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Abstract

In this work we introduce a fast Bayesian algorithm designed for detecting
compact objects immersed in a diffuse background.

A general methodology is presented in terms of formal correctness and op-
timal use of all the available information in a consistent unified framework,
where no distinction is made between point sources (unresolved objects),
SZ clusters, single or multi-channel detection. An emphasis is placed on
the necessity of a multi-frequency, multi-model detection algorithm in or-
der to achieve optimality.

We have chosen to use the Bayes/Laplace probability theory as it grants a
fully consistent extension of formal deductive logic to a more general in-
ferential system with optimal inclusion of all ancillary information [Jaynes,
2004].

Nonetheless, probability theory only informs us about the plausibility, a
‘degree-of-belief ’, of a proposition given the data, the model that describes
it and all ancillary (prior) information. However, detection or classifica-
tion is mostly about making educated choices and a wrong decision al-
ways carries a cost/loss. Only resorting to ‘Decision Theory’, supported
by probability theory, one can take the best decisions in terms of maximum
yield at minimal cost.

Despite the rigorous and formal approach employed, practical efficiency
and applicability have always been kept as primary design goals. We have
attempted to select and employ the relevant tools to explore a likelihood
form and its manifold symmetries to achieve the very high computational
performance required not only by our ‘decision machine’ but mostly to
tackle large realistic contemporary cosmological data sets.



As an illustration, we successfully applied the methodology to ESA’s (Eu-
ropean Space Agency) Planck satellite data [Planck Collaboration et al.,
2011d]. This data set is large, complex and typical of the contemporary
precision observational cosmology state-of-the-art.

Two catalogue products are already released: (i) A point sources catalogue
[Planck Collaboration et al., 2011e], (ii) A catalogue of galaxy clusters
[Planck Collaboration et al., 2011f]. Many other contributions, in science
products, as an estimation device, have recently been issued [Planck et al.,
2012; Planck Collaboration et al., 2011g,i, 2012a,b,c].

This new method is called ‘PowellSnakes’ (PwS).



Contents

Contents viii

List of Figures xii

1 Introduction 1
1.1 PowellSnakes (PwS) fundamentals . . . . . . . . . . . . . . . . . . . 5

2 Bayesian inference and decision theory 7
2.1 Bayes theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Decision theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Parameter Inference (estimation) . . . . . . . . . . . . . . . . 9
2.2.1.1 Interval estimation . . . . . . . . . . . . . . . . . . 10

2.2.2 Model selection and catalogue making . . . . . . . . . . . . . 12
2.2.2.1 Classification - extending to multiple hypotheses . 15

2.3 Catalogue figures of merit:
Purity & Completeness . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Bayesian object detection in multi-frequency astronomical data sets 24
3.1 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 The likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Single frequency . . . . . . . . . . . . . . . . . . . . . . . . 28

viii



CONTENTS

3.2.2 Extending to multi-frequency . . . . . . . . . . . . . . . . . 29
3.3 Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Detection versus estimation
(astrometry and photometry) . . . . . . . . . . . . . . . . . . 36

3.3.2 Prior on positions . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Prior on the number of sources . . . . . . . . . . . . . . . . . 38
3.3.4 Prior on flux density . . . . . . . . . . . . . . . . . . . . . . 38
3.3.5 Prior on size . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.6 Prior on spectral parameters . . . . . . . . . . . . . . . . . . 41
3.3.7 Prior on the models . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Object detection strategy . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.1 Single object approach . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 Evaluation of the odds ratio . . . . . . . . . . . . . . . . . . 47

3.4.2.1 Locating the likelihood maxima . . . . . . . . . . . 48
3.4.2.2 Exploring the posterior distribution . . . . . . . . . 50

3.4.3 Gaussian approximation to posterior maxima . . . . . . . . . 51
3.4.4 A non-informative prior for model selection . . . . . . . . . . 55

3.5 Statistical inhomogeneity of the background . . . . . . . . . . . . . . 56
3.6 Comments on non-Gaussianity . . . . . . . . . . . . . . . . . . . . . 58
3.7 Multi-frequency, multi-model catalogue making . . . . . . . . . . . . 60

4 Results 64
4.1 Planck satellite - the data . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.1 Instrument and data description . . . . . . . . . . . . . . . . 65
4.1.2 Data processing and analysis (pipeline) . . . . . . . . . . . . 70

4.2 Detection on real data . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.1 Masks and ill-behaved pixel handling . . . . . . . . . . . . . 73
4.2.2 Patch projection . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.3 Detection of point sources . . . . . . . . . . . . . . . . . . . 76
4.2.4 Detection of galaxy clusters . . . . . . . . . . . . . . . . . . 77

4.2.4.1 Early SZ catalogue . . . . . . . . . . . . . . . . . 86
4.2.4.2 Y − θ degeneracy . . . . . . . . . . . . . . . . . . 87
4.2.4.3 SZ photometry constrained by X-Rays measurements 88

ix



CONTENTS

4.2.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.1 The simulated maps . . . . . . . . . . . . . . . . . . . . . . 92
4.3.2 Catalogue figures of merit . . . . . . . . . . . . . . . . . . . 93
4.3.3 Detection of point sources . . . . . . . . . . . . . . . . . . . 94

4.3.3.1 CSI point sources challenge - 30 GHz channel . . . 97
4.3.3.2 CSI point sources challenge - 143 GHz channel . . 97
4.3.3.3 CSI point sources challenge - 857 GHz channel . . 98

4.3.4 Detection of galaxy clusters . . . . . . . . . . . . . . . . . . 98

5 ‘Planck’ detection capabilities - a simplified model 112
5.1 Fisher analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Planck SZ sensitivity (σY ) . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.1 Background model . . . . . . . . . . . . . . . . . . . . . . . 116
5.2.2 The evaluation of Q(η) . . . . . . . . . . . . . . . . . . . . . 118
5.2.3 Comparison with the ESZ . . . . . . . . . . . . . . . . . . . 120
5.2.4 σY predictions and selection function . . . . . . . . . . . . . 121

5.3 The Y, θs correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Conclusions 129
6.1 Future directions of development and products. . . . . . . . . . . . . 131

6.1.1 Directions of development . . . . . . . . . . . . . . . . . . . 131
6.1.2 Future products . . . . . . . . . . . . . . . . . . . . . . . . . 131

Appendices 133
A-1 Quadratic Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A-2 The ratio Pr(H1|Ns)

Pr(H0|Ns) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
A-3 Fisher information matrix symmetries . . . . . . . . . . . . . . . . . 134
A-4 PwS algorithm implementation . . . . . . . . . . . . . . . . . . . . . 136

A-4.1 PwS step-by-step . . . . . . . . . . . . . . . . . . . . . . . . 136
A-4.1.1 Pre-processing . . . . . . . . . . . . . . . . . . . . 136
A-4.1.2 Detection/estimation . . . . . . . . . . . . . . . . . 137
A-4.1.3 Post-processing . . . . . . . . . . . . . . . . . . . 138

x



CONTENTS

A-5 Implementation history . . . . . . . . . . . . . . . . . . . . . . . . . 138

References 140

xi



List of Figures

2.1 A 95% probability content HPD interval of a unimodal posterior dis-
tribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 These two figures are views of a typical ln likelihood ratio manifold
(ln [LHs/LH0 ]) restricted to position space. The z axis was normalized
using formula 3.28. This particular example was drawn from a SZ
extraction exercise using the ‘WG2’ simulations (see section 4.3.1).
The complexity of the manifold is overwhelming. . . . . . . . . . . . 49

4.1 Upper panels: Planck’s flight and orbit around L2. Middle panels:
Planck’s scanning strategy: Planck completes about one full rotation
around its spin axis each minute. At the same time it precesses around
a fixed direction, perpendicular to the symmetry axis, at the rate of 1◦

per day, completing a full sky survey in slightly less than one year.
Lower panel: Composite image (false colours) of several Planck chan-
nels after the first year survey (images provided by the European Space
Agency (ESA) website ESA [2009]). . . . . . . . . . . . . . . . . . . 66

4.2 The upper panel shows a typical raw ‘cosmological’ TOI (143 GHz).
The middle panel shows another raw TOI but this time from one of
the sub-mm channels (545 GHz). The lower panel is the time domain
representation of a ‘dark’ bolometer, i.e. a bolometer does not receive
any light (plot from Planck HFI Core Team et al. [2011]). . . . . . . . 67

xii



LIST OF FIGURES

4.3 The panels show the same data as in figure 4.2 after detrending and
glitch removal. The vertical red bars at the bottom of each panel in-
dicate which portions of data are flagged (plot from Planck HFI Core
Team et al. [2011]). . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Full sky maps of two HFI channels, 143 and 857 GHz, showing the
number of times each zone of the sky is observed (‘hit counts’) (plots
from Planck HFI Core Team et al. [2011]). . . . . . . . . . . . . . . . 68

4.5 The six HFI channel pixel maps with the CMB component subtracted.
Left to right and downwards: 100, 143, 217, 353, 545, 857 GHz. The
map units are K thermodynamic (plots from Planck HFI Core Team
et al. [2011]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Two null test half-difference noise maps. The map units are K ther-
modynamic (plots from Planck HFI Core Team et al. [2011]). . . . . . 70

4.7 Outline of the HFI pipeline data flow and hierarchy of the processing
tasks for the Planck early data release in 2011. PwS is a Level 3 (L3)
job (plot from Planck HFI Core Team et al. [2011]). . . . . . . . . . . 72

4.8 These two pictures show the combination of the ill-observed pixel,
Galactic dust emission and bright point source mask apodised with 1◦

FWHM Gaussian kernel. Blue regions will be rejected and red kept.
Left panel is the north pole and right panels the south. Coordinates are
‘Galactic’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.9 Upper Panel: The pictures show one possible distribution of patches
PwS splits the sky: ‘Healpix aligned with a spin’. Lighter regions
are those where the patch overlap is higher. Lower Panel: Zones of a
single patch. The unfilled region is the ‘rejection’ zone, the green the
‘detection’ and the light brown the ‘core’ regions. . . . . . . . . . . . 75

4.10 Sky distribution of the point source catalogues extracted by PwS at the
lowest Planck five channels . The colour of each source shows the
estimated flux density in [Jy] (plots from Planck Collaboration et al.
[2011e]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xiii



LIST OF FIGURES

4.11 The left panel shows the shift on the CMB black-body emission spec-
trum induced through thermal inverse-Compton scattering; The right

panel shows the distortion on the background CMB signal as predicted
by equation 4.6. The nine Planck channel bands are superimposed. . . 79

4.12 Normalised GNFW profiles as described in Planck Collaboration et al.
[2011h]: Universal (black, solid), Morphologically Disturbed (ma-
genta, dotted) and Cool core (blue, dashed). . . . . . . . . . . . . . . 83

4.13 ∆Y =
Ycyl−Ysph
Ysph

is the fractional difference between Ycyl and Ysph in-
side a radius δ × θ500. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.14 Distribution of cluster detections on the sphere (size of the clusters
not shown at scale). The blue circles are previously known clusters, in
green are clusters that were confirmed as part of the validation task and
the red circles show clusters not yet confirmed. The light blue region
is the employed Galactic mask (14◦) (plot from Planck Collaboration
et al. [2011f]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.15 The plots on the upper row and lower row left, show the superposition of two joint

Y500 − θ500 probability contours. The probability mass of the contours is 0.466 and

0.911 respectively. The Planck ones are shown in magenta, AMI in blue and the

common in black. The cross is MMF3 best estimates and symmetrical error bars.

The red upper arrow (on the top plots only) is the best X-ray estimate of θ500. The

graph on the lower row right depicts the joint Y500−θ500 probability contours of two

typical clusters detected by Planck: well resolved in blue and unresolved in black.

(plots from Planck et al. [2012]; Planck Collaboration et al. [2011f]) . . . . . . . 89
4.16 Each row refers to a different observation channel: 30, 143 and 857

GHz in top-down order. The figures on the left column show the sim-
ulated temperature data [K CMB] and on the right one the respective
Galactic mask. Each Galactic mask removes 25% of the sky. . . . . . 95

4.17 Spatial distribution of PwS detections on 30, 143 and 857 GHz chan-
nels. The sources sitting on top of the Galactic mask were left in the
plots. Source fluxes are in [mJy]. Sources painted in blue have fluxes
larger than 1 Jy (plots from Rocha, G. et al. [2013]). . . . . . . . . . . 102

xiv



LIST OF FIGURES

4.18 Small patches (10◦ × 10◦) of two distinct regions in the 143 GHz temperature map.

The simulated sources are marked with blue crosses and those that were detected are

marked with blue circles. The top panel shows a ‘deep’ sky zone with a very homo-

geneous and isotropic background. The bottom panel depicts a noisier (‘shallower’)

patch with a more complex background. The temperature units in the grey scale are

[K RJ] and the coordinates are Galactic [degrees]. . . . . . . . . . . . . . . . 103
4.19 CSI point source challenge summary of results for the 30 GHz channel

(PwS labelled PS in the figure; plots from Rocha, G. et al. [2013]). . . 104
4.20 CSI point source challenge summary of results for the 143 GHz chan-

nel (PwS labelled PS in the figure;plots from Rocha, G. et al. [2013]). 105
4.21 CSI point source challenge summary of results for the 857 GHz chan-

nel (PwS labelled PS in the figure; plots from Rocha, G. et al. [2013]). 106
4.22 These patches are 512×512 pixels wide (∼ 14.66× ∼ 14.66) and show

the north polar region (Galactic coordinates) in two Planck channels:
143 and 353 GHz. They were cut from ‘WG2’ simulations as described
in section 4.2.2. The colour scale is not the same on both the plots. . . 107

4.23 Two views (left: top view; right: side view) of a cut (θs = c) through
the SZ multi-channel likelihood manifold projected on position space.
The likelihood manifold was drawn from the same data as in figure
4.22 but now using all (9) Planck channels. The z axis scale was nor-
malised to SNR units. The central very large maximum is the detec-
tion corresponding to a simulation of the Coma cluster. The likelihood
manifold is profusely multi-modal. . . . . . . . . . . . . . . . . . . . 107

4.24 These plots show joint probability contours of clusters simulated fol-
lowing a GNFW ‘universal pressure profile’ [Arnaud et al., 2010] with
fluxes and sizes derived from estimates obtained from Planck’s early
data (MMF3). The clusters are the same as in figure 4.15. Each con-
tour refers to a different simulation of the same three clusters as de-
scribed in Planck et al. [2012]. The ‘star’ shows the input (Y500, θ500)
pair (plots from Planck et al. [2012]). . . . . . . . . . . . . . . . . . . 108

xv



LIST OF FIGURES

4.25 The red contours show the joint posterior distributions assuming all
priors are ‘flat’ (uniform) where the likelihood mass concentrates. The
black contours were made from the same data but using the priors de-
scribed in table 4.4. The plot in the upper row shows a typical high
SNR detection. The lower row depicts two examples of low SNR de-
tections: on the left a small point like cluster and on the right an ex-
tended and well resolved. The plot x axis shows Y ≡ Y5r500 [arcmin2].
The y axis is θs [arcmin]. . . . . . . . . . . . . . . . . . . . . . . . . 109

4.26 The upper row and middle row compare PwS’s recovered Y5r500 with the simulated

input value. On the left column, the best fit estimates were obtained through a mode

estimator using ‘flat’ priors on both parameters, Y5r500 and θs, the equivalent of a

maximum likelihood estimator. On the middle and right column the flat priors were

replaced by those described in table 4.4. The middle column shows the posterior

mode estimate and the column on the right the posterior expected value. The Y5r500

units are [arcmin2]. The lowest row shows an normalised integrated histogram (CDF)

of the Y5r500 injected distribution (x axis units in [arcmin2]). . . . . . . . . . . 110
4.27 These plots were obtained the same way as those in figure 4.26, but

this time using parameter θs. The x axis on the last row plot shows θs
plotted in units of [arcmin]. . . . . . . . . . . . . . . . . . . . . . . . 111

5.1 fyy(ψ), fyθs(ψ), fθsθs(ψ) functions from equation 5.5. τ(x) is the uni-
versal GNFW profile integrated in the l.o.s (see equation 4.15 and Ar-
naud et al. [2010]). The profile was normalised to enclose a unit volume.115

5.2 Left panel: SNR prediction from the current model SNRpred versus
the SNR from the ESZ catalogue. The red (dashed) line is the 1 : 1

line. The plot’s statistical data may be found in table 5.2. Right panel:
Histogram of the residuals (∆ = SNRpred − SNResz). . . . . . . . . . 122

5.3 Predicted Planck HFI sensitivity as a function of the cluster radius.
Solid lines were drawn assuming the noise values of the early release
papers (see table 5.1) corresponding to 1 full sky scan and the dashed
lines halving the instrumental noise values (∼ 4 full sky scans). . . . . 123

xvi



LIST OF FIGURES

5.4 Predicted Planck LFI sensitivity as a function of the cluster radius.
Follows the same conventions as figure 5.3 (the LFI setup includes the
HFI 100 GHz channel). . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5 Sensitivity of a virtual experiment keeping the HFI performance traits
unchanged (noise + beam PSF) and shifting the channel central fre-
quencies to LFI values. Lines colour and shape follow previous cases
(see figure 5.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.6 HFI configuration correlation coefficient ρ evolution with the cluster
extension (equation 5.21). Line colour and shape follow previous cases
(see figure 5.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.7 Left panel: Histogram of the correlation coefficient distribution in the
ESZ catalogue. Right panel: ESZ catalogue SNR versus predicted
‘effective’ SNR (see equation 5.20). The red line is the best fit line
(y0 = 0) with a slope of 0.424. . . . . . . . . . . . . . . . . . . . . . 128

xvii



Chapter 1
Introduction

The detection and characterisation of discrete objects is a common problem in many
areas of astrophysics and cosmology. Indeed, every data reduction process must resort
to some form of compact object detection, since either the objects themselves are the
goal of the study or they act as contaminants and therefore must be removed. In such
analyses, the key step usually involves the separation of a localised object signal from
a diffuse background, defined as all contributions to the image aside from the objects
of interest.

A well-established method to address this issue is to assume that most of the pixels
are part of the background exclusively1, the background is smoothly varying, i.e. has
a characteristic length-scale much larger than that of the objects of interest, and the
objects are bright compared with the background. A successful example of an object
detection algorithm based on these assumptions is SExtractor [Bertin and Arnouts,
1996]. Its first step is to estimate the image background. The algorithm builds up
an intensity histogram iteratively and clips it around its median. The resulting mesh
(resembling a ‘swiss-cheese’) is then bilinearly interpolated to fill in the holes. After
this background has been subtracted, the detection and characterisation of the objects
is performed either by looking for sets of connected pixels above a given threshold
or by boosting the image maxima with the help of an ‘on-the-fly’ convolution using a
pre-defined kernel or the beam PSF.

Despite their general acceptance, such methods run into difficulties when the char-

1This is possible only if the fields are not very densely packed with objects.
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acteristic extension of the fluctuations of the diffuse background match the size and
the amplitudes of the objects of interest. Moreover, problems also arise when dealing
with low or very low signal-to-noise-ratio (SNR) data, when the rms level of the back-
ground is comparable to, or even somewhat larger than, the amplitude of the localised
objects of interest. A good example of this situation is the detection of the Sunyaev-
Zel’dovich [Sunyaev and Zeldovich, 1972a] (SZ) effect in galaxy clusters, which have
characteristic scales similar to that of the primordial CMB emission, and at the same
time are very faint and extended. In such cases, traditional methods fail to provide a
statistically supported prediction about the uncertainties on the parameter estimates.

The standard approach for dealing with such difficulties is to employ linear filter-
ing, which is an extremely well-developed field, very firmly rooted in the principles of
the orthodox school of statistics and signal processing [Trees, 2001]. These methods
usually start by applying a linear filter ψ(x) to the original image d(x), and instead
analyse the resulting filtered field. The filter is most often constructed by assuming a
given (possibly parametrised) spatial template, τ(x), for the objects of interest. De-
pending on the application, this profile may contain parameters (to be estimated) and
already include the the convolution with the instrumental beam. The common de-
sign goals for the filter follow the traditional, orthodox figures of merit: unbiasedness
and efficiency. The optimal solution under these constraints is well-known to be the
matched filter (MF) [North, 1963]. One may consider the filtering process as optimally
boosting (in a linear sense) the signal from discrete objects, while simultaneously sup-
pressing the emission from the background. The filtering methodology has yet another
major advantage of being extremely fast and very simple to implement using ‘off-the-
shelf’ routines (such as FFTs). The uncertainties in the parameter estimates are usually
obtained from simulations. In practice, however, implementations of the filtering codes
must be supported by ancillary steps in order to cope with the artefacts introduced as
a consequence of the statistical description of the detection process being incomplete
[López-Caniego et al., 2007; Melin et al., 2006]. A well known extension of the MF to
spherical topologies was proposed by Tegmark and de Oliveira-Costa [1998]. A natural
evolution of the MF, the matched multi-filter (MMF), follows exactly the same under-
lying principles and extends them to multi-channel data sets [Herranz et al., 2002b;
Lanz et al., 2010]. The simultaneous multi-frequency analysis of a set of images has
the immediate advantage of exploiting the objects’ distinctive spectral signature, if any.
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Two further advantages of this technique are: (i) it boosts the signal from the objects of
interest simply by adding more data; and (ii) it improves the elimination of the back-
ground components by taking advantage of their correlation between channels. Once
again, the thermal SZ effect embedded in primordial CMB emission provides a very
good example. Owing to the well-defined and unique frequency dependence of the SZ
effect, it is possible to design a filter that combines multi-frequency maps to make pos-
sible the extraction of deep catalogues even if the SZ component is sub-dominant in all
the channels [Planck Collaboration et al., 2011f]. Herranz and Sanz [2008], suggested
an extension to multi-channel analysis even when we are ignorant of the spectral sig-
nature of the targeted objects, the ‘matched matrix filters’. If the data can be assumed
to be independent between channels then the matched matrix filters solution is just the
co-addition of the matched filtered surfaces of each independent channel. Further de-
velopment of traditional filtering techniques includes the ‘Scale-Adaptive Filter’ (SAF)
[Herranz et al., 2002a; Sanz et al., 2001], in which the physical scale of the objects of
interest is added as an extra degree of freedom and an additional condition for optimal-
ity is added in the derivation of the filter. Schäfer and Bartelmann [2007] generalised
the scale-adaptive filter to the spherical topologies and added multi-channel support.

A very popular member of the filter family is the wavelets group, in particular the
mexican-hat (MexHat) wavelet of order 2 and 1. Indeed, this MexHat wavelet is the
MF or the SAF solution under particular assumptions about the statistical properties
of the background and the objects profile [Sanz et al., 2001]. Since such conditions
hold very well in modern cosmological data sets, such as those obtained from WMAP

[Bennett et al., 2003] or Planck Planck Collaboration et al. [2011d], and the simplic-
ity of the function allows easy and robust engineering, the MexHat wavelet has been a
favourite detection tool of many authors [González-Nuevo et al., 2006; López-Caniego
et al., 2006]. Nonetheless, obtaining good results with the MexHat filter is extremely
dependent on the value of the acceptance/rejection threshold. The only way to en-
sure optimal performance is to run the code on realistic simulations and then assess
the code’s yield against the simulation’s input catalogue, but a large number of runs is
needed to fine-tune the threshold value. Exactly the same procedure must be followed
to determine the uncertainties on the parameter estimates. This may not seem a severe
limitation, since immense computing resources are now cheaply available. Given the
increased level of accuracy and complexity of current cosmological data sets, however,
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simulations must be rather sophisticated to provide a realistic test bed, and so even the
enormous computational resources available are not sufficient to cope with the massive
throughput demanded. For example, a single realistic Planck Full Focal Plane simula-
tion (FFP) [Delabrouille et al., 2012; Reinecke et al., 2006] takes about one full week
to run on a very large cluster and to have reasonable estimates of the parameter uncer-
tainties and detection thresholds, at least several hundred independent simulations are
needed.

To overcome these limitations of linear filtering methods, Hobson and McLachlan
[2003] introduced a detection algorithm based on a Bayesian approach. As with the fil-
tering techniques, the method assumed a parameterised form for the objects of interest,
but the optimal values of these parameters, and their associated uncertainties, were ob-
tained in a single step by evaluating their full posterior distribution. Another major ad-
vantage of this method is the consistent inclusion of physical priors on the parameters
defining the objects and on the number of objects present, which improve the detection
efficiency. Although this approach represented a further step in the direction of bring-
ing a more solid statistical foundation to the object detection/characterization prob-
lem, its implementation was conducted using a Monte-Carlo Markov chain (MCMC)
algorithm to sample from a very complex posterior distribution with variable dimen-
sionality (dependent on the number of objects). This technique therefore proved ex-
tremely computational intensive. Despite the considerable progress that has recently
been made towards increasing the efficiency of sampling-based Bayesian object detec-
tion methods [Feroz and Hobson, 2008], such algorithms are still substantially slower
than simple linear filtering methods. In a recent work, Argüeso et al. [2011] suggested
a semi-analytical hybrid Bayesian maximum a posteriori (MAP) scheme to overcome
the complexity and the massive resources required the Hobson & McLachlan method.
Its main advantage is a very simple and straightforward implementation. However, the
method still relies on the MF to find the source’s positions and, therefore, it does not
embody the full Bayesian logic.

Meanwhile, Carvalho et al. [2009, 2012] and Feroz et al. [2009] have moved one
step further towards the theoretically-optimal Bayesian solution by exploring the use
of evidence ratio methods, which are the optimal decision-making tools (see section
2.2), rather than simply adopting the MAP solution.

Worthy of mention, although slightly off topic, is the literature on remote land
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mines detection. Remote land mines detection principles follow the same type of sta-
tistical models, algorithms and solutions as the examples in this work. Svensson and
Lundberg [2001] describes a Generalized Likelihood Ratio Test (GLRT) (see section
2.2.2) algorithm assuming a background and parametric object model along the lines
of what we have used for point source detection (also see Lundberg [2001]). Anderson
[2008] also suggests a GLRT-based procedure but using this time a non-parametric
model and multi-wavelength observations. The images are modelled as Gaussian mix-
tures plus some ‘anomalous’ uniform pixel distribution representing the objects of
interest. Finally, in Collins et al. [1999], the authors present a Bayesian algorithm,
aiming to improve previous attempts based on the GLRT, but this time tackling known
characteristic signal signatures in time-ordered data.

Our proposal here is to blend detection strategies, i.e. multi-channel filtering,
Bayesian posterior sampling and evidence ratio evaluation, into a rigorous, hybrid,
multi-model scheme (as opposed to traditional binary models). This novel method-
ology is simultaneously general, formally and statistically firmly grounded, and over-
comes the computation inefficiencies of the pure sampling methodologies.

1.1 PowellSnakes (PwS) fundamentals

• Aim:

Detection and characterisation of localised objects embedded in a diffuse
background.

• Concepts:

1. The only complete and coherent theory of inference in the presence of in-
complete knowledge is Laplace-Bayes probability theory as an extension
of logic [Jaynes, 2004].

2. Detection is a decision theory problem; decisions ought to be taken. Ow-
ing to the presence of incomplete, undefined or noisy information the only
possible way of supporting our decisions is through Bayesian probability
theory.

5



3. Avoid heuristics whenever possible. Use only models based on trusted
rigorous and well-established mathematical frameworks as this is the only
possible way to achieve reliable control of results.

4. Detection and characterization of compact discrete objects is one of the
most traditional and well-developed branches of observational astronomy.
An immense repository of prior information is available. Therefore, in
accordance with Laplace-Bayes probability theory, one should be allowed
to use it in any eventuality.

• Methods:

1. Always enforce statistical rigour. Never trade implementation simplicity
for the fundamentals of probability theory.

2. Avoid as much as possible artificial parameter ‘knobs’ in order to fine-tune
the quality of the detection.

3. The algorithm must perform its tasks as fast as possible without compro-
mising the quality of the detection.

4. The code must provide a full fledged professional solution to catalogue
making, suitable to release science quality products, extracted from modern
multi-channel multi-millon pixel cosmological data sets like those of the
Planck or WMAP satellites. The implementation must be flexible enough
to allow a gentle and stable integration into a ‘pipeline’ infrastructure.
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Chapter 2
Bayesian inference and decision theory

2.1 Bayes theorem

The Bayesian system of inference is the only one that provides a consistent extension
of deductive logic ( { 0= false, 1= true} ) to a broader class of ‘degrees-of-belief ’ by
mapping them into the real interval [0, 1] [Jaynes, 2004]. Combining the multiplication
rule together with the associativity and commutativity properties of the logical product,
one may write the equation which will give us the posterior probability of a set of
parameters Θ taking into account the data d, the underlying hypothesis H and the
general ‘background information’ X1. This equation is also known as Bayes theorem

Pr(Θ|d, HX) =
Pr(d|Θ, HX) Pr(Θ|HX)

Pr(d|HX)
, (2.1)

where, for brevity, we denote Pr(Θ|d, HX) ≡ P (Θ) as the posterior probability dis-
tribution of the parameters, Pr(d|Θ, HX) ≡ L(Θ) as the likelihood, Pr(Θ|HX) ≡
π(Θ) as the prior and Pr(d|HX) ≡ Z as the Bayesian evidence. The (unnormalised)
posterior distribution is the complete inference of the parameter values Θ, and thus
plays the central role in Bayesian parameter estimation.

The normalised posterior distribution may be easily obtained by integrating over
all possible values of the parameters and equating the resulting expression to one, and

1The ‘background information’ comprises every assumption not explicitly stated, for instance the
data model and the parametrisation of the data.
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2. Bayesian inference and decision theory

from this argument one can easily see that the evidence is given by

Z ≡ Pr(d|HX) =

∫
L(Θ) π(Θ) dKΘ, (2.2)

where K is the dimensionality of the parameter space. Inspecting this expression, one
immediately recognizes that the evidence is the expectation of the likelihood over the
prior, and hence is central to Bayesian model selection between different hypothesis
Hi. We note that the evidence evaluation requires the prior to be properly normalised
[Jaynes, 2004].

2.2 Decision theory

Probability theory defines only a state of knowledge: the posterior probabilities. There
is nothing in probability theory per se that determines how to make decisions based
on these probabilities. Indeed, a range of actions is always possible, even when using
the same state of knowledge, because the cost of making a wrong decision usually
changes according to the kind of problem under analysis. For example, in the case of
object detection, one often considers each type of error, i.e. an undetected object or a
spurious detection, as equally bad. For a moment, however, suppose we instead wished
to determine whether or not a certain person was immune to a particular pathogen.
Failing to detect a previously acquired immunity would only cost the price of an extra
vaccine, but failing to determine that someone was not immune could seriously put
her/his life at risk. Thus, even with the same degree of knowledge, the cost of choosing
incorrectly is not the same in every case. To deal with such difficulties, one must apply
Decision Theory (DT), which we now briefly summarise.

To apply decision theory, one must first define the loss/cost function

L(D,E), (2.3)

for the problem at hand, where D is the set of possible decisions and E is the set
of true values of the entities one is attempting to infer. In general, these entities can
be either continuous parameters or discrete hypotheses, and so decision theory can
be applied equally well both to parameter estimation and model selection. The loss
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2. Bayesian inference and decision theory

function simply maps the ‘mistakes’ in our estimations/selections, D, into positive
real values L(D,E), thereby defining the penalty one incurs when making wrong
judgments. The Bayesian approach to decision theory is simply to minimise, with
respect toD, the expected loss

〈L(D,E)〉 =

∫∫
L(D,E) Pr(D,E) dD dE. (2.4)

2.2.1 Parameter Inference (estimation)

In the estimation of a set of continuous parameters1, the ‘decisions’D are the parame-
ter estimates Θ̂ and the ‘entities’E are the true values Θ∗ of the parameters. Typically,
the loss function is taken to be a function of the difference, or error, ε ≡ Θ̂−Θ∗. Some
popular choices of loss functions are:

(i) the square error ε2

(ii) the absolute error |ε|

(iii) the uniform cost outside error bar, i.e. unity if |ε| > ∆ and zero if |ε| < ∆, where
∆ is some pre-defined small quantity

In each case, one can easily find the optimal estimator by minimising the expected loss
(2.4) with respect to Θ̂.

min|Θ̂ 〈L(Θ̂−Θ∗)〉 = min|Θ̂

∫∫
L(Θ̂−Θ∗) Pr(Θ̂,Θ∗) dΘ̂ dΘ∗. (2.5)

The solutions are, respectively:

(i) the posterior mean2.

(ii) the posterior median.

1 In astronomical object detection, the majority of the interesting parameters (flux density, position,
geometry, etc.) are continuous and real valued. Moreover, discrete parameters can always be handled
within the same framework by resorting to Dirac delta functions.

2The posterior mean is the Bayesian optimal estimator under a very broad class of reasonable loss
functions. When the posterior distribution is Gaussian all three common estimators match, and the
posterior mode is often the simplest to compute.
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2. Bayesian inference and decision theory

(iii) the posterior mode1.

The most popular choice of loss function among the astronomical community is
the square error ε2. When detecting astronomical objects, however, the requirements
are usually not those of the square error function, which puts an extreme emphasis
on values very far from the true ones. This extreme sensitivity to outliers2 makes the
posterior mean estimator less robust than, for example, the posterior median, which is
much more resilient to deviations from the data model. An even better choice would
be not to penalise the estimates at all if they fall within a small neighbourhood ∆

around the true parameters values and prescribe a constant penalty otherwise. This is
precisely the ‘uniform cost inside error bar’ loss function described above. This loss
criterion closely matches what we would intuitively expect when assessing the quality
of a detection algorithm. For example, if the estimated value of a source flux lies
outside the allowed range it does not matter how far it lies from the true value, since
it will always be counted as a spurious detection [Planck Collaboration et al., 2011e].
It is worth noting that, in contrast, the frequentist approach to statistics does not have
any consistent and well-defined criterion for defining the optimality of an estimator.
Instead, estimators are ranked in quality according to ad hoc criteria such as bias and
efficiency. Indeed, it is well known that some unbiased estimators are sub-optimal
in the decision-theory sense [Jaynes, 2004, ch. 17]. Their preferred tool is, most
of the time, the MLE (Maximum Likelihood Estimator), which has good asymptotic
properties [Trees, 2001, ch 2.4]. However, on real problems we are always dealing
with finite data sets and sometimes even with problems where sufficient statistics do
not exist. Even in these ‘pathological cases’ cases, the Bayesian estimators keep their
optimality untouched. For a classical example please refer to [Sivia and Skilling, 2006,
ch. 2.4].

2.2.1.1 Interval estimation

In addition to an estimate Θ̂, one typically summarises the inference implied by the
full posterior distribution by quoting either joint (two-dimensional) or marginalised
confidence intervals (or, more precisely, Bayesian credible intervals). One could, in

1This is only strictly true when ∆ −→ 0
2By Outliers we mean, values very far from the true ones, that do not follow the statistical data

model we are employing.
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2. Bayesian inference and decision theory

Figure 2.1: A 95% probability content HPD interval of a unimodal posterior distribu-
tion.

principle, obtain an optimal interval by employing an appropriate loss function, but a
simpler approach is now widely accepted, namely the ‘Highest Probability Density’
interval HPD. The HPD interval containing the fraction α of the total probability is
defined such that: Pr(Θ ∈ HPD|d, HX) = α and, if Θ1 ∈ HPD and Θ2 6∈ HPD,
then Pr(Θ1|d, HX) ≥ Pr(Θ2|d, HX) (figure 2.1; see G. E. Box [1992, ch. 2]).
The characterization of the HPD interval may be easily obtained by sampling from
the posterior distribution or, when the dimensionality of the parameter space is low
(≤ 4), by making a ‘brute-force’ evaluation over a grid spanning the parameter space
where the posterior distribution is significantly different from zero. When the posterior
distribution is known to be Gaussian or close to it, which is a very common case, the
±rms interval is usually quoted instead. If the parameter space is discrete, as result of
the intrinsically discrete nature of the data (e.g. pixelisation) or the processing pipeline,
in practice the data quantum imposes a minimum limit on the accuracy of the more
robust posterior mode or median estimators. But, since the Bayesian methodology
gives us the full posterior distributions, a better recipe for hyper-resolution estimates
(sub data quantum accuracy) would be to compute the expectation estimator over HPDs
of different probability content (see section 3.4.2.2).
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2. Bayesian inference and decision theory

2.2.2 Model selection and catalogue making

In model selection, the decision theory ‘entities’E are the hypotheses under consider-
ation and the ‘decisions’ D are the chosen hypotheses, such that L(Di, Hj) ≡ Lij is
the loss associated with the decision Di ≡ choose Hi, when Hj is true;

L(Di, Hi) ≡



H0 H1 . . . Hn

D0 L00 L01 . . . L0n

D1 L10 L11 . . . L1n

...
...

... . . . ...
Dn Ln0 Ln1 . . . Lnn.

(2.6)

The main diagonal entries of the ‘Loss’ matrix (Li,i) are always equal to zero because
when a right decision is taken it does not incur any penalty. However, in general,
Li,j 6= Li,j

1. This kind of exercise is more generally known as a classification problem.
Thus, inserting this form of the loss matrix into the right hand side of equation 2.4 and
performing the integration using the delta Dirac functions to represent discrete values
as infinite densities, the average loss reads

〈L(D,H)〉 =
∑
ij

Lij Pr(Di, Hj). (2.7)

Minimizing 2.7 with respect to D is not a difficult task, but the general case leads to
long and cumbersome expressions (see [Trees, 2001, ch. 2]).

Usually the constraints we use to construct a catalogue of objects in astronomy con-
stitutes only a sub-set of the general classification problem with the following template

1see the example in the beginning of the current section.
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loss matrix,

Lii : (Di ≡ choose Hi) when Hi is true
= 0; no penalty when you are right

L1i i 6= 1 : (D1 ≡ choose H1) when Hi is true
positive value; false positive or ‘spurious’

Li1 i 6= 1 : (Di ≡ choose Hi) when H1 is true
positive value; false negative ‘miss’

Lij i, j 6= 1 : (Di ≡ choose Hi) when Hj is true
usually = 0; alternative model selection error,

(2.8)

whereH1, the ‘target hypothesis’, is intentionally discriminated from the others. Later,
H0 will be taken, without any loss of generality, as the ‘null/empty’ (H0 ≡ only back-
ground is present) or ‘reference hypothesis’.

Much simpler and enlightening, but still capable of a very broad and interesting
range of practical applications, is the binary case consisting of just two hypotheses H0

and H1
1. In this case, the decision criterion that minimises the expected loss is

ln

[
Pr(H1|d)

Pr(H0|d)

]
H1

≷
H0

ξ (2.9)

where ξ ≡ ln L10

L01
. The ratio of the posterior distributions of the models given the

data is a very popular quantity in the Bayesian probability and is usually known as the
odds ≡ Pr(H1|d)

Pr(H0|d)
2. Jaynes asserts that the best way to decide between two models is by

computing the odds and check it against a threshold. Using DT we could recover that
result and at the same time give it a precise statistical sense and define a threshold for
decision making based on the loss criterion:

• Choose H1 if our decision criterion is larger than the threshold level ξ

• Choose H0 if our decision criterion is smaller than the threshold level ξ

• Choose either at random, with equal probabilities, if the decision criterion is

1Later will become apparent why the simple binary decision model is not sufficient for optimal
catalogue construction (please see 3.7).

2Although this definition of odds is commonly found in literature, this is not the most general case
(please refer to equation 2.13).
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equal to the threshold.

Unfortunately, in astronomy many times it is not possible to assign meaningful values
to the loss. Astronomers like to define the quality of the catalogues based on ex-
pected/maximum contamination (‘false positive error’) and expected/minimum com-
pleteness (1 - ‘miss error’). Of course, there is certainly a connection between these
two methods, although quantifying it is not simple.

The techniques of the orthodox school match much closer these requirements, in
particular the widely employed Neymann-Pearson likelihood ratio test [Neyman and
Pearson, 1933]. The test prescribes the probability for a certain type of error, say the
false positive (Pr(D1|H0)) and then tries to find the best possible way of deciding
between the two hypothesis by minimising the other error, ‘the miss’ (Pr(D0|H1)).
The solution is the very well known NP likelihood-ratio test:

ln

(
L1

L0

)
H1

≷
H0

ξ′, (2.10)

where L{0,1} are the likelihoods of the hypotheses being tested and ξ′ the threshold for
acceptance/rejection. As a figure of merit for a certain test, they draw its Receiver Op-
erating Curve (POC) and then they choose the threshold that best suits their purposes
(see Trees [2001, ch. 2]). When the hypotheses do not depend on any parameter, the
‘simple hypothesis’, this is usually straightforward. However, in astronomy, most of
our problems, if not all, depend on unknown parameters whose true values may take
many different values inside a range: the ‘intrinsic variability’. These kind of prob-
lems are known as ‘composite hypotheses’. The best practice for this kind of problem is
to derive sufficient statistics for the parameter estimates using a maximum-likelihood
procedure first and then place them into the likelihood ratio and finally describe the
ROC. Thus one considers

ln

(
L1max

L0max

)
H1

≷
H0

ξ′. (2.11)

This is the Generalized Likelihood Ratio Test (GLRT) [Trees, 2001, ch. 2]. The prob-
lem is that drawing the ROC of the GLRT can be very difficult without resorting to
MC simulations, except in very simple cases (see section 2.3).

Returning to the Bayesian solution and using Bayes theorem, expression 2.9 may
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still be given a more familiar look:

ln

(
Z1

Z0

)
H1

≷
H0

ξ′′ (2.12)

where ξ′′ ≡ ln L10

L01
+ln

(
Pr(H0)
Pr(H1)

)
is the detection level. When the hypothesis are simple

then Zi = Li and the selection expressions are ‘almost’ equal. However, these small
differences might play a very important role in detection.

• The Bayesian probability makes no distinction between composite or simple hy-
pothesis, as both are uniformly included in the formulation. That is certainly not
true for the NP test. The NP test can be extended to deal with composite hy-
pothesis (a necessary condition for astronomy), but seldom a workable solution
is feasible without resorting to simulations.

• Failing to realise the importance of the prior term, Pr(H0)
Pr(H1)

, and relying only on
the ROC to choose a detection threshold might lead to very wrong results. For
an example, please consult [K. Riley, 2006, ch. 30, pag. 1132].

• Within the orthodox school there is no simple way to define the threshold level
based on cost/loss.

2.2.2.1 Classification - extending to multiple hypotheses

Unfortunately, as we shall see (section 3.7) the binary decision case is not powerful
enough to tackle realistic modern astronomical data sets as, most of the time, these
cannot be accurately modelled by a simple mixture of the interesting signal embed-
ded in a statistically uniform background. There are other localised ‘background ac-
cidents’, originating from different families of sources, which do follow neither the
source nor the background model. The loss matrix template (equation 2.8) has a kind
of symmetry that allows us to express the optimal decision rule as the ratio of

ln

[
Pr(H1|d)

Pr(H̃1|d)

]
H1

≷
H̃1

ξ, (2.13)
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the ratio of the posterior probability of the target hypothesis against its complement
(H̃1)1. If the same loss matrix template applies equally well to any source population
loss, then by iterating through all object hypothesis, using formula 2.13, we are able
to assign each individual source to a catalogue or ‘classify’ them. In case an object
appears in more than one catalogue, choose that one where the left hand side of 2.13
is larger.

A practical way of tackling it, would start by evaluating the posterior ratio of each
object model (Hj) against that of the background (H0) and pick up the model with the
largest ratio j∗.

%j∗ ≡
[

Pr(Hj∗|d)

Pr(H0|d)

]
, j∗ 6= 0 (2.14)

Then following an argument of insufficient reason, we may state

Since the losses are the same regardless of the hypothesis (j 6= 0),
why not choosing the one with the highest posterior ratio

would help decrease the loss?

(2.15)

So, using equations 2.13 and 2.14 the classification condition reads

%j∗

1 +
∑

i 6=j∗
%i

Hj∗

≷
H0

ξ. (2.16)

In the multiple option case, if the preferred option cannot reach the desired accep-
tance/rejection level, the putative detection will be attributed to the ‘null’, even if this
was not the most favoured. Now imagine that the option with the highest %j∗ has not
passed the test in equation 2.16. So, we need to select a member of the complementary
set of hypotheses. But which one? Individually, any of the hypothesis of the com-
plement was already deprecated. Therefore the least risky is that with the lowest loss.
Assigning to the ‘null’, you ‘pay’ for a ‘miss’ only. If you had instead assigned to any
other hypothesis member of the complement set, you would be adding to the ‘miss’
loss that of a ‘spurious’. So far, we have only been using our intuition guided by an
educated application of the Bayesian logic. However, collecting the above consider-
ations about reasonable loss choices, we have just defined the following loss matrix,

1This is the most general definition of ‘odds’ (see [Jaynes, 2004, ch. 4]). Choosing H̃1 means
leaving the putative detection out of the targeted catalogue.
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Lij =


0 if i = j (no penalty if correct)
Lmiss(> 0) if i = 0, j 6= 0 (miss)
Lspurious(> 0) if i 6= 0, j = 0 (spurious)
Lmiss + Lspurious if i 6= 0, j 6= 0, i 6= j (spurious+miss)

(2.17)

Placing definition 2.17 into equation 2.7 and minimizing with respect to the decisions,
the result is a large and complex system of decision inequalities. Although, taking
advantage of the above loss matrix symmetries, it is possible to reduce it to a much
simpler form, without any loss of generality, with just 3 inequalities, of which only the
following one is relevant.

Υ ≡
%(j 6=0)∗

1 + % ˜(j 6=0)∗ 6=0

H̃0

≷
H ˜(j 6=0)∗6=0

∨H0

ξ, (2.18)

where H(j 6=0)∗ is the hypothesis with the highest odds ratio (%(j 6=0)∗) not including the
‘null’ (H0), H ˜(j 6=0)∗ 6=0

is its complement, once again not including H0, and ξ =
Lspurious

Lmiss
.

Two different situations may happen.

• Υ > ξ

Then we ought to choose something outside the ‘null’. Using principle 2.15 only
(j 6= 0)∗ is a possible choice.

• Υ ≤ ξ

Of the two possible options only H0 is allowed because principle 2.15 forbids
any other possible choice.

The net result of the above conditions is inequality 2.16 as we intended to prove.

2.3 Catalogue figures of merit:
Purity & Completeness

In astronomy it is often not possible to choose meaningful values for the loss, making
the evaluation of the threshold ξ difficult. Astronomers like instead to measure the
quality of a catalogue in terms of the expected/maximum contamination (false positive
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rate) and the expected/minimum completeness (true positive rate). There is a connec-
tion between this approach and DT, but quantifying it is not trivial. Thus, in practice
and from the point of view of detection performance, the two single most important
figures of merit of a catalogue, expected to contain sources of a single family j, are

• Purity1:
The percentage of real detections2 over the total number of entries in the cata-
logue. For a Bayesian this is just another random parameter we can infer from
the posterior distribution. In frequentist probability language it reads Pr(Hj|Dj).
The definition may be complemented by considering only subsets of the cata-
logue entries, usually by thresholding the ‘estimated’ object amplitude/flux/SNR
(Pr(Hj|Dj, Ŝ > ξ)).

• Completeness3:
The percentage of objects, above a certain ‘true’ amplitude/flux/SNR in our data,
that we successfully included in j catalogue. In frequentist probability language,
which we will follow in this case, it reads
Pr(Dj|Hj, S > ξ)4.

2.3.1 Purity

From the basic axioms of probability theory [Jaynes, 2004, ch. 2,3], one may write

Pr(Hj|d) + Pr(H̃j|d) = 1,

Pr(H̃j|d) =
Pr(H̃j|d)

Pr(Hj|d) + Pr(H̃j|d)
=

1

1 +
Pr(Hj |d)

Pr(H̃j |d)

. (2.19)

1Some authors prefer ‘Reliability’
2The definition of a ‘real’ detection is not universally accepted. Often extra conditions on the quality

of the estimation apply, for instance, that the flux estimate is inside a certain range of values around the
true value.

3This probability in frequentist language is the ‘Power of the test’.
4The threshold is now a required part of the definition.
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We then apply the above equation to each individual entry in a catalogue. So, the
probability of the line i being a ‘spurious’ is given by,

psp
i

=
1

1 + ψ
, ψ ≡ Pri(Hj|d)

Pri(H̃j|d)
=

%j
1 +

∑
i 6=j
%i
. (2.20)

We shall see (section 3.4) that the quantities necessary to evaluate expression 2.20 are
all provided by our algorithm.

The number of false positives in a catalogue Nsp, may be represented as a sum of
Bernoulli variables. Assuming all catalogue entries are statistically independent, then
the sum of N of those variables is distributed as a Poisson–binomial distribution:

µ =
n∑
i=1

psp
i
, σ2 =

n∑
i=1

psp
i

(1− psp
i

), (2.21)

where µ is the expected value and σ2 the variance. To generate the most complete
(largest) catalogue constraining the expected value of contamination (= 1− Purity) to
a prescribed value α, one way to proceed is as follows:

1. sort the list of candidate detections in psp
i

ascending order (equation 2.20);

2. for each candidate, accumulate psp
i

until µ (equation 2.21) exceeds the prescribed
contamination α times the total number of lines already included

3. discard the last line.

Since µ is a sum of independent variables and N is usually a large number (hundreds),
it is perfectly reasonable to assume the posterior distribution of Nsp converged to a
Gaussian as result of the Central Limit Theorem (CLT)1. So, a good estimate of the
number of spurious detections in the catalogue is

Pr(Nsp|d) ∼ N

 N∑
i=1

psp
i
,

√√√√ N∑
i=1

psp
i

(1− psp
i

)

 , (2.22)

1The approximation is perfectly justified as we are interested in the distribution mode neighbour-
hood only.
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where N(µ, σ) is the Normal distribution centred in µ with variance equal to σ2. An
estimate of the fraction of spurious detections in the catalogue α̂, reads

α̂ =

∑N
i=1 p

sp
i

N
±

√∑N
i=1 p

sp
i

(1− psp
i

)

N
. (2.23)

A problem still remains since our calculation of Pri(H̃j|Dj) is only an approxi-
mation. Although, the algorithm also computes an estimate of the ln

[
Pr(Hj |d)

Pr(H̃j |d)

]
un-

certainty (for a rigorous treatment see Keeton [2011]). Therefore, the above formulas
ought to be corrected to account for the uncertainty on psp

i
. It is easy to verify that, to

a first approximation, the error on psp
i

, reads

|∆psp
i
| ' γpsp

i
(1− psp

i
) (2.24)

and γ is given by

γ =

√∑
i

γ2
i , (2.25)

where γi is each hypothesis fractional uncertainty on the evaluation of the evidence
ratio and the sum extends to all alternatives but the null. The corrected value of the
catalogue’s variance on the number of spurious, σ′2, is always less than:

σ′2 . (1 + γ)
n∑
i=1

psp
i

(1− psp
i

), (2.26)

and the variance on µ reads:

|∆µ|2 ' γ2

n∑
i=1

(psp
i

)2(1− psp
i

)2 < γ

n∑
i=1

psp
i

(1− psp
i

) (2.27)

Thus, we get the final expression of predicted contamination of the catalogue by adding
both contributions in quadrature:

α̂ =

∑N
i=1 p

sp
i

N
±
√

1 + 2γ
√∑N

i=1 p
sp
i

(1− psp
i

)

N
. (2.28)

The uncertainty on the contamination of the catalogue for commonly accepted levels
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(∼ 10%), catalogue size (& 1000) and γ as large as 0.321, is always . 1.2%.

2.3.2 Completeness

Completeness is more closely related with the likelihood and a frequentist approach is
somewhat less complicated. When the detections are very clear (high SNR), the uncer-
tainties on the unknown parameters may be assumed small enough that one may accept
that the estimates match the true parameter values with sufficient accuracy to consider
them as ‘previously known’. This case, without unknown parameters (unknown pa-
rameters are non-random variables in this context), is named a ‘simple hypothesis test’
and applying the Neymann-Pearson likelihood ratio test (see section 2.2.2) simple and
straightforward analytical solutions exist [Trees, 2001, ch. 2]. This is the best possible
case scenario and it is usually employed to define an upper limit on the catalogue com-
pleteness2. Astronomers find that a good approximation for compact sources may be
achieved considering the position and the geometry of the source as perfectly known
and only allow the amplitude/flux/SNR to freely vary. In this case the NP test becomes:

(i) one-sided,

(ii) the test distribution belongs to the exponential family,

(iii) the likelihood ratio is monotonic.

This set of conditions guarantees an Uniformly Most Powerful (UMP) test exists with
significance α and ‘Power’ P . Translating from the frequentist dialect into those of
the astronomers, this means that one single amplitude/flux/SNR threshold is enough to
secure a catalogue has a certain purity α and completeness P . These tests run into dif-
ficulties as soon as more realistic models, with a larger set of uncertainties considered,
are essential to describe the data with the level of accuracy we want. Unfortunately,
this is an important limitation. Even the crudest descriptions of clusters of galaxies
cannot simply be modelled as point sources. A parameter describing the extent of the

1This value is an upper bound of the average posterior ratio uncertainty, computed by the method
given in Sivia and Skilling [2006] and obtained on the extraction exercises we have performed with
Planck data (please see 4.2).

2A realistic completeness prediction in more authentic scenarios, when the estimates uncertainties
need to be considered, is usually significantly lower [Mooney et al., 1999].

21



2. Bayesian inference and decision theory

cluster ought to be included1. But with extended objects, the conditions for a UMP do
not hold anymore. The acceptance/rejection threshold now depends, at least, on the
geometrical parameter that controls the extension of the objects and the completeness
estimate of the sample is no longer trivial2.

Recalling the equivalence between Bayesian posterior probabilities, when using
non-informative priors, and the equivalent sampling distributions from the orthodox
theory [G. E. Box, 1992, ch. 2], we define a new variable

ζ̂ =
Â− A
σA

∼ N(0, 1), (2.29)

whereA is the true value of the source amplitude, assumed non-random in this context,
and σA is the variance of the random variable Â defined in (3.29). The ζ̂ statistic is
normally distributed (see equation 3.35). Now let us define γ σA as the amplitude
threshold for rejection/acceptance. So the completeness, Pr(Dj|Hj), reads

∫ +∞

γ− A
σA

N(0, 1) dζ =
1 + erf

[√
2

2

(
A
σA
− γ
)]

2
, (2.30)

where erf() is the Gaussian error function.
Apparently it seems PwS still relies on a SNR cut to predict the completeness

of the catalogue. That means we would be throwing away most of the advantage of
using a Bayesian detection method, as any catalogue is essentially useless unless it
provides a measure of how representative it is of the population of the objects under
scrutiny. This difficulty only emerged because of the simple Bayesian model we have
used to describe the data. The way it is defined, completeness is a construct that allow
us to assign probabilities to abundances of sources following an orthodox statistics
methodology. However, the same source number counts can be directly inferred using
a Bayesian framework. In this case we need to describe the data using a hierarchical
model (see [Gelman et al., 2003, ch. 5] and [G. E. Box, 1992, ch. 5]). This will be
the main focus of development in a forthcoming publication. Fortunately this apparent

1Please refer to chapter 5 for a full account.
2If the problem is a composite hypotheses linear on all unknown parameters and with measurement

errors following a Gaussian law, then there are still full analytical GLRT solutions (see Mooney et al.
[1999]).
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limitation may be easily overcome by very realistic simulations that at the same time
are simple and fast to construct: injecting mock source populations into the real maps
and then recovering them. These simulations might not be optimal to assess purity but
they provide the most realistic possible test bed for measuring completeness [Planck
Collaboration et al., 2011e].
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Chapter 3
Bayesian object detection in
multi-frequency astronomical data sets

In the previous chapter we gave a brief summary of the probabilistic and logical
Bayesian foundations will support PwS ‘inference machine’. This chapter will be
devoted, first, to develop each element of the Bayesian inference framework in the
context of the current work. Second, exploiting the symmetries and the particularities
of this problem, suggest a fast algorithm, and code implementation, to successfully
cope with a real, large and modern data set like that the Planck satellite will deliver.
Finally, we will try to address how real data actually deviates from the assumed model,
recommend an arrangement to tackle the additional difficulties and suggest a strategy
for a successful, professional code to produce science quality catalogues.

3.1 Data model

The specification of the PwS statistical model for a single-frequency observation of
localised objects embedded in a background is given in Carvalho et al. [2009]. This
can be straightforwardly extended to accommodate multi-frequency observations. At
each observing frequency ν, PwS treats the observed data dν(x), where x is the po-
sition vector in pixel space, as the superposition of a ‘generalised’ noise background
n′ν(x) = bν(x) + nν(x), consisting of background sky emission bν(x) and instrumen-
tal noise nν(x), plus a characteristic signal sν(x) coming from the sources. For ease
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3. Bayesian detection in multi-frequency astronomical data sets

of notation, we will collect the fields at different frequencies into vectors. Moreover,
the signal and background components in each frequency channel are assumed to have
been smoothed with a known beam, which may differ between channels. The resulting
model for the data vector d(x) reads

d(x) =
Ns∑
j=1

sj(x; Θj) + b(x) + n(x), (3.1)

whereNs is the number of sources, sj(x; Θj) is the signal vector due to the jth source,
which depends on the parameter vector Θj characterising the object, b(x) is the sig-
nal vector due to the diffuse astronomical backgrounds, and n(x) is the instrumental
noise vector. The astronomical backgrounds denoted by b(x) are expected to exhibit
strong correlations between different frequency channels, whereas the instrumental
noise n(x) is expected to be uncorrelated between frequency channels, and also be-
tween pixels in the case of simple white noise1.

We write the signal vector due to the jth source in 3.1 as

sj(x; Θj) = Ajf(φj)τ (x−Xj;aj), (3.2)

where the vector τ(x − Xj;aj) denotes the convolved spatial template at each fre-
quency of a source centred at the position Xj and characterised by the shape parame-
ter vector aj , the vector f contains the emission coefficients at each frequency, which
depend on the emission law parameter vector φj of the source (see below), and Aj
is an overall amplitude for the source at some chosen reference frequency. Thus,
the parameters to be determined for the jth source are its overall amplitude, posi-
tion, shape parameters and emission law parameters, which we denote collectively by
Θj = {Aj,Xj,aj,φj}. The totality of these parameters, for all the sources present,
plus the number of sources Ns, are concatenated into the single parameter vector Θ.

1The condition of the instrumental noise being white is not necessary. The general case of correlated
noise between pixels does not complicate the mathematical development, but can increase computational
expense. In any case, the assumption of white noise applies extremely well to Planck data on the small
scales of interest used for the identification of localised objects.
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3. Bayesian detection in multi-frequency astronomical data sets

For convenience, we denote the signal vector generated by all the sources by

s(x; Θ) ≡
Ns∑
j=1

sj(x; Θj). (3.3)

The nature of the emission law parameter vector φ depends on the class of object
under consideration. PwS analyses the data assuming that all the objects belong to
a single class, and repeats the analysis for each class of interest. The assignment of
individual sources to a particular class is then performed via a model selection step
(see section 3.7). The number and specification of classes can be arbitrary, including,
for example, SZ clusters, point sources, etc. Previous multi-frequency versions of PwS
have been limited to the case where all objects share the same, fixed emission law. SZ
clusters fall exactly in this category as, ignoring the relativistic corrections, they all
follow exactly the same spectral signature [Birkinshaw, 1999; Carlstrom et al., 2002],
which does not depend on any parameters. For extragalactic point sources, however,
the emission law is phenomenological and can vary between sources. Consequently,
PwSII has been extended to accommodate such cases. For example, two important
families of extragalactic point sources in Planck data are as follows.

• Radio sources are the dominant family of point sources for all Planck channels
up to and including 217 GHz. Based on the work of Planck Collaboration et al.
[2011c]; Waldram et al. [2007], we assume an emission law for such objects of
the form

ln fν = α ln

(
ν

ν0

)
+ β

[
ln

(
ν

ν0

)]2

, (3.4)

where φ = {α, β} are spectral parameters that can vary between sources, and ν0

is the reference frequency (note that fν = 1 at ν = ν0). Setting β = 0, recovers
the commonly-assumed power-law spectral behaviour with spectral index α. The
more general form (equation 3.4) accommodates most of the common types of
radio-source spectra, namely: flat, steep, and inverted.

• Dusty galaxies dominate the Planck highest frequency channels, starting at 217
GHz up to 857 GHz. Their spectral behaviour may be represented to very good
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accuracy using the well-known greybody model

ln fν = β ln

(
ν

ν0

)
+ ln

[
Bν(T )

Bν0(T )

]
, (3.5)

where the spectral parameters φ = {β, T} are the dust emissivity and tempera-
ture respectively, Bν(T ) is the Planck law of blackbody radiation and ν0 is once
again the reference frequency [Serjeant and Harrison, 2005]. We have again
normalised 3.5 such that fν = 1 at ν = ν0.

• New/unexpected sources can be easily accommodated inside the current frame-
work by allowing the emission coefficient fνi at each frequency to be a free
parameter

f ν = [fν1 , · · · , fνn ]. (3.6)

Such a SED model is certainly more generally applicable because it contains
the other two models. This ‘generic’ model may be used with great advantage
to prevent data artefacts being mistaken for a genuine source, although it may
be disfavoured by the evidence because of its larger number of parameters (see
section 3.7).

3.2 The likelihood

The likelihood is the probability of a data set conditional on the model that describes
it Hj . Additionally, the model might be a function of the source parameters and the
background properties.

L{Hj(s(Θ), b)} ≡ Pr{d|Hj(s(Θ), b)}. (3.7)

The form of the likelihood is determined by the statistical properties of the noise (back-
ground sky emission plus instrumental noise) in each frequency channel.
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3.2.1 Single frequency

For clarity, before addressing the full multi-channel problem let us start, with the more
straightforward single frequency case. Assuming the instrumental noise n(x), is a
stationary Gaussian process then the likelihood reads:

L{H(s(Θ), b)} =
exp

{
−1

2
[d− b− s(Θ)]tN−1 [d− b− s(Θ)]

}
(2π)Npix/2 |N |1/2

. (3.8)

where N is the covariance matrix N ≡ 〈nnt〉 and Npix the total number of pixels in
the image. As we perform our analysis in small patches of sky, it is not unreasonable to
assume the background is statistically homogeneous1. The n×n (= Npix) covariance
matrix of a homogeneous background is of ‘circulant’ type. A very important property
of these matrices is that their eigenvectors, ψu,v, are the Fourier modes

ψu,v = 1
n

[
e
−i2πuvjk

n2 , . . . , e
−i2πuv(n−1)(n−1)

n2

]
ψu,v =

∑n−1
j,k=0 c(k−j) e

−i2πuvjk
n

, (3.9)

where j, k, u, v ∈ {0, . . . , n− 1}, c(k−j) is the element k − j of the covariance matrix
〈nnt〉 and ψu,v, the eigenmodes set, is the well known ‘power spectrum’. So, rotating
every quantity to the Fourier domain, even a non-diagonal covariance matrix (with spa-
tial correlation), is transformed to diagonal, decoupling the Fourier modes and the full
likelihood expression becomes the product of each Fourier mode individual likelihood.

L(Θ, b̃) =
∏
j

Lj(Θ, b̃j), (3.10)

where
Lj(Θ, b̃j) ∝ exp

{
−W

2

[
d̃j − b̃j − s̃j(Θ)

]2
}
, (3.11)

W = σ−2, the symbols with a tilde on top are the Fourier transform of their respec-
tive real space entities and the index identifies the Fourier mode. Our likelihood is

1The Planck data set is obviously non-homogenous. Very large variations on the background statis-
tics between high and low galactic latitudes are clear. To enforce the condition of statistical homogene-
ity, we must apply our algorithm to small patches, each one covering only very limited regions of the
sphere, where we can safely assume the homogeneity condition applies.
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still conditioned on the astronomical background component b̃i. These parameters are
‘nuisance parameters’ as we are not interested in recovering them. So, they can be
integrated out

Lj(Θ) =

∫
Lj(Θ, b̃j) Pr(̃bj) db̃j, (3.12)

where Pr(̃bj), is the prior probability of the b̃j Fourier mode. This probability can be
easily derived from the power spectrum statistical properties of a Gaussian process and
it reads

Pr(̃bj) ∝ exp

[
Wβj

2
b̃j

2
]
, (3.13)

where Wβj = β−2
j is the inverse of the j mode of the power spectrum. Using the alge-

braic equality in appendix A-1 it is possible to rewrite equation 3.12 into the following
form

Lj(Θ) ∝
∫

exp

{
−1

2
(W +Wβj)(̃bj − c)2 +

W Wβj

W +Wβj

ϑ̃2
j

}
db̃j, (3.14)

where ϑ̃j = d̃j − s̃j(Θ). Evaluating the integral we finally get

Lj(Θ) ∝ exp

{
−1

2

(
1

σ2 + β2
j

)[
d̃j − s̃j(Θ)

]2
}
, (3.15)

where we have moved into the proportionality constant an extra contribution coming
from the integration. The expression

(
1

σ2+βj

)
is the inverse of the total background

power spectrum. One can hardly consider this result as unexpected. If the astronomical
background is made of more than one component and these are independent then β2

j =∑
k β

2
jk, is just the sum of the power spectrum of each one of these components, where

β2
jk is the j Fourier component of the k component.

3.2.2 Extending to multi-frequency

Assuming the pixel noise is independent across channels, the joint likelihood for a sin-
gle Fourier mode (j) is just the product of the individual likelihoods for each frequency

Lj(Θ, b̃jk) ∝
Nf∏
k

exp

{
−Wk

2

[
d̃jk − b̃jk − s̃jk(Θ)

]2
}
, (3.16)
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where Wk ≡ σ−2
k and the subscript k indexes the channel. The above expression can

be compactly represented by using matrix quantities

Lj(Θ, b̃j) ∝ exp
{
−(b̃j − ∆̃j)

tWI (b̃j − ∆̃j)
}
, (3.17)

where WI ≡ NI
−1 is the Nf × Nf diagonal covariance matrix of the instrumental

noise1 and ∆̃j = s̃j(Θ)− d̃j . The prior on the astronomical component is assumed to
be well described by a second order statistical model

Pr(b̃j) ∝ exp
{
−b̃

t

j W βj b̃j

}
, (3.18)

whereW βj ≡N−1
βj

is the cross-channel covariance matrix of the j Fourier mode. For
a multi-component background made of uncorrelated contributions, this matrix is just
the sum of the individual covariance matrices. In a well designed, free of systematics
and properly calibrated experiment this matrix should be close to singular. Each line,
for each component matrix, can be obtained by multiplying any other by the spectral
index relating these two frequencies. As we shall see, this very strong correlation
among the same Fourier mode at different frequencies plays a very important role when
the main contaminant of the signal we want to detect is the astronomical background
and not the instrumental noise. This is exactly the case for Planck (see chapter 5).
Taking advantage of the matrix formula in appendix A-1, the likelihood now reads

Lj(Θ) ∝
∫

exp
{
−(b̃j − c)t (WI +W βj) (b̃j − c)

}
exp

{
−∆̃

t

j WI(WI +W βj)
−1W βj ∆̃j

}
dnb̃j.

(3.19)

After performing the integration, we have finally derived a likelihood formula that
embodies the assumed statistical assumptions

L(Θ) = Pr {d|Hs(Θ)} ∝
∏
j

exp

{
−
[
d̃j − s̃j(Θ)

]t
N−1
j

[
d̃j − s̃j(Θ)

]}
,

(3.20)
where Nj = N−1

I +N−1
βj

is the the generalised noise cross-power-spectra. The likeli-
hood normalization constant could be evaluated by integrating the full likelihood over

1NI is not a function of the Fourier mode j

30



3. Bayesian detection in multi-frequency astronomical data sets

the vectors d̃j and equating it to unity. We are, in fact, only interested in the likelihood
ratio between the hypothesis Hs that objects (of a given source type s) are present
and the null hypothesis H0 that only background is present. The latter corresponds
to setting the sources signal s(x; Θ) to zero. Under our combined assumptions, the
log-likelihood ratio has the form

ln

[
LHs(Θ)

LH0(Θ)

]
=
∑
η

d̃
t
(η)N−1(η)s̃(η; Θ)− 1

2

∑
η

s̃t(η; Θ)N−1(η)s̃(η; Θ). (3.21)

We have changed to a more common notation where η is the bi-dimensional spatial
frequency (the wavenumber k = 2πη). From 3.2 and 3.3, the Fourier transform of the
signal due to all the sources may be written

s̃(η; Θ) = B̃(η)
Ns∑
j=1

Ajf(φj)τ̃(−η;aj)ei2πη·Xj , (3.22)

where the vector B̃(η) contains the Fourier transform of the beam at each frequency
and τ̃(η;a) is the Fourier transform of the template for an unconvolved object at the
origin, characterised by the shape parameters a. Substituting 3.22 into 3.21 and re-
arranging, one obtains the final form of the likelihood ratio we will use throughout

ln
[
LHs (Θ)

LH0
(Θ)

]
=∑Ns

j

{
AjF

−1 [Pj(η;φ)τ̃(−η;aj)]Xj
− 1

2
A2
j

∑
η Qjj(η;φ)|τ̃(η;aj)|2

}
−
∑Ns

i>j

{
AiAjF

−1 [Qij(η;φ)τ̃(η;ai)τ̃(−η;aj)]Xi−Xj

}
,

(3.23)

where F−1[. . .]X denotes the inverse Fourier transform of the quantity in brackets,
evaluated at the point X , and the quantities Pj(η;φ) ≡ d̃

t
(η)N−1(η)ψ(η;φ) the

‘Data single equivalent channel’, and Qij(η;φ) ≡ ψ̃
t

i(η;φ)N−1(η)ψj(η;φ) the
‘Noise single equivalent channel’, in which the vector ψi(η;φ) has the components
(ψ(φ)i)ν = B̃ν(η)(f i(φ))ν , with ν labelling frequency channels.

We have written the likelihood ratio in this way since it combines multi-channel
data into a single equivalent channel, but only if the source spectral signature does not
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depend on any parameter (f i(φ))ν ≡ (f i)ν , as in the case of the SZ sources. This
property can be exploited with great advantage in the construction of SZ catalogues.
The ‘single equivalent channel’ is by far the most resource demanding part of the
likelihood evaluation and only needs to be evaluated once per patch1. As a side effect
this likelihood form further highlights the importance of the final ‘cross-term’ on the
right hand side of 3.23. Let us assume for a moment that this cross-term is negligible:

Ns∑
i>j

{
AiAjF

−1 [Qij(η)τ̃(η;ai)τ̃(−η;aj)]Xi−Xj

}
≈ 0. (3.24)

In this case, the parameters of each source enter the likelihood independently. This
parameter independence allows us to perform our analysis one source at a time and
forms the basis of the ‘single source model’ discussed in section 3.4.1, which greatly
simplifies the source detection problem. The physical meaning of the neglected cross-
term is most easily understood by considering the simple, but important, example of
point sources, for which τ(x,a) = δ(x). In this case, equation 3.24 becomes∑

i>j

AiAjF
−1[Qij(η)]Xi−Xj

≈ 0. (3.25)

A sufficient condition for this expression to be small is that all sources are sufficiently
well-separated that F−1[Qij(η)]X is close to zero for such distances. For simple, uncor-
related backgrounds, Qij(η) contains just linear combinations of the instrument beams
in each frequency channel. Thus, the condition that equation 3.25 is small, it is just a
generalization of the common assumption in astronomy that objects are well separated,
or that object blending effects are negligible2. When detecting point sources, and as-
suming the blending is not severe, an efficient implementation of the full deblending
term is possible, but this will be addressed in a forthcoming publication.

It is worth noting that maximising the likelihood ratio (equation 3.23) in the ab-

1In practical terms, the SZ ‘single equivalent channel’ may account for a speed increase in the code
execution of hundreds as in the case of our own implementation applied to Planck data.

2When the background is uncorrelated, this condition is immediately fulfilled if each pixel con-
tains signal coming from one and only one source. However, this is not enough when there are strong
correlations in the background as in the case for Planck data.
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sence of the cross-term 3.25 with respect to the source amplitudes Aj ,

∇A ln

[
LHs

LH0

]
= 0, (3.26)

reads

Âj =
F−1 [Pj(η)τ̃(−η; âk)]X̂j∑

η Qjj(η)|τ̃(η; âj)|2
. (3.27)

We have recovered the expression for the Matched Multi-Filter (MMF) [Herranz et al.,
2002b]. Thus, we see that the filtered field is merely the projection of the likelihood
manifold onto the subspace of position parametersXj . Through Fisher matrix analysis
and referring to the Cramér-Rao bound, the estimation of the MMF parameter uncer-
tainties becomes straightforward (see chapter 5). This should be contrasted with tradi-
tional MMF approach in which the uncertainty on the source flux estimate is calculated
assuming the values of all other parameters are fixed [Melin et al., 2006]. Substituting
the maximum-likelihood estimate (equation 3.27) into the likelihood ratio (equation
3.23), one obtains for the jth object

max

[
ln

(
LHs

LH0

)]
= 1

2

∑
η

Qjj(η)|τ̃(η; âj)|2Â2
j = 1

2
ŜNR

2

j (3.28)

where ŜNRj is the signal-to-noise ratio (at the peak) of the jth source, and the rms σ
of the noise satisfies

1

σ2
=
∑
η

Qjj(η)|τ̃(η; âj)|2. (3.29)

Thus, one recognises that the traditional approach to catalogue making, in which one
compares the maximum SNR of the putative detections against a given threshold, is re-
ally nothing more than performing a Generalised Likelihood Ratio Test (GLRT) [Trees,
2001].

3.3 Priors

Prior probability distributions are part and parcel of Bayesian inference framework. If
the data model provides a good description of the observed data and the signal-to-noise
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ratio is high, then the likelihood will be very strongly peaked around the true parameter
values and the prior will have little or no influence on the posterior distribution [Cam
and Yang, 2000]. At the faint end of the source population, when we are getting close to
the instrument sensitivity limit, however, priors will inevitably play an important role.
Moreover, since for most cases in astronomy the faint tail overwhelmingly dominates
the population, the selection of the priors becomes important and has to be addressed
very carefully.

PwS separates the tasks of source detection and source estimation (see section
3.3.1). This separation has the advantage of allowing the use of different sets of priors
at each stage. Typically, we first perform the source detection step using ‘informative’
priors, which encompass all the available information, since they provide the optimal
selection criterion and the optimal estimators. After the set of detections has been de-
cided, PwS proceeds to the estimation pass, in which ‘non-informative’ priors may be
used instead.

• Non-informative priors.

Non-informative priors are constructed such that a ‘Maximum A Posteriori’ (MAP)
estimator of any quantity should depend exclusively on the current data set1.
One way of expressing this condition is that, when changing the data, the like-
lihood shape remains unchanged and only its location in the parameter space
changes [G. E. Box, 1992, ch. 1]. Thus, the idea is to find an appropriate re-
parametrization of the likelihood that transforms the parameters into location
parameters, for which the ignorance prior is locally uniform. Locally, in this
sense, means the parameter range where the mass of the likelihood is concen-
trated. One then performs the inverse parameter transformation on the uniform
prior to obtain the appropriate prior in the original parameter set. Finding such
a transformation may, however, be very difficult for a general multi-dimensional
prior. Nonetheless, in a large majority of applications, the parameters can be
assumed independent, so that the prior factorises

π(θ1, θ2 . . . , θn) = π1(θ1)π2(θ2) . . . πn(θn). (3.30)

1These priors usually need not be properly normalised, since the normalisation constant does not
depend on any parameters.
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For one-dimensional distributions, Jeffreys devised a general way to derive the
non-informative prior on a parameter based on invariance properties of the like-
lihood under a change of variable [G. E. Box, 1992; Jaynes, 2004]. The Jeffreys
rule for constructing ignorance priors for the one-dimensional case reads

π(θ) ∝ J1/2(θ), (3.31)

where
J(θ) ≡ −

〈
∂2 lnL(θ)

∂θ2

〉
(3.32)

is the Fisher information [Jeffreys, 1961]. We will adopt this approach and con-
sider below the prior on each parameter of interest.

• Informative priors.

Informative priors are those meant to add more information to the inference pro-
cess than that carried by the data alone. The estimates are always the outcome
of a trade-off between the data and prior information.

– Population related.

This type of probability distribution is something astronomers know very
well. It describes how a certain physical quantity is distributed across a
certain population of sources. An example is the distribution of flux den-
sities for radio sources [de Zotti et al., 2005]. Usually, the general form of
the distribution is known or at least can be constrained using physical or
cosmological arguments only. But, many times, these laws depend on un-
known or poorly known parameters. Bayesian hierarchical modeling (see
[G. E. Box, 1992, ch. 5] and [Gelman et al., 2003, ch. 5]) is the perfect
recipe for dealing with this kind of problems that pervade astronomy1.

– Targeted.

This is commonly known as ‘non-blind detection’. These are the type of
priors that apply to each object individually. Normally, they are assembled
from previous observations of the same object and their main goal is to pro-
vide better constraints on the parameter estimates by combining, eventually

1The hierarchical modeling will be fully addressed in a future work.
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heterogenous, data sets [Planck et al., 2012].

Some authors, such us Box and Tiao [G. E. Box, 1992], are clearly in favour of the
use of non-informative priors, as these provide estimates based exclusively on the in-
formation contained in the data under study. Though, others prefer optimal estimators,
based on informative priors, at the cost of some blending with external information
[AMI Consortium et al., 2012].

3.3.1 Detection versus estimation
(astrometry and photometry)

• Detection

is defined as to decide whether a certain signal originates from one of the sources
or not.

• Estimation

is the process of assigning values and uncertainties to the physical parameters
of interest. Estimation can be further sub-divided into:

– Photometry,
the estimation of the strength of the source emission.

– Astrometry,
the estimation of the object’s position and geometry.

In PwS we do not make any distinction between the different parameters of our object
model. Thus, astrometry and photometry are joined into a single entity ‘parameter

estimation’. Bayesian probability allow us to define the full ‘posterior distribution’
of the estimates unifying the concepts of ‘point’ and ‘interval estimation’. Jaynes
[Jaynes, 2004, ch. 6] asserts that, in the light of probability theory, there should not
be any real difference between parameter estimation and model assessment at least in
general. Moreover, by indexing the competing models and then finding the maximum
of the posterior distribution of the index parameter given the data, we are after all
selecting one of them (see section 3.4). Although, at the same time, he also claims
[Jaynes, 2004, ch. 9] one can never say the data supports a certain hypothesis without
stating a specific alternative. When we say we are testing for a family of objects Hj ,
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supported by a general source model (radio source, dusty source, cluster, etc.), we are
at the same time assessing an entire set of sub-models, each one indexed on the number
of sources present of that type, Hj

Nobj
against its complement H̃j

Nobj
. Then by choosing

the value of Nobj which maximises the evidence ratio, we are effectively selecting a
sub-model, but at the same time bringing about an estimate ofNobj as well. We believe
that is exactly what Jaynes had in mind.

Another, more subtle point, is about the choice of priors. Priors must bring into
the inference arena the state of knowledge we possessed before start collecting the
data. Often that prior knowledge is only vestigial or it is our desire to infer assuming
that. These type of priors are commonly known as ‘non-informative’. In section 3.3
we define the conditions those priors need to meet, but only in the case of an estima-
tion exercise. However, one should always remember that detection is about taking
decisions by comparing hypotheses, which is fundamentally different. So are the un-
derlining assumptions and consequently the non-informative priors as well. Making
a catalogue always involves, at least, a detection plus an estimation step. We believe
these operations must be kept independent as different priors may apply in each case.

3.3.2 Prior on positions

It is obvious that the distribution of sources is not uniform across the sky. The galactic
regions (Milky Way and Magellanic Clouds) have a much higher density of detectable
sources than the rest of the sky. Moreover, assuming extra-galactic sources to be uni-
formly distributed across the sky (no clustering) is not sufficient to ensure that the
distribution of detectable sources is uniform, since the background/noise is itself in-
homogeneous over the sky. Let us define a new entity which will soon prove very
helpful, the ‘homogeneous zone’. A homogenous zone is an arbitrary ensemble of
patches across which all statistical properties of the data and the object models may
be assumed approximately invariant. The homogeneous zones should be appropriately
sized to keep the expected number of sources λ on each mostly invariant1. PwS divides
the sky into small patches, which may be further aggregated into homogeneous zones,
and, in each such region, the assumptions of background homogeneity and a uniform

1Denser regions should be made smaller then sparsely populated ones. An homogeneous zone may
contain from one single patch (the ‘area atom’) to the full set.

37



3. Bayesian detection in multi-frequency astronomical data sets

source distribution are reasonable. Moreover, if the sky patches used are sufficiently
small, our locally uniform model can easily cope with clustering when the gradient of
the density of sources is small across the patch boundaries. The correctly normalised
positions prior for the complete ensemble of sources in a patch is simply

Pr(XNs|Ns, Npix) =
1

Npix
Ns
, (3.33)

where Npix is the number of pixels in each homogeneous zone and Ns is the number
of sources in that region.

3.3.3 Prior on the number of sources

Following the same rationale of local uniformity, i.e no clustering, the probability of
finding Ns objects (above a given flux limit) in a sky homogeneous zone follows a
Poisson distribution

π(Ns) = Pr(Ns|λ) = e−λ
λNs

Ns!
, (3.34)

where λ is the expected number of such objects in that region. Moreover, λ should be
proportional to the region size λ = ΛsNpix∆p, where Λs is the number of sources per
pixel and ∆p is the pixel area. Note that Λs may change across the sky as we are only
enforcing the uniformity locally within each homogeneous zone.

3.3.4 Prior on flux density

A good flux estimator should be unbiased, but this goal is often problematic. The
optimal estimators in the sense of decision theory, i.e. those that minimise the expected
loss/cost, are most often biased and they combine the data with external information
from ancillary data sets. PwS thus includes two different sets of flux priors with distinct
goals.

• Non-informative.
Our data model depends linearly on the source fluxes Aj and is a particular
case of the general linear model [G. E. Box, 1992]. Considering only a single
source for simplicity (the solution for multiple sources is a mere repetition of
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this simpler case), one may show that the likelihood can be written in a form that
makes it clear that the flux is in fact a location parameter:

LHs(Aj) ∝ exp

[
−
∑
η Qjj(η)|τ̃(η; âi)|2

2
(Aj − Âj)2

]
, (3.35)

where Âj is the MMF estimate of the flux (equation 3.27). The same result could
have been obtained directly using formula 3.31. Thus, the prior on the flux must
be locally uniform:

π(Aj) ∝ c, (3.36)

where j indexes the source. For a more general and rigorous treatment see
[G. E. Box, 1992].

• Informative.
Owing to the different statistical properties of point sources and SZ galaxy clus-
ters, a different prior applies in each case. For point sources, we adopt the flux
prior first suggested by Argüeso et al. [2011],

π(Aj) = Pr(Aj|A0 p γ) ∝
[
1 +

(
Aj
A0

)p]− γp
, (3.37)

where A0 is the ‘knee’ flux, p is some positive number and γ is the exponent
controlling the shape of the power law for fluxes much larger than the ‘knee’.
This provides a good model for the observed distribution of fluxes, fitting the de
Zotti model almost perfectly [de Zotti et al., 2005]. Moreover, the distribution
can be properly normalised as required for evidence evaluation. PwS sets a
minimum flux and re-normalizes the remaining range, a practice the proponents
of the distribution also followed. For galaxy clusters, the derivation of the prior
follows a different approach. The Planck Sky Model (PSM v1.6) [Delabrouille
et al., 2012] was used to draw realistic simulations of the cluster populations
assuming a standard WMAP best-fit ΛCDM cosmology [Hinshaw et al., 2009]
and the Jenkins mass function [Yoshida et al., 2001]. We found that the fluxes in

39



3. Bayesian detection in multi-frequency astronomical data sets

the sample cluster catalogues were quite well fitted by a power law

π(Aj) ∝ A−γj . (3.38)

As we need to provide a properly normalised distribution, once again a minimum
and, this time, a maximum flux also were assumed.

3.3.5 Prior on size

• Point sources.
Point sources are best modelled by imposing the prior π(r) = δ(r) on the ‘ra-
dius’. This condition might, however, be too restrictive, since to simplify the
implementation of the code and to make it faster, PwS assumes the instrument
beams are circularly symmetric, which is only an approximation to the true beam
shapes. Thus, even for point sources, allowing the source radius to vary over a
small range of values allows a better fit between the template and the pixel in-
tensities and consequently a higher likelihood ratio/SNR value. Thus, in both
the informative and non-informative case, our preferred radius prior for point
sources is

π(rj) =

{
1/∆ rj ≤ ∆

0 rj > ∆
, (3.39)

where ∆� FWHM (the full-width-half-maximum of the beam).

• Galaxy clusters.
Turning to galaxy clusters, a significant fraction of the clusters Planck will de-
tect will be unresolved, and thus appear as point sources with a distinctive spec-
tral signature. In many cases, however, galaxy clusters are large enough to be
mapped as extended objects and a parameter controlling the scale of the cluster
profile, the radius, needs to be included. The informative prior on the radius was
derived using the same procedure as in section 3.3.4 and an exponential law

π(rj) ∝ exp
(
−rj
`

)
, (3.40)

was found to fit the simulated catalogues very well. We truncate the distribution
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outside a minimum and maximum radius.

The non-informative prior follows a different law from that expected from the
cosmological models. Our model for an individual source is the convolution of
the source profile with the point spread function (PSF). The radius parameter r′s
that scales the resulting shape is a ‘hybrid’ parameter, as it shifts and scales the
likelihood at the same time [Jaynes, 2004, ch. 12]. After applying the Jeffreys
rule, the non-informative prior on r′s reads:

π(r′s) ∝
1

r′2s
. (3.41)

Assuming that either the profile or the beam have centroids at the origin and the
profile is a scaling profile τ(r/rs) then,

r′s =
√
B2 + κ2 r2, (3.42)

where B2 is a constant known as the function variance of the beam [Bracewell,
1999] and κ2 is another dimensionless constant, the variance of the dimension-
less variable r/rs over the profile. The non-informative prior for the radius pa-
rameter then reads:

π(r) ∝ r

(B2 + r2)
3
2

, (3.43)

where B = B/κ. For the general case B2, the variance of the beam, should be
replaced by the variance of

√
Pj(η). For unresolved objects, narrow clusters

with radii smaller than the beam size, the prior grows linearly with r. For well
resolved objects, r � B, the prior decreases proportionally to r−2.

3.3.6 Prior on spectral parameters

There is an extensive literature on the distribution laws of radio source spectral indexes
[de Zotti et al., 2010; Planck Collaboration et al., 2011a,c, and references therein]. In
general Gaussian distributions, or Gaussian mixtures with two modes, fit the available
data reasonably well. However, the most interesting sources are exactly those that do
not follow the canonical laws of emission. To avoid narrowing the range of possible
alternatives too much, uniform priors are probably better choices unless we choose to
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target a very specific family. The same holds for dusty galaxies.
By applying our standard procedure, the non-informative prior on the spectral pa-

rameters reads

π (αk) ∝
√∑

ν1ν2

Θν1ν2

(
∂S

∂αk

)
ν1

(
∂S

∂αk

)
ν2

, (3.44)

where the sum extends over all frequency channels,
(
∂S
∂αk

)
νi

is the derivative of the
SED of the source in order to parameter αk evaluated at frequency νi and

Θν1ν2 = Ση N−1
ν1ν2η

B̃ν1η B̃ν2η τ̃η(â),

where all symbols follow the same nomenclature as in 3.23.

3.3.7 Prior on the models

The prior ratio Pr(H1)/Pr(H0) on the models is often neglected (i.e. assumed to equal
unity), but plays a very important role in the PwS detection criterion. To give a proper
account of its nature, let us imagine the simplest possible detection problem, where
we know in advance all true values of the parameters that define an object, which
translates into delta-functions priors. Substituting this condition into equation 2.9 and
making use of 3.28, we obtain the following inequality:

SNR
H1

≷
H0

√
2

[
ξ + ln

(
Pr(H0)

Pr(H1)

)]
. (3.45)

One may interpret the term ln
(

Pr(H0)
Pr(H1)

)
as an extra ‘barrier’ added to the detection

threshold because we are expecting more fake objects than the objects of interest, due
to background fluctuations.

We saw earlier that, when an object is present, a local maximum in the likelihood
is always present in the position parameter sub-space. This condition immediately im-
plies that only likelihood maxima need be analysed. Nonetheless, one expects other
likelihood maxima to occur as a result of background fluctuation ‘conspiracies’. As-
suming Poisson statistics for the number of sources and the number of likelihood max-
ima resulting from the background fluctuations, then the ratio of the probabilities is
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given by (see A-2)
Pr(H1|Ns)

Pr(H0|Ns)
=

(
λ1

λ0

)Ns
(3.46)

where λ0 is the expected number of maxima per unit area resulting from background
fluctuations above the minimum limit of detection of the experiment, and λ1 the ex-
pected number density of sources above the same limit.

If only background is present, the density of maxima, λ0, resulting from the filter-
ing procedure that creates the likelihood manifold can be estimated using the 2D Rice
formula:

nb(ν, κ, ε) =
8
√

3ñb

π
√

1− ρ2
ε(κ2 − 4ε2) e

− 1
2
ν2−4ε2− (κ−ρν)2

2(1−ρ2) , (3.47)

where ν ≡ A/σ is the ‘normalised peak amplitude’, κ the ‘normalised curvature’, ε
the ‘normalised shear’, and ρ = σ2

1/(σ0σ2), with σ2
n = (2π)1+2n

∫∞
0
η1+2n|P(η)|2 dη

[López-Caniego et al., 2005]. Marginalizing over all parameters we obtain the ex-
pected density of maxima of a Gaussian filtered field, which reads

ñb =
σ2

2

8π
√

3σ2
1

. (3.48)

One is not interested, however, in all peaks, but only on those above a certain level ν0,
since PwS pre-selects the putative detections by imposing a minimum SNR level before
attempting the evidence evaluation. The main reason for adopting this early selection
is computational efficiency. The SNR alone provides a good proxy (see formula 3.28)
for deciding whether a candidate peak is the result of the presence of a source or just a
background fluctuation. Moreover, low SNR peaks tend to be ‘badly-shaped’ making
the sampler very inefficient and resulting in a very large fraction of the samples being
rejected. To make the things even worse, in most cases, these peaks themselves end
up being rejected as objects. The applied flux cut must be taken into consideration to
evaluate the correct expected number counts, which define the prior Pr(H1) as well.
Thus, λ0 will read:

λ0 =

∫ ∞
ν0

nb(ν)dν, (3.49)
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where nb(ν) is given by

nb(ν) = ñb
√

6
2
√
πρ1

{(
1 + erf

(
ρ

ρ1ρ2
ν
))

e
−ν2

(
1
2

+
(
ρ
ρ2

)2) (
ρ
ρ2

)
+(

1 + erf
(
ρ
ρ1
ν
))

e−
ν2

2 (ν2 − 1)ρ2ρ1 +

νe
−ν2

(
1
2+( ρ

ρ1 )
2
)

√
π

ρρ2
1

}
,

(3.50)

where ρ1 =
√

2 (1− ρ2) and ρ2 =
√

2
(

3
2
− ρ2

)
. The expected number count of tar-

geted objects above a certain flux threshold S, λ1 ≡ 〈N(> S)〉, may be easily derived
from their differential counts. The dominant type of extra-galactic point sources in
Planck maps are galaxies which, in principle, do not follow the same statistics as the
galaxy clusters. From general cosmological assumptions it is possible to derive that
the expected differential counts for a certain population type of galaxies per flux in-
terval at a certain frequency, always follow a power law dNφ/dS = Aφ S

−b [de Zotti
et al., 2005]. For clusters of galaxies, however, we derived the differential number
counts from a realistic set of simulations produced by the ‘Planck Sky Model’ (PSM
v1.6) [Delabrouille et al., 2012]. The package was parameterized to use a Jenkins
mass-function [Yoshida et al., 2001] and a standard WMAP best-fit ΛCDM cosmology
[Hinshaw et al., 2009] as before. We have found that a power law also fits quite well
the expect number counts of clusters above a certain threshold. So, in either case, point
sources or clusters, λ1 may be written as

λ1 = N(> S0) =

∫ ∞
S0

dNφ

dS
dS = Aφ (1− b)−1 S1−b

0 , b 6= 1, (3.51)

where we keep the parameters {Aφ, b} free. These parameters are usually provided by
the user to target a specific type of object and/or instrumental setup.

3.4 Object detection strategy

So far we have only developed the logical and probabilistic underpinnings of PwS. It is
now time to bring all the pieces together into a consistent strategy for the detection and
characterisation of discrete objects. Our aim is to construct a robust, controlled, and

44



3. Bayesian detection in multi-frequency astronomical data sets

predictable algorithm. Some caveats will be identified and solutions suggested, always
justified within the framework presented above.

3.4.1 Single object approach

Let us return to formula 2.9. At a first look, the evaluation of 2.9 seems quite a daunting
task. In order to apply the full Bayesian approach, many complex integrals, over a very
high dimensional volume (at least 4×Ns), need to be evaluated1. Clearly a brute force
method is not efficient and perhaps not possible, even with the massive computing
resources generally available.

To find an effective solution, we begin by making two important assumptions: (i)
the objects of interest are ‘well separated’, so that equation 3.24 holds; and (ii) all vari-
ables pertaining to each individual source are mutually independent, which has already
been implicitly assumed throughout the exposition of our inferential infrastructure.

These conditions allow us to separate the integrals associated with each source.
This is a very important simplification because it is now possible to deal with each
source independently, one at a time. This is the ‘single object approach’ [Hobson and
McLachlan, 2003] and replaces a single Nparam × Ns-dimensional integral with a se-
quence ofNs integrals, each of dimensionNparam. The complete likelihood expression
may now be replaced by the much simpler ‘single source’ form.

Pr(Hs|d,Ns)
Pr(H0|d,Ns) ={[∫

α10

. . .

∫
α1n

Ls(α10, · · · , α1n)

L0

πs1(α10) · · · πsn(α1n) dα10 · · · dα1n

]}
︸ ︷︷ ︸

Zs1
...{[∫

αNs0

. . .

∫
αNsn

Ls(αNs0, · · · , αNsn)

L0

πs1(αNs0) · · · πsn(αNsn) dαNs0 · · · dαNsn

]}
︸ ︷︷ ︸

ZsNs

(Npix∆p)
−Ns e−λs λ

Ns
s

Ns!

(
λs
λ0

)Ns
.

(3.52)
Although, one should exercise some care in defining the limits of integration in position

1Even when working with one small patch at a time, Ns is seldom smaller than 4.
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space, since no significant likelihood mass can be shared among position integration
domains. Apparently, this requirement creates such a wealth of complexity to the in-
tegral evaluation that the single source approach might at first be considered a poor
choice. Fortunately, the method PwS uses to evaluate the evidence integrals automat-
ically enforces this rule if the fields are not too crowded (see section 3.4.2). Under
our assumptions, the odds of the model Hs (for a given source type), given Ns such
sources, reads

Pr(Hs|d, Ns)

Pr(H0|d, Ns)
= (Npix∆p)−Nse−λs

λNs1

Ns!

(
λs
λ0

)Ns Ns∏
j=1

Zsj, (3.53)

Taking logarithms and rearranging, one finds

ln

[
Pr(Hs|d, Ns)

Pr(H0|d, Ns)

]
=

Ns∑
j=1

ln(Zsj)−NsPs, (3.54)

where we have defined the ‘penalty per source’ Ps as

Ps ≡ ln Λ−1
s + ln

(
λ0

λs

)
+

1

Ns

[λs + lnNs!] . (3.55)

Thus, the total ln(odds) for a single homogeneous zone is the sum of the partial
ln(evidence) for each source, plus an extra global penalty term that contributes, in
the majority of the cases, negatively to the final balance and does not depend on any
particular source, but exclusively on the ensemble properties.

The most robust source catalogue is that which maximises the ln(odds) in 3.54,
but we do not know the value Ns. Moreover, we have not yet addressed how many
or which candidate detections will be finally selected for inclusion in the catalogue.
Nonetheless, the expression 3.54 is a sum, so its maximum value is reached when only
the positive terms are included. Thus, one possible procedure to select the optimal set
of sources is as follows:

1. evaluate Zj for each source;

2. partition the candidate detections into the pre-defined homogenous zones. For
each zone:
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(a) sort the candidate detections in descending order of Z and number them
(j = 1 . . .);

(b) with Ns, iterate down the list of catalogue entries evaluating formula 3.54;

(c) stop when moving from Ns = k to its successor (Ns = k + 1) makes
expression 3.54 decrease.

(d) This means, N̂s (the value of Ns that maximises the evidence ratio) has
been found and the ‘proto-catalogue’ is formed from the first k entries.

This quantity, the ln(odds) for each object

ln(odds)j ≡ ln

[
Pr(H1|d)

Pr(H0|d)

]
j

= ln(Z1j)− P̂s, (3.56)

(P̂s is the penalty per source evaluated at N̂s or the catalogue penalty per source), has
a pivotal role in catalogue making (see section 2.3).

We are not finished yet, however, because we have only selected the set of detec-
tions that maximises the odds. Other constraints may yet apply. For instance, we may
impose a threshold per line different from zero as result of the loss criteria or, as we
shall see, a prescribed contamination for the catalogue.

3.4.2 Evaluation of the odds ratio

Even using the simplified form of the likelihood assumed in the single-object approach,
a ‘brute force’ evaluation of the resulting evidence integrals is still not feasible. One
must instead use a Monte Carlo approach to the numerical integration. Evidence inte-
grals are usually evaluated using Markov Chain Monte Carlo (MCMC) methods and
thermodynamic integration. Such methods can fail, however, when the posterior distri-
bution is very complex, possessing multiple narrow modes1 that are widely separated.
We therefore instead use ‘nested sampling’ [Sivia and Skilling, 2006], which is much
more efficient, although not without its difficulties. Feroz et al. [2009] have developed
a very efficient implementation of the nested sampling algorithm, called ‘MultiNest’,
which is capable of exploring high-dimensional multimodal posteriors. Nonetheless,

1At least one central maximum per source plus other secondary maxima around the central higher
peaks [Carvalho et al., 2009].
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MultiNest is designed to be a general sampling and evidence evaluation tool and it is
not particularly tuned for Planck.

In the interest of speed, PwS instead tries to take full advantage of the properties
of the astronomical data sets. As already stated (see section 3.3), if our model explains
the data well then the likelihood should peak steeply around the parameter true values,
decay very rapidly to zero, and have most of its mass concentrated around the maxima
vicinities. Thus, if one can first find the likelihood maxima, then one does not need a
sophisticated multimodal sampling algorithm like MultiNest. A much simpler nested
sampling scheme such as Mukherjee et al. [2006] would perform equally well. More-
over, reasonably high SNR maxima develop ‘well-shaped’ peaks, in the sense they are
close to Gaussian, rendering the sampling highly efficient. Two other significant ad-
vantages are: (i) we can reduce our data set to a small neighbourhood enclosing the
maxima, so that only a very small number of pixels close to the maxima contribute ap-
preciably to the evidence value; and (ii) a much reduced parameter volume allows the
same number of ‘live points’ to deliver a considerably higher accuracy on the evidence
value, since they do not split among the several posterior peaks. This is the approach
adopted in PwS, which we now outline in more detail.

3.4.2.1 Locating the likelihood maxima

Our first goal is to find the likelihood maxima. For illustration, let us focus on the
example of galaxy clusters, each of which is described by 4 parameters: {X, Y, S,R}.
An efficient 4-dimensional minimiser implementation is straightforward and immedi-
ately available [Press et al., 1992]. However, our manifold has many maxima and we
need to check all of them, otherwise we might lose some sources.

One possibility would be to follow the approach used in Carvalho et al. [2009],
where the Brent line minimiser was ‘enhanced’ with an ancillary step to allow it to
‘tunnel’ from one minimum to the next one using a scheme closely related with the
equivalent quantum mechanical effect. To increase the effectiveness of the procedure,
PwS I started a Powell minimization chain1 in many different locations of the manifold
in an attempt to find all the maxima. It should be remembered, however, that the likeli-
hood only exhibits multiple maxima in the position sub-space; the other sub-spaces are

1‘Powell’ = Powell minimiser + ‘Snakes’ = the path the solution follows before converging.
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Figure 3.1: These two figures are views of a typical ln likelihood ratio manifold
(ln [LHs/LH0 ]) restricted to position space. The z axis was normalized using for-
mula 3.28. This particular example was drawn from a SZ extraction exercise using
the ‘WG2’ simulations (see section 4.3.1). The complexity of the manifold is over-
whelming.

‘well behaved’. Moreover, the likelihood in the position sub-space is merely the MMF
filtered field. We therefore instead use a brute force peak finding algorithm that scans
all pixels in this subspace, which is very easy to implement and almost instantaneous.
Then, after collecting a list of peak positions, we start a 4-dimensional PowellSnakes
optimisation at each such location to find the maximum-likelihood parameters for that
particular peak.

A subtlety does arise in this approach, however, since to obtain the MMF filtered
field, one needs to assume a size R for the objects to define the filter. Since we expect
different clusters to have different radii, we might lose some peaks because of the
mismatch between the true value of the cluster radius and that used in the filtering
template. A simple solution would be that suggested by the MMF authors: apply the
filter repeatedly using a different radius each time. Although practical, this is, however,
not the most efficient approach. Fortunately, if the instrument beams and the sources
possess reflection symmetries in both axes, then one can show that the Fisher matrix
at each likelihood peak is block-diagonal (assuming the likelihood 3.23 and using the
single-source approach assumption 3.25; see demonstration in appendix A-3), such
that there is no correlation between the position subspace and the other parameters
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(flux and size) of the cluster. This has two important consequences: (i) regardless of
the radius used to construct the filter, a likelihood maximum will always appear at the
location of the source and its position will not move as the filter scale varies; (ii) we
do not need to perform a full 4-dimensional maximization but can (at least) separate
the position variables from all others, which brings a tremendous simplification to
the problem of finding the likelihood maxima. Thus, we can indeed start by finding
the maxima in the position subspace using a brute force ‘check-all-pixels’ approach
and then, after pinpointing the position of the source, search the remaining sub-spaces
associated with the other variables.

A couple of final comments on this approach are worth making. First, it is well
known that matched filters are excellent at finding and locating sources, but not as
good at estimating fluxes. If the beam shape/size is not completely known but sym-
metric, even when building up a filter with the wrong beam geometry, the filter will
correctly recover the positions of the objects. In general, however, the element in the
Fisher matrix corresponding to the correlation between the radius and the flux of an
object is non-zero. Therefore, if the filter is assembled using wrong beam parameters,
bias in the flux estimates must be expected. Second, and perhaps more subtle, is that
the symmetries of the Fisher matrix only hold on average. Thus, for each individual
peak some residual correlation between the position and the other variables is expected.
According to our current accumulated experience, however, this correlation is usually
very small. Nonetheless, PwS still includes the option to use the peak positions ob-
tained from the MMF filtered fields just as initial hints for a full N-dimensional Powell
minimisation.

3.4.2.2 Exploring the posterior distribution

Our initial step provides the Maximum Likelihood (ML) estimates and the SNR of each
detection candidates. This has a very useful side effect, since we do not need to explore
the posterior distribution around all the maxima we find. Only a much smaller sub-set
is chosen based on an SNR threshold. This SNR threshold should be low enough not to
reject any substantial fraction of peaks associated with true detections and high enough
to make the selected sample contain a large percentage of true sources and to include
most ‘well-shaped’ maxima. This shorter list is then sorted in descending order of SNR
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and one-by-one the maxima are sent to the nested sampler, which returns an evidence
estimate and a set of weighted samples that we use to model the full joint posterior
distribution1. The final catalogue is almost completely independent of SNR threshold
if this is not too high2. From these posterior distribution samples one can compute any
parameter estimate, draw joint distribution surfaces, predict HPD intervals of any con-
tent over the marginalized distributions to infer the parameter uncertainties, etc., as in
the examples presented in [Planck Collaboration et al., 2011f, fig. 9] and Planck et al.
[2012]. The current implementation of PwS (v3.6+) computes maximum-likelihood,
posterior mode and posterior median estimates of the source parameters. However, as
discussed in section 2.2.1.1, owing to the discrete nature of the parameter space or its
processing, the uncertainties of these estimates will always be bounded from below by
the ‘atom’ of the representation. Another difficulty happens when analysing low SNR
detections. The likelihood manifold becomes almost flat and very ‘noisy’, introducing
a very large dispersion on the estimates, especially on the MLE and the posterior mode.
To overcome these difficulties, PwS uses the set of samples drawn from the parameter
posterior distributions. To stabilise the estimators PwS employs the expected value
estimator but over HPDs of different probability content. Table 3.1 shows a summary
of how the PwS’s estimators and uncertainties are implemented3.

3.4.3 Gaussian approximation to posterior maxima

We generally expect from the Central Limit Theorem (CLT) and the likelihood asymp-
totic properties that, as we add more and more data, in the neighbourhood of the likeli-
hood maxima, the parameters probability distribution should converge to a multivariate
Gaussian [Gelman et al., 2003, ch. 4]. Therefore, a multivariate Gaussian approxima-
tion should yield a good description of the likelihood shape where its mass concen-
trates. So

Ls/0(Θ) =
Ls(Θ)

L0

≈ Ls/0(Θ̂) exp

(
δθtFδθ

2

)
, (3.57)

1The maximum-likelihood estimates from the maximization step are updated, if necessary, during
the sampling phase.

2This initial selection by SNR thresholding is only applied on computation efficiency grounds. Very
low SNR maxima take much longer to sample as the likelihood manifold peaks are not properly shaped
and most of them turn out to be rejected.

3The expected value estimator, it is only evaluated over the 95% HPD to enforce its robustness
against outliers.

51



3. Bayesian detection in multi-frequency astronomical data sets

PwS estimator HPD content Default priors Comments
Posterior mode 10% Non-informative Default in non-blind

detection
Expected value 95% Informative Evaluated over the

HPD - default in blind
detection

Median 100% Informative Currently not used
Non-symmetrical
error bars (2σ+

−)
95% Informative Limits of the HPD

Symmetrical
error bars (σ)

100% Informative Square root of the HPD
variance

Table 3.1: PwS Bayesian estimators implementation. The HPD probability content are
default values and may be changed just like the default priors.

where Θ̂ are the coordinates of the likelihood maximum, Ls/0(Θ̂) is the likelihood ra-
tio at the maximum, δθ =

(
Θ− Θ̂

)
and F ≡ −

[
∇∇ ln(L1/0)

]
Θ=Θ̂

is the curvature
matrix in the neighbourhood of the maximum1. After equation 2.14 the decision rule
reads

%s ≡ ln

[
Pr(Hs|d)

Pr(H0|d)

]
= Rs/0 + L′s/0 + ln(E), (3.58)

where Rs/0 = ln
[

Pr(Hs)
Pr(H0)

]
is the ratio of the priors on the models, L′s/0 ≡ ln

[
Ls/0(Θ̂)

]
and

E ≡
∫

exp

(
−δθ

t F δθ

2

)
π(Θ) dnΘ, (3.59)

where π(Θ) represents the set of priors and n the dimensionality of the parameter
space. Considering all priors ought to be properly normalised then, by the average
value theorem E ≤ 1. Accepting that previous to the experiment, no reason should
lead us to prefer Hs over H0, then Rs/0 = 0 and

%s ≤ L′s/0. (3.60)

The ratio of the posteriors is never larger than the ratio of the likelihoods evaluated at
the maximum [Trotta, 2008].

If the π(Θ) set only contains uniform priors and these do not truncate any signifi-

1The Fisher information matrix is the assemble average of F .
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cant amount of the likelihood mass, then E may be approximated by

E ≈ (2π)n/2
√

(detF )−1

∆Vp
(3.61)

where ∆Vp ≡ ∆π1∆π2 · · ·∆πn is the prior volume defined by the allowed ranges of
the parameters. The Bayesian interpretation of F is such that

F−1 =
〈
δθδθt

〉
(3.62)

where
〈
δθδθt

〉
is the covariance matrix of the parameter uncertainties [Sivia and

Skilling, 2006, ch 3.5]. Therefore
√

(detF )−1 = ∆VL, where ∆VL is the posterior

parameter uncertainty volume. Thus

E ≈ (2π)n/2
∆VL
∆Vp

(3.63)

may be interpreted as the ‘parameter space volume compression’ (E ≤ 1) or the ratio
between the volume of the initial (prior) parameter uncertainty and that after we have
added and interpreted the data according to model Hs (posterior). Bringing everything
together

%s ≈ C + L′s/0 −
∆Vp

∆VLs/0
(3.64)

where C is a constant that only depends on purely numerical values and the prior prob-
abilities of the models Rs/0. The decision value (%s) results from a balance between
two opposite trends:

• A positive term L′s/0.
Adding more adjustable parameters to the model it is always possible, in princi-
ple, to reduce the χ2 of the residuals, thus increasing Ls/0.

• A negative term ∆Vp
∆VLs/0

.
However, the more numerous the parameters are (a more complex model), the
larger the compression becomes as ∆πj/σj ≤ 1 by our assumptions.

The idea of simplicity, just as described by Occam’s razor parable, that simpler more
prescriptive models should be favoured, naturally occurs as another consequence of
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the application of DT supported by Bayesian probability. The above results are much
more general than this simple derivation might denote and may be derived under much
more general conditions [Jaynes, 2004, ch. 20].

A case worthy of further study is when E ≈ 1. From formula 3.59, the exponential
term is always ≤ 1. So, E is approximately 1 only if the priors π(Θ), (i) enclose Θ̂,
(ii) are narrow enough to consider exp(· · · ) is always ≈ 1 where they concentrate
most of their mass. This only happens if the prior contains the best estimate and
the data plus the model constrain the uncertainty no more than we already knew. A
hardly useful case! This is yet another very interesting property of the Bayesian model
selection: The parameters the likelihood cannot constrain will not play any role in
model selection [Trotta, 2008].

Accepting that the beam Point Spread Function (PSF) and the sources themselves
possess reflection symmetry on both axes, the extragalactic objects are uniformly dis-
tributed across the sky and their surface density λ is not too high1, it is possible to
reduce the dimensionality of the integral in expression 3.59. Using the F matrix sym-
metries (see section A-3), the integral may be split and the position variables part
evaluated

E ≈ 2πλ
√
F−1
xx F

−1
yy E, (3.65)

where E is expression 3.59 but only extended to the complement of the position pa-
rameter sub-space2. In any practical case the dimensionality of E never exceeds 4 and
the integral can be evaluated using a simple quadrature formula [Press et al., 1992].
Since we only need a very low numerical accuracy in the evaluation of the evidences
to produce science quality catalogues (see section 2.3) the evaluation of this integral is
usually a very fast operation.

In the particular case of point sources using a non-informative flux prior π(S) =

1/∆S, the decision variable reads

%s = L′s/0 + ln

[
(2π)3/2λ(FxxFyyFss)

−1/2

∆S

]
+ ln

[
Pr(Hs)

Pr(H0)

]
(3.66)

In the above expression the middle term can be made arbitrarily small just by increas-

1If centring a square whose side is 4 ×MAX{σx, σy} on top of each source does not make them
overlap, that ensures the source density is not too high.

2The units of area must be the same as those used to express λ.
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ing ∆S. So, independently of how large L′s/0 is, if our data model cannot, a priori,
limit the range of values allowed for S, Hs will never be accepted [Efstathiou, 2008;
Linder and Miquel, 2008; Trotta, 2008] ! We have chosen the point sources exam-
ple because it embodies a paradigmatic case of the above difficulties. One may argue
source fluxes must be limited on physical grounds and ∆S cannot be made arbitrarily
large. However the dynamic range of point source fluxes is so high that a flat prior
that does not discard neither the faint nor the bright source populations would severely
penalise the faint tail. That would make the decision engine so conservative that most
of the low flux sources, the dominant population, would end up being rejected even if
the detections were significant. However, the flat prior is the correct non-informative
for this case (see section 3.3.4 and G. E. Box [1992]). This bring us, once again, to
the problem that introduced this chapter: the difference between model selection and
estimation. Indeed the flat prior is the non-informative prior for this case. However, the
assumptions it was derived upon apply to estimation only and not to model selection.

3.4.4 A non-informative prior for model selection

In the previous sections we have made it clear that the assumptions for the derivation of
non-informative priors were prompted by the need to create Bayesian data-only driven
estimators and those were not appropriate for model assessment. Jeffreys [1961, ch.
5.2] suggested that when comparing a model with a free parameter say ξ ≥ 0, against
a simpler one ξ = 0, which exactly matches the detection cases, a better choice for a
non-informative prior would be

π(ξ|σξ) =
2

πσξ(1 + ξ2/σ2
ξ )
, (3.67)

where σξ is the standard deviation of one single measurement of ξ assuming the ‘noise’
is Gaussian. The rationale behind his derivation is1:

• The error of the measuring device σξ defines a natural scale of magnitude for the
parameter.

1This author believes Jeffreys derivation applies equally well to any ‘location’ parameter as those
can be mapped into the present case by a simple coordinate translation.
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• One single measurement is not enough to make us decide in favour or against
any of the challenging hypothesis.

If the number of pixels enclosed by a point source is not small (n & 30), a condition
easily met by today’s cosmological data sets, then some simplifying approximations
can be introduced in the more general expression given in Jeffreys [1961, ch. 5.2] to
obtain the following result for point sources

%s = L′s/0 + ln

[
λ∆

σs
σξ

]
+ C. (3.68)

where C = ln
[
2
(

2
π

)1/2 Pr(Hs)
Pr(H0)

]
is just a constant, λ∆ = λ (FxxFyy)

−1/2 is the ex-

pected number of sources inside the position uncertainty area = (FxxFyy)
−1/2 and

σs is given by 3.29. As we have demonstrated, this prior does not show any of the
difficulties described in the previous section and actually resolves most if not all of
Efstathiou’s criticism. The lesson to learn is that there is a fundamental difference
between detection (model assessment and decision) and characterization (estimation).
This difference needs to be propagated into the construction of the non-informative
priors with the risk of creating artificial paradoxes.

3.5 Statistical inhomogeneity of the background

Real observations will also inevitably exhibit some statistical inhomogeneity of the
background, in contradiction to our assumed model. Consequently, the conditions of
optimality derived therefrom no longer hold. This can lead to a number of difficul-
ties in detecting and characterising discrete objects, particularly in regions of the sky
that contain bright, very inhomogeneous and anisotropic backgrounds. Indeed, this
general expectation has been borne out in applying earlier versions of PwS to detailed
simulations of Planck observations [PSM 1.6, Delabrouille et al., 2012]. In particular,
the presence of bright diffuse Galactic dust emission was found to lead to the PwS
SZ catalogue (in common with catalogues produced by other methods, such as MMF)
containing bright spurious detections. Hence one did not obtain a regular cumulative
purity curve that slowly approaches unity as the ln(evidence), or the SNR, increases
[Melin et al., 2012], in contradiction to what would be expected from theory if our
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model explained the data properly.
Indeed, the detection of SZ galaxy clusters highlights further problems. Again in

the analysis of Planck simulations using previous versions of PwS, one finds that bright
spurious SZ signals are not only concentrated in complex background regions, with a
fraction of the bright spurious detections spread all across the sky. By cross-correlating
the resulting SZ catalogues with ancillary point source data sets, one finds that bright
spurious cluster detections matched bright point source locations. In our preliminary
attempts to address this problem, we therefore first performed a point source extrac-
tion step and subsequently subtracted/masked the best-fit point source profiles in the
maps. This pre-processing step greatly helped in reducing the number of spurious de-
tections, especially those with very high evidence values. Another approach has been
suggested by the Planck WG5 team, namely the ‘χ2 test’ [Planck Collaboration et al.,
2011f]. This performed very well, although, once more, there is no easy way to choose
a robust acceptance/rejection threshold for the test. Another difficulty occurs when
extracting the SZ effect at each individual channel. The SNR was usually so low that
the measurements ended up being quite noisy.

Can we do any better using Bayesian logic? The apparent failure of the ‘best’ test
can be immediately explained using the main Bayesian decision equation 2.9. Our
decision criterion is based on the ln(odds), namely

ln

[
Pr(Hs|d)

Pr(H0|d)

]
. (3.69)

The problem comes from the denominator Pr(H0|d). When we find a point source,
its probability of being a cluster, Pr(Hs|d), is very low, but the probability of those
pixels being part of the background, Pr(H0|d), is also very low, because point sources
do not fit our model of the background either. We have already mentioned that the
binary model is too simple to handle realistic astronomical situations. To secure the
optimality of our methodology we must ensure that the data is well described by our
model, and employ a multi-model approach, as described in sections 3.7 and 2.2.2.
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3.6 Comments on non-Gaussianity

It is clear that our model of the observations, like any model, is only an approximation
to the real data. This is true both for our model of the discrete objects and for our model
of the background. For the latter, it is clear that the background emission in real obser-
vations is neither Gaussian nor statistically homogeneous. Regarding non-Gaussianity,
we do not mean that of a primordial origin, which, if exists, would have an insignifi-
cant effect in our analysis. We are instead alluding to the non-Gaussianity induced by
the Galactic emission components, the confusion noise created by the sources below
the detection threshold, the instrumental noise artefacts coming from the incomplete
removal of the cosmic rays glitches and, of course, a wealth of other possible sources.

Many authors simply ignore this issue and many others dismiss its importance. A
very strong argument, used many times, is that despite the sky emission being admit-
tedly non-Gaussian, the effect of the finite PSF of beams will combine many different
sky locations into a single pixel. In addition, signal de-noising procedures further com-
bine more samples. Some authors then appeal to the Central Limit Theorem (CLT) to
claim that non-Gaussian effects in the final data must be completely negligible.

This argument seems particularly appealing, but a deeper analysis of the CLT
shows that, in our particular problem, namely detection and separation of two sig-
nals, the effects of the CLT are not as important as those authors claim. Formally, the
CLT only applies when N → ∞, where N is the number of random deviates in the
sum. For finite N , the CLT only guarantees the Gaussian approximation is good for
‘a region around the mode’ [Bouchaud and Potters, 2004]. The size of this Gaussian
region grows very slowly. In the worst case, the distributions of the individual deviates
are skewed and have ‘fat tails’. Let us focus on a real example: the Galactic emission.
If the spectral brightness distribution follows a power law with a finite first moment,
to guarantee the field has physical behaviour, the normalised central Gaussian region,
|u|, only grows very slowly with N :

|u| � u0 ∝
√

lnN (3.70)

where u0 is the tail lower boundary. This means that the sum must have more than
1000 terms to make the Gaussian approximation acceptable up to about |u| ∼ 2.6.
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In detection problems, where we want to separate the maxima created by the sources
from the background fluctuations, we are dealing all the time with the background
distribution upper tail:

P>
u0

≡
∫ ∞
u0

Pr(u) du. (3.71)

If the background field intensity distribution follows a power law: Pr(Iν) ∝ Iν
−µ, with

µ > 2, to guarantee its energy is finite, then the probability that a sum of N deviates
falls into the upper tail region of the sum normalised distribution is:

P>
u0

∝ 1

Nµ/2−1 [lnN ]µ/2
. (3.72)

This is a very serious problem. Object detection methodologies are designed typi-
cally to suppress the background and amplify what does not fit its model. The non-
gaussianity component is not part of our background model, so its effect on the detec-
tion process is doubly pernicious: not only it is not removed, it is amplified.

There seem to be only two ways of circumventing this problem: (i) to include the
non-Gaussian effects in the statistical models; and (ii) to manipulate and add as much
data as possible to make it more Gaussian. Owing to the complexity of Planck data
it is almost impossible to give a proper account of the non-Gaussian effects without
making the problem unsolvable. So, a workable solution must necessarily combine as
much data as possible, and then analyse the outcome. The only possible way of doing
this is to use multi-channel analysis all the time.

Our own experience corroborates this view. The SNR values of the PwS selected
detections and the thresholds the frequentist methods normally employed (& 4.0), are
much higher than what would be expected according to the purity levels of the cata-
logues if the statistics were purely Gaussian. Although, the channels with the largest
beams, where each pixel is the result of a much higher number of different contribu-
tions, do indeed have detection thresholds lower and closer to those expected from
the Gaussian theory. A good practical example of how the multi-channel processing
can help the reduction of the impact of the non-Gaussian distributions on the detection
process is the recovery of the SZ signal [Melin et al., 2012].

Owing to the residual non-Gaussianity left in the background, especially close to
the Galactic plane, we should now expect a higher number of background fluctua-
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tions reaching above the evidence threshold level than those predicted by the Gaussian
model. So, eventually, we need to correct the prior on the models: Pr(H1)

Pr(H0)
, as this prior

was derived assuming that the background had purely Gaussian statistics. The sim-
plest way, we believe, is just to count the total number of fluctuations above the SNR
threshold adopted, before embarking on the evaluation of the evidence. In particu-
lar, one should compare this number with what would be expected from the Gaussian
model plus the predicted source counts above the SNR threshold, then take the larger
quantity. Denoting this value by T , a corrected estimate of λ0 (see formula 3.46) would
read

λ0 ' T − λ1. (3.73)

This very simple ‘trick’ provides a first-order correction to the effects of background
non-Gaussianity.

3.7 Multi-frequency, multi-model catalogue making

In general detection methods always exploit some particular trait of dissimilarity be-
tween the targeted objects and the background they are embedded in. These might
be different spatial properties and/or a contrasting emission SED. For the reasons out-
lined above, we believe that a deeper and purer catalogue can only be obtained through
multi-frequency analysis. An excellent example of the power of such an approach is
provided by the detection of SZ clusters. Despite the SZ signal being sub-dominant
on all Planck channels (the signal level is below that of the background), an optimal
combination of the different frequencies can boost these extremely faint signals to the
point where one can now build reliable catalogues of many hundreds of such objects
[Planck Collaboration et al., 2011f; Reichardt et al., 2012]

We have also demonstrated above that our simple binary decision making approach
is too naı̈ve to handle ‘real-life’ situations. The introduction of a multi-model (more
than two models) decision rule cannot, however, be achieved simply by extending the
binary case ([Jaynes, 2004, ch. 3]). Although, in most of the situations of interest
in astronomy, it is always possible to implement a general multi-model decision rule
evaluating in succession each one of the possible source models against that of the
background 2.2.2.1. So, if the implementation of the algorithm is versatile enough
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to support different object models then a code version designed with just the binary
evidence comparison in mind can be easily extended to multi-model. Some authors
recognise the power of the Bayesian methods ‘if’ the data only includes exactly what
we anticipated would be there. But they are critical of the possible consequences some
very interesting unexpected new entity would have in the inference machine. Observ-
ing the posterior distributions might provide an early warning. Confirming whether
the data has moved the posterior mass against one of the ‘prior walls’ should raise
some alarm. Or, if replacing the priors by non-informative ones and repeating the ex-
ercise considerably changes the evidence, that might be another symptom of model
mismatch. Generally, it means our data has enough power to constrain the estimates
but somehow the prior is getting in the way. Or, a bit more technically, it has a sig-
nificant impact on the estimation. In general, one should never expect this to happen.
But, real data is always full of (mostly unwanted) surprises (see 3.5). That is when
our generic model (see 3.1) unleashes its full power. Not only it is there for the most
exciting sources, those not falling in any of the known SED models, as for least inter-
esting as well, the localised artefacts. Some might question whether this ‘safety net’
might on the contrary mislead us. As the physical SEDs models are just a special case
of the generic, what prevents our ‘decision machine’ not picking it even when one of
the other models is present. The generic SED is necessarily more complex (has more
adjustable parameters) than any of the physical ones1. But this is now the case when
Bayesian evidence really excels as a model selection tool. Either the generic model
fits the data much better (higher SNR) or owing to the enlarged prior volume of the
parameter space, the generic model will always be deprecated in favour of the others.
This is an interesting example of Occam’s razor in full swing. For a very detailed and
elegant exposition why this happens please refer to Jaynes [2004, ch. 20] and Jeffreys
[1961, ch. 5.2].

The last step of PwS is to assemble the final catalogue from a list of candidates.
During this stage, PwS performs the following steps:

1. maps flat sky patches back onto the sphere at the positions of the putative detec-
tions;

2. applies a detection mask, if any;
1Otherwise the physical SED models would only be a re-parametrization of the generic one.
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3. merges multiple detections of the same source obtained in different patches into
a single candidate detection; and

4. makes the final catalogue by rejecting those entries that do not meet the pre-
established criterion of purity or loss.

The last step is critical to the success of our methodology. If the selection criterion
is based on losses, then we just need to trim the ‘proto-catalogue’ further by applying
the decision rule 2.16. But, as we mentioned previously, it is much more common in
astronomy to require a catalogue should be as complete as possible (contain the largest
possible number of detections) but with a predicted contamination ratio (purity). How-
ever completeness is as important as purity. Completeness is the percentage of objects,
above a certain amplitude/flux, present in our data that we successfully included in
our catalogue, or, in probability language Pr(Ds|Hs, Ss > ξ), where Ss stands for
any quantity we are imposing the threshold on and ξ is the threshold (see section 2.3).
To give a proper assessment of the purity and completeness, except on the simplest,
though not realistic, cases frequentist methods ought to resort to simulations. The char-
acterization (purity and completeness) of the catalogue is entirely defined by imposing
a single SNR cut1. Obviously, the simulations need to emulate the most realistic as-
tronomical backgrounds at the frequencies of interest and the instrumental effects as
closely as possible. Modern cosmological data sets are increasingly larger and more
complex, rendering this task immensely resource consuming.

If we trust the statistical model we employ to describe the data then decision theory,
supported by Bayesian logic, supplies the optimal tools to construct a catalogue with
a predicted purity. This is exactly what we have shown in section 2.3. However,
completeness needs to be addressed using a different Bayesian probabilistic model,
a Bayesian hierarchical or random effect model (see section 2.3.2). Very fortunately
this apparent limitation of our simplified approach may be easily overcome by very
realistic simulations and at the same time of simple and fast construction: by injecting,
and later recover, mock source populations into the real maps. These simulations might
not be optimal to assess purity but they provide the most realistic possible test bed for
measuring completeness [Planck Collaboration et al., 2011e].

1If the catalogue is extracted from a homogenous region, both in terms of instrumental noise and
astronomical background, then a flux/amplitude cut may be used instead.
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In some extreme cases, ‘complex regions’ (SMC, LMC, Orion, etc.) or the Galactic
plane for instance, the splitting into small patches is not enough to satisfy neither
the isotropy nor the homogeneity of the background or the source number counts.
Moreover, the background statistics deviate so much from the assumed model or source
blending is so acute that the operation of the code may break and the results stop being
reliable. In this case we actually apply a mask to those regions (see A-4). Although, in
the case of point sources, moderate source blending (no more than 3 sources per beam)
is not out of reach for PwS. In this case the ‘one source at a time’ approximation
no longer holds. Thus, we have now to employ the full likelihood expression and
expand the single source parameter space to the Cartesian product of the spaces of the
individual sources we pretend to de-blend. This extension of PwS will be addressed in
a forthcoming publication.
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Chapter 4
Results

In the two previous chapters we described, firstly, PwS’s probabilistic and logic foun-
dations. Then, we suggested an algorithm, founded on these principles and capable
of producing catalogues of compact objects. We have always tried to keep a strong
focus on the actual practicalities of the implementation of a truly functional solution.
The current chapter will be devoted to presenting the results of the application of the
developed code to a wide range of compact object detection scenarios. These scenarios
include not only state-of-the-art realistic simulations, but the actual data derived from
the last generation of spaceborne microwave probing instrumentation: ESA’s Planck

satellite1.
A wealth of PwS results have already been published. These results were either

obtained from simulations or actual Planck early release data [Planck Collaboration
et al., 2011d]. In this work we aim to explore, with more emphasis, those aspects
that received less attention from the community, as a complement to those previously
released.

1Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with
instruments provided by two scientific consortia funded by ESA member states (in particular the lead
countries France and Italy), with contributions form NASA (USA) and telescope reflectors provided by
a collaboration between ESA and a scientific consortium led and funded by Denmark.
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HFI LFI
Channel [GHz] . . . . . . . . . . . . . . . . . . . . 100 143 217 353 545 857 30 44 70
λ[µm] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3000 2098 1382 850 550 350 10000 6818 4286
Detector technology . . . . . . . . . . . . . . . . Spider-web and polarization bolometers InP HEMT
Detector temperature [K] . . . . . . . . . . . 0.1 20.0
Number of detectors(a) . . . . . . . . . . . . . 0 + 8 4 + 8 4 + 8 4 + 8 4 + 0 4 + 0 4 6 12
Angular resolution (FWHM) [arcmin] 9.88 7.18 4.87 4.65 4.72 4.39 32.89 30.23 12.97
Small scale noise [K2rad2]× 10−15 . . 0.78 0.25 0.59 7.61 1492 423847 11.0 18.0 11.0

Table 4.1: (a)(HFI) spider-web + polarisation sensitive bolometers; (LFI) Feeds.

4.1 Planck satellite - the data

4.1.1 Instrument and data description

European Space Agency (ESA) Planck satellite is the latest generation of space mis-
sions aimed to measure the anisotropies of the cosmic microwave background (CMB)
[Planck Collaboration, 1999; Planck Collaboration et al., 2011d]. Planck observes the
entire sky in nine channels spanning a wide frequency range starting at 30 GHz (mi-
crowave) up to 857 GHz (sub-mm). The scientific payload is made of two instruments
the Low Frequency Instrument (LFI) [Mennella et al., 2011; Zacchei et al., 2011] and
the High Frequency Instrument (HFI) [Planck HFI Core Team et al., 2011]. Table 5.1
summarises the main characteristics of both instruments. Planck orbits Lagrange L2
point [Lagrange, 1892] and scans the sky the way as shown in figure 4.1. Planck scans
the sky in rings as described in Tauber et al. [2010]. The scanning strategy essentially
follows a cycloidal path (normally 1 deg day−1), with each individual ring, about 2
arcminutes wide, taking approximately 50 minutes to acquire. During that time, the
satellite spins multiple times around its axis, allowing many high precision readings of
the same sky location.

Figure 4.2 shows a typical set of HFI ‘time-lines’. The very thin vertical lines,
shown in all panels, are glitches induced by cosmic-ray hits on the telescope focal
plane1. These glitches are modelled, characterised and then subtracted from the data
stream. Only the most intense are flagged for posterior removal. The upper panel
shows a typical ‘time-line’ from a ‘cosmological’ channel. The periodic modulation is
the result of the CMB dipole. Some very prominent and periodic peaks on the 545 GHz
channel are the read outs of the Galactic emission particularly strong at this frequency.

1The LFI data is not affected by these glitches.
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Figure 4.1: Upper panels: Planck’s flight and orbit around L2. Middle panels:
Planck’s scanning strategy: Planck completes about one full rotation around its spin
axis each minute. At the same time it precesses around a fixed direction, perpendicular
to the symmetry axis, at the rate of 1◦ per day, completing a full sky survey in slightly
less than one year. Lower panel: Composite image (false colours) of several Planck
channels after the first year survey (images provided by the European Space Agency
(ESA) website ESA [2009]).

The same features can be seen in the 143 GHz channel but attenuated. The ‘dark’
bolometer (lower panel), a bolometer that does not receive any light, measures the
signal drift caused by tiny variations in the instrument temperature and other transient
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Figure 4.2: The upper panel shows a typical raw ‘cosmological’ TOI (143 GHz). The
middle panel shows another raw TOI but this time from one of the sub-mm channels
(545 GHz). The lower panel is the time domain representation of a ‘dark’ bolometer,
i.e. a bolometer does not receive any light (plot from Planck HFI Core Team et al.
[2011]).

effects.
Figure 4.3 shows the same data as in 4.2, but after being pre-processed by the initial

Level 2 pipeline tasks (see section 4.2.1; for a complete description refer to Planck HFI
Core Team et al. [2011]).

As result of the scanning strategy, there are regions observed many thousands of
times (∼ 10000), close to the ecliptic poles, and others observed just a few times
around the ecliptic equator (see figure 4.4). This effect makes the instrumental noise
very anisotropic, adding extra complexity to the statistical modeling of the background.
The time ordered data are then put through a map-making pipeline package that assem-
bles the pixel maps and the covariance (noise) information at each channel.
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Figure 4.3: The panels show the same data as in figure 4.2 after detrending and glitch
removal. The vertical red bars at the bottom of each panel indicate which portions of
data are flagged (plot from Planck HFI Core Team et al. [2011]).

Figure 4.4: Full sky maps of two HFI channels, 143 and 857 GHz, showing the number
of times each zone of the sky is observed (‘hit counts’) (plots from Planck HFI Core
Team et al. [2011]).
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Figure 4.5: The six HFI channel pixel maps with the CMB component subtracted.
Left to right and downwards: 100, 143, 217, 353, 545, 857 GHz. The map units are K
thermodynamic (plots from Planck HFI Core Team et al. [2011]).

Figure 4.5 shows the data from the 6 HFI channels with the CMB component re-
moved. In the cosmological channels there is a significant amount of background noise
clearly visible. This happens because the Galactic components away from the Galactic
plane are very faint below the instrumental noise levels. As one goes up in frequency,
the contribution from the CMB component fades away at the same time the Galactic
dust and the extra-galactic dusty point sources emission becomes dominant.

Exploiting the high precision pointings in the time ordered data, accurate noise
pixel maps can be easily constructed. Firstly, the scanning rings are split into two
exclusive subsets, the null test maps. Then the map-making code is run over each
set of null test maps individually, and finally a half-difference map is computed from
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Figure 4.6: Two null test half-difference noise maps. The map units are K thermody-
namic (plots from Planck HFI Core Team et al. [2011]).

these. Figure 4.6 shows two null test half-difference noise maps: 100 and 857 GHz. It
is very clear that noise pattern correlates extremely well with what would be expected
from the hit count maps. Although, for the 857 GHz channel some very strong noise
can be seen around the Galactic plane as well. This is a spurious effect produced by
strong gradients, on sub-pixel scales, occurring in that zone.

4.1.2 Data processing and analysis (pipeline)

Figure 4.7 outlines the basic building blocks of Planck’s data processing ‘pipeline’.

• Level 1 (L1):
contains the most basic low level data retrieval activities like reading out the
bolometers. It is its goal to form a steady stream of read-out values, time stamps
and pointings for each one of the focal plane bolometers. It delivers a time
stream of data to level 2.

• Level 2 (L2):
aggregates the data processing tools that operate at the time ordered data (TOI)
level. This set of tools makes the back-bone of all analysis and data processing
activities. Its goal is to deliver a well characterised set of pixel maps, tempera-
ture, polarization and noise, at each of the of Planck channels. At the same time
it provides the instrument model (IMO), which includes the beam, calibration
and noise definition. At its last stage it runs the destriping package to remove
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the ring offsets, which happen as result of the 1/f noise and assemble the pixel
and noise maps.

• Level 3 (L3):
composes the assemble of data processing tools that operate directly on data
and/or pixel noise maps. PwS is a L3 package fully integrated in the HFI Planck

pipeline DMC infrastructure.

The integration into the HFI DMC infrastructure posed one more challenge. The
code ought to run multiple instances in parallel, reliably and in the shortest possible
amount of time. An extensive and thorough validation of the data statistical modelling,
implementation design and product quality (detection and characterisation) is a basic
requirement of any scientific quality catalogue. In order to comply with the necessary
requirements to undergo such stress tests, a complex code structure was developed,
integrated in the DMC pipeline infrastructure and finally tested. Although fast and par-
allel execution have always been the main driving vectors of development, flexibility
was paramount as well. Owing to its sound foundations and malleable implementa-
tion, one single piece of code is capable of handling almost, if not all the requirements
to deliver all Planck compact source products.

4.2 Detection on real data

PwS has already been extensively used inside the Planck consortium, both in point
source (point like shapeless objects) [Planck Collaboration et al., 2011e] and SZ cluster
extraction [Planck Collaboration et al., 2011f] and characterization [Planck et al., 2012;
Planck Collaboration et al., 2011g,i, 2012a,b,c].

In its current incarnation, the PwS code package is made of three different pro-
grams.

• Two natively compiled codes: (i) the pre+post processor utility (PPP) and (ii) the
detection ‘core’ (PwSC). The PPP utility handles all tasks non-associated with
detection, like: masking, patch creation, pipeline interfacing, catalogue conver-
sion, etc. The PwSC implements the actual detection and estimation tasks. These
codes are written in C++.
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In-flight characterization
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Figure 4.7: Outline of the HFI pipeline data flow and hierarchy of the processing tasks
for the Planck early data release in 2011. PwS is a Level 3 (L3) job (plot from Planck
HFI Core Team et al. [2011]).

• A Python script that handles all HFI DMC pipeline activities. Activities like
creating a stream of control and data parameters across the multiple serial and
parallel tasks, spawning and synchronizing all jobs, etc.
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4.2.1 Masks and ill-behaved pixel handling

Real data can deviate strongly from the models we use to describe it. In the Planck

case, the highly inhomogeneous fields and the large frequency range of the observation
channels adds an extra layer of complexity. In order to obtain reliable results, some
regions of the sky ought to be masked and removed. Those regions include zones of
very high noise, like the ill-observed pixels and others where the background model
assumptions severely break. For instance, the Galactic plane or, in case of the SZ de-
tection, the bright point sources (see section 3.5). Figure 4.8 shows the total combined
mask: ill-observed pixels + Galactic dust emission + bright point sources, after be-
ing apodised. The pixels in the rejected areas can be further filled in to preserve the
statistical homogeneity of the background. Another important role of the masks is to
restrict the analysis to sub-sets of the data where their statistical properties are more
homogenous and/or carry added scientific value. For instance, the background on high
Galactic latitude regions are dominated by the very homogeneous CMB emission and
it is the target of the extra-Galactic science. The opposite can be said about the low
Galactic latitude regions.

4.2.2 Patch projection

PwS operates on small flat square patches (see appendix A-4). These flat patches
are obtained using a gnomonic projection. PwS can split the sky is three different
geometric arrangements:

• Healpix aligned with a spin (see upper panel of figure 4.9); this type of patch
layout aligns the patch X and Y axis with the pixel dividing lines of the Healpix
pixelixation, at each patch location, by orientating the patch appropriately. Its
goal was to keep the same pixel density at each location and reduce possible
aliasing effects (Moiré fringes) [Figueiredo et al., 2001].

• Constant latitude (Galactic or Ecliptic); the patches are projected by arranging
the patch centres on top of lines of constant latitude and the patchX axis aligned
with them.

• ‘Non-blind’; the patchX axis is oriented the same way as in the constant latitude
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Figure 4.8: These two pictures show the combination of the ill-observed pixel, Galactic
dust emission and bright point source mask apodised with 1◦ FWHM Gaussian kernel.
Blue regions will be rejected and red kept. Left panel is the north pole and right panels
the south. Coordinates are ‘Galactic’.

case, but the centres are located on positions derived from a catalogue of sky
coordinates1.

The background and foreground statistical properties are assumed homogeneous inside
each patch. Pixels sitting inside the masked areas are then replaced using some form
of ‘in-painting’ that tries to preserve the background traits across those areas [Bajkova,
2005]2.

Each patch is 512× 512 pixels (SZ) or 256× 256 (point sources) with respectively
14.66◦ × 14.66◦ and 7.33◦ × 7.33◦ areas (each pixel is ∼ 1.718

′ × 1.718
′). In turn

each patch is further sub-divided in three different zones (see figure 4.9, lower panel).
All likelihood peaks sitting on top of the ‘rejection’ zone are immediately discarded.
Those on the ‘detection’ region are assessed using the GLRT and then subtracted to
avoid contaminating the ‘core’ area. Only those likelihood maxima lying in the ‘core’

1The exact locations may be either the source positions or, if information from a ‘blind’ extraction is
available, the centre of the patch with the lowest noise and a matching detection (a detection is matched
if it is inside a 5 arcmin radius).

2Simply ignoring the flagged pixels in our analysis would prevent the use of the FFT. The FFT can
only be used if the samples are equally spaced and there are no ‘holes’.
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Figure 4.9: Upper Panel: The pictures show one possible distribution of patches PwS
splits the sky: ‘Healpix aligned with a spin’. Lighter regions are those where the patch
overlap is higher. Lower Panel: Zones of a single patch. The unfilled region is the
‘rejection’ zone, the green the ‘detection’ and the light brown the ‘core’ regions.

zone are put through the Bayesian sampler and then added to an intermediate catalogue
containing possible candidates to inclusion in the final catalogue. For a 85% mask,
PwS cuts the sky in about 3100 patches when performing a SZ extraction and about
four times more when doing point source detection. This large number of patches
creates a very large inter-patch overlap with each cluster detected 4.7 times on average.
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Later, when assembling the final catalogue, PwS rejects all multiple detections of a
single object only keeping the highest SNR in GLRT mode or the highest ln(odds) in
Bayesian operation.

4.2.3 Detection of point sources

Planck’s Early Release Compact Source Catalogue (ERCSC) was the first official
Planck product released and it is fully described in Planck Collaboration et al. [2011e]
and references therein. The ERCSC was meant to be a single frequency extraction
‘10σ’ product with the following goals:

• Performance

– 90% reliability overall, > 95% reliability at high galactic latitude.

– flux density cutoff: SNR of 10 or better.

– flux density accuracy: better the 30%.

– positional accuracy: better than beam FWHM /5 (1 sigma radial).

• The flux density cutoff will vary across the sky as the variance of background
changes.

The goals of this early product were modest because it would only include a single
full sky scan with many regions so far poorly observed. That gave rise to strong inho-
mogeneities in the instrumental noise properties, leaving many pixels still undefined
and an overall sub-optimal map. PwS was selected, amongst several other algorithms
(see Planck Collaboration et al. [2011e] and section 4.3.3), to deliver the point source
catalogues up to and including 143 GHz channel.

Figure 4.10 shows the full sky spatial distribution of Planck’s ERCSC point sources
catalogues extracted by PwS. Table 4.2 gives a brief summary of most important extra-
Galactic (|b|1> 30◦) traits of the ERCSC PwS catalogue. PwS faintest ‘reliable source’
(see Planck Collaboration et al. [2011e]) flux density on every channel is well inside
that of the goals. PwS operation on small patches allows adjusting the detection sensi-
tivity threshold on a local basis according to the local background fluctuations. Owing

1b is the Galactic latitude cut.
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Figure 4.10: Sky distribution of the point source catalogues extracted by PwS at the
lowest Planck five channels . The colour of each source shows the estimated flux
density in [Jy] (plots from Planck Collaboration et al. [2011e]).

to Planck very inhomogeneous backgrounds this is a major advantage as it allows us
to go ‘deeper’ in ‘cleaner’ regions1.

4.2.4 Detection of galaxy clusters

The intra cluster medium gas (ICM) is rich in hot electrons which, through inverse-
Compton scattering, disturb the CMB photons energy distribution to create localized
secondary anisotropies. This effect is known as the Sunyaev-Zeldovich effect (SZ)
[Birkinshaw, 1999; Carlstrom et al., 2002; Sunyaev and Zeldovich, 1972b]. The ki-
netic energy of the scatterers (hot electrons) is essentially the combined effect of two

1This is the reason why the ‘local 10σ’ can be significantly different from the global average.

77



4. Results

Frequency [GHz] . . . . . . . . . . . . . . . . . . . . . . 30 44 70 100 143
λ[µm] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10000 6818 4286 3000 2098
Resolution (FWHM) [arcmin] . . . . . . . . . . . 32.89 30.23 12.97 9.88 7.18
10σ(c) goal [mJy] . . . . . . . . . . . . . . . . . . . . . . 790 820 660 650 580
# Sources (total) . . . . . . . . . . . . . . . . . . . . . . . 705 452 599 1381 1764
# Sources ∧ |b|(a) > 30◦ . . . . . . . . . . . . . . . . 307 143 157 332 420
S(b) > 10σ(d) ∧ |b| > 30◦ (median) [mJy] 1173 2286 2250 1061 750
S > 10σ(d) ∧ |b| > 30◦ (faintest) [mJy] . . 487 1023 673 500 328
S ∧ |b| > 30◦ (faintest) [mJy] . . . . . . . . . . 480 585 481 344 206

Table 4.2: (a) Galactic latitude cut; (b) Source flux density; (c) overall sensitivity goal;
(d) local background σ.

distinct components. One, as result of the peculiar velocity of the cluster, manifests as
the bulk movement of the electron gas in the comoving frame (CMB rest frame; Hub-
ble flow) and it is named ‘kinetic SZ’ (∆TSZk). Another type of SZ anisotropy is the
‘thermal SZ’ (∆TSZ) and it originates from the random local component of the elec-
trons velocity as result of their temperature1. The ratio of the temperature perturbation
amplitude as result of the kinetic and thermal effects is given by Birkinshaw [1999],

∆TSZk
∆TSZ

=
1

2

vz
c

(
kBTe
mec2

)−1

= 0.085

(
vz

1000 kms−1

) (
kBTe

10 keV

)−1

. 5%, (4.1)

where vz is the velocity of the cluster projected in the line of sight (l.o.s) (positive when
it moves away from the observer) and Te the electrons temperature. Observational data
shows that for cluster typical values of the peculiar velocity (vz/1000 kms−1) . 0.5

and electron temperatures (kBTe/10 keV)−1 ∼ 1, the amplitude of the kinetic effect is
no more than 5% of the thermal component. Regardless of the interesting possibilities
that might arise from the study of the kinetic effect, its detection posses a significant
challenge with Planck’s instrumental setup. The kinetic effect is superimposed and
shares the same geometry of the much stronger thermal signal, severely limiting their
separation by spatial filtering. On the other hand its frequency signature follows that
of the primordial CMB fluctuations rendering a successful isolation very difficult.

The thermal SZ effect moves some of the low-energy CMB photons to higher en-
ergies. The transferring process leaves a deficit in the low energy bands and a excess

1The same hot electrons also radiate through thermal free-free in the X-ray wave band.
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Figure 4.11: The left panel shows the shift on the CMB black-body emission spectrum
induced through thermal inverse-Compton scattering; The right panel shows the dis-
tortion on the background CMB signal as predicted by equation 4.6. The nine Planck
channel bands are superimposed.

in the upper bands (see figure 4.11; Carlstrom et al. [2002] and Planck Collaboration
[1999]). The original and distorted populations cross at ∼ 217 GHz, leaving at that
particular frequency the background photon population undisturbed, thus not generat-
ing any observable secondary anisotropies of thermal origin. This aspect of the thermal
SZ effect might be explored to great advantage allowing us to successfully isolate the
kinetic effect. However, it should be noted that despite of the fact Planck observes at
that precise frequency, after integrating the thermal SZ spectrum over the finite band-
width, the residual thermal signal is strong enough to severely limit the detection and
characterization of the kinetic in a per cluster basis. However a statistical detection
might still be possible but not in the scope of the current study. In this work our atten-
tion is on individual object detection and owing to the above difficulties, we will only
focus on the extraction of the thermal signal.

The thermal SZ anisotropy (SZ), may be characterized by the product of two func-
tions

∆TSZ
TCMB

= f(ζ) y(
−→
θ ), (4.2)
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where f(ζ) represents the spectral behaviour and y(
−→
θ ) the projected spatial geometric

profile. The SZ temperature variation spectral dependence f(ζ), is given by [Carlstrom
et al., 2002]

f(ζ) =

(
ζ

eζ + 1

eζ − 1
− 4

)
(1 + δSZ(ζ, Te) ) , (4.3)

where ζ is the dimensionless frequency

ζ =
hν

kBTCMB

. (4.4)

The extra term, δSZ(ζ, Te), is an additional SED correction factor as result of hot elec-
trons energy distribution distortion when taking into account the relativistic effects
[Birkinshaw, 1999; Challinor and Lasenby, 1998; Itoh et al., 1998]. Throughout this
work we shall ignore this term, as for the majority of the predicted cluster population,
its contribution is always very small. Although, owing to Planck’s high sensitivity to
the SZ signal (see chapter 5), a statistical detection of the relativistic correction should
be possible and will be attempted in a forthcoming publication. We have found it more
convenient to express the SZ perturbation in surface brightness units

∆ISZ
I0

= g(ζ)y(
−→
θ ), (4.5)

where I0 = 2(KBTCMB)3/(hc)2 and the SZ dimensionless SED

g(ζ) =
ζ4 eζ

(eζ − 1)2

(
ζ

eζ + 1

eζ − 1
− 4

)
(1 + δSZ(ζ, Te) ) . (4.6)

The intensity of signal measured at each one of the Planck channels (νj) is the SZ SED
integrated over the channel bandpass

gνj =

∫
ζ

g(ζ) Γνj(ζ)dζ, (4.7)

where Γνj(ζ) is the channel normalised bandpass [Planck HFI Core Team et al., 2011;
Schäfer et al., 2006]. The SZ signal, as it shows in Planck data, can be modelled by

∆ISZ = y(
−→
θ )g′(ζ), (4.8)
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where the symbols in bold represent vector quantities with each element representing
one of the Planck channels and g′(ζ) = I0g(ζ) . A very helpful property of the SZ sig-
nal is that the frequency dependence of the signal, g′(ζ), is the same and parameterless
across the cluster population (see equations 3.23 and 3.22).

Let us now focus on the spatial geometry of the SZ anisotropy. The surface bright-
ness perturbation is proportional to y(

−→
θ ) , the Comptonisation (see 4.8). The Comp-

tonisation is a dimensionless quantity defined by

y(r) =
σT
mec2

∫
l.o.s.

Pe(r)dl (4.9)

[Birkinshaw, 1999]. Assuming the electron pressure profile is scaled by the param-
eter rs, then a more convenient parametrisation Pe(r) = P0f(r/rs), expresses the
observable 

y(
−→
θ ) = y0 Γ(

−→
θ /θs)

Γ(
−→
θ /θs) = Γ(ρ/rs) =

∫ +∞
−∞ f(r/rs) (dl/rs)

y0 = P0σT rs
mec2

(4.10)

in such a way that allows us to take advantage of one of the most important aspects
of the SZ effect, its independence of redshift (ρ is the transverse position vector). As
the angular diameter distance (see Hogg [1999]) is the scaling factor that transforms
ρ into

−→
θ and rs into θs, this implies Γ(ρ/rs) = Γ(

−→
θ /θs). Current descriptions of the

cluster physical properties, such as electron density, pressure, temperature or entropy
(see Arnaud et al. [2010]; Nagai et al. [2007]; Planck Collaboration et al. [2011f] and
references therein) all assume spherical symmetric

Γ(
−→
θ /θs) = Γ(θ/θs). (4.11)

The first PwS code implementations were based on an isothermal beta model

f

(
r

rs

)
= K−1

(
1 +

r2

r2
s

)− 3
2
β

, (4.12)

whereK =
√
π

Γ( 3
2
β− 1

2)
Γ( 3

2
β)

is a convenient dimensionless normalization constant to make
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the profile equal to 1 at the origin (the origin matches the profile’s maximum value)
[Birkinshaw, 1999]. The β profile then reads

y(θ) = ymax

(
1 +

θ2

θ2
s

) 1
2
− 3

2
β

(4.13)

where ymax = y0/K. Unfortunately the β profile only converges to a finite total flux if
β > 2/3. However there are physical reasons to believe that values of β smaller than
that limit actually provide a good description of the cluster pressure making neces-
sary to impose a cut-off radius. To overcome this complication Herranz et al. [2002b]
suggested an alternative profile, the multi-quadratic

y(θ) = ymax
γ

γ − 1

[(
1 +

(
θ2

θ2
s

))−1/2

−
(
γ +

(
θ2

θ2
s

))−1/2
]
, (4.14)

where γ = rv/rs > 1 and rv is the virial radius of the cluster1. This profile behaves
much like the β and has nice asymptotic properties like finite fluxes regardless of γ
value. PwS code implemented the multi-quadratic profile in its early incarnations (be-
fore 2010). Later on we moved to a Generalised Navarro-Frenk-and-White (GNFW)
pressure profile [Arnaud et al., 2010; Nagai et al., 2007]

f

(
r

rs

)
= K−1

(
r

rs

)−γ [
1 +

(
r

rs

)α] γ−βα
, (4.15)

where α, β, γ are parameters setting the shape of the profile and K = 2
α
B
(

1−γ
α
, β−1

α

)
(B(. . .) is the complete Beta function) is the normalisation constant (see figure 4.12).

Eventually the single most interesting quantity the SZ signal can provide is the
cluster total integrated flux2

Y ≡
∫
s

y(
−→
θ /θs) dΩ = y0 r

2
s

+∞∫∫∫
−∞

Pe(r/rs) (dl/rs)
3 . (4.16)

No unique definition of the boundary of a cluster is universally used. The current

1The virial radius is the radius within virial equilibrium holds.
2Y has the dimensions of a solid angle, usually arcmin2.
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Figure 4.12: Normalised GNFW profiles as described in Planck Collaboration et al.
[2011h]: Universal (black, solid), Morphologically Disturbed (magenta, dotted) and
Cool core (blue, dashed).

most favoured is a spherical surface, r∆, enclosing an average over-density, at the
cluster redshift, ∆ times larger than the critical density, or a multiple of it1. Common
values of r∆ in the literature are {r200, r500, r1500}. Therefore the integral in formula
4.16 should only extend to that limit in the transverse direction. Something that, in
principle, should not raise any difficulties in a numerical implementation. However, as
a matter of convenience, the integral can be expanded to infinity if the profile decays to
zero quickly enough to enclose a finite flux. The predicted amount of flux lying outside
the cluster boundary must be kept to a small fraction of the total flux. The Y value may
be easily evaluated once we know the projected profile parameters y0 or ymax and rs,

Y =


8π y0 r2s

(3β−2)(3β−4)
β profile

2πγ ymax r
2
s multi-quadratic

4πy0 r2s
α

B
(

3−γ
α
, β−3

α

)
GNFW.

(4.17)

1ρc = 3H2
0/8πG.
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where B(a, b) is the complete Beta function. Another very important parameter c∆ =

r∆/rs = θ∆/θs, the is ‘concentration parameter’. The concentration parameter relates
the two scaling radius (or angles): pressure and over-density1. From now on we shall
exclusively focus on the GNFW profile.

Most of the cluster observations made in the X-ray band [Arnaud et al., 2010;
Böhringer et al., 2001, 2007; Nagai et al., 2007], are sensitive to over-densities not
lower than ∆ = 500. Hence, a significant amount of the literature in the field uses r500

as the ‘natural’ scale to measure cluster sizes. Owing to the exquisite Planck sensitivity
to faint and smooth SZ perturbations (see chapter 5) our measurements can reach well
beyond the r500 limit, being accepted that 5 × r500 provides a much better estimate of
the limits of the cluster as ‘seen’ by Planck. The total flux inside a spherical shell of
radius δ × r500 = δ × θ500 is given by

Yδ×θ500 =
4π y0

(
θ500
c500

)2

α
B

(
(δc500)α

1 + (δc500)α
;
3− γ
α

,
β − 3

α

)
, (4.18)

or as a fraction of the total flux Y

Yδ×r500
Y

= I{ (δc500)
α

1+(δc500)
α

}(3− γ
α

,
β − 3

α

)
. (4.19)

where B(x; a, b) is the incomplete Beta function and I(x; a, b) is the fractional incom-
plete Beta function. Using the ‘Universal’ GNFW pressure profile of Arnaud et al.
[2010] (A10) as reference one could check that Y5r500/Y ∼ 96%. This error falls,
most of the time, well below the statistical uncertainty on the measurement of Y5r500

[Planck Collaboration et al., 2011f]. When the uncertainty on the measurement of Y
is small enough, as for certain high SNR detections more rigorous formulas need to be

1Actually, rs is introduced as a scaling parameter for the dark matter halo. It then propagates to
the other quantities as the dark matter distribution completely dominates, according to these models, the
overall geometry of all physical quantities.
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employed1. The exact flux inside a cylinder of radius equal to δ × θ500 is given by:

Y(cyl) δ×θ500 =
4π y0

(
θ500
c500

)2

α

∫ π/2

0

B

(
(δc500)α

cos(t)α + (δc500)α
;
3− γ
α

,
β − 3

α

)
cos(t)dt,

(4.20)
or as a percentage of the total flux

Y(cyl) δ×θ500

Y
=

∫ π/2

0

I{ (δc500)
α

cos(t)α+(δc500)
α

}(3− γ
α

,
β − 3

α

)
cos(t)dt. (4.21)

Combining equations 4.21 and 4.19 we get the following expression

Y(cyl) δ×θ500

Yδ×θ500
=

∫ π/2
0

I{ (δc500)
α

cos(t)α+(δc500)
α

} (3−γ
α
, β−3

α

)
cos(t)dt

I{ (δc500)
α

1+(δc500)
α

} (3−γ
α
, β−3

α

) , (4.22)

which relates the spherical δ× θ500 quantities to their cylindrical counterparts. The in-
terest in developing these formulae clearly exceeds the academic. An accurate numer-
ical implementation of I(x; a, b) exists (see Press et al. [1992, ch. 6]) and for the range
of expected values of the profile parameters they are very fast. It is worth mentioning
that if the β parameter is actually lower than the universal values reported in A10, as
recently described in Planck Collaboration et al. [2012a], then the spherical approxi-
mation no longer holds and the the full cylindrical expressions must be used instead
(see 4.13). As for any ‘physically viable’ set of GNFW parameters (β > 3, γ < 3;
parameters that integrate to a finite Y value) our implementation of the above formu-
lae is very efficient, we have chosen to parameterise the detection profile using the
total flux Y instead. This parameterisation is very advantageous in the sense that it
provides directly the full joint posterior distribution of the cluster most interesting pa-
rameters, Y and θs. In practical terms we just need to make sure that the area below
the projected profile is always equal to unity. To allow a direct comparison with other
extraction methods, namely the Matched Multi Filters [(MMF) Herranz et al., 2002b;
Melin et al., 2006], PwS implements a cut-off radius of 5 × θ500 ⇒ δ = 5. Although,
using formula 4.22 one can recover the spherical quantities even in the case of profiles

1Our catalogues include a small number of detections with SNR & 20. Although, the actual uncer-
tainty in Y5r500 is much closer to 10% owing to the Y − θ degeneracy.
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Figure 4.13: ∆Y =
Ycyl−Ysph
Ysph

is the fractional difference between Ycyl and Ysph inside
a radius δ × θ500.

with smaller β (shallower in the outskirts) like the best fit profile in Planck Collabora-
tion et al. [2012a].

4.2.4.1 Early SZ catalogue

Planck’s ‘Early Sunyaev-Zeldovich cluster catalogue’ (ESZ) is an integral part of
ERCSC. It comprises 189 galaxy clusters detected via their thermal SZ effect. The
ESZ was extracted from Planck’s early data and all 6 HFI channels were employed
in a blind multi-frequency extraction exercise. A Matched Multi-Filter code, MMF3
[Melin et al., 2006], was used as the reference extraction tool. PwS, together with
another MMF implementation, MMF1, acted as an ancillary detection validation tool.
All three methods ran independent blind extraction tasks. Then only those putative
detections above a SNR cut of 6 found by at least 2 methods were selected for inclu-
sion. Figure 4.141 shows the locations of the ESZ catalogue entries on the sky. This
catalogue was still quite ‘shallow’ as the survey data only contained one full sky scan.

1Meanwhile, some of the newly discovered clusters were verified [Planck et al., 2012; Planck Col-
laboration et al., 2012c; Sayers et al., 2012].
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Figure 4.14: Distribution of cluster detections on the sphere (size of the clusters not
shown at scale). The blue circles are previously known clusters, in green are clusters
that were confirmed as part of the validation task and the red circles show clusters not
yet confirmed. The light blue region is the employed Galactic mask (14◦) (plot from
Planck Collaboration et al. [2011f]).

However, not only the sheer size of the catalogue, ∼ 5× larger than all previously
SZ observed cluster, as its volume and high SNR, were already a promise of a very
interesting scientific product for the coming releases. A full and detailed description
of the ESZ contents can be found in Planck Collaboration et al. [2011f] and Planck
Collaboration et al. [2011e].

4.2.4.2 Y − θ degeneracy

The SZ signal is very faint and sub-dominant across all Planck observing frequencies.
Thus, a deep and complete understanding of the statistical uncertainty, clearly predom-
inant in this analysis, is foremost. As we already stressed in Chapter 1 this is even-
tually the single major advantage of a Bayesian methodology over the more empirical
and frequentist solutions: a full characterisation of the errors, and their correlations,
by means of the joint posterior distributions. In contrast to point sources, the cluster
signal cannot be appropriately modelled without introducing an extra parameter, θs (or
any proportional quantity), to give account of the cluster spatial extension. We shall
see in chapter 5, that by virtue of Planck modest resolution, the cluster size estimates
cannot be properly constrained. As consequence of the likelihood 3.23, there is a large
correlation between the cluster total flux estimate (Y ) and its size (θ). Unfortunately,
this effect propagates the size uncertainty into the Y estimate, increasing it dramati-
cally (see Planck Collaboration et al. [2011f]). Another, more subtle problem, is that
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the distribution of the parameters uncertainties is not close to Gaussian, especially if
the detection SNR is low. However, using the Bayesian posterior distributions one can
harness all possible information about the joint parameter constraints giving the data
and all ancillary information.

Figure 4.15 shows several examples of posterior probability contours obtained by
PwS with Planck data. The two plots on the top row plus that on the bottom row left
were taken from Planck et al. [2012]. By combining the posterior probability distri-
butions of multiple observations made by complementary heterogeneous instrumental
setups, it is possible to ‘shrink’ the parameter uncertainty volume. AMI with its higher
resolution (∼ 1

′) but lower sensitivity1 creates ‘more vertical’ posterior probability
shapes in the θ − Y plane. By combining both posteriors, one is able to provide much
tighter constraints not only on Y but on θ as well (black curve). The top contours were
drawn from observations of two well known clusters: A773 and MACS J1149+2223,
that were observed by X-ray telescopes as well. The red arrow marks the X-ray θ500

best fit estimate, which is consistent with the joint SZ constraints. The plot on the
lower right corner of the figure (taken from Planck Collaboration et al. [2011f]) ex-
poses how severe the increase in the Y uncertainty is as result of the Y −θ degeneracy.
The image shows two typical cases of Planck ESZ: A large cluster (θs & 20

′) with
high SNR that Planck can resolve (blue contours) and an unresolved cluster (θs . 5

′)
with low SNR. These probability contours are in good agreement with what one would
expect from the theory: when the data is informative, the likelihood dominates and
tends to a multidimensional Gaussian [Cam and Yang, 2000]2. The low SNR proba-
bility contours also show that for less informative data sets, the posterior distributions
may deviate strongly from Gaussian. However, this has never being a problem for a
Bayesian method.

4.2.4.3 SZ photometry constrained by X-Rays measurements

To decrease the dispersion on the estimates of Y , it is important to break up the im-
portant Y − θ degeneracy [Planck Collaboration et al., 2011f]. Very high resolution

1Sensitivity in this context means ‘sensitivity to the Y signal’. AMI’s instrumental noise is much
lower than that of Planck, but AMI’s backgrounds are dominated by CMB and its detections are strongly
contaminated by radio point sources.

2The other three examples displayed are high SNR detections in the ESZ catalogue as well.
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Figure 4.15: The plots on the upper row and lower row left, show the superposition of two joint
Y500 − θ500 probability contours. The probability mass of the contours is 0.466 and 0.911 respectively.
The Planck ones are shown in magenta, AMI in blue and the common in black. The cross is MMF3
best estimates and symmetrical error bars. The red upper arrow (on the top plots only) is the best X-ray
estimate of θ500. The graph on the lower row right depicts the joint Y500 − θ500 probability contours
of two typical clusters detected by Planck: well resolved in blue and unresolved in black. (plots from
Planck et al. [2012]; Planck Collaboration et al. [2011f])
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X-rays observations of the gas in the intra-cluster medium supply accurate and very
well constrained measurements on θ500 (see Böhringer et al. [2001, 2007]; Piffaretti
et al. [2011] and references therein). Employing to great advantage ‘targeted’ priors
(see section 3.3) derived from the constraints on position and size deduced from the
X-rays data we were able to refine the ‘blind’ Y estimates as in the cases described in
Planck Collaboration et al. [2012c], Planck Collaboration et al. [2012b], Planck Col-
laboration et al. [2011i], Planck Collaboration et al. [2011g] and Planck Collaboration
et al. [2011f].

4.2.5 Validation

No science quality catalogue is complete without a proper validation. Validation tests
the assumptions, physical and statistical, and whether our models are actually a truth-
ful representation of reality. Only a thorough validation can actually provide a sensible
way to assess how systematics, mis-modeling and statistical bias impair the properties
of the catalogue and its estimates. The first 3 ERCSC PwS channel catalogues were
fully and thoroughly validated (see Planck Collaboration et al. [2011e], Planck Col-
laboration et al. [2011c] and Planck Collaboration et al. [2011b]). Table 4.3 contains a
summary of the validation results. Despite of the strong gradients close to the Galactic
plane and very non-uniform background, PwS performed clearly inside the imposed
constraints even for Galactic latitudes as low as 5◦. However, the coarse resolution of
Planck in addition to the above mentioned factors brought about a severe break in the
underlying assumptions of the algorithm, rendering it sub-optimal for regions of the
Galactic plane. Nevertheless, the overall performance was still inside the catalogue
goals.

Further analysis of formula 3.56 shows that the penalty per source, P̂s, concen-
trates into a single number the least well defined prior quantities, namely, the expected
number counts of a population above a certain flux (λ1) the expected number of back-
ground fluctuations above the same threshold (λ0), etc. The non-Gaussianity of the
background, the instrumental or map-making artefacts and the uncertainty on the pri-
ors, most make this value deviate from the fiducial prediction. A properly calibrated
P̂s may be easily found, initially by using simulations and later consolidated through
validation. PwS catalogues and estimates have been extensively validated in a broad
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Frequency [GHz] 30 44 70
# |b|(a) > 5◦ . . . . 563 278 320
# Identified . . . . . 547 (97%) 265 (95%) 289 (90%)
# |b| < 5◦ . . . . . . . 142 176 280
# Identified . . . . . 95 (67%) 144 (82%) ...
# Total . . . . . . . . . 705 454 600
# Identified . . . . . 642 (91%) 409 (90%) ...

Table 4.3: (a) Galactic latitude cut.

variety of different astronomical scenarios (for examples please refer to Planck et al.
[2012]; Planck Collaboration et al. [2011f]).

4.3 Simulations

Before being selected as part of the official Planck compact source catalogue pipeline
(ERCSC + ESZ), PwS underwent many different quality assessment (QA) tests based
on simulated data. There were several challenges [Melin et al., 2012; Rocha, G. et al.,
2013] and many Planck internal QA actions. These QA exercises were designed not
only to compare the relative effectiveness of the different algorithms involved but to
check whether their performance met the required goals. In a initial phase, in either
case, point sources or cluster SZ extraction, many (> 10) different algorithms and
implementations competed. Later, the initial bundle of catalogue extraction methods
(detection + characterisation) was reduced to a smaller set:

• On point source extraction;

SExtractor (SEx). The most widely used ‘classical’ extraction package [Bertin
and Arnouts, 1996].

IFCA Mexican Hat Wavelet (IFCAMex). An implementation of the Mexican
Hat Wavelet, specifically tuned for cosmological microwave surveys devel-
oped at IFCA [González-Nuevo et al., 2006; López-Caniego et al., 2006].

Paris Matched Filter (PMF). A single frequency derivative of Melin et al. [2006].

PowellSnakes (PwS). This work [Carvalho et al., 2009, 2012].
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• On SZ cluster extraction;
after a numerous initial collection of participants [Melin et al., 2012] only 4

codes/implementaions were finally selected to participate in the making of the
different extraction/estimation products: (i) Two different implementations of
the Matched Multi-Filter (MMF1, MMF3) [Herranz et al., 2002b; Melin et al.,
2006]; (ii) PowellSnakes (PwS).

The simulated Planck data sets that provided the underlying framework for the QA
exercises were, in both cases, the current state-of-the-art in realism and accuracy.

4.3.1 The simulated maps

The sky emission at Planck frequencies was generated by the pre-launch ‘Planck Sky
Model’ package [Delabrouille et al., 2012, (PSM)]. This package is currently the most
sophisticated and complete simulation of the sky as ‘seen’ by Planck. It contains a
very large collection of flexible and highly parameterizable codes that simulate the
diffuse and compact emission components across the extended range of frequencies
Planck observes. Concurrently, it produces a full sky pixelised template of the pre-
dicted Planck instrumental noise. Finally, it assembles a set of mock full sky maps,
in temperature and polarization, together with the predicted noise covariance matrix at
each pixel. A detailed description of this package can be found in Delabrouille et al.
[2012] and a distinct application, in the context of diffuse component separation, may
also be found in here Leach et al. [2008]. The SZ extraction exercises were based on
these simulations, the ‘WG2’ simulations.

The point source QA tests and challenges were performed using another set of
simulations even more accurate from the point of view of the instrumental effects.
These are the ‘Full Focal Plane’ (FFP) simulations. Planck’s pipeline has yet another
component, not described in diagram 4.7: the ‘Level-S’. ‘Level-S’ is a set of numeric
tools aimed at modelling the instrumental output of Planck’s instruments [Reinecke
et al., 2006]. Roughly speaking, it takes the simulated sky emission from the PSM and
the scanning strategy as input and produces clean and calibrated time-lines, detector
by detector as read in Planck’s focal plane. Essentially, it replaces L1 and feeds L2
with the necessary inputs. Then, the map-making pipeline is run over these mock data
and the maps are produced. So, not only the full instrumental setup is reproduced in
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these simulations, but all possible pipeline induced effects are also included.

4.3.2 Catalogue figures of merit

The figures of merit of a catalogue are clearly non-unique and depend heavily on
the scientific goals of the catalogue. In chapter 2 some general criteria like ‘Relia-

bility/Purity’, ‘Completeness’ or ‘Estimation accuracy’ that apply to every catalogue
were defined based on probability grounds and decision theory (see section 2.3). The
‘sample’ versions of these quantities that we employed along the several QA exercises
and challenges were the following:

• Reliability/purity,
is defined as:

Number of detections correctly included | Θ̂ > ξ

Total number in the output catalogue | Θ̂ > ξ
, (4.23)

where the ‘| · · · ’ means ‘given that’, Θ̂ is the estimate of a certain parameter
(value in the output catalogue; usually SNR or flux density) and ξ is a thresh-
old that will parameterize the reliability. ‘Correctly included’ might have very
different meanings that depend on the goals of the catalogue (see section 4.2.5)1.

• Completeness

of a catalogue is:

Number of detections correctly included | Θ0 > ξ

Total number in the input catalogue | Θ0 > ξ
, (4.24)

where Θ0 is the true value of the parameter (value in the input catalogue; usu-
ally SNR or flux density) and ξ has exactly the same sense as in the reliability
definition. A close derivative of completeness is ‘total completeness’ where we
drop the threshold condition in the denominator. ‘Total completeness’ gives us
the percentage of objects over the complete targeted population we detect when

1This definition of reliability is also mentioned as ‘integrated reliability/purity’. Another very com-
mon definition of reliability is ‘binned reliability’ defined by binning parameter ξ; ξi < Θ̂ < ξi+1.
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we threshold on ξ1.

• Estimation accuracy (astrometry + photometry),
is some kind of loss measurement the parameter estimates in the catalogue incur
as consequence of an imperfect estimation (see 2.2.1). The smaller the loss the
highest the estimation accuracy. However, many times the frequentist estimators
figures of merit, unbiasedness and minimum variance are instead employed2.

4.3.3 Detection of point sources

The point source extraction challenges were part of the preparatory effort to charac-
terise the, at the time, future Planck ERCSC (see [Rocha, G. et al., 2013]). We will fo-
cus on the last of these challenges where FFP release 3 version 4 simulations (FFP3v4)
were used. Figure 4.16 shows only 3 of the 9 temperature Planck simulated data chan-
nels side-by-side with the Galactic mask employed. In each case the Galactic mask
left 25% of the sky uncovered. The choice of these particular 3 channels, 30, 143, and
857 GHz, was not arbitrary. The 30 GHz channel is representative of the LFI, with
typical LFI values of sensitivity and beam size. The 143 GHz is the central HFI cos-
mological channel with very low noise and Galactic contamination and the 857 GHz
is the strongest sub-mm channel designed to measure the CIB and dust emission. The
point source catalogues were drawn from two different families of sources: radio and
infrared (dusty). Each one of these point sources components were further sub-divided
into faint and strong. Strong sources are those with fluxes higher than 200 mJy. The
faint population was only intended to add to the background a realistic confusion noise
component. The two populations were treated differently in FFP simulations (see Rei-
necke et al. [2006]). The strong point sources were convolved with the beam in real
space taking into account the beam’s spatial variation and the scanning strategy. The
faint population was smoothed in harmonic space using an ‘average’ beam. Only the
strong population was targeted by the algorithms.

Figure 4.17 shows the spatial distribution of PwS detections. The Galactic, LMC
and SMC regions show an above average density of sources and higher fluxes as ex-

1There is as well an equivalent definition of ‘binned completeness’ the goes along the same lines as
those of reliability.

2See Jaynes [2004, ch. 17.2] for a very insightful discussion about the merits (or lack of them !) of
the frequentist estimators figures of merit.
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Figure 4.16: Each row refers to a different observation channel: 30, 143 and 857 GHz
in top-down order. The figures on the left column show the simulated temperature
data [K CMB] and on the right one the respective Galactic mask. Each Galactic mask
removes 25% of the sky.

pected. The density contrast is more easily perceived on the 143 channel. Owing to
the very strong background on the 857 channel, very few sources below 1 Jy were de-
tected. These fainter sources are all very close to the Ecliptic poles where the noise
levels are considerably lower as result of the much higher ‘hit counts’ (see figures 4.4
and 4.6).

Figure 4.18 shows two 143 GHz small patches (10◦×10◦) cut from background re-
gions with distinct statistical traits: (i) ‘Deep’ (very homogenous, isotropic and Gaus-
sian) and (ii) ‘shallow’ (complex structure and less Gaussian). It is perceived from this
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figures how challenging the task of detection and parameter estimation can be with
these data sets. The SNRs of the objects are so small that one can hardly have any
glimpse of them at all. Yet, PwS’s catalogues reached more than 95% purity (see table
4.3)!

The next series of graphics (figure 4.19, 4.20 and 4.21) portrays the comparative
performance of the extraction algorithms that competed in the Compact Source Inves-
tigation group challenge [Rocha, G. et al., 2013, (CSI)]. The CSI was assembled with
the purpose of developing and characterize potential point sources extraction codes for
the coming Planck ERCSC. The next example specifically targets extra-galactic com-
pact objects. As we were not concerned with the Galactic region, a 25% Galactic mask
was used to remove the complex low Galactic latitude regions (see figure 4.16 right
column). The challenge consisted of 9 point source single-frequency extraction exer-
cises (one per Planck channel). However, in the interest of compactness, we will only
focus on 3 channels. The channel selection criterion was that previously mentioned.
The different panels in figures 4.19, 4.20 and 4.21 represent the following:

• The graph in first row from the top,
shows the outcome of the integrated completeness comparative analysis as a
function of the flux density (see formula 4.24).

• The graph in second row from the top,
shows the fraction of non-matched sources (1− ‘integrated purity’) as a function
of the flux density (see formula 4.23). So, in this case, lower figures mean better
performance.

• The graphics in third row from the top and fourth on the right,
are about the quality of the algorithm’s photometry. The first is a direct compar-
ison of the flux estimates: simulated fluxes versus estimated. The second plot is
the relative estimation error Sest−Ssim

Ssim
in percentage.

• The graph in fourth panel (from the top) on the left,
is the most important of all. We have tried to combine the two catalogue detec-
tion figures of merit into a single plot to produce a unique criterion that would
allow us to identify which code was performing better in terms of detection. The
x axis is the ‘integrated reliability’, the y axis is ‘global completeness’ and the
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common parameter that relates both quantities is the flux threshold. Drawing
a vertical line through a certain reliability value, it intercepts the performance
curves at some point. The point of interception gives the fraction of sources
each algorithm can detect at that reliability and the flux (SNR) cut to achieve
it. The curve that intersects the line further apart from the x axis immediately
identifies the best performer.

• The bottom panel

is about positional accuracy. The right plot shows the position residuals. The
plot on the left shows un-normalized histograms of the residuals depicted on the
right.

4.3.3.1 CSI point sources challenge - 30 GHz channel

It terms of completeness PwS and the IFCAMex clearly outperform the other two
codes on the faint tail. They are both more than 90% complete at 400 mJy, with PwS
already achieving a purity in excess of 90% as well. On the ‘reliability-completeness’
(RC) plot, PwS’s curve is always above that of the IFCAMex, meaning that for any
level of reliability PwS is always more complete. The extraction performance of SEx-
tractor is far from optimal on this channel. This does not come as a surprise (see
chapter 1). In terms of photometry all the codes perform equally well with no sig-
nificant bias beside the expected Eddington bias [Eddington, 1913] on the faint tail.
However there are some notorious outliers considerably more numerous on SExtractor
estimates. In terms of astrometry (positional accuracy) PwS once again outperforms
all other but now by a narrow margin (see figure 4.19).

4.3.3.2 CSI point sources challenge - 143 GHz channel

The 143 channels is the ‘cleanest’, with very low instrumental noise and Galactic fore-
ground emission, therefore, a close to optimal performance from all codes is to be
expected (figure 4.20). Indeed this was the case. All codes, but SExtractor, were more
than 90% complete at 200 mJy (the challenge minimum flux limit). Purity was above
95% (ERCSC requirement) at this flux limit as well. Looking at the ‘RC’ plot, the
detection performance of all algorithms was almost undistinguished besides SExtrac-
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tor1. The same can be said about photometry. Even though SExtractor flux estimation
looks unbiased, the estimates dispersion is much higher than that of the other three.
On positional accuracy, PwS estimates show no bias, like all other codes, but clearly
much smaller dispersion.

4.3.3.3 CSI point sources challenge - 857 GHz channel

The 857 GHz channel presented, without any doubt, the most difficult scenario. The
Galactic foregrounds, that in this case extend well beyond the mask, are extremely
complex with structure and strong gradients on sub-pixel scales. That severely breaks
most of PwS statistical assumptions about the background (see 3.1). Thus, a sub-
optimal performance should now be expected. The completeness range of values re-
quired by the Planck’s ERCSC starts at much higher flux values in this case, typically
between 1 and 2 Jy. Once again the detection performance of the algorithms, PwS,
IFCAMex, and PMF is mostly equivalent above 2 Jy. The same cannot be said about
SExtractor2. However, despite of its potential non-optimal design for this type of data,
PwS still shows a slightly better completeness at the same level of reliability. However,
in the estimation exercises the differences were more obvious. If in photometry terms
the differences seem not to be significant, perhaps with the exception of SExtrator
that, once again exhibits a larger dispersion, with regard to positional accuracy PwS
clearly shows a much better performance than all other competitors.

4.3.4 Detection of galaxy clusters

Before being selected by Planck’s consortia as one of the official catalogue extraction
tools, PwS underwent numerous QA tests and two public challenges as described in
Melin et al. [2012]. The data employed throughout this section were the same as in the
‘open challenge’ of Melin et al. [2012]. In this section we will only try to highlight
some topics that were addressed with less detail in the cited publication.

The detection of the secondary CMB anisotropies induced by the SZ effect is so
faint that even the brightest SZ sources create a signal that is below the background at

1PwS’s curve stops at a very high reliability. This happened because PwS made a catalogue ‘hard’
cut at 200 mJy and at this flux the reliability was still very high.

2 This poor performance of SExtractor on this channel was unexpected. We believe that SExtractor’s
sub-optimal performance might have been caused, at least partially, by the choice of the kernel.
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Distribution Parameters Inferior limit Superior limit
Position (x, y) 1/∆ (Uniform) patch patch

Angular size (θs) e−
θs
θ0 θ0 = 5.0 1.30 40.0

Flux (Y ) Y −a a = 1.6 5 10−4 0.2

Table 4.4: PwS’s default priors when operating in ‘blind-mode’. The position prior
limits are fixed by the patch size and the expected number of sources in that patch (see
section 3.3.2). The units of θs are [arcmin] and of Y are [arcmin2].

any of the Planck’s channels. Figure 4.22 shows two patches cut from the simulations
centred on the Coma cluster (l = 57.86, b = +88.01), eventually the brightest in the
sky. The 143 GHz channel is very close to the minimum of equation 4.6 and 353 to
the maximum (see figure 4.11 right panel). Not even on these channels, where the
SZ signal reaches its maxima, negative and positive, is one able to see any hint of the
presence of the brightest cluster in the sky! This is the main reason why ‘classical’
detection packages like SExtractor are unable to produce SZ catalogues of scientific
quality. Although, this cluster is detected by PwS with an SNR in excess of 30 (see
figure 4.23)! This is only possible because of the very special instrumental setup of
Planck (see chapter 5).

Figure 4.24 displays three graphics taken from Planck et al. [2012]. These plots
show PwS’s joint Y500−θ500 posterior probability densities drawn from 10 different re-
alizations of simulations developed as described in that paper. The cluster’s (Y500, θ500)
true values where always recovered inside the 2D, 2σ contour (∼ 91.1%). Unfortu-
nately, the degradation in the Y constraints as consequence of the Y − θ degeneracy is
evident. These are all high SNR clusters.

However, the large majority of Planck’s potential detections are much fainter, close
to the instrument sensitivity limit. As we already mentioned (section 3.3), in the later
case a careful understanding of the priors is crucial. Table 4.4 contains prior’s default
parameter values (these can be changed through the parameter file). More information
about the use of priors by PwS may be found in table 3.1. Figure 4.25 shows the effect
of the priors (table 4.4) on the joint Y − θ posterior probabilities. The red curves were
obtained using ‘flat’ priors on both Y5r500 and θs and the black curves using PwS’s
default priors. The systematic effect of the prior on high SNR detections is completely
negligible when compared with the statistical uncertainty and the shape is very close
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to Gaussian near the maximum (figure 4.25 top). Although, the effect of the prior is
clearly more pronounced in the case of low SNR as in the plots on the bottom row.
PwS’s default priors not only slightly shift the contours towards lower values as shrink
them considerably as well. The effect is even stronger on low SNR large clusters where
the Y density, y, is very small. Yet, we could not see any significant systematic bias in
the analysis of the simulated clusters as in Planck et al. [2012] (see figure 4.24) or any
of the public challenges [Melin et al., 2012].

We have tried to understand the effect of the priors, part and parcel of any Bayesian
method, on the estimates Y5r500 and θS , to give a proper characterization of the cata-
logue estimates. The plots in figures 4.26 and 4.27 were based on PwS’s extraction
exercises based on the same simulation set as that used on the ‘open’ challenge (see
Melin et al. [2012]). The most prominent feature in the Y plots is the large Eddington
bias that affects almost 90% of the detected cluster population as may be verified by
looking at the bottom plot. The max-likelihood estimate (left column) produces no
bias for bright clusters (Y5r500 & 0.002 arcmin2). However, in the faint tail, which
clearly dominates (see bottom plot; 90% of the population is faint), exhibits a consid-
erably larger dispersion than the ‘expected value over the posterior’ on the right plot.
Although, a very small negative bias can be seen for the 10% bright population. The
‘posterior mode’ estimator (upper rows central plots) does not show any significant
improvement with relation to the max-likelihood on the faint tail, but it still displays
the small negative bias present on the expected value estimator as well. This result was
somewhat unexpected. According to the theory (see 2.2.1) the mode of the posterior
estimator should have yielded the best performance. After the second challenge we
changed the implementation of the mode and expected value using HPD of different
content estimators as described in table 3.1. That made both estimators much more
robust, particularly on the faint end. Results obtained with the new implementation of
the estimators were not ready in time to be included in this work. They can be found
in Planck’s intermediate papers and forthcoming Planck releases.

The unresolved/barely resolved population of clusters (θs . 6
′) stands for more

than 90% of the total sample (figure 4.27 bottom plot). Owing to Planck’s large beams,
sub-optimal constraints on the cluster radii should not come as a surprise. Indeed, fig-
ure 4.27 supports exactly that. In particular the max-likelihood estimator (on the left)
shows a particularly large dispersion over that population of clusters. However, ex-
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actly as in the case of flux (figure 4.26), the application of PwS’s default prior and
the expected value over the posterior estimator considerably reduced the dispersion of
the radius estimator (right column). Still, a non-negligible negative bias that affects
the resolved population (∼ 10%) was the ‘penalty’ for better constraints on the unre-
solved/barely resolved population that accounts for more than ∼ 90% of the sample.
Despite of the non-optimal implementation of the mode estimator, still a non-negligible
improvement could be seen in the dispersion of the cluster size estimates.
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Figure 4.17: Spatial distribution of PwS detections on 30, 143 and 857 GHz channels.
The sources sitting on top of the Galactic mask were left in the plots. Source fluxes are
in [mJy]. Sources painted in blue have fluxes larger than 1 Jy (plots from Rocha, G. et
al. [2013]).
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Figure 4.18: Small patches (10◦ × 10◦) of two distinct regions in the 143 GHz temperature map.
The simulated sources are marked with blue crosses and those that were detected are marked with blue
circles. The top panel shows a ‘deep’ sky zone with a very homogeneous and isotropic background. The
bottom panel depicts a noisier (‘shallower’) patch with a more complex background. The temperature
units in the grey scale are [K RJ] and the coordinates are Galactic [degrees].

103



4. Results

Figure 4.19: CSI point source challenge summary of results for the 30 GHz channel
(PwS labelled PS in the figure; plots from Rocha, G. et al. [2013]).
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Figure 4.20: CSI point source challenge summary of results for the 143 GHz channel
(PwS labelled PS in the figure;plots from Rocha, G. et al. [2013]).
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Figure 4.21: CSI point source challenge summary of results for the 857 GHz channel
(PwS labelled PS in the figure; plots from Rocha, G. et al. [2013]).
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Figure 4.22: These patches are 512 × 512 pixels wide (∼ 14.66× ∼ 14.66) and show
the north polar region (Galactic coordinates) in two Planck channels: 143 and 353
GHz. They were cut from ‘WG2’ simulations as described in section 4.2.2. The colour
scale is not the same on both the plots.

Figure 4.23: Two views (left: top view; right: side view) of a cut (θs = c) through
the SZ multi-channel likelihood manifold projected on position space. The likelihood
manifold was drawn from the same data as in figure 4.22 but now using all (9) Planck
channels. The z axis scale was normalised to SNR units. The central very large maxi-
mum is the detection corresponding to a simulation of the Coma cluster. The likelihood
manifold is profusely multi-modal.
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Figure 4.24: These plots show joint probability contours of clusters simulated follow-
ing a GNFW ‘universal pressure profile’ [Arnaud et al., 2010] with fluxes and sizes
derived from estimates obtained from Planck’s early data (MMF3). The clusters are
the same as in figure 4.15. Each contour refers to a different simulation of the same
three clusters as described in Planck et al. [2012]. The ‘star’ shows the input (Y500, θ500)
pair (plots from Planck et al. [2012]).
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Figure 4.25: The red contours show the joint posterior distributions assuming all priors
are ‘flat’ (uniform) where the likelihood mass concentrates. The black contours were
made from the same data but using the priors described in table 4.4. The plot in the
upper row shows a typical high SNR detection. The lower row depicts two examples of
low SNR detections: on the left a small point like cluster and on the right an extended
and well resolved. The plot x axis shows Y ≡ Y5r500 [arcmin2]. The y axis is θs
[arcmin].
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Figure 4.26: The upper row and middle row compare PwS’s recovered Y5r500 with the simulated
input value. On the left column, the best fit estimates were obtained through a mode estimator using
‘flat’ priors on both parameters, Y5r500 and θs, the equivalent of a maximum likelihood estimator. On
the middle and right column the flat priors were replaced by those described in table 4.4. The middle
column shows the posterior mode estimate and the column on the right the posterior expected value.
The Y5r500 units are [arcmin2]. The lowest row shows an normalised integrated histogram (CDF) of the
Y5r500 injected distribution (x axis units in [arcmin2]).
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Figure 4.27: These plots were obtained the same way as those in figure 4.26, but this
time using parameter θs. The x axis on the last row plot shows θs plotted in units of
[arcmin].
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Chapter 5
‘Planck’ detection capabilities - a
simplified model

For the sake of completeness, in this last chapter we have attempted to approach the
same detection formalism but now employing a somewhat different technique. This
technique, the Fisher information matrix analysis, is more frequently found in the
realm of the frequentist school of probability [Trees, 2001, ch. 2]. In fact even in
Bayesian statistics the asymptotic distribution of the posterior mode depends on the
Fisher information matrix and not on the prior [Cam and Yang, 2000]1. Up to now, we
have always explored our Bayesian detection formalism to make inferences about pa-
rameter estimation, or decision making, giving the current data set. We now approach
this from a different angle, where we assume the parameters of our test hypothesis are
non-random, though unknown, and the data are realisation(s) of a well characterised
random process. Even though the Bayesian formalism is the only fully consistent and
optimal way of interpreting the data accounting for all ancillary information, the sug-
gested method (frequentist) might, in this particular case, provide a shorter and perhaps
simpler way to draw inferences about our data collecting systems. Moreover, owing
to the asymptotic symmetry in the sense of large data sets of both approaches2, in the
end one should expect to arrive at the same conclusions. Even though this chapter
aims at exploring a different angle of inference, with a distinct foundation, all common

1This result was first anticipated by Laplace for the exponential family of probability distributions.
2Modern cosmological data sets like those produced by spaceborne instruments like the WMAP or

Planck satellites are sufficiently large to make the asymptotic properties hold with good accuracy.
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symbols to earlier chapters keep their meanings unchanged.

5.1 Fisher analysis

The ‘Fisher information matrix’ is defined as

Iij = −
〈(

∂2 lnL

∂αi∂αj

)
α

〉
H

, (5.1)

where L is the likelihood1, α ≡ [α0 · · ·αn] is a vector representing the parameter
set and the ensemble average is taken assuming hypothesis H . Using the Cramér-
Rao bound and supposing that a unbiased estimator exists, then a lower bound on the
parameter covariance matrix Cij ≡ 〈δαiδαj〉 reads

Cij ≥ (I−1)ij. (5.2)

Equality holds only when the estimator is minimum variance (‘efficient’). The like-
lihood mode is an asymptotically unbiased and efficient estimator, therefore reaching
the Cramér-Rao bound [Trees, 2001]2.

The likelihood expression derived in the context of the detection of a single isolated
source (equation 3.23 with restriction 3.24) and tailored with the SZ effect detection
symbols reads

ln (LHs) ∝ Y F−1 [P(η)τ̃(−η; θs)]X −
1
2
Y 2
∑
η

Q(η)|τ̃(η; θs)|2. (5.3)

Owing to the symmetry properties of the Fisher matrix (see A-3), it is possible to
isolate the sub-space of the position parameters from the remaining set {Y, θs}, where
we shall now focus our attention. The evaluation of the Fisher matrix coefficients for

1This definition of the Fisher information matrix assumes the likelihood is twice differentiable and
certain regularity conditions apply (see [Trees, 2001]).

2In some cases the convergence of the likelihood mode estimates can be slow. A simple example is
the maximum-likelihood estimate of a Gaussian population variance with known mean.
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the {Y, θs} parameter subset can be obtained with the following expression

−
〈(

∂2 lnL

∂αi∂αj

)
α

〉
Hs

= −
∫
η

Q(η)
∂ h̃(Y, θs,η)

∂αi
.
∂ h̃(Y, θs,η)

∂αj
dη, (5.4)

where h̃(Y, θs,η) = Y τ̃(η; θs). Performing the operations above depicted and af-
ter some trivial algebraic manipulations, we obtain the following expressions for the
Fisher matrix coefficients

IY Y = 2π
σ2
Y0

∫∞
0

Q′ (Rψ) fyy(ψ) ψ dψ, fyy(ψ) = τ̃ 2(ψ)

IY θs = 2πY
θsσ2

Y0

∫∞
0

Q′ (Rψ) fyθs(ψ) ψ dψ, fyθs(ψ) = dτ̃2(ψ)
dψ

ψ
2

Iθsθs = 2πY 2

θ2sσ
2
Y0

∫∞
0

Q′ (Rψ) fθsθs(ψ) ψ dψ, fθsθs(ψ) =
[
dτ̃(ψ)
dψ

]2

ψ2

, (5.5)

where ψ = η θs, Q′ (θbη) = σ2
Y0
Q(η), σY0 =

( ∫
Q(η) dη

)−1/2, R = θb/θs and θb is the
‘natural’ scale of the instrument ‘equivalent’ PSF1. We have tried to express all entities
using dimensionless quantities to make them as general as possible. The parameter R
is a proxy for how well the instrument is able to resolve targets. The function Q′(φ)

reaches its maximum at the origin and then quickly decreases as φ increases2.

• Small R ⇒ θb � θs. The objects are much larger than the PSF scale. In this
case the beam spatial transfer function may be assumed approximately constant,
equal to the zero frequency sensitivity, across the range of values the functions
fyy(ψ), fyθs(ψ), fθsθs(ψ) are significantly different from zero, implying Q′(φ) ∼
Q′(0). This means the object is fully resolved and the solution acts as if the PSF
were not present.

• Large R⇒ θb � θs. The object transverse sizes are much smaller than the PSF
scale. In this case the beam transfer function drops so quickly that τ̃(ψ), may be
approximated by its value at the origin (τ̃(ψ) ∼ τ̃(0)) and fyθs(ψ), fθsθs(ψ) ∼

1We say ‘equivalent’ because generally the instrumental setup, like all modern cosmological probes,
may observe in multiple channels, each one with a different PSF.

2This is not always true for interferometers. The beam transfer function drops off very quickly
for low spatial frequencies (large scales) as result of the minimum baseline and/or under-sampled uv
plane. That usually means that when R is small (object much larger than the beam ‘natural’ scale) the
interferometers are mostly insensitive to those objects.
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Figure 5.1: fyy(ψ), fyθs(ψ), fθsθs(ψ) functions from equation 5.5. τ(x) is the universal
GNFW profile integrated in the l.o.s (see equation 4.15 and Arnaud et al. [2010]). The
profile was normalised to enclose a unit volume.

fyθs(0), fθsθs(0) ∼ 0, rendering the actual profile of the object completely irrel-
evant. This case is usually known as unresolved or point like objects.

The cluster template profile we have been using, a GNFW profile integrated in-the-
line-of-sight (4.15), does not possess a simple closed analytical formula except at the
origin. So, in order to proceed, one needs to resort to numerical evaluations. Figure 5.1
depicts the functions fyy(ψ), fyθs(ψ), fθsθs(ψ). Its worth noting that the dependence
of the Fisher coefficients on the extension of the source is fully contained in these
functions which are not random and becomes completely defined after choosing the
detection profile.
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5.2 Planck SZ sensitivity (σY )

From equations 3.35 and 3.29 we know that the flux (Y ) posterior distribution given θs
is a Gaussian with dispersion given by

σY = δY(θs)known =
1√
IY Y

=
σY0

√
2π
√∫∞

0
Q′ (Rψ) fyy(ψ) ψ dψ

. (5.6)

Then, by definition, the SNR of a detection is

SNR ≡ Ŷ

δY(θs)known

= Ŷ
√
IY Y , (5.7)

where Ŷ is the the maximum likelihood estimate of Y . Equation 2.30 describes the
completeness of the catalogue as function of Y and depends only on σY and the actual
acceptance/rejection SNR threshold γ. In the current context, the completeness func-
tion is usually known as the ‘selection function’. The selection function attempts to
characterise the population of clusters by defining a pure ‘Y cut sample’. This kind
of sample is a very powerful tool to constrain cosmology via the mass function and
the distribution of Y , a well known low dispersion proxy for the cluster mass (see
Allen et al. [2011] and references therein). Mass function derived number counts are
very steep functions of the cosmological parameters, particularly σ8 and Ωm, placing
therefore strong constraints on cluster abundance and evolution. So, understanding the
limits our instrument places on σY , the ‘Y sensitivity’, is of pivotal importance in the
specification of the instrument capability for constraining cosmology.

5.2.1 Background model

In section 3.1 (equation 3.1), we separated the background into two components, re-
garding their origin: instrumental (pixel) noise and astronomical background emission.
Planck pixel noise may be very safely assumed as completely uncorrelated not only
spatially but across observation channels as well. On the other hand, the astronomical
background is highly, though not perfectly, correlated spatially and across channels.
In the current analysis it is more convenient to decompose the background in channel
‘i’ using its correlation properties instead. So, the background in channel ‘i’ may be
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defined as
bi = ci + ni, (5.8)

where ci is assumed as being perfectly correlated across channels and ni completely
uncorrelated. By perfectly correlated we mean in this context

if cj = kjc then 〈cticj〉 = k∗i kj c
tc, (5.9)

where c is some arbitrary background reference and kj is a constant (eventually com-
plex to accommodate phase differences). The completely uncorrelated component ni
is such 〈ntinj〉 = σ2

i if i = j and 0 otherwise. This simplistic background model will
include one single correlated component only. Therefore, without any loss of gener-
ality, one may always choose appropriated units so that ki = kj = 1. Accepting the
background is homogeneous, its cross-covariance matrix is then circulant and taking
advantage of the linearity of the Fourier transform, the following properties apply:

〈niαnjβ〉 =

{
σ2
i only if i = j and α = β

0 otherwise

〈ciαcjβ〉 =

{
c2 if α = β

0 otherwise

, (5.10)

where the Greek symbols identify the spatial Fourier modes.
The simplest possible emission model we may define possesses a single back-

ground component, in this case CMB1, plus the foreground signal we are searching
for, in this particular example the SZ emission. Of course, we need to consider the
antenna beam PSFs and the instrumental noise (assumed white) as well. So, in this
stripped down model, the ‘correlated’ component is represented by

〈cticj〉 = αij CMB. (5.11)

1At all Planck channels that will be used in this analysis ({30, 44, 70, 100, 143, 217, 353} GHz),
CMB is the dominant background component at high galactic latitudes
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where αij is the cross channel degree of correlation of the CMB emission defined by

αij =
〈cticj〉
k∗i kj c

tc
, (5.12)

An αij close to 0 means that the cross-power spectrum of the CMB is close to 0. On
the opposite side of the range, (αij ≈ 1), means the cross-power spectrum of the CMB
perfectly matches the power spectrum. For simplicity we will accept α as independent
of the channel (α = αij). Likewise, we will model the CMB as simple scale-free
power spectrum with an index = 2

〈cticj〉 = α CMB0 l
−2, (5.13)

where CMB0 is a constant. The ‘uncorrelated’ component is represented as the sum
of two contributions

σ2
i = ε2

i + (1− α) CMB0 l
−2, (5.14)

where ε2
i is the pixel noise and the second term the leakage from the correlated com-

ponent. This exceptionally stripped-down model lacks most of the complexity of the
real data, namely:

• No provision for other astronomical components: free-free, dust, confusion noise
from undetected unresolved sources, etc.

• The α parameter is assumed constant for all Fourier modes.

• The relative balance of all background components is assumed constant across
all sky (statistical homogeneity).

Despite its extreme simplicity we could reproduce the results of the Planck ESZ cata-
logue with reasonable accuracy (see section 5.2.3)

5.2.2 The evaluation of Q(η)

From equation 5.7 one can see that if the source extension approaches 0 then fyy → 1.

Therefore for a certain fixed flux Y , the SNR is proportional to
√∫

Q(η)dη. As
Q(η) ≥ 01, the higher and the wider Q(η) is, the better the cluster can be detected. We

1Q(η) is a quadratic form.
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shall now proceed to examine the dominant factors controlling the shape of Q(η). One
single Fourier mode of Qη, reads

[a0z0, . . . , anzn]

c2


a2

0 +X0, a0a1, . . . , a0an

a1a0, a2
1 +X1, . . . , a1an

...,
...,

... ,
...

ana0, ana1, . . . , a2
n +Xn



−1 

a0z0

...
anzn

 ,

(5.15)
where ai is the beam transfer function at channel ‘i’, zi is the SZ SED at channel’s ‘i’
effective frequency and Xi = σ2

i /c
2 (we have omitted the subscript η for clarity). A

closed form for Qη may be obtained, after a long but otherwise uninteresting algebraic
manipulation (see Henderson and Searle [1981] for a detailed proof), and it reads

Qη =
∑
i

Θiz
2
i −

c2

1 + c2
∑

i Θi

(∑
i

Θizi

)2

, (5.16)

where Θi =
a2i
σ2
i
. A much more insightful form to present this result is the following

Qη =

∑
i Θiz

2
i + c2

[∑
i

∑
j>i ΘiΘj(zj − zi)2

]
1 + c2

∑
i Θi

, (5.17)

because it allows us to identify two different regimes where some approximations can
be introduced to produce simplified, more predictive, expressions:

• Uncorrelated component dominates (c2
∑

i Θi � 1⇒ σ2
i � c2a2

i )

Q(η) ≈
∑
i

a2
i (η)z2

i

σ2
i

. (5.18)

Qη is the co-addition of the different channels. This result is exactly what would
be expected when optimally (in the sense of minimizing the noise) combining
completely uncorrelated channels. This regime happens for the high ‘l’ Fourier
modes.
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• Correlated component dominates (c2
∑

i Θi � 1⇒ σ2
i � c2a2

i )

Q(η) ≈

∑
i

{
Θi(η)

∑
j>i Θj(η)(zj − zi)2

}
∑

i Θi(η)
. (5.19)

Within the range the correlated component dominates, Q(η) is a weighted com-
bination of the square of the differences between the channels. This is the normal
case for the low ‘l’ region.

The most interesting result is that in neither case Q(η) depends on the correlated com-
ponent! So even for low ‘l’ where the main contaminant of the signal is the astro-
nomical background (mainly CMB), an appropriately tuned multi-frequency setup (see
5.2.4) might eliminate it to the point where the only noise source left is pixel noise.
This situation can be exploited with great advantage when pixel noise is decidedly sub-
dominant in comparison with CMB as in the case of Planck. However, the amplitude
of Q(η), when the correlated component dominates, is proportional to the differences
of the SZ spectral signature at the observation channels. If the observation frequencies
are closely packed either in the positive or negative side of the SZ spectrum, this might
bring Q(η) to very low values, making the instrument very insensitive to those scales.
On the other hand Planck’s HFI instrument frequency distribution, with channels on
both sides (positive and negative) of the SZ spectrum, is such that it optimally exploits
this feature. The width of Q(η) is mainly dictated by the high ‘l’ regime when the
uncorrelated component is dominant. Analysing this expression it becomes apparent,
with no surprise, that the narrower the beam (higher resolution) the better.

5.2.3 Comparison with the ESZ

To assess how representative this detection model is of a modern cosmological data
set, we have tried to predict the Planck Early SZ catalogue of clusters of galaxies
(ESZ) [Planck Collaboration et al., 2011f]. We have employed all entries in the cata-
logue (189). We have only kept the detection SNR estimates though. The large beams
and high instrumental noise levels in Planck data at the time of publication of the
catalogue1 severely limited the cluster size constraining capability of the instrument.

1This catalogue was an ‘early release’.
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LFI HFI
Channel [GHz] . . . . . . . 30 44 70 100 143 217 353
∆TSZ [∆T/T ] . . . . . . . -1.954 -1.901 -1.753 -1.509 -1.042 -0.011 2.235
Noise [K2rad2]10−15 . . 11.0 18.0 11.0 0.78 0.25 0.59 7.61
Beam FWHM [arcmin] 32.65 27.92 13.01 9.53 7.08 4.71 4.50

Table 5.1: Instrumental setup. No colour corrections were employed.

〈∆〉 σ∆ 〈∆〉/σ∆ β̂ (y0 = 0) ρ

-0.2 2.26 -8.8% 0.98 0.851

Table 5.2: ∆ = SNRpred−SNResz, β̂(y0 = 0) is the best fit slope of a line that includes
the origin and ρ is the correlation coefficient.

Unfortunately, owing to the important Y, θs correlation (see sections 5.3, 4.2.4.2 and
Planck Collaboration et al. [2011f]) the large uncertainty in the cluster extension prop-
agates through to the Y estimates. To limit the uncertainty on the SZ flux estimate,
the cluster radius estimates in the catalogues were derived from high resolution X-
ray observations [Planck Collaboration et al., 2011f]. In this work we have used the
original SZ estimates extracted directly from the Planck data exclusively using PwS.
Table 5.1 shows the values of the parameters we employed in our model to try to
predict the ESZ catalogue SNRs using formula 5.7. This set of values was collected
from the Planck early high and low frequency instrument performance data [Men-
nella et al., 2011; Planck HFI Core Team et al., 2011; Zacchei et al., 2011]. We took
CMB0 = 2π 2000.0 (µK)2 from Hinshaw et al. [2009] and assumed a cross chan-
nel degree of correlation α = 0.99. In figure 5.2 we plot the SNRs from the ESZ
catalogue (SNResz) versus the prediction (SNRpred) and a histogram of the residuals
(∆ ≡ SNRpred − SNResz). Despite its very basic design, this model predicts with
reasonable accuracy the ESZ SNRs (see table 5.2). It is mostly unbiased, with low
dispersion and good correlation. It is remarkable that such a simple and stripped-down
model can actually make such close prediction of the catalogue content.

5.2.4 σY predictions and selection function

We can use to great advantage this model to predict σY , the instrument sensitivity (see
equation 5.6), for a variety of different instrumental setups and get a first approxi-
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Figure 5.2: Left panel: SNR prediction from the current model SNRpred versus the
SNR from the ESZ catalogue. The red (dashed) line is the 1 : 1 line. The plot’s
statistical data may be found in table 5.2. Right panel: Histogram of the residuals
(∆ = SNRpred − SNResz).

mation of its selection function. Another possibility is to suggest new instrumental
designs given survey goals. We set off by predicting how the spatial extension of the
clusters, as seen by Planck HFI and LFI instruments1 constrain the instrument sensi-
tivity to the different scales and therefore the sample selection. Both sensitivity curves,
HFI and LFI (see figures 5.3 and 5.4) were drawn using the data in table 5.1. Only four
channels were used in contrast to the ESZ catalogue where all HFI frequencies (6) were
used2. The 100 GHz channel was added to the LFI setup to make the cases more com-
parable (same amount of data). Five different values of α (cross-channel correlation),
{0.0, 0.9, 0.98, 0.99, 1.0}, were tested. The cluster extension range goes from 0.0 ar-
cmin, unresolved point like object, to 30.0 arcmin, a well resolved object. The dashed
curves were plotted assuming the instrumental noise was 1/2 of the level present in
the early release data, or close to the level one should expect in the full mission data.
As expected, there is a general trend in that both instruments are less sensitive to more
extended clusters with lower flux densities (y). But this where the affinity ends. As

1After adding redshift information the observed spatial scale θs can be converted into the actual
cluster physical size.

2The non inclusion of the two highest Planck channels was dictated mainly by the fact the dominant
background component in these frequencies is dust, which clearly breaks some assumptions of our
model.
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Figure 5.3: Predicted Planck HFI sensitivity as a function of the cluster radius. Solid
lines were drawn assuming the noise values of the early release papers (see table 5.1)
corresponding to 1 full sky scan and the dashed lines halving the instrumental noise
values (∼ 4 full sky scans).

result of the much wider beams and higher noise levels1, the LFI is much less sensi-
tive to the SZ emission, effectively making it almost blind to any cluster except the
brightest ones2. Something more interesting is that, despite of the higher resolution
and much lower noise, if the cross-channel correlation α = 0 (the channels are simply
co-added), the HFI sensitivity becomes comparable to that of the LFI. Another aspect
of the problem is the impact on the sensitivity when reducing the instrumental noise.
The pixel noise is, roughly speaking, inversely proportional to the square root of the
number of times a pixel is observed (‘hit count’). The dashed curve shows the sensi-
tivity if the pixel noise is reduced to half of the ESZ values, which accounts for four

1One order of magnitude for the cosmological channels.
2No more than a dozen clusters are likely to be detected with this configuration. Some examples

are Coma, A2319 and A2256.
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Figure 5.4: Predicted Planck LFI sensitivity as a function of the cluster radius. Follows
the same conventions as figure 5.3 (the LFI setup includes the HFI 100 GHz channel).

full sky surveys instead of a single one. The difference is quite significant for the HFI
and mostly irrelevant for the LFI. The extreme sensitivity of the HFI to the SZ signal
comes to too high a cost. Unless a very accurate characterization of the beams PSF and
very effective elimination of the 1/f noise (map-making) is achieved, the α values will
not get close to 1 and the sensitivity will significantly drop as figure 5.3 shows. Planck

was the first instrument to release a SZ cluster catalogue constructed with data from
both sides of the SZ spectrum 1. The atmospheric window starts to close very quickly
at frequencies above ∼ 150 GHz even on the driest and highest places. Observing in
those channels always means expensive spaceborne missions. What would then be the
impact of using an instrument with the HFI specifications but at the LFI frequencies?

Figure 5.5 shows the predicted sensitivity of an instrument with the HFI speci-
fications, beam widths and noise levels, but operating at LFI frequencies. A quick

1SPT (South Pole Telescope Consortium) last catalogue of about 220 SZ detected clusters was
extracted from the 95 and 150 GHz channels only [Reichardt et al., 2012].
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Figure 5.5: Sensitivity of a virtual experiment keeping the HFI performance traits
unchanged (noise + beam PSF) and shifting the channel central frequencies to LFI
values. Lines colour and shape follow previous cases (see figure 5.3).

inspection of the SZ signal strength at the LFI channels would have anticipated a dif-
ferent result. The average SZ signal strength for the HFI frequency set is ∼ 1.20 and
for the LFI ∼ 1.78 or about 48% higher1. Although, the HFI observing frequency set
has clearly higher sensitivity throughout all cluster scales except for the α = 0 case2!
And the sensitivity degradation with the cluster extension is quicker, almost a decade
when it reaches ∼ 12 arcmin. Just co-adding channels (α = 0) is not as penalizing
as in the HFI case. Indeed clustering the observation frequencies into a narrow band
effectively reproduces a similar effect as removing the correlation (see 5.17). σY is not
as dependent on the instrumental noise levels as in the HFI case. So, deeper integration
times might not help increasing the size of the sample as the sensitivity is dominated

1For instance the 217 GHz channels carries almost no signal.
2The better sensitivity of the α = 0 case should not come as a surprise given the fact that in fact the

LFI frequencies carry more SZ signal.
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not only by the instrumental noise but mainly by the astronomical background. This
situation leaves almost no hope for ground based instruments to tackle large faint SZ
clusters. However, large ground based dishes or interferometers, with much improved
resolution and very low noise detectors, exploiting with great advantage the difference
in scales (spatial filtering) can successfully tackle narrow clusters which make up the
more interesting population of massive high redshift clusters (see AMI Consortium
et al. [2008]; Marriage et al. [2011]; Reichardt et al. [2012]).

5.3 The Y, θs correlation

As previously mentioned (see 4.2.4.2) our Bayesian analysis of the joint probability
Pr(Y, θs|d) showed a strong degeneracy between the total cluster flux (Y ) and size es-
timates (θs). The large Planck beams can only provide weak constraints on the cluster
extension. Unfortunately, the cross-correlation between Y and θs, propagates the large
extension uncertainty into the Y estimation. So, using once again the Cramér-Rao
bound (equation 5.2) and the Fisher information matrix (5.5) we were able to predict
the actual Y error bar (δYeff ) when considering the effect of the uncertainty in θs as
well. The ‘effective’ SNR then reads:

SNReff =
Ŷ

δYeff
= SNR

√
1− ρ2, (5.20)

where ρ is the correlation coefficient given by

ρ = − IY θs√
IY Y

√
Iθsθs

=
−
∫∞

0
Q′ (Rψ) fyθs(ψ) ψ dψ√∫∞

0
Q′ (Rψ) fyy(ψ) ψ dψ

√∫∞
0

Q′ (Rψ) fθsθs(ψ) ψ dψ
.

(5.21)
Figure 5.6 depicts the variation of ρwith the cluster radius for the HFI setup (table 5.1).
The prediction just confirmed what one would expect from the joint {Y, θs} posterior
distributions (see section 4.2.4.2): that there exists an important correlation between
Y and θs. There is a good match between these model predictions (ρ ∼ 0.90) and the
actual ESZ results (ρ ∼ 0.85) obtained from Planck early data [Planck Collaboration
et al., 2011f]. The prediction seems to be slightly biased high (∼ 5%). However, as
one could conclude from the plots, lower noise estimates tend to produce higher cor-
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Figure 5.6: HFI configuration correlation coefficient ρ evolution with the cluster ex-
tension (equation 5.21). Line colour and shape follow previous cases (see figure 5.3).

relation coefficient values. Such a simple model does not include several sources of
contamination such as dust, confusion, etc. We believe that these extra noise compo-
nents, left out of the model, would bring the prediction in complete agreement with the
ESZ results. Equation 5.20 relates ρ the {Y, θs} correlation coefficient to the effective
uncertainty on the Y estimate. Regrettably, ρ is, throughout the full cluster size range,
very high, imposing a severe detrimental impact on the Y constraint. In figure 5.7 we
have tried to predict the impact of the strong {Y, θs} correlation in the ESZ catalogue
Y estimates. The correlation coefficients are tightly distributed around 0.90 and with
good accuracy one may say that the increase in the Y uncertainty (δYeff ) as result of
the θs error propagation into the Y estimate is very severe δYeff/δY(θs)known ∼ 2.36.
The agreement between these predictions and the results in section 4.2.4.2 obtained by
sampling the Y, θs joint posterior distributions is very good.

127



5. ‘Planck’ detection capabilities - a simplified model

0.85 0.9 0.95
0

10

20

30

40

50

60

ρ [unitless]

co
un

ts

0 5 10 15 20 25 30
0

5

10

15

20

25

30

ESZ SNR [unitless]

P
re

di
ct

ed
 e

ffe
ct

iv
e 

S
N

R
 [u

ni
tle

ss
]

Figure 5.7: Left panel: Histogram of the correlation coefficient distribution in the ESZ
catalogue. Right panel: ESZ catalogue SNR versus predicted ‘effective’ SNR (see
equation 5.20). The red line is the best fit line (y0 = 0) with a slope of 0.424.

5.4 Comments

• Planck HFI, owing to its unique instrumental setup and observing conditions is
particularly well equipped to find faint extended clusters. This capability makes
it extremely sensitive to very smooth and feeble gas pressure in the outskirts of
the cluster, making it an excellent complement to X-ray measurements.

• However, as result of its large beams mainly, its capability to constrain the ex-
tension of cluster is very limited. Moreover, the large correlation between the
cluster extension estimate θs and its total flux Y propagates the large size uncer-
tainty into the flux estimate rendering it very ‘noisy’.

• By combining estimate constraints from X-ray observations with those from
Planck SZ measurements, it is possible to provide low dispersion unbiased prox-
ies of the cluster total mass, a valuable cosmological datum (see Planck Collab-
oration et al. [2011f] and references therein).
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Chapter 6
Conclusions

The Planck satellite, and many other modern cosmological data sets, present com-
pletely new challenges for the detection and description of compact objects. With the
immense accessible computing power now available, the need for more sophisticated
algorithms, capable of extracting from the data a ‘deeper’ content, demands an im-
proved understanding of the data as an information repository one wants to unlock.
These new more ambitious goals impose that one should aim at (i) low or very low
SNRs; (ii) strongly correlated backgrounds with typical scales similar to those of the
objects being sought; (iii) full, consistent and probability/decision theory based under-
standing of the acceptance/rejection criterion and (iv) full joint uncertainty character-
ization of the estimates. These attributes render traditional object detection methods
sub-optimal, since: (i) it is difficult to perform an optimal separation of the sources
from the background fluctuations; and (ii) the complete characterisation of the param-
eter uncertainties together with their correlations is decisive and traditional methods
do not provide it. Moreover, with the increased sensitivity of the contemporary in-
struments, the faint tail of the source populations, with more important and frequently
more complex uncertainties, frequently dominates the sample.

A better strategy is to develop an object detection methodology from a strong statis-
tical foundation first. The linear filtering family of tools is the attempt by the orthodox
frequentist school of probability to overcome these limitations. The matched filter and
all its derivatives are based on the Neymann-Pearson likelihood ratio, and their opti-
mal performance is still extremely dependent on the choice of the acceptance/rejection
threshold and on implementation details. Despite their widespread use, the actual prac-
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tical designs of these tools do not yet implement a sound framework to handle the pa-
rameter estimates uncertainty manifold and in particular its complex degeneracies and
correlations.

Bayesian methods have the great advantage of providing a coherent probability
methodology with the option to include, in a completely consistent way, all ancillary
information. This is really a major advantage since a wealth of different heterogeneous
cosmological and astrophysical data sets are now widely available. Only through a
consistent joint analysis, one is able to get the most of them.

But probability theory by itself only gives us a degree of belief. In order to pro-
duce a catalogue, decisions must be made as well. Decision Theory is unambiguous:
ln
[

Pr(H1|d)
Pr(H0|d)

]
is the optimal decision tool (in the binary case), although the binary model

is manifestly not powerful enough to handle a real data set. The necessary extension
to a multi-model, multi-channel foundation is mandatory for an operational and viable
solution. The simplest extension to a multi-model decision rule, under common loss
functions normally employed in astronomy, would read instead: ln

[
Pr(H|d)

Pr(H̃|d)

]
or as it is

more commonly known ln(odds)
The evaluation of the evidence ( Pr(H|d) ) poses several challenges: (i) high di-

mensionality integrals with complex boundaries ; (ii) non-Gaussian distributions; (iii)
very large volumes of data; and (iv) fast operation. To achieve our goal we focused on
taking advantage of the symmetries of the multi-channel likelihood manifold to design
an efficient, though rigorous, exploration tool, mostly independent of the manifold ge-
ometry. After finding the likelihood maxima using a very fast algorithm that follows
the implementation of the matched filter, we set off using a single-nested sampling
procedure adopting the previously found values as an initial guide.

Owing to its full consistent probability foundation, PwS can provide a sound, gen-
erally applicable, and complete statistical characterization of its results. Simultane-
ously, we can offer effective solutions for the difficulties accompanying real data, in a
real modern environment, without compromising any of our goals.
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6. Conclusions

6.1 Future directions of development and products.

6.1.1 Directions of development

PwS Bayesian modeling is, however, still incomplete. Some might question that con-
ditioning our reasoning by priors impairs or even misleads the inference, especially if
these are neither complete nor accurate. We are partially sympathetic with this view,
though: (i) if the data contain enough information and can actually constrain the object
parameters estimates, the priors are mostly not influential (see introduction of chapter
5); (ii) PwS capability of using informative and non-informative priors as well, allows
the user to select the appropriate prior for the required goal; and (iii) by exploring
one of the most powerful Bayesian analysis tool, the ‘hierarchical’ or ‘random effect’
data models (see G. E. Box [1992, ch. 5], Jaynes [2004, ch. 6] and Gelman et al.
[2003, ch. 5]), one can fully explore the optimal decision and estimation devices, only
provided by informative priors, without limiting or biasing the results. Fundamental
physics can most of the time constrain the general shape of the priors but not the ac-
tual parameter values they depend upon. This is much like how the laws of physics,
usually through integral/differential equations, define the general behavior of physical
systems but leave some undefined constants/conditions that can only be derived from
the intial/boundary conditions. Bayesian hierarchical model methods allow the joint
and simultaneous estimation of the object parameters and the parameters in the priors,
the hyper-parameters, that provide the population laws. This will constitute the main
subject of future PwS developments.

6.1.2 Future products

PwS is already commissioned to deliver several new Planck nominal and full mission

products and science results, namely:

• Nominal mission

– as one of the extraction tools to construct the SZ cluster catalogue of the
forthcoming ‘Planck Catalogue of Compact Sources’ (PCCS);
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– to create the cosmological sample of SZ clusters, among two other algo-
rithms, and the ‘noise maps’ aiming at the characterization of ‘Planck’s

selection function’, with the aim of setting constraints on Ωm and σ8;

• Full mission products

– as a multi-spectral extraction tool of the full mission complete compact
sources catalogue: point sources and SZ clusters;

– to improve the characterization of the cluster sample through joint estima-
tion using ancillary data sets (SDSS);

– and to attempt the detection of the relativistic correction to the non-relativistic
thermal SZ effect.
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Appendices

A-1 Quadratic Identities

• Let A,B, z, a and b be real scalars. Then

A(z − a)2 +B(z − b)2 = (A+B)(z − c)2 +
AB

A+B
(a− b)2, (A-1)

with
c =

1

A+B
(Aa+Bb).

• Let x, a and b be k x 1 vectors and A and B be k x k symmetric matrices such
that (A+B)−1 exists. Then,

(x− a)′A(x− a) + (x− b)′B(x− b) = (x− c)′ (A+B)−1 (x− c)+

(a− b)′A (A+B)−1B(a− b)
(A-2)

where
c = (A+B)−1 (Aa+Bb) .

• Assuming thatA andB have inverses then,

A (A+B)−1B =
(
A−1 +B−1

)−1
. (A-3)

For proofs please refer to G. E. Box [1992]
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A-2 The ratio Pr(H1|Ns)
Pr(H0|Ns)

If X0 is Poisson distributed with parameter λ0,

Pr(X0 = n|λ0) = e−λ0
λn0
n!
,

X1 with parameter λ1 and Y = X1 +X0, then

Pr(X1 = n|Y = y) =

(
y

n

)
pn(1− p)y−n, p =

λ1

λ1 + λ0

.

If we draw Ns samples from the mixture Y and all of them must match the hypothesis
Hk, then

Pr(Hk|Ns) = Pr(Xk = Ns|Y = Ns) =

(
λk

λk + λ0

)Ns
.

Using the above expression twice we can now write the expression for the prior on the
models:

Pr(H1|Ns)

Pr(H0|Ns)
=

(
λ1

λ0

)Ns
.

A result that could hardly surprise us.

A-3 Fisher information matrix symmetries

If the condition for well separated objects holds (condition 3.25), then the parameters
referring to each source individually can be separated in the likelihood (equation 3.23).
So, if ζi represents an arbitrary parameter of source i and ζk of source k, then

∂2 lnLH1

∂ζi∂ζk
= 0,

holds. Being H0 not dependent on any parameter, we subtract lnLH0 from lnLH1 , just
to make the algebra simpler. To prove the property that allow us to split the maxima
scrutiny into, at least, two separated searches, one in position space and the other in its
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complement, we only need to show that

〈
∂2 lnLH1

∂x∂x̃

〉
H1

= 0,

where both variables refer to the same object, hence the reason why we have dropped
the subscript, x is one of the position variables and x̃ is an arbitrary variable belonging
to the complement of the position sub-space of the same source. Let us define

ψ̃(a,−η) ≡ A τ̃(a,−η),

where τ̃(a,−η) is defined in equation 3.22. Replacing the above definition in the
likelihood and developing the expression, one gets

〈
∂2 lnLH1

∂x∂α

〉
H1

= −i2π
∑
η

ηxQ(η) ψ̃(a,η)
∂ψ̃(a,−η)

∂x̃
.

Explicitly bringing the negative part of the Fourier spectrum into the sum and remem-
bering that if f(x) is real then f̃(η) = f̃ ∗(−η) (∗ is the complex conjugate operation),
then the above expression now reads

= −4π
∑
η≥0

ηx Im

{
Q(η) ψ̃(a,η)

(
∂ψ̃(a,−η)

∂x̃

)∗}
.

Q(η) is by definition a real quantity. Imposing τ(a,x) has symmetry of reflection on
both axes is a sufficient condition to guarantee τ̃(a,η) is real, then all terms of the
above sum are identically null and

〈
∂2 lnLH1

∂x∂x̃

〉
H1

= 0,

as we were about to demonstrate.
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This in turn implies that if

−→r ∈X and
−→
r̃ ∈ X̃ then −→r .I.

−→
r̃ = 0. (A-4)

where X is the likelihood position sub-space, X̃ its complement and I is the Fisher
information matrix. Equation (A-4) states that any direction belonging to position sub-
space is conjugated, in the sense of conjugated gradients, with any other outside of
that sub-space. This result shows that we do not need to perform a full N-dimensional
maximization but at least we can separate the position variables from the rest. For an
exhaustive discussion please refer to [Press et al., 1992, ch. 10.6]

A-4 PwS algorithm implementation

PwS operation may be broadly divided in three main steps:

• Pre-processing.
Makes the masks, creates the flat patches geometry and computes the pixel val-
ues.

• Detection/estimation.
Performs the detection by creating a list of candidates and respective parameter
estimates.

• Post-processing.
Removes repeated detections of the same source across different patches, selects
the candidates to be included in the catalogue, formats, and writes it to the media.

A-4.1 PwS step-by-step

A-4.1.1 Pre-processing

• Reads in the data channel maps together with those defining the masks, Galactic
and point sources (SZ). Renders auxiliary maps to flag heavily contaminated
areas and possible ill-defined pixels.
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• Defines the patches’ geometry using a gnomonic projection. Patches are squares,
usually 256 or 512 pixels wide and the pixel area is ∼ 1.718′× 1.718′. The pixel
values are computed using a bilinear interpolation. With the mask information
from the first step, the pixels flagged as ‘not usable’ are filled with values that
preserve the statistical properties of the background (‘in-painting’).

A-4.1.2 Detection/estimation

• For each one of the patches repeat the next steps at least twice:

– Estimate the cross-power spectrum matrix and invert each Fourier mode.

– Create the likelihood manifold.

– Scan the likelihood manifold searching for its maxima using a grid. Store
the maxima coordinates as initial hints.

– Sort the putative detections in descending order of likelihood ratio.

– For each one of the candidates do:

* Use a Powell minimizer to estimate the optimal values (likelihood
maximum estimate) of the source’s parameters: position, flux and ra-
dius1.

* If this is not the last iteration:

· If the SNR of the candidate is above a certain threshold (high)
mask it. Go back to the beginning of the processing of this patch
and start all over again2.

· Subtract the object from the maps. Continue with the next iteration
(candidate source).

· If running in The Generalized Likelihood Ratio Test (GLRT) mode.
Test the computed SNR ratio value against the threshold for ac-
ceptance/rejection. If the detection is accepted then add it to the
intermediate catalogue.

1Even when doing point source extraction PwS never assumes the objects as point like and shape-
less. A narrow, but with finite dimensions, gaussian is employed instead.

2This operation is restricted to point source detection only.
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· If running in ln(odds) (Bayesian) mode.
With the estimates from the previous step predict an initial bound-
ing parameter volume and explore the posterior distribution us-
ing a simple nested sampling algorithm. Evaluate the ln(odds) ≡[
ln
(

Pr(H1|d)
Pr(H0|d)

)]
.

Several sets of priors can be used. With the samples drawn from
the posterior compute the best parameter estimates, mode or ex-
pected value estimators and the uncertainties on the parameters
and the ln(odds). Always add the detection to the intermedi-
ate catalogue. If necessary it will be removed during the post-
processing stage.

* Subtract the object from the maps and continue with the next candi-
date.

A-4.1.3 Post-processing

• Map the position coordinates of the detections from the patch pixels back onto
sphere coordinates.

• Using the auxiliary mask maps filter the intermediate catalogue removing those
detections laying on top of the flagged areas.

• Remove repeated detections from the intermediate catalogue choosing always
that one with the largest SNR (GLRT) or ln(odds) (Bayesian). Generate the
catalogue using a SNR cut (GLRT) or probability of a false positive (Bayesian).

A-5 Implementation history

The data analysis philosophy and set of algorithms described in this thesis have not
so far been fully implemented in a coded version of PwS. We are working towards
this aim, and the release corresponding to the full set of features described here will
be PwS v4.0. The versions that have been used in published data analyses so far are
v1.5 and v3.1 for the SZ Challenge [Melin et al., 2012], v2.01 for the lower frequency
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point sources in the Planck ERCSC [Planck Collaboration et al., 2011e] and for all
frequency channels in the Compact Source Investigation workshop (CSI) [Rocha, G. et
al., 2013], v3.6 in application to SZ cluster detection in the Planck ESZ sample [Planck
Collaboration et al., 2011f] and to characterise a single cluster parameters in a non-
blind exercise [Planck et al., 2012; Planck Collaboration et al., 2011g,i, 2012a,b,c]. It
is worth noting that these versions include a pre-processing tool specifically designed
to convert data sets distributed within the Planck collaboration into the format required
by PwS. The main tasks performed by this tool are:

• taking account of the masking and/or flagging of ill-observed pixels and contam-
inated regions;

• projecting the spherical maps into flat patches1;

• mapping of coordinates from the sphere into the patches and back;

• removal of multiple detections of the same source in different patches;

• assembly of the output catalogues into the required format.

The existing released versions of PwS differ from what will be available in v4.0
mainly in the limitation to a binary model selection step in determining when to accept
a putative source detection and to a non-parametrised frequency spectrum in multi-
frequency detection. The latter restriction meant that, while SZ cluster detection could
be carried out using all Planck frequencies simultaneously, point source detections, in
common with the other methods available, were carried out for each frequency channel
separately. PwS v4.0 will aim at genuine multi-frequency and indeed multi-model
detection, using all the available data simultaneously.

1The patch set usually contains about 12, 000 7.33◦×7.33◦ flat patches or 3, 000 14.66◦×14.66◦.
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ters for the Detection/Separation of Compact Sources. ApJ, 580:610–625, Novem-
ber 2002a. doi: 10.1086/342651. 3

D. Herranz, J. L. Sanz, M. P. Hobson, R. B. Barreiro, J. M. Diego, E. Martı́nez-
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Zotti, L. Toffolatti, and F. Argüeso. Nonblind Catalog of Extragalactic Point Sources
from the Wilkinson Microwave Anisotropy Probe (WMAP) First 3 Year Survey
Data. ApJS, 170:108–125, May 2007. doi: 10.1086/512678. 2

M. Lundberg. Infrared land mine detection by parametric modeling. In Proceedings

of the Acoustics, Speech, and Signal Processing, 2001. on IEEE International Con-

ference - Volume 05, ICASSP ’01, pages 3157–3160, Washington, DC, USA, 2001.
IEEE Computer Society. ISBN 0-7803-7041-4. doi: 10.1109/ICASSP.2001.940328.
5

T. A. Marriage, V. Acquaviva, P. A. R. Ade, P. Aguirre, M. Amiri, J. W. Appel, L. F.
Barrientos, E. S. Battistelli, J. R. Bond, B. Brown, B. Burger, J. Chervenak, S. Das,
M. J. Devlin, S. R. Dicker, W. Bertrand Doriese, Dunkley, and et al. The Atacama
Cosmology Telescope: Sunyaev-Zel’dovich-Selected Galaxy Clusters at 148 GHz
in the 2008 Survey. ApJ, 737:61, August 2011. doi: 10.1088/0004-637X/737/2/61.
126

J.-B. Melin, J. G. Bartlett, and J. Delabrouille. Catalog extraction in SZ cluster surveys:
a matched filter approach. A&A, 459:341–352, November 2006. doi: 10.1051/
0004-6361:20065034. 2, 33, 85, 86, 91, 92

J.-B. Melin, N. Aghanim, M. Bartelmann, J. G. Bartlett, M. Betoule, J. Bobin, P. Car-
valho, G. Chon, J. Delabrouille, J. M. Diego, D. L. Harrison, D. Herranz, M. Hob-
son, R. Kneissl, A. N. Lasenby, M. Le Jeune, M. Lopez-Caniego, P. Mazzotta, G. M.
Rocha, B. M. Schaefer, J.-L. Starck, J.-C. Waizmann, and D. Yvon. A Comparison
of Algorithms for the Construction of SZ Cluster Catalogues. ArXiv e-prints, Octo-
ber 2012. 56, 59, 91, 92, 98, 100, 138

A. Mennella, R. C. Butler, A. Curto, F. Cuttaia, R. J. Davis, J. Dick, M. Frailis, S. Gale-
otta, A. Gregorio, H. Kurki-Suonio, C. R. Lawrence, and et al. Planck early results.

146



REFERENCES

III. First assessment of the Low Frequency Instrument in-flight performance. A&A,
536:A3, December 2011. doi: 10.1051/0004-6361/201116480. 65, 121

J.E. Mooney, Z. Ding, and L.S. Riggs. Performance analysis of a glrt in late-time radar
target detection - abstract. Journal of Electromagnetic Waves and Applications, 13
(10):1339–1341, 1999. doi: doi:10.1163/156939399X00673. 21, 22

P. Mukherjee, D. Parkinson, and A. R. Liddle. A Nested Sampling Algorithm for
Cosmological Model Selection. ApJL, 638:L51–L54, February 2006. doi: 10.1086/
501068. 48

D. Nagai, A. V. Kravtsov, and A. Vikhlinin. Effects of Galaxy Formation on Ther-
modynamics of the Intracluster Medium. ApJ, 668:1–14, October 2007. doi:
10.1086/521328. 81, 82, 84

J. Neyman and E. S. Pearson. On the problem of the most efficient tests of statisti-
cal hypotheses. Philosophical Transactions of the Royal Society of London. Series

A, Containing Papers of a Mathematical or Physical Character, 231:pp. 289–337,
1933. ISSN 02643952. 14

D. O. North. Analisys of the factors which determine signal/noise discrimination in
radar (1943). Proc IRE, 51:1016–1028, 1963. 2

R. Piffaretti, M. Arnaud, G. W. Pratt, E. Pointecouteau, and J.-B. Melin. The MCXC:
a meta-catalogue of x-ray detected clusters of galaxies. A&A, 534:A109, October
2011. doi: 10.1051/0004-6361/201015377. 90

Planck, AMI Collaborations, :, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont,
C. Baccigalupi, A. Balbi, A. J. Banday, R. B. Barreiro, E. Battaner, R. Battye,
K. Benabed, A. Benoı̂t, J.-P. Bernard, and et al. Planck Intermediate Results II:
Comparison of Sunyaev-Zeldovich measurements from Planck and from the Ar-
cminute Microkelvin Imager for 11 galaxy clusters. ArXiv e-prints, April 2012. vii,
xiv, xv, 36, 51, 71, 86, 88, 89, 91, 99, 100, 108, 139

Planck Collaboration. Planck blue book, 1999. http://www.rssd.esa.int/SA/PLANCK/docs/
Bluebook-ESA-SCI(2005)1_V2.pdf. 65, 79

147

http://www.rssd.esa.int/SA/PLANCK/docs/Bluebook-ESA-SCI(2005)1_V2.pdf
http://www.rssd.esa.int/SA/PLANCK/docs/Bluebook-ESA-SCI(2005)1_V2.pdf


REFERENCES

Planck Collaboration, J. Aatrokoski, P. A. R. Ade, N. Aghanim, H. D. Aller, M. F.
Aller, E. Angelakis, M. Arnaud, M. Ashdown, J. Aumont, and et al. Planck
early results. XV. Spectral energy distributions and radio continuum spectra of
northern extragalactic radio sources. A&A, 536:A15, December 2011a. doi:
10.1051/0004-6361/201116466. 41

Planck Collaboration, P. A. R. Ade, N. Aghanim, E. Angelakis, M. Arnaud, M. Ash-
down, J. Aumont, C. Baccigalupi, A. Balbi, A. J. Banday, and et al. Planck early
results. XIV. ERCSC validation and extreme radio sources . A&A, 536:A14, De-
cember 2011b. doi: 10.1051/0004-6361/201116475. 90

Planck Collaboration, P. A. R. Ade, N. Aghanim, F. Argüeso, M. Arnaud, M. Ash-
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