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Human brains interpret external stimuli based on internal representations. One untested hypothesis is that the default-mode
network (DMN), widely considered responsible for internally oriented cognition, can decode external information. Here, we
posit that the unique structural and functional fingerprint of the precuneus (PCu) supports a prominent role for the posterior
part of the DMN in this process. By analyzing the imaging data of 100 participants performing two attention-demanding
tasks, we found that the PCu is functionally divided into dorsal and ventral subdivisions. We then conducted a comprehen-
sive examination of their connectivity profiles and found that at rest, both the ventral PCu (vPCu) and dorsal PCu (dPCu)
are mainly connected with the DMN but also are differentially connected with internally oriented networks (IoN) and exter-
nally oriented networks (EoN). During tasks, the double associations between the v/dPCu and the IoN/EoN are correlated
with task performance and can switch depending on cognitive demand. Furthermore, dynamic causal modeling (DCM)
revealed that the strength and direction of the effective connectivity (EC) between v/dPCu is modulated by task difficulty in a
manner potentially dictated by the balance of internal versus external cognitive demands. Our study provides evidence that
the posterior medial part of the DMN may drive interactions between large-scale networks, potentially allowing access to
stored representations for moment-to-moment interpretation of an ever-changing environment.
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Significance Statement

The default-mode network (DMN) is widely known for its association with internalized thinking processes, e.g., spontaneous
thoughts, which is the most interesting but least understood component in human consciousness. The precuneus (PCu), a posterome-
dial DMN hub, is thought to play a role in this, but a mechanistic explanation has not yet been established. In this study we found
that the associations between ventral PCu (vPCu)/dorsal PCu (dPCu) subdivisions and internally oriented network (IoN)/externally
oriented network (EoN) are flexibly modulated by cognitive demand and correlate with task performance. We further propose that
the recurrent causal connectivity between the ventral and dorsal PCu supports conscious processing by constantly interpreting exter-
nal information based on an internal model, meanwhile updating the internal model with the incoming information.

Introduction
The intrinsic coupling [or functional connectivity (FC)] between
regions in the human brain is not random but rather forms con-
sistent spatial patterns known as intrinsic (functional) connectiv-
ity networks (ICNs; Seeley et al., 2007). Each ICN’s relevance to
cognitive function has been established from activation studies,
from which we can infer what information features are encoded
in different networks (Cole et al., 2014). Interactions between
ICNs are thought to be a form of information exchange serving
cognitive demands, although the precise functional role of those
interactions remains an active area of research (Bressler and
Menon, 2010). A case in point is the interaction between the
default-mode network (DMN) and cognitive control networks
which have been reported to be anticorrelated (Fox et al., 2005)
and contraposed in their cognitive function (Weissman et al., 2006).
This view however is increasingly challenged by accumulating
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findings. While the majority of DMN studies focus on resting state,
i.e., data collected in the absence of external stimulation, emerging
evidence shows that the DMN is indeed engaged during goal-
directed tasks (Spreng et al., 2014; Elton and Gao, 2015; Vatansever
et al., 2015), as opposed to being a “resting-state” network.

Conscious processing, whether externally oriented or not,
always entails some form of internal processing. A dominant
theory of consciousness, predictive coding, has provided a more
realistic Bayesian model to explain brain function, which postu-
lates that the external physical world is never faithfully repre-
sented in our brains, but rather through a filter of our
internal belief of the world (Friston and Kiebel, 2009;
Friston, 2012; Barrett and Simmons, 2015; Allen and Friston,
2018). Motivated by pharmacological and brain injury stud-
ies that highlight the DMN’s prominent role in conscious
processing (Vanhaudenhuyse et al., 2010; Liu et al., 2015;
Perri et al., 2016), we hypothesized that the DMN is funda-
mental when considering the neural instantiation of such an
account, given its multifaceted role in external and internal
processing.

The DMN, which comprises medial frontal and medial poste-
rior parietal cortices as well as the angular gyrus (AnG) and hip-
pocampus, is neither anatomically nor functionally homogeneous
(Kernbach et al., 2018). Among the DMN regions, the posterome-
dial cortex (PCu/PCC) has attracted significant interest because
of its complex neuroanatomical, metabolic and functional finger-
print (de Pasquale et al., 2012; Raichle, 2015). It has exception-
ally high metabolic rate (Raichle et al., 2001) and also is a major
connectivity hub from a graph-theoretic perspective (van den
Heuvel and Sporns, 2011; Tomasi and Volkow, 2011; Demertzi
et al., 2013). The precuneus (PCu) has been characterized as the
inter-network nexus within the DMN, for its connectivity with
the DMN and the frontoparietal control network (FPCN)
which is distinct between rest and task states (Utevsky et al.,
2014). Based on its functional features we hypothesized that the
PCu may play a key role in integrating external information
with internal representations such as episodic memory, self-
related information and subjective values that are processed by
other DMN regions.

In fact, the PCu is engaged in such a broad range of cognitive
tasks (including both internally and externally oriented, goal-
directed tasks) leading some to suggest that it is not part of the
DMN (Fletcher et al., 1995; Cavanna and Trimble, 2006).
However, the task-positive subregion of the PCu has been found
to have higher intrinsic FC with the DMN than with the FPCN
(Utevsky et al., 2014). To investigate the network associations of
the PCu during tasks, we first ascertained its involvement in cog-
nitive tasks by employing a NeuroSynthmeta-analytic framework
(Yarkoni et al., 2011). We then used multiple MRI datasets [dif-
fusion MRI (dMRI), resting-state and task-state fMRI] from the
Human Connectome Project (HCP) to investigate the activation,
functional and structural connectivity (SC) of the PCu. We
found that the ventral PCu (vPCu) and dorsal PCu (dPCu) sub-
divisions had distinct activation and connectivity patterns, which
followed the spatial patterns of internally oriented networks
(IoN)/externally oriented networks (EoN), suggesting that the
PCu might mediate the integration between internally and exter-
nally oriented cognitive processes. Moreover, dynamic causal
modeling (DCM) provided evidence for the directed coupling
between the two PCu subdivisions which was modulated by
task difficulty, hinting at a combinatorial processing mode
where incoming information is associated with internal
representations.

Materials and Methods
NeuroSynthmeta-analysis of fMRI studies
When this work was conducted, the NeuroSynth database contained
14,371 neuroimaging studies (https://github.com/neurosynth/neurosynth-
data), associated with .3200 text-based features and over 410,000 activa-
tion peaks that span a wide range of published neuroimaging studies.
Since our focus is DMN functionality during tasks we searched for activa-
tion coordinates associated with attentional and executive tasks. These
were generated by interrogating the database with the text-based search:
“attentionp or executp.” Both forward and reverse inferences were per-
formed to assess both necessity and sufficiency of a region’s response to a
certain type of task. Specifically, the forward-inference search relies on the
probability of observing activation given the presence of the term [i.e., P
(Activation|Term)], thus essentially testing the consistency of a region’s
activation to a type of task. On the other hand, reverse inference relies on
the probability of the specified term being frequently discussed alongside a
specific activation [i.e., P(Term|Activation)], thus revealing the regions
that are selectively associated with the term. Key parameters were based
on the default values in the publicly available NeuroSynth toolbox (https://
github.com/neurosynth/neurosynth). For example, a frequency cutoff of
0.001 for article words was used to determine whether a study used the
term incidentally or purposely. Resulting activation was false discovery
rate (FDR)-corrected for multiple comparisons using a whole-brain FDR
threshold of 0.01 at the voxel level. This generated Z score maps with val-
ues generally bigger than 3. For a better visualization of the result, we used
a cutoff of Z=4 to only show bigger clusters.

fMRI and diffusion-weighted data analyses
Participants
We utilized the multimodal MRI data from HCP dataset released in
March 2017. The data of “100 unrelated” participants were downloaded,
including structural, diffusion MRI (dMRI) data and fMRI data of the
resting state and two classic cognitive tasks. All the participants are
young healthy adults between the ages of 22 and 35, with no docu-
mented history of psychiatric, neurologic, or medical disorders known
to influence brain function. For a complete description of inclusion and
exclusion criteria for the HCP datasets, please see the original publica-
tions for additional details (Van Essen et al., 2012, 2013; Barch et al.,
2013).

Selected tasks
We selected the relational processing (RP) task and the N-back working
memory (N-back) task from the HCP, as these have two levels of diffi-
culty, therefore affording the possibility to infer the brain’s response to
varying cognitive demand. Task-related analyses for the two tasks were
conducted independently for each task. In the main text, domain-spe-
cific terms indicating a certain level of specific cognitive demand (such
as 0-back and 2-back in the N-back task) were substituted with the gen-
eral terms of “easy” and “difficult” to indicate the load of general cogni-
tive abilities.

Image preprocessing
The ready-to-use HCP data have already been minimally preprocessed
and quality-checked by the distributors (Glasser et al., 2013) and we con-
ducted extra preprocessing steps with SPM12 (https://www.fil.ion.ucl.ac.
uk/spm/). Specifically, the data were smoothed with a Gaussian kernel of
6-mm full-width half maximum (FWHM) and no low-pass filtering was
used as it might reduce signal strength and sensitivity. No global signal
regression was used, for it may cause anticorrelation artifacts by shifting
the distribution of FC toward negative values (Murphy et al., 2009; Chai
et al., 2012). To reduce the influence of non-neuronal confounds, eigen-
values were extracted from blood oxygen level-dependent (BOLD) sig-
nals within CSF and white matter template masks and were regressed
out from target signals during statistical testing.

Activation studies
Whole-brain activation was estimated using the standard SPM general
linear model (GLM) approach. For the individual-level GLM, the main
regressors for task effect were constructed by convolving the
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hemodynamic response function (HRF) which codes the BOLD signal,
with the event-related boxcar function which codes the sustained brain
activation from a stimulus onset to a motor response (for correctly
responded trials). The main effects of the two conditions, i.e., difficult
(2-back or relational) and easy (0-back or match) conditions, were mod-
eled as different regressors. Covariates of the non-neuronal nuisance
such as the signals from CSF and white matter, block effects and 6 move-
ment regressors were also specified to be regressed out. Based on the
GLM, contrasts of difficult . easy and of easy . difficult were used to
reveal activated and deactivated regions. Group-level GLMs were then
constructed to test the significance of the brain activation in the popula-
tion level, with age and sex as covariates.

Selection of regions of interest (ROIs)
We were interested in the functionality of the PCu during attentional
demanding goal-directed tasks; therefore, ROIs were selected based on
our activation results from the N-back and RP tasks. Both activated and
deactivated PCu regions associated with increased level of difficulty of
the tasks were considered. To ensure the PCu region that we are consid-
ering is actually part of the DMN, we also superimposed it on the DMN
canonical mask as defined by the Conn network atlas (Whitfield-
Gabrieli and Nieto-Castanon, 2012). The seed regions were selected by
computing the spatial intersection of (1) the significant cluster (exceed-
ing the cluster-level family wise error (FWE)-corrected p of 0.05)
from activation contrasts in the task; (2) the PCu as defined by the re-
gional atlases (i.e., Oxford-Harvard cortical atlases) implemented in
the Conn toolbox (https://www.nitrc.org/frs/shownotes.php?release_
id=2823); and (3) the DMN spatial localization identified by the
Conn network atlas. For task-state and task-related FC (tsFC and
trFC) analyses which were conducted independently for each task,
the seeds were generated independently for the N-back and the RP
task, given their activation profiles in the corresponding task.
Timeseries (i.e., the first eigenvectors) were extracted from seed
regions during the course of the experiment for each of the tasks.
When task data were not used, i.e., for SC and resting-state FC (rsFC)
analyses, the spatial localization of the seeds was confined by the
common activation between the two tasks; hence, the seeds were con-
structed by computing the overlap between the PCu seeds from the
two tasks.

Resting-state seed-based FC of v/dPCu
Using SPM12, we calculated the FC as the correlation coefficient from
the GLM estimation. We used the timeseries (first eigenvector) extracted
from the seed regions (v/dPCu) as the covariate to regress against the
signals from the rest of the brain, while controlling for the effect of non-
neuronal confounds (estimated from white matter and CSF) and head
movements. Baseline FC and differences between the FC of the v/dPCu
at the group level were estimated with one-sample and paired t tests.

SC of v/dPCu
The acquisition, preprocessing the dMRI images from the HCP and the
generation of diffusion tensor maps has been detailed in published
articles (Sotiropoulos et al., 2013). Based on the diffusion tensor images
we built probabilistic tractography in FSL5 (https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/FDT). The SC matrix for each individual was obtained using
vPCu and dPCu as the seed and the gray matter as the termination
mask. Each entry in the connectivity matrix stands for the number of
streamlines (out of 5000) from each voxel of the seed map (vPCu or
dPCu) that had a 50% chance or greater of reaching the gray matter
(curvature threshold= 0.2), which was also corrected for the distance/
length of the pathways. A seed’s SC to the gray matter was calculated by
averaging the streamline connections from all the voxels of the seed,
which was then projected to a standard MNI brain space for further sta-
tistical parametric mapping analyses in SPM12. Similar to FC analyses,
baseline and difference of the SC of the dPCu and vPCu at the group
level were calculated with one-sample and paired t tests. The brain maps
of the statistical parametric values for each ROI were then smoothed
with a Gaussian kernel of 6-mm FWHM.

Task-state seed-based FC of v/dPCu
Task-state FC (tsFC) was derived based on partial correlations of the
timeseries between the seed and the rest of the brain, after controlling
for the effects of the event-related BOLD response (boxcar experiment
design convolved with the canonical HRF; boxcar function was used for
assuming sustained brain activation from the stimulus onset to motor
reaction) weighted by contrasts, as well as other non-neuronal con-
founds (i.e., block effects, head movement regressors, CSF and WM
timeseries) during the course of the experiment.

We measured the tsFC not only because it can provide additional in-
formation about functional coupling during tasks, but also because it
can complement the subsequent psychophysiological interaction (PPI)
analyses. The PPI measures relative changes of FC strength regardless of
its baseline being negative or positive. This can cause ambiguity for
understanding the PPI result especially when the FC of DMN regions is
under investigation, since the DMN is widely known as being anticorre-
lated with task-associated regions. A simple solution is to measure the
FC during tasks which serves as a FC baseline on which the task-induced
modulation will have an effect on, then we can interpret the PPI results
based on the valence of the FC.

However, a simple correlation of BOLD signals as measured in the
resting state might not be appropriate, because on an input of a stimulus,
there might be an increase of overall blood oxygenation in the relevant
regions. The correlation of these regions would be a result driven by the
third party, i.e., the external stimuli; rather than being directly correlated
in their timeseries. Therefore, to establish the “true” FC during the pe-
riod of task, we examined the partial correlation independent of event-
related BOLD activation during the course of the experiment, which
actually follows the same logic of the PPI modeling. Conveniently, the
resulted positivity in the value of tsFC can further facilitate the interpre-
tation of the task-induced modulations on the FC that will be measured
in the subsequent PPI analysis.

PPIs
PPI was used to evaluate by what amount the cognitive variables during
tasks upregulate or downregulate the FC between the seed region and its
functionally coupled regions.

The implementation of the PPI was similar to the above seed-based
FC during tasks, but additionally the GLM model included an interac-
tion term, i.e., a new variable created by dot multiplying the HRF-con-
volved boxcar function associated with the task events and the seed’s
timeseries. Individual-level PPIs were estimated separately for the N-
back and the RP task. As the PPI reveals the FC that can be modulated
by the task variables, we called it trFC in this article.

We first conducted PPI analyses independently for the two tasks and
we observed a common pattern of the trFC between the N-back and the
RP tasks. We then focused on the common pattern by averaging the
individual-level trFC between the two tasks, and we conducted another
group inference based on the individual averaged b values.

The two tasks were considered together when examining the trFC’s
behavioral relevance. To do that, in the group-level GLM, the trFCmeas-
ured by individual-level PPIs were modeled as the dependent variable,
with the individuals’ reaction time (RT) difference between two condi-
tions as the main regressor, with the individuals’ age, sex and task iden-
tity as covariates of no interest. As the two tasks were performed by a
same group of people, the GLM effectively adopts a repeated-measure
ANCOVA design, with “RT” and “tasks”, respectively, as the continuous
and categorical independent variables. As a result, the main effect of the
RT was examined while being adjusted for the “session” effect (the data
for the two tasks were acquired in different scanning sessions).

Anatomical labels and ICN identification based on significant clusters
To make inferences about the cognitive function of significant regions,
we used the functionally defined ICN-BM network atlas (https://www.
nitrc.org/projects/ICN_atlas/) for identifying the ICNs involved in the
two tasks. The advantage of using the ICN-BM atlas was that the nomen-
clature used in the atlas not only corresponds to the well-known canoni-
cal resting-state connectivity networks, but also to task-based co-
activation networks which were generated from a meta-analyses using
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the BrainMap (BM) dataset (Smith et al., 2009; Cole et al., 2016). This
robust correspondence between ICNs and cognitive functions allowed
us to make inverse inferences, that is to infer implicit cognitive processes
from engaged brain areas.

We used the MATLAB-based ICN_atlas toolbox to determine each
significant cluster’s region/ICN correspondence by rating their spatial
overlaps with the predefined regions/ICNs (Smith et al., 2009; Laird et
al., 2013; Cole et al., 2016; Ito et al., 2017; Kozák et al., 2017). When
reporting the PPI result, we also applied the same strategy to establish
the correspondence of the Conn atlas and the ICN-BM atlas for visualiz-
ing both the seed-based FC regions (defined by the Conn atlas) and the
ICNs they belong to.

The spatial overlap reported in the main article was calculated as the
ratio of the number of activated voxels over the region/ICN volume
which the voxels belong to (Eq. 1; Kozák et al., 2017).

Ii ¼ jSPMt\ICNij
jICNij : (1)

Besides the activation maps and their associated ICN domains shown
in the main text, we also report significance tables with detailed coordi-
nates in the online repository: https://github.com/Aubrey-Lyu/data-
analysis_Project_HCP_diffPCu/blob/main/group_results/Significance_
tables.pdf. For identifying the anatomic regions based on the coordi-
nates, we adopted the toolboxes of GingerALE (http://brainmap.org/ale/)
and Talairach Daemon (http://www.talairach.org/daemon.html) where
the Brodmann areas were identified from.

Group analysis and multiple-comparison correction
For all statistical parametric mapping analyses, random factor effects
(RFXs) were used (random effect being the intercept of within-subject
GLM fitting) and inferences were made at the group level to allow gener-
alization to the population. For the group level inference, individual
weighted b coefficient maps were fed into a one-sample t test that tested
for the significance of group means of the factor of interest. The multiple
comparison problem was dealt using cluster-extent thresholding within
the Gaussian random field framework (Brett et al., 2003) implemented
in SPM. Clusters were usually defined by a default primary voxel thresh-
old of 0.001 (uncorrected). However, more stringent voxel-level thresh-
olds were sometimes used because the statistical power in this study was
very high and the conventional cluster-forming threshold of p
uncorrected = 0.001 resulted in, in some occasions, clusters that were too
extensive to be anatomically meaningful. In such cases, it has been sug-
gested in the previous literature to use more stringent voxel-level thresh-
old for making sensible inferences (Woo et al., 2014). Detailed threshold
values used in this article for determining significant clusters as well as
the significance statistics are reported in the result tables that we made
accessible online (https://github.com/Aubrey-Lyu/data-analysis_Project_
HCP_diffPCu/blob/main/group_results/Significance_tables.pdf). The FWE
rate was controlled at the cluster level, and a threshold of p corrected ,
0.05 was used to determine the significance among clusters.

DCM specification
DCM is a generative model in a Bayesian framework for inferring
hidden neuronal states from observed fMRI measurements. The
causal influence estimated from the DCM is neurobiologically inter-
pretable and describes the effect on the strength, or the rate of change,
of synaptic connections among neuronal populations, as well as their
context-sensitive modulation on external perturbation during tasks
(Stephan et al., 2010). Using SPM12, our DCM model specified the
endogenous connectivity between vPCu and dPCu to be bi-direc-
tional; and on top of that we modeled all possible configurations of
how the task difficulty might influence the endogenous connectivity
(Table 1). Since DCM is a generative model, it has to make assump-
tions about local neural populations in each region, and to this end,
there are different kinds of neural mass models to choose from. In
one-state models, each region is assumed to be composed of only sin-
gle-state neurons, whose activity decays following a perturbation by

exogenous input or incoming connections. In two-state models, each
region is composed of both excitatory and inhibitory neural popula-
tions, the interaction of which can generate more complex dynamics
(Marreiros et al., 2008). And stochastic models, compared with deter-
ministic models, take into account neural noise for the local neural
mass model (Daunizeau et al., 2012).

Our focus was on the directionality of connectivity at the regional
level; therefore, we compared model structures representing all four
combinations of how the two conditions (difficult vs easy) effected the
mutual directional connectivity between v/dPCu. Based on that, both of
the one-state, deterministic (the default) and the two-state, stochastic
DCM class were used for modeling local neural dynamics.

DCM estimation
To determine the most likely model structure, we applied a fixed factor
effect (FFX) Bayesian model selection (BMS) procedure to all 11 models
estimated across all participants independently for the N-back and the
RP task. The FFX model was used as opposed to a RFX, because we
hypothesized the mechanism to be general across all subjects. Finally,
the model with the highest model evidence was selected over others.
Model evidence is the probability of obtaining the observed data given a
particular model (Stephan et al., 2009).

Upon the selection of the best model structure, individuals’ effec-
tive connectivity (EC) parameters were then correlated with their be-
havioral performance. To do so, linear regressions were conducted
to probe the relationship between the RT and modulation of EC in-
dependently for the EC from dPCu to vPCu and the EC from vPCu
to dPCu, with confounding covariates of age, sex and the mean activ-
ity of the vPCu and dPCu during tasks. The modulatory effect of task
demand was estimated as the DCM parameters in the B matrix
(Zeidman et al., 2019; https://www.fil.ion.ucl.ac.uk/spm/doc/spm12_
manual.pdf). These parameters and RTs were logarithmic trans-
formed to be more normally distributed.

Results
The DMN during tasks: a meta-analytic perspective
We first ascertained that the posteromedial DMN is indeed
involved during goal-directed tasks, as findings regarding
DMN’s involvement during tasks are still disputed (Fransson,
2006). We conducted a meta-analysis with the latest NeuroSynth
database, using a text-based filter (“attentionp or executp”) to
search for tasks that require either attention or executive process-
ing or both (since the two cognitive processes are hardly separa-
ble in practice), which yielded 1219 fMRI studies. Using the
forward-inference estimation, we found that a large portion of
the DMN (1667 voxels) was associated with these tasks (Fig. 1A),
with significant clusters (Z. 4) located at the PCu and AnG. In
contrast, the reverse-inference estimation only revealed 68 voxels
in DMN regions (Fig. 1B). We acknowledge that NeuroSynth
meta-analyses do not differentiate between activation and deacti-
vation but based on previous literature which has shown PCu

Table 1. The v/dPCu divisions resulted from the activated/deactivated clusters
in the N-back and RP tasks

dPCu
Coordinate Cluster size p(cFWE-corr)

RP task �4 �72 38 241 0.002
N-back task 8 �66 52 2175 0.000

vPCu
Coordinate Cluster size p(cFWE-corr)

RP task �8 �60 18 216 0.005
N-back task �8 �60 14 1547 0.000

The dPCu and vPCu were identified as the regions responsive to different cognitive load (the dPCu was acti-
vated while the vPCu was deactivated by an increased cognitive demand in difficult vs easy conditions). The
N-back task provided a statistically stronger demonstration (larger significant clusters) of this, possibly
because the task had more trials, i.e., bigger sample size (80 trials in the N-back, vs 27 in the RP task).
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and AnG involvement in cognitive processing, we believe
what we see here is that these tasks employ posterior DMN
regions, yet their activation is so pervasive among all kinds of
tasks that cannot be exclusively associated with the specified
goal-directed tasks. The meta-analysis result indicates a do-
main-general role for posterior DMN areas which may serve
cognitive demands by providing contextual information
(Smith et al., 2021).

To capture more detailed statistical relationships of the inter-
network interaction during task execution, we selected two fMRI
paradigms (100 young healthy participants) from the HCP data-
set. The tasks we chose were the N-back task and the RP task,
which have attention-demanding, goal-directed features, and
engage similar cognitive domains at two difficulty levels (N-back:
2-back. 0-back conditions, RP: RP . matching conditions).
The two tasks afforded us the possibility of inferring the brain’s
response to varying cognitive demands regardless of the specific
cognitive content (working memory or RP in this study), thus
indicating that the statistical relationship we picked up may be
generalizable to other tasks when high-level cognitive effort is
involved. As a sanity check for both tasks, the accuracy rate (N-

back task: t=2.44, p=0.02; RP task: t= 8.80, p= 0.00) was signifi-
cantly higher in the easy than difficult conditions, and RTs were
significantly shorter (N-back task: t=10.58, p= 0.00; RP task:
t= 10.02, p=0.00), suggesting that the cognitive load in difficult
conditions was indeed higher than in easy conditions. To avoid
task-irrelevant cognitive confounds, we only included trials with
correct responses for further statistical analyses.

The activation result showed that most of the task-
induced activations corresponding to more difficult condi-
tions were located in cognitive control regions, while the
deactivated areas were found in the DMN (Fig. 1C,D).
However, significant activations were also found in the AnG
and the PCu, which are assigned to the DMN by the two
brain atlases (from two independent studies) that we
adopted in this study [see Materials and Methods: Selection
of regions of interest (ROIs) and Anatomical labels and ICN
identification based on significant clusters]. As a result, for
both tasks, the PCu was consistently differentiated into dor-
sal and ventral parts (dPCu, vPCu; Table 1; Fig. 2), which
were, respectively, more active during higher and lower cog-
nitive demand conditions.

Figure 1. Meta-analysis and univariate analysis shows DMN engagement during the two tasks. A, B, NeuroSynth meta-analysis results, using “attentionp” or “executp” as keywords to search for
goal-directed tasks that require attention and executive function. A, Forward inference shows the DMN subregions that are active in the tasks. The forward inference map is produced by calculating the
convergence of brain regions most consistently activated by certain cognitive processes. B, Reverse inference shows that not many DMN regions are specifically associated with these tasks. The reverse in-
ference map is calculated as the likelihood of a search term being used in a study given the presence of reported activation, and it reflects the brain activation specific to a certain cognitive process
(Yarkoni et al., 2011). C, D, Activation of posterior DMN regions is associated with the N-back and RP task. Warm/cold regions in the brain heatmap indicate higher/lower activity in the difficult condition
compared with the easy condition. For panels A, B, standardized Z scores and for panels C, D, T scores indicating activation strength are provided with color scales. For highlighting activation in relation to
the DMN, 3D renderings of the DMN are shown in shaded gray, on which our activated regions are superimposed. This was constructed by superimposing the Z score maps (with the cutoff of 3) and T
scores (of significant clusters with p(cFWE-corr), 0.05), with the DMN atlas (as defined by the Conn network atlas). To highlight the posteromedial cortex clusters identified from the activation studies,
we also provide sagittal views, where we only show the significant clusters within the DMN.

9948 • J. Neurosci., December 1, 2021 • 41(48):9944–9956 Lyu et al. · The Precuneus Mediates Information Integration



Differential connectivity between v/dPCu and ICNs
To explore further the differential network associations of the
dorsal and ventral aspects of the PCu, we next focused on the d/
vPCu’s connectivity, including structural, resting-state, task-state
and task-related connectivity. As a sanity check, before we con-
trasted the whole-brain maps of the d/vPCu’s SC, we compared
the global average strength of the d/vPCu whole-brain SC, which
was shown to not be significantly different by a paired t test
(t=0.90, p= 0.37). Hence, we could interpret the v/dPCu SC
contrasts as reflecting the difference of the regional connectivity
densities between the v/dPCu. In addition, we also measured the
baseline rsFC to show that for our dataset both of the v/dPCu’s
FC is mainly located within the DMN during rest (Additional
information regarding this result can be found in: https://github.
com/Aubrey-Lyu/data-analysis_Project_HCP_diffPCu/blob/main/
research_paper___Precuneus_SI.pdf (Figure 1. Resting-state seed-
based FC of the d/vPCU. Figure 2. Spatial localization of the dPCu (a)
and vPCu (b) with respect to the canonical DMN.)), which conforms
to the broader definition of the DMN (Raichle, 2015).

By contrasting between the connectivity of the two seeds, we
demonstrated that there are regional differences both in the SC
and rsFC between the vPCu and dPCu, which follow the pattern
of internally and externally oriented cognitive function, accord-
ing to our task-based coactivation network atlas. Specifically, by
comparing the vPCu and dPCu’s whole-brain SC, we found that
the vPCu is more connected with the vmPFC, ACC and hippo-
campus, which are often implicated in value encoding, emotion,
interoception and episodic memory (Pessoa, 2008; Euston et al.,
2012; Chudasama et al., 2013; Gu et al., 2013), while the dPCu is
more connected with regions in cognitive control networks that
are associated with executive, attentional control and goal-
directed behavior (Fig. 3A). We also found similar differentiation
in rsFC of the d/vPCu (Fig. 3B).

To establish whether the differential network associations
between the d/vPCu also hold for a task-engaged brain, we next
compared the d/vPCu’s FC patterns during tasks by computing
the so-called endogenous tsFC, i.e., the correlation of timeseries
throughout the course of the two tasks, after regressing out the
stimuli-evoked activation. Despite being regressed out, there

might be residuals from the activation effect. However, we are
interested in the difference between the d/vPCu connectivity:
since the activation effect is modeled the same way for both
seeds; should residuals exist, they would be contrasted off by
comparing between the d/vPCu’s tsFC (see more details in
Materials and Methods: Task-state seed-based FC of v/dPCu). Again,
we found similar patterns of differential connectivity between the
v/dPCu with the IoN and the EoN (Fig. 3C). Notably, unlike the
SC and rsFC results, where the visual network was more strongly
connected with the vPCu compared with dPCu, the tsFC between
the dPCu and visual networks were stronger instead. As both of
the tasks we used were based on visual information, the tsFC
contrast result suggested that the dPCu was more engaged in inte-
grating incoming information from the external world during tasks.

Cognitive demands modulate the effective coupling between
the d/vPCu and IoN/EoN
The connectivity profiles of the d/vPCu as established so far sug-
gest that the PCu overall has the structural framework necessary
to serve as a platform connecting internal and externally related
information. To confirm that this is cognitively relevant, we inves-
tigated whether d/vPCu connectivity during tasks is modulated
by cognitive load and whether this modulatory effect is correlated
with task performance. We therefore investigated the PPI effect
and its relationship with the participants’ behavioral performance.

PPI is a GLM with an interaction effect that allows us to
investigate differences in FC between two experimental condi-
tions (see Materials and Methods, PPIs). We call such FC that
tracks variable cognitive demand trFC. Using PPI, we found that
as cognitive demand increased, trFC increased between the vPCu
and IoN and between the dPCu and EoN. However, when the
cognitive demand was low the trFC association was reversed
(Fig. 4). In other words, the dPCu was more connected to visual
and motor networks in difficult (vs easy) conditions, and more
connected to DMN regions in easy (vs difficult) conditions. On
the contrary, the vPCu was more connected to the rest of the
DMN and interoceptive regions in difficult (vs easy) conditions,
and more connected with visual and primary sensory networks
in easy (vs difficult) conditions (Fig. 4C).

Figure 2. Seed derivation for the connectivity analyses. Task-specific seeds for FC and EC during tasks were derived by overlapping activation maps from either the N-back or RP task, and
the DMN and PCu masks from the Conn network and regional atlases. Analysis for each task was conducted independently. For task-independent structural FC and rsFC, the PCu seeds (d/vPCu)
were defined as the spatial intersection of the activated or deactivated clusters in both tasks, the DMN and the PCu masks.
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In order to rule out the possibility that the reversed modula-
tion of the v/dPCu’s FC might be because of a spurious statistical
relationship created by the anticorrelation between the two, we
conducted a follow-up investigation and found the timeseries

of vPCu and dPCu were positively correlated throughout the
experiment (Pearson-correlation coefficient is 0.25 for the N-
back task and 0.27 for the RP task). Therefore, the reversed mod-
ulation of the seed-network associations cannot be explained by

Figure 3. Whole-brain contrasts of the connectivity between dPCu and vPCu. SC is in A, rsFC in B, and tsFC in C. tsFC was calculated as a partial correlation, controlling for the effect of
event-related BOLD signals (i.e., disregarding the apparent correlation caused by stimulus-driven activity). T scores for the statistical effect of the connectivity difference are mapped out on the
3D brain reconstructions. Hot colors represent areas that demonstrate stronger connectivity with the dPCu than with the vPCu, and vice versa for the cold colors. Circular wedge plots to the left
and right are a representation of ICN spatial involvement, i.e., show voxel overlap between canonical ICNs and the connectivity results. The canonical ICNs are defined by the ICN-BM atlases
from the ICN_atlas toolbox (Kozák et al., 2017). Cognitive domains and descriptions of the ICN-BM atlases for the ICNs are also provided. The same color scheme for the (ICN-)BM atlases was
used throughout the article.
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the anticorrelation between the seeds, but rather reflected an op-
posite direction of modulatory effect.

Further, we found that the positive trFC between vPCu and
IoN, and between dPCu and EoN, are negatively correlated with
the increased RT that participants needed in the difficult (vs

easy) condition. Specifically, the trFC between the dPCu and
FPCN regions (including inferior frontal gyrus, medial frontal
gyrus and superior temporal gyrus) was significant in this analy-
sis as was the trFC between the vPCu and DMN regions (includ-
ing AnG, PCu, and precentral gyrus; Fig. 5). It is noteworthy that

Figure 4. PPI analyses for the two tasks revealed an inverse pattern of the trFC of the two seeds (dPCu and vPCu), which is common to both tasks. A, Functional seeds of the dPCu (red)
and vPCu (blue) in the N-back and the RP task, visualized from posterior (left), lateral (middle), and superior (right) perspectives. The two clusters (dPCu and vPCu) were shown to be significant
activated and deactivated, respectively, by increased task demand in the N-back and RP tasks, according to the previous activation studies. B, Illustration of the PPI statistical model, generated
from data of a randomly selected participant. As shown, the relationship between the seed region and the rest of the brain is dependent on the cognitive demands. C, The whole-brain T score
maps showed the PPI effect (trFC) for the reversed contrasts: difficult. easy and easy. difficult conditions, for the two seeds: d/vPCu, averaged across the N-back and RP tasks. Warm colors
on the brain maps indicate the regions whose FC with the seed is increased on an increased cognitive demand (difficult. easy), while cold colors indicate the regions whose FC with the seed
is decreased on an increased cognitive demand (easy. difficult). The circular wedge plots besides the brain heatmap indicate the ICN spatial involvement of the significant regions in the cor-
responding contrast, i.e., voxel overlap between canonical ICNs and the connectivity results. The canonical ICNs are defined by the ICN-BM atlases from the ICN atlas toolbox (Kozák et al.,
2017). Cognitive domains and descriptions of the ICN-BM atlases for the ICNs are provided below.
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trFC predicted task performance while the contrast-based activa-
tion did not.

The causal influence from dPCufivPCu and from vPCu
fidPCu was differentially modulated on low and high
cognitive demand
Our findings so far suggest that the v/dPCu are, respectively,
focused on internal and externally relevant information process-
ing. To obtain further evidence that the PCu is the brain region
where these two types of information get integrated, we explored
the directionality of information flow between the vPCu and
dPCu and its modulation by task demands.

To achieve this, we adopted the DCM framework which
infers evidence for causal connectivity between regions on

external perturbation during a task (Stephan et al., 2010).
According to our hypothesis, we specified 11 possible model
structures, based on how the task difficulty might modulate
causal connectivity between the vPCu and dPCu (Fig. 6). All of
the model structures have a recurrent structure of the endoge-
nous EC between dPCu and vPCu (i.e., the A matrix in the DCM
terminology), while the model comparisons were focused on the
exogenous EC in the B matrix, which specifies the modulation
(namely, the rate of change) of the EC because of experimental
conditions (Zeidman et al., 2019).

Bayesian model comparisons among the 11 models showed
that, for the micro-circuit neural model embedded in the DCM,
the bi-linear, one-state and deterministic model class was better
for fitting our data than the nonlinear, two-state and stochastic

Figure 6. Model comparison result suggesting that the causal influence from the dPCu to vPCu is modulated in easier conditions and then swapped from the vPCu to dPCu in more difficult
conditions. The first four rows/aspects of the model structure specified 11 DCM models. The first four DCMs that adopted “one-state,” “deterministic” neural mass model won over the “two-
state,” “stochastic” ones, according to the posterior probability at the group level (assuming an FFX). Among the “one-state,” “deterministic” DCMs, the third model wins over others with con-
sistently higher posterior probability and higher exceedance of model evidence.

Figure 5. Task modulation of the d/vPCu’s FC (i.e., trFC) from the PPI analysis is correlated with RT of correct responses. (A) and (B) respectively show that the trFC between dPCu and the
bilateral frontoparietal regions, and the trFC between the vPCu and the regions in the “interoceptive” network, are correlated with RT. ICN-BM involvement of the significant regions is demon-
strated using the ICN_atlas toolbox (also see Fig. 3). Scatter plots to the right depict the linear relationships between trFC and (relative) RT for the peak voxels.
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one (Marreiros et al., 2008), with an exceedance of log-evidence
(an indication of how good a model is by weighing the goodness
of data fitting against the model complexity).1� 1016 in the
N-back task and.5� 1016 in the RP task (Fig. 6). By comparing
the possible ways of how task difficulty modulated the directed
information flow we established two models which had higher
model evidence than the others: (1) the “exchange”model, which
specifies an EC modulation of dPCu !vPCu in the easy con-
dition and vPCu !dPCu in the difficult condition; (2) the
“forward” model, which specified the EC of dPCu !vPCu to
be modulated in both difficult and easy conditions. In the RP
task, the exchange model was identified as the single winning
model by the BMS (Fig. 6). Although in the N-back task the
forward model had higher posterior probability than the
exchange model by 0.3, the magnitude of its model evidence
did not allow us to draw a safe conclusion of favoring it over
the other model.

The behavioral relevance of the EC from vPCu to dPCu
In order to show that the reciprocal EC between d/vPCu was
behaviorally relevant, we did further statistical testing to examine
the relationship between the modulation of EC and the RT for
correct responses. Statistical testing was focused on the parame-
ters in the B matrix of the exchange model. The model structure
of the exchange model suggests the EC from dPCu to vPCu to be
upregulated by the cognitive requirement in the easy condition

and the EC from vPCu to dPCu to be upregulated by the cogni-
tive demand in the difficult condition. The extrinsic EC values in
the B matrix parameters (BE) indicate the modulation effects on
the above EC that are caused by the external cognitive bearing in
each condition (Zeidman et al., 2019).

The BE of vPCu !dPCu in difficult conditions was 0.005
(SD= 0.043, p=0.000), and the BE of dPCu !vPCu in easy con-

ditions was 0.07 (SD=0.039, p= 0.000),
both significantly higher than zero as
established by one-sample Wilcoxon
tests. The BE of vPCu!dPCu was signif-
icantly larger in the RP task than in the
N-back task (t=3.277, p=0.001), while
the EC of dPCu !vPCu was not differ-
ent between the RP and N-back task
(Table 2). The correlation between the
RT and the positive BE was examined for
the modulation effect on the EC (vPCu
!dPCu) in the difficult condition. The
regression line for these two variables has
a negative slope, suggesting that the
more the EC was strengthened on the
cognitive load, the quicker the RT
became. Despite this trend, the test was
not significant (t = –1.72, p=0.09 for the
N-back, and t = –1.05, p= 0.30 for the RP
task; see Fig. 7).

Additional information
Additional information regarding ex-
perimental descriptions for the task-
related fMRI data, seed-based FC of
the dPCu and vPCu during rest and
tasks, the correspondence between
brain region and network atlases, and
several validations of ICN involve-
ments in the d/vPCu’s trFC from the
PPI analysis can be found in: https://

github.com/Aubrey-Lyu/data-analysis_Project_HCP_diffPCu/
blob/main/research_paper___Precuneus_SI.pdf.

Discussion
The present study investigated the functional differentiation of
the posteromedial DMN and proposed a role for the PCu in
mediating external and internal information binding. We
showed that the PCu has differential connectivity with the rest of
the DMN and cognitive control networks. These are not an epi-
phenomenon of structural FC or rsFC, instead they track cogni-
tive demands in a working memory and a high-order RP task. In
addition, we found evidence for directed interactions from dPCu
to vPCu during easier cognitive conditions and from vPCu to
dPCu during more difficult conditions. Although the tasks we
chose were targeting specific cognitive domains, i.e., working
memory and RP, we focused on the common pattern of the
whole-brain connectivity, not only across the two tasks, but also
considered SC and rsFC. Instead of relying on the common prac-
tice of forward inference, by which we associate brain regions to
certain function based on task features; here we relied on reverse
inference (Hutzler, 2014), i.e., to infer implicit cognitive process-
ing during a task based on the brain regions involved, whose
function has been well characterized in the previous literature.
Reverse inference is considered appropriate here, because our

Table 2. Modulation of EC in different conditions during tasks

RP
(n= 98)

N-back
(n= 96)

Condition Difficult Easy Difficult Easy

EC direction vPCu !dPCu dPCu !vPCu vPCu !dPCu dPCu !vPCu
BE 0.0086 0.060 0.0116 0.054 0.0016 0.002 0.0026 0.003

Figure 7. Behavioral relevance of the (positive) modulation effect on the EC (vPCu !dPCu) caused by higher cognitive
demand during the N-back and RP tasks. Scatter plot depicts the relationship between the RT and BE (the modulation of EC) in
the logarithmic scale. Distributions of the data have also been presented at the scatter plot’s margins.
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experimental questions concern broad cognitive domains, i.e.,
internally or externally oriented cognition, and the DMN and
the FPCN/visual network have been well characterized in the lit-
erature as, respectively, internally and externally oriented.
Taking this into consideration, our results highlight a causal
interaction between the different information processing streams
of the d/vPCu for binding internal (e.g., self-related or high-level
stored information) and external (e.g., incoming environmental
stimuli) information.

Although previous work also hinted at the different roles in
the ventral and dorsal parts of the PCu, this is the first systematic
demonstration that the v/dPCu are, respectively, more closely
connected to IoN and EoN. A previous rsFC study showed that
the vPCu is functionally closer to the DMN, while the dPCu is
more coupled with the superior occipital lobe and cognitive con-
trol regions such as the superior parietal lobules (SPLs; Zhang
and Li, 2012). A SC study also showed that from dorsal to ventral
parts of the PCu, there is a spectrum of increasing connectivity
with DMN regions (such as hippocampus and mPFC) and
decreasing connectivity with sensorimotor, visual networks, thal-
amus and executive regions (such as SPL and prefrontal and pre-
motor areas; Cunningham et al., 2017).

In a previous task-based study, Leech and colleagues using a
dual N-back experiment found a functional differentiation
between the (deactivated) dorsal PCC and the (activated) ventral
PCC (Leech et al., 2011). The dorsal PCC in their study is close
to what we call vPCu in this study. This region (BA 31) lies in
the borders between BA 7 (PCu) and BA 23 (PCC) and has been
considered to be part of the PCu or PCC by different authors
(Cavanna and Trimble, 2006). Leech and colleagues identified
distinct FC patterns of ventral PCC and dorsal PCC, the former
not only decreasing its positive FC with the DMN but also reduc-
ing the negative FC with cognitive control networks (thus being
less integrated with the whole brain in general); on the other
hand, they found the dorsal PCC increased its connectivity with

both the DMN and cognitive control networks, in the difficult
versus easy contrast. Noticeably, we did not find any significant
negative FC for our PCu seeds. Non-neuronal noise is unlikely
the reason for our lack of anticorrelation here, because we have
taken rigorous measures to alleviate non-neuronal noise sources,
over and above the data-driven denoising utilised in the HCP
preprocessing pipeline. Furthermore, there have been studies
casting doubts on the nature of the anticorrelation between the
DMN and task-positive networks, suggesting that the anticorre-
lation diminishes when global signal regression is avoided or
high-frequency signals are considered (Caballero-Gaudes and
Reynolds, 2017; Craig et al., 2018).

A recent study probing the DMN’s role in auto-pilot behavior
suggested that via the connectivity between PCC/PCu and mid-
dle temporal lobe, the brain gains access to stored information
and utilises learnt rules to complete the task at hand (Vatansever
et al., 2017). Here, by using two levels of difficulty, we also found
that when more cognitive effort was needed, stored information
was employed. This manifested in the form of increasing connec-
tivity between the vPCu and other parts of the DMN and ele-
vated causal influence from the vPCu to dPCu; meanwhile, the
dPCu connected more with attentional systems dealing with
increased difficulty and lack of readily available answers.

We propose to interpret our series of findings through the
lens of the predictive coding theory (Friston, 2010; Tops et al.,
2014; Fig. 8). Accordingly, externally driven and internally
driven information are exchanged in the PCu and this process is
mediated by a “causal loop” between the PCu’s dorsal and ventral
subdivisions. By binding internal priors encoded in high-level
cortex (gradually shaped from previous experience) and external
representations from sensory cortices, the brain acts as Bayesian
machine to interpret ambiguous and quickly shifting environ-
mental cues.

The functional differentiation within the PCu may just be an
iceberg tip in terms of DMN characteristics. It has been

Figure 8. A conceptual predictive model centering at the posterior medial DMN. The posterior medial DMN behaves like a predictive system, with its dorsal part associated with an atten-
tional system (comprising FPCN regions such as the IPS and middle and lateral frontal cortices) and its ventral part associate with a reactive system (comprising regions such as anterior insula;
Tops et al., 2014). The connectivity from each module is derived from our studies, with the red lines indicating stronger connectivity in difficult conditions, and blue lines indicating stronger
connectivity in easy conditions. The (directed) connectivity pattern from our result suggests that external and internal information is exchanged by the reciprocal loop between the vPCu and
dPCu. This exchange of information might support the predictive coding theory which emphasizes that external information is always inferred (rather than simply being represented from a
bottom-up direction) based on an internal belief of the world (prediction).
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suggested in the previous literature that the DMN is a “transmo-
dal” region which encompasses several networks (Braga et al.,
2013; Braga and Buckner, 2017; Kernbach et al., 2018). In addi-
tion, the subregions of the DMN can take different roles in dif-
ferent tasks. For example, the AnG is for attentional control and
semantic comprehension (Seghier, 2013; Lambon-Ralph et al.,
2017; Lyu et al., 2019), ACC for value-based perception and error
detection (Fleck et al., 2006; Chudasama et al., 2013; Monosov,
2017) and hippocampus for memory encoding (Bird and
Burgess, 2008) etc. However, the PCu’s function seems to have
an all-encompassing nature since it is activated under all kinds of
cognitive demand where other parts of DMN are employed
(Laird et al., 2009). Indeed, graph theoretic analyses on the
human brain connectome have suggested that the PCu is the
central hub of brain connectivity (Tomasi and Volkow, 2011;
van den Heuvel and Sporns, 2013). The PCu, besides the DMN,
has also been found to be most closely connected to the thalamus
(Cunningham et al., 2017). At this brain connectivity hub, infor-
mation from all sources converges, endowing a narrative con-
struction of reality: it have also been shown that during
movie watching the temporal pattern of the PCu’s activity,
compared with other brain regions, can track event boun-
daries of changing scenes in the most abstract level
(Baldassano et al., 2017). Based on previous work and our
current study, we believe the PCu is central for linking the
function of the DMN subdivisions, thus playing a key role
in integrating the brain’s information flow from all sources.

Although the PCu was our focus in this study, it is not the
only DMN subregion that demonstrates a functional fragmenta-
tion. We also observed a similar functional differentiation in the
AnG’s activation pattern, but only in the N-back task. Evidence
also comes from previous studies which have discussed the acti-
vation patterns of the DMN subregions, such as the mPFC
(Bzdok et al., 2013; Kuzmanovic et al., 2018), the IPL (Igelström
and Graziano, 2017), the PCC (Leech et al., 2011), and the PCu
(Cavanna and Trimble, 2006). Taken together, the evidence sug-
gests that these regions may be functionally subdivided accord-
ing to a ventral-dorsal (or anterior-posterior) topographical
structure. We therefore postulate that the DMN might comprise
ventral/anterior and dorsal/posterior subdivisions that act as
interfaces between self (internal)-related and environmental-
related processing. Our study is agnostic about possible func-
tional subdivisions of other DMN regions besides the PCu, but
future studies should continue the exploration of the functional
differentiation between and within the DMN subregions. The
DMN has been postulated to be at the highest level of informa-
tion processing in the brain (Margulies et al., 2016) and has the
highest number of optimal inter-network connections in the
brain (Pappas et al., 2020), along with our findings presented
here, we propose that this topological division of internal and
external related functions may be a necessary consequence of de-
velopmental optimization of information processing. By con-
tinuing this line of investigation, we might gain important
insights into the brain’s functional organization.

References
Allen M, Friston KJ (2018) From cognitivism to autopoiesis: towards a com-

putational framework for the embodied mind. Synthese 195:2459–2482.
Baldassano C, Chen J, Zadbood A, Pillow JW, Hasson U, Norman KA (2017)

Discovering event structure in continuous narrative perception and
memory. Neuron 95:709–721.e5.

Barch DM, Burgess GC, Harms MP, Petersen SE, Schlaggar BL, Corbetta M,
Glasser MF, Curtiss S, Dixit S, Feldt C, Nolan D, Bryant E, Hartley T,

Footer O, Bjork JM, Poldrack R, Smith S, Johansen-Berg H, Snyder AZ,
Van Essen DC, et al. (2013) Function in the human connectome: task-
fMRI and individual differences in behavior. Neuroimage 80:169–189.

Barrett LF, Simmons WK (2015) Interoceptive predictions in the brain. Nat
Rev Neurosci 16:419–429.

Brett M, Penny W, Kiebel S (2003) An introduction to random field theory.
Human Brain Function, pp 867–879. Academic Press.

Bird CM, Burgess N (2008) The hippocampus and memory: insights from
spatial processing. Nat Rev Neurosci 9:182–194.

Braga RM, Buckner RL (2017) Parallel interdigitated distributed networks
within the individual estimated by intrinsic functional connectivity.
Neuron 95:457–471.e5.

Braga RM, Sharp DJ, Leeson C, Wise RJS, Leech R (2013) Echoes of the brain
within default mode, association, and heteromodal cortices. J Neurosci
33:14031–14039.

Bressler SL, Menon V (2010) Large-scale brain networks in cognition: emerg-
ing methods and principles. Trends Cogn Sci 14:277–290.

Bzdok D, Langner R, Schilbach L, Engemann DA, Laird AR, Fox PT,
Eickhoff SB (2013) Segregation of the human medial prefrontal cortex in
social cognition. Front Hum Neurosci 7:232.

Caballero-Gaudes C, Reynolds RC (2017) Methods for cleaning the BOLD
fMRI signal. Neuroimage 154:128–149.

Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional
anatomy and behavioural correlates. Brain 129:564–583.

Chai XJ, Castañón AN, Ongür D, Whitfield-Gabrieli S (2012) Anticorrelations
in resting state networks without global signal regression. Neuroimage
59:1420–1428.

Chudasama Y, Daniels TE, Gorrin DP, Rhodes SE, Rudebeck PH, Murray
EA (2013) The role of the anterior cingulate cortex in choices based on
reward value and reward contingency. Cereb Cortex 23:2884–2898.

Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE (2014) Intrinsic and
task-evoked network architectures of the human brain. Neuron 83:238–
251.

Cole MW, Ito T, Bassett DS, Schultz DH (2016) Activity flow over resting-
state networks shapes cognitive task activations. Nat Neurosci 19:1718–
1726.

Craig MM, Manktelow AE, Sahakian BJ, Menon DK, Stamatakis EA (2018)
Spectral diversity in default mode network connectivity reflects behav-
ioral state. J Cogn Neurosci 30:526–539.

Cunningham SI, Tomasi D, Volkow ND (2017) Structural and functional
connectivity of the precuneus and thalamus to the default mode network.
Hum Brain Mapp 38:938–956.

Daunizeau J, Stephan K, Friston K (2012) Stochastic dynamic causal model-
ling of fMRI data: should we care about neural noise? Neuroimage
62:464–481.

de Pasquale F, Della Penna S, Snyder AZ, Marzetti L, Pizzella V, Romani GL,
Corbetta M (2012) A cortical core for dynamic integration of functional
networks in the resting human brain. Neuron 74:753–764.

Demertzi A, Soddu A, Laureys S (2013) Consciousness supporting networks.
Curr Opin Neurobiol 23:239–244.

Elton A, Gao W (2015) Task-positive functional connectivity of the default
mode network transcends task domain. J Cogn Neurosci 27:2369–2381.

Euston DR, Gruber AJ, McNaughton BL (2012) The role of medial prefrontal
cortex in memory and decision making. Neuron 76:1057–1070.

Fleck MS, Daselaar SM, Dobbins IG, Cabeza R (2006) Role of prefrontal and
anterior cingulate regions in decision-making processes shared by mem-
ory and nonmemory tasks. Cereb Cortex 16:1623–1630.

Fletcher PC, Happé F, Frith U, Baker SC, Dolan RJ, Frackowiak RS, Frith CD
(1995) Other minds in the brain: a functional imaging study of “theory of
mind” in story comprehension. Cognition 57:109–128.

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Essen DCV, Raichle ME
(2005) The human brain is intrinsically organized into dynamic, anticor-
related functional networks. Proc Natl Acad Sci USA 102:9673–9678.

Fransson P (2006) How default is the default mode of brain function?: further
evidence from intrinsic BOLD signal fluctuations. Neuropsychologia
44:2836–2845.

Friston K (2010) The free-energy principle: a unified brain theory? Nat Rev
Neurosci 11:127–138.

Friston K (2012) The history of the future of the Bayesian brain. Neuroimage
62:1230–1233.

Friston K, Kiebel S (2009) Predictive coding under the free-energy principle.
Philos Trans R Soc Lond B Biol Sci 364:1211–1221.

Lyu et al. · The Precuneus Mediates Information Integration J. Neurosci., December 1, 2021 • 41(48):9944–9956 • 9955

https://www.ncbi.nlm.nih.gov/pubmed/28772125
http://dx.doi.org/10.1016/j.neuroimage.2013.05.033
https://www.ncbi.nlm.nih.gov/pubmed/23684877
http://dx.doi.org/10.1038/nrn3950
https://www.ncbi.nlm.nih.gov/pubmed/26016744
http://dx.doi.org/10.1038/nrn2335
https://www.ncbi.nlm.nih.gov/pubmed/18270514
https://www.ncbi.nlm.nih.gov/pubmed/28728026
http://dx.doi.org/10.1523/JNEUROSCI.0570-13.2013
https://www.ncbi.nlm.nih.gov/pubmed/23986239
http://dx.doi.org/10.1016/j.tics.2010.04.004
https://www.ncbi.nlm.nih.gov/pubmed/20493761
http://dx.doi.org/10.3389/fnhum.2013.00232
https://www.ncbi.nlm.nih.gov/pubmed/23755001
https://www.ncbi.nlm.nih.gov/pubmed/27956209
http://dx.doi.org/10.1093/brain/awl004
https://www.ncbi.nlm.nih.gov/pubmed/16399806
http://dx.doi.org/10.1016/j.neuroimage.2011.08.048
https://www.ncbi.nlm.nih.gov/pubmed/21889994
http://dx.doi.org/10.1093/cercor/bhs266
https://www.ncbi.nlm.nih.gov/pubmed/22944530
http://dx.doi.org/10.1016/j.neuron.2014.05.014
https://www.ncbi.nlm.nih.gov/pubmed/24991964
http://dx.doi.org/10.1038/nn.4406
https://www.ncbi.nlm.nih.gov/pubmed/27723746
http://dx.doi.org/10.1162/jocn_a_01213
http://dx.doi.org/10.1002/hbm.23429
https://www.ncbi.nlm.nih.gov/pubmed/27739612
http://dx.doi.org/10.1016/j.neuroimage.2012.04.061
https://www.ncbi.nlm.nih.gov/pubmed/22579726
http://dx.doi.org/10.1016/j.neuron.2012.03.031
https://www.ncbi.nlm.nih.gov/pubmed/22632732
http://dx.doi.org/10.1016/j.conb.2012.12.003
https://www.ncbi.nlm.nih.gov/pubmed/23273731
http://dx.doi.org/10.1162/jocn_a_00859
https://www.ncbi.nlm.nih.gov/pubmed/26244722
http://dx.doi.org/10.1016/j.neuron.2012.12.002
https://www.ncbi.nlm.nih.gov/pubmed/23259943
http://dx.doi.org/10.1093/cercor/bhj097
https://www.ncbi.nlm.nih.gov/pubmed/16400154
http://dx.doi.org/10.1016/0010-0277(95)00692-R
https://www.ncbi.nlm.nih.gov/pubmed/8556839
http://dx.doi.org/10.1073/pnas.0504136102
https://www.ncbi.nlm.nih.gov/pubmed/15976020
http://dx.doi.org/10.1016/j.neuropsychologia.2006.06.017
https://www.ncbi.nlm.nih.gov/pubmed/16879844
http://dx.doi.org/10.1038/nrn2787
https://www.ncbi.nlm.nih.gov/pubmed/20068583
http://dx.doi.org/10.1016/j.neuroimage.2011.10.004
https://www.ncbi.nlm.nih.gov/pubmed/22023743
http://dx.doi.org/10.1098/rstb.2008.0300
https://www.ncbi.nlm.nih.gov/pubmed/19528002


Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson
JL, Xu J, Jbabdi S, Webster M, Polimeni JR, Van Essen DC, Jenkinson M;
WU-Minn HCP Consortium (2013) The minimal preprocessing pipe-
lines for the human connectome project. Neuroimage 80:105–124.

Gu X, Hof PR, Friston KJ, Fan J (2013) Anterior insular cortex and emotional
awareness. J Comp Neurol 521:3371–3388.

Hutzler F (2014) Reverse inference is not a fallacy per se: cognitive processes
can be inferred from functional imaging data. Neuroimage 84:1061–
1069.

Igelström KM, Graziano MSA (2017) The inferior parietal lobule and tem-
poroparietal junction: a network perspective. Neuropsychologia 105:70–
83.

Ito T, Kulkarni KR, Schultz DH, Mill RD, Chen RH, Solomyak LI, Cole MW
(2017) Cognitive task information is transferred between brain regions
via resting-state network topology. Nat Commun 8:1027.

Kernbach JM, Yeo BTT, Smallwood J, Margulies DS, de Schotten MT,
Walter H, Sabuncu MR, Holmes AJ, Gramfort A, Varoquaux G, Thirion
B, Bzdok D (2018) Subspecialization within default mode nodes charac-
terized in 10,000 UK Biobank participants. Proc Natl Acad Sci USA
115:12295–12300.

Kozák LR, van Graan LA, Chaudhary UJ, Szabó ÁG, Lemieux L (2017)
ICN_Atlas: automated description and quantification of functional MRI
activation patterns in the framework of intrinsic connectivity networks.
Neuroimage 163:319–341.

Kuzmanovic B, Rigoux L, Tittgemeyer M (2018) Influence of vmPFC on
dmPFC predicts valence-guided belief formation. J Neurosci 38:7996–
8010.

Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT (2009)
Investigating the functional heterogeneity of the default mode network
using coordinate-based meta-analytic modeling. J Neurosci 29:14496–
14505.

Laird AR, Eickhoff SB, Rottschy C, Bzdok D, Ray KL, Fox PT (2013)
Networks of task co-activations. Neuroimage 80:505–514.

Lambon-Ralph M, Jefferies E, Patterson K, Rogers TT (2017) The neural and
computational bases of semantic cognition. Nat Rev Neurosci 18:42–55.

Leech R, Kamourieh S, Beckmann CF, Sharp DJ (2011) Fractionating the
default mode network: distinct contributions of the ventral and dorsal
posterior cingulate cortex to cognitive control. J Neurosci 31:3217–3224.

Liu X, Li H, Luo F, Zhang L, Han R, Wang B (2015) Variation of the default
mode network with altered alertness levels induced by propofol.
Neuropsychiatr Dis Treat 11:2573–2581.

Lyu B, Choi HS, Marslen-Wilson WD, Clarke A, Randall B, Tyler LK (2019)
Neural dynamics of semantic composition. Proc Natl Acad Sci USA
116:21318–21327.

Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G,
Bezgin G, Eickhoff SB, Castellanos FX, Petrides M, Jefferies E, Smallwood
J (2016) Situating the default-mode network along a principal gradient of
macroscale cortical organization. Proc Natl Acad Sci USA 113:12574–
12579.

Marreiros AC, Kiebel SJ, Friston KJ (2008) Dynamic causal modelling for
fMRI: a two-state model. Neuroimage 39:269–278.

Monosov IE (2017) Anterior cingulate is a source of valence-specific infor-
mation about value and uncertainty. Nat Commun 8:134.

Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The
impact of global signal regression on resting state correlations: are anti-
correlated networks introduced? Neuroimage 44:893–905.

Pappas I, Craig MM, Menon DK, Stamatakis EA (2020) Structural optimality
and neurogenetic expression mediate functional dynamics in the human
brain. Hum Brain Mapp 41:2229–2243.

Perri CD, Bahri MA, Amico E, Thibaut A, Heine L, Antonopoulos G,
Charland-Verville V, Wannez S, Gomez F, Hustinx R, Tshibanda L,
Demertzi A, Soddu A, Laureys S (2016) Neural correlates of conscious-
ness in patients who have emerged from a minimally conscious state: a
cross-sectional multimodal imaging study. Lancet Neurol 15:830–842.

Pessoa L (2008) On the relationship between emotion and cognition. Nat
Rev Neurosci 9:148–158.

Raichle ME (2015) The brain’s default mode network. Annu Rev Neurosci
38:433–447.

Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman
GL (2001) A default mode of brain function. Proc Natl Acad Sci USA
98:676–682.

Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss
AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for
salience processing and executive control. J Neurosci 27:2349–2356.

Seghier ML (2013) The angular gyrus: multiple functions and multiple subdi-
visions. Neuroscientist 19:43–61.

Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N,
Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of
the brain’s functional architecture during activation and rest. Proc Natl
Acad Sci USA 106:13040–13045.

Smith V, Duncan J, Mitchell DJ (2021) Roles of the default mode and multiple-
demand networks in naturalistic versus symbolic decisions. J Neurosci
41:2214–2228.

Sotiropoulos SN, Jbabdi S, Xu J, Andersson JL, Moeller S, Auerbach EJ,
Glasser MF, Hernandez M, Sapiro G, Jenkinson M, Feinberg DA, Yacoub
E, Lenglet C, Van Essen DC, Ugurbil K, Behrens TEJ; WU-Minn HCP
Consortium (2013) Advances in diffusion MRI acquisition and process-
ing in the Human Connectome Project. Neuroimage 80:125–143.

Spreng RN, DuPre E, Selarka D, Garcia J, Gojkovic S, Mildner J, Luh W-M,
Turner GR (2014) Goal-congruent default network activity facilitates
cognitive control. J Neurosci 34:14108–14114.

Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian
model selection for group studies. Neuroimage 46:1004–1017.

Stephan K, Penny W, Moran R, den Ouden H, Daunizeau J, Friston K (2010)
Ten simple rules for dynamic causal modeling. Neuroimage 49:3099–3109.

Tomasi D, Volkow ND (2011) Functional connectivity hubs in the human
brain. Neuroimage 57:908–917.

Tops M, Boksem MAS, Quirin M, IJzerman H, Koole SL (2014) Internally
directed cognition and mindfulness: an integrative perspective derived
from predictive and reactive control systems theory. Front Psychol 5:429.

Utevsky AV, Smith DV, Huettel SA (2014) Precuneus is a functional core of
the default-mode network. J Neurosci 34:932–940.

van den Heuvel MP, Sporns O (2011) Rich-club organization of the human
connectome. J Neurosci 31:15775–15786.

van den Heuvel MP, Sporns O (2013) Network hubs in the human brain.
Trends Cogn Sci 17:683–696.

Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TEJ, Bucholz R,
Chang A, Chen L, Corbetta M, Curtiss SW, Della Penna S, Feinberg D,
Glasser MF, Harel N, Heath AC, Larson-Prior L, Marcus D, Michalareas
G, Moeller S, Oostenveld R, et al. (2012) The Human Connectome
Project: a data acquisition perspective. Neuroimage 62:2222–2231.

Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil
K; WU-Minn HCP Consortium (2013) The WU-Minn Human
Connectome Project: an overview. Neuroimage 80:62–79.

Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJF, Bruno MA, Boveroux P,
Schnakers C, Soddu A, Perlbarg V, Ledoux D, Brichant J-F, Moonen G,
Maquet P, Greicius MD, Laureys S, Boly M (2010) Default network con-
nectivity reflects the level of consciousness in non-communicative brain-
damaged patients. Brain 133:161–171.

Vatansever D, Menon DK, Manktelow AE, Sahakian BJ, Stamatakis EA
(2015) Default mode network connectivity during task execution.
Neuroimage 122:96–104.

Vatansever D, Menon DK, Stamatakis EA (2017) Default mode contributions
to automated information processing. Proc Natl Acad Sci USA
114:12821–12826.

Weissman DH, Roberts KC, Visscher KM, Woldorff MG (2006) The neural
bases of momentary lapses in attention. Nat Neurosci 9:971–978.

Whitfield-Gabrieli S, Nieto-Castanon A (2012) Conn: a functional connectiv-
ity toolbox for correlated and anticorrelated brain networks. Brain
Connect 2:125–141.

Woo CW, Krishnan A, Wager TD (2014) Cluster-extent based thresholding
in fMRI analyses: pitfalls and recommendations. Neuroimage 91:412–
419.

Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011)
Large-scale automated synthesis of human functional neuroimaging data.
Nat Methods 8:665–670.

Zeidman P, Jafarian A, Corbin N, Seghier ML, Razi A, Price CJ, Friston KJ
(2019) A guide to group effective connectivity analysis, part 1: first level
analysis with DCM for fMRI. Neuroimage 200:174–190.

Zhang S, Li CS (2012) Functional connectivity mapping of the human precu-
neus by resting state fMRI. Neuroimage 59:3548–3562.

9956 • J. Neurosci., December 1, 2021 • 41(48):9944–9956 Lyu et al. · The Precuneus Mediates Information Integration

https://www.ncbi.nlm.nih.gov/pubmed/23668970
http://dx.doi.org/10.1002/cne.23368
https://www.ncbi.nlm.nih.gov/pubmed/23749500
http://dx.doi.org/10.1016/j.neuroimage.2012.12.075
https://www.ncbi.nlm.nih.gov/pubmed/23313571
http://dx.doi.org/10.1016/j.neuropsychologia.2017.01.001
https://www.ncbi.nlm.nih.gov/pubmed/28057458
http://dx.doi.org/10.1038/s41467-017-01000-w
https://www.ncbi.nlm.nih.gov/pubmed/29044112
http://dx.doi.org/10.1073/pnas.1804876115
https://www.ncbi.nlm.nih.gov/pubmed/30420501
http://dx.doi.org/10.1016/j.neuroimage.2017.09.014
https://www.ncbi.nlm.nih.gov/pubmed/28899742
http://dx.doi.org/10.1523/JNEUROSCI.0266-18.2018
https://www.ncbi.nlm.nih.gov/pubmed/30104337
http://dx.doi.org/10.1523/JNEUROSCI.4004-09.2009
https://www.ncbi.nlm.nih.gov/pubmed/19923283
https://www.ncbi.nlm.nih.gov/pubmed/23631994
http://dx.doi.org/10.1038/nrn.2016.150
https://www.ncbi.nlm.nih.gov/pubmed/27881854
http://dx.doi.org/10.1523/JNEUROSCI.5626-10.2011
https://www.ncbi.nlm.nih.gov/pubmed/21368033
http://dx.doi.org/10.1073/pnas.1903402116
https://www.ncbi.nlm.nih.gov/pubmed/31570590
http://dx.doi.org/10.1073/pnas.1608282113
https://www.ncbi.nlm.nih.gov/pubmed/27791099
http://dx.doi.org/10.1016/j.neuroimage.2007.08.019
https://www.ncbi.nlm.nih.gov/pubmed/17936017
http://dx.doi.org/10.1038/s41467-017-00072-y
http://dx.doi.org/10.1016/j.neuroimage.2008.09.036
https://www.ncbi.nlm.nih.gov/pubmed/18976716
http://dx.doi.org/10.1002/hbm.24942
https://www.ncbi.nlm.nih.gov/pubmed/32027077
http://dx.doi.org/10.1016/S1474-4422(16)00111-3
http://dx.doi.org/10.1038/nrn2317
https://www.ncbi.nlm.nih.gov/pubmed/18209732
http://dx.doi.org/10.1146/annurev-neuro-071013-014030
https://www.ncbi.nlm.nih.gov/pubmed/25938726
http://dx.doi.org/10.1073/pnas.98.2.676
https://www.ncbi.nlm.nih.gov/pubmed/11209064
http://dx.doi.org/10.1523/JNEUROSCI.5587-06.2007
https://www.ncbi.nlm.nih.gov/pubmed/17329432
http://dx.doi.org/10.1177/1073858412440596
https://www.ncbi.nlm.nih.gov/pubmed/22547530
http://dx.doi.org/10.1073/pnas.0905267106
https://www.ncbi.nlm.nih.gov/pubmed/19620724
https://www.ncbi.nlm.nih.gov/pubmed/23702418
http://dx.doi.org/10.1523/JNEUROSCI.2815-14.2014
https://www.ncbi.nlm.nih.gov/pubmed/25319706
http://dx.doi.org/10.1016/j.neuroimage.2009.03.025
https://www.ncbi.nlm.nih.gov/pubmed/19306932
http://dx.doi.org/10.1016/j.neuroimage.2009.11.015
https://www.ncbi.nlm.nih.gov/pubmed/19914382
http://dx.doi.org/10.1016/j.neuroimage.2011.05.024
https://www.ncbi.nlm.nih.gov/pubmed/21609769
http://dx.doi.org/10.3389/fpsyg.2014.00429
https://www.ncbi.nlm.nih.gov/pubmed/24904455
http://dx.doi.org/10.1523/JNEUROSCI.4227-13.2014
https://www.ncbi.nlm.nih.gov/pubmed/24431451
http://dx.doi.org/10.1523/JNEUROSCI.3539-11.2011
http://dx.doi.org/10.1016/j.tics.2013.09.012
https://www.ncbi.nlm.nih.gov/pubmed/24231140
http://dx.doi.org/10.1016/j.neuroimage.2012.02.018
https://www.ncbi.nlm.nih.gov/pubmed/22366334
http://dx.doi.org/10.1016/j.neuroimage.2013.05.041
https://www.ncbi.nlm.nih.gov/pubmed/23684880
http://dx.doi.org/10.1093/brain/awp313
https://www.ncbi.nlm.nih.gov/pubmed/20034928
https://www.ncbi.nlm.nih.gov/pubmed/26220743
http://dx.doi.org/10.1073/pnas.1710521114
https://www.ncbi.nlm.nih.gov/pubmed/29078345
http://dx.doi.org/10.1038/nn1727
https://www.ncbi.nlm.nih.gov/pubmed/16767087
http://dx.doi.org/10.1089/brain.2012.0073
https://www.ncbi.nlm.nih.gov/pubmed/22642651
http://dx.doi.org/10.1016/j.neuroimage.2013.12.058
http://dx.doi.org/10.1038/nmeth.1635
https://www.ncbi.nlm.nih.gov/pubmed/21706013
http://dx.doi.org/10.1016/j.neuroimage.2019.06.031
https://www.ncbi.nlm.nih.gov/pubmed/31226497
http://dx.doi.org/10.1016/j.neuroimage.2011.11.023
https://www.ncbi.nlm.nih.gov/pubmed/22116037

	A Precuneal Causal Loop Mediates External and Internal Information Integration in the Human Brain
	Introduction
	Materials and Methods
	Results
	Discussion


