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Abstract

Large-scale dieback of ash trees (Fraxinus spp.) caused by the fungus Hymenoscy-

phus fraxineus is posing an immense threat to forest health in Europe, requiring

effective monitoring at large scales. In this study, a pipeline was created to find

ash trees and classify dieback severity using high-resolution hyperspectral ima-

gery of individual tree crowns (ITCs). Hyperspectral data were collected in four

forest sites near Cambridge, UK, where 422 ITCs were manually delineated and

labelled using field-measurements of species and dieback severity (for ash trees).

Four algorithms, namely linear discriminant analysis (LDA), principal compo-

nents analysis coupled with LDA (PCA-LDA), partial least squares discriminant

analysis (PLS-DA) and random forest (RF), were used to build classification

models for species and dieback severity classification. The effect of dark-pixel fil-

tering on classification accuracy was evaluated. The best performing models were

then coupled with automatic ITC segmentation to map species and ash dieback

distribution over 16.8 hectares of woodland. We calculated and partitioned the

coefficient of variation (CV) of the reflected ash spectra to find variable wave-

bands associated with dieback. PLS-DA and LDA were most accurate for classify-

ing ITC species identifies (overall accuracy >90%), whereas RF was most

accurate for classifying ash dieback severity (overall accuracy 77%). Dark pixel

filtering further increased the accuracy of species classification (+6%), but not

disease classification. The reflectances of narrow blue (415 nm), red-edge

(680 nm) and NIR (760 nm) bands had high CV across disease classes and

should be included if multispectral imagery were to be used to monitor ash die-

back. The study demonstrates the possibility of using remote sensing to forward

epidemiological research by monitoring forest pathogens in landscape scales,

which would allow temperate forest managers to control pathogen outbreaks,

assess associated impacts and restore affected forests much more effectively.

Introduction

Ash dieback currently poses an immense threat to forest

health in continental Europe and the British Isles (Baral

et al., 2014; McKinney et al., 2014). Caused by the asco-

mycete Hymenoscyphus fraxineus introduced from Far

East Asia, ash dieback has quickly spread in Europe since

its 1992 discovery in Poland (Drenkhan et al., 2017;

McKinney et al., 2014). Over 95% of European ash trees,

including the common European ash (Fraxinus excelsior),

are susceptible to infection (Enderle et al., 2019; McKin-

ney et al., 2014). The spread of H. fraxineus is mainly

caused by airborne ascospores, which germinate and enter

leaves through stomata, causing lesions to develop on

leaves, rachis and branches, eventually leading to crown

and tree death (Mansfield et al., 2018). The epidemic may

have serious repercussions for ash-dependent biota in

Europe, including at least 74 UK invertebrate species that

are associated with F. excelsior (Littlewood et al., 2015).

Efforts to mitigate the impacts of the pathogen focus on

finding trees with resistant genetic markers in natural

populations of ash such that resistant trees can be planted

back in affected forests (Pautasso et al., 2013). Conse-

quently, there is an urgent need to develop effective
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methods to identify healthy and diseased ash trees at the

landscape-scale, which will help epidemiologists and forest

managers effectively model, control, assess and mitigate

the epidemic.

In recent years, an increasing number of studies have

demonstrated the effectiveness of passive remote sensing

for monitoring forest pathogens over large areas, even

identifying infection even before visible symptoms appear

(Pietrzykowski et al., 2007; Waser et al., 2014; Zarco-

Tejada et al., 2018). The accuracy and specificity of detec-

tion achieved in a particular classification task depends

mainly on the resolution of images collected, type of ima-

gery used and analysis methods (Stone & Mohammed,

2017). Low-resolution multispectral imagery, such as

MODIS and Landsat, has been used for coarse-scale

detection of disease outbreaks (Housman et al., 2018),

but are unsuitable for detecting ash dieback. Ash trees

usually grow in mixed-species forests, where hetero-speci-

fics are also affected by a range of pests and pathogens,

including Dutch elm disease and acute oak decline

(Camilo-Alves et al., 2017; Karnosky, 1979), making it

necessary to monitor ash dieback at the scale of individ-

ual tree crowns (ITCs). More accurate results are likely to

be produced using high-resolution remote sensing data,

as hetero-specifics can be filtered out, through species

classification, before assessing ash dieback. Another

important aspect of such data is the spectral resolution of

the imagery. In particular, hyperspectral imagery, which

measures the reflectances of hundreds of narrow wave-

bands, captures fine biochemical details of plant foliage

(Asner et al., 2015), providing more information for

accurate plant pathogen detection than multispectral or

red-green-blue (RGB) imagery that measure reflectance in

only a few broader wavebands (Stone & Mohammed,

2017; Zarco-Tejada et al., 2018). Lastly, data processing

and analysis often greatly affect classification results

(Calder�on et al., 2015; Fassnacht et al., 2016; Waser et al.,

2014; Zarco-Tejada et al., 2018). For example Asner et al.

(2015) showed that discarding dark pixels from hyper-

spectral images before model-building improves the accu-

racies of classification tasks, and Lu and Weng (2007)

reviewed studies on image classification and found the

choice of model-building algorithms to have significant

effects on model performance.

Currently, no study has used hyperspectral imagery to

monitor H. fraxineus in mixed species forests in Europe.

We know of only one study that used remote sensing data

to develop models to monitor fungal ash dieback detec-

tion (Waser et al., 2014). The study used pan-sharpened

satellite multispectral images to detect ash dieback and

compared the performance of several parametric algo-

rithms, including principal components analysis (PCA)

and linear discriminant analysis (LDA) (Waser et al.,

2014). Another study on emerald ash borer in North

America suggests the benefits of using hyperspectral ima-

gery in similar classification tasks (Pontius et al., 2008).

Newer machine learning algorithms, such as random for-

est (RF), which have improved accuracies in many forest

classification tasks in previous studies (Fassnacht et al.,

2016; Stone & Mohammed, 2017), have never been

applied to fungal ash dieback detection. Additionally, the

effect of dark-pixel filtering on species and disease classifi-

cation accuracy has not been evaluated. Lastly, a system-

atic assessment of the wavebands important for disease

classification is also currently missing, despite previous

work suggesting that some regions of the spectrum, such

as the red-edge, might be more relevant to stress than

others (Horler et al., 1983).

This study aims to fill these research gaps by develop-

ing a method to monitor ash dieback using high-resolu-

tion hyperspectral imagery and achieve four major goals.

First, four different algorithms, including linear discrimi-

nant analysis (LDA), principal components analysis cou-

pled with LDA (PCA-LDA), partial least squares

differential analysis (PLS-DA) and random forest (RF),

are tested for their ability to classify tree crowns accord-

ing to species and ash crowns according to ash dieback

severity. Second, the study evaluates whether dark-pixel

filtering before model-building improves the accuracy of

species and disease classification. Third, the study combi-

nes species and ash dieback classification models with

automatic ITC segmentation to map species and ash die-

back distribution over thousands of trees. This tests

whether the models could produce species and dieback

maps at a landscape scale that are useful for epidemiolog-

ical research. Fourth, by partitioning the variation in the

reflected spectra of ash trees, the study identifies specific

wavebands important for less costly multispectral disease

detection. By doing so, we provide a new approach for

monitoring ash dieback in Europe that advances the

application of remote sensing in plant epidemiology.

Materials and Methods

Study site

The study was carried out in four forests near Cambridge,

United Kingdom, namely Madingley (UTM 31 N

298 443 mE 5 789 254 mN), Hayley (UTM 30 N

287 029 mE 5 783 351 mN), Gamlingay (UTM 30 N

282 142 mE 5 784 199 mN) and Bradfield woods (UTM

31 N 351 568 mE 5 783 559 mN). A map showing the

locations of the four sites can be found in Figure 1. The

vegetation of the four sites is mainly comprised of tem-

perate broadleaf deciduous species. Dominant species in

the canopy include oak (Quercus robur), ash (Fraxinus
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excelsior), hazel (Corylus avellana) and field maple (Acer

campestre). There are also notable presences of elm

(Ulmus spp.) in Madingley, common alder (Alnus gluti-

nosa) in Bradfield and silver birch (Betula pendula) in

both Hayley and Bradfield. All four forests have a long

history of management, creating a diverse mixture of old

growth and secondary forests (Bellamy et al., 2009; Rack-

ham, 1975; Rackham & Coombe, 1996). At the time of

the survey, the forests were affected by ash dieback to dif-

ferent extents. Among the four sites, Bradfield wood was

most severely affected; Madingley and Hayley woods con-

sist of a mixture of diseased and healthy trees; while ash

trees in Gamlingay were at early stages of infection. The

wide range of dieback severity makes the four study sites

ideal for studying ash dieback detection.

Field data

Field data were collected between July and September of

2018. In total, 422 trees were sampled, including 292 ash

trees and 130 trees of other species (Table S1). Only

overtopping trees clearly visible in high-resolution air-

borne RGB images were selected. Ash trees were chosen

to represent the full spectrum of dieback severities. Fol-

lowing the methods described in Pontius et al. (2008)

and Waser et al. (2014), the chosen ash trees were dis-

eased scored from 0 (symptomless) to 10 (dead) accord-

ing to the percentage of the crown showing symptoms.

The scores were later collapsed into a more robust three-

class system to increase the sample size, with trees scored

0–2 classified as healthy, 3–5 as infected and 6–10 as

severely infected. Healthy trees (0–2) had lush foliage

with occasional dead branches that could not be confi-

dently attributed to fungal ash dieback; infected trees (3–
5) had clear signs of infection, but still possessed a closed

canopy; while heavily infected trees (6–10) developed

open canopies as a result of fungal ash dieback. The loca-

tion of each crown was recorded using a differential GPS

(Geneq SXBlue II+) when reported geopositioning errors

were <2 m.

Figure 1. The RGB imagery and location of the four forest study sites. The top left panel shows the location of the sites relative to the outline of

Great Britain (Office of National Statistics, 2019). The top right panel shows the location of the sites relative to the Cambridge (OpenStreetMap

contributors, 2019).
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Remote sensing data

Remote sensing data were collected by 2Excel geo by a

manned aircraft (Piper PA-31 Navajo) flown across the

four study sites over two clear days in August 2018, when

deciduous trees had lush foliage. The aircraft was

equipped with a Norsk Elektro Optikk (NEO) hyperspec-

tral camera (Hyspex VNIR 1800) with a field of view of

17°. The hyperspectral data include reflectance at 186

bands spanning across the visible and near-infrared

regions of the spectrum (410–1001 nm) with a spectral

resolution of 3.26 nm and a spatial resolution of 0.32 m.

QUick Atmospheric Correction (QUAC), designed for

images collected over terrestrial systems, was used to

remove atmospheric effects from the dataset (Bernstein,

2012). To prevent differences in illumination level across

pixels from confounding the analysis, the hyperspectral

data were normalized by dividing the reflectances with

the average reflectance of all wavebands in the same pixel,

as suggested by Wu (2004). Additionally, 66 vegetation

indices (VIs), including both broadband and narrowband

indices, were calculated from the hyperspectral data based

on formulae in the Index DataBase (IDB) (Henrich et al.,

2009) (Table S2). The 66 VIs together with the reflec-

tances of the 186 wavebands yielded 252 predictor vari-

ables, which were used to train the classification models.

The aircraft also carried a Phase One Industries iXA80

camera, which collected RGB images of the sites with a

spatial resolution of 0.06 m. Using SimActive Correla-

tor3D, a photogrammetry software, digital surface models

(DSMs) of the four sites with a ground resolution of

0.34 m were generated from the RGB images. For Madin-

gley, the digital terrain model (DTM) was available from

the UK government (https://data.gov.uk/dataset/6a

117171-5c59-4c7d-8e8b-8e7aefe8ee2e/lidar-composite-

dtm-2017-1m). By subtracting the DTM from the DSM, a

canopy height model (CHM) representing tree heights

was created for the site.

Remote sensing data corresponding to the species-iden-

tified and disease-scored trees listed in Table S1 were

extracted from manual delineations of the crowns. The

field-measured GPS points of the 422 surveyed trees

(Table S1) were projected on the RGB imagery using

QGIS. The laptop, which displayed the data, was then

brought to the field. With the GPS points serving as a

rough guide, and by discerning the shapes and colours of

nearby crowns, crowns on the displayed RGB imagery

were matched with surveyed trees (Table S1). These

crowns were manually delineated on site with the ‘Add

polygon feature’ function in QGIS (Fig. 2). The hyper-

spectral data in pixels encircled by the polygons were

extracted for further analysis.

Building models for species and ash dieback
detection

For species classification, four algorithms were tested,

including linear discriminant analysis (LDA), principal

components analysis coupled with LDA (PCA-LDA), par-

tial least squares discriminant analysis (PLS-DA) and ran-

dom forest (RF). As relatively few birch and alder trees

occurred within the study sites, the analysis focused on

the five species with >20 crowns (ash, oak, hazel, field

maple and elm). Nevertheless, interested readers can refer

to Figure S1 for the effect of including birch and alder, as

well as varying sample sizes, on the accuracy of one of

the species classification models (PLS-DA). For the five

main species, hyperspectral data from the manually delin-

eated crowns were split into training (70%) and valida-

tion (30%) datasets. Care was taken to ensure that

validation was done across tree crowns rather than across

pixels that may share the same crown. LDA, PCA-LDA

and PLS-DA models were trained at the pixel level, where

models returned species identity predictions of individual

pixels. For these models, tree crown level predictions were

made by the majority voting of classified pixels. Due to

computer (16 GB RAM) memory limitations, the RF

model was created at the tree crown level, trained and

validated by hyperspectral data averaged across the tree

crowns. All model training was carried out in R (R Core

Team, 2020).

LDA, PLS-DA and RF were also used to build models

to classify ash crowns according to dieback severity based

on hyperspectral data. As symptoms of ash dieback often

manifest at the sub-crown level, a diseased tree may have

a mixture of healthy and diseased branches. The resolu-

tion of the hyperspectral imagery was not high enough to

reveal individual diseased branches, so it would be inap-

propriate to build disease classification models at the

pixel level. Hence, the three-class (healthy, infected and

severely infected) ash dieback models were trained and

validated using hyperspectral data averaged across tree

crowns. Among all ash crowns, 16 trees from each disease

class were selected to comprise the validation dataset. The

validation was mainly done across sites: training tree

crowns were selected from Madingley and Hayley, while

validation tree crowns were mainly selected from Brad-

field and Gamlingay (with the exception of several trees

in the ‘infected’ class, as the two sites have <16 delineated

trees from this class).

Four measures of accuracy were used to evaluate model

performance, namely overall accuracy, average user’s

accuracy, average producer’s accuracy and the Kappa

statistic. Detailed definitions are described by Fung and

LeDrew (1988).
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Dark pixel filtering

To test whether dark pixel filtering improved the accura-

cies of the species and ash dieback classification models

created in this study, the average reflectance was calcu-

lated for each pixel in the hyperspectral dataset. The best

species and ash dieback classification models were trained

repeatedly with 0% to 90% of the darker pixels filtered

out from the training dataset. The effects of such filtering

on the performance of the models (overall accuracy) were

recorded.

Species and ash dieback mapping

The species and ash dieback classification models with the

highest accuracies were coupled with automatic individual

tree crown segmentation to map the structure of the

16.8 ha Madingley forest (Rackham & Coombe, 1996), a

site with a readily available CHM for segmentation. Auto-

matic segmentation was performed using an adaption of

itcSegment (Dalponte, 2016) (https://github.com/swine

rsha/Tree-crown-segmentation), which runs faster and is

less memory-demanding compared to the original code,

creating a shapefile layer containing polygons that encir-

cled individual tree crowns. Polygons were classified to

species by applying the most accurate species classification

model to the encircled hyperspectral pixels, followed by

the majority voting of classified pixels. Ash polygons were

then classified by dieback severity using the disease model

that produced that highest classification accuracy from

Section 2.4. This produced two maps showing tree species

distribution and ash dieback severity over the entire site

respectively.

Decomposing hyperspectral data for
multispectral ash dieback detection

Hyperspectral data are costly to collect and process (Stone

& Mohammed, 2017). Thus, identifying the wavebands

important for multispectral ash dieback detection could

substantially reduce the cost of ash dieback monitoring.

To identify these wavebands, the reflected spectra of ash

crowns in the three disease classes were plotted out. Addi-

tionally, the coefficients of variation (CV) were calculated

for each waveband for (1) pixels within individual tree

crowns, (2) ash crowns within the same disease class and

(3) groups of ash crowns of different disease classes.

Results

Species and ash dieback classification
accuracy

Two supervised parametric algorithms, namely partial

least squares discriminant analysis (PLS-DA) and linear

discriminant analysis (LDA), produced the most accurate

species classification models; while random forest (RF), a

non-parametric machine learning algorithm, most accu-

rately classified ash dieback severity (Table 1).

For species classification, before filtering out dark pixels,

models created by both LDA and PLS-DA achieved ≥90%
in three measures of tree-crown-level accuracy, with an

associated Kappa of 0.877, which indicates a near-perfect

agreement between predicted and actual species classes after

accounting for the effect of random chance (Landis & Koch,

1977). The confusion matrix of the best-performing PLS-

DA model (Table 2) demonstrates the ability of the model

(A) (B)

Figure 2. Manual tree crown delineations in Madingley woods with (A) the canopy height model (CHM) and (B) the high resolution RGB image

in the background. Blue delineations bound ash tree crowns, while yellow delineations bound hetero-specifics.
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to accurately predict crown species identity for all five tested

species, achieving >75% crown classification accuracies even

for species pairs with similar spectral signatures, such ash

and field maple (Fig. S2). Performing principal components

analysis (PCA) as an additional dimensionality reduction

step before LDA failed to improve species classification

accuracy. The poor performance of PCA was highlighted by

the poor species clustering on the plots between principal

components (PCs) when compared with equivalent latent

variable (LV) plots generated by PLA-DA (Figs. S3 and S4).

Random forest (RF) was also unable to generate a model

with comparable classification accuracies, possibly since the

model was not trained on a pixel level due to computer

memory limitations.

In disease classification, random forest (RF) produced the

model that most accurately classified ash crowns into three

severity classes, achieving ≥75% in the three measures of

accuracy. The model also had a Kappa of 0.656, which indi-

cated substantial agreement between model predictions and

the reference after accounting for chance (Landis & Koch,

1977). The confusion matrix generated while validating the

RF model (Table 3) demonstrates that severely infected trees

were well-identified in the model, with all 16 severely

infected trees correctly classified. Less severely infected trees

were more difficult to identify, but still correctly classified in

most cases, with the model achieving 62-69% producer’s

accuracies and >75% user’s accuracies for these ash crowns.

Table 1. Accuracies achieved by species and ash dieback severity classification models before dark-pixel filtering.

Task Method Overall accuracy

Average user’s

accuracy

Average producer’s

accuracy Kappa

Species LDA 0.902 [0.853] 0.932 [0.857] 0.900 [0.846] 0.877 [0.803]

PCA-LDA 0.878 [0.741] 0.933 [0.712] 0.875 [0.721] 0.846 [0.653]

PLS-DA 0.902 [0.846] 0.954 [0.861] 0.921 [0.804] 0.877 [0.790]

RF 0.756 0.764 0.751 0.693

Ash dieback severity PLS-DA 0.646 0.680 0.646 0.469

LDA 0.562 0.546 0.562 0.344

RF 0.771 0.772 0.771 0.656

Algorithms used to build the models include linear discriminant analysis (LDA), principal component analysis coupled with LDA (PCA-LDA), partial

least squares discriminant analysis (PLS-DA) and random forest (RF). The unbracketed number represents classification accuracies on a tree crown

level, whereas the numbers in square brackets represent classification accuracies on a pixel level. The numbers in bold indicates the highest accu-

racies achieved.

Table 2. Confusion matrix obtained from the PLS-DA species classification model showing predicted and actual species IDs.

Prediction

Producer’s accuracyAsh Elm Field maple Hazel Oak

Reference Ash 10 [9379] 0 [58] 0 [21] 0 [31] 0 [105] 1 [0.978]

Elm 1 [422] 6 [2797] 0 [53] 0 [77] 0 [345] 0.857 [0.757]

Field maple 2 [1798] 0 [40] 6 [2926] 0 [79] 0 [197] 0.75 [0.581]

Hazel 0 [287] 0 [19] 0 [116] 7 [2052] 0 [40] 1 [0.816]

Oak 0 [440] 0 [302] 0 [416] 0 [13] 8 [9484] 1 [0.890]

User’s accuracy 0.769 [0.761] 1 [0.870] 1 [0.828] 1 [0.911] 1 [0.932]

The unbracketed figures represent number of tree crowns and associated classification accuracies, while figures in square brackets represent the

number of pixels and corresponding classification accuracies. The figures corresponding to correctly classified crowns are bolded. In summary, the

model achieved an overall accuracy of 0.902 [0.846], an average user’s accuracy of 0.954 [0.861], an average producer’s accuracy of 0.921

[0.804], and a Kappa statistic of 0.877 [0.790] before dark pixels were filtered.

Table 3. Confusion matrix generated by classifying ash trees into

three disease classes using a random forest (RF) ash dieback classifier.

Prediction

Producer’s

accuracyHealthy Infected

Severely

infected

Reference Healthy 11 3 2 0.688

Infected 3 10 3 0.625

Severely

infected

0 0 16 1

User’s accuracy 0.786 0.769 0.762

The model achieved an overall accuracy of 0.771, an average user’s

accuracy of 0.772, an average producer’s accuracy of 0.771 and a

Kappa statistic of 0.656. The numbers correspond to the number of

tree crowns in the validation dataset falling into each category. The

numbers representing the correctly classified crowns are bolded.
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Improved species classification but poorer
disease detection through dark pixel
filtering

Dark pixel filtering substantially improved the overall

accuracy of the PLS-DA species classification model

(Fig. 3). On the pixel level, the classification accuracy

continuously increased as larger proportions of dark pix-

els were filtered out. The highest pixel classification accu-

racy was achieved when 90% of the darker pixels were

filtered, with no sign of peaking. In contrast, dark pixel

filtering increased tree crown level species classification

accuracy initially until 50% of the darker pixels were fil-

tered out, after which it decreased. Filtering approxi-

mately 40% of the darker pixels optimized the species

classification accuracy, increased by 6.3% when compared

to no filtering (Fig. 3).

Contrary to species classification, dark pixel filtering did

not improve ash dieback severity classification of the best-

performing RF model. Rather, dark pixel filtering led to a

general decline in overall accuracy in disease classification,

especially for healthy and heavily infected ash tree crowns

(Fig. 4), suggesting a significant role of dark pixels associ-

ated with gaps in tree crowns in indicating dieback severity.

Mapping ash dieback in forests

Individual tree crown (ITC) segmentation algorithms,

coupled with the best-performing PLS-DA species classifi-

cation model and RF disease classification model, pro-

duced detailed maps of ash and ash dieback distributions.

Figure 5A shows the general structure of the site

(Madingley wood) based on Rackham and Coombe

(1996), who provided a detailed account of the species

composition of the wood, along with an inset demon-

strating the slightly over-segmented crown polygons gen-

erated by the modified itcSegment package (Dalponte,

2016) from the CHM. Visual inspection revealed that, of

the 383 polygons overlapping with manually delineated

crowns, 67% did not significantly (>30%) encircle neigh-

bouring trees, which is acceptable considering that many

densely packed trees, especially coppiced hazel, were diffi-

cult to disentangle even in the field. Species mapping by

the PLS-DA model revealed the secondary forest to the

east being dominated by ash, old-growth forest to the

west composed mainly of oak, the southwest corner hous-

ing a large colony of elm and hazel trees appearing in

coppice plots that were not overtopped by other species

(Fig. 5B). The mapped species distribution is consistent

with that described by Rackham and Coombe (1996).

Applying the RF disease classification model on tree

crown classified as ash in Figure 5B revealed the distribu-

tion of ash dieback in the site (Fig. 5C). In general, ash

trees that were on the edge of the forest were found to be

more heavily infected than other trees in the site.

Evaluating the need of using hyperspectral
data in disease classification: The reflected
spectra and coefficient of variation (CV) of
ash trees

To evaluate which hyperspectral wavebands were neces-

sary for accurate disease classification, the reflected spec-

tra of ash crowns with different disease severities

Figure 3. Change in overall species

classification accuracies of PLS-DA models on a

tree crown and pixel levels in response to dark

pixel filtering.
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(Fig. 6A) and partitioned coefficients of variation (CV)

of the hyperspectral data (Fig. 6B) were plotted. More

heavily infected ash crowns were found to have higher

red-edge (around 680 nm) and lower NIR (750 nm–
1000 nm) reflectances (Fig. 6A). With most of the varia-

tion in reflectance occurring among pixels within the

same crown, CV between crowns with different disease

classes only accounted for a small fraction of the total

variation. A small number of wavebands near the blue

(around 415 nm), red-edge (around 680 nm) and near-

infrared (around 760 nm) regions were found to be par-

ticularly variable across disease classes. These sharp CV

peaks (Fig. 6B) in these regions show the importance of

including narrow wavebands and narrow-band vegetation

indices (VIs), rather than broad-band features that

obscures detailed spectral signatures, as predictors when

building disease classification models.

Discussion

Performance of different model training
algorithms

As suggested by previous literature, the approach used to

build the species classification model greatly affected

classification accuracy (Fassnacht et al., 2016; Waser

et al., 2014). The four approaches used in this study have

been widely used in the past for building models based

on data with high dimensionality, each with its own

reported advantages and shortfalls (summarized in

Table 4). Here, we found supervised parametric

approaches (LDA and PLS-DA) outperforming PCA-

LDA. This contradicts previous studies that have repeat-

edly suggested that adding an extra PCA dimensionality

reduction step before LDA improves LDA performance

(Downey, 1994; Kemsley, 1996; Kher et al., 2006). Our

results, however, agree with Waser et al. (2014), who also

found PCA-based approaches to perform worse than LDA

in ash dieback detection using multispectral satellite

images. Waser et al. (2014) did not provide a thorough

explanation for why results contradicted with other stud-

ies, but based on the poor species clustering in the graph

showing PC2 against PC1 (Fig. S4), it is possible that the

unsupervised nature of PCA failed to select features that

were relevant to species classification when most of the

variance lay within tree crowns and were unrelated to

species differences (Fig. S3). The accuracy of RF in species

classification was also lower than the two supervised para-

metric approaches (LDA and PLS-DA). That was likely

because the RF model was trained and validated at a tree

Figure 4. The changes in accuracy of

classification of the random forest (RF) disease

severity classifier over an increase proportion of

dark pixels filtered from the training and

validation datasets. The purple solid line

corresponds to overall accuracy. The dotted

lines correspond to the producer’s prediction

accuracies of trees in the three disease classes.
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Figure 5. Mapping the distribution of tree

species and ash dieback severity in the 16.8 ha

Madingley wood. (A) shows the general

structure of the site as described by Rackham

and Coombe (1996), with the inset

demonstrating polygons generated by a

modified version of itcSegment. (B) shows the

PLS-DA species map. (C) shows the RF dieback

disease classmap.
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crown rather than pixel level due to computer memory

limitations. While this highlights specific limitations in

using machine learning algorithms in large scale classifica-

tion tasks, the accuracies achieved were not directly com-

parable. In disease classification, where all three models

(RF, LDA and PLS-DA) were trained and validated on

tree-crown-averaged hyperspectral data, RF clearly outper-

formed the two supervised parametric algorithms. This

demonstrates that machine learning algorithms are best at

generalizing complex, non-parametric relationships

between the ash dieback severity and hyperspectral reflec-

tances, and possibly that between species and hyperspec-

tral data if memory limitations were to be lifted. The

accuracies achieved by RF may further benefit from steps

to address multicollinearity. Previous work has found RF

models to be less stable and less transferrable when pre-

dictors were highly intercorrelated (Tolos�i & Lengauer,

2011; Weaving et al., 2019). This may have affected the

accuracies of the RF disease classification model validated

across sites and flightlines. An evaluation of different pre-

emptive steps to reduce the effect of multicollinearity on

RF, such as dimensionality reduction and group selection

algorithms, may be worth exploring in the future.

The >90% overall accuracy and >0.85 Kappa statistic

achieved by PLS-DA and LDA species classifiers produced

in this study are higher than that reported by most similar

studies, especially after dark pixel filtering, which further

boosts the overall PLS-DA classification accuracy to >95%.

Figure 6. Graphs showing (A) the mean

reflected spectra of ash trees with different

disease severities and (B) the associated

coefficient of variation (CV) of the reflectances

across the observed spectrum from visible to

NIR [409–1001 nm]. In (A), the inset shows

reflectance in the visible [409–700 nm] region.

In (B), the CV was partitioned into the

variation among pixels within the same tree

crown (purple), the variation among crowns

carrying the same disease score (blue), and the

variation among groups of crowns with

different disease scores (yellow).
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For comparison, Hill et al. (2010) attempted to classify six

tree species in Monks Wood, Cambridgeshire using a sin-

gle multispectral image. Using 165 trees for training, the

study reported a classification accuracy of 71% and a

Kappa of 0.63. Dalponte et al. (2012) reported overall and

Kappa accuracies of 83% and 0.77, respectively, in an

attempt to classify trees in the Italian Alps into 8 classes (7

species classes +non-forest) based on reflectances of

selected waveband and LiDAR data. Fassnacht et al. (2016)

reviewed 101 studies attempting species classification and

found overall accuracies of 80-85% depending on the type

of data used. The high accuracies achieved here to demon-

strate the merit of using hyperspectral imagery with high

spatial and spectral resolution in species classification

tasks. It also shows that a small number of accurately

manually delineated tree crowns might be preferable to a

large number of poorly delineated crowns in training spe-

cies classification models. Lastly, it highlights the impor-

tance of preprocessing the hyperspectral data, such as

filtering away dark pixels before model-building, in

improving classification accuracies.

The ash dieback classification accuracies achieved by

the RF model in this study (77% overall accuracy and a

0.66 Kappa) also compares well with previous studies that

attempted to detect pest infestations pathogen infections

in forests, which commonly reported accuracies ranging

from 70 – 90% (Hall et al., 2016; Murfitt et al., 2016;

Waser et al., 2014). Given that Waser et al. (2014) also

reported a 77% overall accuracy in classifying ash trees

affected by ash dieback into four disease classes using

satellite multispectral imagery, at a glimpse, the classifica-

tion accuracies achieved in this study may seem under-

whelming. However, it should be noted that Waser et al.

(2014) used heavily infected German forests in their

study, which contain many more large, severely infected

trees than Madingley and Hayley woods, used to train the

RF model in this study. Additionally, the RF model we

built was validated mainly with trees from a different site,

whereas Waser et al. (2014) validated the classification

models by resampling the training dataset, which tends to

produce slightly higher accuracies (Yadav & Shukla,

2016). In fact, when LDA, the preferred approach used by

Table 4. A comparison on the advantages and disadvantages of the four different approaches used to build species classification models.

Method Advantages Disadvantages

Linear discriminant analysis, a

supervised, parametric approach

LDA

Simple and quick to build

Have been successfully implemented on remote

sensing data for species classification and ash dieback

detection in the past (Waser et al., 2014)

Classification accuracies and the stability of

the model affected by collinearity of

predictors (Naes & Mevik, 2001)

Less powerful than non-parametric

approaches in using more complex

patterns in classification

Principal component analysis

followed by linear discriminant

analysis, an unsupervised (PCA),

parametric approach

Simple and quick to build; PCA is a widely used

multivariate statistical technique (Abdi & Williams,

2010)

Past studies have suggested increased classification

accuracies with PCA as an extra dimensionality

reduction step (Downey, 1994; Kemsley, 1996; Kher

et al., 2006)

Unsupervised dimensionality is often considered to be

less susceptible to overfitting (Abdi & Williams, 2010)

PCA is unsupervised

PCA has been suggested to perform worse

than LDA in building species and ash

dieback classifiers using remote sensing

data in previous work (Waser et al., 2014)

Less powerful than non-parametric

approaches in using more complex

patterns in classification

Partial least squares discriminant

analysis, a supervised parametric

approach

Makes no assumption of the distribution of the data,

hence more flexible than other parametric

discriminant algorithms (Lee et al., 2018)

Less memory intensive than RF and other deep learning

approaches

Robust against high collinearity (Lee et al., 2018; Naes

& Mevik, 2001)

Slower than other parametric approaches

due to its relative complexity

Less powerful than non-parametric

approaches in using more complex

patterns in classification

Random Forest; a supervised, non-

parametric, ensemble machine

learning approach

The non-parametric nature of RF makes it suitable for

finding complex patterns in datasets

Faster than many other deep learning approaches

Previous studies in the remote sensing community

suggest that RF, as an ensemble approach, achieves

higher accuracies than other non-parametric

supervised classifiers such as Classification and

Regression Tree (CART) or Support Vector Machine

(SVM) (Belgiu & Dr�agut�, 2016)

Compared with the other three parametric

approaches, RF is slow and memory

intensive when applied over large datasets

Non-parametric approaches are often

considered to be more susceptible to

overfitting, reducing applicability outside

the training window (Belgiu & Dr�agut�,
2016)
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Waser et al. (2014) to classify diseased ash trees, was

applied on the dataset in this study, the overall accuracy

was low (56% overall accuracy and a Kappa of 0.34)

(Table 1), suggesting that trees included in this study

were more challenging to classify. Based on the two stud-

ies alone, no clear conclusion could be made as to

whether hyperspectral data outperforms multispectral data

in ash dieback detection.

The effect of dark pixel filtering on species
and disease classification

Dark pixel filtering before training and validating the

PLS-DA species classification model significantly

improved model accuracy. Yet, while species classification

accuracy at the pixel level increased monotonically as

more pixels were filtered, a parabolic curve with an opti-

mum (40% pixels filtered) was observed for majority-

voted classifications of tree crowns. These patterns

demonstrated that brighter hyperspectral pixels contained

more information for classifying species, echoing the

results of Asner et al. (2015), who found that brighter

pixels better predicted canopy traits. However, when a

large proportion of pixels were filtered out, the majority

voting on the remaining pixels no longer produced accu-

rate classifications at the tree crown level, resulting in the

subsequent drop in accuracy. This creates an interesting

trade-off between data fidelity and quantity (Dehghani

et al., 2017). The optimum proportion of pixels likely

varies according to the number of pixels per object to be

classified, which is a function of spatial resolution object

size. We suggest that future studies should routinely carry

out tests to find the optimum if dark pixel filtering is to

be performed for similar classification tasks.

Intriguingly, dark pixel filtering was counterproductive

in ash dieback classification and lowered the accuracy of

the RF disease classification model. This showed that the

widening of gaps within crowns associated with disease

infection might have acted as an important proxy for the

RF model to predict ash dieback severity. We also found

the drop in classification accuracy associated with dark

pixel filtering to be more pronounced for ‘healthy’ and

‘severely infected’ crowns, but less so for ‘infected’

crowns, suggesting that mildly infected trees still had rela-

tively closed canopies and but exhibited spectral features

associated with subtle changes in leaf biochemistry rather

than an increased proportion of dark pixels associated

with crown dieback. It is important to note that the

reflected spectra of these dark, gap pixels in heavily

infected ash crowns might be affected by the background

vegetation, as one previous study on larch disease sug-

gested (Barnes, 2018). If gaps were used by the RF model

as a proxy for heavily diseased ash, the model may have

to be adjusted before being applied to ash trees growing

over other backgrounds.

Mapping species and ash dieback
distribution

Applying the PLS-DA species classification and RF fungal

ash dieback classification model onto one of the field sites

(Madingley wood) with a readily available CHM for ITC

segmentation produced maps of species and ash dieback

distribution that agreed well with past literature (Rack-

ham & Coombe, 1996). The maps revealed that ash trees

on the forest edge exhibit more severe dieback symptoms.

This may be due to confounding background vegetation

(Section 4.2.), but it could also be caused by a range of

biological factors. Edge effects are known to bring addi-

tional stress to temperate trees (Reinmann & Hutyra,

2017) or might be younger and more susceptible to die-

back (Enderle et al., 2019; McKinney et al., 2014). Alter-

natively, trees at the edge might receive a larger load of

airborne H. fraxineus spores (Mansfield et al., 2018).

Regardless, the results demonstrate the potential applica-

tions of ash dieback mapping in understanding the epi-

demiology of the pathogen.

The potential of using multispectral data to
monitor ash dieback

Narrow wavebands near the blue (around 415 nm), red-

edge (around 680 nm) and near infra-red (NIR) (around

760 nm) were found to have a high coefficient of varia-

tion (CV) across disease classes. As narrow bands near

the red-edge are long known to be affected by chlorophyll

status and plant stress (Horler et al., 1983), it is unsur-

prising that wavebands near the red-edge also vary

according to disease severity (Fig. 6B). The reflectance of

wavebands in the blue region are traditionally less known

to be leaf stress indicators (Carter, 1993), but still exhibit

large CVs among groups of different disease scores

(Fig. 6B), possibly due to the manifestation of dead

branches and exposure of the background vegetation

associated with dieback. The significantly lower NIR

reflectances among diseased ash trees have also been

reported for hedgerow ash trees in the UK (Barnes,

2019). As NIR light is not absorbed by healthy plants but

reflected to prevent overheating (Knipling, 1970), the pat-

tern can be explained by ash trees suffering from dieback

having less foliage, fewer branches and more open

crowns. While results from this study do not preclude the

possibility of achieving similar disease classification accu-

racies using multispectral data, which can be collected at

lower costs, our results suggest the inclusion of narrow

bands near 415 nm, 680 nm and 760 nm if possible.
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Conclusion

The study showed that accurate species and ash dieback

mapping can be attained by analysing hyperspectral data

at the individual tree crown level. It also demonstrated

how (1) collecting a dataset capturing the spectral features

of interest, (2) choosing an effective model-building algo-

rithm and (3) appropriately filtering dark pixels can fur-

ther bolster classification accuracy. The pipeline described

here can be scaled up to monitor forest pests and patho-

gens at a regional scale in Europe, not only for ash die-

back, but also for other widespread forest pathogens such

as Dutch elm disease (Ophiostoma spp.), chronic oak

decline, acute oak decline and emerald ash borers (Agrilus

planipennis). A large-scale object-based species-specific

disease monitoring scheme based on remote sensing

would be a key addition to forest epidemiology, allowing

the detection of emerging pathogens, accurate transmis-

sion modelling and the screening of resistant genotypes.

Forest managers would hence be able to swiftly stop

emerging pathogens by deploying appropriate control

measures, carry out impact assessments to estimate losses

for specific outbreaks and mitigate the impacts by rehabil-

itating affected forests with resistant trees.

Acknowledgements

We acknowledge 2Excel geo for generously collecting and

providing the high-resolution remote sensing data. We are

grateful to Ross Hill for providing information on ash trees

at Bradfield wood that his group had scored for disease in

2018, but did not end up being used for this study, and for

helpful conversations when we were planning our work.

We would also like to thank the University of Cambridgge,

Suffolk Wildlife Trust, Wildlife Trust for Bedfordshire,

Cambridgeshire & Nottinghamshire for providing support

and access to the field sites. Additionally, the study would

not have been possible without the valuable input from

members of the Forest Ecology and Conservation Group,

especially Dr Florian Zellweger, Dr Yi Zhang, Kyaw Sein

Win Tun (O’Neill) and Cl�ement Valle for their help with

fieldwork; and Philip Sellars and Jonathan Williams for

their advice on data analyses. This research did not receive

any specific grant from funding agencies in the public,

commercial, or not-for-profit sectors.

References

Abdi, H. & Williams, L.J. (2010) Principal component analysis.

Wiley Interdisciplinary Reviews: Computational Statistics, 2,

433–459. https://doi.org/10.1002/wics.101

Asner, G.P., Martin, R.E., Anderson, C.B. & Knapp, D.E.

(2015) Quantifying forest canopy traits: imaging

spectroscopy versus field survey. Remote Sensing of

Environment, 158, 15–27. https://doi.org/10.1016/J.RSE.2014.
11.011

Baral, H.-O., Queloz, V. & Hosoya, T. (2014) Hymenoscyphus

fraxineus, the correct scientific name for the fungus causing

ash dieback in Europe. IMA Fungus, 5, 79–80. https://doi.
org/10.5598/imafungus.2014.05.01.09

Barnes, C. (2018) Remote sensing of larch disease and acute

oak decline outbreaks in Britain. University of Leicester.

https://hdl.handle.net/2381/42534

Barnes, C. (2019) Remote sensing technologies for the

management of tree pests and diseases. Quarterly Journal,

113, 115–120.
Belgiu, M. & Dr�agut�, L. (2016) Random forest in remote

sensing: a review of applications and future directions.

ISPRS Journal of Photogrammetry and Remote Sensing, 114,

24–31. https://doi.org/10.1016/J.ISPRSJPRS.2016.01.011
Bellamy, P.E., Hill, R.A., Rothery, P., Hinsley, S.A., Fuller, R.J.

& Broughton, R.K. (2009) Willow Warbler Phylloscopus

trochilus habitat in woods with different structure and

management in southern England. Bird Study, 56, 338–348.
https://doi.org/10.1080/00063650902806914

Bernstein, L.S. (2012) Quick atmospheric correction code:

algorithm description and recent upgrades. Optical

Engineering, 51, 111719. https://doi.org/10.1117/1.oe.51.11.

111719

Calder�on, R., Navas-Cort�es, J. & Zarco-Tejada, P. (2015) Early

detection and quantification of verticillium wilt in olive

using hyperspectral and thermal imagery over large areas.

Remote Sensing, 7, 5584–5610. https://doi.org/10.3390/

rs70505584

Camilo-Alves, C.S.P., Vaz, M., Da Clara, M.I.E. & Ribeiro,

N.M.D.A. (2017) Chronic cork oak decline and water status:

new insights. New Forests, 48, 753–772. https://doi.org/10.

1007/s11056-017-9595-3

Carter, G.A. (1993) Responses of leaf spectral reflectance to

plant stress. American Journal of Botany, 80, 239–243.
https://doi.org/10.1002/j.1537-2197.1993.tb13796.x

Dalponte, M. (2016) R Package’itcSegment’: user manual.

Dalponte, M., Bruzzone, L. & Gianelle, D. (2012) Tree species

classification in the Southern Alps based on the fusion of

very high geometrical resolution multispectral/hyperspectral

images and LiDAR data. Remote Sensing of Environment,

123, 258–270. https://doi.org/10.1016/J.RSE.2012.03.013
Dehghani, M., Mehrjou, A., Gouws, S., Kamps, J. & Sch€olkopf,

B. (2017). Fidelity-weighted learning. 6th Int. Conf. Learn.

Represent. ICLR 2018 - Conf. Track Proc.

Downey, G. (1994) Tutorial review. Qualitative analysis in the

near-infrared region. Analyst, 119, 2367. https://doi.org/10.

1039/an9941902367

Drenkhan, R., Solheim, H., Bogacheva, A., Riit, T., Adamson,

K., Drenkhan, T. et al. (2017) Hymenoscyphus fraxineus is a

leaf pathogen of local Fraxinus species in the Russian Far

East. Plant Pathology, 66, 490–500. https://doi.org/10.1111/
ppa.12588

318 ª 2020 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Monitoring Ash Dieback Using Hyperspectral Data A. H. Y. Chan et al.

https://doi.org/10.1002/wics.101
https://doi.org/10.1016/J.RSE.2014.11.011
https://doi.org/10.1016/J.RSE.2014.11.011
https://doi.org/10.5598/imafungus.2014.05.01.09
https://doi.org/10.5598/imafungus.2014.05.01.09
https://hdl.handle.net/2381/42534
https://doi.org/10.1016/J.ISPRSJPRS.2016.01.011
https://doi.org/10.1080/00063650902806914
https://doi.org/10.1117/1.oe.51.11.111719
https://doi.org/10.1117/1.oe.51.11.111719
https://doi.org/10.3390/rs70505584
https://doi.org/10.3390/rs70505584
https://doi.org/10.1007/s11056-017-9595-3
https://doi.org/10.1007/s11056-017-9595-3
https://doi.org/10.1002/j.1537-2197.1993.tb13796.x
https://doi.org/10.1016/J.RSE.2012.03.013
https://doi.org/10.1039/an9941902367
https://doi.org/10.1039/an9941902367
https://doi.org/10.1111/ppa.12588
https://doi.org/10.1111/ppa.12588


Enderle, R., Stenlid, J. & Vasaitis, R. (2019) An overview of

ash (Fraxinus spp.) and the ash dieback disease in Europe.

CAB International. https://doi.org/10.1079/

PAVSNNR201914025

Fassnacht, F.E., Latifi, H., Stere�nczak, K., Modzelewska, A.,

Lefsky, M., Waser, L.T. et al. (2016) Review of studies on

tree species classification from remotely sensed data. Remote

Sensing of Environment, 186, 64–87. https://doi.org/10.1016/
J.RSE.2016.08.013

Fung, T. & LeDrew, E. (1988) The determination of optimal

threshold levels for change detection using various accuracy

indices. Photogrammetric Engineering & Remote Sensing, 54,

1449–1454.

Hall, R.J., Castilla, G., White, J.C., Cooke, B.J. & Skakun, R.S.

(2016) Remote sensing of forest pest damage: a review and

lessons learned from a Canadian perspective. Canadian

Entomologist, 148, S296–S356. https://doi.org/10.4039/tce.

2016.11

Henrich, V., G€otze, C., Jung, A., Sandow, C., Th€urkow, D. &

Cornelia, G. (2009) Development of an online indices

database: motivation, concept and implementation.

Hill, R.A., Wilson, A.K., George, M. & Hinsley, S.A. (2010)

Mapping tree species in temperate deciduous woodland

using time-series multi-spectral data. Applied Vegetation

Science, 13, 86–99. https://doi.org/10.1111/j.1654-109X.2009.

01053.x

Horler, D.N.H., Dockray, M. & Barber, J. (1983) The red edge

of plant leaf reflectance. International Journal of Remote

Sensing, 4, 273–288. https://doi.org/10.1080/

01431168308948546

Housman, I., Chastain, R. & Finco, M. (2018) An evaluation

of forest health insect and disease survey data and satellite-

based remote sensing forest change detection methods: case

studies in the United States. Remote Sensing, 10, 1184.

https://doi.org/10.3390/rs10081184

Karnosky, D.F. (1979) Dutch Elm Disease: a review of the

history, environmental implications, control, and research

needs. Environmental Conservation, 6, 311–322. https://doi.
org/10.1017/S037689290000357X

Kemsley, E.K. (1996) Discriminant analysis of high-

dimensional data: a comparison of principal components

analysis and partial least squares data reduction methods.

Chemometrics and Intelligent Laboratory Systems, 33, 47–61.
https://doi.org/10.1016/0169-7439(95)00090-9

Kher, A., Mulholland, M., Green, E. & Reedy, B. (2006)

Forensic classification of ballpoint pen inks using high

performance liquid chromatography and infrared

spectroscopy with principal components analysis and linear

discriminant analysis. Vibrational Spectroscopy, 40, 270–277.
https://doi.org/10.1016/J.VIBSPEC.2005.11.002

Knipling, E.B. (1970) Physical and physiological basis for the

reflectance of visible and near-infrared radiation from

vegetation. Remote Sensing of Environment, 1, 155–159.
https://doi.org/10.1016/S0034-4257(70)80021-9

Landis, J.R. & Koch, G.G. (1977) The measurement of

observer agreement for categorical data. Biometrics, 33, 159.

https://doi.org/10.2307/2529310

Lee, L.C., Liong, C.-Y. & Jemain, A.A. (2018) Partial least

squares-discriminant analysis (PLS-DA) for classification of

high-dimensional (HD) data: a review of contemporary

practice strategies and knowledge gaps. Analyst, 143, 3526–

3539. https://doi.org/10.1039/C8AN00599K

Littlewood, N.A., Nau, B.S., Pozsgai, G., Stockan, J.A., Stubbs,

A. & Young, M.R. (2015) Invertebrate species at risk from

Ash Dieback in the UK. Journal of Insect Conservation, 19,

75–85. https://doi.org/10.1007/s10841-014-9745-2
Lu, D. & Weng, Q. (2007) A survey of image classification

methods and techniques for improving classification

performance. International Journal of Remote Sensing, 28(5),

823–870. https://doi.org/10.1080/01431160600746456
Mansfield, J.W., Galambos, N. & Saville, R. (2018) The use of

ascospores of the dieback fungus Hymenoscyphus fraxineus

for infection assays reveals a significant period of biotrophic

interaction in penetrated ash cells. Plant Pathology, 67,

1354–1361. https://doi.org/10.1111/ppa.12844

McKinney, L.V., Nielsen, L.R., Collinge, D.B., Thomsen, I.M.,

Hansen, J.K. & Kjaer, E.D. (2014) The ash dieback crisis:

genetic variation in resistance can prove a long-term

solution. Plant Pathology, 63, 485–499. https://doi.org/10.

1111/ppa.12196

Murfitt, J., He, Y., Yang, J., Mui, A. & De Mille, K. (2016) Ash

Decline assessment in emerald ash borer infested natural

forests using high spatial resolution images. Remote Sensing,

8, 256. https://doi.org/10.3390/rs8030256

Naes, T. & Mevik, B.-H. (2001) Understanding the collinearity

problem in regression and discriminant analysis. Journal of

Chemometrics, 15, 413–426. https://doi.org/10.1002/cem.676

Pautasso, M., Aas, G., Queloz, V. & Holdenrieder, O. (2013)

European ash (Fraxinus excelsior) dieback – a conservation

biology challenge. Biological Conservation, 158, 37–49.
https://doi.org/10.1016/J.BIOCON.2012.08.026

Pietrzykowski, E., Sims, N., Stone, C., Pinkard, L. &

Mohammed, C. (2007) PredictingMycosphaerella leaf disease

severity in a Eucalyptus globulus plantation using digital

multi-spectral imagery. Southern Hemisphere Forestry Journal,

69, 175–182. https://doi.org/10.2989/SHFJ.2007.69.3.7.357

Pontius, J., Martin, M., Plourde, L. & Hallett, R. (2008) Ash

decline assessment in emerald ash borer-infested regions: a

test of tree-level, hyperspectral technologies. Remote Sensing

of Environment, 112, 2665–2676. https://doi.org/10.1016/J.

RSE.2007.12.011

R core team. (2020) R: a language and environment for

statistical computing. Vienna, Austria: R Foundation for

Statistical Computing. https://www.R-project.org/

Rackham, O. (1975) Hayley Wood, its history and ecology.

1976. Trees Woodl. Br. Landsc.

Rackham, O. & Coombe, D.E. (1996) Madingley Wood.

Nature in Cambridgesh, 38, 27–54.

ª 2020 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 319

A. H. Y. Chan et al. Monitoring Ash Dieback Using Hyperspectral Data

https://doi.org/10.1079/PAVSNNR201914025
https://doi.org/10.1079/PAVSNNR201914025
https://doi.org/10.1016/J.RSE.2016.08.013
https://doi.org/10.1016/J.RSE.2016.08.013
https://doi.org/10.4039/tce.2016.11
https://doi.org/10.4039/tce.2016.11
https://doi.org/10.1111/j.1654-109X.2009.01053.x
https://doi.org/10.1111/j.1654-109X.2009.01053.x
https://doi.org/10.1080/01431168308948546
https://doi.org/10.1080/01431168308948546
https://doi.org/10.3390/rs10081184
https://doi.org/10.1017/S037689290000357X
https://doi.org/10.1017/S037689290000357X
https://doi.org/10.1016/0169-7439(95)00090-9
https://doi.org/10.1016/J.VIBSPEC.2005.11.002
https://doi.org/10.1016/S0034-4257(70)80021-9
https://doi.org/10.2307/2529310
https://doi.org/10.1039/C8AN00599K
https://doi.org/10.1007/s10841-014-9745-2
https://doi.org/10.1080/01431160600746456
https://doi.org/10.1111/ppa.12844
https://doi.org/10.1111/ppa.12196
https://doi.org/10.1111/ppa.12196
https://doi.org/10.3390/rs8030256
https://doi.org/10.1002/cem.676
https://doi.org/10.1016/J.BIOCON.2012.08.026
https://doi.org/10.2989/SHFJ.2007.69.3.7.357
https://doi.org/10.1016/J.RSE.2007.12.011
https://doi.org/10.1016/J.RSE.2007.12.011
https://www.R-project.org/


Reinmann, A.B. & Hutyra, L.R. (2017) Edge effects enhance

carbon uptake and its vulnerability to climate change in

temperate broadleaf forests. Proceedings of the National

Academy of Sciences, 114, 107–112. https://doi.org/10.1073/

pnas.1612369114

Stone, C. & Mohammed, C. (2017) Application of remote

sensing technologies for assessing planted forests damaged

by insect pests and fungal pathogens: a review. Current

Forestry Reports, 3, 75–92. https://doi.org/10.1007/s40725-

017-0056-1

Tolos�i, L. & Lengauer, T. (2011) Classification with correlated

features: unreliability of feature ranking and solutions.

Bioinformatics, 27, 1986–1994. https://doi.org/10.1093/bioinf

ormatics/btr300

Waser, L., K€uchler, M., J€utte, K. & Stampfer, T. (2014)

Evaluating the potential of worldview-2 data to classify tree

species and different levels of ash mortality. Remote Sensing,

6, 4515–4545. https://doi.org/10.3390/rs6054515
Weaving, D., Jones, B., Ireton, M., Whitehead, S., Till, K. &

Beggs, C.B. (2019) Overcoming the problem of

multicollinearity in sports performance data: a novel

application of partial least squares correlation analysis. PLoS

One, 14, e0211776. https://doi.org/10.1371/journal.pone.

0211776

Wu, C. (2004) Normalized spectral mixture analysis for

monitoring urban composition using ETM+ imagery.

Remote Sensing of Environment, 93, 480–492. https://doi.org/

10.1016/J.RSE.2004.08.003

Yadav, S. & Shukla, S. (2016). Analysis of k-fold cross-

validation over hold-out validation on colossal datasets for

quality classification. In: Proceedings - 6th International

Advanced Computing Conference. IACC 2016. Bhimavaram:

Institute of Electrical and Electronics Engineers Inc., pp. 78–
83. https://doi.org/10.1109/IACC.2016.25

Zarco-Tejada, P.J., Camino, C., Beck, P.S.A., Calderon, R.,

Hornero, A., Hern�andez-Clemente, R. et al. (2018) Previsual

symptoms of Xylella fastidiosa infection revealed in spectral

plant-trait alterations. Nature Plants, 4, 432–439. https://doi.
org/10.1038/s41477-018-0189-7

Supporting Information

Additional supporting information may be found online

in the Supporting Information section at the end of the

article.

Table S1. Summary of number of sampled trees per spe-

cies and disease class in the four forest study sites near

Cambridge.

Table S2. The names and formulae of vegetation indices

(VIs) calculated from the hyperspectral data.

Figure S1. The overall accuracies of the PLS-DA species

classification models plotted against the number of

crowns per species used to create the model.

Figure S2. The reflected spectra of tree species and grass

(A) along with the associated coefficient of variation

(CV) of the reflectances across the spectrum (B).

Figure S3. The first two principal components (PCs) pro-

duced by applying principal components analysis (PCA)

on the species training dataset.

Figure S4. Scatter plot of the second latent variable (LV2)

against the first latent variable (LV1) obtained from PLS-

DA.

Monitoring Ash Dieback Using Hyperspectral Data A. H. Y. Chan et al.

320 ª 2020 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

https://doi.org/10.1073/pnas.1612369114
https://doi.org/10.1073/pnas.1612369114
https://doi.org/10.1007/s40725-017-0056-1
https://doi.org/10.1007/s40725-017-0056-1
https://doi.org/10.1093/bioinformatics/btr300
https://doi.org/10.1093/bioinformatics/btr300
https://doi.org/10.3390/rs6054515
https://doi.org/10.1371/journal.pone.0211776
https://doi.org/10.1371/journal.pone.0211776
https://doi.org/10.1016/J.RSE.2004.08.003
https://doi.org/10.1016/J.RSE.2004.08.003
https://doi.org/10.1109/IACC.2016.25
https://doi.org/10.1038/s41477-018-0189-7
https://doi.org/10.1038/s41477-018-0189-7

