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Appendix S4: Computational performance 
 
Empirical networks 
 
To assess the speed of bmotif functions, we used mcount and node_positions to calculate the 
complete motif profiles of 175 empirical pollination and seed dispersal networks and the 
positions of all their constituent species. Networks were obtained from the Web of Life dataset 
(www.web-of-life.es). The networks varied in size from 6 to 797 species (mean: 77.1; standard 
deviation: 117.8). Analyses were carried out on a computer with a 4.0 GHz processor and 32 
GB of memory. Functions were timed using the R package ‘microbenchmark’ (Mersmann, 
2015). Results are shown in Fig. S2. 
 

 
Figure S2: Relationship between network size and computational performance for mcount and node_positions 

for motifs containing up to five nodes (FALSE) and six nodes (TRUE). Functions were timed on 175 empirical 
networks. Lines are best fit polynomial curves of degree 2. 

 
As expected, the time taken for a function to run increases monotonically with the size of the 
network (number of species). When six-node motifs were excluded, mcount and 
node_positions took 0.36 and 0.66 seconds, respectively, to complete for the largest network 
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in our dataset (797 species). For smaller networks which are more typical of the communities 
analysed by ecologists, both functions completed in substantially less than one second. This 
speed is possible as all formulae involved in calculations of motifs up to five-nodes use 
relatively simple operations, such as matrix multiplication or the binomial coefficient. When 
six-node motifs were included, for a network with 78 species (close to the mean network size 
of 77.1 species), mcount completed in 0.01 seconds, while node_positions completed in 0.32 
seconds. For the largest network, mcount completed in 7.8 seconds, while node_positions took 
13.9 minutes. Six-node motifs slow down calculations as, unlike five-node motifs, their 
algorithms require the use of the tensor product. Overall, the speed of bmotif makes motif 
analyses compatible with the permutational approaches frequently used in network ecology, 
particularly for analyses with motifs up to five-nodes and for six-node analyses of all but the 
largest networks. For example, using bmotif it would be feasible to calculate motif frequency 
distributions across thousands of null networks, which is a widely-used approach to disentangle 
the mechanisms responsible for network structure (Bascompte, Jordano, Melián, & Olesen, 
2003; Dormann, Frund, Bluthgen, & Gruber, 2009).  
 
Random networks 
 
We carried out two analyses using randomly-generated networks to examine the effects of 
network size (number of species) and connectance on the computational performance of 
individual motif and motif position calculations. For the first analysis, we generated random 
networks with a fixed size, varying the connectance between 0.2 and 1. We generated 1000 
networks for each value of connectance. For each of these sets of 1000 networks, we recorded 
the mean time for our code to calculate the frequency of five motifs (motifs 1, 2, 5, 10 and 28; 
one from each of the five motif size classes) and the number of times each species occurred in 
five motif positions (positions 1, 3, 9, 23 and 85; one from each motif size class). The 
dimensions of the generated networks were set as the median number of rows and columns of 
230 empirical ecological bipartite networks (22 rows, 13 columns) obtained from the Web of 
Life repository (www.web-of-life.es). For the second analysis, we generated random networks 
of a fixed connectance, varying the size between 10 and 200 species. We generated 1000 
networks for each value of size and recorded the mean time for our code to calculate the 
frequency of the same five motifs and positions. The connectance of the generated networks 
was the median connectance of the empirical network dataset (0.243) and the row:column ratio 
(ratio of number of species in one level, such as hosts, to the number of species in the other 
level, such as parasitoids) was also set as the empirical median (2). Functions were timed using 
the R package ‘microbenchmark’ (Mersmann, 2015). 
 
We found that connectance had little effect on the performance of individual motif and position 
calculations (Fig. S3), while a polynomial of degree two explained the increase in time with 
network size (R2 > 0.99 for all motifs and positions) (Fig. S4). 
 



 
Figure S3:  Relationship between connectance and computational time taken to calculate the frequency of (a) 

five motifs, one from each motif size class, and (b) five motif positions, one from each motif size class. 
Functions were run on randomly-generated networks of a given connectance. For each level of connectance, we 
generated 1000 random networks and record the mean time for the functions to complete. Lines connecting each 

point are shown for visualisation. 
 

 
Figure S4:  Relationship between size and computational time taken to calculate the frequency of (a) five motifs, 
one from each motif size class, and (b) five motif positions, one from each motif size class. Functions were run 
on randomly-generated networks of a given size. For each level of size, we generated 1000 random networks 

and record the mean time for the functions to complete. Lines are best fit polynomials of degree two. 
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Appendix S2: Matrix representation of motifs 
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Figure S1: All bipartite motifs containing up to 6 nodes (species) and their corresponding representation as 
biadjacency matrices. Large numbers identify each motif. Small numbers represent the unique positions species 

can occupy within motifs, following Baker et al. (2015) Appendix 1. Lines between small numbers indicate 
undirected species interactions. To the right of each motif is its corresponding biadjacency matrix, M: black 
squares indicate a 1 in the matrix (the presence of an interaction), white squares indicate 0 (the absence of an 

interaction). There are 44 motifs containing 148 unique positions.. 
  



Appendix S5: Description of mcount and node_positions outputs 
 
mcount takes a network as input and returns a data frame with one row for each motif (17 or 
44 rows depending on whether motifs up to five or six nodes are requested, respectively) and 
three columns. The first column is the motif identity as in Fig. 1; the second column is the 
motif size class (number of nodes each motif contains); and the third column is the frequency 
with which each motif occurs in the network (a network’s motif profile). For comparing 
multiple networks it is important to normalise motif frequencies. Therefore, if the 
‘normalisation’ argument is TRUE, three columns are added to the data frame, each 
corresponding to a different method for normalising motif frequencies. The first column 
(‘normalise_sum’) expresses the frequency of each motif as a proportion of the total number 
of motifs in the network. The second column (‘normalise_sizeclass’) expresses the frequency 
of each motif as a proportion of the total number of motifs within its size class. The final 
column (‘normalise_nodesets’) expresses the frequency of each motif as the number of species 
combinations that occur in a motif as a proportion of the number of species combinations that 
could occur in that motif. For example, in motifs 9, 10, 11 and 12, there are three species in the 
top set (A) and two species in the lower set (B) (Fig. 1). Therefore, the maximum number of 
species combinations that could occur in these motifs is given by the product of binomial 
coefficients, choosing three species from A and two from P: !"#$!

%
&$ (Poisot & Stouffer, 2016). 

The most appropriate normalisation depends on the question being asked. For example, 
‘normalise_sum’ allows for consideration of whether species are more involved in smaller or 
larger motifs. Conversely, ‘normalise_sizeclass’ focuses the analysis on how species form their 
interactions among different arrangements of n nodes. 
 
node_positions takes a network as input and returns a data frame, W, with one row for each 
species and one column for each node position (46 or 148 columns, depending on whether 
motifs up to five or six nodes are requested, respectively; Fig. 1). wrc gives the number of times 
species r occurs in position c. Each row thus represents the structural role or ‘interaction niche’ 
of a species. The ‘level’ argument allows positions to be requested for all species, species in 
set A only or species in set B only, returning a data frame with A + B rows, A rows or B rows, 
respectively. Two types of normalisation are provided: ‘sum’ normalisation expresses a 
species’ position frequencies as a proportion of the total number of times that species appears 
in any position; ‘size class’ normalisation uses the same approach, but normalises frequencies 
within each motif size class. Again, the most appropriate normalisation depends on the question 
being asked: if movements between motif size classes are of interest, ‘sum’ normalisation is 
most appropriate; if the focus is on how species form interactions among a given number of 
nodes, then ‘size class’ normalisation should be chosen. 
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