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Internal phoretic flows due to the interactions of solid boundaries with local chemical gradients
may be created using chemical patterning. Alternatively, we demonstrate here that internal flows
might also be induced by geometric asymmetries of chemically-homogeneous surfaces. We charac-
terise the circulatory flow created in a cavity enclosed between two eccentric cylindrical walls of
uniform chemical activity. Local gradients of the diffusing solute induce a slip flow along the surface
of the cylinders, leading to a circulatory bulk flow pattern which can be solved analytically in the
diffusive limit. The flow strength can be controlled by adjusting the relative positions of the cylin-
ders and an optimal configuration is identified. These results provide a model system for tunable
phoretic pumps.

I. INTRODUCTION

Microscopic flow generation lies at the root of many technological and biological processes. With the advent of
microfluidic manipulation techniques, fluids flowing in narrow channels may be used for medical diagnostics, biological
sensing, and nano-scale chemical synthesis, and it thus becomes essential to induce and control flow within a confined
geometry [1, 2]. Classically, this has been achieved by imposing a global external pressure gradient in the system or by
surface forcing, either using electrokinetic effects or by generating stresses at boundaries to locally drive the flow. The
latter mechanism is widely exploited by biological systems. Coordinated beating of biological flagella leads to self-
propulsion of micro-swimmers [3, 4]. A complementary process of microscale pumping involves directional flow driven
by boundaries, a mechanism used, for example, in embryonic development [5, 6], in the mammalian reproductive tract
[7], or for the transport of mucus in human lungs [8]. Recently, artificial devices have been designed in which surface
flow is generated by flapping flagella of entrapped bacteria [9].

In a coarse-grained view, all these surface-driven processes share the common feature that the bulk flow is generated
by imposing the motion of the fluid on the confining boundary. Classically, phoretic motion is induced by externally-
imposed gradients, such as electric field, temperature, or concentration [10]. In artificial biomimetic systems, this
may also be achieved using phoretic effects where the interactions between a surface and an external field gradient
create a local flow in the boundary’s close vicinity [11, 12] which then may be used for self-propulsion [13, 14, 15, 16],
migration of particles in externally imposed chemical gradients, or flow generation [17]. Local directional flow may
be achieved using chemical micropatterning [18], anisotropic wettability of the channel surface [19] or by spatially
varying surface charges of the walls [20].

An alternative method to locally induce phoretic flow with chemical patterning is to exploit geometrical asymmetries
in the channel walls [21, 22]. In this paper we further explore this concept by presenting a model system in which
the internal flow may be fully controlled by geometry. We consider a cavity consisting of two eccentric cylinders
and calculate the flow generated by the chemical activity of its surfaces. Assuming uniform chemical activity of the
walls, where the solute is consumed (or released) at a fixed rate, a fully analytical solution for the concentration
and flow fields may be obtained. We determine the flux in the resulting flow as a function of the cavity’s geometry,
characterised by the size ratio of the cylinders and the eccentricity in their position. An optimal configuration can be
identified in which the fluid motion is maximum. An important aspect of the considered system is that the flow rate
may be controlled solely by displacing the inner cylinder from a symmetric configuration, where there is no motion
by symmetry, to the most eccentric, which maximises the volumetric flux of the fluid within. This system represents
thus a tunable internal phoretic pump.

The paper is organised as follows. The general framework of phoretic motion and its solution using bi-polar
coordinates are first presented in §II. In §III, we analyse the resulting flow field and optimise the geometry to achieve
the maximal possible rate of the circulating flow. Finally, §IV summarizes the main findings and presents some
perspectives.

∗ m.lisicki@damtp.cam.ac.uk

mailto:m.lisicki@damtp.cam.ac.uk


2

II. PHORETIC FLOW GENERATION BETWEEN TWO ECCENTRIC CYLINDERS

A. Continuum phoretic framework

We follow the continuum framework of phoretic motion [13, 23, 24] and consider the two-dimensional flow generated
in a cavity contained between two eccentric and chemically-homogeneous cylinders of circular cross-section S1 and
S2, filled by a fluid of dynamic viscosity η and density ρ, containing a solute species of local concentration C and
diffusivity κ. Assuming that the chemical properties of the outer wall maintain a uniform concentration C0 on S1, we
focus in the following on the relative concentration c = C − C0. The inner wall’s chemical activity A quantifies the
fixed rate of solute release (A > 0) or absorption (A < 0) at the surface:

κn · ∇c = −A on S2, (1)

with n being a unit vector normal to the surface. Because of the short-range interaction of solute molecules with
the cavity’s boundary, local concentration gradients result in pressure forces imbalances and the fluid being set into
motion. Assuming that the interaction layer thickness is small compared to the cavity’s dimensions, the classical
slip-velocity formulation may be used [11, 13], and local solute gradients result in a net slip velocity

u =M(1− nn) · ∇c on Sj , j = 1 or 2, (2)

that drives a flow within the cavity. Here, M is the local phoretic mobility of the cylinders’ surface. Note that,
since the concentration is uniform on the outer boundary τ = τ1, Eq. (2) results in the classical no-slip boundary
condition there (u = 0). When the Péclet number Pe = UR/κ is small enough (e.g. small solute molecules), the
solute dynamics is purely diffusive and is thus governed by the Laplace’s equation

∇2c = 0, (3)

in the fluid domain. Here, R denotes the radius of S1 chosen as characteristic length in this work, and U = |AM|/κ
is the characteristic phoretic velocity generated along S2. Provided that inertial effects are negligible (i.e. Re =
ρUR/η � 1), the flow and pressure fields satisfy the incompressible Stokes equations

∇ · u = 0, η∇2u = ∇p. (4)

The diffusive Laplace’s problem for the solute thus effectively decouples from the hydrodynamic problem and may
be solved independently. Its solution for the concentration c can be used to compute the slip flow along S2, Eq. (2),
which then determines the flow field within the cavity by solving Eq. (4).

The problem is non-dimensionalised as follows: with R and U chosen as characteristic length and velocity respec-
tively, the characteristic concentration scale is set by |A|R/κ and the characteristic pressure reads η|AM|/Rκ.

B. Formulation of the non-dimensional problem

The two-dimensional cavity Ωf is enclosed between two eccentric cylindrical surfaces S1 and S2 of respective non-
dimensional radii R1 = 1 and R2. The centres of the cylinders are offset by a distance d (Fig. 1). The diffusion
problem for solute concentration reads

∇2c = 0 in Ωf , (5)

c = 0 on S1, n · ∇c = −A on S2, (6)

with the dimensionless activity A = A/|A|, and the associated hydrodynamic flow problem may now be formulated
as

∇2u = ∇p in Ωf , (7)

u = 0 on S1, u = M(1− nn) · ∇c on S2, (8)

with M =M/|M| = ±1 the dimensionless mobility.
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FIG. 1. Notation for the annular cavity consisting of two non co-axial cylinders. Bi-polar coordinates are represented by
surfaces of constant τ (solid) and σ (dashed). The surfaces τ = τ1 and τ = τ2 correspond to the boundaries of the outer and
inner cylinder, respectively.

C. Computation of the flow field

1. Bi-polar coordinates

It is natural in this problem to introduce the bipolar cylindrical coordinate system, −∞ < τ < ∞, −π ≤ σ < π,
related to the Cartesian coordinates (x, y) by

x =
a sinσ

cosh τ − cosσ
, y =

a sinh τ

cosh τ − cosσ
. (9)

with x being horizontal in Fig. 1, and the scale factors given by

hσ = hτ = h =
a

cosh τ − cosσ
=

a

sinh τ

(
1 + 2

∞∑
n=1

e−nτ cosnσ

)
. (10)

The last equality follows from representation of the scale factor h in terms of a Fourier series in σ. Since h is an
even function of σ, the series has only cosine terms. The unit vectors eτ and eσ, normal to the isolines of τ and σ,
respectively, are given by ∂x

∂τ = hτeτ and ∂x
∂σ = hσeσ, and form an orthonormal basis in 2D.

The isolines τ = τ0 are circles of radius a/| sinh τ0| centred on the y-axis at y = a coth τ0. In the following, we
choose τ1,2 > 0, i.e. both circular boundaries lay in the upper half-plane; their centres are separated by a distance d.
The parameters of the system (d,R1, R2) satisfy thus

R1,2 =
a

sinh τ1,2
, d = a(coth τ1 − coth τ2). (11)

The closest distance between the circles, the gap width H, is given by H = R1 −R2 − d.

2. Solute diffusion

The Laplace’s equation for the concentration field in two dimensions becomes

1

h2

(
∂2c

∂τ2
+
∂2c

∂σ2

)
= 0. (12)
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The Dirichlet boundary condition on the outer cylinder is c(τ1, σ) = 0. Noting that n(τ) = −eτ for τ = τ2, the flux
boundary condition, Eq. (6), follows as

eτ · ∇c =
1

h

∂c

∂τ
= A. (13)

Equation (12) is separable, and using Eq. (10), its solution satisfying these boundary conditions is

c(τ, σ) = AR2(τ − τ1) + 2AR2

∞∑
n=1

e−nτ2

n

sinh[n(τ − τ1)]

cosh[n(τ1 − τ2)]
cosnσ. (14)

3. Stokes flow

The Stokes flow problem may be conveniently formulated in bi-polar cylindrical coordinates using the stream
function ψ(τ, σ), such that

uτ = − 1

h

∂ψ

∂σ
, uσ =

1

h

∂ψ

∂τ
· (15)

The stream function is related to the flow vorticity by ω = −∇2ψ. Since the vorticity ω = ∇ × u is harmonic,
∇2ω = 0, we conclude that ψ satisfies the biharmonic equation

∇4ψ = ∇2∇2ψ = 0, (16)

with the Laplacian given in bipolar cylindrical coordinates in Eq. (12). As shown by Jeffery [25], it is most convenient
to consider the function Ψ = ψ/h for which Eq. (16) becomes a linear equation with constant coefficients(

∂4

∂τ4
+ 2

∂4

∂τ2∂σ2
+

∂4

∂σ4
− 2

∂2

∂τ2
+ 2

∂2

∂σ2
+ 1

)
Ψ = 0, (17)

with solution also given by Jeffery [26]. The boundary conditions on the cylinders are then written in terms of Ψ = ψ/h
using Eq. (15) and simplify, noting that because of symmetry and boundary conditions, the axis of symmetry and
both cylinders are on the same streamline. Therefore, Ψ(τ1,2, σ) = 0. The remaining velocity boundary conditions
read

∂Ψ

∂τ
= 0, on τ = τ1, (18)

∂Ψ

∂τ
= uσ(τ2, σ) on τ = τ2. (19)

The slip velocity on the surface of the inner cylinder is obtained from Eq. (2) using the solution of the solute
concentration problem (14) as

uσ(τ2, σ) =
MAR2

a

[
(d2 − 2d1 cosh τ2) sinσ +

∞∑
n=2

(dn+1 + dn−1 − 2dn cosh τ2) sinnσ
]
, (20)

with dn = e−nτ2 tanhn(τ2 − τ1). The resulting stream function reads

ψ = hΨ =
MAR2

cosh τ − cosσ

[
(α1 cosh 2τ + β1 + γ1 sinh 2τ + δ1τ) sinσ+ (21)

+

∞∑
n=2

(
αn cosh(n+ 1)τ + βn cosh(n− 1)τ + γn sinh(n+ 1)τ + δn sinh(n− 1)τ

)
sinnσ

]
,

with coefficients listed in Appendix A. This explicit form of the stream function may now be used to characterise the
flow.
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FIG. 2. Distribution of solute concentration c (left) and streamfunction ψ (right) within the cavity for R2/R1 = 0.43, H/Hmax =
0.01 and A = 1 (solute released by the inner cylinder) and M = 1 (the flow direction is reversed when AM = −1). The isolines
of ψ are the streamlines.

III. RESULTS AND DISCUSSION

In non-dimensional form, the flow resulting from the chemical activity of the bounding surfaces now solely depends
on two geometric parameters, namely the relative radii of the cylinders R2/R1 and the asymmetry parameter d/R1

controlling the eccentricity. The latter can be alternatively described by the relative gap width, 0 ≤ H/R1 ≤ 1−R2/R1.
The maximal gap width thus reads Hmax = R1 −R2.

For the needs of demonstration, in all of the following figures we truncate the series (14) and (21) at a finite,
sufficiently large n. A typical solute concentration profile in the eccentric annular cavity is depicted in Fig. 2. For
A > 0 (resp. A < 0), the requirement of a constant normal gradient at the surface of the inner cylinder, Eq. (6),
results in the concentration of solute being highest (resp. lowest) in the central area of the cavity, and decreasing
(resp. increasing) along the surface when moving towards the most confined region between the cylinders. In this
narrower gap, tangential concentration gradients are lower due to the shorter distances allowed for diffusive transport.
As a result, tangential gradients of concentration and slip flow arise on the surface of the inner cylinder. For AM > 0,
they are oriented from the narrower gap to the central part of the cavity. Two stagnation points are found on the
axis of symmetry and the slip flow is maximal on the lateral sides of the inner cylinder.

This boundary forcing generates two counter-rotating cells within the cavity, with the flow speed being maximal
at the surface of the inner (driving) cylinder. This is most easily demonstrated in Fig. 2, where the streamlines are
plotted. Note that the flow, and thus its direction, depends on the sign of chemical activity and phoretic mobility of
the boundary: if AM > 0, the vorticity is positive in the upper cell and negative in the lower cell.

An appealing property of the present setup is the ability to control the magnitude of the flow by tuning the geometry.
In the context of constructing an optimal flow-inducing device in such a geometry, it is important to determine which
configuration (size ratio and gap width) maximises the strength of flow. For a perfectly centred inner cylinder, the
concentration distribution is isotropic within the cavity, leading to no flow forcing and no fluid motion. Eccentricity
therefore plays a key role in driving the flow within the cavity, and most asymmetric configurations are expected to
stir the fluid most efficiently.

In order to quantify that intuition and the strength of flow generated by the chemical activity on the surface of the
inner cylinder, we calculate the total flux of the circulating fluid. Since the flux across a curve between two points A
and B is the difference of the stream functions ψ(B) − ψ(A), and given that on the surfaces of the cylinders ψ = 0,
the total flux in the circulation cell is given by the maximal value of the stream function ψmax in the fluid. In the
following, we focus on the volume flux per unit area of the cavity, Φ = ψmax/(R

2
1 −R2

2), as a measure of flow motion.
An alternative interpretation of 1/Φ also provides an estimate of the characteristic stirring time for the fluid, namely
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FIG. 3. (Top) Evolution of the scaled total flux in a circulation cell, Φ = ψmax/(R
2
1 −R2

2), with the relative gap width H/Hmax

for R2/R1 = 0.1, 0.43 and 0.8. (Bottom) Evolution of the optimal scaled flux Φopt (obtained for touching cylinders) with
R2/R1. The magnitude of the velocity field is also shown for three cases (same as above) showing the competing effects of
phoretic driving and wall hindrance on the flow.

a weighted average of the period of fluid particles motion along the streamlines.
For a given size ratio of the cylinders, we find an approximately linear increase of this flux with increasing asymmetry

(decreasing the gap size H), with a maximum attained in the limit H → 0 regardless of the size ratio (see Fig. 3, top).
This is consistent with the observation that auto-phoretic particles tend to be strongly repelled from a neighbouring
wall, as recently investigated by Uspal et al. [27] for a spherical active particle close to a planar wall. In this limit,
we look for the optimal size ratio which maximises the flow rate.

The value of the optimal scaled flux Φopt depends on the relative sizes of the cylinders. For large size ratios the
motion of the fluid is hindered by the no-slip boundary condition on the outer boundary and leads to small flow.
When the inner cylinder gets small, strong gradients induce large slip velocities; however, these are capable of moving
only the fluid in their immediate vicinity, resulting in most of the fluid remaining at rest. This is confirmed by Fig. 3
(bottom) where we plot the dependence with the size ratio of the maximum scaled volumetric flux Φ (obtained for
touching cylinders). Clearly, for size ratios 0 and 1 the flow ceases, and a maximum is present at R2/R1 ≈ 0.43.

Interestingly, our numerical results show the optimal size ratio which maximises the flow rate seems not to depend
on the asymmetry parameter H/Hmax, and therefore is a universal feature of the system, as shown in Fig. 4. This
suggests that this ratio may be determined likewise in the case when d ≈ 0, at only a slight asymmetry, and by taking
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FIG. 4. The dependence of the total flux Φ on the size ratio shows that the optimal size ratio R2/R1 ≈ 0.43 is universal and
approximately independent on the gap width H between the cylinders.

only the n = 1 term in Eq. (21), as this is enough to grasp the character of the flow in this far-field limit. Numerical
solution yields the optimal size ratio R2/R1 ≈ 0.41, that is within 5% from the value determined at small gap using
the full solution.

As an extension to the flow generation problem discussed above, we note that the fixed-flux condition (1) may be
generalised to a one-step chemical reaction by assuming the activity to be proportional to the local solute concentration,
A = −KC, with a constant reaction rate K [28]. The relative importance of the reaction rate and diffusive transport
of solute is then quantified by the Damköhler number Da = KR/κ. For Da � 1 the diffusion of the solute is fast
enough to ensure a homogeneous consumption of solute on the boundaries, while the limit Da � 1 corresponds to
slow diffusion being unable to compensate for the fast local reactive effects. As for the propulsion problem, the effect
of an increasing Damköhler number on our setup is a limitation of the inner wall’s chemical activity by the depletion
in solute resulting from the slow diffusion. As a result, the concentration gradients induced in the system are reduced,
and therefore the resulting slip velocities are generally lower. The main conclusions of the previous analysis, namely
the existence of an optimal configuration for touching cylinders and intermediate size ratio, remain valid nonetheless
(not shown).

IV. CONCLUSIONS

Recent years have brought significant attention to auto-phoresis as a promising mechanism for microscale fluid
manipulation and transport. The manufacturing of such miniature devices poses physical challenges which require
a deeper understanding of the physical mechanisms underlying the phoretic generation of viscous flows in confined
geometries. Our paper provides an example of a system in which the flow can be fully controlled by adjusting its
geometric configuration and a first attempt at optimising internal flows driven by phoretic effects.

Specifically we have analysed the model system of a two-dimensional cavity between two eccentric cylinders. Bulk
flow circulation can be induced within the cavity from the chemical activity of the walls (i.e. the release/absorption
of solute) and their phoretic mobility (i.e. their interaction with local solute content). Neglecting solute advection,
the problem has an analytical solution which was presented here in terms of the Stokes flow stream function. By
analysing the explicit formulae, an optimal configuration was identified for the system, quantified by the maximal
flow rate within the fluid volume, in terms of the position and size of the inner cylinder with respect to the outer one.
Replacing the fixed-flux boundary condition by a simple chemical reaction leads to a general decrease of the efficiency
of the device but similar overall conclusion.

Our results identify an optimal configuration, namely a maximum eccentricity achieved for two touching cylinders.
In that case, the narrowest gap is effectively closed and the geometry of the system resembles that of a circular cavity
with an inner protrusion. Optimal flow circulation then results from the concentration gradients enhanced by the
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local higher curvature of the boundary. This effect of curvature on phoretic flow enhancement is consistent with
recent work on phoretic propulsion [29]. The limit of touching cylinders deserves however more scrutiny; when H
becomes smaller than the typical interaction-layer thickness λ, the slip-velocity formulation of phoretic flows, Eq. (2)
breaks down, and the above analysis should be replaced by a full description of the solute-wall interactions within the
boundary layer.
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Appendix A: Coefficients of the stream function

The exact solution for the stream function (21) involves the following coefficients which depend solely on τ1,2:

α1 = X {2∆τ cosh 2τ1 − sinh 2τ1 + sinh 2τ2} , (A1)

β1 = X {2τ2 − 2τ1 cosh 2∆τ + sinh 2∆τ} ,
γ1 = X {−2∆τ sinh 2τ1 + cosh 2τ1 − cosh 2τ2} ,
δ1 = 4X sinh2 ∆τ,

αn = Yn {n sinh[2τ1 + (n− 1)τ2]− sinh[2nτ1 + (1− n)τ2]− (n− 1) sinh(n+ 1)τ2} ,
βn = Yn {−(1 + n) sinh(n− 1)τ2 − n sinh[2τ1 − (n+ 1)τ2] + sinh[2nτ1 − (n+ 1)τ2]} ,
γn = Yn {−n cosh[2τ1 + (n− 1)τ2] + cosh[2nτ1 + (1− n)τ2] + (n− 1) cosh(n+ 1)τ2} ,
δn = Yn {(1 + n) cosh(n− 1)τ2 − n cosh[2τ1 − (n+ 1)τ2]− cosh[2nτ1 − (n+ 1)τ2]} .

where ∆τ = τ1 − τ2 and

X =
d2 − 2d1 cosh τ2

8 sinh2 ∆τ(1−∆τ coth ∆τ)
, (A2)

Yn =
1

2

dn+1 + dn−1 − 2dn cosh τ2
n2 − 1− n2 cosh 2∆τ + cosh 2n∆τ

.
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