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Who’s Afraid of the Supersymmetric Dark? The Standard
Model vs Low-Energy Supergravity

C.P. Burgess and F. Quevedo*

Use of supergravity equations in astronomy and late-universe cosmology is
often criticized on three grounds: (i) phenomenological success usually
depends on the supergravity form for the scalar potential applying at the
relevant energies; (ii) the low-energy scalar potential is extremely sensitive to
quantum effects involving very massive particles and so is rarely
well-approximated by classical calculations of its form; and (iii) almost all
Standard Model particles count as massive for these purposes and none of
these are supersymmetric. Why should Standard Model loops preserve the
low-energy supergravity form even if supersymmetry is valid at energies well
above the electroweak scale? We use recently developed tools for coupling
supergravity to non-supersymmetric matter to estimate the loop effects of
heavy non-supersymmetric particles on the low-energy effective action, and
provide evidence that the supergravity form is stable against integrating out
such particles (and so argues against the above objection). This suggests an
intrinsically supersymmetric picture of Nature where supersymmetry survives
to low energies within the gravity sector but not the visible sector (for which
supersymmetry is instead non-linearly realized). We explore the couplings of
both sectors in this picture and find that the presence of auxiliary fields in the
gravity sector makes the visible sector share many features usually attributed
to linearly realized supersymmetry although (unlike for the MSSM) a second
Higgs doublet is not required for all Yukawa couplings to be non-vanishing
and changes the dimension of the operator generating the Higgs mass. We
discuss the naturalness of this picture and some of the implications it might
have when searching for dark-sector physics.

1. Introduction

The absence of evidence for superpartners at the Large Hadron
Collider (LHC)[1–3] makes supersymmetry as a solution to the hi-
erarchy problem appear to be a beautiful idea mugged by a gang
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of ugly facts. Yet supersymmetry remains
well-motivated at very high energies; ap-
pearing to play a central role there in
frameworks like string theory[4–7] that
sensibly quantum-complete gravity at the
highest scales.
But as the hierarchy problem recedes

as a motivation, seeking supersymmetry
in accelerators is like searching under the
proverbial streetlight on a dark night; ab-
sence of success might be more about
the search strategy than indicating that
searches are a fruitless exercise. Putting
ease of detection aside, is there a place
we should expect supersymmetry is most
likely to arise (and so be themost relevant
for understanding) if it exists?
Oneway to approach this question is to

ask: for which kinds of particles should
we expect the mass splittings between
superpartners to be the smallest? In su-
persymmetric theories supersymmetry is
usually broken when some field F ac-
quires an expectation value. The size of
the mass splittings between bosons and
fermions within any particular multiplet
are then in order of magnitude given by

m2
B
−m2

F
∼ gF, (1)

where g is ameasure of the strength of in-
teraction between F and the multiplet of

interest. This suggests that the particles that are split the least are
also those that couple the weakest.
Gravity is the weakest known interaction and there are even

circumstantial reasons to believe that it might be the weakest
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interaction that is possible.[8] If so, then it is natural to expect that
it is the gravitational sector that should be the most supersym-
metric, and this is indeed what often happens in explicit higher-
dimensional supergravity models.[9,10] Perhaps the gravity sector
is the one where the implications of low-energy supersymmetry
are most prominent. If so, the very weakness of gravitational in-
teractions helps make supersymmetry’s detection more difficult.
Despite its weakness we certainly know that gravity exists and

its properties are measured in great detail within the solar sys-
tem, in astronomy and in cosmology. The above line of argument
suggests that these areas might also be among the best venues
for seeking evidence for supersymmetry of this type at low en-
ergies. It is perhaps unsurprising from this point of view that
current evidence for dark sectors dominantly comes from these
kinds of observations. It also has motivated studies[11,12] that ex-
plore the implications of supersymmetric models at the lowest
possible energies, like those relevant to late-time cosmology (of-
ten as variants of quintessence models[13,14] for dark energy).

An Objection

That paints a pleasing picture, but there is a long-standing objec-
tion to using supergravity in late-time cosmology in this way. Suc-
cess or failure in cosmological models often turns on the detailed
properties of the scalar potential, and many of the ingredients
required for success in cosmology ( e.g. extremely light scalars
and small vacuum energies) are known to be exquisitely sen-
sitive to quantum effects involving the theory’s highest-energy
sector.[15,16] Ordinary Standard Model particles (like the electron)
count as high-energy particles from the point of view of cosmol-
ogy, and these are measured not to be supersymmetric at all. The
objection asks how the putative supersymmetry of scalar poten-
tials relevant to the extremely low energies of cosmology could
possibly survive the quantum corrections generated by integrat-
ing out the known non-supersymmetric Standard Model parti-
cles.
A difficulty in making this objection definitive has been the in-

ability to precisely formulate a theory in which a very supersym-
metric gravity sector consistently couples to non-supersymmetric
matter. Precisely formulating this type of theory is a prerequisite
for computing quantum corrections to the low-energy scalar po-
tential, and only these kinds of calculations can rule out or verify
the prejudice that quantum corrections involving the known par-
ticle spectrum should ruin the supersymmetry of the low-energy
world of cosmology.
One of the purposes of this paper is to re-examine this issue

in view of recent progress understanding how to couple super-
gravity to non-supersymmetric matter.[17–21] In §2 we review this
new understanding and in §3 we use it to estimate the size of the
quantum corrections that arise once heavy non-supersymmetric
particles are integrated out. Furthermore, our scenario of non-
linearly realised supersymmetry in the Standatrd Model com-
bined with a supersymmetric gravity sector opens up an inter-
sting phenomenological avenue for supersymmetry that we start
to explore. In this spitrit we are able to draw the following con-
clusions.

• We describe a concrete scenario in which supersymmetry is
linearly realized in a gravitational (hidden) sector and non-

linearly realized in the Standard Model (visible) sector. Con-
strained superfields are used to describe the Standard Model
fields. Contrary to the MSSM, there is no need from anomaly
cancellation to introduce a second Higgs superfield (since the
higgsino is integrated out) nor a 𝜇-term. Couplings of the gold-
stino superfield to the Standard Model sector determine the
Higgs potential and the up-quark Yukawa couplings. This may
provide an alternative to the MSSM regarding low-energy su-
persymmetry.

• We find no evidence that loops of non-supersymmetric
Standard Model particles must destabilize the general form
of the Lagrangian used to couple supergravity to non-
supersymmetric matter, supporting the consistency of using
supergravity for late-time cosmology.

• Supersymmetry does not in itself automatically solve the ques-
tions of technical naturalness that arise in low-energy cosmo-
logical applications (such as the cosmological constant prob-
lem or the tuning problems of quintessence theories), making
it necessary to check these on a model-by-model basis. It is in-
teresting though that the interplay between gravity and the size
of the scalar potential plays a central role inmost of these prob-
lems, so having a supersymmetric gravity sector could plausi-
bly be part of the final picture that resolves them.1

• The low-energy scalar potential of these theories closely resem-
bles the usual supergravity structure. This structure remains
stable as non-supersymmetric particles are integrated out be-
cause of the presence of the auxiliary fields associated with the
gravity, goldstino (and possibly other) supermultiplets that (by
assumption) appear in the low-energy theory due to the as-
sumed supersymmetry of the gravity sector. Although these
auxiliary fields do not propagate they do affect how loops of
heavy particles contribute to the low-energy theory, making
their inclusion crucial for understanding naturalness issues.2

• Large positive vacuum energies are relatively common fea-
tures of models coupling supergravity to non-supersymmetric
matter and this might indicate that this framework is also use-
ful for understanding inflationary models of the much earlier
universe (as has indeed been explored in [28]).

Gravity’s Dark Side

A universe in which non-supersymmetric Standard Model parti-
cles couple to a very supersymmetric gravitationally interacting
dark sector obviously provides both observational challenges and
phenomenological opportunities. Although there is some free-
dom choosing the dark sector’s particle content, the structure
imposed by supersymmetry also carries many constraints. Acci-
dental scale invariance often ensures the existence of at least one

1 See [22] for an approach that combines this low-energy supersymmet-
ric framework with the general scale-invariance arguments of [23] to
address low-energy naturalness problems in quintessence models.

2 The importance of auxiliary fields resembles the important role played
by non-propagating ‘topological’ fields in other areas of physics like the
QuantumHall Effect.[24,25] This connection is strengthed by the obser-
vation that auxiliary fields arise as 4-form fields in string theory,[23,26]

with 4-forms known to bring information about higher-dimensional
topology into the low-energy 4D theory, both in string theory and more
broadly in extra-dimensional models.[27]
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axio-dilaton supermultiplet, whose spin-half superpartner (the
dilatino) has a mass similar to the gravitino. One or more such
multiplets are common in theories describing the low-energy
limit of higher dimensionalmodels due to the generic role played
in them by scale invariance.[23]

Besides the compulsory existence of a relatively light grav-
itino this picture generically contains many dark-matter candi-
dates, including axions or other massive particles coupling to the
Standard Model only very weakly. This provides a natural origin
for low-energy axions, such as in ‘axiverse’ models,[29] as well as
Planck-coupled dark matter models.[30] Although gravitationally
coupled fermions would be impossible to see in underground
detectors, they become sterile neutrinos (and so could become
detectable) once they mix with Standard Model neutrinos, pro-
viding a potentially rich source of phenomenology[31] and poten-
tial mechanisms for baryo- and lepto-genesis. We briefly describe
some of the potential phenomenological consequences in §4 be-
low.

2. Supergravity Coupled to Non-Supersymmetric
Matter

This section describes how to consistently couple supersymmet-
ric gravity to ordinary matter that is assumed not to be supersym-
metric at all. This is the effective theory that one would expect at
electroweak energies in a world in which the StandardModel sec-
tor couples more strongly to the supersymmetry-breaking fields
than does the gravity multiplet. For the present purposes it is the
naturalness properties of this construction – in particular the sta-
bility of the small splitting in the gravity multiplet – that are of
greatest interest.
There is no loss of generality in describing such systems using

the formalism of nonlinearly realized supersymmetry as formu-
lated by [17], together with its coupling to supergravity.[18–21] It
is the generality of this construction that ultimately underlies its
stability under Wilsonian evolution.
The logic of this construction goes as follows. Reference[17]

first shows how to take an arbitrary non-supersymmetric theory
and rewrite it ‘as if’ it were globally supersymmetric.3 This can
always be done for global supersymmetry simply by coupling
the non-supersymmetric matter appropriately to the Goldstone
fermion[35] whose presence is always required in the low-energy
sector of any system whose UV supersymmetry is spontaneously
broken (as it must be if supermultiplets are split badly enough to
allow some of its members to be integrated out while the others
are not). The coupling of this system to supergravity – described
in [18–21] – then follows as a special case of the usual rules for
coupling supergravity[36–38] to globally supersymmetric matter.
The next four sections briefly review what the formalism

of [18–21] implies for the couplings of supergravity to non-
supersymmetric spin-zero, spin-half and spin-one particles. Al-
though these mostly summarize known results, new material
starts in §2.4.3 and then continues in §2.5 with a description

3 The same is also possible for more mundane symmetries: a
generic non-invariant action can always be made invariant under a
global symmetry by appropriately coupling to the relevant Goldstone
bosons.[32–34]

of how Standard Model gauge invariance can be implemented
within this framework.

2.1. Goldstino Superfield

The central point is that the low-energy theory well below the UV
supersymmetry breaking scale necessarily contains a majorana
Goldstone fermion, G, that eventually mixes with the gravitino
to give it a mass through the super-Higgs mechanism.[39] The
Goldstino provides a way for an arbitrary non-supersymmetric
low-energy theory to realize supersymmetry nonlinearly. Among
the points of ref. [17] is the observation that there is no loss of
generality in expressing this nonlinear realization in terms of or-
dinary superfields subject to constraints, with the Goldstino itself
represented by a left-chiral superfieldX subject to a nilpotent con-
straint of the form X2 = 0.
In components this superfield can be schematically written in

terms of the supergravity fermionic spinor coordinate Θ[36,37] by

X =  +
√
2 (Θ𝛾LG) + Θ2 FX , (2)

and the nilpotent condition boils down to the constraint

−2 FX +G𝛾LG = 0 . (3)

Provided FX is a UV scale this constraint can be used to eliminate
the scalar  in terms of G, giving

 =
G𝛾LG
2FX

. (4)

Using this in (2) shows that this last condition is not just neces-
sary, but also sufficient, for the condition X2 = 0.
The minimal low-energy matter sector when supersymmetry

is broken consists only of the Goldstone fermion itself, for which
the low-energy EFT consists of supergravity coupled to the con-
strainedmultipletX .When coupled to supergravity themost gen-
eral form (at the two-derivative level) for the action in superspace
is [20]

 = ∫ d2Θ 2[3
8

(2
− 8)

e−K∕3 +W
]
+ h.c. , (5)

whereW is a holormorphic function of X and K is a real function
of X and its complex conjugate X . The most general form for
these functions given the constraint X2 = 0 is

K = XX and W = 𝔣X +W0 , (6)

where the field X is rescaled to choose a canonical coefficient for
XX in K and terms linear in (or independent of) X in K can be
moved intoW by performing an appropriate Kähler transforma-
tion.
Restoring factors of Mp, in the gauge G = 0 the component

Lagrangian becomes

√
−g

= −
M2

p

2
R̂ − i

2
𝜖𝜇𝜈𝜆𝜌𝜓𝜇𝛾5𝛾𝜈D𝜆𝜓𝜌
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− 1
2M2

p

(
W0 𝜓𝜇𝛾

𝜇𝜈𝛾L𝜓𝜈 + h.c.
)
− 𝔣2 +

3|W0|2
M2

p

, (7)

where 𝛾𝜇𝜈 := 1
2
[𝛾𝜇 , 𝛾𝜈 ] and R̂ = R(e,𝜓) is the Ricci curvature, in-

cluding gravitino torsion. Once the phase ofW0 is absorbed into
the gravitino its apparent mass is revealed to be

m3∕2 =
|W0|
M2

p

, (8)

showing the Mp suppression that allows the graviton multiplet
to be split by less than are other multiplets that couple more
strongly to X .
Eq. (7) has integrated out the auxiliary field FX , which given

the above choices for K andW gives FX = 𝔣, revealing 𝔣 to be the
supersymmetry breaking scale. This interpretation is also evident
from the form of the scalar potential, which is

V = 𝔣2 −
3|W0|2
M2

p

. (9)

When 𝔣 = 0 eqs. (8) and (9) reproduce the supersymmetric AdS
relation between curvature and gravitino mass and when special-
ized to 𝔣2M2

p = 3|W0|2 (and so V = 0) they give the standard flat-
space relation between the supersymmetry breaking scale 𝔣 and
gravitino mass.

2.2. Non-supersymmetric Fermions

Other non-supersymmetric particles may be similarly repre-
sented in terms of constrained supermultiplets. The ones ofmost
interest to us are those involving the SM degrees of freedom,
which include scalars, spin-half fermions and spin-one gauge
bosons. We start here by formulating the couplings between a
standard fermion and the goldstino multiplet.

2.2.1. A Single Majorana Fermion

For a non-supersymmetric fermion field 𝜓 we write the con-
strained superfield in terms of the supergravity fermionic spinor
coordinate Θ by

Y =  +
√
2 (Θ𝛾L𝜓) + Θ2 FY , (10)

and we seek a constraint that removes its scalar part  (but only
should be able to do so once supersymmetry breaks, and so a
nilpotent field X is present). The constraint that does the job is
XY = 0, which is taken to hold at the superfield level. This implies
the component constraint[20]

−4 FX − 4 FY + 4(G𝛾L𝜓) = 0 , (11)

plus several consistency conditions that follow from this.
Keeping in mind that FX is a UV scale – and eliminating 

using (3) – this constraint implies the scalar  is given by

 = 1
FX

[
− FY + (G𝛾L𝜓)

]
= 1

FX

[
(G𝛾L𝜓) − (G𝛾LG)

FY

2FX

]
. (12)

Using this in (10) shows that this last condition is not just nec-
essary, but also sufficient, for the condition that XY = 0. This
solution is the same in supergravity and global supersymmetry
because the underlying constraint is chiral and algebraic. Notice
also that although Y2 is nonzero, expression (12) implies Y3 = 0,
since its lowest component necessarily involves at least 3 factors
of the 2-component spinor 𝛾LG and so must vanish.
The most general forms for the Kähler potential and superpo-

tential describing the couplings of X and Y to supergravity con-
sistent with the constraints X2 = XY = 0 are

K = ZXXXX + ZYYYY + 1
4
𝔠̂Y2Y

2

+
(
ZXYX Y + 𝔢̂

2
XY

2
+ 𝔟̂
2
YY

2
+ h.c.

)
, (13)

and

W = W0 + 𝔣̂X + 𝔤̂Y + 1
2
𝔥̂Y2 , (14)

for arbitrary parameters 𝔢̂, 𝔟̂ and 𝔠̂ and 𝔣̂, 𝔤̂ and 𝔥̂. We use the free-
dom to rescale X → 𝛼X and Y → 𝛽Y + 𝛾X to set some of these
coefficients to canonical form. These are allowed redefinitions
because the constraints X2 = XY = 0 imply that the same con-
straints remain true for the new variables as well. The choices

𝛽∗𝛽 = 1
ZY

, 𝛾 = −
ZXY

ZY

𝛼 , 𝛼∗𝛼 =
⎡⎢⎢⎢⎣ZX −

|||ZXY

|||2
ZY

⎤⎥⎥⎥⎦
−1

(15)

do the job, and lead to

K = XX + YY + 𝔢
2

(
XY

2
+ XY2

)
+ 𝔟
2

(
YY

2
+ YY2

)
+ 𝔠
4
Y2Y

2
,

(16)

andW = W0 + 𝔣X + 𝔤Y + 1
2
𝔥Y2 with new couplings

𝔢 = 𝛼

ZY

[
𝔢̂ −

ZXY

ZY

𝔟̂
]
, 𝔟 = 𝔟̂

ZY

, 𝔠 = 𝔠̂
Z2

Y

𝔣 = 𝛼

[
𝔣̂ −

ZXY

ZY

𝔤̂
]
, 𝔤 =

𝔤̂√
ZY

, 𝔥 =
𝔥̂
ZY

. (17)

With this choice the nonzero scalar parts to the superpotential
derivatives areWX = 𝔣 andWY = 𝔤 and so the physical Goldstone
fermion is proportional to the linear combination 𝔣G + 𝔤𝜓 . This
is a pure gauge degree of freedom that can be eliminated by going
to unitary gauge, corresponding to 𝔣G + 𝔤𝜓 = 0. The Lagrangian
is simpler to write if the gauge freedom is instead chosen to set
G = 0, as before, in which case =  = 0 and the superfields (2)
and (10) reduce to

X(G = 0) = Θ2 FX and Y =
√
2 (Θ𝛾L𝜓) + Θ2 FY . (18)

This gauge has the minor disadvantage that it retains mixings
between 𝜓 and 𝜓𝜇 which must be diagonalized within the com-
ponent Lagrangian.
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In G = 0 gauge the Lagrangian (after integrating out the aux-
iliary fields) is

√
−g

= −
M2

p

2
R̂ − i

2
𝜖𝜇𝜈𝜆𝜌𝜓𝜇𝛾5𝛾𝜈D𝜆𝜓𝜌 −

1
2
𝜓D∕ 𝜓 − 𝔣2 − 𝔤2

+
3|W0|2
M2

p

−
𝔤√
2Mp

𝜓𝛾𝜇𝜓𝜇

− 1
2

[
(𝔥 − 𝔢𝔣 − 𝔟𝔤)𝜓𝛾L𝜓 +

W0

M2
p

𝜓𝜇𝛾
𝜇𝜈𝛾L𝜓𝜈 + h.c.

]
+ (4-fermi terms) (19)

which modifies (9) to include the energy 𝔤2 associated with
nonzero FY :

V = 𝔣2 + 𝔤2 −
3|W0|2
M2

p

. (20)

Eq. (19) also makes the mixing between 𝜓 and 𝜓𝜇 explicit (when
𝔤 ≠ 0). This mixing is removed by a field redefinition of the form
𝛾L𝛿𝜓𝜇 = A𝛾L𝛾𝜇𝜓 + B𝛾LD𝜇𝜓 for suitable choices of A and B. Once
this is done the remaining physical mass term for 𝜓 is

mass = −1
2

[
(𝔥 − 𝔢𝔣 − 𝔟𝔤) +

𝔤2

𝔣2
(
𝔥 − 𝔢𝔣 − 𝔟𝔤 −m3∕2

)]
𝜓𝛾L𝜓 + h.c.,

(21)

where (as above) m3∕2 = |W0|∕M2
p is the gravitino mass, which

for a flat vacuum satisfies |W0|∕M2
p =

√
𝔣2 + 𝔤2∕(

√
3Mp). The 4-

fermion interactions have the form

4−fermi√
−g

=

(
− 1
8M2

p

+ 𝔠 − |𝔢|2 − |𝔟|2)(𝜓𝛾L𝜓)(𝜓𝛾R𝜓) (22)

+ 1
4M2

p

[
𝜖𝜇𝜈𝜆𝜌𝜓𝜇𝛾L𝛾𝜈𝜓𝜆 + 𝜓𝜇𝛾L𝛾

𝜌𝜓𝜇
]
(𝜓𝛾L𝛾𝜌𝜓) .

2.2.2. A Charged Dirac Fermion

Electrically charged Dirac fermions are particularly useful when
considering Standard Model fermions. A Dirac fermion contains
two left-chiral fields Y± whose left-handed fermions destroy par-
ticles with charge ±e. We imagine both fields to satisfy the same
constraint and so demand

X2 = XY+ = XY− = 0 , (23)

and ask the Lagrangian to be invariant under the rotations Y± →
e±i𝜔Y± with all other fields (in particular X) being invariant.
In this case (after field redefinitions) the most general possible

functions K andW describing the couplings of Y± to one another
and to X are

W = W0 + 𝔣X +𝔪Y+Y− , (24)

and

K = XX + Y+Y+ + Y−Y− + 𝔢
(
XY+Y− + XY+Y−

)
+ 𝔠++ Y2

+Y
2

+ + 𝔠+− Y+Y−Y+Y− + 𝔠−− Y2
− Y

2

− . (25)

Notice in particular that electric charge conservation prevents
having a term that is linear in Y±, and so 𝔤± = 0 and 𝜓± cannot
mix with the goldstino G. This is because charge conservation
precludes the auxiliary fields FY± from acquiring expectation val-
ues.
The component Lagrangian in this case takes is

√
−g

||||||𝔤=0 = −
M2

p

2
R̂ − i

2
𝜖𝜇𝜈𝜆𝜌𝜓𝜇𝛾5𝛾𝜈D𝜆𝜓𝜌 −𝜓D∕ 𝜓 − 𝔣2 +

3|W0|2
M2

p

−

[
(𝔪 − 𝔢𝔣)𝜓𝛾L𝜓 +

W0

2M2
p

𝜓𝜇𝛾
𝜇𝜈𝛾L𝜓𝜈 + h.c.

]
+ (4-fermi terms) (26)

where 𝜓 without a subscript is the Dirac spinor whose left- and
right-handed projections are 𝛾L𝜓 = 𝛾L𝜓− and 𝛾R𝜓 = 𝛾R𝜓+, and so

1
2

(
𝜓+𝛾L𝜓− + 𝜓−𝛾L𝜓+ + h.c.

)
= 𝜓+𝛾L𝜓− + 𝜓+𝛾R𝜓− = 𝜓 𝜓 . (27)

The detailed form of the 4-fermi interactions is not needed in
what follows, but it includes the terms quartic in the gravitino
contained in R̂, as well as terms biquadratic in𝜓 and𝜓 and terms
involving a bilinear 𝜓Γ𝜓 (for some choice of Dirac matrices Γ)
multiplying a bilinear in the gravitino.

2.3. Non-supersymmetric Gauge Boson

The effective Lagrangian for a gauge boson is obtained in a sim-
ilar way. The superfield that represents a massless spin-one par-
ticle is a left-chiral left-handed spinor,  , that contains the field
strength F𝜇𝜈 = 𝜕𝜇A𝜈 − 𝜕𝜈A𝜇 . This is related to a real scalar super-
multiplet, P, containing the gauge potential A𝜇 by

 = −1
4

(2
− 8)P . (28)

In terms of this the gauge kinetic term is given by the chiral in-
tegral

√
−g

= − 1
4g2 ∫ d2Θ

(
2 2 + h.c.

)
, (29)

where g is the gauge coupling.
The constraint that removes the the gauge boson’s fermion su-

perpartner is given by

X = 0 (30)
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where X is (as usual) the nilpotent goldstino multiplet. Solving
this constraint4 implies the would-be gaugino field, 𝜆, satisfies a
component constraint that allows it to be eliminated in terms of
the GoldstinoG, the gauge field F𝜇𝜈 , the new gauge auxiliary field
D and (unlike for the previous cases) the auxiliary fields from the
supergravity multiplet. The solution is complicated to write – see
[20] – but in the gauge G = 0 the spinor superfield becomes

 = ΘD − i𝛾𝜇𝜈Θ D̂𝜇A𝜈 +
1
Mp

Θ2 𝛾𝜇
[ i
2
𝜓𝜇 D − 𝛾𝜆𝜌𝜓𝜇 D̂𝜆A𝜌

]
, (31)

where the supercovariant derivative D̂𝜇A𝜈 satisfies

D̂𝜇A𝜈 − D̂𝜈A𝜇 = F𝜇𝜈 +
1

4Mp

(
𝜓𝜇𝛾𝜈𝜆 − 𝜓𝜈𝛾𝜇𝜆

)
. (32)

The X -dependent generalization of the gauge kinetic term (29)
then has the form

√
−g

= −1
4 ∫ d2Θ

[
2 J(X)2

]
, (33)

where J(X ) = J0 + J1X is the most general holomorphic function
of X . However the constraint (30) implies that the J1X term does
not contribute in (33), and so the most general coupling of X to
 has the form  = X + W where X is given by (5) and W is
given by (29). The Lagrangian in component form after elimina-
tion of auxiliary fields then is (c.f. eq. (7))

√
−g

= −
M2

p

2
R̂ − i

2
𝜖𝜇𝜈𝜆𝜌𝜓𝜇𝛾5𝛾𝜈D𝜆𝜓𝜌 −

1
4e2g

F𝜇𝜈F
𝜇𝜈 (34)

− 1
2M2

p

(
W0 𝜓𝜇𝛾

𝜇𝜈𝛾L𝜓𝜈 + h.c.
)
− 𝔣2 +

3|W0|2
M2

p

,

which uses J0 = 1∕e2g .

2.4. Non-supersymmetric Scalar

The final practical example is the case of non-supersymmetric
scalar fields that have no fermionic superpartners. Following[17]

we consider first a complex scalar and restrict to its real and imag-
inary components at the end.

2.4.1. Complex Scalar

A complex scalar appears as the lowest component of a chiral
superfield

H =  +
√
2Θ𝛾LΨ + Θ2 FH , (35)

4 What is used here is the result obtainedwhenX2 = 0 is solved first, and
then X = 0. Amore general solution for which X is a function of2

is also possible, and describes the = 1 formulation of the goldstino
from a second supersymmetry should this have existed.

and the constraint that implements the nonlinear realization is
the condition that the product XH be left-chiral, and so

(
XH

)
= 0 , (36)

where  is the left-handed superspace spinor covariant deriva-
tive. This constraint turns out to allow both Ψ and FH to be elim-
inated in terms of other fields, leaving only as a physical prop-
agating degree of freedom.
For the purposes of writing down invariant Lagrangians it is

noteworthy that (36) also implies (X H
n
) = 0 for any power n

and therefore

[
X  (H,H)

]
= 0 (37)

for any function  (H,H) ofH and its conjugate. This states that
the constraints ensure that arbitrary functions of H and H be-
come left-chiral once multiplied by X .
The constraints X2 = 0 and (XH) = 0 can be used to elimi-

nate Ψ and FH from H, leading to complicated expressions that
simplify considerably in the gauge G = 0, for which

X = Θ2 FX and H =  (if G = 0) . (38)

The absence of FH in (38) means that there is no need to inte-
grate out FH when constructing the component Lagrangian, and
so the result (given below) is not simply the standard 4D sugra
Lagrangian for a chiral field H with the fermionic partner for 
set to zero.
As usual, the two-derivative Lagrangian is specified by the

functions K(X,H, X,H) andW(X,H,H), and in the present case
the most general form consistent with the constraints is

K =  (H,H)XX + X𝔓̂(H,H) + X ̂𝔓(H,H) + ℨ(H,H) (39)

and

W = 𝔴0(H) + X 𝔴̂X (H,H) . (40)

Also as usual, there is considerable freedom to simplify this form
using field redefinitions. For instance, the function (H,H) pre-
multiplying XX can be rescaled into a redefinition X → X̂ =√ X . This is possible even if  depends on H because the
constraint (37) implies X̂ remains chiral, and the nilpotent condi-
tion X2 = 0 implies the same remains true for the new variable:
X̂2 = 0. This means that any nonzero  can be absorbed into
the combinations𝔓 = 𝔓̂∕

√ and𝔴X = 𝔴̂X∕
√ . Performing a

Kähler transformation similarly shows that 𝔓 appears through
the combination 𝔴X + (𝔓𝔴0∕M2

p).
The component Lagrangian (in the gauge G = 0) then be-

comes

√
−g

= −
M2

p

2
R̂ − i

2
𝜖𝜇𝜈𝜆𝜌𝜓𝜇𝛾5𝛾𝜈D𝜆𝜓𝜌

−ℨHH 𝜕𝜇 𝜕𝜇 − V(,)
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+

[
1

4M2
p

𝜖𝜇𝜈𝜆𝜌𝜓𝜇𝛾R𝛾𝜈𝜓𝜆 ℨH 𝜕𝜌

−1
2
𝔐(,)𝜓𝜇𝛾

𝜇𝜈𝛾L𝜓𝜈 + h.c.

]
, (41)

where ℨHH = 𝜕H𝜕Hℨ controls the scalar kinetic function. The
functions𝔐(,) and V(,) are defined by

𝔐 :=
𝔴0

M2
p

eℨ∕(2M
2
p ) , (42)

and

V(,) := eℨ∕M
2
p

[|||||𝔴X +
𝔓𝔴0

M2
p

|||||
2

−
3|𝔴0|2
M2

p

]

= eℨ∕M
2
p

[
1


|||||𝔴̂X +
𝔓̂𝔴0

M2
p

|||||
2

−
3|𝔴0|2
M2

p

]
. (43)

In detail, the factors of eℨ∕M
2
p come from the Weyl rescalings

needed to put the Einstein term into canonical form, and the re-
maining potential arises as a combination of squares due to the
elimination of the supergravity auxiliary fields as well as FX .

2.4.2. Real Scalar

We remark in passing that ordinary real scalar fields are repre-
sented by superfields B satisfying the constraint

X
(
B − B

)
= 0 (44)

since this allows the imaginary part of the scalar ∈ B to be elim-
inated in terms of the Goldstone fermion and other fields. Notice
that (44) also implies the constraint (36) given above. Solving (44)
also shows that it implies a subsidiary condition (B − B)3 = 0,
which can be helpful when exploring how B can appear in the
action.[17–21,28]

2.4.3. Structure of the Scalar Potential

Eq. (43) is surprising because it preserves the remarkably specific
supergravity-type scalar-potential form despite supersymmetry
being so badly broken that the scalar’s fermionic partner can
be integrated out. In particular it is strictly positive in the limit
Mp → ∞. But we are normally free to write down arbitrary po-

tentials U(,) for non-supersymmetric scalars, so how is this
consistent with the scalar potential taking the form (43)?
When answering this question it is instructive first to consider

what happens in the limit of global symmetry. In global super-
symmetry the Lagrangian is obtained by integrating K and W
from (39) and (40) over the fermionic coordinates

 = ∫ d2𝜃 d2𝜃 K +
[
∫ d2𝜃 W + h.c.

]
, (45)

and in this language it is the contributions (H,H)XX ⊂ K and
𝔴̂X (H,H)X ⊂W that give a generic potential5

V = −|FX |2 (,) +
[
FX𝔴̂X (,) + h.c.

]
(46)

and this can indeed reproduce an arbitrary potential V(,)
once the auxiliary field for X is replaced by a spurionic expec-
tation value FX = 𝜇2.
But having supersymmetry be realized on the low-energy fields

implies that FX is not simply a constant spurion. It is a field over
which a functional integral is performed, and once this is done
for the gaussian function (46) one obtains

V =
|||𝔴̂X (,)|||2
 (,)

= |||𝔴X

|||2 (47)

in agreement with the Mp → ∞ limit of (43). The last equality

rescales X → X̂ =
√ X – as described below (40) – but also un-

derlines that this redefinition breaks down in regions where 
changes sign. The spurion limit applies best in situations where
FX is dominated by a large-independent supersymmetry break-
ing contribution, such as when 𝔴X (,) = 𝜇2 + 𝔳(,) with
𝜇2 ≫ |𝔳(,)|, since in this case
V ≃ 𝜇4 + 𝜇2

[
𝔳(,) + h.c.

]
+ |||𝔳(,)|||2 . (48)

Because constant contributions to V have no significance in the
absence of gravity this shows in global supersymmetry how arbi-
trary potentials 𝔳(,) with general signs can emerge for scalars
when global supersymmetry is badly broken.
Let us now consider the gravity case. The sum/difference-of-

squares structure of the potential (43) arises because of the pres-
ence of auxiliary fields in the low-energy theory; both FX and
the auxiliary fields of the gravity multiplet itself. Although these
fields do not propagate they are also not optional if supersym-
metry is to be realized linearly by the constrained field content,
given the assumption that the goldstino, the graviton and grav-
itino are light enough to be in the low-energy effective theory.
Conversely, if one were to try to couple supergravity to a poten-
tial not of the sum/difference-of-squares form the absence of
auxiliary fields should prevent linearly realizing supersymmetry
within the gravity sector and so mass splittings within the gravity
multiplet should not remain small. Therefore, it is highly non-
trivial to have (43) taking the standard supergravity form despite
having the matter sector with badly broken supersymmetry. It is
the fact that gravity is still supersymmetric that allows this struc-
ture to be preserved. Contrary to the global case, now arbitrary
potentials cannot be justified since, as is well known, differences
of energies are relevant in gravity.
This entire discussion underlines the importance of including

non-propagating fields (like auxiliary fields or topological fields),

5 Because X𝔓̂(H,H) is left-chiral it gives a total derivative once inte-
grated over d2𝜃 d2𝜃, and so in global supersymmetry drops out of the
scalar potential completely.
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particularly for naturalness arguments that depend on the form
of the scalar potential in the low-energy theory.

2.5. Standard Model Representations

It can be useful to identify how the Standard Model itself is
described using the above fields. From the superfield point of
view the Standard Model field-content assigns a constrained su-
perfield for each known particle. It therefore consists of con-
strained spin-one multiplets for all of the gauge fields; a con-
strained fermion multiplet for every left-handed Standard Model
fermion – two electroweak doublets L andQ plus the electroweak
singletsE,U andD; and a constrained scalarmultipletH contain-
ing the Higgs doublet.
Comparing with the fermion mass terms of (26) shows that

the ‘down-type’ fermion Yukawa couplings appear within the su-
perpotential, such as for

𝔴0 = yELEH + yDQDH . (49)

The inability to write a similar yUQUH term for ‘up-type’
fermions (because supersymmetry forbids H from appearing in
W) is one of the reasons a second Higgs is needed in supersym-
metric versions of the Standard Model. One might hope to use
the constraint (36) to evade this problem, but that requires at least
one factor of X in addition toH.
The up-type Yukawa instead arise as part of the Kähler poten-

tial, through terms like

K ∋ yUQUH
(
X
𝔣

)
+ h.c. (50)

which contributes to fermionmasses by an amount yUv when 𝔣 is
the parameter appearing in 𝔣X ∈ W that dominates in FX (c.f. the
contribution 𝔢𝔣 in the mass term shown in (21)). Because the
F auxiliary fields for Standard Model fermions transform under
gauge transformations, they in particular must vanish in any vac-
uum that does not break electromagnetic U(1) invariance. As a
consequence Standard Model fermions do not mix with the gold-
stino that lives within the superfield X .
Keeping in mind the discussion surrounding (48) the choice

that reproduces the Higgs potential of the Standard Model when
used in (43) (and Planck-suppressed terms are dropped) is simi-
larly

𝔴X = 𝔣0 + c0 + c1HH + c2(HH)2 +⋯ = 𝔣 + 𝜆

𝔣
(HH − v2)2 +⋯ ,

(51)

for constants 𝜆 and v, where (again) 𝔣 = 𝜇2 sets the
supersymmetry-breaking scale. Regarding this as an expan-
sion in powers of 1∕𝔣 seems reasonable because the absence of
Standard Model superpartners presumably requires 𝔣≫ v2 since
these partners have masses controlled by 𝔣 and are assumed to
be much heavier than the electroweak scale.6

6 Strictly speaking only FX must be large compared to the weak scale,
so assuming 𝔣≫ v2 makes the additional assumption that FX is

The structures described above should be generic when the
gravity sector ismuchmore supersymmetric than is the Standard
Model sector, with the X field being a remnant frommuch higher
energies containing the supersymmetry-breaking order parame-
ters. Themain assumption is that only the one field X required to
contain the Goldstone fermion is light enough to descend from
higher energies. As argued in [17] supersymmetric current alge-
bra ensures that the X field parametrizes the low-energy limit of
any such supersymmetry breaking in the UV (even, for example,
if D-terms carry part of the breaking in the high-energy theory).

3. Wilsonian Flow

The generality of the nonlinear realization described in §2 guar-
antees that it should describe the low energies well below the
supersymmetry breaking scale, assuming only the hierarchy
ΔMSM ≫ Λ≫ ΔMSG between the EFT’s UV scale Λ and the mass
splittings ΔMSM and ΔMSG between particles and their superpart-
ners in the Standard Model and gravity supermultiplets. But the
low-energy theory nonetheless has counter-intuitive properties,
such as the peculiar supergravity form of scalar potential given
in (43). Why should this survive loop corrections once successive
waves of non-supersymmetric heavy fields are integrated out?
It is instructive therefore to be explicit, and integrate out heavy

degrees of freedom to see how the resulting threshold corrections
preserve these counter-intuitive properties into the low-energy
limit. The goal is to see how the defining functions like K and
W change as energies are lowered below the fermion threshold.
In this section our tools for doing this are standard calculations

using the Gilkey-DeWitt heat-kernel coefficients,[40–43] that give
the effects of integrating out heavy particles at one loop order.
These tools show that such loops contribute local shifts to the
effective Lagrangian of the form I = u + 𝛿 with 7

𝛿√
−g

= a(s)cc m
4 + a(s)eh m

2 R +
a(s)rs m2

M2
p

i𝜖𝜇𝜈𝜆𝜌𝜓𝜇𝛾5𝛾𝜈D𝜆𝜓𝜌

+
a(s)gmm3

M2
p

𝜓𝜇𝛾
𝜇𝜈𝜓𝜈 +⋯ (52)

where a(s)cc , a
(s)
eh , a

(s)
rs and a(s)gm are dimensionless order 1∕(16𝜋2)

quantities whose values – listed explicitly in [41–43] – depend
on the spin s of the particle that was integrated out. They can
also depend logarithmically8 on the heavy-particle mass m. The

dominated by the globally supersymmetric part WX in FX ∝ WX +
(KXW∕Mp). Ref. [22] explores themore counter-intuitive regime where

this assumption fails, such as whenHH seeks a vev of order 𝔣0 + c0 that
makes wX vanish in (51).

7 Note that this expansion starts with m4 rather than Λ2m2 as usually
appears in loop corrections (see for instance[46]) with Λ a UV cut-off.
We emphasize here that since cut-offs should cancel at the end of the
calculations, the Λ2m2 term should be understood as a proxy for a de-
pendence onM2m2 withM a heavy physical mass. However since what
is relevant for us is the 𝜏 dependence of the masses and both m and
M will depend on 𝜏 in the same way, there is essentially no difference
between the m4 and a m2M2 terms.

8 The logarithmic mass-dependence that enters through loop correc-
tions plays an important role in [22], since it can introduce a logarith-
mic dependence on some of the low-energy fields.
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a(s)rs and a
(s)
gm terms arise in a Planck-suppressed way because each

gravitino vertex comes with a power of 1∕Mp (see for example
the 2-fermi interactions in (19) or (26) or the 4-fermi interactions
of (22)). The factors of m in (52) evaluate the loop using dimen-
sional regularization renormalized usingminimal subtraction so
that the mass of the particle in the loop provides the largest mass
scale within the loop integral and so set its dimensions.

3.1. Integrating Out a Massive Dirac Fermion

Consider first integrating out a single massive Dirac fermion.
Broadly speaking there are two situations for whichmassive non-
supersymmetric fermions might arise, depending on whether or
not the fermion’s bosonic superpartner is lighter or heavier than
is the fermion itself. A common case has the bosonic partner
heavier than the fermion, such as when the boson is a scalar with
no symmetries that protect itsmass, so we consider this case first.

3.1.1. Only Supergravity at Low Energies

If the boson were heavier it would be integrated out first when
coming down in scales, leaving a low-energy EFT involving only
the fermion and the supergravity sector. In this section we see
how integrating out the remaining fermion is captured by thresh-
old corrections to the functions W and K governing the low-
energy nonlinear realization.
Since the fermion is a charged Dirac particle the effective La-

grangian that applies above its mass is given at the two-derivative
level by the superpotentialW and Kähler potentialK given in (24)
and (25), repeated here for convenience:

WUV = W0 + 𝔣X +𝔪Y+Y− , (53)

and

KUV = XX + Y+Y+ + Y−Y− + 𝔢
(
XY+Y− + XY+Y−

)
(54)

+ 𝔠++ Y2
+Y

2

+ + 𝔠+− Y+Y−Y+Y− + 𝔠−− Y2
−Y

2

− .

The corresponding component Lagrangian (26), also repeated
here for convenience, is:

u√
−g

= −
M2

p

2
R̂ − i

2
𝜖𝜇𝜈𝜆𝜌𝜓𝜇𝛾5𝛾𝜈D𝜆𝜓𝜌 − 𝜓D∕ 𝜓 − 𝔣2 +

3|W0|2
M2

p

−

[
(𝔪 − 𝔢𝔣)𝜓𝛾L𝜓 +

W0

2M2
p

𝜓𝜇𝛾
𝜇𝜈𝛾L𝜓𝜈 + h.c.

]
+ (4-fermi terms). (55)

The terms quadratic in fields are characterized by parameters 𝔣,
W0 and m = 𝔪 − 𝔢 𝔣.
Below the fermion mass the corresponding terms of the effec-

tive Lagrangian are instead described by (7) and so are character-
ized by KIR = XX and the IR parameters 𝔣̃ and W̃0 appearing in

WIR = W̃0 + 𝔣̃X . In components this gives

I√
−g

= −
M2

p

2
R̂ − i

2
𝜖𝜇𝜈𝜆𝜌𝜓𝜇𝛾5𝛾𝜈D𝜆𝜓𝜌

− 1
2M2

p

(
W̃0 𝜓𝜇𝛾

𝜇𝜈𝛾L𝜓𝜈 + h.c.
)
− 𝔣̃2 +

3|W̃0|2
M2

p

. (56)

The goal is to compute what matching at the fermion threshold
implies for how the parameters W̃0 and 𝔣̃ depend on their UV
counterpartsW0, 𝔣 and m.
Integrating out a heavy Dirac fermion shifts the effective La-

grangian with the local correction given as a special case of (52),
with coefficients a(1∕2)cc , a(1∕2)eh , a(1∕2)rs and a(1∕2)gm specialized to spin
s = 1∕2. For brevity of notation we suppress the superscript (s) in
what follows.
The contributions involving aeh and ars change the canonical

normalization of the metric and gravitino fields and so are ab-
sorbed into field redefinitions

g𝜇𝜈 → 𝜆g g𝜇𝜈 and 𝜓𝜇 → 𝜆f 𝜓𝜇 . (57)

Preserving the form of the Einstein-Hilbert part of the action im-
plies

𝜆g =

(
1 −

2 aehm
2

M2
p

)−1

≃ 1 +
2 aehm

2

M2
p

+⋯ , (58)

and this metric redefinition then rescales all of the other terms
in the Lagrangian because

√
−g → 𝜆2g

√
−g, 𝜖𝜇𝜈𝜆𝜌 → 𝜆−2g 𝜖

𝜇𝜈𝜆𝜌 and

𝛾𝜇 → 𝜆
1∕2
g 𝛾𝜇 etc. Preserving the form of the gravitino kinetic term

therefore requires

𝜆f = 𝜆−1∕4g

(
1 −

2arsm
2

M2
p

)−1∕2

≃ 1 + m2

M2
p

(
ars −

aeh
2

)
+⋯ . (59)

With these conventions the coefficient of the gravitinomass term
in u + 𝛿 becomes

u + 𝛿 ∋ −
𝜆2f 𝜆g

2M2
p

√
−g (𝜓𝜇𝛾

𝜇𝜈𝜓𝜈)
(
W0 − 2agmm

3
)

≃ − 1
2M2

p

√
−g (𝜓𝜇𝛾

𝜇𝜈𝜓𝜈)
(
W0 − 2agmm

3
)

×

[
1 + m2

M2
p

(aeh + 2ars) +⋯

]
(60)

so comparing this to (56) allows us to identify the value for the
IR parameter W̃0:

W̃0 ≃
(
W0 − 2agmm

3
)[
1 + m2

M2
p

(aeh + 2ars) +⋯

]
≃ W0 − 2agmm

3 + (Mp suppressed). (61)
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Repeating this exercise for the vacuum energy u + 𝛿 ∋
−
√
−g V gives

V ≃ 𝜆2g

(
𝔣2 −

3|W0|2
M2

p

− accm
4

)
≃

(
𝔣2 −

3|W0|2
M2

p

− accm
4

)

×

(
1 +

4 aehm
2

M2
p

+⋯

)
, (62)

and comparing this to 𝔣2 − 3|W0|2∕M2
p fixes the value for the IR

parameter 𝔣̃:

𝔣̃2 = V +
3|W̃0|2
M2

p

≃

(
𝔣2 −

3|W0|2
M2

p

− accm
4

)(
1 +

4 aehm
2

M2
p

+⋯

)
(63)

+ 3
M2

p

|||W0 − 2agmm
3|||2

[
1 + 2m2

M2
p

(aeh + 2ars) +⋯

]
≃ 𝔣2 − accm

4 + (Mp-suppressed) .

Consequently (assuming 𝔣2 ≫ accm
4) the IR theory’s superpoten-

tial becomes9

WIR = W̃0 + 𝔣̃X ≃
(
W0 − 2agmm

3
)
+
(
𝔣 −

accm
4

2𝔣

)
X +⋯ . (64)

Comparing to (56) assumes that any changes to K are absorbed
into rescalings of X so that KIR = XX . In all of these expressions
the physical fermion mass is related to the UV parameters by
m2 = |𝔪 − 𝔢𝔣|2, as described above.
3.1.2. Residual Light Scalar

Consider next the case where the low-energy theory below the
fermion mass contains a non-supersymmetric scalar in addition
to the supergravity sector. In this case the low energy theory re-
quires more than just the parameters W̃0 and 𝔣̃, being replace by
expressions like (41), repeated here as

I√
−g

= −
M2

p

2
R̂ − i

2
𝜖𝜇𝜈𝜆𝜌𝜓𝜇𝛾5𝛾𝜈D𝜆𝜓𝜌 − ℨ̃HH 𝜕𝜇 𝜕𝜇 − Ṽ(,)

+

[
1

4M2
p

𝜖𝜇𝜈𝜆𝜌𝜓𝜇𝛾R𝛾𝜈𝜓𝜆 ℨ̃H 𝜕𝜌

−1
2
𝔐̃(,)𝜓𝜇𝛾

𝜇𝜈𝛾L𝜓𝜈 + h.c.
]
, (65)

9 Having the superpotential W be renormalized when the heavy field
is integrated out apparently contradicts the supersymmetric non-
renormalization theorems. This is possible when supersymmetry is
nonlinearly realized because the lack of kinetic terms for the Lagrange
multipliers means their propagators do not take the form assumed
when these theorems are proven.

and something similar happens for the UV lagrangian, whose
parameters 𝔣 andW0 are also replaced by-dependent quantities
𝔴X (,) and 𝔴0().
The lagrangian shift 𝛿 due to integrating out the fermion field

is again given by an expression like (52).Whenmatching between
UV and IR theories the comparison of parameters is simplest
when done at orderM0

p , leading to

WIR = 𝔴̃0 + 𝔴̃X X ≃
(
𝔴0 − 2agmm

3
)

+
(
𝔴X −

accm
4

2𝔣

)
X +⋯ , (66)

where m is now -dependent. Comparing this to expressions
like (51) – and keeping in mind the logarithms of m that are
implicit in quantities like acc – shows how the low-energy scalar
potential acquires its standard m4 ln(m2∕𝜇2) Coleman-Weinberg
type[44] corrections, as might have been expected.

3.2. Other Spins

The generality of the result (52) shows that similar considerations
apply when integrating out other fields with different spins. In
more general cases the shifts to the superpotential parameters
like 𝔣 andW0 involve a sum over s. When integrating out multi-
ple fields one finds similar expressions as above for these param-
eters, but summed over the masses and couplings of all of the
heavy states that are integrated out.
The sum over s can introduce cancellations between contri-

butions from particles with different spins, such as when the
integrated-out particles happen to flesh out a complete super-
multiplet whose average mass is larger than the mass splittings
amongst its members. The sum over elements of the multiplet
then tend to give contributions proportional to spin-weighted
supertraces of the mass matrix, with (for instance) the m4 con-
tributions to (66) combining (when summed over spins) into
STr M4 =

∑
s(−)2s(2s + 1)m4

s . Known mass sum rules for spon-
taneously broken supersymmetry (see for instance [39, 45] and
[46, 47]), then allow these to cancel, as is required by the non-
renormalization theorems.[48]

Auxiliary fields (e.g. for X ) enter into these calculations
through the supersymmetry breaking mass splittings within a
heavy multiplet. In the supersymmetric limit they play little or
no role, but they dominate for badly split multiplets. This is
in detail why they drop out of supersymmetric radiative correc-
tions while non-supersymmetric heavy particles dominantly con-
tribute to the X -dependent part of the action. It is ultimately the
role of the auxiliary fields to allow the generic component form
be expressible in terms of the specific kinds of couplings (i.e.W
and K) that appear in the superspace Lagrangian.

4. Concluding Remarks

We conclude by summarizing the main arguments, and
briefly discussing directions towards which this point of view
likely leads.
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4.1. Summary of Main Results

Our main motivation for this article was to address a rela-
tively widespread objection to the use of supergravity in very
low-energy applications, such as to astrophysics and post-
nucleosynthesis cosmology. Although supergravity has been
used to construct many such models, particularly for Dark En-
ergy in cosmology, two related objections have been raised that
may have prevented its wider exploration:

• The ingredients of interest in applications – usually small
scalar masses and small vacuum energies – are controlled by
the low-energy scalar potential and this is known to be partic-
ularly sensitive to quantum corrections involving the theory’s
heavy particles;

• None of the known heavy particles relevant to cosmology or
astrophysics are supersymmetric and so their quantum effects
are likely to badly break any supersymmetric structure even if
this were present at higher energies.

Recent developments describing broken supersymmetries in
terms of constrained superfields[17–21] show how supergrav-
ity couples to a matter sector in which supersymmetry is
badly broken, and so allow the explicit calculation of the non-
supersymmetric quantum effects required to test this objection
more precisely. We use this formalism to provide an estimate of
their size and argue in favour of the stability against loop correc-
tions of the structure predicted by [17–21].
Addressing these issues we were lead to a novel conceptual

framework that is attractive in its own right and so deservesmore
systematic study: the vision that high-energy supersymmetry sur-
vives at low energies dominantly in the (possibly complicated)
gravity sector despite supersymmetry being badly broken for all
of the ordinary particles described by the Standard Model. This
is a vision that often actually does descend from supersymmet-
ric UV completions[9,10] (though the calculations that show this
are usually only done without including quantum corrections).
It does so because splittings in any supermultiplet arise propor-
tional to the couplings of that multiplet to the supersymmetry-
breaking order parameter, and gravity usually has the weakest
couplings of all.
Besides stability against loops, the embedding of the Standard

Model into supersymmetry described here differs in several po-
tentially useful ways relative to the standardMSSMapproach.10

1. The functional dependence of the scalar potential keeps the its
supergravity structure as a difference of perfect squares (such
as in eq. (43)). We argue that this property follows from the
low-energy presence of the auxiliary fields for the nilpotent
superfield X and for the supergravity sector itself (for which
supersymmetry is linearly realized).

2. At the low energies of interest here all Standard Model part-
ners have been integrated out and so (for example) pose no

10 Note that our scenario differs from the non-linear MSSM – proposed
in [49] with the idea of extracting model independent couplings of the
goldstino to the MSSM – for which the nilpotent superfield couples
to the standard MSSM field content (for which the Standard Model
superfields realize supersymmetry linearly). See also [50] for a proposal
closer to ours.

problemwith anomalies in the low-energy EFT (removing one
of theMSSMarguments that one needs a secondHiggs super-
field). For down quarks and leptons Yukawa couplings arise
in the usual MSSM way within the superpotentialW, but the
Yukawa couplings for the up quarks come from their coupling
to the X superfield in the Kähler potential. It is the presence
of the nilpotent superfield X that allows one to evade MSSM
arguments and have Yukawa couplings for both up and down
quarks with only a single Higgs.

3. TheHiggs potential also arises from the coupling of theHiggs
H to the nilpotent superfield X within the superpotential. Be-
cause XHH is dimension 3, it can only have dimensionless
coefficients and there is no 𝜇 problem. It is the constraint sat-
isfied by the Higgs superfield that ensures the quantity X
is chiral and so allows  to appear in the superpotential.

4.2. Phenomenological Speculations

A detailed phenomenological study of this scenario is beyond the
scope of this article, but we close with some speculations about
how this picture of nature – i.e. a very supersymmetric gravity
sector coupled to a non-supersymmetric matter sector – might
impact some of the puzzling questions of our time.

Planck-Coupled Dark Sector

The most obvious consequence of this framework is the in-
evitable complication of the gravity sector, which at the very
least must contain a gravitino. Explicit examples often involve
other gravitationally coupled supermultiplets, such as by includ-
ing a low-energy dilaton-axionmultiplet arising from the acciden-
tal scale invariances that are ubiquitous to higher-dimensional
supergravity[51–55] (and string theory[23]).
This suggests the existence of a rich spectrumof gravitationally

coupled particles, although one whose properties are constrained
by supersymmetry. Such a sector comes with potentially obser-
vational implications (and constraints) coming from cosmology
and astrophysics. The best known of these are the cosmological
bounds on the presence of a light gravitino or other superpart-
ner (or moduli, in explicit UV completions).[56–62] Although these
constrain allowed gravitino properties they are also not excluded
over a wide mass range.
Having a potentially large number of dark-sector particles also

underlines the importance of studying the three renormalizable
‘portals’ — Higgs-scalar, gauge-kinetic and neutrino — through
which Standard Model singlets (like Dark Matter) can interact
with Standard Model fields without suppression by heavy mass
scales (for DarkMattermodels that exploit the scalar portal in this
way see e.g. [63]).

Light Sterile Fermions

A special case of the general observation that the gravity sector
might be complicated is the supersymmetric requirement that it
must contain gravitationally coupled fermions. From the point of
view of the Standard Model sector these are electroweak singlets
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and so transform as would right-handed neutrinos. Although
they are not forced to mix with Standard Model neutrinos, they
are likely to do so unless this mixing is forbidden by a conser-
vation law or selection rule (such as lepton number conserva-
tion). Because this neutrino mixing is renormalizable (and so is
one of the portals) it is generically unsuppressed by super-heavy
mass scales.
This makes a superpartner fermions look much like the light

sterile neutrinos that are often postulated when neutrino model-
building, though with an important extra ingredient: supersym-
metry explainswhy they are light in the first place (e.g. theymight
be superpartners for the massless graviton or for an extremely
light dilaton). This is important because (unlike for perturba-
tive Standard Model particles) chiral gauge interactions do not
in themselves protect singlet fermions from getting very large
masses. Indeed, some examples along these lines – in which neu-
trinos mix with sterile fermions from the gravitational sector [31]
– already exist in the literature.

Axions

What was said above about fermions also applies to axions, since
supersymmetric chiral multiplets involve complex scalars and
this implies any light scalar field usually brings another along
in its wake. These scalars are very often axions in the sense that
they are the Goldstone bosons for shift symmetries and so tend
to couple derivatively to ordinary matter (if at all).
Derivative couplings and pseudoscalar parity make these

scalars harder to detect, but also mean that they could well be
ubiquitously present (as has been argued in [29] for instance).
They also potentially give rise to many potentially detectable ef-
fects and are subject to a variety constraints.[64–66]

A curious feature about axions that arise in supergravity is
that they usually arise within UV completions as 2-form Kalb-
Ramond gauge potentials, b𝜇𝜈 , that are related the the axion field
𝔞 by a duality transformation like 𝜕𝜇𝔞 ∝ 𝜖𝜇𝜈𝜆𝜌𝜕

𝜈 b𝜆𝜌. This means
in particular that the corresponding axion need not combine with
another field 𝜌 to form the combination 𝜌 ei𝔞 that linearly realizes
its shift symmetry at energies E ≫ fa, where fa is the axion’s decay
constant as defined by its kinetic term f 2a (𝜕𝔞)

2.

Primordial Fluctuations and Inflation

Perhaps the most striking feature visible in expressions like (9)
or (20) for the scalar potential is the generic appearance of a large
positive contribution to the scalar potential associated with the
breaking scale of supersymmetry. This is precisely the kind of in-
gredient sought when building inflationary models, and one that
is often hard to find when exploring UV completions (like string
theory) because limitations in current calculational technology
usually limit these to solutions are very close to a supersymmet-
ric limit.
Its ubiquity in the limit of strong supersymmetry breaking in

the matter sector suggests that the scarcity of inflationary solu-
tions in such searches is likely an artefact of the search tech-
niques rather than being a robust consequence of UV physics. In-
deed there is evidence[67] that non-supersymmetric constructions

(like physics localized on an antibrane within Type IIB string
vacua) are well-described in the low-energy theory in terms of 4D
supergravity coupled to a nilpotent goldstino field X .
Furthermore, if supersymmetric potentials can be relevant at

the very low energies of late-time cosmology it is likely to be
even more relevant at the higher energies at play during infla-
tion. What the large positive supersymmetry breaking energies
then suggest is that the energy scale of inflationary physics – high
though it is – is likely lower than the scale associated with su-
persymmetry breaking itself. This also fits with the picture that
more weakly coupled sectors appear to be more supersymmetric
at lower energies because the shallowness of the inflaton poten-
tial usually requires its couplings to be quite small.

4.2.1. Low-Energy Scalar Potential

Perhaps the most intriguing possibility that low-energy super-
symmetry brings is the possibility for improved naturalness
properties of the scalar potential at low energies.
As mentioned above, the inevitable presence in the potential

of the auxiliary fields associated with the supersymmetric gravity
and goldstino sectors can change the nature of the scalar poten-
tial’s UV sensitivity. For example, the contribution of a loop in-
volving a dangerous particle of massM can contribute to the low-
energy potential an amount 𝛿V ∼ M2F + h.c. (where F is an aux-
iliary field) rather than the naive 𝛿V ∼ M4. perhaps more generic
light scalar fields?
Although supersymmetry in itself is unlikely to make light

scalars or small vacuum energies natural, it is likely to help
other mechanisms for suppressing these quantities. (See in
particular[22] for an example that attempts to combine supersym-
metry and scale invariance to suppress UV contributions and so
to obtain naturally light scalars and small vacuum energies.)
Improved naturalness properties at very low energies would

change much about the way we think about how fundamental
physics can influence low-energy astronomy and cosmology, by
removing the taboo on light cosmologically active dilaton-like
scalars, possibly with many associated surprises. One such is the
recent discovery that the presence of an axion with the couplings
required to be the superpartner for a Brans-Dicke-like dilaton can
make solar system tests unable to detect the dilaton even if its
Brans-Dicke coupling is large enough that it would have been
ruled out in the absence of the axion.[68]

We welcome the possibilities of such a Brave New supersym-
metric gravitational World!
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