Chapman, James; Levy, Paul Blain doi 10.4204/EPTCS.76.5 https://doi.org/10.4204/EPTCS.76.5

[Jam01] Jamnik, Mateja Mathematical Reasoning with Diagrams: From Intuition to Automation (2001) publisher CSLI
Press isbn 9781575863238

146

https://www.dpmms.cam.ac.uk/~wtg10/gafavisions.ps
https://d-nb.info/1198309989/34
http://rrt2.neostrada.pl/mioduszewska/course_265_reading%201b.pdf
https://doi.org/doi:10.1017/fmp.2017.1
http://www.aaai.org/Library/AAAI/1999/aaai99-041.php
http://ijcai.org/Proceedings/97-2/Papers/025.pdf
https://doi.org/10.1145/227699.227700
https://github.com/semorrison/lean-rewrite-search
https://arxiv.org/pdf/2102.06203
http://annals.math.princeton.edu/wp-content/uploads/annals-v162-n3-p01.pdf
https://www.maths.ed.ac.uk/~v1ranick/papers/hales3.pdf
https://doi.org/10.1007/978-3-642-03359-9_4
http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/huet-zipper.pdf
https://doi.org/10.1007/BFb0014058
https://pdfs.semanticscholar.org/494e/7981ee892d500139708e53901d6260bd83b1.pdf
https://doi.org/10.1007/s001650050052
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.3546&rep=rep1&type=pdf
https://doi.org/10.4204/EPTCS.76.5

[KB70] Knuth, Donald E; Bendix, Peter B Simple word problems in universal algebras (1970) Computational Problems in
Abstract Algebra pages 263-297 editor Leech, John publisher Pergamon doi https://doi.org/10.1016/B978-0-08-012975-
4.50028-X isbn 978-0-08-012975-4 https://www.cs.tufts.edu/~nr/cs257/archive/don-knuth/knuth-bendix.pdf

[KEH+09] Klein, Gerwin; Elphinstone, Kevin; Heiser, Gernot; Andronick, June; Cock, David; Derrin, Philip;
Elkaduwe, Dhammika; Engelhardt, Kai; Kolanski, Rafal; Norrish, Michael; Sewell, Thomas; Tuch, Harvey;
Winwood, Simon seL4: Formal verification of an OS kernel (2009) Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles pages 207--220 editors Matthews, Jeanna Neefe; Anderson, Thomas E. organization ACM doi
10.1145/1629575.1629596 https://doi.org/10.1145/1629575.1629596

[KKY95] Kambhampati, Subbarao; Knoblock, Craig A; Yang, Qiang Planning as refinement search: A unified
framework for evaluating design tradeoffs in partial-order planning (1995) Artificial Intelligence volume 76 number 1 pages
167--238 doi 10.1016/0004-3702(94)00076-D https://doi.org/10.1016/0004-3702(94)00076-D

[KMM13] Kaufmann, Matt; Manolios, Panagiotis; Moore, J Strother Computer-aided reasoning: ACL2 case studies
(2013) volume 4 publisher Springer

[KSFS05] Kiselyov, Oleg; Shan, Chung-chieh; Friedman, Daniel P; Sabry, Amr Backtracking, interleaving, and
terminating monad transformers: (functional pearl) (2005) ACM SIGPLAN Notices volume 40 number 9 pages 192-
-203 editors Danvy, Olivier; Pierce, Benjamin C. publisher ACM New York, NY, USA doi 10.1145/1086365.1086390 https://do

i.org/10.1145/1086365.1086390

[Knu86] Knuth, Donald E. The TeXbook (1986) publisher Addison-Wesley isbn 0-201-13447-0

[Kuh14] Kuhn, Tobias A survey and classification of controlled natural languages (2014) Computational linguistics volume
40 number 1 pages 121--170 publisher MIT Press doi 10.1162/COLI_a_00168 https://doi.org/10.1162/COLI_a_00168

[LC20] Lample, Guillaume; Charton, François Deep Learning For Symbolic Mathematics (2020) ICLR publisher
OpenReview.net https://openreview.net/forum?id=S1eZYeHFDS

[LCT08] Langley, Pat; Choi, Dongkyu; Trivedi, Nishant Icarus user’s manual (2008) institution Institute for the Study
of Learning and Expertise http://www.isle.org/~langley/papers/manual.pdf

[LD97] Lowe, Helen; Duncan, David XBarnacle: Making Theorem Provers More Accessible (1997) 14th International
Conference on Automated Deduction volume 1249 pages 404--407 editor McCune, William publisher Springer doi
10.1007/3-540-63104-6_39 https://doi.org/10.1007/3-540-63104-6_39

[LP03] Lämmel, Ralf; Peyton Jones, Simon Scrap Your Boilerplate (2003) Programming Languages and Systems, First
Asian Symposium, APLAS 2003, Beijing, China, November 27-29, 2003, Proceedings volume 2895 pages 357 editor Ohori,
Atsushi publisher Springer doi 10.1007/978-3-540-40018-9_23 https://doi.org/10.1007/978-3-540-40018-9_23

[LR13] Lüth, Christoph; Ring, Martin A web interface for Isabelle: The next generation (2013) International Conference
on Intelligent Computer Mathematics pages 326--329 organization Springer http://www.informatik.uni-bremen.de/~clueth/pape

rs/cicm2013.pdf

[LYWP21] Li, Wenda; Yu, Lei; Wu, Yuhuai; Paulson, Lawrence C. IsarStep: a Benchmark for High-level Mathematical
Reasoning (2021) International Conference on Learning Representations https://openreview.net/forum?id=Pzj6fzU6wkj

[Lew17] Lewis, Robert Y. An Extensible Ad Hoc Interface between Lean and Mathematica (2017) Proceedings of the Fifth
Workshop on Proof eXchange for Theorem Proving, PxTP 2017, Brasília, Brazil, 23-24 September 2017 volume 262 pages 23-
-37 editors Dubois, Catherine; Paleo, Bruno Woltzenlogel doi 10.4204/EPTCS.262.4 https://doi.org/10.4204/EPTCS.262.4

[Low97] Lowe, Helen Evaluation of a Semi-Automated Theorem Prover (Part I) (1997) https://citeseerx.ist.psu.edu/viewdoc

/download?doi=10.1.1.48.2318&rep=rep1&type=pdf

[MAKR15] de Moura, Leonardo; Avigad, Jeremy; Kong, Soonho; Roux, Cody Elaboration in Dependent Type Theory
(2015) CoRR volume abs/1505.04324 http://arxiv.org/abs/1505.04324

[MB08] de Moura, Leonardo; Bjørner, Nikolaj Z3: An efficient SMT solver (2008) International conference on Tools and
Algorithms for the Construction and Analysis of Systems pages 337--340 editors Ramakrishnan, C. R.; Rehof,
Jakob organization Springer doi 10.1007/978-3-540-78800-3_24 https://doi.org/10.1007/978-3-540-78800-3_24

[MH93] Monk, Andrew; Haber, Jeanne Improving your human-computer interface: a practical technique
(1993) publisher Prentice Hall isbn 9780130100344 https://books.google.co.uk/books?id=JN9QAAAAMAAJ

[MKA+15] de Moura, Leonardo; Kong, Soonho; Avigad, Jeremy; Van Doorn, Floris; von Raumer, Jakob The Lean
theorem prover (system description) (2015) International Conference on Automated Deduction volume 9195 pages 378-
-388 editors Felty, Amy P.; Middeldorp, Aart organization Springer doi 10.1007/978-3-319-21401-6_26 https://kilthub.cmu.e

du/articles/The_Lean_Theorem_Prover_system_description_/6492815/files/11937416.pdf

147

https://www.cs.tufts.edu/~nr/cs257/archive/don-knuth/knuth-bendix.pdf
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1016/0004-3702(94)00076-D
https://doi.org/10.1145/1086365.1086390
https://doi.org/10.1162/COLI_a_00168
https://openreview.net/forum?id=S1eZYeHFDS
http://www.isle.org/~langley/papers/manual.pdf
https://doi.org/10.1007/3-540-63104-6_39
https://doi.org/10.1007/978-3-540-40018-9_23
http://www.informatik.uni-bremen.de/~clueth/papers/cicm2013.pdf
https://openreview.net/forum?id=Pzj6fzU6wkj
https://doi.org/10.4204/EPTCS.262.4
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.2318&rep=rep1&type=pdf
http://arxiv.org/abs/1505.04324
https://doi.org/10.1007/978-3-540-78800-3_24
https://books.google.co.uk/books?id=JN9QAAAAMAAJ
https://kilthub.cmu.edu/articles/The_Lean_Theorem_Prover_system_description_/6492815/files/11937416.pdf

[MP08] McBride, Conor; Paterson, Ross Applicative programming with effects (2008) J. Funct. Program. volume
18 number 1 pages 1--13 doi 10.1017/S0956796807006326 https://personal.cis.strath.ac.uk/conor.mcbride/IdiomLite.pdf

[MS99] Melis, Erica; Siekmann, Jörg Knowledge-based proof planning (1999) Artificial Intelligence volume 115 number
1 pages 65--105 editor Bobrow, Daniel G. publisher Elsevier doi 10.1016/S0004-3702(99)00076-4 https://doi.org/10.1016/S0

004-3702(99)00076-4

[MUP79] de Millo, Richard A; Upton, Richard J; Perlis, Alan J Social processes and proofs of theorems and programs
(1979) Communications of the ACM volume 22 number 5 pages 271--280 doi 10.1145/359104.359106 https://doi.org/10.114

5/359104.359106

[Mar84] Martin-Löf, Per Intuitionistic type theory (1984) volume 1 publisher Bibliopolis isbn 978-88-7088-228-5 http://

people.csail.mit.edu/jgross/personal-website/papers/academic-papers-local/Martin-Lof80.pdf

[McB00] McBride, Conor Dependently typed functional programs and their proofs (2000) http://hdl.handle.net/1842/374

[McC60] McCarthy, John Recursive functions of symbolic expressions and their computation by machine, Part I
(1960) Communications of the ACM volume 3 number 4 pages 184--195 publisher ACM New York, NY, USA doi
10.1145/367177.367199 https://doi.org/10.1145/367177.367199

[Mic78] Michener, Edwina Rissland Understanding understanding mathematics (1978) Cognitive science volume
2 number 4 pages 361--383 publisher Wiley Online Library doi https://doi.org/10.1207/s15516709cog0204_3 https://online

library.wiley.com/doi/pdf/10.1207/s15516709cog0204_3

[Mil72] Milner, Robin Logic for computable functions description of a machine implementation (1972) institution Stanford
University https://apps.dtic.mil/dtic/tr/fulltext/u2/785072.pdf

[Nev74] Nevins, Arthur J A human oriented logic for automatic theorem-proving (1974) Journal of the ACM volume
21 number 4 pages 606--621 publisher ACM New York, NY, USA doi 10.1145/321850.321858 https://doi.org/10.1145/321850.

321858

[Nor08] Norell, Ulf Dependently typed programming in Agda (2008) International school on advanced functional
programming volume 5832 pages 230--266 editors Koopman, Pieter W. M.; Plasmeijer, Rinus; Swierstra, S.
Doaitse organization Springer doi 10.1007/978-3-642-04652-0_5 https://doi.org/10.1007/978-3-642-04652-0_5

[PLB+17] Pease, Alison; Lawrence, John; Budzynska, Katarzyna; Corneli, Joseph; Reed, Chris Lakatos-style
collaborative mathematics through dialectical, structured and abstract argumentation (2017) Artificial Intelligence volume
246 pages 181--219 publisher Elsevier doi 10.1016/j.artint.2017.02.006 https://www.sciencedirect.com/science/article/pii/S000

4370217300267

[PP89] Pfenning, Frank; Paulin-Mohring, Christine Inductively defined types in the Calculus of Constructions
(1989) International Conference on Mathematical Foundations of Programming Semantics pages 209--228 organization
Springer https://kilthub.cmu.edu/ndownloader/files/12096983

[Pas07] Paskevich, Andrei The syntax and semantics of the ForTheL language (2007) http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.211.8865&rep=rep1&type=pdf English translation of a portion of Paskevich's PhD thesis

[Pau89] Paulson, Lawrence C The foundation of a generic theorem prover (1989) Journal of Automated Reasoning volume
5 number 3 pages 363--397 doi 10.1007/BF00248324 https://doi.org/10.1007/BF00248324

[Pau98] Paulson, Lawrence C The inductive approach to verifying cryptographic protocols (1998) Journal of Computer
Security volume 6 number 1-2 pages 85--128 http://content.iospress.com/articles/journal-of-computer-security/jcs102

[Pau99] Paulson, Lawrence C A generic tableau prover and its integration with Isabelle (1999) Journal of Universal
Computer Science volume 5 number 3 pages 73--87 doi 10.3217/jucs-005-03-0073 https://doi.org/10.3217/jucs-005-03-0073

[Pit20] Pit-Claudel, Clément Untangling mechanized proofs (2020) SLE 2020: Proceedings of the 13th ACM SIGPLAN
International Conference on Software Language Engineering pages 155--174 doi 10.1145/3426425.3426940 https://doi.org/10.1

145/3426425.3426940

[Poi14] Poincaré, Henri Science and method (1914) translator Halsted, George Bruce publisher Amazon (out of
copyright) isbn 978-1534945906 https://archive.org/details/sciencemethod00poinuoft The version at URL is translated by Francis
Maitland

[Pro13] The Univalent Foundations Program Homotopy Type Theory: Univalent Foundations of Mathematics
(2013) publisher Institute for Advanced Study https://homotopytypetheory.org/book/

[Pól62] Pólya, George Mathematical Discovery (1962) publisher John Wiley & Sons https://archive.org/details/GeorgePoly

aMathematicalDiscovery

148

https://personal.cis.strath.ac.uk/conor.mcbride/IdiomLite.pdf
https://doi.org/10.1016/S0004-3702(99)00076-4
https://doi.org/10.1145/359104.359106
http://people.csail.mit.edu/jgross/personal-website/papers/academic-papers-local/Martin-Lof80.pdf
http://hdl.handle.net/1842/374
https://doi.org/10.1145/367177.367199
https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709cog0204_3
https://apps.dtic.mil/dtic/tr/fulltext/u2/785072.pdf
https://doi.org/10.1145/321850.321858
https://doi.org/10.1007/978-3-642-04652-0_5
https://www.sciencedirect.com/science/article/pii/S0004370217300267
https://kilthub.cmu.edu/ndownloader/files/12096983
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.8865&rep=rep1&type=pdf
https://doi.org/10.1007/BF00248324
http://content.iospress.com/articles/journal-of-computer-security/jcs102
https://doi.org/10.3217/jucs-005-03-0073
https://doi.org/10.1145/3426425.3426940
https://archive.org/details/sciencemethod00poinuoft
https://homotopytypetheory.org/book/
https://archive.org/details/GeorgePolyaMathematicalDiscovery

[RD00] Reiter, Ehud; Dale, Robert Building natural language generation systems (2000) publisher Cambridge
University Press https://dl.acm.org/doi/book/10.5555/331955

[RN10] Russell, Stuart J.; Norvig, Peter Artificial Intelligence - A Modern Approach (2010) publisher Pearson
Education isbn 978-0-13-207148-2 http://aima.cs.berkeley.edu/

[RSS+20] Raggi, Daniel; Stapleton, Gem; Stockdill, Aaron; Jamnik, Mateja; Garcia, Grecia Garcia; Cheng, Peter
C.-H. How to (Re)represent it? (2020) 32nd IEEE International Conference on Tools with Artificial Intelligence pages 1224-
-1232 publisher IEEE doi 10.1109/ICTAI50040.2020.00185 https://doi.org/10.1109/ICTAI50040.2020.00185

[RV02] Riazanov, Alexandre; Voronkov, Andrei The design and implementation of VAMPIRE (2002) AI
communications volume 15 number 2-3 pages 91--110 http://content.iospress.com/articles/ai-communications/aic259

[Ran94] Ranta, Aarne Syntactic categories in the language of mathematics (1994) International Workshop on Types for
Proofs and Programs pages 162--182 editors Dybjer, Peter; Nordström, Bengt; Smith, Jan M. organization Springer doi
10.1007/3-540-60579-7_9 https://doi.org/10.1007/3-540-60579-7_9

[Ran95] Ranta, Aarne Context-relative syntactic categories and the formalization of mathematical text (1995) International
Workshop on Types for Proofs and Programs pages 231--248 editors Berardi, Stefano; Coppo, Mario organization
Springer doi 10.1007/3-540-61780-9_73 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.8663&rep=rep1&type=pdf

[Ros53] Rosser, J. Barkley Logic for Mathematicians (1953) publisher McGraw-Hill isbn 978-0-486-46898-3

[SB01] Snyder, Wayne; Baader, Franz Unification theory (2001) Handbook of automated reasoning volume 1 pages 447-
-533 editors Robinson, Alan; Voronkov, Andrei publisher Elsevier

[SB18a] Steen, Alexander; Benzmüller, Christoph The higher-order prover Leo-III (2018) International Joint
Conference on Automated Reasoning volume 10900 pages 108--116 editors Galmiche, Didier; Schulz, Stephan; Sebastiani,
Roberto publisher Springer doi 10.1007/978-3-319-94205-6_8 https://doi.org/10.1007/978-3-319-94205-6_8

[SB18b] Sutton, Richard S; Barto, Andrew G Reinforcement learning: An introduction (2018) publisher MIT press http:

//incompleteideas.net/book/the-book-2nd.html

[SBRT18] Stathopoulos, Yiannos; Baker, Simon; Rei, Marek; Teufel, Simone Variable Typing: Assigning Meaning to
Variables in Mathematical Text (2018) NAACL-HLT 2018 pages 303--312 editors Walker, Marilyn A.; Ji, Heng; Stent,
Amanda publisher Association for Computational Linguistics doi 10.18653/v1/n18-1028 https://doi.org/10.18653/v1/n18-1028

[SCO95] Stenning, Keith; Cox, Richard; Oberlander, Jon Contrasting the cognitive effects of graphical and sentential
logic teaching: reasoning, representation and individual differences (1995) Language and Cognitive Processes volume
10 number 3-4 pages 333--354 publisher Taylor & Francis http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.3906&r

ep=rep1&type=pdf

[SCV19] Schulz, Stephan; Cruanes, Simon; Vukmirović, Petar Faster, Higher, Stronger: E 2.3 (2019) Proc. of the 27th
CADE, Natal, Brasil number 11716 pages 495--507 editor Fontaine, Pascal publisher Springer http://wwwlehre.dhbw-stuttgart

.de/~sschulz/bibliography.html#SCV:CADE-2019

[SH17] Sterling, Jonathan; Harper, Robert Algebraic Foundations of Proof Refinement (2017) CoRR volume
abs/1703.05215 http://arxiv.org/abs/1703.05215

[SHB+99] Siekmann, Jörg; Hess, Stephan; Benzmüller, Christoph; Cheikhrouhou, Lassaad; Fiedler, Armin;
Horacek, Helmut; Kohlhase, Michael; Konrad, Karsten; Meier, Andreas; Melis, Erica; Pollet, Martin; Sorge,
Volker LOUI: Lovely OMEGA user interface (1999) Formal Aspects of Computing volume 11 number 3 pages 326-
-342 editor Woodcock, James publisher Springer doi 10.1007/s001650050053 https://doi.org/10.1007/s001650050053

[SORS01] Shankar, Natarajan; Owre, Sam; Rushby, John M; Stringer-Calvert, Dave WJ PVS prover guide
(2001) Computer Science Laboratory, SRI International, Menlo Park, CA https://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

[SP82] Smyth, Michael B; Plotkin, Gordon D The category-theoretic solution of recursive domain equations (1982) SIAM
Journal on Computing volume 11 number 4 pages 761--783 publisher SIAM http://wrap.warwick.ac.uk/46312/1/WRAP_Smyth_cs

-rr-014.pdf

[SRV01] Sekar, R; Ramakrishnan, I.V.; Voronkov, Andrei Term Indexing (2001) Handbook of automated
reasoning volume 2 pages 1855--1900 editors Robinson, Alan; Voronkov, Andrei publisher Elsevier

[ST16] Stathopoulos, Yiannos A; Teufel, Simone Mathematical information retrieval based on type embeddings and
query expansion (2016) COLING 2016 pages 2344--2355 editors Calzolari, Nicoletta; Matsumoto, Yuji; Prasad,
Rashmi publisher ACL https://www.aclweb.org/anthology/C16-1221/

[Sac74] Sacerdoti, Earl D Planning in a hierarchy of abstraction spaces (1974) Artificial intelligence volume 5 number
2 pages 115--135 publisher Elsevier doi 10.1016/0004-3702(74)90026-5 https://doi.org/10.1016/0004-3702(74)90026-5

149

https://dl.acm.org/doi/book/10.5555/331955
http://aima.cs.berkeley.edu/
https://doi.org/10.1109/ICTAI50040.2020.00185
http://content.iospress.com/articles/ai-communications/aic259
https://doi.org/10.1007/3-540-60579-7_9
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.8663&rep=rep1&type=pdf
https://doi.org/10.1007/978-3-319-94205-6_8
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.18653/v1/n18-1028
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.3906&rep=rep1&type=pdf
http://wwwlehre.dhbw-stuttgart.de/~sschulz/bibliography.html#SCV:CADE-2019
http://arxiv.org/abs/1703.05215
https://doi.org/10.1007/s001650050053
https://pvs.csl.sri.com/doc/pvs-prover-guide.pdf
http://wrap.warwick.ac.uk/46312/1/WRAP_Smyth_cs-rr-014.pdf
https://www.aclweb.org/anthology/C16-1221/
https://doi.org/10.1016/0004-3702(74)90026-5

[Sch12] Schreier, Margrit Qualitative content analysis in practice (2012) publisher SAGE Publications isbn
9781849205931 https://uk.sagepub.com/en-gb/eur/qualitative-content-analysis-in-practice/book234633

[Sie90] Sierpinska, Anna Some remarks on understanding in mathematics (1990) For the learning of mathematics volume
10 number 3 pages 24--41 publisher FLM Publishing Association https://www.flm-journal.org/Articles/43489F40454C8B2E06F334

CC13CCA8.pdf

[Sie94] Sierpinska, Anna Understanding in mathematics (1994) volume 2 publisher Psychology Press isbn
9780750705684

[Spi11] Spiwack, Arnaud Verified computing in homological algebra, a journey exploring the power and limits of dependent
type theory (2011) https://pastel.archives-ouvertes.fr/pastel-00605836/document

[Spi87] Spinoza, Benedict The chief works of Benedict de Spinoza (1887) translator Elwes, R.H.M. publisher Chiswick
Press https://books.google.co.uk/books?id=tnl09KVEd2UC&ots=WiBRHdjSjY&dq=the%20philosophy%20of%20benedict%20spinoza&lr&pg=PA3#v

=onepage&q&f=false

[Ste17] Steele Jr., Guy L. It's Time for a New Old Language (2017) http://2017.clojure-conj.org/guy-steele/ Invited talk at
Clojure/Conj 2017. Slides: http://groups.csail.mit.edu/mac/users/gjs/6.945/readings/Steele-MIT-April-2017.pdf

[Tat77] Tate, Austin Generating project networks (1977) Proceedings of the 5th International Joint Conference on Artificial
Intelligence. pages 888--893 editor Reddy, Raj organization Morgan Kaufmann Publishers Inc. doi
10.5555/1622943.1623021 https://dl.acm.org/doi/abs/10.5555/1622943.1623021

[Tho92] Thomassen, Carsten The Jordan-Schönflies theorem and the classification of surfaces (1992) The American
Mathematical Monthly volume 99 number 2 pages 116--130 publisher Taylor & Francis https://www.jstor.org/stable/2324180

[UM20] Ullrich, Sebastian; de Moura, Leonardo Beyond Notations: Hygienic Macro Expansion for Theorem Proving
Languages (2020) Automated Reasoning pages 167--182 editors Peltier, Nicolas; Sofronie-Stokkermans, Viorica publisher
Springer International Publishing doi 10.1007/978-3-030-51054-1_10 https://doi.org/10.1007/978-3-030-51054-1_10

[VKB18] Vicary, Jamie; Kissinger, Aleks; Bar, Krzysztof Globular: an online proof assistant for higher-dimensional
rewriting (2018) Logical Methods in Computer Science volume 14 publisher Episciences.org https://core.ac.uk/download/pdf/

79162392.pdf project website: http://ncatlab.org/nlab/show/Globular

[VLP07] Verchinine, Konstantin; Lyaletski, Alexander; Paskevich, Andrei System for Automated Deduction (SAD): a
tool for proof verification (2007) International Conference on Automated Deduction pages 398--403 editor Pfenning,
Frank organization Springer doi 10.1007/978-3-540-73595-3_29 https://doi.org/10.1007/978-3-540-73595-3_29

[VLPA08] Verchinine, Konstantin; Lyaletski, Alexander; Paskevich, Andrei; Anisimov, Anatoly On correctness of
mathematical texts from a logical and practical point of view (2008) International Conference on Intelligent Computer
Mathematics pages 583--598 editors Autexier, Serge; Campbell, John A.; Rubio, Julio; et al. organization Springer doi
10.1007/978-3-540-85110-3_47 https://doi.org/10.1007/978-3-540-85110-3_47

[VSP+17] Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez, Aidan N.;
Kaiser, Lukasz; Polosukhin, Illia Attention is All you Need (2017) Neural Information Processing Systems pages 5998-
-6008 editors Guyon, Isabelle; von Luxburg, Ulrike; Bengio, Samy; et al. https://proceedings.neurips.cc/paper/2017/hash/3f5ee24
3547dee91fbd053c1c4a845aa-Abstract.html

[Wad03] Wadler, Philip A prettier printer (2003) The Fun of Programming, Cornerstones of Computing pages 223-
-243 editors Gibbons, Jeremy; de Moor, Oege publisher Palgrave MacMillan http://www.cs.ox.ac.uk/publications/books/fop

[Wen12] Wenzel, Makarius Isabelle/jEdit-A Prover IDE within the PIDE Framework. (2012) Intelligent Computer
Mathematics - 11th International Conference volume 7362 pages 468--471 editors Jeuring, Johan; Campbell, John A.; Carette,
Jacques; et al. publisher Springer doi 10.1007/978-3-642-31374-5_38 https://doi.org/10.1007/978-3-642-31374-5_38

[Wen18] Wenzel, Makarius Isabelle/PIDE after 10 years of development (2018) UITP workshop: User Interfaces for
Theorem Provers. https://sketis.net/wp-content/uploads/2018/08/isabellepide-uitp2018.pdf

[Wen99] Wenzel, Markus Isar - A Generic Interpretative Approach to Readable Formal Proof Documents (1999) Theorem
Proving in Higher Order Logics volume 1690 pages 167--184 editors Bertot, Yves; Dowek, Gilles; Hirschowitz, André; et
al. publisher Springer doi 10.1007/3-540-48256-3_12 https://doi.org/10.1007/3-540-48256-3_12

[Wie00] Wiedijk, Freek The de Bruijn Factor (2000) http://www.cs.ru.nl/F.Wiedijk/factor/factor.pdf

[Wie07] Wiedijk, Freek The QED manifesto revisited (2007) Studies in Logic, Grammar and Rhetoric volume 10 number
23 pages 121--133 http://www.cs.ru.nl/~freek/pubs/qed2.pdf

[Zha16] Zhan, Bohua AUTO2, a saturation-based heuristic prover for higher-order logic (2016) International Conference on
Interactive Theorem Proving pages 441--456 editors Blanchette, Jasmin Christian; Merz, Stephan organization Springer doi

150

https://uk.sagepub.com/en-gb/eur/qualitative-content-analysis-in-practice/book234633
https://www.flm-journal.org/Articles/43489F40454C8B2E06F334CC13CCA8.pdf
https://pastel.archives-ouvertes.fr/pastel-00605836/document
https://books.google.co.uk/books?id=tnl09KVEd2UC&ots=WiBRHdjSjY&dq=the%20philosophy%20of%20benedict%20spinoza&lr&pg=PA3#v=onepage&q&f=false
http://2017.clojure-conj.org/guy-steele/
https://dl.acm.org/doi/abs/10.5555/1622943.1623021
https://www.jstor.org/stable/2324180
https://doi.org/10.1007/978-3-030-51054-1_10
https://core.ac.uk/download/pdf/79162392.pdf
https://doi.org/10.1007/978-3-540-73595-3_29
https://doi.org/10.1007/978-3-540-85110-3_47
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://www.cs.ox.ac.uk/publications/books/fop
https://doi.org/10.1007/978-3-642-31374-5_38
https://sketis.net/wp-content/uploads/2018/08/isabellepide-uitp2018.pdf
https://doi.org/10.1007/3-540-48256-3_12
http://www.cs.ru.nl/F.Wiedijk/factor/factor.pdf
http://www.cs.ru.nl/~freek/pubs/qed2.pdf

10.1007/978-3-319-43144-4_27 https://doi.org/10.1007/978-3-319-43144-4_27

[deB72] de Bruijn, Nicolaas Govert Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem (1972) Indagationes Mathematicae (Proceedings) volume
75 number 5 pages 381--392 organization North-Holland http://alexandria.tue.nl/repository/freearticles/597619.pdf

151

https://doi.org/10.1007/978-3-319-43144-4_27
http://alexandria.tue.nl/repository/freearticles/597619.pdf

