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Abstract

The purpose of text geolocation is to as-
sociate geographic information contained
in a document with a set (or sets) of co-
ordinates, either implicitly by using lin-
guistic features and/or explicitly by us-
ing geographic metadata combined with
heuristics. We introduce a geocoder (loca-
tion mention disambiguator) that achieves
state-of-the-art (SOTA) results on three di-
verse datasets by exploiting the implicit
lexical clues. Moreover, we propose a
new method for systematic encoding of
geographic metadata to generate two dis-
tinct views of the same text. To that end,
we introduce the Map Vector (MapVec),
a sparse representation obtained by plot-
ting prior geographic probabilities, de-
rived from population figures, on a World
Map. We then integrate the implicit (lan-
guage) and explicit (map) features to sig-
nificantly improve a range of metrics. We
also introduce an open-source dataset for
geoparsing of news events covering global
disease outbreaks and epidemics to help
future evaluation in geoparsing.

1 Introduction

Geocoding1 is a specific case of text geoloca-
tion, which aims at disambiguating place refer-
ences in text. For example, Melbourne can refer to
more than ten possible locations and a geocoder’s
task is to identify the place coordinates for the
intended Melbourne in a context such as “Mel-
bourne hosts one of the four annual Grand Slam
tennis tournaments.” This is central to the success
of tasks such as indexing and searching documents
by geography (Bhargava et al., 2017), geospatial

1Also called Toponym Resolution in related literature.

analysis of social media (Buchel and Penning-
ton, 2017), mapping of disease risk using inte-
grated data (Hay et al., 2013), and emergency re-
sponse systems (Ashktorab et al., 2014). Previ-
ous geocoding methods (Section 2) have lever-
aged lexical semantics to associate the implicit
geographic information in natural language with
coordinates. These models have achieved good
results in the past. However, focusing only on
lexical features, to the exclusion of other feature
spaces such as the Cartesian Coordinate System,
puts a ceiling on the amount of semantics we are
able to extract from text. Our proposed solution
is the Map Vector (MapVec), a sparse, geographic
vector for explicit modelling of geographic dis-
tributions of location mentions. As in previous
work, we use population data and geographic co-
ordinates, observing that the most populous Mel-
bourne is also the most likely to be the intended
location. However, MapVec is the first instance, to
our best knowledge, of the topological semantics
of context locations explicitly isolated into a stan-
dardized vector representation, which can then be
easily transferred to an independent task and com-
bined with other features. MapVec is able to en-
code the prior geographic distribution of any num-
ber of locations into a single vector. Our extensive
evaluation shows how this representation of con-
text locations can be integrated with linguistic fea-
tures to achieve a significant improvement over a
SOTA lexical model. MapVec can be deployed as
a standalone neural geocoder, significantly beating
the population baseline, while remaining effective
with simpler machine learning algorithms.

This paper’s contributions are: (1) Lexical
Geocoder outperforming existing systems by
analysing only the textual context; (2) MapVec,
a geographic representation of locations using a
sparse, probabilistic vector to extract and isolate
spatial features; (3) CamCoder, a novel geocoder



that exploits both lexical and geographic knowl-
edge producing SOTA results across multiple
datasets; and (4) GeoVirus, an open-source dataset
for the evaluation of geoparsing (Location Recog-
nition and Disambiguation) of news events cover-
ing global disease outbreaks and epidemics.

2 Background

Depending on the task objective, geocoding
methodologies can be divided into two distinct
categories: (1) document geocoding, which aims
at locating a piece of text as a whole, for example
geolocating Twitter users (Rahimi et al., 2016,
2017; Roller et al., 2012; Rahimi et al., 2015),
Wikipedia articles and/or web pages (Cheng
et al., 2010; Backstrom et al., 2010; Wing and
Baldridge, 2011; Dredze et al., 2013; Wing and
Baldridge, 2014). This is an active area of NLP
research (Hulden et al., 2015; Melo and Martins,
2017, 2015; Iso et al., 2017); (2) geocoding of
place mentions, which focuses on the disambigua-
tion of location (named) entities i.e. this paper
and (Karimzadeh et al., 2013; Tobin et al., 2010;
Grover et al., 2010; DeLozier et al., 2015; Santos
et al., 2015; Speriosu and Baldridge, 2013; Zhang
and Gelernter, 2014). Due to the differences in
evaluation and objective, the categories cannot be
directly or fairly compared. Geocoding is typi-
cally the second step in Geoparsing. The first step,
usually referred to as Geotagging, is a Named
Entity Recognition component which extracts all
location references in a given text. This phase
may optionally include metonymy resolution, see
(Zhang and Gelernter, 2015; Gritta et al., 2017a).
The goal of geocoding is to choose the correct
coordinates for a location mention from a set of
candidates. Gritta et al. (2017b) provided a com-
prehensive survey of five recent geoparsers. The
authors established an evaluation framework, with
a new dataset, for their experimental analysis. We
use this evaluation framework in our experiments.
We briefly describe the methodology of each
geocoder featured in our evaluation (names are
capitalised and appear in italics) as well as survey
the related work in geocoding.

Computational methods in geocoding broadly
divide into rule-based, statistical and machine
learning-based. Edinburgh Geoparser (Tobin
et al., 2010; Grover et al., 2010) is a fully rule-
based geocoder that uses hand-built heuristics

combined with large lists from Wikipedia and the
Geonames2 gazetteer. It uses metadata (feature
type, population, country code) with heuristics
such as contextual information, spatial clustering
and user locality to rank candidates. GeoTxT
(Karimzadeh et al., 2013) is another rule-based
geocoder with a free web service3 for identifying
locations in unstructured text and grounding them
to coordinates. Disambiguation is driven by
multiple heuristics and uses the administrative
level (country, province, city), population size, the
Levenshtein Distance of the place referenced and
the candidate’s name and spatial minimisation
to resolve ambiguous locations. (Dredze et al.,
2013) is a rule-based Twitter geocoder using
only metadata (coordinates in tweets, GPS tags,
user’s reported location) and custom place lists
for fast and simple geocoding. CLAVIN (Car-
tographic Location And Vicinity INdexer)4 is
an open-source geocoder, which offers context-
based entity recognition and linking. It seems
to be mostly rule-based though details of its
algorithm are underspecified, short of reading the
source code. Unlike the Edinburgh Parser, this
geocoder seems to overly rely on population data,
seemingly mirroring the behaviour of a naive
population baseline. Rule-based systems can
perform well though the variance in performance
is high (see Table 1). Yahoo! Placemaker is a free
web service with a proprietary geo-database and
algorithm from Yahoo!5 letting anyone geoparse
text in a globally-aware and language-independent
manner. It is unclear how geocoding is performed,
however, the inclusion of proprietary methods
makes evaluation broader and more informative.

The statistical geocoder Topocluster (DeLozier
et al., 2015) divides the world surface into a grid
(0.5 x 0.5 degrees, approximately 60K tiles) and
uses lexical features to model the geographic dis-
tribution of context words over this grid. Building
on the work of Speriosu and Baldridge (2013), it
uses a window of 15 words (our approach scales
this up by more than 20 times) to perform hot spot
analysis using Getis-Ord Local Statistic of indi-
vidual words’ association with geographic space.
The classification decision was made by finding
the grid square with the strongest overlap of

2http://www.geonames.org/
3http://www.geotxt.org/
4https://clavin.bericotechnologies.com
5https://developer.yahoo.com/geo/
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individual geo-distributions. Hulden et al. (2015)
used Kernel Density Estimation to learn the word
distribution over a world grid with a resolution of
0.5 x 0.5 degrees and classified documents with
Kullback-Leibler divergence or a Naive Bayes
model, reminiscent of an earlier approach by
Wing and Baldridge (2011). Roller et al. (2012)
used the Good-Turing Frequency Estimation to
learn document probability distributions over the
vocabulary with Kullback-Leibler divergence as
the similarity function to choose the correct bucket
in the k-d tree (world representation). Iso et al.
(2017) combined Gaussian Density Estimation
with a CNN-model to geolocate Japanese tweets
with Convolutional Mixture Density Networks.

Among the recent machine learning methods,
bag-of-words representations combined with a
Support Vector Machine (Melo and Martins, 2015)
or Logistic Regression (Wing and Baldridge,
2014) have also achieved good results. For
Twitter-based geolocation (Zhang and Gelern-
ter, 2014), bag-of-words classifiers were success-
fully augmented with social network data (Jur-
gens et al., 2015; Rahimi et al., 2016, 2015).
The machine learning-based geocoder by Santos
et al. (2015) supplemented lexical features, repre-
sented as a bag-of-words, with an exhaustive set of
manually generated geographic features and spa-
tial heuristics such as geospatial containment and
geodesic distances between entities. The rank-
ing of locations was learned with LambdaMART
(Burges, 2010). Unlike our geocoder, the addition
of geographic features did not significantly im-
prove scores, reporting: “The geo-specific features
seem to have a limited impact over a strong base-
line system.” Unable to obtain a codebase, their re-
sults feature in Table 1. The latest neural network
approaches (Rahimi et al., 2017) with normalised
bag-of-word representations have achieved SOTA
scores when augmented with social network data
for Twitter document (user’s concatenated tweets)
geolocation (Bakerman et al., 2018).

3 Methodology

Figure 1 shows our new geocoder CamCoder im-
plemented in Keras (Chollet, 2015). The lexical
part of the geocoder has three inputs, from the
top: Context Words (location mentions excluded),
Location Mentions (context words excluded) and
the Target Entity (up to 15 words long) to be

Figure 1: The CamCoder neural architecture. It
is possible to split CamCoder into a Lexical (top 3
inputs) model and a MapVec model (see Table 2).

geocoded. Consider an example disambiguation
of Cairo in a sentence: “The Giza pyramid com-
plex is an archaeological site on the Giza Plateau,
on the outskirts of Cairo, Egypt.”. Here, Cairo is
the Target Entity; Egypt, Giza and Giza Plateau
are the Location Mentions; the rest of the sentence
forms the Context Words (excluding stopwords).
The context window is up to 200 words each side
of the Target Entity, approximately an order of
magnitude larger than most previous approaches.

We used separate layers, convolutional and/or
dense (fully-connected), with ReLu activations
(Nair and Hinton, 2010) to break up the task into
smaller, focused modules in order to learn distinct
lexical feature patterns, phrases and keywords for
different types of inputs, concatenating only at a
higher level of abstraction. Unigrams and bigrams
were learned for context words and location men-
tions (1,000 filters of size 1 and 2 for each input),
trigrams for the target entity (1,000 filters of size
3). Convolutional Neural Networks (CNNs) with
Global Maximum Pooling were chosen for their
position invariance (detecting location-indicative
words anywhere in context) and efficient input size
scaling. The dense layers have 250 units each,
with a dropout layer (p = 0.5) to prevent overfit-
ting. The fourth input is MapVec, the geographic
vector representation of location mentions. It
feeds into two dense layers with 5,000 and 1,000
units respectively. The concatenated hidden lay-
ers then get fully connected to the softmax layer.
The model is optimised with RMSProp (Tieleman
and Hinton, 2012). We approach geocoding as a
classification task where the model predicts one of



7,823 classes (units in the softmax layer in Fig-
ure 1), each being a 2x2 degree tile representing
part of the world’s surface, slightly coarser than
MapVec (see Section 3.1 next). The coordinates of
the location candidate with the smallest FD (Equa-
tion 1) are the model’s final output.

FD = error − error
candidatePop
maximumPop

Bias (1)

FD for each candidate is computed by reducing
the prediction error (the distance from predicted
coordinates to candidate coordinates) by the value
of error multiplied by the estimated prior proba-
bility (candidate population divided by maximum
population) multiplied by the Bias parameter. The
value of Bias = 0.9 was determined to be optimal
for highest development data scores and is identi-
cal for all highly diverse test datasets. Equation 1
is designed to bias the model towards more popu-
lated locations to reflect real-world data.

3.1 The Map Vector (MapVec)

Word embeddings and/or distributional vectors
encode a word’s meaning in terms of its linguistic
context. However, location (named) entities also
carry explicit topological semantic knowledge
such as a coordinate position and a population
count for all places with an identical name. Until
now, this knowledge was only used as part of
simple disparate heuristics and manual disam-
biguation procedures. However, it is possible
to plot this spatial data on a world map, which
can then be reshaped into a 1D feature vector, or
a Map Vector, the geographic representation of
location mentions. MapVec is a novel standard-
ised method for generating geographic features
from text documents beyond lexical features.
This enables a strong geocoding classification
performance gain by extracting additional spatial
knowledge that would normally be ignored.
Geographic semantics cannot be inferred from
language alone (too imprecise and incomplete).
Word embeddings and distributional vectors
use language/words as an implicit container of
geographic information. Map Vector uses a low-
resolution, probabilistic world map as an explicit
container of geographic information, giving us
two types of semantic features from the same text.
In related papers on the generation of location
representations, Rahimi et al. (2017) inverted the
task of geocoding Twitter users to predict word

Figure 2: MapVec visualisation (before reshaping
into a 1D vector) for Melbourne, Perth and New-
castle, showing their combined prior geographic
probabilities. Darker tiles have higher probability.

probability from a set of coordinates. A contin-
uous representation of a region was generated
by using the hidden layer of the neural network.
However, all locations in the same region will be
assigned an identical vector, which assumes that
their semantics are also identical. Another way to
obtain geographic representations is by generating
embeddings directly from Geonames data using
heuristics-driven DeepWalk (Perozzi et al., 2014)
with geodesic distances (Kejriwal and Szekely,
2017). However, to assign a vector, places must
first be disambiguated (catch-22). While these
generation methods are original and interesting
in theory, deploying them in the real-world is
infeasible, hence we invented the Map Vector.

MapVec initially begins as a 180x360 world
map of geodesic tiles. There are other ways of
representing the surface of the Earth such as using
nested hierarchies (Melo and Martins, 2015) or
k-dimensional trees (Roller et al., 2012), however,
this is beyond the scope of this work. The 1x1
tile size, in degrees of geographic coordinates,
was empirically determined to be optimal to
keep MapVec’s size computationally efficient
while maintaining meaningful resolution. This
map is then populated with the prior geographic
distribution of each location mentioned in context
(see Figure 2 for an example). We use population
count to estimate a location’s prior probability
as more populous places are more likely to
be mentioned in common discourse. For each
location mention and for each of its ambiguous
candidates, their prior probability is added to the
correct tile indicating its geographic position (see
Algorithm 1). Tiles that cover areas of open water
(64.1%) were removed to reduce size. Finally,



Data: Text← article, paragraph, tweet, etc.
Result: MapVec location(s) representation

Locs← extractLocations(Text);
MapVec← new array(length=23,002);
for each l in Locs do

Cands← queryCandidatesFromDB(l);
maxPop← maxPopulationOf(Cands);
for each c in Cands do

prior← populationOf(c) / maxPop;
i← coordinatesToIndex(c);
MapVec[i]←MapVec[i] + prior;

end
end
m← max(MapVec);
return MapVec / m;

Algorithm 1: MapVec generation. For each ex-
tracted location l in Locs, estimate the prior prob-
ability of each candidate c. Add c’s prior proba-
bility to the appropriate array position at index i
representing its geographic position/tile. Finally,
normalise the array (to a [0− 1] range) by divid-
ing by the maximum value of the MapVec array.

this world map is reshaped into a one-dimensional
Map Vector of length 23,002.

The following features of MapVec are the most
salient: Interpretability: Word vectors typically
need intrinsic (Gerz et al., 2016) and extrinsic
tasks (Senel et al., 2017) to interpret their se-
mantics. MapVec generation is a fully transpar-
ent, human readable and modifiable method. Ef-
ficiency: MapVec is an efficient way of embed-
ding any number of locations using the same stan-
dardised vector. The alternative means creating,
storing, disambiguating and computing with mil-
lions of unique location vectors. Domain Inde-
pendence: Word vectors vary depending on the
source, time, type and language of the training
data and the parameters of generation. MapVec
is language-independent and stable over time, do-
main, size of dataset since the world geography is
objectively measured and changes very slowly.

3.2 Data and Preprocessing

Training data was generated from geographically
annotated Wikipedia pages (dumped February
2017). Each page provided up to 30 training in-
stances, limited to avoid bias from large pages.
This resulted in collecting approximately 1.4M

training instances, which were uniformly subsam-
pled down to 400K to shorten training cycles as
further increases offer diminishing returns. We
used the Python-based NLP toolkit Spacy6 (Hon-
nibal and Johnson, 2015) for text preprocessing.
All words were lowercased, lemmatised, any stop-
words, dates, numbers and so on were replaced
with a special token (“0”). Word vectors were ini-
tialised with pretrained word embeddings7 (Pen-
nington et al., 2014). We do not employ ex-
plicit feature selection as in (Bo et al., 2012), only
a minimum frequency count, which was shown
to work almost as well as deliberate selection
(Van Laere et al., 2014). The vocabulary size was
limited to the most frequent 331K words, mini-
mum ten occurrences for words and two for loca-
tion references in the 1.4M training corpus. A fi-
nal training instance comprises four types of con-
text information: Context Words (excluding lo-
cation mentions, up to 2x200 words), Location
Mentions (excluding context words, up to 2x200
words), Target Entity (up to 15 words) and the
MapVec geographic representation of context lo-
cations. We have also checked for any over-
laps between our Wikipedia-based training data
and the WikToR dataset. Those examples were
removed. The aforementioned 1.4M Wikipedia
training corpus was once again uniformly sub-
sampled to generate a disjoint development set
of 400K instances. While developing our models
mainly on this data, we also used small subsets of
LGL (18%), GeoVirus (26%) and WikToR (9%)
described in Section 4.2 to verify that development
set improvements generalised to target domains.

4 Evaluation

Our evaluation compares the geocoding perfor-
mance of six systems from Section 2, our geocoder
(CamCoder) and the population baseline. Among
these, our CNN-based model is the only neural
approach. We have included all open-source/free
geocoders in working order we were able to find
and they are the most up-to-date versions. Ta-
bles 1 and 2 feature several machine learning
algorithms including Long-Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) to
reproduce context2vec (Melamud et al., 2016),
Naive Bayes (Zhang, 2004) and Random Forest
(Breiman, 2001) using three diverse datasets.

6https://spacy.io/
7https://nlp.stanford.edu/
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Figure 3: The AUC (range [0 − 1]) is calculated
using the Trapezoidal Rule. Smaller errors mean
a smaller (blue) area, which means a lower score
and therefore better geocoding results.

4.1 Geocoding Metrics

We use the three standard and comprehensive
metrics, each measuring an important aspect of
geocoding, giving an accurate, holistic evalu-
ation of performance. A more detailed cost-
benefit analysis of geocoding metrics is available
in (Karimzadeh, 2016) and (Gritta et al., 2017b).
(1) Average (Mean) Error is the sum of all geocod-
ing errors per dataset divided by the number of er-
rors. It is an informative metric as it also indicates
the total error but treats all errors as equivalent
and is sensitive to outliers; (2) Accuracy@161km
is the percentage of errors that are smaller than
161km (100 miles). While it is easy to interpret,
giving fast and intuitive understanding of geocod-
ing performance in percentage terms, it ignores
all errors greater than 161km; (3) Area Under
the Curve (AUC) is a comprehensive metric, ini-
tially introduced for geocoding in (Jurgens et al.,
2015). AUC reduces the importance of large er-
rors (1,000km+) since accuracy on successfully
resolved places is more desirable. While it is not
an intuitive metric, AUC is robust to outliers and
measures all errors. A versatile geocoder should
be able to maximise all three metrics.

4.2 Evaluation Datasets

News Corpus: The Local Global Lexicon (LGL)
by Lieberman et al. (2010) contains 588 news ar-
ticles (4460 test instances), which were collected
from geographically distributed newspaper sites.

This is the most frequently used geocoding eval-
uation dataset to date. The toponyms are mostly
smaller places no larger than a US state. Approxi-
mately 16% of locations in the corpus do not have
any coordinates assigned; hence, we do not use
those in the evaluation, which is also how the pre-
vious figures were obtained. Wikipedia Corpus:
This corpus was deliberately designed for ambi-
guity hence the population heuristic is not effec-
tive. Wikipedia Toponym Retrieval (WikToR) by
Gritta et al. (2017b) is a programmatically created
corpus and although not necessarily representative
of the real world distribution, it is a test of am-
biguity for geocoders. It is also a large corpus
(25,000+ examples) containing the first few para-
graphs of 5,000 Wikipedia pages. High quality,
free and open datasets are not readily available
(GeoVirus tries to address this). The following
corpora could not be included: WoTR (DeLozier
et al., 2016) due to limited coverage (southern US)
and domain type (historical language, the 1860s),
(De Oliveira et al., 2017) contains fewer than
180 locations, GeoCorpora (Wallgrün et al., 2017)
could not be retrieved in full due to deleted Twit-
ter users/tweets, GeoText (Eisenstein et al., 2010)
only allows for user geocoding, SpatialML (Mani
et al., 2010) involves prohibitive costs, GeoSem-
Cor (Buscaldi and Rosso, 2008) was annotated
with WordNet senses (rather than coordinates).

4.3 GeoVirus: a New Test Dataset
We now introduce GeoVirus, an open-source test
dataset for the evaluation of geoparsing of news
events covering global disease outbreaks and epi-
demics. It was constructed from free WikiNews8

and collected during 08/2017 - 09/2017. The
dataset is suitable for the evaluation of Geo-
tagging/Named Entity Recognition and Geocod-
ing/Toponym Resolution. Articles were identi-
fied using the WikiNews search box and keywords
such as Ebola, Bird Flu, Swine Flu, AIDS, Mad
Cow Disease, West Nile Disease, etc. Off-topic
articles were not included. Buildings, POIs, street
names and rivers were not annotated.

Annotation Process. (1) The WikiNews con-
tributor(s) who wrote the article annotated most,
but not all location references. The first author
checked those annotations and identified further
references, then proceeded to extract the place
name, indices of the start and end characters in

8https://en.wikinews.org

https://en.wikinews.org


Geocoder Area Under Curve† Average Error‡ Accuracy@161km

LGL WIK GEO LGL WIK GEO LGL WIK GEO

CamCoder 22 (18) 33 (37) 31 (32) 7 (5) 11 (9) 3 (3) 76 (83) 65 (57) 82 (80)
Edinburgh 25 (22) 53 (58) 33 (34) 8 (8) 31 (30) 5 (4) 76 (80) 42 (36) 78 (78)
Yahoo! 34 (35) 44 (53) 40 (44) 6 (5) 23 (25) 3 (3) 72 (75) 52 (39) 70 (65)
Population 27 (22) 68 (71) 32 (32) 12 (10) 45 (42) 5 (3) 70 (79) 22 (14) 80 (80)
CLAVIN 26 (20) 70 (69) 32 (33) 13 (9) 43 (39) 6 (5) 71 (80) 16 (16) 79 (80)
GeoTxt 29 (21) 70 (71) 33 (34) 14 (9) 47 (45) 6 (5) 68 (80) 18 (14) 79 (79)
Topocluster 38 (36) 63 (66) NA 12 (8) 38 (35) NA 63 (71) 26 (20) NA

Santos et al. NA NA NA 8 NA NA 71 NA NA

Table 1: Results on LGL, WikToR (WIK) and GeoVirus (GEO). Lower AUC and Average Error are
better while higher Acc@161km is better. Figures in brackets are scores on identical subsets of each
dataset. †Only the AUC decimal part shown. ‡Average Error rounded up to the nearest 100km.

text, assigned coordinates and the Wikipedia page
URL for each location. (2) A second pass over
the entire dataset by the first author to check
and/or remedy annotations. (3) A computer pro-
gram checked that locations were tagged cor-
rectly, checking coordinates against the Geonames
Database, URL correctness, eliminating any du-
plicates and validating XML formatting. Places
without a Wikipedia page (0.6%) were assigned
Geonames coordinates. (4) The second author
annotated a random 10% sample to obtain an
Inter-Annotator Agreement, which was 100% for
geocoding and an F-Score of 92.3 for geotag-
ging. GeoVirus in Numbers: Annotated locations:
2,167, Unique: 685, Continents: 94, Number of
articles: 229, Most frequent places (21% of to-
tal): US, Canada, China, California, UK, Mexico,
Kenya, Africa, Australia, Indonesia; Mean loca-
tion occurrence: 3.2, Total word count: 63,205.

5 Results

All tested models (except CamCoder) operate as
end-to-end systems; therefore, it is not possible to
perform geocoding separately. Each system geop-
arses its particular majority of the dataset to ob-
tain a representative data sample, shown in Table
1 as strongly correlated scores for subsets of dif-
ferent sizes, with which to assess model perfor-
mance. Table 1 also shows scores in brackets for
the overlapping partition of all systems in order
to compare performance on identical instances:
GeoVirus 601 (26%), LGL 787 (17%) and Wik-
ToR 2,202 (9%). The geocoding difficulty based
on the ambiguity of each dataset is: LGL (moder-
ate to hard), WIK (very hard), GEO (easy to mod-

erate). A population baseline also features in the
evaluation. The baseline is conceptually simple:
choose the candidate with the highest population,
akin to the most frequent word sense in WSD.
Table 1 shows the effectiveness of this heuristic,
which is competitive with many geocoders, even
outperforming some. However, the baseline is
not effective on WikToR as the dataset was de-
liberately constructed as a tough ambiguity test.
Table 1 shows how several geocoders mirror the
behaviour of the population baseline. This sim-
ple but effective heuristic is rarely used in system
comparisons, and where evaluated (Santos et al.,
2015; Leidner, 2008), it is inconsistent with ex-
pected figures (due to unpublished resources, we
are unable to investigate).

We note that no single computational paradigm
dominates Table 1. The rule-based (Edinburgh,
GeoTxt, CLAVIN), statistical (Topocluster),
machine learning (CamCoder, Santos) and other
(Yahoo!, Population) geocoders occupy different
ranks across the three datasets. Due to space
constraints, Table 1 does not show figures for an-
other type of scenario we tested, a shorter lexical
context, using 200 words instead of the standard
400. CamCoder proved to be robust to reduced
context, with only a small performance decline.
Using the same format as Table 1, AUC errors for
LGL increased from 22 (18) to 23 (19), WIK from
33 (37) to 37 (40) and GEO remained the same
at 31 (32). This means that reducing model input
size to save computational resources would still
deliver accurate results. Our CNN-based lexical
model performs at SOTA levels (Table 2) proving
the effectiveness of linguistic features while being



Geocoder System configuration Dataset Average
Language Features + MapVec Features LGL WIK GEO

CamCoder CNN MLP 0.22 0.33 0.31 0.29
Lexical Only CNN − 0.23 0.39 0.33 0.32
MapVec Only − MLP 0.25 0.41 0.32 0.33

Context2vec† LSTM MLP 0.24 0.38 0.33 0.32
Context2vec LSTM − 0.27 0.47 0.39 0.38

Random Forest MapVec features only, no lexical input 0.26 0.36 0.33 0.32
Naive Bayes MapVec features only, no lexical input 0.28 0.56 0.36 0.40
Population − − 0.27 0.68 0.32 0.42

Table 2: AUC scores for CamCoder and its Lexical and MapVec components (model ablation). Lower
AUC scores are better. †Standard context2vec model augmented with MapVec representation.

the outstanding geocoder on the highly ambiguous
WikToR data. The Multi-Layer Perceptron (MLP)
model using only MapVec with no lexical features
is almost as effective but more importantly, it is
significantly better than the population baseline
(Table 2). This is because the Map Vector benefits
from wide contextual awareness, encoded in
Algorithm 1, while a simple population baseline
does not. When we combined the lexical and
geographic feature spaces in one model (Cam-
Coder9), we observed a substantial increase in
the SOTA scores. We have also reproduced the
context2vec model to obtain a continuous context
representation using bidirectional LSTMs to
encode lexical features, denoted as LSTM10 in
Table 2. This enabled us to test the effect of
integrating MapVec into another deep learning
model as opposed to CNNs. Supplemented with
MapVec, we observed a significant improvement,
demonstrating how enriching various neural
models with a geographic vector representation
boosts classification results.

Deep learning is the dominant paradigm in
our experiments. However, it is important that
MapVec is still effective with simpler machine
learning algorithms. To that end, we have evalu-
ated it with the Random Forest without using any
lexical features. This model was well suited to
the geocoding task despite training with only half
of the 400K training data (due to memory con-
straints, partial fit is unavailable for batch training
in SciKit Learn). Scores were on par with more so-
phisticated systems. The Naive Bayes was less ef-

9Single model settings/parameters for all tests.
10https://keras.io/layers/recurrent/

fective with MapVec though still somewhat viable
as a geocoder given the lack of lexical features
and a naive algorithm, narrowly beating popula-
tion. GeoVirus scores remain highly competitive
across most geocoders. This is due to the nature of
the dataset; locations skewed towards their domi-
nant “senses” simulating ideal geocoding condi-
tions, enabling high accuracy for the population
baseline. GeoVirus alone may not serve as the
best scenario to assess a geocoder’s performance,
however, it is nevertheless important and valu-
able to determine behaviour in a standard envi-
ronment. For example, GeoVirus helped us diag-
nose Yahoo! Placemaker’s lower accuracy in what
should be an easy test for a geocoder. The fig-
ures show that while the average error is low, the
accuracy@161km is noticeably lower than most
systems. When coupled with other complemen-
tary datasets such as LGL and WikToR, it fa-
cilitates a comprehensive assessment of geocod-
ing behaviour in many types of scenarios, expos-
ing potential domain dependence. We note that
GeoVirus has a dual function, NER (not evaluated
but useful for future work) and Geocoding. We
made all of our resources freely available11 for full
reproducibility (Goodman et al., 2016).

5.1 Discussion and Errors

The Pearson correlation coefficient of the target
entity ambiguity and the error size was only r ≈
0.2 suggesting that CamCoder’s geocoding errors
do not simply rise with location ambiguity. Errors
were also not correlated (r ≈ 0.0) with population
size with all types of locations geocoded to vari-
ous degrees of accuracy. All error curves follow

11https://github.com/milangritta/

https://keras.io/layers/recurrent/
https://github.com/milangritta/


a power law distribution with between 89% and
96% of errors less than 1500km, the rest rapidly
increasing into thousands of kilometers. Errors
also appear to be uniformly geographically dis-
tributed across the world. The strong lexical com-
ponent shown in Table 2 is reflected by the lack
of a relationship between error size and the num-
ber of locations found in the context. The num-
ber of total words in context is also independent
of geocoding accuracy. This suggests that Cam-
Coder learns strong linguistic cues beyond simple
association of place names with the target entity
and is able to cope with flexible-sized contexts.
A CNN Geocoder would expect to perform well
for the following reasons: Our context window
is 400 words rather than 10-40 words as in pre-
vious approaches. The model learns 1,000 fea-
ture maps per input and per feature type, tracking
5,000 different word patterns (unigrams, bigrams
and trigrams), a significant text processing capa-
bility. The lexical model also takes advantage of
our own 50-dimensional word embeddings, tuned
on geographic Wikipedia pages only, allowing for
greater generalisation than bag-of-unigrams mod-
els; and the large training/development datasets
(400K each), optimising geocoding over a diverse
global set of places allowing our model to gener-
alise to unseen instances. We note that MapVec
generation is sensitive to NER performance with
higher F-Scores leading to better quality of the ge-
ographic vector representation(s). Precision errors
can introduce noise while recall errors may with-
hold important locations. The average F-Score for
the featured geoparsers is F ≈ 0.7 (standard de-
viation ≈ 0.1). Spacy’s NER performance over
the three datasets is also F ≈ 0.7 with a simi-
lar variation between datasets. In order to further
interpret scores in Tables 1 and 2, with respect
to maximising geocoding performance, we briefly
discuss the Oracle score. Oracle is the geocod-
ing performance upper bound given by the Geon-
ames data, i.e. the highest possible score(s) us-
ing Geonames coordinates as the geocoding out-
put. In other words, it quantifies the minimum er-
ror for each dataset given the perfect location dis-
ambiguation. This means it quantifies the differ-
ence between “gold standard” coordinates and the
coordinates in the Geonames database. The fol-
lowing are the Oracle scores for LGL (AUC=0.04,
a@161km=99) annotated with Geonames, Wik-
ToR (AUC=0.14, a@161km=92) and GeoVirus

(AUC=0.27, a@161km=88), which are annotated
with Wikipedia data. Subtracting the Oracle score
from a geocoder’s score quantifies the scope of its
theoretical future improvement, given a particular
database/gazetteer.

6 Conclusions and Future Work

Geocoding methods commonly employ lexical
features, which have proved to be very effec-
tive. Our lexical model was the best language-
only geocoder in extensive tests. It is possible,
however, to go beyond lexical semantics. Loca-
tions also have a rich topological meaning, which
has not yet been successfully isolated and de-
ployed. We need a means of extracting and en-
coding this additional knowledge. To that end,
we introduced MapVec, an algorithm and a con-
tainer for encoding context locations in geodesic
vector space. We showed how CamCoder, us-
ing lexical and MapVec features, outperformed
both approaches, achieving a new SOTA. MapVec
remains effective with various machine learning
frameworks (Random Forest, CNN and MLP) and
substantially improves accuracy when combined
with other neural models (LSTMs). Finally, we
introduced GeoVirus, an open-source dataset that
helps facilitate geoparsing evaluation across more
diverse domains with different lexical-geographic
distributions (Flatow et al., 2015; Dredze et al.,
2016). Tasks that could benefit from our meth-
ods include social media placing tasks (Choi et al.,
2014), inferring user location on Twitter (Zheng
et al., 2017), geolocation of images based on de-
scriptions (Serdyukov et al., 2009) and detect-
ing/analyzing incidents from social media (Berlin-
gerio et al., 2013). Future work may see our
methods applied to document geolocation to as-
sess the effectiveness of scaling geodesic vectors
from paragraphs to entire documents.
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