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Abstract
We study 𝓁2-Betti numbers, coherence and (virtual) fib-
ring of random groups in the few-relator model. In
particular, random groups with negative Euler charac-
teristic are coherent, have 𝓁2-homology concentrated
in dimension 1 and embed in a virtually free-by-cyclic
group with high probability. In the case of Euler charac-
teristic zero, we use Novikov homology to show that a
random group is free-by-cyclic with positive probability.
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1 INTRODUCTION

A frequent theme in mathematics is the study of ‘generic’ objects — submanifolds in general
position, equations without multiple roots, and so on. In the field of group theory the concept of
genericity is expressed in the terminology of random groups— generally speaking, by exploring
which properties of a finitely presented group with relators of length 𝑙 become overwhelmingly
prevalent as 𝑙 grows.
Several generic properties of 1-relator groups are known: in [26], Sapir and Špakulová proved

that a random 1-relator group with at least 3 generators embeds in an ascending HNN extension
of a free group, and hence is residually finite [5] and coherent [8]. Earlier, Dunfield and Thurston
[7] had shown that the same is true for 2-generator 1-relator groups with positive probability.
Since then, ground-breaking results in the study of special groups byWise [28], Agol [2] and oth-

ers have greatly increased our understanding of small-cancellation groups, which include random
groups with few relators. In particular, residual finiteness is now known to hold for all random
few relator groups.
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In this paper we aim to push coherence results beyond groups with one relator to random
groups of positive deficiency — that is, with more generators than relators. We both incorpo-
rate notions and techniques from the Dunfield–Thurston and Sapir–Špakulová papers and use
the powerful consequences of specialness. A key additional element in the strategy is the use of
Novikov and 𝓁2-homology, particularly in relation to a virtual fibring condition established by the
first author in [15].
The distinction between groups with two generators and more than two generators seen above

persists in this paper as a distinction between groups of deficiency 1 and those with deficiency
greater than 1.

Theorem A. For each 𝑛 ⩾ 2, a random group with 𝑛 generators and deficiency 1 is a free-by-cyclic
group with positive asymptotic probability.

One may also consider a version of Theorem A in which the conclusion ‘free-by-cyclic’ is
replaced by ‘virtually free-by-cyclic’. This version is conjectured to hold with high probability,
but our methods only yield a positive asymptotic probability. Theorem A as stated will be true
with probability strictly less than 1 (see [7] for this phenomenon with 2 generators).
We note that in the two-generator one-relator case, the ‘virtual’ theorem is readily seen to hold

with asymptotic probability 1, as noted in Corollary 2.10 below.

Theorem B. For each 𝑛 ⩾ 3, a random group 𝐺 with 𝑛 generators and deficiency 𝑑 > 1 has the
following properties:

∙ 𝑏
(2)
1
(𝐺) = 𝑑 − 1, and 𝑏(2)

𝑖
(𝐺) = 0 for all 𝑖 ≠ 1;

∙ 𝐺 embeds in a virtually free-by-cyclic group and
∙ 𝐺 is coherent;

with asymptotic probability 1.

Another way to phrase the dependence on deficiency is to consider the Euler characteristic.
Theorem A and Theorem B are the cases of Euler characteristic 𝜒 = 0 and 𝜒 < 0, respectively.
The connection between Euler characteristic and coherence has been postulated elsewhere; for
example, in a survey of coherence written by Wise [29]. Our work provides a positive answer to
[29, Conjecture 17.15(3)] with high probability and to [29, Conjectures 17.14(2) and 17.15(2)] with
positive asymptotic probability.
The structure of the paper is as follows. In Section 2 we will review the formal definitions and

background material required for the paper. In Section 3 we will introduce the key condition on
a few-relator group on which all the other results rely, and show the consequence of these results
regarding 𝓁2-Betti numbers and fibring. Section 4 gives the construction used to embed the higher
deficiency groups into groups of deficiency one. Finally in Section 5 we will build on the results
of [26] to show that our conditions hold with the required probability.

2 PRELIMINARIES

Throughout, we fix a generating set x1, … , x𝑛 and let 𝐹𝑛 be the free group thereon.
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2.1 Few-relator random groups

The results in this paper concern the classical few-relator model introduced by Arzhantseva and
Ol’shanskii [3]. For a fixed 𝑛 ⩾ 2 and𝑚 ⩾ 1, we consider for 𝑙 ⩾ 1 the set𝑙 of (ordered)𝑚-tuples
𝑟1, … , 𝑟𝑚 of cyclically reducedwords of length 𝑙 in the alphabet x1, … , x𝑛. We consider the uniform
probability measure on𝑙. This yields a notion of a ‘random presentation’

⟨x1, … , x𝑛 | 𝑟1, … , 𝑟𝑚⟩
with 𝑛 generators and 𝑚 relators. By a standard abuse of nomenclature this is also referred to as
a ‘random group’.
A property  of groups (with 𝑛 generators and 𝑚 relators) holds with asymptotic probability 1

(or with high probability, w.h.p.) if

ℙ(⟨x1, … , x𝑛 | 𝑟1, … , 𝑟𝑚⟩ has ) → 1 as 𝑙 → ∞.

The property  holds with positive asymptotic probability if

lim inf
𝑙→∞

ℙ(⟨x1, … , x𝑛 | 𝑟1, … , 𝑟𝑚⟩ has ) > 0.
It is easy to see that if 1, … ,𝑘 are finitely many group properties, and each has asymptotic prob-
ability 1, then the property that all 𝑖 hold simultaneously also has asymptotic probability 1. Sim-
ilarly, if 1, … ,𝑘 have asymptotic probability 1 and 0 has positive asymptotic probability, then0, … ,𝑘 hold simultaneously with positive asymptotic probability.
The deficiency of a finite group presentation ⟨x1, … , x𝑛 | 𝑟1, … , 𝑟𝑚⟩ is the quantity 𝑛 − 𝑚. The

deficiency def (𝐺) of a group𝐺 is themaximum deficiency of a finite presentation of𝐺. Since there
is a clear bound def (𝐺) ⩽ 𝑏1(𝐺), and since a random group with 𝑛 generators and𝑚 relators has

𝑏1(𝐺) = max(𝑛 − 𝑚, 0)

with high probability,† a random group with 𝑛 generators and 𝑚 ⩽ 𝑛 relators has deficiency
exactly 𝑛 − 𝑚 with high probability. It thus makes sense to speak of ‘random groups with defi-
ciency 𝑑’.
If 𝐺 is a group of deficiency 𝑛 − 𝑚, and the presentation complex given by a presentation⟨x1, … , x𝑛 | 𝑟1, … , 𝑟𝑚⟩ is aspherical, then we have 𝜒(𝐺) = 1 − (𝑛 − 𝑚) = 1 − def (𝐺). Since pre-

sentation complexes of random groups are aspherical with high probability (see Gromov [13] as
quoted below), we may also speak of, for example, ‘random groups of negative Euler characteris-
tic’.
Many powerful properties of random groups flow from small-cancellation conditions.

Definition 2.1. A tuple of cyclically reduced words 𝑟1, … , 𝑟𝑚 satisfies the small cancellation con-
dition 𝐶′′(𝜆), for 𝜆 > 0, if whenever a reduced word 𝑤 or its inverse occurs as a cyclic subword

† This is a ‘well-known’ folklore result which seems to have escaped explicit statement in the papers that the authors are
aware of. One may deduce it from results like [26, Theorem 3.2] which state that random relators limit onto a Brown-
ian motion, so that 𝑚 of them span an 𝑚-dimensional subspace of 𝐻1(𝐹𝑛, ℝ) with high probability. A more elementary
argument can be found in [27].
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both of 𝑟𝑖 and 𝑟𝑗 (or more than once in a single 𝑟𝑖), then |𝑤| < 𝜆|𝑟|, where | ⋅ | denotes word
length.

We abuse terminology by saying that group presentations (and groups) satisfy 𝐶′′(𝜆) if their
tuples of defining relators satisfy 𝐶′′(𝜆).
This is a slight variant of the usual 𝐶′(𝜆) small cancellation: 𝐶′′(𝜆) is equivalent to ‘the presen-

tation is𝐶′(𝜆) and no relator is a proper power’. This in particular forbids torsion from our groups.
Random groups have no relators which are proper powers with high probability, so our variant
condition serves mainly to make statements more concise.
We collect belowvarious theorems fromwhichwemaydeduce properties of random few-relator

groups.

Theorem 2.2 (Gromov [13], Section 9.B). For every 𝜆 > 0, a random few-relator group satisfies
𝐶′′(𝜆) with high probability.

For more in-depth studies of small cancellation in the few-relator model see [3, Lemma 3],
including estimates of the asymptotics of the probability.

Theorem 2.3 (see [12], Section 4.7 and [20], Theorem 13.3). A group satisfying 𝐶′′(1∕6) is hyper-
bolic, has aspherical presentation complex and is torsion-free.

Theorem 2.4 (Wise [28]). A finitely presented 𝐶′′(1∕6) group acts properly discontinuously and
co-compactly on a CAT(0) cube complex.

Theorem 2.5 (Agol [2]). A hyperbolic group acting properly and co-compactly on a CAT(0) cube
complex is virtually special.

Theorem 2.6 (Haglund–Wise [14], Agol [1]). A virtually special group is virtually residually finite
rationally solvable (RFRS).

Theorem 2.7 (Schreve [23]). A virtually special group satisfies the Atiyah conjecture.

We combine these into one statement for easier reference later.

Theorem 2.8. A finitely presented 𝐶′′(1∕6) group is hyperbolic, 2-dimensional, virtually RFRS and
satisfies the Atiyah conjecture. Thus a few-relator random group has these properties with high prob-
ability.

The notions of cube complexes, special groups, RFRS and so on, play no role in this paper other
than as stepping stones between theorems, and we shall not trouble to define them. The Atiyah
conjecture is discussed in the next section.

2.2 𝓵𝟐-homology, skew-fields and Novikov rings

Akey tool in the proof of TheoremB is the theory of 𝓁2-homology.We give here a brief description
of the theory, following Lück [18], but focusing only on the algebraic viewpoint.
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Let 𝐺 be any discrete group; let 𝑋 be its classifying space, and let 𝐶∙ be the cellular chain
complex of the universal covering of 𝑋. Letting  (𝐺) denote the von Neumann algebra of 𝐺,
we define 𝑏(2)𝑛 (𝐺), the 𝑛𝑡ℎ 𝓁2-Betti number of 𝐺, to be the extended von Neumann dimension of
𝐻𝑛( (𝐺) ⊗ 𝐶∙).
In fact, given any CW-complex 𝑌 with an action of 𝐺 we may define its 𝓁2-Betti number to be

the extended von Neumann dimension of 𝐻𝑛( (𝐺) ⊗ 𝐶∙(𝑌)) where 𝐶∙(𝑌) denotes the cellular
chain complex of 𝑌. If 𝐺 is torsion free, the Atiyah conjecture is the statement that if 𝑌 has finitely
many 𝐺-orbits of cells in every dimension and the action of 𝐺 on 𝑌 is free, then the 𝓁2-Betti
numbers of 𝑌 are all integers. In Lück’s book this is referred to as the strong Atiyah conjecture
over ℚ; there is also a version of this conjecture for groups with bounded torsion, that is, groups
whose torsion has uniformly bounded order.
Instead of tensoringℤ𝐺 chain complexes with (𝐺), we may as well tensor with theOre local-

isation Ore( (𝐺)) of (𝐺) (with respect to the set of all non-zero-divisors of (𝐺)). This new
ring Ore( (𝐺)) is also known as the algebra of operators affiliated to  (𝐺). One can extend
the notion of von Neumann dimension to this setting rather easily, since Ore localisations are
flat extensions. Now, since we are only interested in ℤ𝐺 chain complexes, one does not need the
entire Ore localisation, but only the rational closure of ℤ𝐺 inside Ore( (𝐺)); this last object is
the Linnell ring, and is denoted by (𝐺). The key point for us is that Linnell [16] proved that the
Atiyah conjecture (for torsion-free groups) is equivalent to (𝐺) being a skew-field, and the 𝓁2-
Betti numbers of 𝑌 are in fact(𝐺) dimensions of the homology groups𝐻𝑛((𝐺) ⊗ 𝐶∙(𝑌)) (and
hence in particular are all integers). This applies to the situation when 𝑌 is the universal cover of
a classifying space of 𝐺, and thus yields

𝑏(2)𝑛 (𝐺) = dim(𝐺) 𝐻𝑛(𝐺;(𝐺)),
provided that 𝐺 satisfies the Atiyah conjecture and is torsion free.
Let 𝐺 be a group with presentation

⟨x1, … , x𝑛 | 𝑟1, … , 𝑟𝑚⟩
and assume that this presentation is𝐶′′(1∕6), so that𝐺 is torsion free and satisfies the Atiyah con-
jecture.
Let𝑋 be the associated presentation complex, and let𝑋 be the universal cover of𝑋. The cellular

chain complex of 𝑋 over ℤ takes the form

where 𝐵 is the right multiplication of a row vector in (ℤ𝐺)𝑛 by the matrix

𝐵 =
(
x1 − 1 ⋯ x𝑛 − 1

)𝑇
and 𝐴 is the right multiplication by the Jacobian matrix

𝐴 =

⎛⎜⎜⎜⎝
𝜕𝑟1
𝜕x1

⋯ 𝜕𝑟1
𝜕x𝑛

⋮ ⋱ ⋮
𝜕𝑟𝑚
𝜕x1

⋯ 𝜕𝑟𝑚
𝜕x𝑛

⎞⎟⎟⎟⎠ ,
whose entries are the Fox derivatives of the 𝑟𝑖 — see [10].
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As the presentation complex for our 𝐶′′(1∕6) presentation is aspherical, the above complex of
𝐺-modules provides a free resolution of ℤ and thus may be used to compute the (co)homology of
𝐺. In particular, the chain complex

computes the 𝓁2-homology𝐻𝑖(𝐺;(𝐺)).
Our primary concern in Section 3 will be to find conditions ensuring that the map(𝐺) ⊗ 𝐴 is

injective, so that the second 𝓁2-Betti number

𝑏
(2)
2
(𝐺) = dim(𝐺)(ker((𝐺) ⊗ 𝐴))

vanishes. If the group 𝐺 is 2-dimensional, then once the second 𝓁2-Betti number is known, we
may also find— for example, by way of the Euler characteristic [18, Theorem 1.35] — the value of
𝑏(2)
1
(𝐺). In particular, if 𝑏(2)

2
(𝐺) = 0, then 𝑏(2)

1
(𝐺) = 𝑛 − 𝑚 − 1.

Theorem 2.9. Let 𝐺 be a group with a finite 𝐶′′(1∕6) presentation of deficiency 1.

(1) If 𝑏(2)
2
(𝐺) = 0 then 𝐺 is virtually free-by-cyclic and therefore coherent.

(2) If there exists an epimorphism 𝜙∶ 𝐺 → ℤ with finitely generated kernel, then 𝐺 is free-by-cyclic.

Proof. By Theorem 2.8, the group𝐺 is virtually RFRS and of dimension 2. By the discussion above,
we have

𝑏
(2)
2
(𝐺) = 𝑏

(2)
1
(𝐺) = 0.

By [15, Theorem 5.4], there is a finite-index subgroup 𝐺′ of 𝐺 which admits a map 𝐺′ ↠ ℤ with
kernel of type FP2. Wemay now apply a theorem of Gersten [11] to see that the kernel is hyperbolic
and hence finitely presented. Finally, wemay deduce that the kernel is free by [4]. A virtually free-
by-cyclic group is coherent by [8].
Now suppose that we have an epimorphism 𝜙∶ 𝐺 → ℤ with 𝐾 = ker 𝜙 finitely generated. We

then have 𝑏(2)
1
(𝐺) = 0 by a result of Lück [17, Theorem 1.39], and therefore 𝑏(2)

2
(𝐺) = 0 as well, as

above. We conclude that 𝐺 is coherent from (1), and so the group 𝐾 is finitely presented. Now we
argue precisely as above, and conclude that 𝐾 is free. □

We end this section by noting that for random groups with 2 generators, the (in)coherence of a
group is known with high probability.

Corollary 2.10. With high probability, a random 2-generator 1-relator group 𝐺 is virtually free-by-
cyclic.

Proof. By Theorem 2.8, the presentation is 𝐶′′(1∕6) with high probability. The 𝓁2-Betti num-
bers of a torsion-free 2-generator 1-relator group all vanish by [6], and we may now apply the
theorem. □
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Remark 2.11. It is worth comparing this with the earlier result of Dunfield and Thurston [7]: a
random 2-generator 1-relator group is fibred with asymptotic probability strictly between 0 and 1
[7, Theorem 6.1], but is virtually fibred with high probability.

Proposition 2.12. Let𝐺 be a random groupwith two generators and𝑚 ⩾ 2 relators. Thenwith high
probability 𝑏(2)

1
(𝐺) = 0 and 𝐺 is incoherent.

Proof. With high probability the presentation complex is aspherical and 𝐺 is infinite, virtually
RFRS, and satisfies the Atiyah conjecture. Consider the chain complex

which computes the 𝓁2-Betti numbers. Since 𝐺 is infinite we have 𝑏(2)
0
(𝐺) = 0, so (𝐺) ⊗ 𝐵 is

surjective and hence ker(⊗ 𝐵) has(𝐺)-dimension 1. But since the presentation complex was
aspherical, 𝐴 is injective and hence (𝐺) ⊗ 𝐴 is not the zero map, and its image has dimension
at least 1—and must therefore equal ker((𝐺) ⊗ 𝐵). It follows that 𝑏(2)

1
(𝐺) = 0.

By [15, Theorem 5.3] the group 𝐺 is virtually fibred. However the finitely generated fibre in
question cannot be finitely presented— if itwere, then by [4] the fibre is free andwe find𝜒(𝐺) = 0,
a contradiction. Hence 𝐺 is incoherent. □

Remark 2.13. It is worth remarking that this result also holds in the density model of random
groups at densities 𝑑 < 1∕6 (keeping the number of generators at 2). The key conditions are
that the random group 𝐺 is infinite, the given presentation complex is aspherical and that 𝐺
acts properly and cocompactly on a CAT(0) cube complex (whence is virtually RFRS and sat-
isfies the Atiyah conjecture, by theorems previously cited). Theorem 2.3 applies at all densities
𝑑 < 1∕2, and random groups are cubulated at densities 𝑑 < 1∕6 by a theorem of Ollivier and
Wise [21].

Conjecture 2.14. A random group with 𝑛 generators and𝑚 relators has

𝑏(2)
1
(𝐺) = max(𝑛 − 𝑚 − 1, 0)

with high probability, hence is coherent with high probability if 𝜒(𝐺) ⩽ 0 and incoherent with high
probability if 𝜒(𝐺) > 0.

3 MINIMUMCONDITIONS AND 𝓵𝟐-HOMOLOGY

3.1 The minimum condition

Definition 3.1. Let 𝑟 be a word of length 𝑙 on x1, … , x𝑛. Let𝐶𝑟 denote the cycle of length 𝑙, viewed
as a graph with 𝑙 edges of length 1; we endow 𝐶𝑟 with a basepoint and an orientation. We further
label the edges by x1±1, … , x𝑛±1 in such a way that reading the labels starting from the basepoint
and following the orientation yields 𝑟. In this way vertices of 𝐶𝑟 become identified with prefixes
of the word 𝑟.
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F IGURE 1 Allowed minima of 𝑟𝑖 with respect to 𝜙 in the standard minimum condition. There is no
imposition on the orientation of 𝑟𝑖 in this diagram— that is, the minimummay occur at/near either an x𝑖 edge or
an x−1

𝑖
edge. Non-standard minimum conditions allow for the reversal of arrows (with respect to 𝜙).

For a homomorphism 𝜙∶ 𝐹𝑛 → ℤ with 𝜙(𝑟) = 0, consider the induced piecewise affine contin-
uous map 𝜙𝑟 ∶ 𝐶𝑟 → ℝ that sends vertices to the value under 𝜙 of the corresponding prefixes. The
lower section of 𝑟 is the subset

𝐿𝜙(𝑟) = 𝜙
−1
𝑟 (min(𝜙𝑟(𝐶𝑟))) ⊆ 𝐶𝑟.

We will also speak of the vertices and edges of the lower section as being 𝜙-minimal.

Definition 3.2. Let (𝑟1, … , 𝑟𝑚) be a tuple of cyclically reduced words over x1, … , x𝑛 (where 𝑛 >
𝑚) and let 𝜙∶ 𝐹𝑛 → ℤ. The pair ((𝑟1, … , 𝑟𝑚), 𝜙) satisfies the minimum condition if, possibly after
reordering the x𝑖 , the following properties hold:

∙ 𝜙(𝑟𝑖) = 0 for all 𝑖;
∙ for all 𝑖 the lower section 𝐿𝜙(𝑟𝑖) consists either of exactly one vertex, whose two adjacent edges
are labelled by x±

𝑖
and x±𝑛 , or of exactly one edge, labelled by x

±
𝑖
, whose adjacent edges are both

labelled by x±𝑛 .

The pair ((𝑟1, … , 𝑟𝑚), 𝜙) satisfies the standardminimum condition if, in addition, we have 𝜙(x𝑖) ⩾
0 for all 𝑖 < 𝑛 and 𝜙(x𝑛) < 0. Note that 𝜙(x𝑛) = 0 is automatically forbidden by the definition.
Finally, we say that (𝑟1, … , 𝑟𝑚) satisfies a (standard) minimum condition if some 𝜙 exists such

that ((𝑟1, … , 𝑟𝑚), 𝜙) satisfies the (standard) minimum condition (Figure 1).

One may dually define the (standard) maximum condition by reversing all the signs in
Definition 3.2.

Remark 3.3. Suppose that ((𝑟1, … , 𝑟𝑚), 𝜙) satisfies the minimum condition. Then by possibly
performing substitutions of the form x𝑖 ↦ x−1

𝑖
, one obtains a pair ((𝑟′

1
, … , 𝑟′𝑚), 𝜙

′) satisfying the
standardminimum condition. Since one naturally has an isomorphism of groups

⟨x1, … , x𝑛 | 𝑟1, … , 𝑟𝑚⟩ ≅ ⟨x1, … , x𝑛 | 𝑟′1, … , 𝑟′𝑚⟩,
one may always assume that the minimum condition is the standard minimum condition when
deducing group-theoretic properties. Moreover, the homomorphism induced by 𝜙 on the first
group agrees with that defined by 𝜙′ on the second one.

The key usage of the minimum condition in this article will be the following theorem.
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Theorem 3.4. Suppose that ((𝑟1, … , 𝑟𝑚), 𝜙) satisfies the minimum condition. Suppose that

𝐺 = ⟨x1, … , x𝑛 | 𝑟1, … , 𝑟𝑚⟩
is torsion free, satisfies the Atiyah conjecture, and that the images of the generators x𝑖 in 𝐺 are all
non-trivial. Then 𝑏(2)

2
(𝐺) = 0.

If additionally 𝑛 = 𝑚 + 1, and ((𝑟1, … , 𝑟𝑚), 𝜙) satisfies the maximum condition, then the epimor-
phism 𝐺 → ℤ induced by 𝜙 is algebraically fibred, that is, its kernel is finitely generated.

3.2 Novikov rings

In the presence of a homomorphism 𝜙∶ 𝐺 → ℤ, with kernel𝐾, and a choice of section 𝑠 ∶ ℤ → 𝐺,
𝑠(1) = 𝑡, we may identify the group ring ℚ𝐺 with a twisted group ring (ℚ𝐾)ℤ = (ℚ𝐾)[𝑡, 𝑡−1] as in
[15, Section 2.2] (twisted group rings are usually called crossed products in the literature). For our
purposes we may consider this as a ‘semi-direct product’ of a group ring by a group. Each g ∈ 𝐺
may be written uniquely as

g = 𝑘g 𝑡
𝜙(g)

for some 𝑘g ∈ 𝐾. Elements in the group ring ℚ𝐺 thus acquire the structure of a polynomial in 𝑡
and 𝑡−1 with coefficients in ℚ𝐾. Addition is the usual addition of polynomials, whereas the ring
multiplication is twisted via the formula

(𝑘g 𝑡
𝜙(g))(𝑘ℎ𝑡

𝜙(ℎ)) =
(
𝑘g𝑘ℎ

𝑡−𝜙(g)
)
𝑡𝜙(g)+𝜙(ℎ) = 𝑘gℎ𝑡

𝜙(gℎ). (*)

Theminimum condition of the previous section is chosen with the following property in mind.

Lemma 3.5. Suppose that ((𝑟1, … , 𝑟𝑚), 𝜙) satisfies the standard minimum condition and choose
some 𝑡 ∈ 𝐺 such that 𝜙(𝑡) = 1. Define

𝑃𝑖 = min𝜙𝑟(𝐶𝑟).

Then

𝜕𝑟𝑖
𝜕x𝑖

= 𝑘𝑖𝑡
𝑃𝑖 +

∑
𝑝>𝑃𝑖

𝜈𝑖,𝑖,𝑝𝑡
𝑝,

𝜕𝑟𝑖
𝜕x𝑗

=
∑
𝑝>𝑃𝑖

𝜈𝑖,𝑗,𝑝𝑡
𝑝

for some 𝑘𝑖 ∈ 𝐾 = ker(𝐺
𝜙
⟶ ℤ) and some 𝜈𝑖,𝑗,𝑝 ∈ ℚ𝐾.

Proof. Recall — for example, from Formula 2.5 in [10] — that the Fox derivative 𝜕𝑟𝑖∕𝜕x𝑗 acquires
a term+𝑢 for each occurence of x𝑗 in 𝑟𝑖 such that 𝑟𝑖 = 𝑢x𝑗𝑣, and a term−𝑢x−1𝑗 for each occurence
of x−1

𝑗
in 𝑟𝑖 where 𝑟𝑖 = 𝑢x−1𝑗 𝑣. No initial subword of 𝑟𝑖 evaluates under 𝜙 to a value smaller than

𝑃𝑖 , so no 𝜕𝑟𝑖∕𝜕x𝑗 has any 𝑡𝑝-term for any 𝑝 < 𝑃𝑖 .
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A 𝑡𝑃𝑖 -term can only arise from an initial segment 𝑢 with 𝜙(𝑢) = 𝑃𝑖—either where 𝑢 ends with
a letter x−1

𝑗
or is followed by a letter x+1

𝑗
. By the standard minimum condition, there are either

one or two initial segments of 𝑟𝑖 attaining the minimal 𝜙-value, depending whether the lower
section is a vertex or an edge. Note that the standard minimum condition gives one of four cases,
depending on whether the lower section is a vertex or an edge, and on the relative orientations of
𝑟𝑖 and the relevant edge x𝑖 at the minimum.

∙ 𝜙(x𝑖) > 0, and there is a unique initial segment 𝑢 = 𝑢′x𝑛 of 𝑟𝑖 such that 𝜙(𝑢) = 𝑃𝑖 and
𝑟𝑖 = 𝑢

′x𝑛x𝑖𝑣.
∙ 𝜙(x𝑖) > 0, and there is a unique initial segment 𝑢 = 𝑢′x−1

𝑖
of 𝑟𝑖 such that 𝜙(𝑢) = 𝑃𝑖 and

𝑟𝑖 = 𝑢
′x−1
𝑖
x−1𝑛 𝑣.

∙ 𝜙(x𝑖) = 0, and there are exactly two initial segments 𝑢 = 𝑢′x𝑛 and 𝑢x𝑖 of 𝑟𝑖 such that
𝜙(𝑢) = 𝜙(𝑢x𝑖) = 𝑃𝑖 , and 𝑟𝑖 = 𝑢′x𝑛x𝑖x−1𝑛 𝑣.

∙ 𝜙(x𝑖) = 0, and there are exactly two initial segments 𝑢 = 𝑢′x𝑛x−1𝑖 and 𝑢′x𝑛 of 𝑟𝑖 such that
𝜙(𝑢) = 𝜙(𝑢′x𝑛) = 𝑃𝑖 , and 𝑟𝑖 = 𝑢′x𝑛x−1𝑖 x−1𝑛 𝑣.

In all four cases, there is precisely one 𝑡𝑃𝑖 -term 𝑢 = 𝑘𝑢𝑡𝑃𝑖 = 𝑘𝑖𝑡𝑃𝑖 occurring in 𝜕𝑟𝑖∕𝜕x𝑖 , and no
𝑡𝑃𝑖 -term in any other 𝜕𝑟𝑖∕𝜕x𝑗 . □

Remark 3.6. It is worth reconsideringDefinition 3.2 in light of this previous result. If our definition
of ‘minimum condition’ had been simply that each relator has a unique 𝜙-minimal vertex, then it
could well be the case that 𝑟1 and 𝑟2 have minima of the form 𝑟1 = 𝑢1x−11 x2𝑣1 and 𝑟2 = 𝑢2x−11 x2𝑣2
—so that both 𝜕𝑟1∕𝜕x1 and 𝜕𝑟1∕𝜕x2 have 𝑡𝑃1 -terms, and both 𝜕𝑟2∕𝜕x1 and 𝜕𝑟2∕𝜕x2 have 𝑡𝑃2 -terms.
As will be seen in the proof of Proposition 3.8, such a circumstance is undesirable.
The special role of x𝑛 in Definition 3.2 guarantees that we may invert relators to obtain the

standard minimum condition and thus obtain Lemma 3.5.

Elements of the group ring having the special form taken by 𝜕𝑟𝑖∕𝜕x𝑖 in Lemma 3.5 are espe-
cially amenable to computation in a certain ring containing ℚ𝐺, the Novikov ring. We give here a
simplified statement which is less broad than the most general definition, but is sufficient for our
needs. Proposition 3.8 of [15] gives the equivalence of our statement with the ‘true’ definition.
Novikov rings are treated in detail in the notes of Sikorav [24].

Definition 3.7. Let 𝐺 be a group and let 𝜙∶ 𝐺 → ℤ be a homomorphism with kernel 𝐾. The
Novikov ring ℚ̂𝐺𝜙 of 𝐺 with respect to 𝜙 is the ring of formal series

∞∑
𝑝=𝑃

𝜈𝑝𝑡
𝑝

for 𝑃 ∈ ℤ and 𝜈𝑝 ∈ ℚ𝐾. Addition is termwise, and multiplication is given by the linear extension
of the twisted convolution formula (*).

The Novikov ring is thus the ring of formal power series in (ℚ𝐾)[[𝑡, 𝑡−1]] which are ‘infinite
only in the positive direction’ — that is, there is some 𝑃 such that 𝜈𝑝 = 0 for all 𝑝 < 𝑃. Observe
that the Novikov ring contains ℚ𝐺, and hence multiplication turns it into a ℚ𝐺-module.
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Note that every element of 𝑥 =
∑
𝑝 𝜇𝑝𝑡

𝑝 ∈ ℚ̂𝐺
𝜙 has a support

supp 𝑥 = {𝑝 ∈ ℤ ∣ 𝜇𝑝 ≠ 0},
which is a subset of ℤ bounded from below.
In the following, we will identify a matrix 𝐴 with the linear map 𝑥 ↦ 𝑥𝐴 given by right multi-

plication by 𝐴.
The matrices discussed below are very closely related to what Sikorav calls trivially invertible

matrices; the relation is given by multiplication with a diagonal matrix whose diagonal terms are
of the form 𝑘𝑡𝑃 with 𝑘 ∈ 𝐾.

Proposition 3.8. Let𝐴 = (𝑎𝑖𝑗) be an𝑚 × 𝑛matrix over ℚ̂𝐺
𝜙, where 𝑛 ⩾ 𝑚. Suppose that for every

𝑖 ⩽ 𝑚 we have 𝑘𝑖 ∈ 𝐾 and 𝑃𝑖 ∈ ℤ such that 𝑎𝑖𝑖 − 𝑘𝑖𝑡𝑃𝑖 and 𝑎𝑖𝑗 with 𝑗 ≠ 𝑖 are supported over ℤ ∩
[𝑃𝑖 + 1,∞). Then the following hold.

(1) 𝐴∶ (ℚ̂𝐺𝜙)𝑚 → (ℚ̂𝐺𝜙)𝑛 is injective.
(2) When 𝑛 = 𝑚 + 1, themap𝐴∶ (ℚ̂𝐺𝜙)𝑚 → (ℚ̂𝐺𝜙)𝑚+1 followed by a projection of (ℚ̂𝐺𝜙)𝑚+1 onto
(ℚ̂𝐺

𝜙
)𝑚 forgetting the last coordinate is surjective.

(3) When 𝐴 lies over ℚ𝐺, then 𝐴∶ (ℚ𝐺)𝑚 → (ℚ𝐺)𝑛 is injective.
(4) When 𝐺 satisfies the Atiyah conjecture and is torsion free, and 𝐴 lies over ℚ𝐺, then (𝐺) ⊗

𝐴∶ (𝐺)𝑚 → (𝐺)𝑛 is injective.
Proof. Note that it is sufficient to prove each of the statements for the𝑚 ×𝑚 top submatrix of 𝐴
(in (2) we then show that 𝐴 is surjective). We will therefore assume 𝐴 to be a square matrix.
Multiplying each row of 𝐴 by a unit in ℚ𝐺 does not affect its injectivity or surjectivity in any of

the situations in the proposition. Therefore, for each 𝑖 we may multiply the 𝑖th row by (𝑘𝑖𝑡𝑃𝑖 )−1,
and hence assume that 𝑘𝑖 = 1 and 𝑃𝑖 = 0.
Observe that the matrix 𝐵 = 𝐴 − 𝐼 has every entry supported over a subset of the positive inte-

gers. Thus, for every 𝑘 ∈ ℕ thematrix (−𝐵)𝑘 has entries supported over subsets ofℤ ∩ [𝑘,∞), and
therefore the matrix

𝐶 =

∞∑
𝑘=0

(−𝐵)𝑘

is a well-defined matrix over ℚ̂𝐺𝜙. Moreover, we have 𝐴𝐶 = (𝐼 + 𝐵)𝐶 = 𝐼: for every 𝐾, we have

𝐴𝐶 = (𝐼 + 𝐵)

𝐾−1∑
𝑘=0

(−𝐵)𝑘 + (𝐼 + 𝐵)

∞∑
𝑘=𝐾

(−𝐵)𝑘 = 𝐼 − (−𝐵)𝐾 + (𝐼 + 𝐵)

∞∑
𝑘=𝐾

(−𝐵)𝑘,

so𝐴𝐶 − 𝐼 is supported over ℤ ∩ [𝐾,∞) for every 𝐾, and thus vanishes. It is also true that 𝐶𝐴 = 𝐼,
for the same reason. We conclude that

𝐴∶ (ℚ̂𝐺
𝜙
)𝑚 → (ℚ̂𝐺

𝜙
)𝑚

is an isomorphism, and hence it is in particular injective and surjective, proving (1) and (2).
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When 𝐴 is defined over ℚ𝐺, then we may treat it as a linear map 𝐴∶ (ℚ𝐺)𝑚 → (ℚ𝐺)𝑚. Injec-
tivity follows immediately from (1).
To prove (4), we need to note that there exists a skew-field 𝔽(𝐺) fitting into the following com-

mutative diagram.

The skew-field was constructed in [9, Lemma 5.5]; it is the Malcev–Neumann completion of
(𝐾)[𝑡−1, 𝑡] with respect to the obvious biordering on ℤ = ⟨𝑡⟩, which is exactly the same as the
ring of twisted Laurent series in one variable 𝑡 with coefficients(𝐾).
The inverse 𝐶 we constructed lies over ℚ̂𝐺𝜙, and hence 𝔽(𝐺) ⊗ 𝐶 (tensored over the Novikov

ring) is an inverse of 𝔽(𝐺) ⊗ 𝐴. Hence, 𝔽(𝐺) ⊗ 𝐴 is injective. This implies that the restriction of
𝔽(𝐺) ⊗ 𝐴 to(𝐺)𝑚 is also injective. But this restriction is precisely(𝐺) ⊗ 𝐴. □

The last ingredient in the proof of Theorem 3.4 is a connection between the Novikov rings and
the notion of algebraic fibring, as defined in the statement of the theorem.

Theorem 3.9 (Sikorav [25]). Let 𝐺 be a finitely generated group. An epimorphism 𝜙∶ 𝐺 → ℤ is
algebraically fibred if and only if the homology groups𝐻1(𝐺; ℚ̂𝐺

𝜙
) and𝐻1(𝐺; ℚ̂𝐺

−𝜙
) both vanish.

Proof of Theorem 3.4. By Remark 3.3 we may assume, without changing the isomorphism type
of 𝐺, that ((𝑟1, … , 𝑟𝑚), 𝜙) satisfies the standard minimum condition for some 𝜙∶ 𝐹𝑛 → ℤ. By
Lemma 3.5, the Jacobian matrix

𝐴 = (𝜕𝑟𝑖∕𝜕x𝑗)

has entries satisfying the conditions of Proposition 3.8.
Note that the first group homology of 𝐺 is computed by the chain complex

𝐶2 → 𝐶1 → 𝐶0

of free ℤ𝐺-modules, where 𝐶2 = ℤ𝐺𝑚, 𝐶1 = ℤ𝐺𝑛, 𝐶0 = ℤ𝐺, and where we understand both dif-
ferentials: the differential 𝐶2 → 𝐶1 is equal to thematrix𝐴; the entries of the differential 𝐶1 → 𝐶0
are of the form x𝑖 − 1, where x𝑖 ranges over all generators. Since the generators are non-trivial in
𝐺 by assumption, the entries of this last differential are non-zero.
By Proposition 3.8(4), the differential 𝐴 is injective, and hence the chain complex above com-

putes all homology groups of 𝐺. By Proposition 3.8(4), the differential 𝐴 is still injective over the
Linnell skew-field(𝐺), and hence 𝑏(2)

2
(𝐺) = 0.

Now suppose that 𝑛 = 𝑚 + 1. To compute the first Novikov homology 𝐻1(𝐺; ℚ̂𝐺
𝜙
), we ten-

sor the above complex over ℤ𝐺 with ℚ̂𝐺𝜙. Let 𝑐 be a 1-cycle in this tensored complex. Proposi-
tion 3.8(2) tells us that we may add a 2-boundary to 𝑐 and have all of its entries but the last one
equal to 0. But the last entry of the differential 𝐶1 → 𝐶0 is not zero in ℤ𝐺, and therefore also
non-zero in ℚ̂𝐺𝜙. This implies that the last entry of 𝑐 is a zero-divisor in ℚ̂𝐺𝜙, since 𝑐 is a 1-cycle.
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We are assuming that 𝐺 satisfies the Atiyah conjecture, and therefore ℚ𝐺 has no non-trivial
zero-divisors. It is an easy exercise to see that the same then holds for ℚ̂𝐺𝜙. We conclude that 𝑐 is
a 2-boundary, and hence𝐻1(𝐺; ℚ̂𝐺

𝜙
) = 0.

If ((𝑟1, … , 𝑟𝑚), 𝜙) satisfies the maximum condition as well, we repeat the argument for−𝜙, and
conclude using Theorem 3.9 that 𝜙 is algebraically fibred. □

4 EMBEDDINGS OF SMALL CANCELLATION GROUPS

In this section we build injective homomorphisms from high deficiency groups into defi-
ciency 1 groups, which will allow us to pass results about coherence to the high deficiency
groups.

Theorem 4.1. Let ((𝑟1, … , 𝑟𝑚), 𝜙) be a tuple satisfying the standard minimum condition, for 𝑚 ⩽
𝑛 − 2. Then there exist cyclically reduced words 𝑠1, … , 𝑠𝑚 on an alphabet y1, … , y𝑚+1, and a map
𝜓∶ {y1, … , y𝑚+1} → ℤ such that ((𝑠1, … , 𝑠𝑚), 𝜓) satisfies the standard minimum condition, and an
injection

⟨x1, … , x𝑛 | 𝑟1, … , 𝑟𝑚⟩↪ ⟨y1, … , y𝑚+1 | 𝑠1, … , 𝑠𝑚⟩.
If ((𝑟1, … , 𝑟𝑚), 𝜙) also satisfies the standard maximum condition, the 𝑠𝑖 can be chosen to also satisfy
the standard maximum condition.
Suppose that in addition the 𝑟𝑖 satisfy the 𝐶′′(1∕(6 + 𝜖)) small cancellation condition for some

𝜖 > 0 and that all 𝑟𝑖 have length 𝑙 where 𝑙 > 12 + 72∕𝜖. Then the 𝑠𝑖 can be chosen to satisfy
𝐶′′(1∕6).

The tool we use to produce embeddings is the congruence extension property of small cancel-
lation theory. It is implied by stronger theory in [19] concerning general hyperbolic groups; see
also [22, Theorem 3.5] for a self-contained argument.

Lemma 4.2 (Congruence extension property). Let 𝑟1, … , 𝑟𝑚 be words in an alphabet x1, … , x𝑛,
and let 𝑤1,… ,𝑤𝑛 be words in an alphabet y1, … , y𝑘 satisfying 𝐶′(1∕12). Then the map 𝑓∶ x𝑖 ↦ 𝑤𝑖
induces an injective homomorphism

⟨x1, … , x𝑛 | 𝑟1, … , 𝑟𝑚⟩→ ⟨y1, … , y𝑘 |𝑓(𝑟1), … , 𝑓(𝑟𝑚)⟩.
With the tool in hand, let us return to Theorem 4.1.

Proof of Theorem 4.1. Consider a free group𝐹𝑚+1 on an alphabet y1, … , y𝑚, y𝑚+1. For added clarity
in the proof we rename y𝑚+1 = z. We now define elements of 𝐹𝑚+1, dependent on a large integer
𝑁 ≫ max(|𝜙(x𝑖)|). First we define

𝑤1 = z𝑁y1z
𝑁−1y1z

𝑁−2⋯ zy1z
−1⋯ z1−𝑁y1z

−𝑁y1z
−𝜙(x1)y1⋅

z−𝑁−1y1⋯ z−2𝑁y1z
2𝑁⋯ z𝑁+1y1
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𝑤2 = z𝑁y2z
𝑁−1y2z

𝑁−2⋯ zy2z
−1⋯ z1−𝑁y2z

−𝑁y2z
−𝜙(x2)y2⋅

z−𝑁−1y2⋯ z−2𝑁y2z
2𝑁⋯ z𝑁+1y2

⋮

𝑤𝑚 = z𝑁y𝑚z
𝑁−1y𝑚z

𝑁−2⋯ zy𝑚z
−1⋯ z1−𝑁y𝑚z

−𝑁y𝑚z
−𝜙(x𝑚)y𝑚⋅

z−𝑁−1y𝑚⋯ z−2𝑁y𝑚z
2𝑁⋯ z𝑁+1y𝑚

Next, we define

𝑤𝑚+1 = z𝑁y21z
𝑁−1y21z

𝑁−2⋯ zy21z
−1⋯ z1−𝑁y21z

−𝑁y21z
−𝜙(x𝑚+1)y21⋅

z−𝑁−1y21⋯ z−2𝑁y21z
2𝑁⋯ z𝑁+1y21

⋮

𝑤𝑛−1 = z𝑁y𝑛−𝑚1 z𝑁−1y𝑛−𝑚1 z𝑁−2⋯ zy𝑛−𝑚1 z−1⋯ z1−𝑁y𝑛−𝑚1 z−𝑁y𝑛−𝑚1 ⋅

z−𝜙(x𝑛−1)y𝑛−𝑚1 z−𝑁−1y𝑛−𝑚1 ⋯ z−2𝑁y𝑛−𝑚1 z2𝑁⋯ z𝑁+1y𝑛−𝑚1

And finally, we define

𝑤𝑛 = z−𝑁y𝑛−𝑚+1
1

z−𝑁−1⋯ z2−2𝑁y𝑛−𝑚+1
1

z2𝑁−2⋯ z𝑁y𝑛−𝑚+1
1

z−𝜙(x𝑛)⋅

y𝑛−𝑚+1
1

z𝑁−1y𝑛−𝑚+1
1

z𝑁−2⋯ zy𝑛−𝑚+1
1

z−1⋯ z1−𝑁y𝑛−𝑚+1
1

Note that if 𝑢 is a cyclic subword of some 𝑤±1
𝑖

of length at least 2𝑁 + 2(𝑛 − 𝑚) + 1, then 𝑢 must
contain a subword z±1y𝑎

𝑗
z±

′1. The number 𝑗 togetherwith the sign andmagnitude of𝑎 diagnoses a
unique𝑤𝑖 which contains 𝑢, and the direction in which𝑤𝑖 is read. Note further that by inspection
the longest repeated subword within any of 𝑤𝑖 is a subword z±(2𝑁−2)y𝑛−𝑚+1

1
z±(2𝑁−1) repeated

within 𝑤𝑛.
Hence repeated subwords among the words 𝑤𝑖 have linear length in 𝑁, while the length

of each of the words 𝑤𝑖 is a quadratic polynomial in 𝑁. For any 0 < 𝛿 < 1∕12 we may there-
fore choose 𝑁 large enough so that the words 𝑤𝑖 are 𝐶′′(𝛿) and all have length in the range
[𝑁2(4 − 𝛿),𝑁2(4 + 𝛿)].
By Lemma 4.2, we now have the desired embedding

Consider the map 𝜓∶ 𝐹𝑚+1 → ℤ given by z↦ −1, y𝑖 ↦ 0 (𝑖 ⩽ 𝑚). By construction we have
𝜓(𝑤𝑖) = 𝜙(x𝑖) for all 𝑖.
The minimum value attained by 𝜓 over initial segments of the word 𝑤𝑖 , for 𝑖 < 𝑛, is

−𝑁(𝑁 + 1)∕2, attained both by the initial segment ending in z𝑁 and the initial segments end-
ing z𝑁y𝑘

𝑗
(for whichever 𝑗 and 𝑘 appear). The minimum value attained along initial segments of

𝑤𝑛 is −𝑁(𝑁 − 1)∕2 + 𝜙(x𝑛), which is 𝑁(𝑁 − 1)∕2 lower than 𝜙(x𝑛).
The respective maximum values of 𝜓 along subwords of 𝑤𝑖 and 𝑤𝑛 are 𝑁(3𝑁 + 1)∕2 + 𝜙(x𝑖)

and (𝑁 − 1)(3𝑁 − 2)∕2.
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F IGURE 2 A schematic showing the replacement of x𝑖 with 𝑤𝑖 at the minimum point of a relator 𝑟𝑖 . The
‘parabolic’ segments represent those parts of the words 𝑤𝑖 and 𝑤𝑛 not otherwise labelled. The vertical scale shows
the variation of 𝜙 and 𝜓 over the words. The horizontal scale has no precise meaning.

Now the relator 𝑟𝑖 attains its minimal 𝜙-value 𝜙min(𝑖) either at a single vertex, whose adjoining
edges are labelled x𝑖 and x𝑛 or a single edge labelled by x𝑖 whose adjacent edges are labelled by
x𝑛. It follows that when we substitute the words 𝑤𝑖 for x𝑖 in the relators 𝑟𝑖 , the minimal 𝜓-value
of the word 𝑓(𝑟𝑖) so obtained is given by

𝜓min(𝑖) = 𝜙min(𝑖) − 𝑁(𝑁 + 1)∕2,

and this is attained exactly along a single edge labelled by y𝑖 , which appears in a segment z𝑁y𝑖z−𝑁 .
See Figure 2. Note that this minimum property is retained when 𝑓(𝑟𝑖) is cancelled down to a
cyclically reduced word 𝑠𝑖 . Hence ((𝑠1, … , 𝑠𝑚), 𝜓) satisfies the standard minimum condition. If
((𝑟1, … , 𝑟𝑚), 𝜙) additionally satisfies the standard maximum condition, then ((𝑠1, … , 𝑠𝑚), 𝜓) simi-
larly satisfies the standard maximum condition.
Suppose that thewords 𝑟𝑖 satisfy the𝐶′′(1∕(6 + 𝜖)) small cancellation condition, and let 𝑠𝑖 be the

word obtained from 𝑓(𝑟𝑖) by substituting the small cancellation words 𝑤𝑖 and cyclically reducing
as above. Then |𝑠𝑖| ⩾ 𝑁2𝑙(4 − 3𝛿). Any (cyclic) subword 𝑢 of length at least |𝑠𝑖|∕6 = 𝑁2𝑙(4 − 3𝛿)∕6
must therefore contain the images in 𝑠𝑖 of at least

𝑁2𝑙(4 − 3𝛿)

6 ⋅𝑁2(4 + 2𝛿)
− 2

letters of 𝑟𝑖 . As 𝛿 → 0 we have

𝑁2𝑙(4 − 3𝛿)

6𝑁2(4 + 2𝛿)
− 2 →

𝑙

6
− 2 >

𝑙

6 + 𝜖
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for the values of 𝑙 as in the theorem statement. For 𝛿 small enough, we find that the 𝐶′′(1∕(6 + 𝜖))
condition on the 𝑟𝑖 implies the 𝐶′′(1∕6) condition on the 𝑠𝑖 as desired. □

5 PROBABILITY

In this section we will apply methods similar to [7] and [26] to give probabilistic statements con-
cerning the minimum conditions of Section 3.

Proposition 5.1. Let 𝐺 be a random group with 𝑛 generators and 𝑛 − 1 relators 𝑟1, … 𝑟𝑛−1. Then
there exists𝜙∶ 𝐺 → ℤ such that ((𝑟1, … , 𝑟𝑛−1), 𝜙) satisfies both theminimumcondition and themax-
imum condition with positive asymptotic probability.

Proof. For a random tuple of cyclically reduced words 𝑟1, … , 𝑟𝑛−1, with high probability there is
a unique map 𝜙∶ 𝐹𝑛 ↠ ℤ up to sign such that 𝜙(𝑟𝑖) = 0 for all 𝑖. Let ′𝑙 be the set of ordered
(𝑛 − 1)-tuples of relators of length 𝑙 such that the group defined by these relators has first Betti
number 1. Then

|′
𝑙
| ∼ |𝑙| ∼ (2𝑛 − 1)(𝑛−1)𝑙,

where ∼ denotes asymptotic equivalence

𝑓(𝑙) ∼ g(𝑙) ⇔
𝑓(𝑙)

g(𝑙)
→ 1 as 𝑙 → ∞.

Define a function

𝜏∶ ′
𝑙
→ ′

𝑙+8

in the following manner. Let (𝑟1, … , 𝑟𝑛−1) ∈ ′
𝑙
and let 𝜙∶ 𝐹𝑛 ↠ ℤ be a map such that 𝜙(𝑟𝑖) = 0

for all 𝑖. Let 𝑗 be the first index such that 𝜙(x𝑗) ≠ 0. By changing the sign of 𝜙wemay assume that
𝜙(x𝑗) < 0. Note that these properties determine 𝜙 uniquely. For an index 1 ⩽ 𝑖 ⩽ 𝑛 − 1 define

𝑖′ =

{
𝑖 if 𝑖 < 𝑗
𝑖 + 1 if 𝑖 ⩾ 𝑗.

For each relator 𝑟𝑖 , find the first 𝜙-minimal vertex along𝐶𝑟𝑖 , and form a new relator 𝑟′
𝑖
by inserting

a commutator x𝑗x𝜖𝑖′x
−1
𝑗
x−𝜖
𝑖′
. Here 𝜖 ∈ {±1} is chosen so that 𝜙(x𝜖

𝑖′
) ⩽ 0; if 𝜙(x𝑖′ ) = 0, then choose

𝜖 = +1 unless this causes 𝑟′
𝑖
to not be a cyclically reduced word, in which case choose 𝜖 = −1.

Note that in no other circumstance 𝑟′
𝑖
cannot be cyclically reduced, for a failure of cyclic reduction

would imply that we did not insert the commutator at a 𝜙-minimal point.
Now find the first 𝜙-maximal vertex along 𝐶𝑟′

𝑖
, and form a new relator 𝑟′′

𝑖
by inserting a com-

mutator x−1
𝑗
x−𝜖
𝑖′
x𝑗x

𝜖
𝑖′
, where 𝑖′ and 𝜖 are chosen in the samemanner as in the previous paragraph.

Note that insertion of commutators does not affect the abelianisation of a group, and so the
tuple (𝑟′′

1
, … , 𝑟′′

𝑛−1
) ∈ ′

𝑙+8
determines the same map 𝜙 as before.
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The lower section 𝐿𝜙(𝑟′′𝑖 ) is now, by construction, either a single vertex following x
𝜖
𝑖′
or a single

edge labelled by x𝜖
𝑖′
. After relabelling so that x𝑗 becomes x𝑛, the pair ((𝑟′′1 , … , 𝑟

′′
𝑛−1
), 𝜙) satisfies the

minimum condition. Similarly it satisfies a maximum condition.
Note also that the map

𝜏∶ (𝑟1, … , 𝑟𝑛−1) ↦ (𝑟
′′
1 , … , 𝑟

′′
𝑛−1)

is injective: if (𝑟′′
1
, … , 𝑟′′

𝑛−1
) lies in the image of 𝜏, then taking the unique map 𝜙 as specified above

we may find the unique 𝜙-maximal vertex or edge of 𝑟′′
𝑖
and remove a suitable commutator to

recover 𝑟′
𝑖
, then also remove a commutator at the unique 𝜙-minimal vertex or edge of 𝑟′

𝑖
to recover

𝑟𝑖 .
Finally let 𝑙 denote the set of tuples in ′

𝑙
satisfying both a minimum condition and a maxi-

mum condition, so that 𝑙+8 ⊇ 𝜏(′𝑙 ). We have
|𝑙+8||𝑙+8| ⩾ |′

𝑙
||𝑙+8| ∼ |𝑙||𝑙+8| ∼ 1

(2𝑛 − 1)8(𝑛−1)
> 0,

which concludes the proof. □

Proof of Theorem A. By Theorem 2.8 and Proposition 5.1, a deficiency 1 group presentation is
𝐶′′(1∕6) and satisfies both the minimum and the maximum conditions for some 𝜙 with positive
probability. By Theorem 3.4† we know that 𝜙 is algebraically fibred. Finally, Theorem 2.9 shows
that 𝐺 is free-by-cyclic and coherent. □

This method of adding commutators to produce the minimum condition will also stand us
in good stead in the case of presentations of deficiency at least two. Loosely speaking, at this
deficiency there will be many essentially different possible maps to ℤ, and for each of these we
can add commutators to produce tuples satisfying a minimum condition.
With high probability, none of the generators x𝑖 is killed by the map to the abelianisation

𝐻1(𝐺,ℚ) of a random group 𝐺 of deficiency at least 2, whence the set of maps 𝜙∶ 𝐹𝑛 → ℤ with
𝜙(𝑟𝑖) = 0 for all 𝑖 and with some 𝜙(x𝑖) = 0 comprises only a finite union of proper subspaces of
𝐻1(𝐺,ℚ). We shall assume that this holds henceforth. This is a point of only minor significance,
but will allow us, by perturbing maps slightly, to only consider maps not killing any x𝑖 — so that
lower sections of relators will comprise a union of 𝜙-minimal vertices, and we will not need to
worry about edges.
Let the set of valid slopes be

𝑆 = 𝑆(𝑟1, … , 𝑟𝑚) = {𝜙∶ 𝐹𝑛 → ℤ ∣ 𝜙(𝑟𝑖) = 0 ∀𝑖, 𝜙(x𝑖) ≠ 0 ∀𝑖}.
Define an equivalence relation ∼ on by

𝜙 ∼ 𝜙′ ⇔ 𝐿𝜙(𝑟𝑖) = 𝐿𝜙′(𝑟𝑖) ∀𝑖.

† The condition in Theorem 3.4 that no x𝑖 vanishes in 𝐺 is a consequence of 𝐶′′(1∕6) once the relators have length at least
3, by Greendlinger’s lemma.
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Observe that the equivalence classes of ∼ are open subsets of𝐻1(𝐹𝑛, ℚ), with the property that if
𝜙 ∼ 𝜙′, then ((𝑟1, … , 𝑟𝑚), 𝜙) satisfies the minimum condition if and only if ((𝑟1, … , 𝑟𝑚), 𝜙′) does.
Our earlier heuristic statement concerning ‘many essentially different possible maps to ℤ’ has

the following more precise formulation.

Lemma 5.2. Suppose that the number of relators𝑚 is strictly less than 𝑛 − 1. For every 𝐾 ∈ ℕ and
each 𝜖 > 0,

ℙ(|𝑆∕∼| < 𝐾) < 𝜖
for all 𝑙 sufficiently large.

Proof. Let 𝑛 be the space of continuous functions 𝑓∶ [0, 1] → ℝ𝑛 such that 𝑓(0) = 0, equipped
with the supremum norm. Let 𝐴𝑛,𝐾 be the set of functions 𝑓 ∈ 𝑛 such that the convex hull Δ(𝑓)
of the projection of𝑓 to the hyperplane orthogonal to𝑓(1) is an (𝑛 − 1)-dimensional polytopewith
at most 𝐾 − 1 vertices. Note that 𝑓(1) ≠ 0 with Wiener measure 1, so we may ignore the measure
zero set where 𝑓(1) = 0.
Let 𝑇0, 𝑇1, … , 𝑇𝑙 be the non-backtracking random walk in ℤ𝑛 corresponding to the cyclically

reduced relator 𝑟1 of length 𝑙. Let 𝑋𝑙(𝑡)∶ [0, 1] → ℝ𝑛 be the piecewise affine function defined by
𝑋𝑙(𝑖∕𝑙) = 𝑇𝑖∕

√
𝑙. By [26, Theorem 3.3], 𝑋𝑙(𝑡) converges in distribution to the standard Brownian

motion 𝑌(𝑡) on ℝ𝑛.
The other𝑚 − 1 relators 𝑟2, … , 𝑟𝑚 span with high probability an (𝑚 − 1)-dimensional subspace

𝑊𝑙(𝑟2, … , 𝑟𝑚) ofℝ𝑛. We consider this to be a random variable𝑊𝑙 with values in the Grassmannian
Gr𝑚−1,𝑛 of (𝑚 − 1)-planes in ℝ𝑛. Again by [26, Theorem 3.3] the relators 𝑟𝑖 converge to indepen-
dent Brownian motions, which in particular are spherically symmetric; it follows that 𝑊𝑙 con-
verges in distribution to the uniform distribution𝑈 onGr𝑚−1,𝑛. Since𝑋𝑙 and𝑊𝑙 are independent,
the pair (𝑋𝑙,𝑊𝑙) converges in distribution to (𝑌,𝑈) on 𝑛 × Gr𝑚−1,𝑛.
For (𝑓, 𝑉) ∈ 𝑛 × Gr𝑚−1,𝑛, we may consider the orthogonal projection 𝜋𝑉(𝑓) ∈ 𝑛−𝑚+1 of 𝑓

onto the plane† 𝑉⟂ orthogonal to 𝑉, and ask whether 𝜋𝑉(𝑓) ∈ 𝐴𝑛−𝑚+1,𝐾 . We desire to show
that 𝜋𝑊𝑙 (𝑋𝑙) ∉ 𝐴𝑛−𝑚+1,𝐾 with high probability: for then there are at least 𝐾 distinct maps
𝜙̃ ∶ ℝ𝑛−𝑚+1 → ℝ whose sets of 𝜙̃-minimal vertices of Δ(𝜋𝑊𝑙 (𝑋𝑙)) are distinct. Composing these
with the projections ℝ𝑛 → ℝ𝑛−𝑚+1 gives 𝐾 maps ℝ𝑛 → ℝ which, after perturbing them to be
defined over ℚ, witness the desired inequality |𝑆∕∼| ⩾ 𝐾.
Since 𝑛 − 𝑚 + 1 ⩾ 2, by [26, Lemma 3.4] we know that 𝐴𝑛−𝑚+1,𝐾 is closed and has Wiener

measure zero. Since the mapping (𝑓, 𝑉) ↦ 𝜋𝑉(𝑓) is continuous, the set 𝐵 = {(𝑓, 𝑉) ∣ 𝜋𝑉(𝑓) ∈
𝐴𝑛−𝑚+1,𝐾} is also closed. For each fixed 𝑉 ∈ Gr𝑚−1,𝑛, we have

𝜇Wiener
(
𝜋−1𝑉 (𝐴𝑛−𝑚+1,𝐾)

)
= ℙ

(
𝑌 ∈ 𝜋−1𝑉 (𝐴𝑛−𝑚+1,𝐾)

)
= ℙ

(
𝜋𝑉(𝑌) ∈ 𝐴𝑛−𝑚+1,𝐾

)
= 𝜇Wiener

(
𝐴𝑛−𝑚+1,𝐾

)
= 0

† Strictly speaking, 𝜋𝑉(𝑓) is a function with values in 𝑉⟂, not in ℝ𝑛−𝑚+1, unless we choose an orthonormal basis for
𝑉⟂. We will ignore this unimportant technicality for the sake of readability; it could be resolved by working on charts in
Gr𝑚−1,𝑛 on which a continuous choice of basis of 𝑉⟂ may be made.
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since the orthogonal projection 𝜋𝑉(𝑌) of the standard Brownian motion 𝑌 is again a standard
Brownian motion, and hence is also governed by the Wiener measure.
Letting 𝜈 denote the product measure 𝜇Wiener × 𝜇Gr, we deduce

𝜈(𝐵) = ∬ 𝜒𝐵𝑑𝜇Wiener𝑑𝜇Gr = ∫ 𝜇Wiener
(
𝜋−1𝑉 (𝐴𝑛−𝑚+1,𝐾)

)
𝑑𝑉 = 0.

Finally, by the convergence in distribution and Portmanteau’s lemma, we find

lim sup
𝑙→∞

ℙ
(
𝜋𝑊𝑙 (𝑋𝑙) ∈ 𝐴𝑛−𝑚+1,𝐾

)
= lim sup

𝑙→∞
ℙ((𝑋𝑙,𝑊𝑙) ∈ 𝐵)

⩽ ℙ((𝑌,𝑈) ∈ 𝐵)) = 0

as 𝑙 → ∞ as required. □

Proposition 5.3. A random group with 𝑛 ⩾ 3 generators and 𝑚 < 𝑛 − 1 relators satisfies a mini-
mum condition with high probability.

Proof. Let′
𝑙
be the set of𝑚-tuples of cyclically reduced relators 𝑟1, … , 𝑟𝑚 of length 𝑙 such that no

x𝑖 vanishes in the abelianisation of the group

𝐺 = ⟨x1, … , x𝑛 | 𝑟1, … , 𝑟𝑚⟩.
As remarked previously, |′

𝑙
| ∼ |𝑙| so that a relator lies in ′

𝑙
with high probability. Let 𝑙 be

the set of tuples (𝑟1, … , 𝑟𝑚) ∈ ′
𝑙
such that ((𝑟1, … , 𝑟𝑚), 𝜙) does not satisfy theminimum condition

for any valid slope 𝜙 ∈ 𝑆(𝑟1, … , 𝑟𝑚). Let 𝐾 > 0 and let 𝑙,𝐾 be the set of tuples in 𝑙 such that|𝑆∕∼| ⩾ 𝐾.
We construct 𝐾 injections 𝜏1, … , 𝜏𝐾 ∶ 𝑙,𝐾 → ′

𝑙+4
with disjoint images in the following way.

Fix for all time some arbitrary well-ordering on𝐻1(𝐹𝑛, ℤ).
For (𝑟1, … , 𝑟𝑚) ∈ 𝑙,𝐾 let 𝜙1, … , 𝜙𝐾 be the first𝐾 elements of 𝑆 representing different∼-classes.

For each 𝑖 and 𝑗 find the first 𝜙𝑗-minimal vertex of 𝑟𝑖 and insert at this point the commutator

x
−sign(𝜙𝑗(x𝑛))
𝑛 x

−sign(𝜙𝑗(x𝑖 ))

𝑖
x
sign(𝜙𝑗(x𝑛))
𝑛 x

sign(𝜙𝑗(x𝑖 ))

𝑖

to form a new word 𝜏𝑗(𝑟𝑖). Note that the 𝜙𝑗-minimality of the insertion point implies that 𝜏𝑗(𝑟𝑖)
is cyclically reduced. Insertion of commutators does not affect the abelianisation, so the set 𝑆 is
unchanged (though the equivalence relation ∼ will be altered).
We claim that the maps

𝜏𝑗 ∶ 𝑙,𝐾 → ′
𝑙+4
, (𝑟1, … , 𝑟𝑚) ↦ (𝜏𝑗(𝑟1), … , 𝜏𝑗(𝑟𝑚))

are injective and have disjoint images, whence |′
𝑙+4

| ⩾ 𝐾|𝑙,𝐾|. Observe that the relator 𝜏𝑗(𝑟𝑖)
possesses a unique 𝜙𝑗-minimal vertex at the midpoint of the added commutator. Furthermore, if
𝜏𝑗(𝑟𝑖) has a unique 𝜓-minimal vertex 𝑣 for any 𝜓 ∈ 𝑆, then since 𝑟𝑖 ∈ 𝑙 the vertex 𝑣must be one
of the three ‘new’ vertices created by the addition of the commutator — and only one of these
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has the property that the four closest edges form a commutator. Hence there is a unique way to
recover the relator 𝑟𝑖 from 𝜏𝑗(𝑟𝑖).
Finally take arbitrary 𝐾 ∈ ℕ and 𝜖 > 0. For 𝑙 sufficiently large (depending on 𝐾 and 𝜖),

Lemma 5.2 applies and we may estimate:

|𝑙||′
𝑙
| = |𝑙,𝐾||′

𝑙
| + |𝑙 ⧵𝑙,𝐾||′

𝑙
| ⩽

|′
𝑙+4

|
𝐾|′

𝑙
| + 𝜖 ⩽ 1𝐾 (2𝑛)4𝑚 + 𝜖.

Hence the probability that a tuple lies in 𝑙 becomes less than any prescribed positive value. It
follows that with high probability a tuple of relators lies in the complement of 𝑙 — and thus
satisfies a minimum condition. □

It only remains to assemble our various ingredients into the headline theorem.

Proof of Theorem B. By Proposition 5.3, the random group satisfies a minimum condition. By
Theorem2.2, it is𝐶′′(1∕7)with high probability, whence by Theorem2.8 it is two-dimensional and
satisfies the Atiyah conjecture. Theorem 3.4 now implies that 𝑏(2)

2
(𝐺) = 0; the value 𝑏(2)

1
(𝐺) = 𝑑

follows from the Euler characteristic.
Furthermore, by Theorem 4.1 the group 𝐺 embeds into a 𝐶′′(1∕6), deficiency 1 group𝐻 satisfy-

ing a minimum condition. By Theorems 2.9 and Theorem 3.4 we find that 𝐻 is virtually free-by-
cyclic. Coherence of 𝐺 is inherited from𝐻. □
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