
1 

 

Planes of Isotropic Poisson’s Ratio in Anisotropic 

Crystalline Solids 

 

Shrikanth S.a, Kevin M. Knowlesb, Suresh Neelakantana,* and 

Rajesh Prasada  

 

a
Department of Materials Science and Engineering, Indian Institute of Technology Delhi, 

Hauz Khas, New Delhi-110016, India 

 
b
Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles 

Babbage Road, Cambridge CB3 0FS, UK. 

 

*Corresponding author: TX-200N, Department of Materials Science and Engineering, Indian 

Institute of Technology Delhi, Hauz Khas, New Delhi – 110 016, India.  

E-mail: sureshn@iitd.ac.in 

 

Acknowledgements 

 

This work is part of the Early Career Research (ECR) grant award (Ref. no.: 

ECR/2016/001953) funded by Science and Engineering Research Board (SERB) of 

Department of Science and Technology (DST), India. Dr. Suresh Neelakantan acknowledges 

the support. 

 

Declaration of interest: none 

 

 

 

 

 

 

mailto:sureshn@iitd.ac.in


2 

 

Abstract 

It is shown that loading directions can exist in all single crystals for which Poisson’s ratio is 

isotropic in the plane transverse to the loading direction. The body diagonals and the cube 

axes of cubic crystals, the four-fold axis in tetragonal crystals and the six-fold axis in 

hexagonal crystals are examples of such loading directions. However, these loading 

directions do not necessarily just lie only along high rotational symmetry axes. A new three-

dimensional “anisotropy surface” is introduced to represent the degree of anisotropy of the 

Poisson’s ratio within the plane normal to a loading direction for a particular choice of single 

crystal. 
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1. Introduction 

Poisson’s ratio     is defined  (Poisson, 1827) as the negative of the ratio of the strain along 

the transverse direction      to the strain along the loading direction      for a rod under 

uniaxial tension. Common isotropic materials such as glasses, polycrystalline metals and 

rubber narrow when they are stretched and expand laterally when they are compressed. Most 

isotropic materials used in engineering applications have values of Poisson’s ratio close to 

0.3. 

For single-crystalline materials, the Poisson’s ratio can be highly anisotropic – positive, 

negative or zero – within the same material as a function of loading direction and transverse 

direction. The directional dependence of Poisson’s ratio has been widely studied over the past 

four decades (see, for example, Turley and Sines, 1971, Gunton and Saunders, 1972, Li, 

1976, Ballato, 1996, Baughman et al., 1998, Hayes and Shuvalov, 1998, Lubarda and 

Meyers, 1999, Norris, 2006a, Norris 2006b, Paszkiewicz and Wolski 2007a, Paszkiewicz and 
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Wolski 2007b, Brańka et al., 2009, Lethbridge et al., 2010, Brańka et al., 2011, Adachi et al., 

2018). It has also been established that the Poisson’s ratios of anisotropic solids do not have 

any limits (Ting and Chen, 2005), unlike isotropic solids. 

Negative Poisson’s ratio or “auxetic” behaviour is well-known. Materials with negative 

Poisson’s ratio were named “auxetic” materials or simply “auxetics”  from the Greek word 

αὐξητός (auxetos), which means “that may be increased”  by Evans (1991). Negative values 

of Poisson’s ratio were first reported by Love (1944) for pyrite. Naturally existing auxetic 

single crystals generally exhibit small negative values of Poisson ratio in the range 1     

0, while artificial materials or structures can be designed to show high auxetic values in the 

range 20    0 (Neelakantan et al., 2015). 

It is also known that there are certain high symmetry loading directions for which the 

Poisson’s ratio is the same along all the transverse directions. A schematic of this is shown in 

Figure 1(a) in comparison with a more general loading situation in the schematic of Figure 

1(b). Observed loading directions of such kind are the <111> and <100> axes in cubic 

materials (Baughman et al., 1998), the four-fold axis in tetragonal materials (Gunton and 

Saunders, 1975), and the six-fold axis in hexagonal materials (Li, 1976). Ballato (1996) has 

proved that when loaded along these symmetry directions, the Poisson’s ratio is isotropic for 

all transverse directions. An example of a loading direction other than the axes of symmetry 

where the Poisson’s ratio is isotropic in the transverse plane has been reported in the 

tetragonal metal indium (Gunton and Saunders, 1975), without its significance being 

explained explicitly. 

Other than for axes of a high degree of rotational symmetry, it is evident that the 

existence of loading directions for which the Poisson’s ratio is isotropic in the transverse 

plane has not been systematically investigated. The three-fold axes in arsenic, antimony and 

bismuth (trigonal) have also been reported to be such loading directions (Gunton and 

Saunders, 1972), but the present authors are unaware of a formal proof that the three-fold 

axes in trigonal materials are always loading directions for which Poisson’s ratio is isotropic 
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in the transverse plane. It is demonstrated in the current work that a three-fold, four-fold, or 

six-fold symmetry about the loading axis is a sufficient, but not a necessary, condition for 

Poisson’s ratio to be isotropic in the plane transverse to the loading direction. Other loading 

directions without a high rotational symmetry in materials of all seven crystal systems are 

presented here for which Poisson’s ratio is isotropic in the transverse plane, together with the 

mathematical formulae to determine the directions. 

2. Method 

2.1 General Expression for Poisson’s Ratio  

Our goal is to generate formulae defining the planes transverse to a particular loading 

direction for which Poisson’s ratio is isotropic. For this, it is necessary to evaluate the 

Poisson’s ratio along all transverse directions for an arbitrary loading direction in a given 

crystal in terms of its known Voigt compliances     (a 6×6 matrix with i, j = 16). The 

measured compliances are referred to a standard orthonormal Cartesian coordinate system 

fixed with respect to the crystallographic axes (Nye, 1957). This set of axes is labelled 

 1   2     (Figure 2) and will be referred to as the Voigt coordinate system here. A subscript V 

has been used to specify all the directions referred to within this orthonormal coordinate 

system. An arbitrary loading direction, n    1   2       and a transverse direction,    

  1   2       have been chosen to determine the Poisson ratio    . It is convenient to 

introduce another orthonormal coordinate system  1
   2

     
  so that   

  and   
  are along n  and 

  , respectively. This will be referred to as the Poisson coordinate system, where the 

Poisson’s ratio has a simple form: 

 
1311

33 33

.
 


 


     

 
m

mn

n

s

s
 (1) 
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However, as  1 
  and    

  are not measured directly, they have to be related to the 

measured values     in the Voigt coordinate system. This can be done through the tensor 

relations between the two coordinate systems: 

 
13 1133 1 1 3 3p q r s pqrss s a a a a s    (2) 

and 

 
33 3333 3 3 3 3p q r s pqrss s a a a a s    (3) 

Here,       are the tensor compliances and     are the elements of the matrix of direction 

cosines between the   
  axis of the Poisson coordinate system and the    axis of the Voigt 

coordinate system:  

  

1 2 3

1 11 12 13 1 2 3

2 21 22 23 21 22 23

3 31 32 33 1 2 3

        
  

.

x x x
x a a a m m m

a x a a a a a a

x a a a n n n

    
    
   
       

 (4) 

In equations (2) and (3), the Einstein summation convention is used for p, q, r and s taking all 

values from 1 to 3. 

As stated above, we need to examine all transverse directions      for a given loading 

direction  n  . Therefore, a new coordinate system has to be defined for each of these 

transverse directions so that   
  lies along n  and  1

  lies along   . Before we define the new 

coordinate system,  1
    2

     
 , it is convenient to define an intermediate right-handed 

orthonormal system  1

 
  2

 
   

 
 so that  1

 
 and   

 
 are two directions normal to n , and   

 
 is 

parallel to n . The unit vector along the loading direction can be expressed in terms of its 

spherical coordinates           as 

 1 2 3[ , , ] [cos sin , sin sin , cos ]V Vn n n     
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where   is the azimuthal angle (the angle between the  1 axis and the projection of n  on the 

 1   2 plane measured in the anti-clockwise direction looking along    ) and   is the polar 

angle (the angle from the    axis to n ), as shown in Figure 2. 

The  1

 
 axis can be chosen to be any direction in the transverse plane. However, it is 

convenient to choose a direction lying along the intersection of the transverse plane with the 

  
1
  2  plane of the Voigt system. The positive sense of  1

 
 is arbitrarily chosen along 

               . Therefore, we have the matrix of direction cosines    
 

 as the following:  

 

1 2 3 1 2 3

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

                   

sin cos 0

    cos co

x x x x x x

x a a a x

a x a a a x

x a a a x

    

     

    

 



  
 

      
 
 
 

                                                                          

s sin cos sin .   

cos sin sin sin cos

   

    

 
 

 
 
 

 (5) 

The required coordinate system  1
    2

     
  can be obtained by an anti-clockwise rotation of the 

 1

 
   2

 
    

 
 coordinate system about   

 
 by an angle α varying from 0° to 180°. Due to the 

centrosymmetry of strains, there is no need to vary α from 0° to 360°. The matrix of direction 

cosines for the transformation from   
 
 to   

  is given by 

 

1 2 3

1

2

3

                         

cos sin 0

sin cos 0

0 0 1

x x x

x

a x

x

  



 

 

  
       
   

              

 (6) 

The matrix for transformation from the Voigt to the Poisson coordinates is given by 

 
 a a a          

so that 
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 

1 2 3

1

2 21 22 23

3

                                                                                                           

sin cos cos cos sin cos cos sin cos sin sin sin

cos sin sin sin

x x x

x

a x a a a

x

           

   

   



 cos

 
 
 
 
 

 (7) 

where, for the calculation under consideration, there is no need to determine analytical 

expressions for 21a , 22a  and 23a . The Poisson’s ratio for a given loading direction as a 

function of α can now be obtained by using equations (2) and (3) in equation (1) as  

   1 1 3 3

13

3 3 3 3

p q r s pqrs

mn

p q r s pqrs

a a a a s

a a a a s
     . (8) 

The     values are obtained using equation (7). 

If Poisson’s ratio is isotropic in the transverse plane when loaded along n ,    
     will be 

independent of α. The denominator on the right-hand side in equation (8) is the reciprocal of 

the Young’s modulus along    which is always greater than zero and is independent of α. 

Therefore,    
  is independent of α when    

  is independent of α. For the general (triclinic) 

case, the expression for    
  can be simplified down to an equation of the form 

 2

13 ( , , )sin cos ( , , )sin ( , , )ij ij ijs A s B s C s            . (9) 

Since A and B are functions of     and of the angular coordinates of the loading direction 

alone,    
  will be independent of α when  

 0. A B  (10) 

The values of the compliance coefficients for all the materials used in this study are shown in 

Tables 1, 2 and 3. These values in Tables 1, 2 and 3 obtained from experimental 

measurements have been taken to be exact, so that the results of our calculations can be 

confirmed. It is to be noted that these experimental measurements were carried out at 

nominally identical thermodynamic conditions of room temperature and atmospheric 

pressure. 
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2.2 Representation of Loading Directions for which Poisson’s Ratio is 

Isotropic in the Transverse Plane 

A three-dimensional (3D) geometrical representation of the directional dependence of 

Poisson’s ratio is not straightforward because it involves two directions – a loading direction 

and a transverse direction. An existing method to visualize the anisotropy of Poisson’s ratio 

in 3D uses two surfaces (Marmier et al, 2010): one each through the maximum and minimum 

values of Poisson’s ratio along each loading direction. The surface representing the minimum 

values is made opaque and is enveloped by the surface representing the maximum values, 

which is made translucent. Loading directions for which Poisson’s ratio is isotropic in the 

transverse plane will be the directions along which the maximum and minimum surfaces 

coincide. This can be useful in representing the extreme Poisson’s ratios for each loading 

direction, but it does not clearly highlight the loading directions for which Poisson’s ratio is 

isotropic in the transverse plane. 

In the current study, a new surface to visualise the anisotropy of Poisson’s ratio in 3D 

has been developed. This surface will be referred to as an “anisotropy surface”. For this 

surface, the radius vector lies along the loading direction n . Its magnitude is defined as 

      xˆ ma minmn mnr K      n  (11) 

where K is defined as the maximum possible difference in Poisson’s ratio in the transverse 

plane, i.e., the max       min      , for the loading direction in the material for which 

Poisson’s ratio is most anisotropic in the transverse plane. The advantage of this surface is 

that it clearly depicts the extent of anisotropy along each loading direction. Loading 

directions for which Poisson’s ratio is exactly, or nearly, isotropic in the transverse plane will 

appear as peaks of this surface. By contrast, the surface converges to the origin for those 

loading directions for which Poisson’s ratio is most anisotropic in the transverse plane. 
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The construction of this surface is explained using copper as an example. In copper, and 

indeed the overwhelming majority of cubic materials, the maximum difference in Poisson’s 

ratio in the plane transverse to the loading direction occurs when the loading is along <110>V. 

Exceptions such as the cubic materials Al–60at% Ni at 273 K, Cu–14.5wt% Al–3.15wt% Ni 

at room temperature and In–27at% Tl at 200 K where the maximum difference in Poisson’s 

ratio in the plane transverse to the loading direction is not along <110>V are discussed by 

Norris (2006b). Using the compliance values for copper in Table 1, the variation of Poisson’s 

ratio in the transverse plane for [110]V loading in copper is shown in Figure 3. The maximum 

Poisson’s ratio is 0.820 along  001 V and the minimum is −0.1   along [110]V  so that    

0.820− −0.1      0.953. For [112]V loading (Figure 3), the maximum Poisson’s ratio in the 

transverse plane is 0.502 along [110]V  and the minimum value is 0.184 along [111]V. 

Therefore, r([112]V)   0.95 − 0.502−0.184    0.635. Similarly, the length of the radius 

vector is calculated for each of the loading directions and the surface is plotted (Figure 4). A 

peak would represent a loading direction for which Poisson’s ratio is isotropic in the 

transverse plane only if the radius along the corresponding loading direction is equal to K. 

Therefore this value has to be known when visualising the anisotropy surface. The K value 

gives the upper limit of anisotropy along the transverse plane for a given material. All the 

anisotropy surfaces in this study were plotted using GNU Octave (Eaton, et al. 2016). 

The loading directions for which Poisson’s ratio is isotropic in the transverse plane can 

also be represented by plotting them on a stereogram centred on 001. The stereogram 

showing these loading directions marked by the letters AI on the anisotropy surface in 

copper are shown in Figure 4. The stereogram has the advantage that it can depict all the 

loading directions for which Poisson’s ratio is isotropic in the transverse plane in a way that 

is easily decipherable. However, it can only represent these loading directions and does not 

give any information about the degree of anisotropy along other directions. 
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3. Results and Discussion 

For the general case, i.e., for triclinic crystals, 

 

     

  

   

16 26 36 45

16 26 36 45

14 24 34 56 14 24 56 15 25 35 46

15 25 46

5511 13 22 23 44

11 13 22 23 4

2 2

2 cos 2

1
11 4 5 cos cos3 11 4 5 sin

16

sin 3 sin 4cos cos 2

2 2

2 2

s s s s

s s s s

A s s s s s s s s s s s

s s s

s s s s s s

s s s s s



  

   




     

     

          

    

     

       

   

      

554

2
16 26 11 12 22 66 14 24 34 56

14 24 56 15 25 35 46 15 25 46

cos 2 sin 2

2 cos 4 2 sin 4 sin 3 4 cos

3 cos3 3 4 sin 3 sin 3 sin 3

s

s s s s s s s s s s

s s s s s s s s s s

 

   

   

        






          

          

 (12) 

and 

 

 

 

 

5511 12 13 22 23 33 44 66

16 26 36 45 16 26 36 45

5511 13 22 23 44 13 23

5511 13 22 23 44 16

1
3 2 8 3 4 2 2 cos 4
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4 10 2 2 cos 4 sin 2

4cos 2 10 10 4 cos 2

cos 4 2 2

B s s s s s s s s s

s s s s s s s s

s s s s s s s s

s s s s s s s



 

 



 
 

    




         

       

       

          
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s
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s s s s s s s

s s s s s s s

s s s s s s



   
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 

 

   



    

      

      

      

 

   

  

14 24 56 14 24 34 56

15 25 46 15 25 35 46

5511 12 13 22 23 33 44 66

8 3 3 4 cos 2 sin sin 2

4cos 2 3 sin 2 3 4 sin 4

22 8 8 8 4 5

s s s s s s s

s s s s s s s

s s s s s s s s s



  
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


 
 

 
 

 
 

       

       

        

 (13) 

in equation (10). Equations (12) and (13) will reduce to simpler forms for point groups with 

fewer independent compliances. These cases are discussed in the following subsections. 

3.1 The Cubic System 

Here, the Voigt compliance matrix     takes the form (Nye, 1957) given below: 
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12 11 12
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44

44

44

0 0 0

0 0 0

0 0 0
.
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0 0 0 0 0
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ij

s s s

s s s

s s s
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s

s
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 
 
 

  
 
 
  
 

 

Using these compliances, equations (12) and (13) reduce to the expressions: 

   2

11 12 44

1
2 2 cos sin 4 sin

4
A s s s       (14) 

and 

     2

11 12 44

1
2 2 5 7cos2 cos4 3 cos2 sin .

16
B s s s             (15) 

One invariant solution independent of the compliance constants of equation (10) occurs when 

    0°. This is the cube axis [001]V. From the symmetry of cubic crystals, the other cube axes 

[100]V and [010]V will also be loading directions for which Poisson’s ratio is isotropic in the 

transverse plane. Another solution is when     45  and cos   1   . This defines one of the 

<111> body diagonals of the cube. Therefore, by symmetry, all the body diagonals of the 

cube are loading directions for which Poisson’s ratio is isotropic in the transverse plane. 

A further possibility for isotropy of Poisson’s ratio is when 2  11   12   44. In this 

case, the material will be completely isotropic. This is also the condition for complete 

isotropy of Young’s modulus (Nye, 1957). An example of a cubic material whose compliance 

coefficients (Table 1) satisfy this condition is tungsten      . 

It is therefore seen that a cubic crystal, independent of its compliance values, has two 

types of loading directions for which Poisson’s ratio is isotropic in the transverse plane: the 

cube axes, <100>V, and the body diagonals, <111>V. The body diagonals are three-fold axes 

for all the five cubic point groups. However, the cube axes can be either two-fold (point 
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groups 23 and m ) or four-fold (   , 432 and 4 m). Cubic crystals also have two-fold axes 

along the face diagonals, <110>V. These directions are not loading directions for which 

Poisson’s ratio is isotropic in the transverse plane. It can therefore be concluded that the 

three-fold and four-fold axes in cubic crystals are loading directions for which Poisson’s ratio 

is isotropic in the transverse plane. However, the two-fold axes along <100>V satisfy this 

condition but those along <110>V do not. The values of Poisson’s ratio along each of the 

loading directions in copper and tungsten for which Poisson’s ratio is isotropic in the 

transverse plane are shown in Table 4. 

EXAMPLE 

The anisotropy surface for copper (   ) is shown in Figure 4. The K value is 0.95363. The 

peaks along the cube axes are broader than those along the body diagonals showing that the 

departure from isotropy of Poisson’s ratio within the transverse plane increases faster as the 

loading direction is moved away from a body diagonal than when it is moved away from a 

cube axis. 

3.2 The Tetragonal System 

Depending on the point group, there are two possible forms of the compliance matrix for 

tetragonal materials. Each of these cases is discussed separately. 

3.2.1 Point Groups 4,    and 4/m 

The compliance tensors for materials with point group classes 4, 4 and 4/m have seven 

independent components. They are of the form (Nye, 1957): 

 

11 12 13 16

12 11 13 16

13 13 33

44

44

16 16 66

0 0

0 0

0 0 0
.

0 0 0 0 0

0 0 0 0 0

0 0 0

ij

s s s s

s s s s

s s s
s

s

s

s s s

 
 

 
 

  
 
 
     
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Therefore, for these materials, equations (12) and (13) become: 

  2

16 11 12 66

1
sin cos 4 cos4 2 2 sin 4

4
A s s s s           (16) 

and 

 
   

 

2

11 12 33 44 66 11 12 66

16 11 12 13 33 44 66 16

1
sin 2 10 8 8 3 2 2 cos 4 3 cos 2

16

12 sin 4 cos 2 6 2 16 8 8 4 sin 4 .

B s s s s s s s s

s s s s s s s s

  

  

        

        

  (17) 

It is immediately apparent from equations (16) and (17) that equation (10), the condition that 

A = B = 0, has a solution when     0°, i.e., when the loading direction is along the four-fold 

axis. The other solutions are dependent on the compliance coefficients of the material. 

A   0 in equation (16) when     90°. These are directions that lie in the ( 1   2) basal 

plane of the crystal. These directions will repeat after a 90° rotation about [001]V. The 

solutions of B   0 in equation (17) are given by 

 

2 2 2
11

tan
2

c c b a

a b
 

    
  

 
   

where 

 

11 12 13 66

11 12 66

16

2 6 8

2 2  

4 .

a s s s s

b s s s

c s

    

  



 

Therefore, there can be a maximum of two distinct families of loading directions lying in the 

basal plane for materials with point groups 4, 4 or 4/m for which Poisson’s ratio is isotropic 

in the transverse plane. 

EXAMPLE 

All possible families of loading directions in calcium molybdate (CaMoO4), a mineral with 

scheelite structure (4/m), for which Poisson’s ratio is isotropic in the transverse plane are 
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shown in Table 5. The anisotropy surface for calcium molybdate (Figure 5) has ten peaks, 

corresponding to three distinct families of such loading directions. The two peaks along the 

four-fold axis are much broader than the eight other peaks. Therefore, the departure from 

isotropy of Poisson’s ratio within the transverse plane is lower as the loading axis moves 

away from the four-fold axis, than it is for those around the compliance-dependent loading 

directions. Since K for calcium molybdate is 0.32617, Poisson’s ratio in calcium molybdate is 

anisotropic, but less so than copper. 

3.2.2 Point Groups 422,  4 ,  42  and 4 /mm m mmm  

The compliance matrix for these tetragonal point groups has six independent constants. It is 

of the form (Nye, 1957): 

 

11 12 13

12 11 13

13 13 33

44

44

66

0 0 0

0 0 0

0 0 0
.

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ij

s s s

s s s

s s s
s

s

s

s

 
 
 
 

  
 
 
  
   

Therefore, for materials in these crystal classes, equations (12) and (13) become: 

  2

11 12 66

1
cos sin 4 sin 2 2

4
A s s s      (18) 

and 

   

 

2

11 12 33 44 66 11 12 66

11 12 13 33 44 66

1
sin 2 10 8 8 3 2 2 cos 4 3 cos 2

16

cos 2 6 2 16 8 8

B s s s s s s s s

s s s s s s

  



        

      

 (19) 

Here too, the four-fold axis (when     0°) is a loading direction for which Poisson’s ratio is 

isotropic in the transverse plane. Therefore, this is a general result for all tetragonal materials. 
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A solution to 0A   in equation (18) occurs when     90°. Under these circumstances 

1 11 12 13 66

11 12 66

2 6 81
cos

4 2 2

s s s s

s s s
      
  

  
 will satisfy 0B   in equation (19). There can be a 

maximum of one such family of loading directions. Another solution to 0A   in equation 

(18) is when     0° and     45° for 0° ≤   < 90°. When     0°, the solution to B   0 in 

equation (19) is  

 

1 11 12 33 44

11 13 33 44

21
cos

2 2

s s s s

s s s s
     
  

    . 

When     45°, B   0 in equation (19) is satisfied by 

 

1 11 12 33 44 66

11 12 13 33 44 66

2 2 4 4 31
cos

2 2 2 8 4 4

s s s s s

s s s s s s
      
  

      . 

EXAMPLE 

The anisotropy surface for indium (4/mmm) is shown in Figure 6. The K value is 1.7315, 

suggesting that the Poisson’s ratio in indium can be highly anisotropic. Such high values of K 

can be expected for auxetic materials. In spite of such a significant anisotropy, the anisotropy 

surface for indium has eighteen peaks with r = K corresponding to three distinct families of 

loading directions for which Poisson’s ratio is isotropic in the transverse plane (Table 6). This 

surface has eight peaks each corresponding to     0° and     45° and two peaks for     0°. 

However, there are no solutions for     90° (i.e., for loading directions lying in the basal 

plane) because the argument of cos-1 in the expression for   discussed above is less than −1. 

It is evident that the peaks along the four-fold axis are broader than the other peaks. 

3.3 The Hexagonal System 

The elastic properties of materials with hexagonal symmetry are transversely isotropic. The 

compliance matrix is of the form (Nye, 1957): 
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 

11 12 13

12 11 13

13 13 33

44

44

11 12

0 0 0

0 0 0

0 0 0
.

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 2

ij

s s s

s s s

s s s
s

s

s

s s

 
 
 
 

  
 
 
 
    

With these compliances in equation (12), A is equal to zero. B in equation (13) takes the form  

   2

11 12 33 44 11 13 33 44

1
2 2 cos 2 sin .

2
B s s s s s s s s             (20) 

It is evident that     0° is a solution to B   0. This shows that the six-fold axis is a loading 

direction in all hexagonal materials for which Poisson’s ratio is isotropic in the transverse 

plane. Furthermore, since B is dependent on   alone, the compliance-dependent loading 

directions of such kind, if present, will be infinitely many directions at a fixed inclination 

given by 1 11 33 44 12

11 33 44 13

21
cos

2 2

s s s s

s s s s
     
  

   
.  

EXAMPLE 

The anisotropy surface for zinc (6/mmm) is shown in Figure 7. There are peaks along the six-

fold axis. The compliance-dependent directions for which Poisson’s ratio is isotropic in the 

transverse plane lie along the surface of a right circular cone with its apex at the origin, its 

axis along the six-fold axis and a semi-apex angle as given above. The peaks along the six-

fold axis are broader than the compliance-dependent peaks. It can also be observed that the 

directions in the basal plane of zinc are the loading directions for which Poisson’s ratio is 

most anisotropic in the transverse plane. The anisotropy of Poisson’s ratio in zinc is 

significant because the K value is 0.92373. 

3.4 The Orthorhombic System 

The compliance matrix for orthorhombic materials is of the form (Nye, 1957): 
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11 12 13

12 22 23

13 23 33

44

55

66

0 0 0

0 0 0

0 0 0
.

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ij

s s s

s s s

s s s
s

s

s

s

 
 
 
 

   
 
 
  
   

Hence, in equations (12) and (13), 

11 13 22 23 44 55 11 13 22 23

2
44 55 11 12 22 66

1
cos {[ 2 2 ( 2 2

4

)cos 2 ]sin 2 ( 2 )sin 4 sin }

A s s s s s s s s s s

s s s s s s



   

          

     

 (21) 

and 

11 13 22 23 44 55 13 23

2
11 13 22 23 44 55 11 12 22 33

44 55 66 11 12 13 22 23 33 44 55 66

11 12 22 6

1
{cos 2 [ 10 10 4( )cos 2

16

( 2 2 )cos 4 ] sin [ 10 8

4( ) 3 (3 2 8 3 4(2 2 ) )cos 2

( 2

B s s s s s s s s

s s s s s s s s s s

s s s s s s s s s s s s

s s s s



 



       

          

           

    6 ) cos 4 (3 cos 2 )]} 

 (22) 

One solution for A   0 in equation (21) occurs when     90° for 0° ≤   ≤ 90°. For this 

solution, B   0 in equation (22) when 
2

11 4
cos

2 2

b b ac

a
 

   
 
 
 

, where a, b and c are 

defined in Row 1 of Table 7. This gives a maximum of two families of loading directions for 

which Poisson’s ratio is isotropic in the transverse plane. 

Another solution for A   0 in equation (21) occurs when     0° or     90°. For the case 

where     0°, B   0 in equation (22) when 
2

11 4
cos

2 2

b b ac

a
 

   
 
 
 

 where a, b and c 

are defined in Row 2 of Table 7. When     90°, 
2

11 4
cos

2 2

b b ac

a
 

   
 
 
 

 where a, b 

and c are defined in Row 3 of Table 7. 
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A third solution when A   0 in equation (21) arises when  

1 23 13

11 13 22 23 44 55 11 12 22 66

2( )
sin

2 2 ( 2 ) cos 2

s s

s s s s s s s s s s





 

            

 and

 11
cos

2
y  , where 

1

2

q
y

q
  , and where  

1
 and  

2
 are defined below based on the 

constants  
 
 (i varies from 1 to 9) which are defined subsequently: 

 
 1 7 6 5 7 4 5 6 82( ) ( 4 )q p p p p p p p p    

 

 
  2

2 7 9 5 4 6 3 7 2 3 8 1 2 3 8( 4 ) 8 2( 4 ) ( )q p p p p p p p p p p p p p p        
 

 1 11 13 22 23 44 5510 10p s s s s s s       

 2 13 234( )p s s   

 3 11 13 22 23 44 552 2p s s s s s s        

 4 11 12 22 33 44 55 6610 8 4( ) 3p s s s s s s s        

 5 11 12 13 22 23 33 44 55 663 2 8 3 4(2 2 )p s s s s s s s s s          

 6 11 12 22 662p s s s s     

 7 23 132( )p s s   

 8 11 13 22 23 44 55( 2 2 )p s s s s s s         

 9 11 12 22 662p s s s s    . 

EXAMPLE 

All the possible loading directions for which Poisson’s ratio is isotropic in the transverse 

plane in forsterite (mmm) are shown in Table 8. The anisotropy surface for forsterite 

(Figure 8) has twenty peaks, corresponding to four distinct families of loading directions for 
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which Poisson’s ratio is isotropic in the transverse plane. The value of K is 0.18482 which 

suggests that the Poisson’s ratio can vary less in the transverse plane than it does in copper, 

zinc and calcium molybdate. 

3.5 The Trigonal System 

Depending on the point group, there are two possible forms of the compliance matrix for 

trigonal materials. Each of these cases is discussed separately. 

3.5.1 Point Groups 3 and 3  

The compliance matrix for materials with point groups 3 and   is of the form (Nye, 1957): 

 
 

11 12 13 14 15

12 11 13 14 15

13 13 33

14 14 44 15

15 15 44 14

15 14 11 12

0

0

0 0 0
.

0 0 2

0 0 2

0 0 0 2 2 2

ij

s s s s s

s s s s s

s s s
s

s s s s

s s s s

s s s s

 
 

  
 

  
  

 
 
     

with [100]V parallel to the crystal x-axis. Here, equations (12) and (13) simplify to: 

 
14 15

1
sin (1 3cos2 )( cos3 sin3 )

2
sA s        (23) 

and 

 
 

  

3

15 14

11 12 33 44 11 13 33 44

sin 4cos cos3 sin 3

2 2 cos

1

2

2 sin

s s

s s s s s s s s

B    

 

 

     



  

  (24) 

    0° is a solution which gives A   0 and B   0 in equations (23) and (24) respectively. 

This proves that [001]V, the three-fold axis, is always a loading direction for which Poisson’s 

ratio is isotropic in the transverse plane in materials with point groups 3 and  . 
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Other solutions to A   0 are given by 1 14

15

1
tan π

3
j

s
j

s
   

  
 

 where j   0 and 1. For 

these solutions, B   0 for 1 11 3 3 2
tan 2 cos cos

3 3 2 3
k

P Q k

P P


  

     
     

     

 where k   0, 1 

and 2,  and 
p q r

P Q
p q p q


 

 
, and where p, q and r are given by the expressions: 

 
 

11 12 33 44

11 13 33 44

15 14

2

2

4 cos3 sin 3 .j j

p s s s s

q s s s s

r s s

   

   

  
 

EXAMPLE 

The four families of loading directions in the ilmenite phase of magnesium silicate (MgSiO3, 

point group  ) for which Poisson’s ratio is isotropic in the transverse plane are shown in 

Table 9. The anisotropy surface of ilmenite (Figure 9) has twenty peaks. In contrast to 

copper, calcium molybdate, indium and zinc, the peaks along the compliance-dependent 

loading directions in MgSiO3 for which Poisson’s ratio is isotropic in the transverse plane are 

broader than those along the three-fold axis. Therefore, it is not the case in general that 

loading directions lying close to the symmetry axes are more isotropic in their Poisson’s ratio 

behaviour than the directions lying close to the compliance-dependent loading directions with 

exact isotropic Poisson’s ratio behaviour . The K value of MgSiO3 is 0.66229 and so the 

degree of anisotropy in Poisson’s ratio can be significant. 

3.5.2 Point Groups 32,  m and 3m 

The compliance matrix for materials with these point groups is of the form (Nye, 1957): 
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 

11 12 13 14

12 11 13 14

13 13 33

14 14 44

44 14

14 11 12

0 0

0 0

0 0 0
.

0 0 0

0 0 0 0 2

0 0 0 0 2 2

ij

s s s s

s s s s

s s s
s

s s s

s s

s s s

 
 

 
 

  
 

 
 
    

with [100]V parallel to the crystal x-axis. This can be obtained by setting  15   0 in the 

compliance matrix for the point groups 3 and   discussed in Section 3.5.1. Substituting  15   

0 in equations (23) and (24), 

 14 (1 3cos 2 )cos3 sin
2

s
A       (25) 

and 

 


  

3

14 11 12 33 44

11 13 33 44

1
sin 4 cos sin 3 2

2

2 cos 2 sin .

s s s s s

s s

B

s s

  

 

    





   

 (26) 

One solution for A   B   0 in equations (25) and (26) is     0. This shows that the three-fold 

axis is always a loading direction for which Poisson’s ratio is isotropic in the transverse 

plane. Other solutions for A   0 occur when     30°, 90°, 150°, 210°, 270° or 330°. For 

these solutions, B   0 when 1 11 3 3 2
tan 2 cos cos

3 3 2 3
k

P Q k

P P


  

     
     

     

, where k   0, 

1 and 2, 
p q

P
p q





and 

r
Q

p q



, where 

 

11 12 33 44

11 13 33 44

14

2

2

4 sin 3 .

p s s s s

q s s s s

r s

   

   

 

 

EXAMPLE 
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α-Quartz (SiO2) is a mineral with the point group 32. The loading directions for which 

Poisson’s ratio is isotropic in the transverse plane and the corresponding Poisson’s ratios are 

shown in Table 10. There are two families of such loading directions, including the three-fold 

axis. Interestingly, the family of six loading directions inclined to the three-fold axis have 

Poisson’s ratios which are negative. The anisotropy surface for α-quartz (Figure 10) has eight 

peaks corresponding to these two families of loading directions. The K value is 0.37937, 

which means that Poisson’s ratio can be significantly anisotropic within a plane transverse to 

a general loading direction in α-quartz.  

3.6 The Monoclinic System 

The compliance matrix for monoclinic materials with the two-fold axis parallel to    is of the 

form (Nye, 1957): 

11 12 13 15

12 22 23 25

13 23 33 35

44 46

15 25 35 55

46 66

0 0

0 0

0 0
.

0 0 0 0

0 0

0 0 0 0

ij

s s s s

s s s s

s s s s
s

s s

s s s s

s s

 
 
 
 

  
 
 
  
 

 

Here, equations (12) and (13) simplify to: 

 

 

 

15 25 35 46 15 25 46

2

11 12 22 66

11 13 22 23 44 55 11 13 22 23 44 55

15 25 35 46 15 25 46

1
( 11 4 5 )sin ( )sin 3 sin

16

4cos ( 2 )sin 4 sin

2 2 ( 2 2 )cos 2 sin 2

(3 4 )sin 3( )s

A s s s s s s s

s s s s

s s s s s s s s s s s s

s s s s s s s

  

  

 



        

   

             

          in 3 sin 3 

 (27) 

and 
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 

   

   

 

11 13 22 23 44 55 13 23

3

11 13 22 23 44 55 15 25 46

2

11 12 22 66

11 12 22 33 44 55 66

11 12 13

1
cos 2 10 10 4 cos 2

16

2 2 cos 4 8 cos3 cos sin

2 cos 4 3 cos 2 sin

10 8 4 3

3 2 8 3

B s s s s s s s s

s s s s s s s s s

s s s s

s s s s s s s

s s s

 

   

  

       

         

    

      

      

    

2

22 23 33 44 55 66

15 25 46 15 25 35 46

4 2 2 cos 2 sin

cos 2 3 sin 2 3 4 sin 4

s s s s s s

s s s s s s s

 

  

     

         

 (28) 

Solutions of equations (27) and (28) arise when     0°. The condition that B   0 results in a 

quartic equation in tan   which can be solved by the method described in Wolfram 

Mathworld (Weisstein, 2018). This requires defining the following terms: 

 

 

 

11 12 13 23 33 55

12 23

11 13 33 55

25

15 35

4 6 4

4

2

4

2

p s s s s s s

q s s

r s s s s

t s

u s s

     

 

    

 

 
 

 

3

2

1

0

2( 2 )

2( 3 )

2( 2 )

t u
a

p q r
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R is now defined based on the real values of jy  obtained above. 

 

2

3
2

4
j

a
R a y  

 

If 0R  , 

 

2 3
23 3 2 1 3

2

3 4 8
2

4 4

a a a a a
D R a

R

 
   

 

 

2 3
23 3 2 1 3

2

3 4 8
2

4 4

a a a a a
E R a

R

 
   

 

If 0R  , 

 

2
23

2 0

2
23

2 0

3
2 2 4

4

3
2 2 4

4

j

j

a
D a y a

a
E a y a

   

   
 

The solutions are: 
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For a general   and  , the solutions can be obtained for A   B   0 for monoclinic materials 

by a trial-and-error numerical solution – there would appear to be no analytical solutions. For 

this trial-and-error approach, A and B were computed as a function of  and   on a grid where 

 and   were systematically altered by suitable angular intervals, typically 15°. This enabled 

regions of     space to be interrogated more closely to find solutions to the desired 

accuracy of  and   for which A = B = 0. A second method used which confirmed these 

results was to determine in an Excel spreadsheet the maximum and minimum values of 

Poisson’s ratio as a function of orientation within the transverse plane when sampled at 1° 

intervals for a particular loading direction defined by its   and  , and then to find orientations 

for which the difference between these maximum and minimum values was zero. 

EXAMPLE 

The solutions obtained for bismuth vanadate (point group 2/m) are shown in Table 11. There 

are five distinct families of loading directions for which Poisson’s ratio is isotropic in the 

transverse plane, four of which have     0°. As a consequence, the anisotropy surface 

(Figure 11) for bismuth vanadate has twelve peaks. The K value is 0.49019. Therefore, for a 

suitable choice of loading direction, bismuth vanadate can have a significantly anisotropic 

Poisson’s ratio in the transverse plane. 
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3.7 The Triclinic System 

The compliance matrices for triclinic materials generally have all 21 constants (Nye, 1957). A 

and B are given by equations (12) and (13). Like the general   and   case for monoclinic 

crystals, there would appear to be no analytical solutions of the equations A   B   0 which 

therefore have to be solved by one or both of the numerical methods described in sub-section 

3.6. 

EXAMPLE 

The solutions obtained for copper sulphate pentahydrate (point group 1 ) by numerical 

methods are shown in Table 12. The anisotropy surface of copper sulphate pentahydrate is 

shown in Figure 12. There are six families of loading directions for which Poisson’s ratio is 

isotropic in the transverse plane, resulting in twelve peaks for the anisotropy surface. The 

value of 0.71444 for K means that the Poisson’s ratio can be significantly anisotropic. 

4. Conclusions 

Formulae for predicting the loading directions for which Poisson’s ratio is isotropic in the 

transverse plane in single crystalline materials for all seven crystal systems have been 

derived. Explicit analytical expressions for the indices of the loading directions with respect 

to a suitable orthonormal axis system fixed with respect to the crystallographic axes have 

been obtained for cubic, tetragonal, hexagonal, orthorhombic and trigonal materials, and for 

one possible set of solutions for monoclinic materials. Numerical methods have been used to 

obtain other solutions in monoclinic and triclinic materials. Of particular note in the results 

shown in Section 3 is the existence of orientations in -quartz where the Poisson’s ratio is not 

only isotropic in the transverse plane, but auxetic. 

Loading along a three-fold, four-fold or six-fold axis of a single crystal will always result 

in a Poisson’s ratio which is isotropic in the transverse plane. The only cases of two-fold axes 
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being loading directions for which Poisson’s ratio is isotropic in the transverse plane occur 

for materials with the cubic point groups 23 and m  when loaded along the cube axes. 

Loading directions for which Poisson’s ratio is isotropic in the plane transverse have 

been identified in materials belonging to each of the seven crystal systems irrespective of the 

non-zero compliance values. Orthorhombic, monoclinic and triclinic materials can only 

possess compliance-dependent loading directions for which Poisson’s ratio is isotropic in the 

transverse plane, i.e., such loading directions cannot be along rotational axes of symmetry. 

The anisotropy surface highlights the loading directions for a given material for which 

Poisson’s ratio which is isotropic in the transverse plane. In addition it also shows graphically 

the anisotropy of Poisson’s ratio in the transverse plane for other loading directions.  
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directions in the plane normal to the given loading direction by rotating the 

intermediate coordinate system  1

 
   2

 
    

 
 by an angle α about the   

 
 axis. 

Hence, for a given loading direction, the Poisson’s ratio along each of the 

transverse directions can be calculated using equation (8). (b) Directions in the 
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Figure 1  Schematics of elastic deformation of the cross-sections of two cylindrical 

specimens when loaded along their axes. (a) a circular cross-section remains 

circular only if the Poisson’s ratio is isotropic in the transverse plane for the 

given loading direction. (b) a circular cross-section will not remain circular if 

the Poisson’s ratio is not isotropic in the transverse plan. For clarity, the 

magnitudes of the changes for a real single crystal have been heavily 

exaggerated in these two schematics. 
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Figure 2 (a) The Voigt ( 1,  2,     and Poisson’s   1
    2

     
 ) coordinate systems for a 

given loading direction (n   for a rod under a uniaxial stress. The Poisson’s 

coordinate system can be defined such that the  1
 
 axis lies along each the of the 

directions in the plane normal to the given loading direction by rotating the 

intermediate coordinate system  1

 
   2

 
    

 
 by an angle α about the   

 
 axis. 

Hence, for a given loading direction, the Poisson’s ratio along each of the 

transverse directions can be calculated using equation (8). (b) Directions in the 

 1,  2 plane. OP is the projection of the loading direction n  on the  1,  2 plane. 

(c) Directions in the plane perpendicular to the loading direction n  (the 

transverse plane).  
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Figure 3 Variation of the Poisson's ratio of copper in the transverse plane when loaded 

along <110>V, <111>V, <112>V and <100>V. The straight line showing the 

values of Poisson’s ratio is along the meridional tangent of the loading 

direction.   
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Figure 4 Representation of: (a) the anisotropy surface for copper (point group m  m); (b) 

the surface viewed along the   2 direction; (c) the surface viewed along the     

direction; (d) the loading directions in copper for which Poisson's ratio is 

isotropic in the transverse plane, represented on a stereogram centred at [001]V. 

The directions have been labelled as follows: A is [100]V, B is [010]V, C is 

 1 00 V, D is [01 0]V, E is [111]V, F is [1 11]V, G is [1 1 1]V, H is [11 1]V and I is 

[001]V. For clarity, only loading directions in the northern hemisphere and on 

the equatorial plane have been specified in the stereogram in (d) and other 

stereograms in this paper. 

. 
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Figure 5 Representation of: (a) the anisotropy surface of calcium molybdate (point group 

4/m); (b) the view along the   1 direction; (c) the view along the     direction; 

(d) the loading directions in calcium molybdate for which Poisson's ratio is 

isotropic in the transverse plane, represented on a stereogram centred on [001]V 

showing all the directions marked from AI in (c). The directions have been 

labelled as follows: A is  0.962155, −0.27250 , 0 V, B is  −0.272503, 

−0.962155, 0]V, C is  −0.962155, 0.27250 , 0 V, D is [0.272503, 0.962155, 0]V, 

E is [0.496618, 0.867969, 0]V, F is [0.867969, −0.496618, 0]V, G is 

 −0.496618, −0.867969, 0]V, H is  −0.867969,  0.496618, 0]V and I is [001]V.  
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Figure 6 Representation of: (a) the anisotropy surface of indium (point group 4/mmm); 

(b) the view along the   1 direction; (c) the view along the     direction; (d) 

the loading directions in indium for which Poisson's ratio is isotropic in the 

transverse plane, represented on a stereogram centred on [001]V showing all the 

directions marked from AI in (c). The directions have been labelled as follows: 

A is [0.54225, 0.54225, 0.64181]V, B is  0.54225, −0.54225, 0.64181 V, C is 

 −0.54225, −0.54225, 0.64181 V, D is  −0.54225, 0.54225, 0.64181 V, E is  

[0, 0.93406, 0.35711]V, F is [0.93406, 0, 0.35711]V, G is  

[0, −0.93406, 0.35711]V, H is  −0.9 406, 0, 0.35711]V and I is [001]V. 
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Figure 7 Representation of: (a) the anisotropy surface of zinc (point group 6/mmm); (b) 

the view along the   1 direction; (c) the view along the     direction; (d) the 

loading directions in zinc for which Poisson's ratio is isotropic in the transverse 

plane, represented on a stereogram centred on [001]V showing all the directions 

marked in (c). The directions on the circle labelled A are directions of the form 

[cos  , sin  , 0.5556]V. B is [001]V. 
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Figure 8 Representation of: (a) the anisotropy surface of forsterite (point group mmm); 

(b) the view along the   2 direction; (c) the view along the     direction; (d) 

the loading directions in forsterite for which Poisson's ratio is isotropic in the 

transverse plane, represented on a stereogram centred on [001]V showing all the 

directions marked AL in (c). The directions have been labelled as follows: A is 

[0.93515, 0, 0.35425]V, B is  −0.9 515, 0, 0.35425]V, C is 

 −0.76887, 0.51424, 0.38000]V, D is [0.76887, 0.51424, 0.38000]V, E is 

[0.76887, −0.51424, 0.38000]V, F is  −0.76887, −0.51424, 0.38000]V,  G is 

 −0.618 9, 0, 0.78587]V, H is [0.61839, 0, 0.78587]V, I is 

[0.636004, −0.771685, 0]V, J is  −0.6 6004, −0.771685, 0]V, K is 

 −0.6 6004, 0.771685, 0]V and L is [0.636004, 0.771685, 0]V. 

  



40 

 

 

Figure 9 Representation of: (a) the anisotropy surface of magnesium silicate (MgSiO3, 

point group  ); (b) the view along the   1 direction; (c) the view along the     

direction; (d) the loading directions in magnesium silicate for which Poisson's 

ratio is isotropic in the transverse plane, represented on a stereogram centred on 

[001]V showing all the directions marked AJ in (c). The directions have been 

labelled as follows: A is [0.141798, −0.572823, 0.807320]V, B is 

 −0.566978, 0.163611, 0.807320]V, C is [0.42518, 0.409212, 0.80732]V, D is 

[0.638133, 0.614167, 0.464309]V, E is [0.212818, −0.859723, 0.464309]V, F is 

 −0.850951, 0.245556, 0.464309]V, G is  −0.224692, 0.907694, 0.78587]V, H is 

[0.898432, −0.259258, 0.78587]V, I is  −0.67 74, −0.648436, 0.78587]V and J is 

[001]V.  
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Figure 10 Representation of:  a  the anisotropy surface of α-quartz (point group 32); (b) 

the view along the   1 direction; (c) the view along the     direction; (d) the 

loading directions in α-quartz for which Poisson's ratio is isotropic in the 

transverse plane, represented on a stereogram centred on [001]V showing all the 

directions marked AD in (c). The directions have been labelled as follows: A is 

 −0.702479, −0.405576, 0.5848 5 V, B is [0, 0.811153, 0.584835]V, C is 

[0.702479, −0.405576, 0.584835]V and D is [001]V. 
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Figure 11 Representation of: (a) the anisotropy surface of bismuth vanadate (point group 

2/m); (b) the view along the   2 direction; (c) the view along the     direction; 

(d) the loading directions in bismuth vanadate for which Poisson's ratio is 

isotropic in the transverse plane, represented on a stereogram centred on [001]V 

showing all the directions marked AF in (c). The directions have been labelled 

as follows: A is  −0.91 57, 0, 0.40669]V, B is  −0.66819, 0, 0.74399]V, C is 

[0.21772, 0, 0.97601]V, D is [0.65434, 0, 0.7562]V, E is 

 −0.12 52, −0.76776, 0.62872]V and F is  −0.12 52, 0.76776, 0.62872]V. 
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Figure 12 Representation of: (a) the anisotropy surface of copper sulphate pentahydrate 

(point group 1 ); (b) the view along the   1 direction; (c) the view along the     

direction; (d) the loading directions in copper sulphate for which Poisson's ratio 

is isotropic in the transverse plane, represented on a stereogram centred on 

[001]V showing all the directions marked AF in (c). The directions have been 

labelled as follows: A is [0.985143, −0.059928, 0.160943]V, B is 

[0.38437, −0.838089, 0.387125]V, C is  −0. 1984, −0.716731, 0.619677]V, D is 

 −0.865897, 0.154471, 0.475775]V, E is  −0.126077, 0.919541, 0. 72222 V and 

F is  −0.865897, 0.154471, 0.787382]V. 
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Tables 

 

Table 1 Compliance coefficients (in 
1

(TPa) ) of the representative cubic single crystals 

copper and tungsten and the representative tetragonal single crystals calcium 

molybdate and indium 

 

Crystal Copper Tungsten 
Calcium 

molybdate 
Indium 

Point group m m m m 4/m 4/mmm 

Reference 
(Every & 

McCurdy, 1992) 
(Nye, 1957) 

(Every & 

McCurdy, 1992) 

(Every & 

McCurdy, 1992) 

11s  15.0  2.57  9.90  148.8  

22s  15.0  2.57  9.90  148.8  

33s  15.0  2.57  9.48  196.2  

12s  6.3  0.73  4.2  46.0  

13s  6.3  0.73  2.1  94.5  

23s  6.3  0.73  2.1  94.5  

16s  0  0  4.2  0  

44s  13.3  6.60  27.1  153.7  

55s  13.3  6.60  27.1  153.7  

66s  13.3  6.60  24.4  83.2  
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Table 2  Compliance coefficients (in 
1

(TPa) )  of zinc, forsterite, α-quartz and ilmenite 

representing hexagonal, orthorhombic and trigonal single crystals 

 

Crystal Zinc Forsterite* α-quartz 
MgSiO3  

(Ilmenite phase) 

Point group 6/mmm mmm 32   

Reference 
(Every & 

McCurdy, 1992) 
(Bass, 1995) 

(Every & 

McCurdy, 1992) 

(Every & 

McCurdy, 1992) 

11s  8.22  3.39005  12.8  2.6  

22s  8.22  5.88334  12.8  2.6  

33s  27.7  4.94942  9.73  2.7  

12s  0.60  0.90936  1.75  0.97  

13s  7.0  0.71289  1.3  0.30  

23s  7.0  1.56059  1.3  0.30  

14s  0  0  4.47  0.92  

15s  0  0  0  0.82  

44s  25.3  14.99250  20  10.3  

55s  25.3  12.30012  20  10.3  

66s  15.24  12.36094  29.1  7.14  

*The sij values have been obtained by inverting the cij matrix reported in literature.  
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Table 3 Compliance coefficients (in 
1

(TPa) ) of single crystals of bismuth vanadate 

(monoclinic) and copper sulphate pentahydrate (triclinic) 

 

Crystal Bismuth vanadate Copper sulphate pentahydrate* 

Point group 2/m 1 

Reference (Every & McCurdy, 1992) (Krishnan, Radha, & Gopal, 1971) 

11s  14.7  29.0562  

12s  0.22  10.8889  

13s  6.2  9.24052  

14s  0  2.42214  

15s  6.9  0.682399  

16s  0  11.9378  

22s  10.8  51.9234  

23s  3.7  26.5755  

24s  0  6.6854  

25s  1.5  0.160799  

26s  0  18.35  

33s  10.0  39.9738  

34s  0  7.27663  

35s  4.8  3.34524  

36s  0  8.45123  

44s  25.5  60.3734  

45s  0  3.56223  

46s  1.0  0.611608  

55s  20.4  88.6179  

56s  0  23.9408  

66s  27.5  115.68  

*The sij values have been obtained by inverting the cij matrix reported in literature.  
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Table 4 Loading directions for which Poisson’s ratio is isotropic in the transverse plane 

for materials with cubic symmetry 

 

Sl. No 

Isotropic loading directions 

Cu  W  
Miller indices

uvw   

Direction cosines

1 2 3  Vn n n   

1 100   100   0.42  0.284  

2 111   
1 1 1

3 3 3
   0.271  0.284  

3* 1 2 3  n n n   1 2 3  n n n   - 0.284  

*A general direction of type 3 (row 3) is present only in crystals with 11 12 442( )s s s  . 

 

 

Table 5 Loading directions for which Poisson’s ratio is isotropic in the transverse plane 

for calcium molybdate (4/m) 

 

Sl. 

No. 

Isotropic loading directions 

  Miller indices 
uvw   

Direction cosines 

1 2 3  Vn n n   

1 001   001   0.222  

2 1, 0.276143, 0    0.96392, 0.26618, 0>   0.269  

3 1, 0.72483, 0    0.80968, 0.58688, 0    0.269  

The directions are obtained in the form of their direction cosines. The conversion to Miller indices has 

been done using the lattice parameters of calcium molybdate (Bass, 1995): a = 5.23 Å and 

c = 11.44 Å.  

Commas and minus signs  −  have been used in the Miller indices, where necessary, for clarity in this 

and the subsequent tables. 

 

 

Table 6 Loading directions for which Poisson’s ratio is isotropic in the transverse plane 

for indium (Point group: 4/mmm) 

 

Sl. 

No. 

Isotropic loading directions 

  Miller indices 
uvw   

Direction cosines 

1 2 3  Vn n n   

1 001   001   0.482  

2 1, 0, 0.355521   0.93406, 0, 0.35711   0.464  

3 0.908562, 0.908562,1   0.54225, 0.54225, 0.64181   0.421  

Lattice parameters of indium (Ridley, 1965): a   4.5994 Å and c   4.9461 Å. 
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Table 7 Definition of the parameters a, b and c used to simplify the solutions for 

orthorhombic materials 

 
Sl. No. a b c 

1 11 12 22 662s s s s    13 232( )s s  11 23 12 13 22 662( )s s s s s s       

2 11 13 33 552s s s s    23 122( )s s  11 12 23 13 33 552( )s s s s s s       

3 22 23 33 442s s s s    13 122( )s s  22 12 13 23 33 442( )s s s s s s       

 

 

 

Table 8 Loading directions for which Poisson’s ratio is isotropic in the transverse plane 

for forsterite (Point group mmm) 

 

Sl. 

No. 

Isotropic loading directions 

  Miller indices 
uvw   

Direction cosines 

1 2 3  Vn n n   

1 0.989658, 0,1   0.61839, 0 0.78, 587   0.265  

2 1, 0, 0.3012   0.93515, 0 0.35, 425   0.256  

3 1, 0.563074, 0   0.63795, 0.7700 07,   0.235  

4 1, 0.311763, 0.392892   0.769026, 0.513 0.3800977, 035   0.253  

Lattice parameters of forsterite (Bass, 1995): a   4.75 4 Å, b   10.1902 Å and c   5.978  Å. 

 

 

 

 

Table 9  Loading directions for which Poisson’s ratio is isotropic in the transverse plane 

for the ilmenite phase of magnesium silicate (MgSiO3, point group   ) 

 

Sl. 

No. 

Isotropic loading directions 

  Miller indices 
uvw   

Direction cosines 

1 2 3  Vn n n   

1 001   001   0.111  

2 1, 0.39982, 0.595815    0.566978, 0.163611, 0.807320    0.275  

3 1, 0.399821, 0.165063    0.898432, 0.259258,0.354408    0.200  

4 1, 0.399819, 0.228315    0.850951, 0.245556, 0.464309    0.320  

Lattice parameters of the ilmenite phase of MgSiO3 (Bass, 1995): a = 4.7284 Å and c = 13.5591 Å. 
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Table 10 Loading directions for which Poisson’s ratio is isotropic in the transverse plane 

for α-quartz (Point group 32) 

 

Sl. 

No. 

Isotropic loading directions 

  Miller indices 

uvw   

Direction cosines 

1 2 3  Vn n n   

1 001   001   0.134   

2 0.1 4,0 84 1.5, 4 3   0.702479, 0.405576, 0.584835     0.067  

Lattice parameters of α-quartz (Bass, 1995): a   4.19 4 Å and c   5.4052 Å. 

 

 

Table 11 Loading directions for which Poisson’s ratio is isotropic in the transverse plane 

for bismuth vanadate (Point group 2/m) 

 

Sl. No. 

Isotropic loading directions 

  Miller indices 
uvw   

Direction cosines 

1 2 3  Vn n n   

1 0.218293, 0,1   0.21772,  0,  0.97601   0.417  

2 0.885575, 0,1    0.66819, 0, 0.74399    0.357  

3 0.843115, 0,1   0.65434, 0, 0.7562   0.157  

4 1, 0, 0.447334    0.91357, 0, 0.40669    0.124  

5 0.1928, 0.532064,1    0.12352, 0.76776, 0.62872    0.291  

Lattice parameters of bismuth vanadate (Sleight, Chen, Ferretti, & Cox, 1979): a  5.19 5 Å, b 

=11.6972 Å, c = 5.0898 Å and   = 90°2 ’1 ’’. 

 

 

Table 12 Loading directions for which Poisson’s ratio is isotropic in the transverse plane 

for copper sulphate pentahydrate (Point group 1 ) 

 

Sl. No. 

Isotropic loading directions 

  Miller indices 
uvw   

Direction cosines 

1 2 3  Vn n n   

1 0.218529, 0.46844,1   0.042341, 0.61501, 0.787382   0.317  

2 0.0992786,1, 0.495223   0.126077, 0.919541, 0.372222    0.333  

3 0.814476, 0.714811,1     0.31984, 0.716731, 0.619677     0.325  

4 0.39756, 0.838732,1    0.38437, 0.838089, 0.387125    0.380  

5 1, 0.0345217, 0.477128    0.985143, 0.059928, 0.160943    0.333  

6 1, 0.103614, 0.224419    0.865897, 0.154471, 0.475775    0.400  

Lattice parameters of copper sulphate pentahydrate (Beevers & Lipson, 1934): a = 6.12 Å, b   10.7 Å, 

c   5.97 Å, α   82°16’,     107°26’ and γ   102°40’. 
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