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ABSTRACT

The importance of designing airfoils to be robust with respect to uncertainties in operating conditions is well
recognized. However, often the probability distribution of such uncertainties does not exist or is unknown, and
a designer looking to perform a robust optimization is tasked with deciding how to represent these uncertainties
within the optimization framework. This paper asks “how important is the choice of how to represent input un-
certainties mathematically in robust airfoil optimization?”, specifically comparing probabilistically based aleatory
uncertainties and interval based epistemic uncertainties. This is first investigated by considering optimizations on
several algebraic test problems, which illustrate the mechanisms by which the representation of uncertainty be-
comes significant in a robust optimization. This insight is then used to predict and subsequently demonstrate that
for two airfoil design problems the advantage of doing a robust optimization over a deterministic optimization is
similar regardless of how the input uncertainties are represented mathematically. The benefit of this is potentially
eliminating the time required to establish an accurate representation of the uncertainties from the preliminary stage

of design, where time is a valuable resource.
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Nomenclature

x Design variables

n, Number of design variables

x* Design variables for optimal solutions

Y System model output / quantity of interest
u  Uncertainty vector

Lower bound of i design variable

=
[Nt

Upper bound of i design variable
g; J" constraint function

ng  Number of constraints

0r  Polynomial basis function

ar  Expansion coefficient

M Truncation of expansion
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p Polynomial chaos order in each dimension
u  Mean

¢ Standard deviation

fp Measure of performance

fr Measure of robustness

w, Performance measure weighting
w, Robustness measure weighting
A Magnitude of uncertainty

v Parameter subject to uncertainty

u Underlying uncertain variable

C;  Lift coefficient

Cp Drag coefficient

L/D Lift to drag ratio

1 Introduction

Airfoils are at the heart of many aerospace applications (e.g. aircraft wings, turbomachinery, rotors), and like many
engineering systems their design can now benefit significantly from the use of computational optimization [1]. However,
deterministically optimized systems often lie in extreme regions of the design space, and when realized, their performance
is often worse than predicted due to uncertainties in the design process. In airfoil design this phenomenon manifests itself as
“kinks” in performance polars when only a single operating condition is considered in the optimization [2, 3]. Therefore the
importance of taking account of uncertainties is becoming increasingly recognized both for airfoil design and engineering
design in general [4]. Robust optimization (RO) is the general optimization framework that obtains designs which maintain
good performance under uncertainties [5].

Uncertainties are usually classified as either aleatory (irreducible) or epistemic (due to a lack of knowledge) [6-8], and
different mathematical representations and propagation methods are appropriate for each type. In order to accurately resolve
the probability distribution of an uncertainty like Mach number, for example, historical data on operating conditions could be
used to obtain a histogram. However this data may not exist (if it is for a new concept), could be sparse, or could be hard to
obtain. Therefore, most uncertainties are somewhat epistemic early in the design process, but a designer wishing to perform
a robust optimization must decide how to represent each of the uncertainties mathematically and use a pertinent uncertainty
propagation technique.

This raises the question of how much this decision affects the results of a robust optimization. From the perspective
of accurately quantifying the uncertainty on the QOI, it is important to represent these input uncertainties appropriately, as
one might expect. Studies into uncertainty quantification in aerospace applications [9, 10] illustrate that erroneous output
uncertainty levels are predicted if all input uncertainties are assumed to be aleatory, leading to the development of methods
for mixed interval and probabilistic uncertainty quantification techniques [11, 12]. However, different quantifications of
output uncertainty do not necessarily mean different outcomes of a robust optimization, and so in this paper we present an
investigation into the effect of uncertainty representation on the results of robust airfoil shape optimizations.

In section 2 we provide background into robust airfoil design, robust optimization in general and different types of
uncertainties. In section 3 we perform investigations on algebraic test problems to identify the mechanisms by which the
mathematical representation of uncertainties affects robust optimizations. In section 4 we apply this insight to an exploratory
airfoil design problem: the robust lift to drag ratio maximization of an airfoil subject to multiple input uncertainties in inviscid
flow conditions; this is a problem that is known to give a significant trade-off between mean performance and robustness.
Then in section 5, we apply the insight to practical airfoil design problem: a robust drag minimization subject to lift and

geometric constraints and uncertain Mach number in viscous transonic flow. Finally in section 6 we conclude the paper.



2 Background

The limitation of deterministic airfoil optimization was noted in [2], where it was observed that an optimizer will exploit
the smallest possible length scales allowed by the airfoil’s parametrization scheme to improve the performance only at the
operating points considered, giving rise to “kinks” in the airfoil polars at these points. It was recommended that multiple
operating points should be sampled, where this number is of the same order as the number of design parameters, so that
performance is increased over a larger range of operating conditions: the multi-point approach to airfoil design. This
approach was later extended to be equivalent to a more formal probability based approach where the weights and points
are chosen to represent an integration of a PDF so that the expected value is explicitly optimized [3, 13]. Minimizing the
expected value of performance by considering multiple operating conditions has since been successfully applied to robust
airfoil optimization [14-17].

However, it is also recognized in the field of RO that only considering expected value in an optimization does not take
into account variation around this expected value, and so the classical approach to RO also considers a measure of robustness
(e.g. variance), and optimizes the trade-off between these two objectives; [5] provides a good overview of RO. Applications
of this more formal approach to optimization in airfoil design are more recent and limited [18].

Considering the robustness of the quantity of interest usually makes the problem multi-objective, since expected perfor-
mance and robustness frequently represent conflicting objectives in an optimization [19,20]. Therefore the general formula-

tion of a robust optimization problem can be expressed as:

minimize [ f,(Y (x,u)), f-(Y (x,u))]
X
subjectto  xl <x; <x¥ i=1,...,n, (D

gi(x) <0 j=1,..n

where Y is the output quantity of interest to be minimized (e.g. drag), g; are the constraints on the design, and f, and f,
represent measures of performance and robustness of Y respectively; under a probabilistic framework, for example, these are
commonly the mean and standard deviation (or variance).

The practical solution of this optimization problem, given a mathematical representation of the input uncertainties, re-
quires this information on the uncertain inputs to be propagated through to the quantity of interest, Y, to obtain the objectives
fp and f,. We refer to the two steps of representing and propagating uncertainties together as uncertainty quantification
(UQ). In RO the UQ inner loop is embedded in an optimization outer loop which modifies the design variables x in order to
minimize f, and f, as illustrated in Figure 1.

Considering Figure 1, representing the uncertainty differently (and using the corresponding propagation technique) can
be thought of as exchanging the uncertainty propagation box for different methods of evaluating the deterministic model of

Y at different values of u in order to provide measures of performance and robustness to the optimization outer loop.

2.1 Representations of Uncertainty

A number of different approaches to representing both aleatory and epistemic uncertainties mathematically are available.
Aleatory uncertainties are irreducible uncertainties due to unavoidable random behavior [6,21]: theoretically the probability
density function (PDF) could be obtained if enough data is available since they are due to a natural random process, so they
are usually treated within a probabilistic framework. However, as mentioned in Section 1, actually obtaining an accurate
PDF for input uncertainties is often a challenge in itself.

Epistemic uncertainties are fundamentally due to a lack of knowledge and various methods of quantifying them are
possible [22]; these methods lie on a spectrum from probabilistic where the structure is assumed to be known to intervals
where the structure is completely unknown (with techniques such as evidence theory in between [7, 12]).

Since it would be infeasible to investigate all possible representations of uncertainty, this paper uses four that are thought

to be representative of the literature and enough to perform a useful investigation: assign a uniform distribution, assign a
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Figure 1: Illustration of how uncertainty quantification fits as an inner loop within a robust optimization.

beta distribution, assign a Gaussian/Normal distribution, and assign an interval. The question under investigation concerns
primarily the choice between probabilistic and interval representations of uncertainty (representing the choice of aleatory or
epistemic), but we also consider common PDFs assigned to aleatory uncertainties, since even if a probabilistic framework
is the appropriate representation, it is useful to investigate how much the choice of PDF may affect the outcome of the

optimization. This is implemented by treating uncertain variables in the form:

V:Vn()m+AXM (2)

where vy, is the nominal value of an uncertain parameter (which could be a design variable or system parameter), u
represents the fundamental uncertainty, and A is a scaling variable to represent the magnitude of the uncertainty. The
magnitude of A will depend on the specific uncertainties in a problem and is separate to the mathematical representation of
u. When u is uniform or Gaussian, its standard deviation is kept consistent, so it is either uniformly distributed between -1
and 1 or normally distributed with zero mean and standard deviation 1/ v/3. When a beta distribution is used, the parameters
are set to o0 = 2, B = 2 and the range is over [-1,1], and when interval analysis is used these same bounds, [-1,1], are used.

These forms of u are illustrated in figure 2.

2.2 Uncertainty Propagation
Once the mathematical representation of the input uncertainties in u# has been established, they need to be propagated
through the system model to obtain the measures of performance and robustness of the QOI (f,, and f;) which are fed to

the optimizer. A lot of previous work in the fields of UQ and OUU has been done developing accurate and computationally
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over [-1,1] with parameters oo = 2, = 2, and an interval over [-1,1].

efficient methods to achieve this, and common methods include sampling based approaches, quadrature based approaches,
Taylor series based approaches (also sometimes known as moment methods), and stochastic expansion based methods [23].

From the point of view of this investigation, since we are interested in the representation of uncertainties, the propagation
is just an intermediate step. Therefore we simply require techniques of sufficient accuracy to effectively propagate the

relevant input uncertainties; in the following we highlight the methods used and where they fit within the literature.

2.2.1 Polynomial Chaos

Polynomial chaos (which has been used successfully many times in robust optimization [9, 24-26]) is an attractive
propagation technique partly because it creates a response surface approximation to the actual system output, which can be
used to propagate different types of uncertainties [9, 11]. It obtains a spectral expansion of the output of a random process
(which in the robust optimization case is the QOL, Y, at a given X: Xen) With Tespect to the uncertain input variable vector

U = uy,..., Uy, which is truncated to M terms for practical implementation:
[ee) M
Y(uvxdesign) = Z ak¢k(“) = Z akq)k(u) 3
k=0 k=0

where ¢ (u) are the polynomial basis functions (which are orthogonal with respect to a weighting function defining the basis)
and ay, are the coefficients of the expansion. The coefficients, a, can be found non-intrusively using a Gaussian quadrature
based integration of projections of the system onto each basis function in turn, requiring (p + 1)" system evaluations where
p is the polynomial order and n is the number of uncertainties (the dimensionality of the uncertainty space). We refer the

reader to the literature for further details on non-intrusive polynomial chaos (NIPC) [27,28].

2.2.2 Probabilistic Analysis for Aleatory Uncertainties

In a polynomial chaos expansion, if the weighting function of the polynomial basis matches the input uncertainty dis-
tribution (e.g. via the Askey scheme [29]), then statistical moments of the output can be obtained analytically from the

coefficients of the expansion:
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This is the method used in this paper for obtaining the mean and standard deviation of a QOI under probabilistic input
uncertainties (f), and f,).

We also note that since this NIPC method uses fixed quadrature points for a given representation of the uncertainty
throughout an optimization, finding this NIPC expansion to obtain the mean performance is similar to multi-point optimiza-
tion for robust airfoil design, except the weights and points are chosen to give the expectation under a given input PDF with
optimally chosen integration points. However, using the expansion we are explicitly considering the standard deviation of

performance in a formal robust optimization, which is not traditionally done in a multi-point approach.

2.2.3 Interval Analysis for Epistemic Uncertainties

When uncertainties are represented as intervals, they are propagated to produce a single output interval for the QOL.
This can be achieved for non-linear problems using optimization [30], where over the input uncertainty domain defined by
the intervals, the minimum and maximum outputs are found (also a non-intrusive approach). From this, the midpoint and
range of the output interval are used as f, and f, [31]. Figure 3 compares this to probabilistic UQ, where an entire PDF is
propagated and mean and variance used.

When evaluating the system model is expensive, like in airfoil design when CFD is being used, propagating the intervals
will also become expensive. To alleviate this, a response surface over the local uncertainty space can be used instead of
the original simulation. A polynomial chaos stochastic expansion creates such a response surface, and this is how interval
uncertainties are propagated in this paper: a gradient based optimizer is run twice to find the maximum and minimum value

of the polynomial chaos expansion over the uncertain variables’ range.
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Figure 3: Illustration of probabilistic and interval uncertainty propagation, where n input uncertainties (#) are propagated
through to the quantity of interest Y resulting in measures of performance and robustness.



3 Algebraic Investigations

Before considering airfoil design directly, in this section we first perform investigations on algebraic test problems (so
that many optimizations can be performed) in order to identify mechanisms by which the type of uncertainty representation
affects a robust optimization trading off f,, and f,. For this, three test functions are considered, each with varying degrees
of complexity and multimodality; they are plotted in figure 4 and detailed below. TP2 and TP3 are adapted from benchmark

problems for robust optimization research suggested in [32].

All three use two design variables to facilitate visualization of design space, and uncertainty is only introduced on the
design variables themselves to facilitate understanding their behavior and to make it straightforward to identify areas of
design space that are robust with respect to these uncertainties (flat regions). They are functions of z;, i € {1,2}, which are

determined from a nominal value (the design variable) x;, and its associated uncertainty u;:

7 = X; + A (5)

where A; is the magnitude of the uncertainty associated with variable i (see section 2.1). We note that only considering
uncertainties on the design variables for these problems does not lose generality, since they are still quantities of the form
Y(x,u). In the general case it is the non-linear behavior of Y (u#) := Y (x,u) at a given design x that is of interest; we only
consider uncertainty around the design variables for these test problems to facilitate visualization and understanding of this
non-linear behavior.

10— 10 10— 10

Figure 4: The three test functions: TP1, TP2, and TP3 (from left to right).
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The fraction of the overall design variable’s range that the uncertainty covers is referred to as A,e; (Aye; = A; /range(x;)),

and in this section the same A,,; is used for both design variables.

3.1 Preliminary Discussion

Before performing optimization based investigations on these test functions, it is useful to consider the fundamental
differences between propagating probabilistic and interval uncertainties to obtain f,, and f;.

The first key difference can be understood by considering a non-linear system which maps several uniformly distributed
inputs to an output; even though all the inputs follow uniform distributions, since the system is non-linear, the output PDF
may look radically different, it could be skewed, have one or more peaks of different heights, etc. However under an interval
analysis none of this structure is assumed or propagated: all that is known is the output interval. Figure 5 sketches different
PDFs over the same interval, illustrating how the skewness leads to the mean differing to the midpoint. It also illustrates how
PDFs with different shapes give rise to different variances, demonstrating how using different input PDFs for probabilistic
uncertainties can give rise to differing f), or f, measures and that the variance is not necessarily proportional to the interval
range.

The second difference is revealed by considering how the measures of f, vary over design space for a particular problem.
Figures 6 and 7 plot contours of the relevant measures of f, for TP1 under (uniform) probabilistic uncertainties and interval
uncertainties respectively for very small A,,; values (so the first effect discussed has negligible influence).

Here we observe that although the overall direction of the contours is similar on both figures, the interval range landscape
is distorted so that along certain lines in design space, the interval range is reduced relative to the corresponding variance.
This is due to the alignment of the direction of VY (as a function of u at fixed x) with one of the uncertainties, as illustrated
in figure 7. Since a local uncertainty space defined using intervals is always a hyper-rectangle, when the change in Y over
this space aligns with one of its diagonals, it enlarges the range of possible Y values compared to when it is aligned with one
of the axes, even if the shape of the response of Y is the same.

This is an effect which is only seen when there is more than one uncertainty, since for a one dimensional problem the

interval is always aligned with the gradient of Y. Furthermore, it is enhanced for this test problem because the uncertainties
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are exclusive to design variables, and so alignment of VY with the uncertainty space changes significantly. However, when
uncertainty is also on system parameters (e.g. Mach number), one would expect this alignment to change less significantly

over design space.

3.2 Optimization Setup

Now we investigate what impact these differences have on the results of a robust optimization. The NSGA-II algo-
rithm [33] is a common and efficient global multi-objective optimization algorithm used in practice for bi-objective robust
optimization [20], and so is the optimizer used for all optimizations in this paper. It is an evolutionary based algorithm,
where at each iteration a population of candidates are selected, combined and mutated to produce offspring which can re-
place candidates for the next generation based on non-dominance. The use of algebraic test functions allows the repetition
of optimizations many times to reduce the influence of the stochastic algorithmic decisions on the observations.

The uncertainties are propagated using the NIPC method described in section 2.2; an order 3 NIPC expansion is used
(using a total of 16 function evaluations per design point for the 2D uncertainties in the test cases).

For these investigations, A,,; is varied to be different values, from 0.1% up to 100%, and the goal is to identify how
similar robust optimizations using different UQ methods are under different magnitudes of uncertainty for the three test
problems. For these problems, for clarity, we consider three uncertainty representations: uniform distribution, Gaussian

distribution and interval.

3.3 Optimization Heat-maps

Since we are essentially interested in the impact of the UQ method on how a multi-objective optimization method selects
designs, in order to compare optimizations under different uncertainty types we look at design space through the creation of
so called “heat-maps”.

These heat-maps are obtained as follows: 50 NSGA-II optimizations (each using a population size of 50 over 20 gen-
erations) for each UQ method are performed, every time a candidate design is selected to remain in the population of the
algorithm it is recorded, and then a PDF over design space is plotted using kernel density estimation with all of these
recorded points as sample data. Figure 8 gives an example of a heat-map created from 50 optimizations of TP2 where the

input uncertainties are quantified using uniform distributions.

X2

Figure 8: Demo heatmap for part of the design space of TP2 under uniformly distributed probabilistic uncertainties, with
contours of heatmap probability values labeled.

The idea is to quantify which areas of design space a robust optimization converges to and finds non-dominated designs
in, and it is thought that creating heat-maps like this is more revealing than only looking at the Pareto fronts which result

from the optimizations. The selection operator in the NSGA-II algorithm includes designs in lower ranks of non-domination
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Figure 9: Heat-maps for TP1 at relative uncertainty magnitudes of 0.01, 0.1 and 0.2
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Figure 10: Heat-maps for TP2 at relative uncertainty magnitudes of 0.01, 0.1 and 0.2

(designs that would be non-dominated if the designs on the Pareto front were removed), which highlights any multi-modality

introduced into the function as a result of considering robustness, which could be lost if only the Pareto front is considered.

3.4 Results

Analysis of the results found by obtaining heat-maps for different values of A,.; for the three test problems is given
here. What we are actually interested in can be thought of as a “signal to noise ratio”, where the signal is the designs
the optimizer would select under the “true” uncertainty representation, and the noise is the error introduced by using a
different representation. This section examines the heat-map contours themselves to visualize this ratio, and then quantifies
the difference between the heat-maps as a measure of this ratio.

3.4.1 Heat-map Contours

Figures 9, 10 and 11 give the heat-maps for TP1, TP2 and TP3 respectively (showing only the contours at heat-map
probability values of 0.02 and 0.15 for clarity) at three values for A,,;.

On Figure 9a (for TP1 and A,,; = 0.01) the uniform and Gaussian heat maps are very similar, whereas the interval
heat-map is noticeably different. The peak is in the same location, but the robust area of design space is much more focused
around x; = 0 due to the effect illustrated by Figure 7. For the other two test problems, this effect becomes less pronounced,
and for low uncertainty magnitudes the heat-maps for all three UQ methods are very similar. This indicates how the effect

from Figure 7 essentially distorts peaks on the interval heat-maps compared to the probabilistic ones, but if overall design
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Figure 12: Average absolute errors between the heat-maps at different values of A,; for the three test functions

space is multi-modal with several peaks and/or valleys then the overall landscape of Y dominates so that the “signal to noise
ratio” is larger and the heat-maps become more similar.

For all three problems, as A,,; is increased, the heat maps become less similar. This is mainly seen as further distortion
of the heat-map peaks compared to one another (while they remain roughly in the same location of design space), indicating
an inverse relationship between the non-linearity of the local uncertainty landscape of ¥ and the similarity of UQ methods to
a robust optimization.

Observations about the multimodality in a robust optimization are also made: TP3 is the most multimodal to a determin-
istic optimizer, containing two distinct optima and several valleys, whereas TP2 becomes the most multimodal to a robust
optimizer. TP1 also changes from being distinctly unimodal to having a large area of design space of interest to the optimizer.
This indicates how the design space of a unimodal problem can become more multi-modal and complex when robustness is
introduced, which reflects the fact that performance and robustness often represent conflicting objectives so a larger amount

of design space becomes of interest to an optimizer.

3.4.2 Average Errors

To quantify how similar/different the heat-maps are (measuring the signal to noise ratio), the average absolute difference
between the probability values of two heat-maps over the design space is evaluated numerically (using a grid of 50 by 50
points). However, the value is only logged if both heat-map probability values are greater than 0.01, so that accumulation
errors over large areas on the heat-maps that are of little interest to the optimizer are avoided. This average error is plotted
for different values of A,.; on Figure 12; each point is the result of 50 NSGA-II robust optimization runs. Even though the



graphs are not fully smooth, and some noise exists due to the stochastic nature of how the heat-maps are formed, overall

trends can still be observed.

We can identify the influence of both mechanisms discussed in section 3.1 on these plots. The first effect gives rise to
the overall shape of the curves seen on all three plots where there is a positive relationship between A,.; and the difference
between the heat-maps, whereas the second effect causes the three curves on each plot to become less spread out as the

multi-modality of the function increases from TP1 to TP3.

For all three test problems, considering the probabilistic uncertainties, the uniform vs Gauss error follows a similar shape
and similar values (beginning at < 1072, and ending at ~ 10~!), further demonstrating that increasing the non-linearity of

the objective function with respect to the uncertainties means that the UQ method affects a robust optimization more.

For TP2 and especially TP3, considering the interval vs probabilistic lines, the effect of figure 7 is effectively drowned
out by the multi-modality of the function so that all three lines follow the same pattern - the same as the gauss vs. uniform
line on the TP1 plot.

This algebraic investigation demonstrates that the amount that the uncertainty representation affects a robust optimiza-
tion depends on several factors: the number of uncertainties, the non-linearity of the objective function with respect to the
uncertainties, whether the orientation of Y as a function of the uncertainties varies in design space, and the multi-modality
of the problem. In this section we have identified the influence of each of these on the robust optimization of three algebraic

test problems.

3.5 Significance of Algebraic Investigations

This section has given insight into the mechanisms by which differing uncertainty representations give rise to different
results in a robust optimization. We offer discussion in terms of an effective signal to noise ratio, where the signal is the
design landscape under the true representation of uncertainty, and the noise is the distortion to this landscape due to using a

different representation.

Ideally, there would be some sort of test a designer could perform before doing an optimization to quantify what this
signal to noise ratio would be for a particular problem, but due to each engineering design problem being non-linear in its
own unique way, we envisage attempting to design such a test to not be a fruitful endeavor. Instead, we offer this qualitative
insight so that if a designer has a conceptual understanding of the physical drivers present in a problem, they can make
an informed decision as to how much effort should be spent on ensuring they are using the correct representation of the

uncertainties.

In this paper we are interested in airfoil shape optimization, and so we apply this process to two design cases. Firstly an
exploratory problem that is known to give a strong trade-off between performance and robustness: the inviscid lift to drag
ratio maximization of a NACAOQ012 airfoil in the transonic regime. Secondly a practical airfoil design problem: a lift and

geometrically constrained drag minimization of an RAE2822 airfoil in the transonic regime.

4 Robust Airfoil Lift to Drag Maximization

The first test problem considered in this paper concerns the unconstrained maximization of the lift to drag ratio of an
airfoil in inviscid flow conditions. This problem is not intended to represent practical aerofoil design, since inviscid flow
does not capture the full physical behavior and the conditions are not necessarily representative of a typical aircraft operating
point, rather this problem is chosen to explore the ideas developed in section 3 because similar problems considered in the
literature have been shown to give a strong trade-off between performance and robustness [18,34]. This allows us to examine
the similarity of a whole Pareto front instead of a single optimum design, and allows us to apply the insights developed in

the algebraic investigations.



4.1 Computational Approach

The drag at a given Mach number is determined using the SU2 open source CFD solver to solve the compressible Euler
equations; SU2 has been well documented and validated on a number of test cases [35]. A baseline mesh (provided by SU2
for a NACAO0O12 transonic flow inviscid test case) consisting of 10,216 triangular cells made from 5,233 points is deformed
to bound the new surface defined by the Hicks-Henne bump amplitudes using the mesh deformation code available within
SU2. A zoomed in snapshot of the baseline mesh around the airfoil is shown in figure 13, and it extends to a circular farfield
boundary of radius 20 chord lengths. The solver is run until the density residual has reached 107, which is enough to give

lift and drag coefficients to 3 significant figures.
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Figure 13: Close-up of the baseline mesh for the undeformed NACAQ0012 airfoil.

To validate the adequacy of this mesh and the SU2 solver, it is compared to results given in [36], where the flow field
for transonic flow over the NACAQO012 airfoil obtained using the well known FLOS2 solver and a very fine mesh resolution
is presented. Figure 14 gives the surface pressure coefficient plots from [36] along with those obtained using the SU2 setup

for this paper; the flow conditions are Mach 0.8 and an angle of attack of 1.25°.
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Figure 14: Comparison of the SU2 solver on the baseline mesh at M=0.8 and o=1.25 with the FLOS82 solver on an extremely
fine 4096x4096 mesh (taken from [36]).



It is observed that away from the shocks the pressure distribution is well captured using the SU2 solver on the baseline
mesh and that the locations of the shocks match the validation case. However, the shocks themselves are not as accurately
captured; they are smeared over a larger distance along the surface. However, the overall pressure distribution is captured
well and so this solver is sufficient for the purposes of this study: we do not require highly accurate numerical results, rather

we require the solver to capture the key flow features that give rise to the behavior of an airfoil under the uncertainties.

4.2 Optimization Setup

The shape parameterization is achieved using Hicks-Henne bump functions at different chord locations on both surfaces
of a NACA-0012 baseline airfoil, and the amplitudes of these bumps constitute the design space of the optimization. The

locations of the Hicks-Henne bumps and their design ranges are given in table 1.

Table 1: Surface, location, and max/min amplitudes of Hicks-Henne bump functions for the airfoil shape parametrization
(both as a fraction of chord length).

Surface Location Design Range

U 0.05 +1x1073
U 0.15 +6x 1073
U 0.30 +9x 1073
U 0.45 +9x 1073
U 0.60 +6x 1073
U 0.80 +2x 1073
L 0.10 +1x1073
L 0.30 +7 %1073
L 0.55 +7 %1073
L 0.80 +2x 1073

The uncertainties for this problem were set up to be similar to previous studies in the literature that consider multiple
uncertainties over a smaller range than the drag minimization problem that will be considered in Section 5 (e.g. [18,23, 34,
37,38]). Here we consider uncertainties in Mach Number, Angle of Attack, and a shape design variable. Realistically, all the
shape design variables will have similar uncertainties due to manufacturing tolerances but, especially for this problem, only
a few will significantly impact the performance: those on the upper surface that influence the shock location. Therefore to
keep the dimensionality of the problem reasonable, but still capturing the key behavior, only one shape uncertainty is taken
into account, which is on the amplitude of the Hicks-Henne bump function at 45% chord on the upper surface. Similarly to

Section 3, we only consider three uncertainty representations for clarity: uniform, interval and Gaussian.

Table 2: Uncertain variables and their distributions for the airfoil robust design problem.

Uncertain Interval / Normal
Variable Uniform
Mach No. [0.66, 0.70] N(0.68, 0‘—\%22)
0.12
AoA [4.9,5.1] NG, e )
2

HH Amp.  [-0.001,0.001]  N(0, %81




The optimization is setup as a minimization problem that minimizes both f,, and f, for —L/D:

minixmize [ fp(=L/D(x,u)), f;(—L/D(x,u)) ]
(6)

subject to xfgxigx}‘ i=1,...,n,

where u consists of the uncertainties given in Table 2, and the NSGA-II optimizer is run for 30 generations of populations of
60 candidates.

We solve this multi-objective optimization problem using the same NSGA-II algorithm that was used in Section 3, and
it is run for 30 generations using populations of 60 candidates. To aid the optimizer, the Hicks-Henne bump amplitude
design variables are normalized with respect to their bounds so that the optimization algorithm itself deals with 10 design
variables that all have the same bounds (0.0 to 10.0). This allows the combination and mutation operators to work over
an appropriately scaled design space. Additionally, we first run a deterministic optimization (using NSGA-II with a single
objective of L/D(x,0.68).

4.3 Polynomial Chaos Convergence

To establish the order of the NIPC expansion required to accurately capture the behavior of L/D due to the uncertainties,
a convergence study is shown here. This is done for a design taken from the Pareto front found in a preliminary study, since
this exhibits complex behavior likely to be encountered for solutions on the final Pareto front, more so than the baseline
NACAO012 airfoil.

Figure 15 gives the PDF of L/D (obtained using a kernel density estimate from 30,000 samples of the NIPC response
surface) as the order is increased, and Figure 16 gives the relative error of the mean and standard deviation estimates com-
pared to the 6th order expansion’s estimates. The number of CFD calls required to train each expansion using tensor product

quadrature is (p -+ 1)* where p is the order, and so increasing the order comes at a large computational cost.
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Figure 15: Convergence of the NIPC expansion PDFs under 3 uniformly distributed uncertainties.

From this convergence study, it appears that at least an order 3 expansion would be sufficient to capture the response
accuracy (mean and variance within less than 0.01% of the 6th order values and a visibly matching PDF), requiring 64
CFD calls for each design candidate to propagate the uncertainty. Visible matching of the PDFs indicates convergence of
the underlying 3-dimensional response surface to the CFD response over the uncertainty range, which is what matters for
capturing the output interval and the non-linearity of the output with respect to the uncertainties; this is also deemed sufficient

under an order 3 expansion.
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Figure 16: Convergence of the mean and standard deviation estimates from the PC expansion to those obtained with a 6th
order expansion under 3 uniformly distributed uncertainties

The computational cost of each overall optimization is reduced using a variable order expansion method; this involves
using a 1st order expansion for the first part of the optimization in order to quickly find regions in design space where non-
dominated designs are likely to be found, and then switching to a 3rd order expansion for the last part of the optimization in

order to accurately capture the desired Pareto front. For these optimizations, the order was increased after 15 generations.

4.4 Insight from the Algebraic Investigations

Using the results of Section 3, we can make predictions about the signal to noise ratio for this problem. The behavior
of lift and drag as functions of Mach number, angle of attack and the shape parameter are expected, for feasible designs, to
not be significantly non-linear over the range of the uncertainties, which is most comparable to low A,.; values on the test
problems.

Furthermore, the uncertainties in this airfoil design problem include two design parameters and only one design variable,
so we expect the effect from Figure 7 to not be significantly different between designs. The multi-modality of aerodynamic
shape optimization is discussed in [39], where it is illustrated that typical 2-D airfoil optimization problems are unimodal to
deterministic optimizations, so we do not expect the signal to noise ratio to be improved by multi-modality of the problem.
However, from consideration of the other mechanisms we can be reasonably confident that the signal to noise ratio will be
high for this problem and so we expect designs on the Pareto fronts resulting from optimizations under different uncertainty

representations to be similar.

4.5 Results

Since we are actually interested in the designs on each Pareto front (the corresponding Pareto set) and not the values
of f, and f, on the fronts themselves, we evaluate the designs from the Pareto set resulting from each optimization under
uniformly distributed uncertainty and plot them all on the same y; /p vs 67 /p graph, given in figure 17.

Also, in order to further examine the underlying designs, we look in more detail at designs from each Pareto set which,
when analysed under uniform uncertainties, are very close in objective space at three locations along the Pareto front (labeled
on Figure 17 as selected designs). The relevant f,, and f; using the different UQ methods for the three designs taken from
the uniform front (alongside the deterministic optimum) are given in table 3, the PDFs of these are plotted in figure 18, and
the surface pressure distributions of the selected designs from all three fronts are plotted on figure 20.

From Figure 18 it can be observed that all of the PDFs from the designs on the uniform Pareto front show non-linear
behavior: they are skewed and some have two identifiable peaks. The PDF of the deterministic optimum design under

Gaussian uncertainty is also given for comparison where it is less skewed than the uniform PDF with a more central peak,
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Figure 18: PDFs of the selected designs from the uniform Pareto front under uniform uncertainties along with that of the
deterministic optimum under both uniform and Gaussian uncertainties.

Table 3: f, and f, of the selected designs from the uniform Pareto front when analyzed using the different UQ methods.

Selected Design  DetOpt pu~60 u~50 u~40

HMuniform 67.3 61.2 49.5 40.9
HMgaussian 66.6 61.0 49.6 41.0
mid pointiyserval 88.2 69.0 48.7 39.2
Ouniform 24.8 17.4 7.69 3.68
Ogaussian 23.6 16.5 7.59 3.80
rangeinserval 112.0 72.6 32.8 31.9

and this propagated difference in structure of the uncertainty is what gives the different 4 and ¢ values under the different

probabilistic uncertainties observed in table 3. Note that under interval uncertainties, none of this structure is propagated.



Despite the differences in the output uncertainty information propagated in each optimization, it is clear from Figure 17
that all three Pareto fronts collapse onto similar curves when analyzed under the same type of uncertainty, suggesting that

similar designs have been found by all three optimizations (agreeing with our prediction in section 4.4).
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Figure 19: Corresponding airfoil shapes for the selected designs on Figure 17.
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Figure 20: Surface pressure distributions for the selected airfoils from the Pareto fronts that have similar 4 and ¢ under
uniform uncertainties: yy /p ~ 40, uz/p ~ 50, uz/p ~ 60.

The airfoil shapes and surface pressure distributions on figures 19 and 20 further demonstrate the similarity of the
designs, in that their shapes are visibly similar and the same underlying physical mechanism driving the performance vs
robustness trade-off is captured well by all three robust optimizations. In this case, the Pareto optimal designs have similar
pressure distributions over the lower surface and the leading and trailing edge of the upper surface, however the location of
the shock determines where along the robust Pareto front the design is. Higher mean L/D airfoils have the shock further aft

compared to more robust airfoils, and this is seen regardless of how the uncertainty is quantified.



5 Robust Airfoil Drag Minimization

The second design problem considered is a drag minimization subject to lift and geometry constraints and Mach number

uncertainty; this reflects a practical airfoil design problem commonly considered in the literature [2,3,13,16,40,41].

5.1 Computational Approach

The drag at a given Mach number is determined using the SU2 open source CFD solver to solve the compressible RANS
equations. The Reynolds number is set to 6.5 x 10° and the Spalart-Allmaras turbulence model is used. The design space
is parameterized using Hicks-Henne bump functions: for each design a baseline mesh (provided by SU2 for a RAE2822
transonic RANS test case), consisting of an unstructured mesh made up of 13937 points, is deformed to bound the new
surface defined by the Hicks-Henne bump amplitudes using the mesh deformation code available within SU2. A zoomed
in snapshot of the baseline mesh is given in Figure 21, and it extends to a circular farfield boundary of radius 100 chord
lengths. This mesh is one of the cases in [35] used to validate SU2, where it shows good agreement with experimental data
at transonic conditions, so we do not repeat a comparison here. Again, the solver is run until the density residual is below

1075, which is enough to give lift and drag coefficients to 3 significant figures.
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Figure 21: Baseline mesh for the RAE2822 airfoil

5.2 Optimization Setup

For this problem we consider a lift constraint where C; = 0.4 and a geometry constraint where a torsion box of dimension
0.5 x 0.75 chord lengths that just fits inside the initial RAE2822 geometry must also fit inside any new design, representing
structural requirements. The design space is parameterized using the 14 Hicks-Henne bump functions given in Table 4 along
with their bounds (which define the limits of design space).

We consider uncertainty in Mach number, which embodies uncertainty over a range of operating conditions, and all four
uncertainty representations: Mach number is uncertain over the interval [0.7,0.8] for uniform, beta and interval uncertainty
representations and distributed according to N(0.75,0.1/+/3) for the Gaussian representation (as described in Section 2.1).

At each Mach number, the angle of attack is adjusted so that C;, = 0.4 (it is iterated until the calculated value is within
40.0005 of 0.4), and since the constraints are not affected by the uncertainty, we retain the robust optimization formulation

proposed in Section 1 where it is the impact of uncertainties on the objective function that is of interest. Therefore we are



Table 4: Surface, location, upper and lower bounds of Hicks-Henne bump functions for the airfoil shape parametrization (all
as a fraction of chord length)

Surface Location Upper Bound Lower Bound

U 0.05 10x 1073 —10x 1073
U 0.20 10x 1073 —15x1073
U 0.40 10x 1073 —20% 1073
U 0.60 10x 1073 —20%x 1073
U 0.75 10x 1073 —5%x1073
U 0.86 10x 1073 —5%x1073
U 0.93 10x 1073 0x1073

L 0.05 10x 1073 —10x 1073
L 0.20 10x 1073 —20x 1073
L 0.40 10x 1073 —25%x 1073
L 0.60 10x 1073 —10x 1073
L 0.75 10x 1073 —5%x1073
L 0.86 10x 1073 0x1073

L 0.93 10x 1073 0x1073

solving the following optimization problem:

minimize [ f,(Cp(x,M)), f,(Cp(x,M)) ]

X

subjectto xl <x; <x¥ i=1,...,n, o
Cr(x,M)=04
zZ(x) <0

where z(x) is the protrusion of the torsion box outside the surface geometry for a given design.
We solve this multi-objective optimization problem using the NSGA-II algorithm, which is run for 50 generations using
populations of 50 candidates. We first run a deterministic optimization (using NSGA-II with a single objective of Cp(x,0.75)

for 100 generations).

5.3 Polynomial Chaos Convergence

To establish the order of the NIPC expansion required to accurately capture the behavior of drag due to the uncertainties,
a convergence study is shown here: this is done for the baseline RAE2822 airfoil. Figure 22 gives the PDF of Cp (obtained
using a kernel density estimate from 30,000 samples of the NIPC response surface) as the order is increased, as well as the
relative error of the mean and standard deviation estimates compared to a 6th order expansion’s estimates. The number of
CFD solves required to train each expansion is (p+ 1) where p is the order.

From these results, a 4th order NIPC expansion (requiring CFD evaluations at 5 Mach numbers) is deemed to be

sufficiently accurate, and so is used throughout the optimizations.

5.4 Insight from the Algebraic Test Problems
For this test problem, we are considering a fairly large uncertain Mach number range which includes the transonic drag
rise. This is illustrated in Figure 24 where the drag polar over Mach number for the RAE2822 baseline design is plotted.
There is a significant drop off in performance for the baseline design over the upper half of the uncertainty range, and so
we expect a robust optimization to give significant benefit, not only over this baseline case but also over the deterministic op-

timum which only considers M = 0.75. Additionally, since this drag rise is a significant non-linearity, giving a more skewed
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Figure 23: Convergence of moments from the NIPC expansion when Mach number is uniformly distributed over [0.7, 0.8]
for the baseline design.

PDF of the objective than the previous test problem (compare figure 22 with figure 15), we do expect the representation of
uncertainty to have an impact on the results of the robust optimizations and so do not expect the same optimum under each
representation of the uncertainty. This would agree with a previous brief investigation on the impact of using different PDFs
for Mach number on robust airfoil optimization [15], nevertheless we do expect that the same physical drivers giving rise to
the robustness of the optimum airfoils to be captured in all four cases.. Additionally, since only one uncertainty is present
the effect from Figure 7 will not play a role. Therefore, while we do not expect the same optimum design in each case, we

do expect the signal to noise ratio discussed in Section 3.4 to be high.

5.5 Results
On Figure 25, we plot all points from the optimization under each type of uncertainty in the corresponding objective
space in grey. The first observation is that there is a weak trade-off between f, and f; for this design problem. The trade-off

does vary between the uncertainty representations, with the largest trade-off being found under Gaussian uncertainty, but the
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Figure 24: Drag polar for RAE2822 airfoil for C;, = 0.4

Pareto front is still small and only a few designs are of interest. This result is interesting in itself, since it implies that for
drag-minimization based airfoil design, only considering expected performance (or interval midpoint) is sufficient to also
obtain a robust design. This is likely because when considering only the drag at a given lift coefficient over Mach number,
delaying the drag rise is the main physical driver for improving the expected value since there is such a sharp drop off in
performance after its onset, but this is also the main driver for reducing the variance/interval range.

Therefore for comparison the design that is closest to the origin for each uncertainty case is taken as the optimum design
for that case. Then to compare the similarity of these designs, they are analyzed under all four uncertainty representations
and the resulting f, and f, values are plotted in objective space on the corresponding plots. The baseline RAE2822 design
is also plotted on these points as the grey diamond. Additionally on Figure 26 we give the convergence of these NSGA-II
optimizations, in terms of distance of the closest point to the origin.

We compare the airfoil shapes corresponding to the optimum design in each case on Figure 27, and to further investigate
the similarity of the designs we plot the corresponding drag polars over Mach number on Figure 28.

From these results, we can see that the airfoil shapes give rise to noticeably different drag polars. The beta optimum
has the worst performance at higher Mach numbers since the PDF places the least emphasis on these conditions out of the
uncertainty representations, the interval has the best, and the uniform and gauss optimum lie between these two (similar
results are obtained in [15]). The deterministic optimum has the best performance at the nominal Mach number of 0.75 but
sees a severe drop in performance at higher Mach numbers. It is also noticeable that the drag polars of these optimum designs
are similar to those of airfoils optimized using the multi-point approach in the literature. For example, in [14], a multi-point
optimization of the RAE2822 airfoil subject to thickness constraints and C;, = 0.733 (at Mach numbers 0.68, 0.71, 0.74, and
0.76, with corresponding weights 1, 1, 2, and 3) is performed. The absolute values of the drag polar for the optimum design
are different, but its shape compared to the RAE2822 is similar to the robust optimum designs obtained in this study. As
discussed in section 2.2.2, an NIPC estimate of the expected performance is essentially a multi-point method with the points
and weights chosen to optimally integrate over the input PDF. Since for this problem there is limited trade-off between mean
performance and robustness, the optimal robust design chosen in each case is close to the minimum mean design, so we
would also expect a multi-point approach to produce a similar optimum design to those obtained here.

However, the most significant result for this study is that when the four optimum designs are analyzed under the same
uncertainty they are close together in objective function space, and importantly they are closer together than the distance to
the deterministic optimum from any of the designs. In essence, the ratio of the distance of the group from the deterministic
optimum to the maximum distance between designs in the group quantifies the signal to noise ratio from a designer’s point

of view; this is annotated on Figure 25b. Further, all four cases Pareto dominate the deterministic optimum, and so we
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Figure 25: Results of the robust optimization when the uncertainties are represented mathematically in four different ways
(grey), along with the optimum design from each optimization analyzed with the corresponding representation (black).

can conclude that for this robust airfoil design case, the benefit of performing a robust optimization over a deterministic

optimization is similar regardless of how the input uncertainties are quantified mathematically.

6 Conclusions

In this paper we have presented an investigation aimed at shedding some light on the question “’to what extent does
the mathematical representation of uncertainty affect the results of a robust optimization?”, specifically concerning robust
airfoil design. Clearly, this question cannot be answered in a general sense, since different engineering design problems
exhibit different non-linear characteristics. However, in this paper we offer insight, in terms of a signal to noise ratio, into the
mechanisms by which different representations of uncertainty can affect the results of robust optimizations by performing a
large number of optimizations on algebraic test problems. Through this we are able to obtain useful conclusions for robust
airfoil optimization by applying this insight to an exploratory lift to drag ratio maximization airfoil design case and a practical
lift and shape constrained drag minimization airfoil design case.

Our main conclusion is that, for typical magnitudes of uncertainty, the benefit of performing a robust optimization for
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Figure 27: Comparison of optimum airfoil designs, as well as the bounds on design space (dashed grey) and initial RAE2822
design (solid grey).

airfoil design over a deterministic optimization (the signal) is large compared to the differences between optimum designs
arising due to mis-representing the uncertainty (the noise). For the unconstrained lift to drag ratio maximization in Section
4, this manifested as similar Pareto sets being obtained under different uncertainty representations in contrast to the single
design obtained from the deterministic optimization. For the constrained drag minimization problem in Section 5, this
manifested as the grouping of the optimum designs under different uncertainty representations in f,/f, space being small
compared to the group’s distance from the deterministic optimum, which was also Pareto dominated by the group.

Since the noise introduced by uncertainty representation is not zero, this work is perhaps most relevant to preliminary
stages of design, where the result of a robust optimization will be progressed on to further design stages for refinement and
so an exact design is not required. One objective in providing this investigation is in order to potentially save designers’ time
(which is especially important at the preliminary stages of design): since accurately representing input uncertainties can be
a considerable undertaking. The significance of preliminary design in determining final achieved system performance has
been observed in other application areas (e.g. turbomachinery [42]). The results of this paper suggest that for airfoil design
a significant benefit may be gained from robust optimization in the preliminary design phase under different mathematical

representations of the uncertainty, both over the initial design and over not considering uncertainties at all.
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Figure 28: Comparison of drag polars for the optimum airfoil designs. C;, = 0.4

A limitation of this study is that it considers comparable symmetric uncertainty representations - over the same interval
in the case of uniform vs. beta vs. interval and a Gaussian distribution with the same standard deviation as the uniform one
- all centered around the same central value. Therefore we acknowledge (as shown in [15] where skewed distributions are
considered), moving the nominal value as well as the range of the uncertainties will have an impact on the result of the
optimization, and therefore future work should investigate in more detail the relative impact of these changes.

However the focus of the current work is on the mathematical representation, suggesting that certain quantities about
the uncertainty, such as nominal value and range, have already been prescribed, and a designer has to decide whether further
investigation into the “true” representation of uncertainty is warranted, essentially progressing the uncertainty from epistemic
towards being purely aleatory. We have shown that for robust airfoil shape optimization this may not be necessary, especially

at a preliminary design level where it is the key design features that need to be captured.
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