®

Check for
updates

Cerberus-BMC: A Principled Reference
Semantics and Exploration Tool
for Concurrent and Sequential C

Stella Lau'2®) Victor B. F. Gomes?,
Kayvan Memarian?, Jean Pichon-Pharabod?,
and Peter Sewell?

1 MIT, Cambridge, USA
stellal@mit.edu
2 University of Cambridge, Cambridge, UK
{victor.gomes, kayvan.memarian,
jean.pichon-pharabod, peter.sewell}@cl.cam.ac.uk

Abstract. C remains central to our infrastructure, making verification
of C code an essential and much-researched topic, but the semantics of
C is remarkably complex, and important aspects of it are still unsettled,
leaving programmers and verification tool builders on shaky ground. This
paper describes a tool, Cerberus-BMC, that for the first time provides a
principled reference semantics that simultaneously supports (1) a choice
of concurrency memory model (including substantial fragments of the
C11, RC11, and Linux kernel memory models), (2) a modern memory
object model, and (3) a well-validated thread-local semantics for a large
fragment of the language. The tool should be useful for C programmers,
compiler writers, verification tool builders, and members of the C/C++
standards committees.

1 Introduction

C remains central to our infrastructure, widely used for security-critical com-
ponents of hypervisors, operating systems, language runtimes, and embedded
systems. This has prompted much research on the verification of C code, but
the semantics of C is remarkably complex, and important aspects of it are still
unsettled, leaving programmers and verification tool builders on shaky ground.
Here we are concerned with three aspects:

1. The Concurrency Memory Model. The 2011 versions of the ISO C++ and
C standards adopted a new concurrency model [3,12,13], formalised during the
development process [11], but the model is still in flux: various fixes have been
found to be necessary [9,14,26]; the model still suffers from the “thin-air prob-
lem” [10,15,35]; and Linux kernel C code uses a different model, itself recently
partially formalised [7].

© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 387-397, 2019.
https://doi.org/10.1007/978-3-030-25540-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_22

388 S. Lau et al.

2. The Memory Object Model. A priori, one might imagine C follows one of two
language-design extremes: a concrete byte-array model with pointers that are
simply machine words, or an abstract model with pointers combining abstract
block IDs and structured offsets. In fact C is neither of these: it permits casts
between pointer and integer types, and manipulation of their byte representa-
tions, to support low-level systems programming, but, while at runtime a C
pointer will typically just be a machine word, compiler analyses and optimi-
sations reason about abstract notions of the provenance of pointers [27,29,31].
This is a subject of active discussion in the ISO C and C++ committees and in
compiler development communities.

8. The Thread-Local Sequential Semantics. Here, there are many aspects, e.g. the
loosely specified evaluation order, the semantics of integer promotions, many
kinds of undefined behaviour, and so on, that are (given an expert reading)
reasonably well-defined in the standard, but that are nonetheless very complex
and widely misunderstood. The standard, being just a prose document, is not
executable as a test oracle; it is not a reference semantics usable for exploration
or automated testing.

Each of these is challenging in isolation, but there are also many subtle
interactions between them. For example, between (1) and (3), the pre-C11 ISO
standard text was in terms of sequential stepwise execution of an (informally
specified) abstract machine, while the C11 concurrency model is expressed as
a predicate over complete candidate executions, and the two have never been
fully reconciled — e.g. in the standard’s treatment of object lifetimes. Then there
are fundamental issues in combining the ISO treatment of undefined behaviour
with that axiomatic-concurrency-model style [10, §7]. Between (1) and (2), one
has to ask about the relationships between the definition of data race and the
treatment of uninitialised memory and padding. Between (2) and (3), there are
many choices for what the C memory object model should be, and how it should
be integrated with the standard, which are currently under debate. Between all
three one has to consider the relationships between uninitialised and thin-air
values and the ISO notions of unspecified values and trap representations. These
are all open questions in what the C semantics and ISO standard are (or should
be). We do not solve them here, but we provide a necessary starting point: a
tool embodying a precise reference semantics that lets one explore examples and
debate the alternatives.

We describe a tool, Cerberus-BMC, that for the first time lets one explore
the allowed behaviours of C test programs that involve all three of the above. It
is available via a web interface at http://cerberus.cl.cam.ac.uk/bme.html.

For (1), Cerberus-BMC is parameterised on an axiomatic memory concur-
rency model: it reads in a definition of the model in a Herd-like format [6], and so
can be instantiated with (substantial fragments of) either the C11 [3,9,12-14],
RC11 [26], or Linux kernel [7] memory models. The model can be edited in the
web interface. Then the user can load (or edit in the web interface) a small C
program. The tool first applies the Cerberus compositional translation (or elab-

http://cerberus.cl.cam.ac.uk/bmc.html

Cerberus-BMC 389

oration) into a simple Core language, as in [29,31]; this elaboration addresses (3)
by making many of the thread-local subtleties of C explicit, including the loose
specification of evaluation order, arithmetic conversions, implementation-defined
behaviour, and many kinds of undefined behaviour. Core computation is simply
over mathematical integers, with explicit memory actions to interface with the
concurrency and memory object models. However, there is a mismatch between
the axiomatic style of the concurrency models for C (expressed as predicates
on arbitrary candidate executions) with the operational style of the previous
thread-local operational semantics for Core. We address this by replacing the
latter with a new translation from Core into SMT problems. This is integrated
with the concurrency model, also translated into SMT, following the ideas of [5].
These are furthermore integrated with an SMT version of parts of the PNVI
(provenance-not-via-integers) memory object model of [29], the basis for ongo-
ing work within the ISO WG14 C standards committee, addressing (2). The
resulting SMT problems are passed to Z3 [32]. The web interface then provides
a graphical view of the allowed concurrent executions for small test programs.

The Cerberus-BMC tool should be useful for programmers, compiler writers,
verification tool builders, and members of the C/C++ standards committees.
We emphasise that it is intended as an executable reference semantics for small
test programs, not itself as a verification tool that can be applied to larger bodies
of C: we have focussed on making it transparently based on principled semantics
for all three aspects, without the complexities needed for a high-performance
verification tool. But it should aid the construction of such.

Caveats and Limitations. Cerberus-BMC covers many features of 1-3, but far
from all. With respect to the concurrency memory model, we support substan-
tial fragments of the C11, RC11, and Linux kernel memory models. We omit
locks and the (deprecated) C11/RC11 consume accesses. We only cover compare-
exchange read-modify-write operations, and the fragment of RCU restricted to
read_rcu_lock(), read_rcu_unlock(), and synchronize_rcu() used in a linear
way, without control-flow-dependent calls to RCU, and without nesting.

With respect to the memory object model, we do not currently support
dynamic allocation or manipulation of byte representations (such as with charx
pointers), and we do not address issues such as subobject provenance (an open
question within WG14).

With respect to the thread semantics, our translation to SMT does not cur-
rently cover arbitrary pointer type-casting, function pointers, multi-dimensional
arrays, unions, floating point, bitwise operations, and variadic functions, and
only covers simple structs. In addition, we inherit the limitations of the Cer-
berus thread semantics as per [29].

Related Work. There is substantial prior work on tools for concurrency semantics
and for C semantics, but almost none that combines the two. On the concurrency
semantics side, CppMem [1,11] is a web-interface tool that computes the allowed
concurrent behaviours of small tests with respect to variants (now somewhat

390 S. Lau et al.

outdated) of the C11 model, but it does not support other concurrency mod-
els or a memory object model, and it supports only a small fragment of C.
Herd [6,8] is a command-line tool that computes the allowed concurrent
behaviours of small tests with respect to arbitrary axiomatic concurrency models
expressed in its cat language, but without a memory object model and for tests
which essentially just comprise memory events, without a C semantics. MemAl-
loy [38] and MemSynth [16] also support reasoning about axiomatic concurrency
models, but again not integrated with a C language semantics.

On the C semantics side, several projects address sequential C semantics
but without concurrency. We build here on Cerberus [28,29,31], a web-interface
tool that computes the allowed behaviours (interactively or exhaustively) for
moderate-sized tests in a substantial fragment of sequential C, incorporating
various memory object models (an early version supported Nienhuis’s opera-
tional model for C11 concurrency [33], but that is no longer integrated). KCC
and RV-Match [19,21,22] provide a command-line semantics tool for a substan-
tial fragment of C, again without concurrency. Krebbers gives a Coq semantics
for a somewhat smaller fragment [24].

Then there is another large body of work on model-checking tools for sequen-
tial and concurrent C. These are all optimised for model-checking performance,
in contrast to the Cerberus-BMC emphasis on expressing the semantic envelope
of allowed behaviour as clearly as we can (and, where possible, closely linked
to the ISO standard). The former include tis-interpreter [18,36], CBMC [17,25],
and ESBMC [20]. On the concurrent side, as already mentioned, we build on
the approach of [5], which integrated various hardware memory concurrency
models with CBMC. CDSChecker [34] supports something like the C/C++11
concurrency model, but subject to various limitations [34, §1.3]. It is imple-
mented using a dynamically-linked shared library for the C and C++ atomic
types, so implicitly adopts the C semantic choices of whichever compiler is used.
RCMC [23], supports memory models that do not exhibit Load Buffering (LB),
for an idealised thread-local language. Nidhugg [4] supports only hardware mem-
ory models: SC, TSO, PSO, and versions of POWER and ARM.

2 Examples
We now illustrate some of what Cerberus-BMC can do, by example.

Concurrency Models. First, for C11 concurrency, Fig. 1 shows a screenshot for a
classic message-passing test, with non-atomic writes and reads of x, synchronised
with release/acquire writes and reads of y. The test uses an explicit parallel
composition, written {-{...||]|...}-}, to avoid the noise from the extra memory
actions in pthread_create. The consistent race-free UB-free execution on the
right shows the synchronisation working correctly: after the i read-acquire of y=1,
the 1 non-atomic read of x has to read x=1 (there are no consistent executions
in which it does not). As usual in C/C++ candidate execution graphs, rf are
reads-from edges, sb is sequenced-before (program order), mo is modification

Cerberus ¥ | example.c ¥ | File ¥ Model v

example.c

1 #include <stdatomic.h>
2 int main() {

3 int x =0;
4 _Atomic(int) y = 0;
5/ int rl, r2;
6 {-{{
7 x =1;
8 atomic_store explicit(
9 &y, 1, memory order release);
03111 A
11 rl = atomic_load_explicit(
12 &y, memory_order_acquire);
13 if (rl == 1)
14 r2 = x;
1) else
16 r2 = 2;
17} }-h
18 assert(!(rl ==16&& r2 == 0));
19 }
Console x m}

1 # consistent executions: 2

2 # executions with races: 0

3 Return values: (specified Int 0), (spe
4

Cerberus-BMC

Model Checker

Views ~ Compile Options ~

Zoom In Zoom Out

Execution 2 of 2 Prev

e:Wna x=0
spY
f:Wna y=0
sw
g:Wna x=1 i:Racq y
. sb+
j:Wnarl=
b,ﬁ#
sb k:Rnarl
sb
v
I:Rna x=
sb+
m:Wna r2=1
o:Rna rl= i
sb*
p:Rna r2=1

391

Fig. 1. Cerberus-BMC Screenshot: C11 Release/Acquire Message Passing. If the read
of y is 1, then the last thread has to see the write of 1 to x.

#include "linux.h"
int main() {
int x =0, y = 0;
int rl1, r2;
{-{{
WRITE_ONCE(x, 1);
// synchronize_rcu();
WRITE_ONCE(y, 1);
FOIA
rcu_read_lock();
rl = READ_ONCE(x);
r2 = READ_ONCE(y);
rcu_read_unlock();
k-3
assert (! (rl==08&&r2==1));

e:Wna x=0

sb*

f:Wna y=0

g:Wonce x=1 i:Frculock
&b sb‘
h:Wonce y=1 j:Ronce x=0
Sb*

k:Wnar1=0

sb‘

I:Ronce y=1

sb*

m:Wna r2=1

sb*

n:Frcuunlock

o:Rnarl=0

sb*

p:Rnar2=1

sb*

q:Rnarl=0

sb¥
r:Rna r2=1

Fig. 2. Linux kernel memory model RCU lock. Without synchronize rcu(), the reads
of x and y can see 0 and 1 (as shown), even though they are enclosed in an RCU lock.
With synchronization, after reading x=1, the last thread has to see y=1.

392 S. Lau et al.

order (the coherence order between atomic writes to the same address), and
asw is additional-synchronised-with, between parent and child threads and vice
versa. Read and write events (R/W) are annotated na for non-atomic and rel /acq
for release/acquire.

For the Linux kernel memory model, the example in Fig.2 shows an RCU
(read-copy-update) synchronisation.

Memory Object Model. The example below illustrates a case where one cannot
assume that C has a concrete memory object model: pointer provenance matters.
In some C implementations, x and
y will happen to be allocated adja-
cent (the BMC_ASSUME restricts
attention to those executions). Then

#include <stdint.h>
int x =1, y = 2;
int main() {

int *p = & + 1;

&x+1 will have the same numeric int *q = &y;

address as &y, but the write *p=11 __BMC_ASSUME((intptr_t)p==(intptr_t)q);
is undefined behaviour rather than if ((intptr_t)p==(intptr_t)q)

a write to y. This was informally *p = 11; // does this have UB?

described in the 2004 ISO WG14 }

C standards committee response to

Defect Report 260 [37], but has never been incorporated into the stan-
dard itself. Cerberus-BMC correctly reports UB found: source.c:8:5-7,
UB0G43_indirection_invalid_ value following the PNVI (provenance-not-via-
integers) memory object model of [29].

ISO Subtleties. Turning to areas where the ISO standard is clear to experts but
widely misunderstood, in the example on the right ISO leaves it implementation-
defined whether char is signed or unsigned. In the for- int main() {
mer case, the ISO integer promotion and conversion char cl = 0xff;
semantics will make the equality test false, leading to ~ unsigned char c2 = Oxff;
a division by 0, which is undefined behaviour. return 1 / (cl == c2);
The example below shows the correct treatment t
of the ISO standard’s loose specification of evaluation order, together with detec-
tion of the concurrency model’s unsequenced races (ur in the diagram): there are
write and read accesses to x that are unrelated by sequenced-before (sb), and
not otherwise synchronised and hence unrelated by happens-before, which makes
this program undefined behaviour.

c:Wna x=0
,rfﬁ
rf) mo
int main() { d:Rna x=0

int x=0; SE/ sb\A

int w; f:Rna x=0 e:Wna x=1
W= X+ + X
sbl

}
g:Wna w=0

Cerberus-BMC 393

Treiber Stack. Finally, demonstrating the combination of all three aspects, we
implemented a modified Treiber stack (the push() function is shown in Fig. 3)
with relaxed accesses to struct fields. Although the Treiber stack is traditionally
implemented by spinning on a compare-and-swap, as that can spin unbound-
edly, we instead use _ _BMC_ASSUME to restrict executions to those where the
compare-and-swap succeed. Our tool correctly detects the different results from
the concurrent relaxed-memory execution of threads concurrently executing the
push and pop functions.

struct Node { int data; struct Node xnext; };
struct Node x _Atomic T;
void push(struct Node *x, int v) {
struct Node xt;
x->data = v;
t = atomic_load_explicit(&T, memory_order_relaxed);
X->next = t;
__BMC_ASSUME (atomic_compare_exchange_strong_explicit(&T, &t, X,
memory_order_acqg_rel, memory_order_relaxed));

Fig. 3. Treiber stack push()

1 proc main (): eff loaded integer :=

2 let strong x: pointer = create(Ivalignof(’signed int’), ’'signed int’) in
3 let strong a_437: loaded integer = pure(Specified(1l)) in

4 store(’signed int’, x, conv_loaded_int(’signed int’, a_437)) ;

5 kill(x) ;

6 (save ret_435: loaded integer (a_436: loaded integer:= Specified(0Q)) in
7 pure(a_436))

Fig. 4. Core program corresponding to int main(){int x = 1}. Core is essentially a
typed, first-order lambda calculus with explicit memory actions such as create and
store to interface with the concurrency and memory object models.

3 Implementation

After translating a C program into Core (see Fig.4), Cerberus-BMC does a
sequence of Core-to-Core rewrites in the style of bounded model checkers such
as CBMC: it unwinds loops and inlines function calls (to a given bound), and
renames symbols to generate an SSA-style program.

The explicit representation of memory operations in Core as first-order con-
structs allows the SMT translation to be easily separated into three components:
the translation from Core to SMT, the memory object model constraints, and
the concurrency model constraints.

394 S. Lau et al.

1. Core to SMT. Each value in Core is represented as an SMT expression, with
fresh SMT constants for memory actions such as create and store (e.g. lines
2 and 4), the concrete values of which are constrained by the memory object
and concurrency models. The elaboration of C to Core makes thread-local unde-
fined behaviour (as opposed to undefined behaviour from concurrency or memory
layout), like signed integer overflow, explicit with a primitive undef construct.
Undefined behaviour is then encoded in SMT as reachability of undef expres-
sions, that is, satisfiability of the control-flow guards up to them.

2. Memory Object Model. As in the PNVI semantics [30], Cerberus-BMC rep-
resents pointers as pairs (7, a) of a provenance 7 and an integer address a. The
provenance of a pointer is taken into account when doing memory accesses,
pointer comparisons, and casts between integer and pointer values. Our tool
models address allocation nondeterminism by constraining address values based
on allocations to be appropriately aligned and non-overlapping, but not con-
straining the addresses otherwise.

3. Concurrency Model. Cerberus-BMC statically extracts memory actions and
computes an extended pre-execution containing relations such as program order.
As control flow can not be statically determined, memory actions are associated
with an SMT boolean guard representing the control flow conditions upon which
the memory action is executed.

Cerberus-BMC reads in a model definition in a subset of the herd cat lan-
guage large enough to express C11, RC11, and Linux, and generates a set of
quantifier-free SMT expressions corresponding to the model’s constraints on
relations. These constraints are based on a set of “built-in” relations defined
in SMT such as rf. Cerberus-BMC then queries Z3 to extract all the executions,
displaying the load/store values and computed relations for the user.

4 Validation

We validate correctness of the three aspects of Cerberus-BMC as follows, though,
as ever, additional testing would be desirable. Performance data, demonstrating
practical usability, is from a MacBook Pro 2.9 GHz Intel Core i5.

For C11 and RC11 concurrency, we check on 12 classic litmus tests. For Linux
kernel concurrency, we hand-translated the 9 non-RCU tests and 4 of the RCU
tests of [7] into C, and automatically translated the 40 tests of [2]. Running all
the non-RCU tests takes less than 5 min; the RCU tests are slower, of the order
of one hour, perhaps because of the recursive definitions involved.

For the memory object model, we take the supported subset (36 tests) of the
provenance semantics test suite of [29]. These single-threaded tests each run in
less than a second.

For the thread-local semantics, the Cerberus pipeline to Core has previously
been validated using GCC Torture, Toyota ITC, KCC, and Csmith-generated
test suites [29]. We check the mapping to BMC using 50 hand-written tests and

Cerberus-BMC 395

the supported subset (400 tests) of the Toyota ITC test suite, each running in
less than two minutes.

These test suites and the examples in the paper can be accessed via the CAV

2019 pop-up in the File menu of the tool.

Acknowledgments. This work was partially supported by EPSRC grant EP/
K008528/1 (REMS), ERC Advanced Grant ELVER 789108, and an MIT EECS Grad-
uate Alumni Fellowship.

References

o

10.

11.

12.

13.

CppMem: Interactive C/C++ memory model. http://svr-pes20-cppmem.cl.cam.
ac.uk/cppmem /index.html

Litmus tests for validation LISA-language Linux-kernel memory models. https://
github.com/paulmckrcu/litmus/tree /master /manual /lwn573436

Programming Languages — C: ISO/IEC 9899:2011 (2011). A non-final but recent
version is available at http://www.open-std.org/jtcl/sc22/wgl4/docs/n1539.pdf

Abdulla, P.A.] Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.:
Stateless model checking for TSO and PSO. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 353-367. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0 28

Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 141-157. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 9

Alglave, J., Maranget, L.: Herd7 (in the diy tool suite) (2015). http://diy.inria.fr/
Alglave, J., Maranget, L., McKenney, P.E., Parri, A., Stern, A.S.: Frightening small
children and disconcerting grown-ups: concurrency in the Linux kernel. In: Pro-
ceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2018, Williams-
burg, VA, USA, 24-28 March 2018, pp. 405418 (2018). https://doi.org/10.1145/
3173162.3177156

Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data mining for weak memory. ACM TOPLAS 36(2), 7:1-7:74 (2014)
Batty, M., Donaldson, A.F., Wickerson, J.: Overhauling SC atomics in C11 and
OpenCl. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
20-22 January 2016, pp. 634—-648 (2016). https://doi.org/10.1145/2837614.2837637
Batty, M., Memarian, K., Nienhuis, K., Pichon-Pharabod, J., Sewell, P.: The prob-
lem of programming language concurrency semantics. In: Vitek, J. (ed.) ESOP
2015. LNCS, vol. 9032, pp. 283-307. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46669-8 12

Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C+-+ con-
currency. In: Proceeding POPL (2011)

Becker, P. (ed.): Programming Languages — C++, iSO/IEC 14882:2011 (2011).
A non-final but recent version is available at http://www.open-std.org/jtcl/sc22/
wg21/docs/papers/2011/n3242.pdf

Boehm, H.J., Adve, S.V.: Foundations of the C++ concurrency memory model.
In: Proceedings of PLDI, pp. 68-78. ACM, New York (2008)

http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/index.html
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/index.html
https://github.com/paulmckrcu/litmus/tree/master/manual/lwn573436
https://github.com/paulmckrcu/litmus/tree/master/manual/lwn573436
http://www.open-std.org/jtc1/sc22/wg14/docs/n1539.pdf
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9
http://diy.inria.fr/
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/2837614.2837637
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1007/978-3-662-46669-8_12
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf

396

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

S. Lau et al.

Boehm, H.J., Giroux, O., Vafeiadis, V.: PO668R2: Revising the C++ memory
model. ISO WG21 paper (2018). http://www.open-std.org/jtcl/sc22/wg21/docs/
papers,/2018 /p0668r2.html

Boehm, H., Demsky, B.: Outlawing ghosts: avoiding out-of-thin-air results. In:
Proceedings of the Workshop on Memory Systems Performance and Correct-
ness, MSPC 2014, Edinburgh, United Kingdom, 13 June 2014, pp. 7:1-7:6 (2014).
https://doi.org/10.1145/2618128.2618134

Bornholt, J., Torlak, E.: Synthesizing memory models from framework sketches
and litmus tests. In: Proceedings of the 38th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2017, Barcelona, Spain,
18-23 June 2017, pp. 467-481 (2017). https://doi.org/10.1145/3062341.3062353
Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168-176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15
Cuoq, P., Runarvot, L., Cherepanov, A.: Detecting strict aliasing violations in the
wild. In: Bouajjani, A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp.
14-33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52234-0 2
Ellison, C., Rosu, G.: An executable formal semantics of C with applications. In:
Proceedings of POPL (2012)

Gadelha, M.Y.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole,
D.A.: ESBMC 5.0: an industrial-strength C model checker. In: Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, Montpellier, France, 3-7 September 2018, pp. 888-891 (2018)

Guth, D., Hathhorn, C., Saxena, M., Rosu, G.: RV-Match: practical semantics-
based program analysis. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016, Part I.
LNCS, vol. 9779, pp. 447-453. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41528-4 24

Hathhorn, C., Ellison, C., Rosu, G.: Defining the undefinedness of C. In: Proceed-
ings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, Portland, OR, USA, 15-17 June 2015, pp. 336-345 (2015).
https://doi.org/10.1145/2737924.2737979

Kokologiannakis, M., Lahav, O., Sagonas, K., Vafeiadis, V.: Effective stateless
model checking for C/C++ concurrency. PACMPL 2(POPL), 17:1-17:32 (2018).
https://doi.org/10.1145/3158105

Krebbers, R.: The C standard formalized in CoQ. Ph.D. thesis, Radboud University
Nijmegen, December 2015

Kroening, D., Tautschnig, M.: CBMC — C bounded model checker (competition
contribution). In: Abraham, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol.
8413, pp. 389-391. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54862-8 26

Lahav, O., Vafeiadis, V., Kang, J., Hur, C., Dreyer, D.: Repairing sequential con-
sistency in C/C++11. In: Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain,
18-23 June 2017, pp. 618-632 (2017). https://doi.org/10.1145/3062341.3062352
Lee, J., Hur, C.K., Jung, R., Liu, Z., Regehr, J., Lopes, N.P.: Reconciling high-level
optimizations and low-level code with twin memory allocation. In: Proceedings of
the 2018 ACM SIGPLAN International Conference on Object Oriented Program-
ming Systems Languages & Applications, OOPSLA 2018, part of SPLASH 2018,
Boston, MA, USA, 4-9 November 2018. ACM (2018)

Memarian, K., Gomes, V., Sewell, P.: Cerberus (2018). http://cerberus.cl.cam.ac.
uk/cerberus

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0668r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0668r2.html
https://doi.org/10.1145/2618128.2618134
https://doi.org/10.1145/3062341.3062353
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-319-52234-0_2
https://doi.org/10.1007/978-3-319-41528-4_24
https://doi.org/10.1007/978-3-319-41528-4_24
https://doi.org/10.1145/2737924.2737979
https://doi.org/10.1145/3158105
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1145/3062341.3062352
http://cerberus.cl.cam.ac.uk/cerberus
http://cerberus.cl.cam.ac.uk/cerberus

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Cerberus-BMC 397

Memarian, K., et al.: Exploring C semantics and pointer provenance. In: Proceed-
ings of 46th ACM SIGPLAN Symposium on Principles of Programming Languages,
January 2019. Proc. ACM Program. Lang. 3, POPL, Article 67

Memarian, K., et al.: Exploring C semantics and pointer provenance. PACMPL
3(POPL), 67:1-67:32 (2019). https://dl.acm.org/citation.cfm?id=3290380
Memarian, K., et al.: Into the depths of C: elaborating the de facto standards. In:
PLDI 2016: 37th Annual ACM SIGPLAN Conference on Programming Language
Design and Implementation (Santa Barbara), June 2016. http://www.cl.cam.ac.
uk /users,/pes20/cerberus/pldil6.pdf. PLDI 2016 Distinguished Paper award

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

Nienhuis, K., Memarian, K., Sewell, P.: An operational semantics for C/C++11
concurrency. In: Proceedings of the ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications. ACM, New
York (2016). https://doi.org/10.1145/2983990.2983997

Norris, B., Demsky, B.: CDSchecker: checking concurrent data structures written
with C/C++ atomics. In: Proceedings of OOPSLA (2013)

Ou, P., Demsky, B.: Towards understanding the costs of avoiding out-of-thin-
air results. PACMPL 2(OOPSLA), 136:1-136:29 (2018). https://doi.org/10.1145/
3276506

TrustInSoft: tis-interpreter (2017). http://trust-in-soft.com/tis-interpreter/.
Accessed 11 Nov 2017

WG14: Defect report 260, September 2004. http://www.open-std.org/jtcl/sc22/
wgld/www/docs/dr_260.htm

Wickerson, J., Batty, M., Sorensen, T., Constantinides, G.A.: Automatically com-
paring memory consistency models. In: Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, pp. 190-204.
ACM, New York (2017). https://doi.org/10.1145/3009837.3009838

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://dl.acm.org/citation.cfm?id=3290380
http://www.cl.cam.ac.uk/users/pes20/cerberus/pldi16.pdf
http://www.cl.cam.ac.uk/users/pes20/cerberus/pldi16.pdf
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2983990.2983997
https://doi.org/10.1145/3276506
https://doi.org/10.1145/3276506
http://trust-in-soft.com/tis-interpreter/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
https://doi.org/10.1145/3009837.3009838
http://creativecommons.org/licenses/by/4.0/

	Cerberus-BMC: A Principled Reference Semantics and Exploration Tool for Concurrent and Sequential C
	1 Introduction
	2 Examples
	3 Implementation
	4 Validation
	References

