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ABSTRACT 36 

Hormones have an important role in regulating fetal development. They act as 37 

environmental signals and integrate tissue growth and differentiation with relation to 38 

nutrient availability. While hormones control the developmental fate of resources available 39 

to the fetus, the actual supply of nutrients and oxygen to the fetus depends on the placenta. 40 

However, much less is known about the role of hormones in regulating placental 41 

development, even though the placenta has a wide range of hormone receptors and 42 

produces hormones itself from early in gestation.  The placenta is, therefore, exposed to 43 

hormones by autocrine, paracrine and endocrine mechanisms throughout its lifespan. It is 44 

known to adapt its phenotype in response to environmental cues and fetal demand signals, 45 

particularly when there is a disparity between the fetal genetic drive for growth and the 46 

nutrient supply. These adaptive responses help to maintain fetal growth during adverse 47 

conditions and are likely to depend, at least in part, on the hormonal milieu. This review 48 

examines the endocrine regulation of placental phenotype with particular emphasis on the 49 

glucocorticoid hormones.  It focuses on the availability of placental hormone receptors and 50 

on the effects of hormones on the morphology, transport capacity and endocrine function 51 

of the placenta.  52 
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 68 

INTRODUCTION 69 

During development, hormones act as environmental cues in regulating tissue growth and 70 

differentiation in utero.  They signal stress levels, temperature, photoperiod and the 71 

availability of nutrients and oxygen (1). Towards term, hormones also act as maturational 72 

signals in the final processes of tissue differentiation in preparation for delivery (1, 2).  By 73 

regulating intrauterine development in relation to these cues, hormones determine the 74 

phenotype of the offspring and maximise its chances of survival not only during fetal and 75 

neonatal life but also onto reproductive age as an adult (3).  While hormones control the 76 

developmental fate of the resources available to the fetus, the actual supply of nutrients 77 

and oxygen to the fetus depends on the placenta. The placenta is known to adapt its 78 

transport phenotype to help maintain fetal growth in response to external environmental 79 

conditions, such as malnutrition, dietary composition and maternal psychological stresses of 80 

restraint, isolation and inappropriate light exposure (4, 5). It also responds to internal 81 

signals of fetal nutrient demands, particularly when there is a mismatch between the 82 

placental capacity to supply nutrients and the fetal genetic drive for growth (4, 6).  83 

Furthermore, the placenta has endocrine functions itself and can both metabolise and 84 

synthesise hormones (1, 2, 7), which influences fetal development directly and indirectly by 85 

adapting maternal metabolism in favour of resource allocation to the fetus (8).  The 86 

placenta is, therefore, exposed to hormones by autocrine, paracrine and endocrine 87 

mechanisms from early in development. However, compared to the fetus, less is known 88 

about the role of endocrine signals in placental development (2). This review, therefore, 89 

examines the endocrine regulation of placental phenotype. It places particular emphasis on 90 

the glucocorticoids because these hormones act as both environmental and maturational 91 

signals and affect growth and differentiation of many tissues known to be programmed 92 

during intrauterine development (1, 4). It does not consider the role of hormones in human 93 

trophoblast invasion or in the control of placental blood flow more generally.   94 

 95 

PLACENTAL HORMONE RECEPTORS 96 

 97 

Hormones can influence placental phenotype either directly via specific receptors on various 98 

cell types forming the placenta or indirectly by inducing physiological changes in the fetus 99 
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and/or mother, such as alterations in nutrient availability or placental blood flow. The 100 

placenta has receptors for a wide range of circulating hormones, including those it 101 

produces, from early in development in several species (Table 1).  In humans, it also 102 

expresses receptors for opioid, neuro-, growth regulatory and vasoactive peptides that are 103 

produced endogenously to act locally (7). Receptor expression can be ubiquitous or 104 

restricted to specific zones or cell types within the placenta (20, 31, 37, 41, 45, 51, 52, 56, 105 

64). Their abundance may also be sex-linked (9, 14, 26, 69). Multiple isoforms of certain 106 

hormone receptors exist in the placenta and can be expressed selectively or differentially in 107 

the different placental tissues (9, 31, 42, 46, 55, 69).    Some of the variants appear to be 108 

unique to the placenta and not every isoform identified in the placenta is expressed in every 109 

individual (7, 9, 70). In term human placenta, for instance, there are 5 isoforms of the 110 

glucocorticoid receptor (GR) in the endothelium but 12 different variants in the trophoblast, 111 

which are differentially expressed in male and female infants (9).  Consequently, by late 112 

gestation when most fetal endocrine glands are functional (1), the placenta has the 113 

necessary receptors to respond to a range of hormones in both the fetal and maternal 114 

circulations.   115 

 116 

With increasing gestational age, there are changes in placental abundance and spatial 117 

localisation of several hormone receptors including those for insulin, angiotensin, estrogens, 118 

glucocorticoids, adiponectin, leptin and the thyroid hormones (14, 30, 31, 49-51, 58-61, 68).  119 

Some of these developmental changes are isoform specific (31, 49, 58, 61, 68, 70). In the 120 

human placenta, localisation of the insulin receptor (IR) changes with gestational age from 121 

presence primarily in the syncytiotrophoblast facing the maternal circulation in the first 122 

trimester to expression predominantly in the placental endothelial cells facing the fetal 123 

circulation at term (37).  In contrast, the increase in placental GR abundance between mid 124 

and late gestation is more widespread, although the magnitude of the increment may vary 125 

regionally depending on species (11, 15, 49, 69-73). In rats, for instance, the ontogenic 126 

increase in GR is more pronounced in the labyrinthine zone (Lz) responsible for nutrient 127 

transfer than in the junctional zone (Jz), the morphologically distinct region with endocrine 128 

functions (73).  These spatio-temporal changes in placental hormone receptor abundance 129 

indicate that hormones are likely to have a significant role in normal placental development 130 
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and that the relative importance of fetal versus maternal endocrine signals may change as 131 

the metabolic demands of pregnancy increase with fetal growth towards term.  132 

Placental hormone receptor abundance is also responsive to external environmental 133 

conditions (4). There are changes in placental abundance of GR, IR, IGFR1 and Ob-R when 134 

maternal nutritional state is altered by diabetes or dietary manipulation of calorie, macro-135 

and/or micronutrient intake during pregnancy in experimental animals (11, 12, 38, 40, 74-136 

76).  In part, these nutritionally-induced changes in hormone receptor expression may 137 

reflect the concomitant alterations in the endocrine environment as direct experimental 138 

manipulation of maternal hormone concentrations, particularly of the glucocorticoids, alters 139 

placental expression of several hormone receptors including AT2R, Ob-Ra, Ob-Re, FP, EP2, 140 

IGF1R and GR itself (17, 33, 49, 57, 69, 77, 78).  In addition, clinical complications of human 141 

pregnancy that alter placental blood flow or the circulating concentrations of hormones and 142 

metabolites, such as gestational diabetes, intrauterine growth restriction (IUGR) and pre-143 

eclampsia, are associated with changes in placental expression of a range of hormone 144 

receptors including AT1R, GR, GHR, IGF-1R, OB-R, AR and IR  (9, 30, 37, 79-82).  Taken 145 

together, these observations indicate that hormone receptor abundance in the placenta can 146 

vary with gestational age, sex of the offspring and with a range of environmental cues of 147 

fetal and maternal origin. In turn, this will influence the effects that hormones can have on 148 

the morphological, transport and endocrine phenotype of the placenta.  149 

 150 

 151 

HORMONES AND PLACENTAL MORPHOLOGY 152 

 153 

Changes in trophoblast invasion and in the size and morphology of the definitive placenta 154 

have been observed in response to experimental manipulation of both maternal and fetal 155 

hormone concentrations (2, 4, 7). These studies have tended to focus on the glucocorticoids 156 

and insulin-like growth factors because of their known effects on fetal growth (83, 84). 157 

Maternal glucocorticoid administration during the last third of gestation leads to reduced 158 

placental weight in a wide range of species including monkeys, sheep, rabbits, rodents and 159 

human infants (4, 83, 85, 86). The degree of placental growth restriction depends on the 160 

type of glucocorticoid administered, the dose and duration of treatment and the gestational 161 
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age at both treatment and assessment (85, 86).  The growth inhibitory effects are more 162 

pronounced with administration of synthetic than natural glucocorticoids and when 163 

glucocorticoid overexposure occurs in mid to late gestation than close to term (87, 88).  In 164 

rodents, placental growth is also restricted to a greater extent by continuous than 165 

intermittent maternal treatment, irrespective of the exact route of glucocorticoid 166 

administration (86, 88). Furthermore, growth restriction of the rodent placenta occurs in 167 

response to local overexposure to glucocorticoids induced by reducing the activity of 168 

placental 11β-hydroxysteroid dehydrogenase-2 (11βHSD2), the enzyme that normally 169 

converts active glucocorticoids to their inactive metabolites (89, 90).   In contrast, 170 

overexposure of the placenta to glucocorticoids via the fetal circulation appears to have less 171 

severe effects on placental growth, although this may relate, partially, to treatment later in 172 

gestation (91, 92). 173 

 174 

These changes in placenta size and/or weight are accompanied by more specific alterations 175 

in placental morphology. In sheep, glucocorticoids affect the gross morphology of the 176 

placenta whether given maternally or fetally (86). In particular, there is a reduced number of 177 

everted placentomes without a change in total number, which leads to an altered frequency 178 

distribution of the different placentome types with potential consequences for glucose 179 

transport (91).  Glucocorticoid treatment of either the mother or fetus in late gestation also 180 

reduces the numbers of binucleate cells (BNC) in the ovine placentomes (91, 92). These cells 181 

migrate from the fetal trophectoderm across the feto-maternal junction to form a 182 

syncytium with the maternal epithelium. They also produce progesterone and placental 183 

lactogen that influence maternal metabolism and tissue growth. Changes in BNC frequency 184 

and migration induced by glucocorticoid overexposure may, therefore, alter the 185 

morphological remodelling of the placenta and the maternal adaptations to pregnancy with 186 

consequences for resource allocation to the fetus. 187 

 188 

In several species, there are changes in the surface area of the placenta in response to 189 

manipulating placental exposure to the glucocorticoids and IGFs (2, 4, 86). In rodents, 190 

maternal treatment with natural and synthetic glucocorticoids decreases the volume and 191 

surface area of the Lz trophoblast, particularly when treatment coincides with the main 192 

period of placental development (14, 49, 57, 69, 87, 88, 90-92). These changes are coupled 193 
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with a decrease in placental vascularity and Vegf expression, which can persist or reverse 194 

after cessation of treatment depending on the gestational age at time of overexposure (14, 195 

69, 87, 88, 93-96). Similarly, there are reductions in the Lz volume and fetal vascularity of 196 

the mouse placenta locally overexposed to glucocorticoids by deletion of the 11βHsd2 gene 197 

(90). Reduced vascularity of the fetal villi has also been observed in term placenta of 198 

asthmatic women treated clinically with high doses of glucocorticoids during pregnancy 199 

(97).  In mice, high doses of synthetic glucocorticoids have been shown to lead to placental 200 

necrosis and increased expression of several apoptotic genes (94). In contrast to the 201 

glucocorticoids, IGFs increase placental size, Lz volume and vascularity in mice and guinea 202 

pigs (6, 39).  The IGFs also decrease the thickness of the interhemel membrane between the 203 

maternal and fetal circulations (6). However, the extent to which these hormonally induced 204 

changes in placental morphology and vascularity lead to altered placental blood flow still 205 

remains unclear as blood pressure is often elevated in response to glucocorticoid 206 

administration (85, 86).  Nevertheless, changes in placental size and morphology with the 207 

endocrine milieu will alter the placental capacity for transfer of oxygen and nutrients to the 208 

fetus. 209 

 210 

 211 

HORMONES AND PLACENTAL NUTRIENT TRANSPORT 212 

 213 

Using both in vivo and in vitro experimental methods, a wide range of different hormones 214 

have been shown to alter placental uptake and/or transplacental transfer of glucose and 215 

amino acids (Table 2).  In some instances, these changes are associated with altered 216 

placental abundance of the transporters required for active transport of amino acids or 217 

facilitated diffusion of glucose from mother to fetus (Table 2).  Much less is known about 218 

the endocrine regulation of placental lipid transport, although environmental factors such as 219 

maternal obesity and gestational diabetes can influence placental abundance and activity of 220 

the fatty acid transfer proteins involved in fetal uptake of fatty acids (131, 132).  The 221 

hormonally induced changes in trophoblast surface area, thickness and vascularity will also 222 

influence the passive diffusion properties of the placenta and, hence, transport by simple 223 

diffusion of oxygen and waste products like urea and carbon dioxide (2, 5). In addition, both 224 

the glucocorticoids and the IGFs are known to alter placental production of the fetal 225 
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metabolic substrate, lactate, and its distribution between the uterine and umbilical 226 

circulations (91, 117, 118). Furthermore, fetal cortisol infusion has been shown to increase 227 

glucose consumption by the ovine placentomes, thereby limiting the proportion of uterine 228 

glucose uptake that is passed onto the fetus (91). Thus, hormones affect placental delivery 229 

of nutrients to the fetus not only by altering the morphological and functional 230 

characteristics of the actual transport processes but also by actions on the production and 231 

consumption of nutrients by the placenta per se. 232 

 233 

Not all hormonal actions on placental nutrient delivery are direct. Some are mediated 234 

indirectly by physiological actions in the mother and fetus or by effects on energy 235 

availability for active transport or on the sodium concentration gradient used to drive 236 

secondary active, sodium-coupled amino acid transport (133).  For example, the inhibitory 237 

effect of angiotensin II on sodium dependent MeAIB transport in human placental villous 238 

fragments appears to be mediated by AT-1R induced down-regulation of Na+-K+ ATPase 239 

activity that maintains the transcellular sodium concentration gradient (130). With simple or 240 

facilitated diffusion, the hormonal effects on transport may be the result of alterations in 241 

placental blood flow or the transplacental concentration gradients driving net transfer. For 242 

instance, insulin administration to pregnant ewes lowers maternal glucose levels and 243 

reduces facilitated diffusion of maternal glucose to the fetus in proportion to the decrease 244 

in the transplacental concentration gradient (111). Thus, insulin appears to have little direct 245 

effect on the placental capacity for glucose transport per se in sheep in late gestation with 246 

no changes in placental glucose transporter (GLUT) abundance or glucose partitioning in the 247 

short term (111, 112, 132).  Similarly, insulin has no effect on glucose uptake by villous 248 

fragments of term human placenta in vitro (122).   When insulin infusion is more prolonged 249 

in pregnant ewes in vivo, there are changes in placental GLUT expression in line with the 250 

reduced glucose transport, although whether these changes are the consequence of the 251 

sustained hyperinsulinaemia or of the concomitant hypoglycaemia still remains unclear 252 

(111, 112, 134).  However, in rats, short term insulin infusion in euglycaemic conditions has 253 

been shown to increase placental glucose uptake at day 19 of pregnancy but not closer to 254 

term (114).  In in vitro studies, insulin has been shown to increase amino acid uptake by 255 

villous fragments of term human placenta after periods of between 2-24h in culture (110, 256 

122, 130). These actions of insulin and IR localisation suggest that insulin may be involved in 257 
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the growth and remodelling of the placenta from early in gestation and, particularly, the 258 

placental vasculature nearer to term (37). However, like the brain, uptake and utilisation of 259 

glucose by the placenta appears to be insulin insensitive, despite the presence of insulin 260 

receptors (Table 1), which probably relates to the lack of insulin-sensitive glucose 261 

transporters, GLUT4, in the placenta (135).  262 

 263 

In part, the effects of hormones on nutrient transfer depend on their route of 264 

administration and on whether measurements are made during or after ending treatment. 265 

Short term infusion of IGF-I increased placental lactate production when given maternally 266 

but not fetally while, conversely, umbilical uptake of glucose is increased with fetal but not 267 

maternal administration in the sheep (117, 118). In both sheep and mice, glucocorticoid 268 

overexposure during late gestation reduces placental transport of glucose and amino acids 269 

during the period of overexposure, irrespective of its duration, method of induction, or the 270 

type of glucocorticoid involved (Figure 1). In contrast, after glucocorticoid treatment, 271 

transport of glucose and amino acids by the growth restricted mouse placenta tends to 272 

increase compared to age matched controls, although the precise response appears to 273 

depend on the interval between ending treatment and measuring transport (Figure 1).  In 274 

part, the up-regulated nutrient transport seen after treatment may reflect an increased 275 

demand for nutrients from the growth restricted fetus once the glucocorticoid has cleared 276 

from the tissues.  Indeed, increased placental nutrient transport, particularly of the amino 277 

acids, is also seen when there is a disparity between the placental capacity to supply 278 

nutrients and the fetal nutrient demands for growth, irrespective of whether this mismatch 279 

is induced nutritionally or genetically (4, 6).   280 

 281 

When all the mouse transport data at day 19 of pregnancy are combined, irrespective of the 282 

period of corticosterone treatment, there is a significant inverse correlation between 283 

maternal corticosterone concentrations and placental MeAIB transport (87).  This is 284 

consistent with the concept that there is a dynamic balance in resource allocation between 285 

the mother and fetus that is responsive to environmental conditions (4, 8).  By reducing 286 

placental size and nutrient transport, increased maternal glucocorticoids levels spare 287 

nutrients for maternal use during stressful periods and, by limiting fetal growth, further 288 

reduce the nutritional demands on the mother if the stress is prolonged. Conversely, when 289 
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maternal stress and glucocorticoid levels are low, more maternal nutrients can be diverted 290 

to the gravid uterus, particularly when there is an increased demand signal from fetuses 291 

growth restricted below their genetic potential by earlier periods of adverse environmental 292 

conditions.  293 

 294 

HORMONES AND PLACENTAL ENDOCRINE FUNCTION 295 

 296 

The placenta produces a wide range of hormones including sex steroids, eicosanoids, 297 

glycoprotein and peptide hormones, some of which are unique variants of pituitary 298 

hormones (1, 7). Secretion of several of these is sensitive to the endocrine milieu and, 299 

particularly, to the glucocorticoids (Table 3).  Increasing placental exposure to 300 

glucocorticoids in vivo in late gestation has been shown to increase placental production of 301 

PGE2 and estrogen, and reduce secretion of placental lactogen, leptin, IGF-I and the family 302 

of prolactin hormones depending on the specific species (Table 3). In rodents, these changes 303 

are often Jz specific (93, 147). Similarly, glucocorticoids have been shown to alter secretion 304 

of leptin, placental GH, hCG and PGE2 by human villous fragments and trophoblast cell lines 305 

in vitro (Table 3).   In most species studied to date, glucocorticoid-induced changes in 306 

placental hormone production form part of the normal sequence of prepartum 307 

maturational events that ensure fetal maturation is co-ordinated with the onset of labour 308 

and lactation (1, 151). However, changes in placental hormone production induced by 309 

glucocorticoids earlier in gestation as a result of stressful conditions can have adverse 310 

consequences for fetal development, maternal recognition of and metabolic adaptation to 311 

pregnancy as well as for lactation. Indeed, in mares, preterm changes in placental 312 

progestagen production induced by stress or more direct glucocorticoid administration are 313 

associated with prepartum running of milk, poor colostrum production at birth and failure 314 

of foals to thrive postnatally if they are not given supplementary immunoglobulins (152).  315 

 316 

The placental endocrine phenotype depends not only on the production of hormones but 317 

also on their metabolism. In several species including rodents, sheep and humans, the 318 

placenta inactivates glucocorticoids and prostaglandins, thereby reducing their circulating 319 

and placental bioavailability.  In turn, the inactivating enzymes are responsive to hormones 320 

(1, 2, 83). Both progesterone and cortisol have been shown to regulate placental activity of 321 
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11βHSD2 and prostaglandin dehydrogenase (PGDH), the enzymes responsible for 322 

inactivating glucocorticoids and prostaglandins, respectively (83, 85).  However, the specific 323 

response of these placental enzymes to hormonal signals depends on species, gestational 324 

age, duration of treatment and maternal nutritional state (2, 83, 149).  325 

 326 

CONCLUSIONS 327 

Hormones in the fetal and maternal circulations have an important role in determining 328 

placental phenotype (Figure 2). They signal fetal wellbeing and maternal environmental 329 

conditions to the placenta, respectively. In turn, placental hormones signal resource 330 

availability to the fetus and fetal nutrient demands to the mother based on the genetic drive 331 

and current mass of the fetus (Figure 2).  The placenta integrates all these hormonal signals 332 

and adapts its phenotype to optimise resource allocation between the mother and growing 333 

fetus with respect to both fetal and maternal fitness. The hormonally-induced adaptations 334 

can be either short lived to allow a rapid response to environmental change or persist to 335 

transmit memories of earlier events to the fetus later in development. Endocrine regulation 336 

of placental phenotype, therefore, provides a unifying mechanism for determining the 337 

phenotype of the offspring that develops from the genotype inherited at conception. 338 

However, little is yet known about the specific cellular and molecular pathways in the 339 

placenta that sense the hormonal signals and then mediate the adaptive responses. Nor is it 340 

clear whether hormones alter the placental epigenome, although epigenetic modifications 341 

in the placenta occur during normal development and growth restriction as well as in 342 

several other clinical complications of human pregnancy (6, 153, 154).  343 

 344 
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 355 

 356 

FIGURE LEGEND 357 

 358 

Figure 1:  Effects of glucocorticoids during and after treatment on placental transport of 359 

glucose and amino acids in sheep and mice during late gestation. In sheep, placental 360 

glucocorticoid overexposure was increased by fetal intravenous treatment with either for 361 

cortisol for 5 days (Cort, hatched columns) or dexamethasone for 24h (Dex, grey columns) 362 

and measurements of transport made during the final hours of treatment. In mice, placental 363 

overexposure was induced either to the synthetic glucocorticoid, dexamethasone (Dex, grey 364 

columns) by maternal administration for 5 days or to the natural glucocorticoid, 365 

corticosterone (Cort, hatched columns), by deletion of the 11βhsd2 gene or maternal 366 

corticosterone administration for 5 days. In the mice, transport measurements were made 367 

either during overexposure (during treatment) alone and/or after cessation of treatment 368 

(after treatment with the timing indicated as + days from ending treatment). All values are 369 

expressed as % of that in the control animals (open columns).  370 

* significantly different from control by the statistical analyses used in the relevant study. 371 

Data from references 87, 88, 90, 91, 101-103, 106 and 107. 372 

 373 

 374 

Figure 2:  A schematic diagram showing the role of hormones in regulating placental 375 

phenotype with respect to balancing maternal resource availability with fetal resource 376 

demands for optimal intrauterine growth.  377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 
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Table 1:  Presence of hormone receptors in the placenta with respect to gestational age in different species.  
(d = days, w = weeks. Term : human 40 weeks, horse 335 days, cow 280 days, baboon 168 days, sheep 145 days, pig 115 days, guinea pig 70 days, cat 65 days, 
rabbit 30 days, rat 22 days, spiny mouse 39 days, mouse 20 days)  
 

 Hormone 
group 

Specific Receptor 
(Abbreviation) 

Isoforms Species  Gestational age 
(days,d/weeks, w) 

Reference 

Steroids Glucocorticoids (GR) GRα, GRβ Human 
Sheep 
Pig 
Rat 
Spiny Mouse 
Mouse 

Term 
51-140d 
94d 
16-22d 
23-37d 
9.5d - term 

9 
10, 11 
12 
13 
14  
15  

 Mineralocorticoids (MR) MR Human 
Pig 
Sheep 

5-40 w 
94d 
138d 

16 
12  
17 

 Estrogens  (ER) ERα, ERβ Human 
Horse 
Sheep 
Rabbit 

Term 
110-309d 
13-30d  
10-14d 

18, 19 
20 
21  
22  

 Progesterone (PR) PR-A, PR-B Human 
Horse 
Sheep 
Rabbit  
Rat 

Term 
110-199d 
30d & 84-112d 
10-16d 
12d 

19, 23  
20 
21, 24 
22 
25 

 Androgens (AR) AR-A, AR-B Human 
Cow 
Rat 

16w - term 
50d – term 
21d 

26 
27 
28 

Iodothyronines Thyroid hormones (TR) TRα, TRβ Human 
Rat 

13w - term 
16-21d 

29, 30 
31  

Eicosanoids Prostaglandins (PG) PGE2 
                                      
                                    PGF2α 

EP1,2,3 & 4 
 
FP 

Human 
Sheep 
Human 
Sheep 

38-41w 
Term 
38-41w 
Term 

32 
33  
32 
33 
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27 
 

Glycoproteins Chorionic gonadotrophin  LH receptor 
TGFβ receptor2 

Human 
Horse 

Term 
27-34d 

34  
35  

Proteins Insulin (IR) IR-A, IR-B Human 
Monkey 
Rat 
Mouse 

1st trimester & term 
Near term 
Term 
16-19d 

36, 37 
36 
36 
38  

 Insulin-like  
growth factors (IGFR) 

IGFR1,  IGFR2 Human 
Sheep 
Guinea pig 
Rat 
Mouse 

1st trimester & term 
138d 
35d 
21d 
16-19d 

37 
11, 17  
39  
40 
38 

 Prolactin (PRLR) PRL-R  Human 
Baboon 
Rat 

Term 
39d & Term 
15-17d & 19d 

41, 42  
43 
41, 44  

 Leptin (OBR) Ob-Ra, Ob-Rb Human 
Baboon 
Sheep 
Pig 
Cat 
Rat 
Mouse 

Term 
60-164d 
128d 
30d & 100d 
Term 
16-22d 
11.5-18.5d 

45  
46  
47  
47  
48  
49  
50  

 Adiponectin Adipo-R2  Human 
Rat  

1st trimester & term 
12-21d 

51  
51 

 Growth hormone (GHR) GHR Human 
Sheep 

8w & Term 
20-120d 

7 
52, 53  

 Corticotrophin Releasing 
Hormone (CRH) 

CRH-R1, CRH-R2 Human  Term  54, 55 

 Kisspeptin Kiss1R Human 
Rat 

Term 
16d & 22d 

56 
57 

Peptides Gonadotrophin releasing 
hormone (GnRHR) 

GnRHR-I & -II Human 6-20w 58 

 Angiotensin (ATR) AT1R, AT2R Human 
Sheep 

10w-term 
27-140d 

59  
60, 61  
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Pig 
Rabbit 
Mouse 

30d-term 
14-28d 
16.5d & 18.5d 

62 
63  
64 

 ANP  Human Term 65 

 Adrenomedullin  Human 
Cow 
Rat 

Term 
200d 
12d & 17d 

66 
67 
68 
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Table 2: Effect of hormone administration on the transport phenotype of the placenta in different species with respect to gestational age at treatment and assessment. 
                    
Hormone 
 

 
Species 

 
Type and route of treatment 

Gestational age (days) 
At treatment           At study 

 
Placental transport phenotype 
 

 
Reference 

Glucocorticoids  Human 
-in vitro 

Cortisol  In culture  
 
Dex In culture 

Cell line 
Term 
Term 

Cell line +24h 
Term 
Term 

↑ MeAIB uptake ↑SNAT2 
↑ Na+/H+ exchanger activity 
↑ MeAIB uptake  

98 
99 
100 

 Sheep  
-in vivo 

Fetal cortisol iv infusion 
 
 
Fetal dex iv infusion 

120-122 
125-130d 
 
Near term 

120-122 +6h 
130d 
 
Near term 
+24h 

↓ Amino-nitrogen delivery 
↓ Glucose delivery 
↑ Glucose consumption  
↓ Alanine delivery 
↓ Glutamate uptake 
↑ Placental lactate delivery 
↓ Glucose delivery 

101  
91 
91 
102 
102 
102 
103 

 Rat 
-in vivo 

Maternal dex sc infusion 
Maternal dex sc injection 

15-21d 
15-19d 

21d 
20d 

↑ GLUT 1 & 3 
↑ Folate transport ↓ Choline transport 

104 
105 

 Spiny mouse 
-in vivo 

Maternal dex sc infusion 20-22.5d 23d  
37d 

↓ SLC2A1 
↓ SLC2A1 – males only 

14 
14 

 Mouse 
-in vivo 

Maternal corticosterone po 
In drinking water 
 
 
Maternal dex po 
Maternal dex  sc injection 
11βHsd2 null 

11-16d 
11-16d 
 
14-19d 
11-16d 
13.5 & 14.5d 
Conception 
Conception 

16d 
19d 
 
19d 
19d 
18.5d 
15d 
18d 

↑Slc38a1&2 ↓Slc2a1 & 3 
↑ MeAIB transport  ↑Slc38a1 
↑ Glucose transport 
↓ MeAIB transport 
↑ MeAIB transport 
↓ MeAIB transport 
↑ MeAIB transport ↑Slc38a2 
↓ Glucose transport ↓Slc2a3 

87, 106 
87 
106 
87 
88 
107 
90 
90 

Aldosterone  Human 
-in vitro 

In culture Term Term ↑ Na+/H+ exchanger activity 
 

99 
 

Testosterone Rat 
-in vivo 

Maternal sc injection 
 

15-19d 21d ↓ MeAIB uptake & transport  ↓SNAT2 108 

Estrogen Rat 
-in vivo 

Maternal po daily 4-8d 13d ↓ GLUT1 109 
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30 
 

Insulin  Human  
-in vitro 

In culture Term Term +24h ↑ MeAIB uptake 110 
 

 Sheep 
-in vivo 

Maternal iv infusion 
 
Fetal iv infusion 

105d 
 
135d 

130-141d 
 
135d +4h 

↓ Glucose utilisation & delivery  
↓ GLUT1  
↑ Glucose delivery 

111 
112 
113 

 Rat 
-in vivo 

Maternal iv infusion 
 

19d 19d +4h ↑ Glucose uptake & utilisation 114 

Insulin-like growth factors 
(IGFs) 

Human 
-in vitro 

In culture 1st Trimester 
Term 

1st Trimester 
Term 

↑ Glucose and amino acid uptake  
↑ MeAIB uptake 

115 
116 

 Sheep 
-in vivo 

Maternal  iv infusion 
Fetal iv infusion 

132d 
130d 
 
120-130d 

132d +4h 
130d +4h 
 
130d 

↑ Placental lactate production & delivery 
↓ Placental lactate production & delivery 
↑ Glucose delivery 
↓ Glucose and MeAIB clearance 

117 
118 
118 
119 

 Guinea pig 
-in vivo 

Maternal sc infusion 
 

20-35d 
20-38d 

35d 
60d 

↑MeAIB uptake & transport 
↑ Glucose uptake & transport 

120 
121 

Growth hormone Human 
-in vitro 

In culture 1st Trimester 
Term 

1st Trimester 
Term 

↓ MeAIB uptake  
↑ Glucose uptake 

122 
122 

 Pig 
-in  vivo 

Maternal iv injection daily 25-50d 50d ↑ GLUT1, ↑ SNAT2 123 

 Sheep 
-in vivo 

Maternal sc daily injections 
 

125-135d 135d ↑ Placental glucose clearance 
↑ Placental capacity for simple diffusion 

124 
124 

Leptin Human 
-in vitro 

In culture Term 
 

Term +1h 
 

↑ MeAIB uptake 
 

125 
 

Parathyroid related 
protein (PTHrP) 

Mouse 
-in vivo 

PTHrP null Conception 18d ↑Materno-fetal calcium flux 126 

Adiponectin Human 
-in vitro 

In culture Term Term +24h ↑ MeAIB uptake 
 

127 

 Mouse 
-in vivo 

Maternal sc infusion 
 

14.5-18.5d 18.5d ↓ System A and L amino acid transport 
↓ SNAT1, 2 & 4, ↓ LAT1 &2 

128 

Corticotrophin releasing 
Hormone (CRH) 

Human 
-in vitro 

In culture Term  Term +24h ↓ MeAIB uptake  
 

129 

Angiotensin II Human 
-in vitro 

In culture Term Term +4h ↓ MeAIB  uptake  
↓ Na+-K+ATPase activity 

130 
130 
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po  = per os,  iv =  intravenous,  sc =  subcutaneous, Slc38a 1&2 and SNAT 2 & 4 = Sodium coupled neutral amino acid transporter genes and proteins,  
Lat 1 & 2 = L-type amino acids transporters, GLUT 1 & 3 = glucose transporters, Dex = Dexamethasone 
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Table 3: Effect of hormone administration on the endocrine phenotype of the placenta in different species with respect to gestational age at treatment and assessment. 
                    
Hormone 
 

 
Species 

 
Type and route of treatment 

Gestational age (hours/days) 
At treatment           At study 

 
Placental endocrine phenotype 
 

 
Reference 

Glucocorticoids  Human 
-in vitro 
 
 
 
-in vivo 

Dex in culture 
 
 
Cortisol in culture 
 
Dex im 
Beta im x3 daily 
Dex im x3 daily  

Cell line 
Term 
Term 
Cell line  
Term 
3rd trimester 
3rd trimester 
3rd trimester 

Cell line +72h 
Term +72h 
Term +96h 
Cell line + 72h 
Term +144h 
3rd trimester  +5h 
3rd trimester  +48h 
3rd trimester  +7d 

↑ hCG 
↑ Leptin 
↓ PGE2 
↓ Placental GH 
↑ hCG 
↓ Estradiol and estrone  
↑ CRH 
↓ Placental lactogen 

136  
137 
138 
139  
140  
141  
142  
143  

 Cow 
-in vitro 

Dex in culture Term Term + 18h ↓ PGF2α 144 

 Sheep  
-in vivo 

Maternal beta im 3x 
Fetal dex iv infusion 
Fetal beta im injection 
Fetal cortisol iv infusion 

103-118d 
Term 
131d 
125-128d 

109-121d 
Term 
134d 
128-131d 

↓ Placental lactogen  
↓ Progesterone, ↑ Estrogens 
↑ PGE2, ↑ PGF2α 
↑PGE2 ↑Estrogens 

92 
145 
146 
147 

 Rat 
-in vivo 

Maternal dex sc infusion 
 

13-20d 
15-21d 

20d 
21d 

↓ IGF-II, ↓ Prolactin gene family  
↓ Leptin 

93 
148 

 Spiny mouse 
-in vivo 

Maternal dex sc infusion 20-22.5d 23d & 37d ↓ IGF-I 14 

 Mouse 
-in vivo 

Maternal dex ip injection 
daily 

7.5-9.5d 18.5d ↓ PLII, ↓ Prp 149 

Testosterone Rat 
-in vivo 

Maternal sc injection 
 

16-19d 21d ↑Estrogen 28 

Progesterone  Human  
-in vitro 

In culture Term 
 

Term  +144h 
 

↓hCG 
 

140 
 

Insulin  Human  
-in vitro 

In culture Term 
Cell line 

Term +72h 
Cell line + 72h 

↑ Leptin 
↓ Placental GH 

137 
143 

Insulin-like growth 
factors (IGF) 

Human 
-in vitro 

In culture – IGF-I Cell line Cell line +24h ↑ hCG, ↑ Progesterone 150 
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Leptin Human 
-in vitro 

In culture Cell line Cell line +72h ↓ Placental GH 139 

 

im = intramuscular,  iv =  intravenous,  sc =  subcutaneous, ip = intraperitoneal,  hCG = human chorionic gonadotrophin, GH = growth hormone, PGE2 = 

Prostaglandin E2, PGF2α = Prostaglandin F2α, CRH = Corticotrophin releasing hormone, IGF = Insulin-like growth factor – I and –II, PLII = Placental lactogen II 

gene, Prp = Prolactin related protein gene, Dex = dexamethasone, Beta = Betamethasone. 

 

 


