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A phospho-switch controls RNF43-mediated
degradation of Wnt receptors to suppress
tumorigenesis
Tadasuke Tsukiyama 1✉, Juqi Zou2, Jihoon Kim 3,4, Shohei Ogamino 5, Yuki Shino6, Takamasa Masuda7,

Alessandra Merenda3, Masaki Matsumoto 8,9, Yoichiro Fujioka10, Tomonori Hirose 11, Sayuri Terai1,

Hidehisa Takahashi1,11, Tohru Ishitani 2,5,7, Keiichi I. Nakayama 8,12, Yusuke Ohba 10,

Bon-Kyoung Koo 4✉ & Shigetsugu Hatakeyama1

Frequent mutation of the tumour suppressor RNF43 is observed in many cancers, particularly

colon malignancies. RNF43, an E3 ubiquitin ligase, negatively regulates Wnt signalling by

inducing degradation of the Wnt receptor Frizzled. In this study, we discover that RNF43

activity requires phosphorylation at a triplet of conserved serines. This phospho-regulation of

RNF43 is required for zebrafish development and growth of mouse intestinal organoids.

Cancer-associated mutations that abrogate RNF43 phosphorylation cooperate with active

Ras to promote tumorigenesis by abolishing the inhibitory function of RNF43 in Wnt sig-

nalling while maintaining its inhibitory function in p53 signalling. Our data suggest that

RNF43 mutations cooperate with KRAS mutations to promote multi-step tumorigenesis via

the Wnt-Ras-p53 axis in human colon cancers. Lastly, phosphomimetic substitutions of the

serine trio restored the tumour suppressive activity of extracellular oncogenic mutants.

Therefore, harnessing phospho-regulation of RNF43 might be a potential therapeutic strategy

for tumours with RNF43 mutations.
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T ight regulation of the many signalling pathways that con-
trol cell fate is essential for proper development and
homoeostasis. The Wnt signalling pathway plays a pro-

minent role in stem cell maintenance1–3, embryonic develop-
ment4 and tumorigenesis5–8. The activities of key players in this
pathway are regulated by post-translational modifications, such as
phosphorylation and ubiquitination9,10. Loss of these regulatory
events often induces oncogenic transformation.

The intestinal stem cell (ISC)-specific ubiquitin ligase ring
finger protein 43 (RNF43) negatively regulates Wnt signalling by
triggering ubiquitin-mediated, endo-lysosomal degradation of the
Frizzled (Fzd) family of Wnt receptors11. RNF43-mediated
negative regulation of Fzd requires an interaction between the
extracellular domains of RNF43 and Fzd. The growth factor R-
spondin (Rspo) is a vertebrate-specific Wnt agonist that rever-
sibly counteracts negative regulation by RNF43 and also by its
homologue zinc and ring finger protein 3 (ZNRF3)12. Rspo binds
the stem cell-specific leucine-rich repeat-containing G-protein-
coupled receptors Lgr4/5/6 and promotes formation of a trimeric
complex with RNF43/ZNRF313. As a consequence, RNF43/
ZNRF3 target Lgr4/5/6 for degradation instead of Fzd, leading to
an accumulation of Fzd Wnt receptors and subsequent elevation
of Wnt signalling activity13,14. Thus, Wnt signalling undergoes
complex regulation not only in the cytoplasm by the β-catenin
destruction complex8 but also at the plasma membrane by Rspo
and RNF43/ZNRF3.

RNF43 itself is a downstream target gene of Wnt/β-catenin
signalling15 and thus acts as an important negative feedback
regulator to inhibit an excess of Wnt signal activity. Important
hub proteins of Wnt signalling are frequently mutated in various
types of cancer16. Indeed, missense or truncation mutations of
RNF43 that compromise the negative feedback regulation of Wnt
signalling have been identified in cancer17,18. Tumours with these
mutations are still dependent on Wnt for growth, but independent
of Rspo18. Missense mutations of RNF43 and ZNRF3 appear to
function in a dominant-negative manner18, consistent with the
observation that many cancers exhibit a single mutation in either
RNF43 or in ZNRF3 but not both. Many RNF43 cancer-associated
mutations occur outside the N-terminal extracellular and cyto-
plasmic RING-finger domains, which regulate Fzd binding and
ubiquitination, respectively, suggesting additional levels of RNF43
regulation. We previously showed that the C-terminal cytoplasmic
region of RNF43 interacts with the Wnt signal transducer
Dishevelled (Dvl) to suppress non-canonical Wnt signalling18.
This work also revealed that amino acid residues 442-478 within
the cytoplasmic region of RNF43, which are not involved in the
interaction with Dvl18,19, are important for RNF43 regulation.

In addition, RNF43 suppresses p53-dependent transcription
and cell death that are induced by DNA damage20 or viral
infection21. However, the molecular significance of oncogenic
RNF43 mutations in the p53 pathway remained an unsolved issue.

Here, we discover that intracellular phosphorylation of RNF43
is required for negative regulation of Wnt signalling. RNF43
mutations that abrogate this phosphorylation lead to loss of Fzd
ubiquitination-degradation and de-repression of Wnt signalling,
but do not compromise inhibition of p53. These RNF43 phospho-
mutants cooperate with active Ras to promote tumorigenesis, and
co-occurrence of RNF43 and KRAS mutations are associated with
poor survival in human colon cancer22. Strikingly, introducing
phosphomimetic mutations into oncogenic RNF43 mutants
restores RNF43-mediated ubiquitination and degradation of Fzd
and inhibition of Wnt signalling, and abolishes oncogenic
RNF43-Ras-mediated tumorigenesis in vitro and in vivo. Our
results reveal RNF43 as a potential therapeutic target, and provide
important insights into the mechanisms that promote multi-step
colon cancer tumorigenesis along the Wnt-Ras-p53 axis.

Results
Multi-step phosphorylation of serines activates RNF43. Our
previous work suggested that RNF43 binding to Dvl2 is not
required to downregulate Fzd418. To verify that Dvl is not an
essential cofactor for the recognition and degradation of Fzd, we
determined whether the interaction with Dvl is required to reg-
ulate Fzd5. We found that a Dvl-interaction-defective RNF43
mutant (RNF43-ΔDvl-C) can still immunoprecipitate Fzd5
(Supplementary Fig. 1a, b) and induce its downregulation to the
same degree as Dvl-interacting RNF43 in STF-Luc Wnt reporter
assays using STF293 cells (i.e., HEK293 cells genetically carrying
the SuperTopFlash-luciferase (STF-Luc) Wnt reporter, which is a
specific and sensitive detector of endogenous Wnt activity) with
Wnt3a conditioned media (CM) and flow cytometry (Supple-
mentary Fig. 1c, d). These data further suggest that the RNF43-
Dvl interaction is dispensable for RNF43-mediated regulation of
surface Fzd expression and Wnt/β-catenin signalling in this
context.

We have reported that RNF43 amino acids 442–478, close to
known Dvl binding regions, are important for RNF43
regulation18,19. We turned our attention to two serine-rich
regions (SRR-1: aa 442–449, SRR-2: aa 466–478) that are similar
to a region within β-catenin. SRR-2 in RNF43 displays partial
conservation with its homologue ZNRF3, while SRR-1 does not
(Supplementary Fig. 1e). STF-Luc assays with RNF43 constructs
containing deletions and point mutations in these regions
indicated that three consecutive serine residues in SRR-2-2
(containing a serine triplet; S474, S475, S476), which are
structurally and functionally conserved in ZNRF3 and RNF43
in other species, were indispensable for RNF43-mediated
suppression of Wnt signalling (Fig. 1a–c, Supplementary Fig. 1e,
f, h). Based on these facts, we hypothesised that these serines are
regulated by phosphorylation. To test this hypothesis, we replaced
all three serines with aspartic (3SD) or glutamic acid (3SE)
residues to mimic the phosphorylated form of serine. We found
that the phosphomimetic RNF43 mutant maintained negative
regulation of Fzd and Wnt/β-catenin signalling (Fig. 1c, d,
Supplementary Fig. 1g). Conversely, replacing these serines in
RNF43 with alanine (3SA) to prevent phosphorylation, or with
threonine (3ST), impaired Fzd regulation and Wnt signalling
compared to wild-type (WT) RNF43, despite showing similar
expression levels to WT RNF43 (Fig. 1c, d, Supplementary
Fig. 1g). However, RNF43(3SA) phospho-mutant did not
autonomously activate Wnt signalling but facilitated the signal
activity in a Wnt ligand-dependent manner (Supplementary
Fig. 1i). Together, these results suggest that phosphorylation of
the serine triplet is necessary for RNF43 function.

To demonstrate that these serines are phosphorylated in the
normal cellular environment, we performed Phos-tag SDS-PAGE,
which can distinguish phosphorylated proteins by a band-shift.
This analysis indicated that a signal corresponding to phospho-
RNF43 was lost in the phospho-deficient mutant RNF43(3SA)
(Supplementary Fig. 2a). In addition, 2D-PAGE revealed the
loss of a phospho-RNF43 signal in cells expressing RNF43(3SA),
or when cells expressing RNF43(WT) were cultured under
phosphate-depleted conditions (Supplementary Fig. 2b, c).
Furthermore, 32Pi metabolic labelling of cells revealed significantly
lower phosphorylation of RNF43(3SA) than RNF43(WT) (Fig. 1e,
Supplementary Fig. 2d). These data support our hypothesis that
under normal cellular conditions RNF43 phosphorylation reg-
ulates its function.

Our previous report suggested that S478 is also indispensable
for regulating RNF43 function18. Indeed, we found that
substitution of S478 with A or D/E led to the inhibition or
activation, respectively, of RNF43 function in STF-Luc assays,
similar to substitutions at the conserved serine triplet (Fig. 2a).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18257-3

2 NATURE COMMUNICATIONS |         (2020) 11:4586 | https://doi.org/10.1038/s41467-020-18257-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


The S478A substitution in RNF43 increased the cell surface levels
of Fzd compared to WT RNF43 (Fig. 2b), suggesting that the
S478 phospho-status also regulates Fzd levels and Wnt signalling.

The serine-rich region of β-catenin, which is similar to SRR2 of
RNF4323,24, is sequentially phosphorylated by CK1 and GSK-
3β25. Therefore, we examined whether stepwise phosphorylation
also regulates RNF43. Our STF-Luc reporter assay showed that
RNF43 containing 3SA-S478D substitutions impaired its func-
tion, whereas RNF43(3SD-S478A) retained function (Fig. 2c).
These data suggest that S478 phosphorylation might be upstream
of serine triplet phosphorylation and required only to prime the
subsequent phosphorylation of the serine triplet.

Next, we examined whether CK1 or GSK-3β phosphorylate
RNF43. Flow cytometric analysis showed that GSK-3β inhibition
did not alter RNF43-mediated regulation of Fzd surface levels
(Fig. 2d). In contrast, CK1 inhibition led to restored surface levels
of Fzd in RNF43(WT)- and RNF43(S478D)-expressing cells, but
not in RNF43(3SD)-expressing cells (Fig. 2d). These results
suggest that the serine triplet is phosphorylated by CK1. Indeed,
an in vitro kinase assay detected the CK1-dependent phosphor-
ylation of RNF43(WT) but not RNF43(3SA) (Fig. 2e, Supple-
mentary Fig. 2e) and also revealed the phosphorylation of
endogenous RNF43 by CK1 (Supplementary Fig. 2f). Interest-
ingly, the total amount of phosphorylation signal was significantly
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increased with both the RNF43(S478D) and the RNF43(3SD)
mutant, suggesting that the phosphorylation of the serine triplet
is required for additional RNF43 phosphorylation events outside
the SSSDS sequence, which we confirmed by MS/MS analysis
(Supplementary Fig. 2g, h). Furthermore, a lower level of
phosphorylation was observed on oncogenic RNF43(R127P),
which accumulates in the ER (Supplementary Fig. 2j)18,
compared to WT RNF43 (Supplementary Fig. 2i). This result

suggests that RNF43 might be phosphorylated in a localisation-
dependent manner and activated after it leaves the ER.
Collectively, these data demonstrate that RNF43 activity is
regulated by multi-step phosphorylation events (Fig. 2h).

Exogenous RNF43 functions similarly to endogenous RNF43.
First, we confirmed that the STF293 cells we used in this study
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express functional endogenous RNF43 on their cell surface. Rspo
facilitates Wnt ligand-induced signal activation by increasing the
surface level of Fzd26,27 (Supplementary Fig. 3a, b). Direct acti-
vation of Wnt/β-catenin signalling by CHIR treatment suppressed
the expression of Fzd on the surface via a negative feedback cir-
cuit, as reported by many groups15,18 (Supplementary Fig. 3b).
Rspo interfered with the suppression of Fzd expression via RNF43
induction (Supplementary Fig. 3b). These results suggested that
STF293 cells retain an intact Wnt signal activation/suppression
cascade as well as Rspo-Lgr4/5-RNF43/ZNRF3 axis. In contrast to
this, CRC cells that express abundant levels of endogenous WT
RNF43 due to saturated accumulation of β-catenin by APC
mutation (e.g. HT-29 cells), fail to show the ligand-induced signal
activation and facilitation (Supplementary Fig. 3a). Therefore, we
used STF293 cells and the CRISPR/Cas9 genome engineering
method to confirm our findings at the endogenous protein level.
We tagged RNF43 with a C-terminal HA-epitope in STF293 cells
(Supplementary Fig. 3c, d). Although it still functions normally
(Supplementary Fig. 3a, b), endogenous RNF43 protein was
expressed at extremely low levels, and thus we could not detect
HA-tagged endogenous RNF43 by simple immunoblotting (IB)
and immunofluorescent staining (IF) (Supplementary Fig. 3e, g).
Nevertheless, we were able to confirm the expression of HA-
tagged endogenous RNF43 by IB after immunoprecipitation (IP)
(Supplementary Fig. 3e). We confirmed that the HA knock-in
STF293 cells show a similar response to WT STF293 cells upon
Wnt stimulation (Supplementary Fig. 3f).

Next, we used CRISPR/Cas9 genome editing to introduce
various RNF43 mutations (RNF43 KO, ΔPS, and R127P) in
STF293 cells and assess their effects at the endogenous level
(Supplementary Fig. 3h–k). RNF43 knockout (KO) cells exhibited
increased Wnt signalling (Fig. 2f), suggesting that STF293 cells
express functional endogenous RNF43 protein as shown in our
previous knockdown experiment18. Therefore, these cells are
useful for a functional examination of endogenous Wnt
signalling, despite a low RNF43 expression level. Furthermore,
deletion of the phospho-switch region (ΔPS) from endogenous
RNF43 (Supplementary Fig. 3j) facilitated Wnt signal activation
compared RNF43 KO cells (Fig. 2f). This result confirms our
findings from experiments with overexpression of exogenous
RNF43 (ΔSRR2, ΔSRR2-2 or 3SA; Fig. 1, Supplementary Fig. 1f)
and was accompanied by corresponding changes in the surface
levels of endogenous Fzd receptors (Fig. 2g). STF293-RNF43
(ΔPS) and RNF43(R127P) knock-in cells were not sensitive to
Rspo (Supplementary Fig. 3l). Taken together, these results
suggest similar functions of endogenous and exogenous RNF43,
with endogenous RNF43(ΔPS) protein acting as a dominant-
negative mutant18 (Figs. 1, 2 and Supplementary Fig. 1 with
exogenous RNF43 mutants).

RNF43 phosphorylation promotes ubiquitination of Fzd. To
further investigate how RNF43 function is regulated via serine
phosphorylation, we examined protein-protein interactions and
subcellular localisation of the phospho-mutants. Immunopreci-
pitation and immunofluorescent experiments suggested that
RNF43(3SA) and RNF43(3 SD) behave similarly to RNF43(WT)
with regard to protein-protein interactions (Supplementary
Fig. 4a), homodimer formation (Supplementary Fig. 4b), het-
erodimer formation with ZNRF3 (Supplementary Fig. 4c) and
endosomal/ER/nuclear localisation (Supplementary Fig. 4d). In
addition, expression of ZNRF3 was not perturbed by any of the
RNF43 mutants (Supplementary Fig. 4e).Co-immunoprecipita-
tion analysis also revealed that the RNF43 phosphomimetic (3SD)
and phosphoresistant (3SA) mutants maintained the interactions
with Dvl2 or Fzd5, similar to WT RNF43 (Supplementary Fig. 4f,
g). We then considered that serine phosphorylation may change
the conformation of the intracellular portion of RNF43 to expose
the RING finger domain, which is essential for interactions with
E2 enzymes. However, phospho-mutations did not alter binding
to the E2 enzyme UbcH5C, which is essential for RNF43-
mediated ubiquitination of Fzd26 (Supplementary Fig. 4h). Pre-
viously, we and other groups reported the localisation of RNF43
in the nuclear membrane18,28–30 and demonstrated that this
protein negatively regulated Wnt/β-catenin signalling by deplet-
ing the Tcf4 transcription factor from Wnt target genes29,30.
Accordingly, we examined the role of the phospho-switch in this
mechanism by directly activating nuclear Wnt/β-catenin signal-
ling with ΔN-β-catenin. As reported, WT RNF43 suppressed
Wnt/β-catenin signalling downstream of receptor control,
although a marginal level of negative regulation was also observed
at the nuclear level (Supplementary Fig. 4i). The functions of all
other RNF43 phospho-mutants were similar to the WT.

Based on these negative results, we next hypothesised that
RNF43 phosphorylation affects its ability to ubiquitinate Fzd. To
test this hypothesis, we treated cells co-expressing Fzd5 and
RNF43 with bafilomycin to inhibit lysosome-dependent degrada-
tion and monitored the levels of polyubiquitinated Fzd5. Indeed,
cells co-expressing RNF43(3SA) displayed less polyubiquitinated
Fzd5 than cells co-expressing RNF43(3SD) or WT RNF43
(Supplementary Fig. 4j, see also Fig. 6d). These data suggest that
phosphorylation promotes RNF43-mediated ubiquitination, and
in turn endocytosis and lysosomal degradation, of Fzd5.

It is currently thought that RNF43-mediated degradation of the
substrate Fzd is regulated by RNF43 levels and by R-spondin. Our
results reveal an additional layer of regulation in Wnt signalling.
In general, phosphorylation of the substrate is known to regulate
its degradation, however, we have uncovered phospho-regulation
of the ubiquitin ligase RNF43 itself as another way to control
degradation of Fzd. We clearly show that phosphorylation of

Fig. 2 Multi-step phosphorylation is required for RNF43 function. a–c The role of a priming phosphorylation was investigated using STF-Luc assay (a, c)
and flow cytometric analysis (b) using RNF43 mutants. Luciferase activity or surface Fzd level in empty vector-transfected (NC) or mock cells was set to 1.
Grey or black lines, or grey fills indicate not stained, RNF43 stably expressed or mock cells, respectively. Characters shown in red indicate amino acids after
substitution (a, c). d Surface expression of Fzd was examined via flow cytometric analysis following addition of kinase inhibitors (GSK-3β, CHIR-99021;
CK1, IC261). e, Phosphorylation of RNF43 and mutant forms was examined by an in vitro kinase assay with CK1/2. Phospho-RNF43 levels were normalised
to total RNF43 protein levels and normalised phospho-RNF43(WT) levels were set to 1. f The effects of a loss of endogenous RNF43 (KO) or removal of
the RNF43 phospho-switch (ΔPS; similar to serine-rich region (SRR)2 and SRR2-2 in Supplementary Fig. 1f) were examined in STF293 cells using a STF-
luciferase assay. The luciferase activity in parental STF293 cells was set to 1. g Surface Fzd expression on RNF43 KO or ΔPS STF293 cells was evaluated
using flow cytometry with pan-Fzd antibodies (Abs). h Schematic of localisation-dependent RNF43 activation via multi-step phosphorylation. RNF43
activity is acquired via phosphorylation at a post-ER stage during or after protein trafficking toward the cell surface. Bar graphs and error bars in this figure
represent mean ± standard deviation (sd) of at least three biologically independent experiments. Red circles indicate individual values of each sample. The
P values for the indicated comparisons were determined by one-way ANOVA (P < 0.05). n= 3 (a–c, f), n= 4 (e) biologically independent samples.
Asterisks or ND indicates significant or no significant difference in indicated comparisons, respectively. All FACS data in this figure was acquired and
displayed with same strategy shown in Supplementary Fig. 1g. Each coloured line indicates the property of RNF43 expressing in cells (d, g).
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RNF43 directly facilitates its ubiquitin ligase activity. This
phospho-dependent regulation may function downstream from
the well-known RNF43-Rspo-Lgr module.

Phospho-RNF43 regulates morphogenesis and ISC main-
tenance. We next examined the biological significance of RNF43
phospho-regulation in developing zebrafish embryos. Injection of
mRNA encoding RNF43(3SA) into Wnt reporter zebrafish
embryos resulted in increased expression of both endogenous
Wnt/β-catenin target genes, such as tbx631, axin232 and nkd133,34,
as well as the reporter gene, egfp. In contrast, injection of mRNA
encoding RNF43(WT) inhibited the expression of these genes, as
expected (Fig. 3a, b, Supplementary Fig. 5a). The activation and
expression of target genes in other signalling pathways, including
FGF35 and BMP36, were not perturbed by RNF43 expression in
developing zebrafish embryos (Fig. 3b). In addition, we observed
defective anterior–posterior (A–P) axis elongation at later stages
of development in embryos injected with mRNA encoding
RNF43(WT), but this defect was absent from embryos injected
with mRNA encoding RNF43(3SA) (Supplementary Fig. 5b).
Impaired A–P axis elongation can arise from defective mesoderm
induction due to a lack of sufficient Wnt/β-catenin activity, or
from the loss of convergent extension movement due to deficient
non-canonical Wnt signalling. Therefore, we investigated whether
non-canonical Wnt signalling activity is altered by RNF43(3SA)
expression. In situ hybridisation for the expression of axis-related
marker genes showed that the short and wide non-canonical Wnt
phenotype37 induced by expression of RNF43(WT) was mostly
absent in embryos expressing RNF43(3SA) (Supplementary
Fig. 5c). Together, these data suggest that the defects in A–P axis
elongation originate from dysfunction of both canonical Wnt/β-
catenin signalling and likely non-canonical Wnt signalling, with
minimal influences from other signalling pathways. They also
establish a critical role for the S474–476 phospho-switch of
RNF43 during embryonic development.

We have reported that RNF43 is expressed in ISCs, where it
regulates normal crypt development and stem cell maintenance11.
RNF43 and ZNRF3 strongly inhibit Wnt/β-catenin signalling to
suppress excess proliferation of ISCs, while maintaining Wnt/β-
catenin signalling is also important for the self-renewal of ISCs.
These paradoxical roles suggest that RNF43 expressed in ISCs
might be regulated to fine-tune its activity and maintain ISC self-
renewal. Based on this idea, we employed a mouse intestinal
organoid model to examine whether the phospho-regulation of
RNF43 function contributes to ISC maintenance. Expression of
RNF43(3SD) during short-term culture of organoids in the
presence of EGF, Noggin and Rspo (the ENR condition)
significantly suppressed organoid growth only when the Rspo
concentration in the culture medium was low (1% Rspo-
conditioned medium). By contrast, expression of RNF43(3SA)
did not suppress organoid growth under either low or high (10%)
Rspo concentrations but instead improved their viability in the
1% Rspo ENR condition (Fig. 3c, Supplementary Fig. 5d, e).
These results suggest that phospho-regulation of RNF43 is
required for the survival and the growth of crypts, and that this
regulation occurs independently of the RNF43-Rspo-Lgr regula-
tory module13. We then added exogenous Wnt3a to ENR
medium (the WENR condition) to rule out a function of the
Paneth cell-niche. Again, ISCs failed to maintain the organoid
culture after the second passage when expressing RNF43(3SD)
(Fig. 3d, Supplementary Fig. 5f), suggesting the importance of
phospho-regulation of RNF43 in ISC maintenance during long-
term culture. These results reveal that phospho-regulation of
RNF43 functions as an additional regulatory layer of Wnt
signalling and suggest the functional importance of maintaining

RNF43 in a low-phosphorylation state in ISCs. This RNF43
phospho-regulation ensures tighter control of ISC activity
together with the Rspo-Lgr4/5 regulator of RNF43.

RNF43(3SA) cooperates with active Ras to induce tumours.
Inactivation of RNF43 and ZNRF3 induces Wnt-dependent
adenoma formation11,17,38, and these genes are frequently
mutated in various human cancers39,40. These studies suggested
essential roles of RNF43/ZNRF3 in suppressing tumorigenesis in
both mice and humans. Indeed, several cancer-associated muta-
tions in the N-terminal extracellular domain of RNF43 greatly
increase Wnt/β-catenin signalling activity in a Wnt-dependent,
but Rspo-independent, manner18. To further investigate the role
of RNF43 in tumorigenesis, we identified patient mutations
downstream of the RING-finger domain using the COSMIC
database for mutations in cancer. Twenty-three patient tumour
mutations within the cytoplasmic region after the RING-finger
domain, but outside the SSSDS sequence, did not alter RNF43
function in the STF-Luc reporter assay (Supplementary Fig. 6a),
suggesting that these are passenger mutations. In contrast, we
found that four naturally occurring cancer-associated mutations
within the SSSDS sequence inhibit or are predicted to inhibit
RNF43-mediated repression of Wnt/β-catenin signalling
(Figs. 1b, 2a, Supplementary Fig. 6b, c), suggesting that loss of
RNF43 phospho-regulation contributes to tumorigenesis.

To directly investigate the role of the RNF43 phospho-
regulation in tumorigenesis, we established cell lines that stably
express RNF43 constructs (Supplementary Fig. 7a). We first used
the non-tumour cell line NIH3T3 to avoid unexpected genomic
variations that frequently occur in cancer-derived cell lines due to
their genomic instability. NIH3T3 cells expressing dominant-
negative RNF43(3SA) did not acquire a transformed phenotype,
as assessed by anchorage-independent cell growth (Supplemen-
tary Fig. 7b, left panel) and allograft transplantation into nude
mice (Fig. 4a, left panel). These data suggest that the gain of
RNF43-mediated facilitation of Wnt/β-catenin signalling alone is
not sufficient for tumorigenesis. Given the high co-occurrence of
RNF43 mutations with activating KRAS mutations in human
pancreatic tumours39, we next investigated the oncogenic
properties of RNF43(3SA) in NIH3T3 cells that contain mutant,
active Ras (Cle-H3 cells)41. Strikingly, Cle-H3 cells expressing
RNF43(3SA) exhibited greatly accelerated anchorage-
independent colony formation, spheroid formation and tumour
growth in nude mice (Fig. 4a–d, Supplementary Fig. 7a–c). In
fact, RNF43(3SA) displayed similar oncogenic properties as an
established cancer-associated R127P mutation in RNF43, which is
within the extracellular protease-associated (PA) domain and
abolishes inhibition of Wnt signalling18,29 (Fig. 4a–d, Supple-
mentary Fig. 7c). This suggests that the phospho-switch mutation
(3SA) has a similar dominant-negative effect observed in previous
known oncogenic mutations found in the PA domain and that
the loss of RNF43 phosphorylation cooperates with active Ras to
promote tumorigenesis in vivo. These established tumours arising
from Cle-H3 cells expressing RNF43(3SA) displayed a strong
cytoplasmic accumulation of β-catenin as previously described in
RNF43/ZNRF3 DKO intestine11 (Supplementary Fig. 7d).

RNF43-KRAS cooperation triggers multi-step carcinogenesis.
We and others have previously reported that RNF43 inhibits p53-
dependent cellular events, including transcription of downstream
genes, cell cycle progression and cell death20,21,42. To determine
whether oncogenic RNF43 mutants maintain inhibition of p53,
we treated HCT116 cells (WT p53, active-RasG13D, active-β-
cateninS45Δ and RNF43 deletion) that stably overexpressed exo-
genous RNF43 and mutants with etoposide and examined the p53
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response in the absence of endogenous RNF43 overexpression
induced by aberrant Wnt signalling. We found that the RNF43
mutants (3SA, 3SD, R127P) retained DNA damage-induced p53
expression and its nuclear localisation, and suppressed p53-
dependent induction of p21 and Bax, similar to WT RNF43,
suggesting that the nuclear function of RNF43 does not require
phosphorylation and ubiquitinating activity (Fig. 5a, Supple-
mentary Figs. 4i, 8). Furthermore, downregulation of p53 target

genes by RNF43 and its derivatives were completely abolished in
MB352 cells with the lack of TP53 gene, whereas it was main-
tained in the culture of STF293 cells with iCRT3, which inhibits
β-catenin and Tcf/Lef binding (Supplementary Fig. 8a, b). These
data provide further support that RNF43 does not degrade p53
and does not suppress p53 target genes via the Wnt-myc-p21
pathway43 but suppresses p53-dependent transcription20, and
that it controls multiple signalling pathways via distinct
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mechanisms. This result suggests a mechanistic insight—reveal-
ing that oncogenic RNF43 induces its own expression by a
positive feedback circuit of Wnt signalling, which we have
reported previously18, and then further suppresses the p53
pathway to facilitate tumorigenesis (Fig. 5d).

Our data suggest that RNF43 mutations combined with
activating mutations in Ras have the potential to fulfil not only

two but all three steps of the traditional multi-step model of colon
carcinogenesis (concurrent Wnt activation and p53 inactivation
by RNF43 mutation and Ras activation by KRAS mutation44–46).
To investigate the relevance of our findings to human cancer, we
performed a comprehensive analysis of The Cancer Genome
Atlas (TCGA) database to determine whether mutations in these
genes affect patient outcome. This analysis confirmed that

Fig. 3 RNF43 phosphorylation regulates morphogenesis and ISC maintenance. a Expression of endogenous target genes of Wnt/β-catenin signalling was
evaluated using in situ hybridisation following expression of RNF43 phospho-mutant forms in zebrafish embryos at 8 h post-fertilisation (hpf) (75%
epiboly). Scale bars, 200 μm. Asterisks indicate significant differences (P < 0.05, one-way ANOVA, n= 37–48 as indicated) from NC embryos.
b Expression change of Wnt/β-catenin, FGF and BMP signalling target genes with RNF43 was evaluated using qPCR at 5.3 hpf (45–50% epiboly).
Endogenous Wnt target genes, artificial Wnt reporter gene and non-Wnt target genes are shown in purple, green and grey, respectively. Expression of
each gene in uninjected embryos was set to 1 (mean ± sd). Red circles indicate individual values of each sample. Asterisks indicate significant differences
(P < 0.05, one-way ANOVA, n= 3, biological replicates with pools of 25–30 embryos) from uninjected embryos. ND indicates no significant difference.
c Short-term development of intestinal organoids was examined at 4 days following induction of RNF43 phospho-mutant forms. White dashed boxes
denote the area enlarged in black boxes. Arrows, healthy organoids. Arrowheads, dead organoids. Asterisks indicate significant differences (P < 0.05, one-
way ANOVA, n= 20–25 as indicated) between groups. d Long-term ISC maintenance was evaluated after 65 days with two passages in organoids
expressing RNF43 phospho-mutant forms. Scale bars in (c, d), 1 mm.
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mutations in RNF43 or ZNRF3 occur independently, supporting
our theory that oncogenic RNF43 and ZNRF3 mutations act as
dominant negatives18 (Supplementary Fig. 9a). Furthermore, we
found that co-occurrence of KRAS and TP53 mutations is
significantly associated with poor outcome (Supplementary
Fig. 9b), as reported recently47.

RNF43 mutations were generally associated with poor outcome
in patients with colorectal cancer, regardless of the microsatellite
instability phenotype (MSI) status (Supplementary Fig. 9c).
Importantly, Kaplan–Meier analysis revealed that co-occurrence
of RNF43 and KRAS mutations was associated with a poorer
outcome for colorectal cancer, compared to single mutations of

each gene (Fig. 5b), although the samples size was not enough to
obtain significant differences. In contrast, TP53 mutations did not
alter the outcome of colon cancer patients with RNF43 mutations
(Fig. 5c), supporting that RNF43 functions in the p53 pathway as
shown in Fig. 5a and Supplementary Fig. 8. Moreover, colorectal
tumours with mutations in RNF43 lacked mutations in APC48

and TP53 (Supplementary Fig. 9d). These mutually exclusive data
suggest that mutations in RNF43 represent an alternative
mechanism of both activating Wnt and disabling p53 during
tumorigenesis, instead of independent multi-step mutations in
APC and TP53. Overall, our findings provide insight into why the
co-occurrence of mutations in two genes, RNF43 and Ras, greatly
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accelerate tumorigenesis: RNF43-KRAS mutations cooperate to
establish the Wnt-Ras-p53 axis, supporting the multi-step model
of colorectal carcinogenesis (Fig. 5d).

Phosphorylation converts onco-RNF43 to a tumour sup-
pressor. Our data suggest that the 3SA and 3SD mutations
abrogate and facilitate, respectively, RNF43-mediated ubiquiti-
nation of Fzd and inhibition of Wnt/β-catenin signalling (Figs. 1c,
d, 6d, Supplementary Fig. 4j). To examine whether the phos-
phorylation of RNF43 can modulate the activity of distant
oncogenic mutations in the PA domain or in the RING-finger
domain of RNF43, we introduced the 3SA or 3SD mutations into
RNF43(I48T), RNF43(R127P) and RNF43(H292R) backgrounds.
We previously showed that the RNF43(I48T) and RNF43(R127P)
mutations affects the subcellular localisation of RNF43 and
impairs the function of RNF4318. Interestingly, the introduction
of the 3SD, but not 3SA, mutations into the oncogenic RNF43
(I48T) and RNF43(R127P) backgrounds could partially rescue
RNF43-mediated inhibition of Wnt signalling, as assessed by the
STF-Luc assay (Fig. 6a, Supplementary Fig. 10a). In contrast, 3SD
phosphomimetic substitution did not recover the RING domain-
dead RNF43(H292R) mutation, which further supports the pre-
sence of a phospho-switch (Supplementary Fig. 10a). In addition,
the 3SD substitution almost completely abolished the oncogenic
activity of the RNF43(R127P) both in vitro and in vivo (Fig. 6b, c,
Supplementary Fig. 10b). However, the introduction of 3SD did
not alter the levels of RNF43(R127P) protein (Supplementary
Fig. 7a) or its aberrant ER localisation that we reported pre-
viously18 (Supplementary Fig. 10c). Thus, phosphomimetic
mutations within the conserved serine triplet can revert diverse
Rspo-independent dominant-negative RNF43 mutants back to
functional negative regulators of Wnt signalling, irrespective of
whether the oncogenic mutation is extracellular (I48T, R127P;
Fig. 6a, Supplementary Fig. 10a) or intracellular (S478A; Fig. 2a).
Further, our results suggest that forced phosphorylation or sub-
stitution of the conserved serine triplet might represent a pro-
mising therapeutic approach (Fig. 5d).

Based on these data, and our discovery that phosphorylation of
RNF43 affects ubiquitination of Fzd5 (Supplementary Fig. 4j), we
hypothesised that the R127P oncogenic mutation reduces RNF43-
mediated ubiquitination of Fzd5, and that the 3SD mutations
restore ubiquitination activity to the R127P mutant. To test this
hypothesis, we again treated cells co-expressing Fzd5 and RNF43
mutants with bafilomycin to inhibit lysosome-dependent degra-
dation and monitored the levels of ubiquitinated Fzd5. As
expected, we found that cells co-expressing RNF43(R127P)
displayed less ubiquitinated Fzd5 than cells co-expressing wild-
type RNF43 (Fig. 6d). Strikingly, the RNF43(R127P-3SD) showed
restored ubiquitination of Fzd5 relative to RNF43(R127P)
(Fig. 6d). Thus, mislocalisation of RNF43(R127P) reduces
RNF43-mediated ubiquitination of Fzd5, and the 3SD phospho-
mimetic substitution can restore the ubiquitination and tumour
suppressor activity to RNF43(R127P). These findings reveal
phosphorylation of RNF43 as a potential therapeutic target to
restore the inhibitory role of RNF43.

Discussion
Our work shows that phosphorylation of three conserved serines
regulates the function and oncogenic potential of RNF43 by
influencing the ubiquitination and subsequent lysosomal degra-
dation of Fzd. Phosphorylation of RNF43 is required to negatively
regulate canonical and non-canonical Wnt signalling during
embryonic development and in adult stem cells. Dysregulation of
RNF43 phosphorylation leads to a breakdown in homoeostasis
and an increase in oncogenic activity. Thus, both multi-step

phosphorylation and RSPO-Lgr4/5/6 regulate RNF43 to control
the surface level of Fzd and Wnt signalling activity (Fig. 6e).
Furthermore, phosphorylation status seems to be the most critical
regulator of RNF43, as it acts downstream of Rspo/Lgr5. There-
fore, the phosphatase and the upstream signal that regulates
RNF43 phospho-status should be identified to fully understand
the mechanism of Wnt signalling regulation.

Importantly, combining phosphomimetic substitution with
distant oncogenic RNF43 mutations (i.e. I48T and R127P)
restores RNF43-mediated tumour suppression. The R127P
mutation leads to mislocalisation of RNF43, which preclude
phosphorylation at the conserved serine triplet. The 3SD muta-
tion restored RNF43(R127P)-mediated ubiquitination of Fzd,
apparently without restoring the localisation of this mutant. In
addition, RNF43(R127P) exhibited a lower level of phosphor-
ylation relative to RNF43(WT), suggesting that the function of
RNF43 is not regulated directly by localisation, but by
localisation-dependent phosphorylation. Our data thus indicate
that RNF43 is a therapeutic target for patients harbouring
oncogenic mutations outside the serine triplet and RING-finger
domain. Suppressing RNF43 mutation-dependent tumorigenesis
using Wnt inhibitors such as porcupine inhibitors (e.g., IWP-2)
may be effective, because oncogenic RNF43 facilitates signalling
activity in the presence of Wnt, as shown in our reporter assays,
and we have already reported that tumorigenic hyperplasia of
intestinal organs in the absence of both RNF43 and ZNRF3 is
inhibited by IWP-2 treatment38. However, such a general inhi-
bition of Wnt production affects a broad array of cell types and
organs that maintain homoeostasis under the control of Wnt,
regardless of RNF43 expression, and so may have serious side
effects. Additionally, inhibiting the Rspo-Lgr module may not be
effective for anti-cancer therapy, as we have previously found that
oncogenic RNF43 does not require Rspo for the acceleration of
Wnt signalling18. In contrast, the recovery of RNF43 activity by
targeting serine phosphorylation could be a potential approach
for tumour suppression with milder side effects, since it is pre-
dicted to only affect RNF43 mutant cells.

Recently, another research group observed the apparent
hyperproliferation of the gastric mucosa in RING-dead RNF43
mutant mice, although these mice developed healthy intestines
and did not exhibit neoplastic expansion of the ISC region, as
reported previously in RNF43/ZNRF3 DcKO mice11,30. These
results may indicate the importance of another function of RNF43,
namely suppression of the p53 pathway. We demonstrate in
Figs. 5a and 6d and Supplementary Fig. 8 that this suppression
does not require the RING-finger domain-dependent ubiquiti-
nating activity of RNF43, which is essential for the degradation of
Fzd. RNF43 mutants that lack ubiquitination activity because of
extracellular mutation (R127P) or a broken phospho-switch (3SA)
retain the ability to suppress p53, whereas a lack of RNF43
expression causes a loss of suppression of both the Wnt and p53
pathways. Therefore, the ability of ubiquitination-dead mutants to
suppress the p53 pathway may depend on the binding of RNF43
to p53 but not on phosphorylation, similar to the suppression of
Wnt signalling by the nuclear RNF43-Tcf4 interaction30. In
Supplementary Fig. 4i, we indeed demonstrate suppression of Wnt
signalling via nuclear RNF43-Tcf4 binding, but at a marginal level
relative to the mechanism associated with Fzd degradation at the
surface. We previously reported that RNF43 is a direct target of
Wnt signalling; namely, a feedback loop is established (Fig. 5d),
and mutations can further induce Fzd accumulation and p53
inhibition18. In this study, we demonstrated that a RNF43 muta-
tion can cooperate with KRAS to induce Wnt-RAS-p53 axis
activity and thus drive tumorigenesis.

Furthermore, we demonstrated that mutations in the phospho-
regulated serines that affect Wnt signalling did not alter RNF43-
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mediated p53 inhibition. Unfortunately, the number of patient
tumour samples containing specific RNF43 missense mutations
that reliably induce excessive Wnt signalling and/or maintain p53
inactivation is currently insufficient for database analysis (Sup-
plementary Fig. 6a, b)18. Thus, we could not complete the ana-
lyses for the prognosis of colorectal tumour patients to clarify the
roles of RNF43 phospho-regulation in tumorigenesis due to an
insufficient numbers of samples.

The current databases do not classify correctly or in detail the
type of mutations within a gene. It would be necessary to classify
the type of RNF43 mutations as complete or partial deletions, or
missense mutations, and to link them to functional changes, in
order to fully understand the molecular and cellular roles for
these mutations in tumorigenesis. This is especially so because
RNF43 suppresses the p53 and Wnt signalling pathways by dif-
ferent mechanisms. It was recently reported that an RNF43
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(G659fs) mutation is frequently associated with colorectal
tumours having a MSI phenotype48,49 and a better prognosis.
However, we do not have evidence suggesting that this fs mutant
protein would not be expressed by nonsense-mediated mRNA
decay (NMD) or that it would function normally as reported
recently50,51. Indeed, not all deletion or missense mutations
exhibiting a high-score (frequency of the mutation or impact
expected on the protein structure) in database analyses converted
RNF43 to a dominant-negative-Wnt activating form, as shown in
our previous18 and current study (Supplementary Fig. 6a), and
MSI did not markedly affect the prognosis of patients harbouring
the RNF43 mutation in our analysis (Supplementary Fig. 9c). Our
data indicate that many cytoplasmic mutations are passengers,
except those in the RING domain and the phospho-switch,
whereas mutations in the PA domain confer an oncogenic effect.

Our careful analysis of missense mutations in RNF43 has
provided significant insights into the operation of this tumour
suppressor with three functional domains: the extracellular PA
domain for interaction with Fzd or Rspo, RING domain for
ubiquitination and a phospho-switch for functional control. We
also identified a critical role of the phospho-switch by demon-
strating its epistatic control of mutations in the PA domain. Our
findings suggest that therapeutic phosphomimetics could revert
an oncogenic RNF43 mutant to a functional tumour suppressor.

Methods
Accession numbers of RNF43 and ZNRF3. Human RNF43, NP_001292473.
Human ZNRF3, NP_001193927. Mouse Dvl2, NP_031914. Mouse Fzd5,
NP_001036124. Mouse RNF43, NP_766036, Naked-mole rat RNF43,
XP_021104324. Bengalese finch RNF43, XP_021396062. Three-toed box turtle
RNF43, XP_026514312. Tropical clawed frog RNF43, XP_002935238. Zebrafish
RNF43, XP_021332049.

Plasmids. The mammalian expression vectors pcDNA3-hRNF43(WT, Δ366-441,
Δ366-478, I48T, R127P)-HA, pCS2+ -FLAG-mFzd5 and pCS2-myc-mDvl2 were
described in our previous reports18. A series of deletion mutants, pcDNA3-
hRNF43(ΔSRR1, ΔSRR2, ΔSRR1/2, ΔSRR2-1, ΔSRR2-2, ΔDvl-(N, C), ΔSSS,
S476del)-HA, and missense mutants, pcDNA3-hRNF43 and pcDNA4/TO-hRNF43
(S474A, S474P, S475A, S476A, S474–476A (3SA), S474–476D (3SD), S474–476E
(3SE), S474–476T (3ST), S478A (SA), S478D (SD), S478E (SE), S478P (SP),
S474–476A:S478D (3SA-SD), S474–476D:S478A (3SD-SA), H292R, S539A,
E318D, Q344H, Y357C, R389H, L418M, G447E, V479L, T483M, S532F, S532D,
R519Q, E541K, H549N, R554G,P569H, P587S, R600S, S607L, D628G, E662K,
W726L, I48T:3SA, I48T:3SD, R127P:3SD and R127P:3SA-HA), were generated
using polymerase chain reaction (PCR). PCR products amplified using KOD FX
Neo polymerase (KFX-201, Toyobo) together with pcDNA3-hRNF43-HA or
pcDNA4TO-hRNF43-x2FLAG-HA templates and the relevant primers (all primers
used in this study to generate expression vectors for RNF43 derivatives are
described in Supplementary Methods) were then self-ligated using a ligation kit
(6022, DNA Ligation Kit Ver.2.1, Takara). All the expression plasmids generated
were sequenced to confirm identity. Wild-type and missense mutants of hRNF43
(3SA, 3SD, 3SE, S478A, R127P and R127-3SD) bearing HA or x2 FLAG-HA tags
were inserted into pMX-puro vectors for the derivation of stable cell lines
expressing RNF43 constructs.

Cell culture, transfection and reagents. Cell lines into which the SuperTopFlash
Wnt reporter had been introduced (HEK293, termed STF293 following introduc-
tion of the reporter), HEK293, HeLa, HCT116, Platinum-E (Plat-E), Platinum-A
(Plat-A), MB352, Rspo1/HEK293 and Cle-H3 were grown in DMEM (D5796,
Sigma) supplemented with 10% foetal bovine serum (10270, Gibco). NIH3T3 cells
were grown in DMEM supplemented with 10% bovine serum (16170, Gibco).
STF293 cells were described in our previous report18,52. All cell lines used were
tested for mycoplasma with the Vector GeM OneStep Mycoplasma detection kit
(11-8025, Minerva Biolabs). STF293 was authenticated via STR validation analysis
as HEK293. Cle-H3 cells were provided from RIKEN BRC. Wnt3a/L cells were the
kind gift of S. Takada (NIBB, Japan) and were grown in DMEM/F-12 HAM
(D8062, Sigma) supplemented with 10% foetal bovine serum. Control and Wnt3a-
conditioned media (Wnt3a CM) were obtained from 24 h culture of these cells.
Plasmids were transfected using FuGENE HD Transfection Reagent (E231A,
Promega) according to the manufacturer’s protocol. For retrovirus-mediated gene
transduction, NIH3T3, Cle-H3, HCT116 or STF293 cells were infected with ret-
roviruses produced in Plat-E or Plat-A packing cells53. These cells were then
cultured in the presence of 5 μg/ml puromycin (P8833, Sigma) for 1 week. Stable
expression of RNF43 constructs was confirmed by immunoblot analysis. CHIR-
99021 (3 µM; SML-1046, Sigma) and IC261 (2 µM; ab145189, Abcam) were used to
inhibit the kinases GSK-3β and CK1 respectively. The iCRT3 (50 µM; SML-0211,
Sigma) was used to inhibit the binding between β-catenin and Tcf/Lef. Etoposide
(20 µM, VP-16, E1383, Sigma) was used for 12 h to induce p53-dependent p21
expression.

Luciferase assays. STF293 cells stably expressing HA-tagged RNF43 WT or
mutant forms or STF293 control cells were seeded into 24-well plates (5 × 104 cells)
and transfected with RNF43 expression plasmids using FuGENE HD Transfection
Reagent. Wnt3a CM (1/4 of total volume) was added to the culture medium 24 h
after transfection (STF293 cells) or after seeding cells (RNF43-expressing stable cell
lines) before cells were cultured for an additional 24 h. Cells were harvested and
lysed in 100 μl of cell culture lysis reagent. The luciferase activity was measured
with the Luciferase Assay System (E1501, Promega) using 10 μl of lysate and 50 μl
of luciferase assay substrate. Luminescence was quantified with a luminometer
(GLOMAX 20/20 LUMINOMATER, Promega). The relative level of luciferase
activity in empty vector- or RNF43(WT)-transfected cells, or in mock-transfected
cells that had undergone Wnt3a stimulation was set to 1. All experiments were
repeated independently three times or more.

Immunoprecipitation and immunoblotting. Cells expressing RNF43 constructs
were lysed with IP lysis buffer containing 50 mM Tris-HCl (pH 7.6), 150 mM
NaCl, 0.7% Triton X-100, 0.4 mM Na3VO4, 0.4 mM EDTA, 10 mM NaF and
10 mM sodium pyrophosphate and cOmplete Mini EDTA-free (19541400, Roche).
Lysates were incubated on ice for 20 min and then centrifuged at 16,000g for
20 min at 4 °C. After determination of protein concentration via the Bradford assay
(500-0006, Protein Assay, Bio-Rad), cell lysates (10 μg/lane) were subjected to SDS-
PAGE on 8–10% acrylamide gels in the presence or absence of 50 μM Phos-tag
Acrylamide (AAL-107, FujiFilm-Wako) and separated proteins were transferred to
an Immobilon-P membrane (IPVH00010, Millipore). The membranes were probed
with antibodies against HA (HA.11-16B12, MMS-101R, Covance) at 1:5000 dilu-
tion, Myc (9E10, PRB-150P, Covance) at 1:5000 dilution, FLAG (F3165, M2 and
F4042, M5, Sigma) at 1:5000 dilution, active β-catenin (4270 and 8814, D13A1, Cell
signaling Technology) at 1:1000 dilution (both), p53 (sc-126, DO-1, Santa Cruz
Biotechnology) at 1:1000 dilution, p21 (sc-6246, F-5, Santa Cruz Biotechnology and
64016, 2947, Cell signaling Technology) at 1:250 and 1:1000 (both) dilution, Bax
(5023, D2E11 and 14796, D3R2M, Cell signaling Technology) at 1:250 and 1:1000
dilution, c-myc (sc-764, N-262, Santa Cruz Biotechnology) at 1:400 dilution, ubi-
quitin (sc-8017, P4D1, Santa Cruz Biotechnology) at 1:1000 dilution, HH2B (sc-
10808, FL-126, SantaCruz Biotechnology) at 1:500 dilution, IRE1α (3294, Cell

Fig. 6 Serine phosphorylation reverts oncogenic RNF43 to a tumour suppressor. a The role of serine phosphorylation was examined using STF-Luc assay
in an RNF43(R127P) mutant background. Luciferase activity in mock-transfected cells was set to 1 (mean ± sd). Schematic of RNF43 mutants used in
Figs. 5, 6, Supplementary Fig. 7, 9 is shown. Independent values of each sample are shown as red circles. Asterisks indicate significant differences
(P < 0.05, one-way ANOVA, n= 3 biologically independent samples) from RNF43(R127P) cells. b Colony-forming activity was evaluated following
expression of RNF43 phospho-mutant forms in Cle-H3 cells via soft agar assay and volume of colonies was estimated. Scale bars, 100 μm. Asterisks
indicate significant differences from RNF43(R127P) tumour. c Tumour growth was examined in nude mice with Cle-H3 cells following the expression
of RNF43 phospho-mutant forms at 5 wks after Cle-H3 injection and tumour weight was measured. Images for all of the tumours are shown. Scale
bar, 1 cm. NT indicates no tumour observed. Bar graphs and error bars in (b, c) represents mean ± sem of biologically independent samples. Red circles
indicate individual values of each sample. The P values for the indicated comparisons were determined by one-way ANOVA (P < 0.05). n= 98–134
(b), n= 6–12 (c) biologically independent samples. Asterisks or ND indicates significant or no significant difference in indicated comparisons, respectively.
d Ubiquitination of Fzd5 by RNF43 phospho-mutants was examined with bafilomycin A1 by immunoprecipitation (IP)-IB experiments. e Schematic of
molecular mechanism and biological role of RNF43 phosphorylation in Wnt signalling and multi-step tumorigenesis. Wild-type RNF43 is activated by serine
phosphorylation. Oncogenic RNF43 with R127P extracellular mutation is reverted to a functional tumour suppressor via the introduction of phosphomimetic
mutation.
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signaling Technology) at 1:1000 dilution and GAPDH (016-25523, 5A12, FujiFilm-
Wako) at 1:10000 dilution in TBST buffer containing 20 mM Tris-HCl pH8.0,
150 mM NaCl and 0.05% Tween 20. Immune complexes were detected either with
HRP-conjugated secondary antibodies against mouse IgG (W4021, Promega),
Mouse TrueBlot Ultra (18-8817-33, Rockland), rabbit IgG (W4018, Promega) or
with Rabbit TrueBlot Ultra (18-8816-31, Rockland) and either Pierce Western
Blotting Substrate (NCI3106, Thermo Fisher Scientific) or Immobilon Western
Chemiluminescent HRP Substrate (WBKLS0050, Millipore). For co-
immunoprecipitation experiments, cell lysates were incubated with the indicated
antibodies for 8–12 h followed by incubation with either protein A-Sepharose
beads (GE Healthcare Bioscience) for 1 h, or with anti-FLAG-M2 affinity gel
(A2220, Sigma) or anti-HA agarose beads (A2095, Sigma) for 8–12 h. Beads were
washed 5 times with IP lysis buffer and the retained proteins were eluted by
incubation with 200 µg/ml 3xFLAG peptide for 20 min at room temperature
(F4799, Sigma) or by boiling with SDS sample buffer for immunoblot analysis.
Protein levels were quantified with densitometry using ImageJ software (NIH) and
normalised to an internal loading control (GAPDH).

2D-PAGE. Cells expressing RNF43 constructs were lysed with 2D lysis buffer
containing 60 mM Tris-HCl (pH8.8), 5 M urea, 1 M Thiourea, 1% CHAPS, 1%
Triton-X100, 10 mg/ml DTT, 0.4 mM Na3VO4, 0.4 mM EDTA, 10 mM NaF and
10 mM sodium pyrophosphate and cOmplete Mini EDTA-free (19541400, Roche)
for 20 min on ice. Supernatant was collected following centrifugation at 15,000 g for
20 min at 4 °C and incubated with iodoacetoamide (final concentration, 100 mM)
for 10 min at room temperature. Separation of proteins by isoelectric focusing
(IEF) electrophoresis in the first dimension was performed with AgarGEL (pH 10-3
or 8-5, A-M310 or A-M58, Atto) and DiscRun-R (300 V, 3.5 h) (WSE-1500, Atto)
according to the manufacturer’s protocol. The pH-separated proteins were then
separated sequentially depending on their molecular size in the second dimension
using e-PAGEL (7.5%) (E-D7.5 L, Atto). Separated proteins were subsequently
subjected either to autoradiography or to immunoblot analysis using antibodies
against HA.

Phosphate depletion culture and 32Pi metabolic labelling. Depletion of phos-
phate and 32Pi metabolic labelling of RNF43 were performed as described below.
Cells expressing exogenous RNF43 or carrying HA-tagged endogenous RNF43
were incubated under normal conditions for 42–48 h, washed twice before culture
with sodium phosphate-free DMEM (11971, Gibco) containing 10% diarised FCS
(04-311-113, Biological Industries) and then cultured for 2 h to deplete phosphate
from cellular proteins54. These cells were either directly subjected to 2D-PAGE and
immunoblot experiments or underwent metabolic labelling of RNF43. For meta-
bolic labelling, phosphate-depleted cells were subsequently cultured in phosphate-
depleted culture media containing 1 mCi/ml of [32P] orthophosphoric acid (32Pi)
(NEX053S, Parkin Elmer) for 4 h in order to label cellular proteins. After extensive
washing, labelled cells were lysed with IP lysis buffer and underwent immuno-
precipitation as detailed above using anti-HA agarose beads or anti-FLAG affinity
gel (A2095 or A2220, Sigma). Immunoprecipitates were eluted with SDS sample
buffer or 2D lysis buffer for SDS- or 2D-PAGE, respectively, and subjected to
autoradiography and quantitative analysis with a BAS-4000 image analyser and
Multi Gauge software Ver. 3.0 (Fuji Film).

In vitro kinase assays. Cells expressing RNF43 constructs were lysed with IP lysis
buffer containing 50 mM Tris-HCl (pH 7.6), 150 mM NaCl, 0.7% Triton X-100,
aprotinin (10 μg/ml), leupeptin (10 μg/ml), 10 mM iodoacetamide and 1 mM
PMSF but without the addition of phosphatase inhibitor and then underwent
immunoprecipitation as detailed above using anti-HA agarose beads. Immuno-
precipitants were washed 6 times for 20 min per wash with high-salt wash buffer
containing 50 mM Tris-HCl (pH 7.6), 500 mM NaCl, 1.0% Triton X-100, aprotinin
(10 μg/ml), leupeptin (10 μg/ml), 10 mM iodoacetamide and 1 mM PMSF to
eliminate RNF43 interacting proteins.

Immunoprecipitants were washed twice with kinase reaction buffer containing
50 mM Tris-HCl (pH 7.5), 10 mM MgCl2, 0.1 mM EDTA, 2 mM DTT, 0.01% Brij
35 and then incubated in kinase reaction buffer supplemented with 100 IU CK1 or
CK2 (P6030 or P6010, NEB), 10 µCi [γ-32P] ATP (NEG502A, Parkin Elmer) and
10 nM ATP for 30 min at 30 ˚C. Phosphorylated immunoprecipitants were washed
4 times with IP lysis buffer and RNF43 proteins were eluted using SDS sample
buffer before being subjected to SDS-PAGE and autoradiography. Quantitative
analysis was performed with a BAS-4000 image analyser and Multi Gauge software
Ver. 3.0 (Fuji Film).

Identification of phospho-proteins by LC–MS/MS analysis. STF293 cells stably
expressing RNF43 were lysed with IP lysis buffer 48 h after seeding. Lysates
underwent immunoprecipitation as detailed above using anti-HA agarose beads
before being washed 7 times and RNF43 eluted by incubation using 100 µg/ml HA
peptide (I2149, SIGMA) for 20 min at room temperature. Eluted proteins were
separated by SDS-PAGE on 8% acrylamide gels before undergoing silver staining.
The band corresponding to RNF43 (~100 kDa) was removed from the stained gel
and the protein therein was subjected to in-gel digestion with trypsin or chymo-
trypsin. Identification of proteins was performed using our standard protocol55 as

described below. Resulting peptides were dissolved in a solution containing 0.1%
trifluoroacetic acid and 2% acetonitrile and analysed by an LTQ Orbitrap Velos Pro
mass spectrometer (Thermo Fisher Scientific, Waltham, MA) coupled with a
nanoLC instrument (Advance, Michrom BioResources, Auburn, CA) and HTC-
PAL autosampler (CTC Analytics, Zwingen, Switzerland). Peptide separation was
performed with an in-house pulled fused silica capillary (internal diameter,
0.1 mm; length, 10 cm; tip internal diameter, 0.05 mm) packed with 3-μm C18 L-
column (Chemicals Evaluation and Research Institute, Japan). The mobile phases
consisted of 0.1% formic acid (A) and 100% acetonitrile (B). Peptides were eluted
with a gradient of 5_35% B for 40 min at a flow rate of 300 nL/min. Collision-
induced dissociation (CID) spectra were acquired automatically in the data-
dependent scan mode with the dynamic exclusion option. Full MS spectra were
obtained with Orbitrap in the mass/charge (m/z) range of 300-2000 with a reso-
lution of 60,000 at m/z 400. The 12 most intense precursor ions for in the full MS
spectra were selected for subsequent ion-trap MS/MS analysis with the automated
gain control (AGC) mode. The AGC were set to 1.00 × 106 for full MS, 1.00 × 104

for CID MS/MS. The normalised collision energy values were set to 35%. Lock
mass function was activated to minimise mass error during analysis. The peak lists
were generated by MSn.exe (Thermo Fisher Scientific) with a minimum scan/group
value of 1 and were compared with IPI_Human database using the Mascot for
determining serine, threonine and tyrosine phosphorylation on RNF43.

Original dataset of the analyses has been deposited in the ProteomeXchange
Consortium (http://proteomecentral.proteomexchange.org/) via the via the jPOST
partner repository under dataset identifiers PXD020598 and PXD02059.

Fzd-ubiquitination analysis. Expression vectors of HA-tagged Ub, Fzd5 and
RNF43 mutants were transfected into STF293 cells with FuGENE HD. Cells were
cultured for 36 h after transfection and then treated with bafilomycin A1 (15 nM,
12 h, BVT-0252, Adipogen). Cellular Fzd5 proteins were immunoprecipitated in
RIPA buffer containing aprotinin (10 μg/ml), leupeptin (10 μg/ml), 10 mM
iodoacetamide, 1 mM PMSF, 0.4 mM Na3VO4, 0.4 mM EDTA, 10 mM NaF and
10 mM sodium pyrophosphate with anti-FLAG(M2) beads (A2220, Sigma). The
ubiquitination status of Fzd5 protein was examined by immunoblot analysis with
the indicated antibodies.

Flow cytometry. Cells expressing RNF43 constructs were cultured in the presence
or absence of small molecule kinase inhibitors (GSK-3βi, 3 µM CHIR-99021 for
24 h or CK1i, 2 µM IC261 for 4 h) or Rspo (10 ng/ml for 3 h) and then harvested
using PBS containing 1 mM EDTA and resuspended in FACS staining buffer (PBS
containing 0.1% BSA and 0.02% sodium azide). Single-cell suspensions of STF293
cells (1 × 105 cells) were stained for 45 min on ice with a combination of anti-
panFzd (OMP-18R5, kind gift of A. Gurney, Oncomed)56 at 1:100 dilution and
anti-human IgG-FITC (109-095-098, Jackson Immunoresearch) antibodies at 1:250
dilution. All analyses were performed using a FACSCalibur flow cytometer and
CellQuest Ver. 3.3 (Becton Dickinson, BD) software. All graphs are presented with
normalised scales for every histogram. All FACS data in this study were acquired
and displayed with the same strategy shown in Supplementary Fig. 1g.

Generation of RNF43-knockin and -knockout cells by CRISPR. Genomic editing
of the RNF43 locus was performed using the CRISPR/Cas9 technique and the
GeneArt CRISPR Nuclease Vector Kit (A21174, Life Technologies). The nucleotide
sequence encoding the full-length HA amino acid tag (YPYDVPDYASLGGP) was
inserted in-frame into the C-terminal end of the RNF43 genomic locus before the
stop codon in STF293 cells. Moreover, STF293 cells were subjected to either
deletion of the conserved serines in the phospho-switch (SSS) or the introduction
of an established tumorigenic R127P mutation. Template ssDNAs and plasmids
used to express guide RNAs were transfected into the cells with Lipofectamine 3000
reagent. OFP-expressing, genome-edited cells were isolated at 24 h post-
transfection via cell sorting on a FACSAria II flow cytometer with FACSDiva
software Ver. 8.0 (BD), cloned by limiting dilution and screened by PCR. All
genome-edited cells were sequenced to confirm the introduction of mutations. The
oligonucleotide sequences for the guide RNAs, template ssDNAs and primers used
in PCR screening and sequencing are detailed in Supplementary Fig. 3 and
described in the Supplementary Methods.

Cellular localisation analysis. Localisation of RNF43 mutants was examined with
the expression vectors for RNF43(WT, 3SA and 3SD)-EGFP or RNF43(WT, 3SA,
3SD, R127P and R127P-3SD)-HA with anti-HA-Alexa488 antibodies (A488-101L,
Covance) in HeLa cells or with Anti-HA antibodies and Alexa488 Tyramide
SuperBoost kit (B40912, Invitrogen) in HA-KI STF293 cells. Cells were fixed with
2% formalin, stained according to manufacturer’s standard protocol, then images
of cells were taken with BX51 fluorescent microscope, DP71 camera, DP Controller
Ver. 3.1.1.267 and DP Manager software Ver. 3.1.1.208 (Olympus).

Fractionation of cellular proteins. Cellular fractions of RNF43-KI STF293 cells
were suspended in a separation buffer (10 mM Hepes (pH 7.9), 10 mM KCl,
1.5 mM MgCl2, 0.5 mM DTT, 0.25M sucrose, phosphatase inhibitors and protease
inhibitors) and lysed with a Dounce homogeniser by 40 strokes. The cell lysates
were separated into nuclear (500g, 5 min), heavy microsome (HM) membrane
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(12,000g, 20 min) and cytosolic fractions (supernatant). ER membrane was col-
lected by IP with Anti-IRE1α antibodies (#3294, 14C10, Cell Signaling Technology)
at 1:400 dilution. Endogenous RNF43 protein was concentrated from each cellular
fraction via IP with anti-HA antibodies in a cell lysis buffer. Subcellular localisa-
tions of RNF43 were confirmed by immunoblotting using the antibodies indicated.

Zebrafish maintenance and injection into zebrafish eggs. Wnt reporter zeb-
rafish (AB, OTM:d2EGFP-transgenic fish) were raised and maintained under
standard conditions57. Experimental zebrafish care was performed in accordance
with institutional (Gunma and Osaka University) and national guidelines and
regulations. For all injections, 50–150 pg mRNA encoding human RNF43 was
injected into zebrafish eggs at the one-cell stage.

Quantitative PCR (qPCR). Total RNA was isolated from HCT116, STF293 cells or
staged OTM:d2EGFP-transgenic zebrafish embryos homogenised in Trizol reagent
(15596018, Invitrogen). 1 μg RNA was used for cDNA synthesis using the ReverTra
Ace qPCR RT Master Mix with gDNA Remover (FSQ-301, Toyobo). Quantitative
real-time PCR (qPCR) for d2EGFP, tbx6, axin2, nkd1, znrf3 and β-actin or hCDKN1A,
hBAX, hZNRF3 and hGAPDH (primers detailed in Supplementary Method) was
performed using standard PCR conditions on a StepOnePlus Real-Time PCR System
(Applied Biosystems) or Mx3000P Real-Time QPCR System (Agilent) with Power
SYBR Green PCR Master Mix (4367659, Applied Biosystems) or TUNDERBIRD
SYBR qPCR Mix (QPS-101, Toyobo). Expression levels were normalised to β-actin
expression. All experiments were performed in triplicate. The sequence of all primers
used for qPCR in this study are detailed in Supplementary Methods.

Whole mount in situ hybridisation. Digoxigenin-labelled RNA antisense probes
for in situ hybridisation were generated via in vitro transcription using plasmids
containing full-length cDNAs for myod158, ntla59 and dlx3b60 according to the
manufacturer’s protocol (DIG RNA labelling kit; 11175025910, Roche Life Sci-
ence). Whole mount in situ hybridisation was performed according to a standard
protocol. Zebrafish embryos were fixed in 4% paraformaldehyde in PBS, antisense
probes hybridised and stained with BM purple (11442074001, Roche Life Science).

Organoid experiments. Small intestine crypts were isolated from Vil-creERT2
mice and organoids were established using general procedure61. Mouse intestine
washed with cold PBS, segmented, and removed villus by scraping. Then, crypts
isolated using Gentle Cell Dissociation Reagent (07174, STEMCELL technologies).
After counting isolated crypts, 100 crypts embedded in Matrigel (356255, Corning)
with supplement of growth factors. Medium refreshed every other day. Organoids
were maintained in organoid culture conditioned medium for retrovirus-mediated
gene transduction. Retrovirus containing human RNF43, 3SD or 3SA constructs
were produced in Plat-E cells53 (RV-101, Cell Biolabs). Retrovirus containing
media was concentrated using Retrovirus Concentrator (631456, Takara) and
introduced to organoid cultures in the standard condition61. Organoid cultured in
the presence of Wnt3a and Nicotinamide 3 days before infection. On the infection
day, organoids fragmented by mechanical dissociation followed by chemical dis-
sociation using TripLE (12605-010, Invitrogen) at 37 °C. Fragmented organoid
combined with retroviral solution in the presence of polybrene (H9268, Sigma) and
Y-27632 (Y0503, SIGMA) for spinoculation at 32 °C, 600g, for 1 h. After spino-
culation, plate incubated additional 6 hrs at 37 °C. Infected organoid fragments
collected and embedded in Matrigel with culture medium containing Y-27632
(Y0503, Sigma). Infected organoids were selected from 3 days post-infection for
1 week with 2.5 μg/ml puromycin in order to remove uninfected organoids.

Expression of RNF43 proteins was induced by treating transduced organoids
with 1 μM 4-hydroxytamoxifen (4-OHT, T5648, Sigma) for 6 h at 37 °C directly
after passaging. Culture medium was then changed to ENR (EGF-Noggin-Rspo)
medium containing either 1% or 10% Rspo as indicated (EGF, 50 ng/ml, PMG8043,
ThermoFisher; Noggin, 100 ng/ml, 250-38, Peprotech; Rspo CM, produced by
HEK293 cells). Organoids were imaged using an EVOS FL system (Life
Technologies) and quantified on days 1, 2 and 3 following 4-OHT treatment in
order to determine the ratio of dead:live organoids.

Soft agar assay. 1 × 105 NIH3T3 or Cle-H3 cells expressing RNF43 constructs
were grown in DMEM containing 0.35% low melting temperature agarose (50101,
Lonza) and either 10% CS or FCS, respectively. Cells were cultured in agar for
10 days in 6-well plates. Colonies formed under anchorage-independent conditions
were imaged using an DP-12 system (Olympus) and quantified on day 6 or 10 of
culture. The minor axis (S) and major axis (L) of each colony were measured at day
10 and colony volume was calculated as V= (S2x L)/2.

Sphere forming assay. 5 × 103 Cle-H3 cells expressing RNF43 constructs were
cultured on ultra-low attachment 24-well culture plates (3473, Corning) in DMEM
supplemented with 10% FCS for 7 days. The cell spheroids formed under
anchorage-independent conditions were imaged on day 7 of culture using a DP-12
system (Olympus) and spheroid growth was estimated via MTS assay (G3518,
CellTiter 96 AQueous One Solution Cell Proliferation Assay, Promega) according
to the manufacturer’s protocol. Briefly, spheroids were incubated for 1.5 h with

detection reagent (100 μl reagent in 500 μl culture medium) before absorbance at
490 nm was measured using a spectrophotometer (SmartSpec 3000, Bio-Rad).

In vivo tumorigenesis assays. 1 × 106 (HeLa-, NIH3T3-RNF43) or 5 × 105 (Cle-
H3-RNF43) cells were suspended in 50 μl of PBS and 50 μl of Matrigel (356230,
growth factor reduced, Corning) before lateroabdominal injection of the cell suspen-
sion (100 μl/mouse) into nude mice (BALB/cnu/nu). Injection of each set of cells
expressing an RNF43 transgene into an individual mouse (right flank) was accom-
panied by injection of control cells (left flank). Tumour size was measured weekly and
the tumour volume was calculated as V= (S2x L)/2, as in soft agar assays. At the
endpoint of the experiment, mice with tumours were sacrificed and the weight of the
tumours was measured. All experimental animal care was performed in accordance
with institutional and national guidelines and regulations. Experimental design using
mice was approved by NATIONAL UNIVERSITY CORPORATION HOKKAIDO
UNIVERSITY PROVISIONS ON ANIMAL EXPERIMENTS.

Immunostaining of allografts. Tumours arising from Cle-H3 cells with or without
the expression of RNF43(3SA) mutant were fixed with 10% formalin and subse-
quently sectioned at 7 μm using a cryostat (HM550-VPD, Thermo Fisher Scien-
tific). Sections were treated with 0.1% Triton-X in PBS for permeabilization and
then with LAB solution (Polyscience, #24310) for antigen retrieval. Each sample
was stained with anti-β-catenin mouse IgG1 (BD-TDL #199220) at 1:500 dilution,
anti-Vimentin mouse IgM (Sigma, #V5255) at 1:2000 dilution and DAPI (1 μM) in
combination with anti-mouse IgG1-Alexa555 (Invitrogen, #A-21127) at 1:1000
dilution and anti-mouse IgM-Alexa488 (Invitrogen, #A-21042) at 1:1000 dilution
in 1.5% NGS and 0.1% BSA in TBST after blocking with 5% NGS in TBST.
Tumour images were taken using a confocal laser scanning microscope (Carl Zeiss,
Axio Imager Z1 & LSM700) equipped with a water-immersion ×40 objective lens
(C-Apochromat 40 × /1.20W Corr M27) and ZEN Black 2011 software (Zeiss). Z-
stack images were processed and arranged using ImageJ software (1.52 v, NIH) and
Photoshop CS5 (12.0 × 64, Adobe).

TCGA database analysis. All TCGA analysis was performed on The Cancer
Genome Atlas website with datasets of patients with any tumour type (all tumour)
or colorectal tumour containing mutations in RNF43, KRAS and/or TP53. All
analyses were performed on the public website, The Cancer Genome Atlas (https://
cancergenome.nih.gov) and GDC Data Portal (https://portal.gdc.cancer.gov).

Statistics and reproducibility. All P values between samples in all experiments were
determined via one-way analysis of variance (one-way ANOVA), or log-rank test
on GDC Data Portal (https://portal.gdc.cancer.gov). Error bars represent standard
deviation (sd) or standard error of the mean (sem) as indicated. All raw data and
exact P values in the analyses of this study are shown in Source Data file. The
reproducibility of each experiments is shown as number of repeated/number of
similar results. Supplementary Fig. 5a showed n= 3/3 reproducibility. Supple-
mentary Figs. 2a–c, g, j, 3g, 4a–d,f–h, 7d, 10c showed n= 2/2 reproducibility.
Experiments in Figs. 2f, 3a,d,e, 4j, 6d, 7a, 8a–c, 10b,c were preformed once. The
result in Fig. 6d and Supplementary Fig. 4j directly supports each other. Result in
all experiments that were not repeated was highly consistent in fact/theory with the
results from other experiments in this or in our past study.

Website. All mutations in the human RNF43 gene were retrieved from the Cat-
alogue of Somatic Mutations In Cancer database (http://cancer.sanger.ac.uk/
cosmic/), The Cancer Genome Atlas (https://cancergenome.nih.gov) GDC Data
Portal (https://portal.gdc.cancer.gov) and cBioPortal database (http://www.
cbioportal.org).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The mass spectrometric datasets used in Supplementary Fig. 2h have been deposited in
the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org/) via
the via the jPOST partner repository under dataset identifiers PXD020598 and
PXD02059. All full scan images of our blotting data used in this study are shown in
Source Data file. Source data are provided with this paper.
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