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Abstract

A long-standing puzzle in international finance is that a positive interest rate differen-

tial systematically forecasts an exchange rate appreciation—the Uncovered Interest Parity

(UIP) puzzle. Hence, a carry trade portfolio long in high yield currency bonds funded by

borrowing in low yield currencies can be expected to yield positive profits. Following the

Great Financial Crisis, however, the sign of the puzzle has changed—positive differentials

forecast excessive depreciation—and carry trade has withered after the large losses suffered

by investors in 2007-2008. In this paper, we use a century-long time series for the GBP/USD

exchange rate to show that a sign switch is neither new, nor, arguably, a new puzzle. First,

it is not new in the data—by virtue of a long sample featuring infrequent, non-overlapping

currency crashes, we document that switches systematically occur in crises such as the Great

Depression in the 1930s and the exchange rate turmoil of the 1990s. However, UIP devi-

ations, sharp in either direction for short- to medium-horizon portfolios, remain small to

almost negligible for long-horizon investment portfolios. Second, we argue that our century-

long evidence is consistent with models featuring a time-varying probability of disasters or

’Peso events,’ specified so to account for the difference in UIP deviations in crisis and nor-

mal times, as well as for a decreasing term structure of carry trade returns that on average

characterize the data.

JEL classification: F31, F41, G15

Keywords: Uncovered Interest Parity, Peso Problem, Great Depression, Currency Crises,

Carry Trade, Fama Puzzle

∗Giancarlo Corsetti: gc422@cam.ac.uk; Emile Marin: eam65@cam.ac.uk. We thank Simon Lloyd for useful
discussions. We thank the Bank for International Settlement and the Federal Reserve Bank of New York for
hospitality when working on this paper. We acknowledge support by the Cambridge INET institute and the
Keynes Fund at Cambridge University.

1



1 Introduction

The Uncovered Interest Parity (UIP) hypothesis is one of the defining building blocks of inter-

national finance, and its failure to hold in the data has created a long standing puzzle. In its

simplest formulation, the UIP hypothesis states that nominal interest rate differentials across

currencies should forecast expected exchange rate movements: investing in a currency that

is expected to lose value over, say, the next three months should require higher three month

nominal interest rates. However, running the Fama (1984) regression (changes in exchange

rates regressed on interest differentials), researchers and practitioners have long found that the

“Fama coefficient” (the coefficient on nominal rate differentials) is generally not close to one

as is predicted by the UIP. Rather, based on analyses of samples including mostly advanced

countries in a period preceding the global financial crisis, the coefficient is non-positive and

close to -1, therefore, positive differentials forecast appreciation. Recently, it has been noted

that this well-documented result breaks down during the Global Financial Crisis. After 2007,

the coefficient turns positive and larger than 1, motivating Bussière et al. (2018) to claim that

we now have a ‘new Fama puzzle’. We are led to ask: is the new Fama puzzle really new,

or rather, has the post-2007 evidence called attention to a pattern that, while present in the

historical data, was not noted before? Most importantly, is this switch consistent with leading

explanations of the puzzle in the literature as a unified analytical framework?

In this paper we address these questions, first, by presenting historical data on the USD-GBP

currency pair, to obtain a long time series with desirable properties (e.g., relatively free capital

mobility between the countries issuing the two currencies) delivering novel empirical evidence;

and, second, by drawing on the literature on the “Peso problem”, to explain this evidence

and gain insight on the role disaster risk in driving return from arbitrage in the international

financial markets.

Our main contributions are as follows. On empirical grounds, we show that the reversals

in the UIP anomaly are recurrent around periods of severe crises. In our time series, these

periods include not only the 1930s and the post-2007 years, but also the early to mid-1990s,

when Europe was shaken by a systemic currency crisis that led to the withdrawal of the sterling

pound from the European Monetary System. Furthermore, thanks to the length of our time

series, we document the dynamics of exchange rates and excess currency returns in anticipation,

during, and in the aftermath of Peso events. We stress the importance of a long empirical sample

in validating any model based on rare events. The presence of distinct, non-overlapping peso

events, decades apart from each other, provides us with the statistical power to test the UIP

condition in sub samples, and enable us to compare returns on short and long-maturity carry

trade (i.e., the term-structure of carry trade) across these events.

Based on this evidence, we argue that the ‘UIP puzzle’ should be articulated along three

key empirical dimensions, to account for the fact that the Fama coefficient varies systematically

both across normal and crisis periods, and depending on the investment horizons employed in

the analysis. Synthetically, the Fama coefficient is:

1. significantly below unity and typically non-positive for investment horizons up to 5-7 years,
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as stressed by the textbook treatment of the UIP puzzle, in normal times;

2. positive, and significantly above unity during crises;

3. on average, closer to unity for long than for short and medium-term investment horizons,

across both normal and crisis times.

The above implies that carry trade profits are, on average, positive for short and medium

investment horizons, negative during crises, and small (in annualised terms) for long investment

horizons. Together, the first and third feature of the data further imply that, in normal times,

the terms structure of carry trade return is on average downward sloping: annualised returns to

short maturity portfolio are higher than the corresponding returns to long maturity portfolios.1

Throughout the analysis, we define “normal times” as periods in which business cycle movements

are neither associated with financial crises, nor give rise to abnormally large and persistent

downturns.

On theoretical grounds, we show that this evidence lends empirical support to models draw-

ing on the Peso problem and disaster risk literature, and featuring a time-varying probability

of extreme events. We derive conditions on the process driving this probability such that the

model is able predict systematic sign reversals of the Fama coefficient during disaster, as well

as the average term structure of carry trade profits. We stress that, to inform our theoretical

framework, we also use information on the realised exchange rate dynamics during and after

Peso events—in this respect, we deviate from existing studies of disaster risk, that typically

take an ex-ante perspective focusing on the implications for exchange rate determination before

disasters occur.

Our analysis has at least one relevant implication for policy. It has been argued that the sign

reversal in the UIP regression after 2007 can be attributed to unconventional monetary policy,

see e.g Stavrakeva and Tang (2018). The crises in our sample, in the 1930s, the 1990s and the

recent Global Financial Crisis, are all characterized by a sign reversal, but also by quite different

stabilization policy regimes. We take this as evidence that reversals cannot be systematically

associated to unconventional monetary policy—nothing close to QE was implemented in the

1930s.

Our work relates to the literature analyzing disaster risk in a historical perspective, as

in Barro (2006). We build on a classical strand of literature on ’Peso’ events, as studied in

Burnside et al. (2011) and later surveyed in Engel (2014), but allow for time-varying disaster

probabilities as in Gabaix (2012) and Gourio (2012). The disaster risk literature highlights

that the possibility of rare events gives rise to risk premia, thus the UIP anomaly holds even in

samples which feature disaster events. Time variation in the UIP coefficient in relation to the

terms structure of interest rates has been recently studied by Lloyd and Marin (2019), while

the term structure of carry trade has been brought to focus in the literature by Lustig et al.

1It is worth noting that, even if the Fama coefficient is close to one, ruling out pure Carry Trade excess returns,
excess returns on arbitrage portfolios may still be high, if driven by factors uncorrelated with the interest rate
differential.
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(2019). An instance of an early study detecting systematic changes in the Fama coefficient is

Flood and Rose (2002).

In section 2 we detail the data we use and highlight our main empirical results. In section 3

we present a simple framework with time-varying disaster risk which captures our key stylized

facts. Section 4 concludes.

2 The new Fama puzzle is hundred year old

2.1 Data and methodology.

We use monthly data from the Global Financial Database on U.S. and U.K. 3 month and 10

year government bond yields, as well as the end of month USD/GBP nominal exchange rate

for the period 1920 January to 2016 December. While our sample is constrained by historical

data availability, we should stress an advantage of focusing on the country pair U.S. and U.K.,

that is, capital flows between the two remained relatively free during the 1930s.

We estimate the following regression by ordinary least squares:

et+κ − et = β0,κ + β1,κ(it,κ − i$t,κ) (1)

where et+κ − et is the log realised κ− month exchange rate change (a positive change corre-

sponds to a GBP depreciation) and (it,κ − i$t,κ) is the difference between the log κ− month

UK yield and the corresponding US bond yield. The coefficient β1,κ in the above regression is

customarily referred to as the Fama coefficient. Since we are interested in time variation in this

coefficient, we estimate the above regression using rolling windows of 5 years for κ =3 month

regressions and 30 years for analogous κ =10 year regressions:2 A rolling window estimation

allows us to exploit the length of our time-series and independently estimate the coefficient β1

in samples which do not contain crises and samples which do. Additionally, we borrow from

Lloyd and Marin (2019) and overlay our results against an indicator variable that takes a value

of 1 following a U.S. yield curve inversion, and maintains this value until the end of the corre-

sponding NBER recession. This allows us to study UIP dynamics during recessions from the

moment they are priced into domestic bonds. In all the figures below, for each recession, we

will mark this time span with a shaded area.

Arbitrage in the 1930’s. The 1930s are of particular interest to us because UIP dynam-

ics (sign and magnitude of deviations) as well as macro conditions and market sentiments, are

somewhat comparable with the period following the financial crisis in 2008. However, the UIP

condition can only be expected to hold if capital is allowed to flow freely across countries. For

this reason, we dig into the history of US-UK capital flows over that period and investigate

whether the conditions for the UIP to hold are verified. Drawing on the literature, see, e.g.,

2The results are very similar when considering variations in the size of the rolling windows. We ensure that
the length of the window exceeds the maturity of the bond to account for the possibility that bonds are held to
maturity.
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Ghosh and Qureshi (2016) and Feinstein et al. (2008), one can roughly distinguish two periods.

The first runs through the 1920s, following the Dawes Loan (1924) financing German recon-

struction after the war.3 At the time, American banks entered a period of large international

lending and capital ran from the US to overseas. Consistently, during the second half of the

1920’s, the standard UIP anomaly is in play: a long position in the low yield currency would

have earned slightly negative returns.

The second period coincides with the decade following the 1929 US stock market crash. This

period is marked by a reversal of capital flows, with large inflows into the US. Importantly, the

US government resisted the temptation to impose capital controls. By way of example, as late

as 1937, Henry Morgenthau, the US Secretary of Treasury, wrote: “I am opposed to exchange

control, except as a last resort. Frankly, I disapprove of exchange control.”4 The US did use

measures that could be classified as “macroprudential policies”. As an important instance, the

US doubled the reserve requirements for banks to offset inflationary pressures in 1936-37 but

this did not stop the inflow, see the discussion in Ghosh and Qureshi (2016) concerning capital

flows in the pre-Bretton Woods period.5

2.2 Evidence

Results from our rolling regressions are shown in Figure 1. The upper panel, Figure 1a, plots

the Fama coefficient for short horizon investment; the lower panel, Figure 1b, for long hori-

zon investment.6 Together, these panels provide evidence supporting our three-dimensional

redefinition of the UIP puzzle.

Our first dimension states that the conventional view of the UIP anomaly, a Fama coefficient

that is negative or close to zero, applies only for a short horizon investment and outside of crisis

periods. This result, which characterizes a large part of our sample, is apparent in Figure 1a.

We stress that the textbook UIP puzzle characterize both periods of expansion and downturns

not associated with crises (see the corresponding shaded areas in the figure). Yet, the figure

also vividly documents the reversal of the UIP anomaly during periods of great financial and

economic stress, our second dimension. In particular, the reversal is a robust empirical finding

dating back to the 1930s.

In Figure 1, the post-2007 currency market pattern mirrors that of the 1930s. In both peri-

ods, the reversal of the UIP occurs during a crisis with systemic global dimensions, where most

advanced economies find themselves in a liquidity trap associated with financial and macroe-

conomic stress. It should be stressed that the reversal is very similar notwithstanding the

significant differences in the policy response to the crisis. In the recent crisis, fiscal policy was,

3This was a publicly endorsed but privately resourced loan from the US to Germany for war reconstructions.
4Source: Bloomfield (1950).
5The Bretton Woods period refers to a fixed (fluctuations up to 1%) exchange rate regime negiotiated amongst

the United States, Canada, Western European countries, Australia, and Japan in 1944, which was officially in
place until 1971.

6In Figure 1 and 2 we report results for our entire sample (1920-2016), including the decades after World
Word II when, under the early Bretton Woods agreements, capital controls prevented cross border arbitrage. We
abstract from analysing the Bretton Woods period in our discussion.
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at least initially, relaxed and central banks engaged in a number of non-conventional policies

that sustained asset prices and kept liquidity provision abundant. In the 1930s, the fiscal and

monetary response was quite conservative (see e.g. Eichengreen and Temin (1997) for a dis-

cussion). Based on the above evidence, it is hard to systematically attribute UIP reversals to

unconventional monetary policy, or other recent policy and financial developments, which can

only go so far in explaining the phenomenon. 7

While the similarity of currency market patterns in the 1930s and the GFC is apparent, the

coefficient plot in Figure 1 also suggests that the UIP regression yields a positive UIP coefficient

in the 90s, around another crisis. At the time, the currency turmoil in the European Monetary

System marked the exit of the sterling pound from the exchange rate arrangement of European

countries (see Buiter et al. (1998)). This is further evidence that a reversal of the UIP puzzle

seems to be systematically associated with periods of crisis, and not to different (monetary)

policy regimes.8 Monetary policy may nonetheless matter for the size of the Fama coefficient.

Note that during crisis periods this coefficient reflects, inversely, the variance of the interest

rate differential. The coefficient is very large in the 1930s and in the post 2007 period, when

the yields on US and UK short bonds (3 month) converge and remain fairly stable as a result

of monetary policy. It is smaller in the 1990s, when interest rates did not converge and their

differential was much more variable. Other than these the three crisis periods (excluding the

Bretton Woods era of fixed rates and controls), the conventional UIP puzzle, namely the excess

appreciation of high yield currencies, is very robust.

Coming to the third dimension of our reformulation of the UIP puzzle, our historical evi-

dence also squares a result emphasized by Chinn and Meredith (2005) for a sample of countries

in recent decades. Violation of the UIP hypothesis, large and significant when assessed at

investment horizons of business cycle frequencies (Figure 1a), actually becomes much smaller

when the investment horizons is longer (greater than 5-7 years). Figure 1b plots the coefficient

on yield differentials when we run our rolling-window regression model with 10 year yields. The

figure shows that, irrespective of crisis periods (and excluding the period of capital controls un-

der Bretton Woods), the coefficient of the yield differential is relatively stable over the sample,

and much closer to unity compared to Figure 1a. This is also evidence that UIP reversals are

relatively short-lived. These results are in line with the existing literature arguing that UIP

holds ‘better’ over long-horizon, see Figure 1, Chinn and Meredith (2005) and Engel (2016)

among others.

In our sample, the three crisis periods—the 1930s, the mid 1990s and the post-2008 period—

coincide with a sharp fall in carry trade returns, corresponding to currency crashes. Figure 2

presents the log five year non-annualized carry trade profits for two portfolios: one constructed

with 3-month bonds held to maturity and a second one constructed with 10-year bonds. Both

7In the same vein, one should note that, in general, monetary policy does not seem to have strong effects on
carry trade profits in our sample as is the case of the strong (conventional) monetary policy tightening in the 70s
and 80s.

8Related to our observation, Flood and Rose (2002), using daily data for 23 countries, noted that during the
crisis-strewn 1990s, the UIP condition was better supported in the data: “in the sense that the slope coefficient
from a regression of exchange rate changes on interest differentials yields a positive coefficient.”
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(a) 3-month interest rates, 5 year rolling window.

(b) 10-year interest rates, 30 year rolling window.

Figure 1: Source: Global Financial Database. Black line refers to rolling average of regression
coefficient β1 on et+1 − et = β0 + β1(it,1 − i$t ), eq. 1. Dotted lines refer to 95% confidence

intervals. The shaded black regions reflect periods which commence with a U.S. yield curve
inversion and last until end of the corresponding NBER recession date.
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consist of long positions in the high yield currency, are funded by shorting the low yield currency,

and are rebalanced every 3 months. Short maturity carry trade profits are, as expected, mostly

positive outside of crises but turn negative during periods of crises when the Fama coefficient

exceeds one. Carry trade profits using long maturity bonds (10 years) held to maturity follow a

similar pattern. Note that at the time of a currency crash, relative to the returns on the short-

run portfolios, the ex-post returns on long-run portfolios are larger in absolute (non-annualized)

terms, but smaller once returns are annualised. These findings are consistent with the estimates

of regression (1).9 In the Appendix, we supplement our findings concerning annualised carry

trade returns using post 1980 data, combining 1, 5 and 10 year bonds held to maturity.10

There are a number of additional factors which may weigh on the returns to long-maturity

carry trade more than on short-maturity carry trade. First, especially in periods of high and

volatile inflation, investors holding long- maturity bonds must be compensated for expected

inflation differentials (see e.g. Piazzesi and Schneider (2007)), contributing to both to the size

and volatility of the returns. By way of example, inflation is 24% in the UK in 1975, while just

over 9% in the U.S and this is reflected in large carry trade profits for that period. Second,

as shown in Lloyd and Marin (2019) using data from Du et al. (2018), there is evidence that

long maturity carry trade returns disproportionately reflect differences in liquidity/convenience

yields.11 In the next section, we abstract from these considerations, to highlight the scope

for time-varying disaster risk to rationalise the three dimensions of the UIP anomaly we have

outlined above.

3 A Model with Disaster Risk

In light of our evidence, we now reconsider a leading explanation of the UIP puzzle which

builds on the idea of disaster risk (see Barro (2006), Gabaix (2012) and Gourio (2012)), closely

related to the international finance literature on the so-called “Peso problem” (see Burnside

et al. (2011)). In this section, we first show that, in a simple framework of rare disasters, a

switch in the sign of the UIP coefficient arises naturally during a crisis (delivering the first two

dimensions of the UIP anomaly). Second, we derive simple conditions under which a time-

varying probability of disaster generates a decreasing term-structure of carry trade returns

consistent with our empirical findings.

3.1 Pricing low-probability disasters

In the tradition of international finance, a ‘Peso event’ can be defined as a low probability

event in which a currency that trades at premium (i.e., it is associated with a high nominal

risk-free interest rate) may suffer a large devaluation. An important later refinement of the

9Since the Fama regression in logs is scale invariant up to the constant, a coefficient approaching 1 for the 10
year maturity reflects lower annualised returns to long maturity carry trade.

10The data in the appendix has the key advantage of referring to zero coupon bonds, see Lloyd and Marin
(2019). Results are clearly comparable.

11See also Engel and Wu (2018).
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(a) 3-month interest rates

(b) 10-year interest rates

Figure 2: Source: Global Financial Database. Log, annualised, carry trade profits,
unannualised, for a 3-month portfolio (a) and a 10-year portfolio (b), with three month

rebalancing.

theory, stressed e.g. by Burnside et al. (2011), adds that a Peso event is characterized by a

large increase in the marginal utility of the investors, as is the case in an economic “disaster”

causing a fall in wealth and consumption. Under these conditions, if an investor has engaged in

carry trade, i.e. borrowed in the low yield currency to invest in a high yield currency speculating

on an expected appreciation, during a Peso event she/he will suffer a financial loss that is not

only large, but also painful in terms of utility. While in most periods such an event may not

occur, investors are wary of the possibility—hence they demand a premium which explains why

the exchange rate in a country with high interest rate is still expected to appreciate.
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The Peso problem is typically formalised as follows. Denote by Mt+1/Mt the one-period

(month) stochastic discount factor (SDF) of an investor with access to both UK and US bonds.

Let R£
t,1 and R$

t,1 denote the nominal one period interest rates on UK and US bonds respectively,

where, on average, R£
t,1 > R$

t,1. Let Et+1/Et denote the nominal exchange rate change, with a

value greater than one corresponding to a GBP depreciation. In an equilibrium with free capital

mobility, the UK-based investor must be indifferent between saving in either bond and therefore

the return to a carry trade portfolio long in U.K bonds and short in U.S bonds must satisfy the

following:

Et

[
Mt+1

Mt

(
R£
t,1 −

Et+1

Et
R$
t,1

)]
= 0. (2)

Now, assume that all future states of the world can be split into two sets, a Peso-event (PE) set

and a no-Peso-event set (NPE), s ∈ {PE, NPE}. In addition, denote with xs = R£
t,1−
Est+1

Est
R$
t,1

the cash flow from the arbitrage position in the two currencies, in each state, and πt+1 is the

probability of a Peso event at time t+ 1. The expected discounted returns at time t, of a carry

trade portfolio paying off at t+ 1, can then re-written as follows:

(1− πt+1)E
NPE
t

[
MNPE
t+1

Mt
xNPEt+1

]
+ πt+1E

PE
t

[
MPE
t+1

Mt
xPEt+1

]
= 0, (3)

where ENPEt [.],EPEt [.] denote expectations formed at time t conditional on st+1 = {NPE,PE}
respectively. Rearranging, we can derive the equilibrium excess return during a non-Peso event:

E
NPE
t

[
MNPE
t+1

Mt
xNPEt+1

]
= −π̂t+1 E

PE
t

[
MPE
t+1

Mt
xPEt+1

]
≥ 0. (4)

where π̂t+1 =
πt+1

1− πt+1
is the odds-ratio for a Peso event (defined as the ratio of the probability

of a Peso event occurring next period relative to its complementary probability.) An excess

return outside of Peso events is required to compensate investors for the possibility of a large

loss (xPEt+1 << 0), which carries a high valuation (MPE
t+1 >> 0) in the case of a Peso event.12

Note that, for a given excess return ENPEt

[
MNPE
t+1

Mt
xNPEt+1

]
, the smaller the probability of a Peso

event, the larger the implied expected discounted losses during a Peso event, according to (2).

The literature has long debated how to decompose the valuation of losses during Peso events

into variation in the SDF and pecuniary losses (i.e a large depreciation of the funding currency).

Burnside et al. (2011) use options to discern that Peso events are predominantly driven by the

former, consistent with the notion of a steep decline in consumption a la Barro (2006).

In the consensus view in the literature, UIP deviations outside crises—the excess apprecia-

tion of the high yield currency in samples without Peso events—are at least in part attributable

12The excessive depreciation of the high yield currency during a Peso event is an equilibrium outcome in
models with disasters risk see, e.g., in Farhi and Gabaix (2016) who consider both a global disaster risk and
country-specific vulnerabilities
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to such low probability, extreme events.13 However, when a Peso event materializes in sample,

the above relationship inverts:

E
PE
t

[
MPE
t+1

Mt
xPEt+1

]
= − 1

π̂t+1
E
NPE
t

[
MNPE
t+1

Mt
xNPEt+1

]
≤ 0. (5)

Rolling our regressions through a peso event, we should expect to find positive UIP coefficients—

as we do in Figure 1. A framework relying on peso events to interpret the UIP anomaly therefore

provides a natural starting point for studying switches in the sign of the coefficient on interest

differentials during periods of extreme economic and financial distress.

3.2 Time-varying probabilities of disasters and the terms structure of carry

trade

Our long time series evidence suggests that excess returns to carry-trade vary significantly both

over time and investment horizons, suggesting that the perception and pricing of disaster risk is

not constant. Leading papers in the literature already incorporate time variation in disaster risk

in the model, most notably Barro (2006), Gabaix (2012) and Gourio (2012), either as a changing

probability of disasters, or a change in their magnitude. In what follows we will characterize

conditions under which time variation in disaster risk can account for the three dimensions in

our empirical redefinition of the puzzle, including switches in the sign of the Fama coefficient

and the decreasing term-structure of carry trade. We do so in reference to a benchmark case in

which, if the perceived probability of a disaster is constant, the term structure of carry trade

returns is flat outside of Peso events.

With a simple extension, we incorporate time-varying disaster risk and carry trade portfolios

of different maturities in the model from the previous section. Let Et[(Mt+κ/Mt) xt+κ] be the

conditional expectation at time t of the valuation of returns in period t+κ and let πt+κ|t be the

conditional probability at time t of a Peso event occurring at t + κ. Consider two carry trade

portfolios maturing at t + κ, which differ only in their maturity: a short-term (j− maturity)

portfolio that pays off x
(j)
t+κ and a (κ− maturity) portfolio that pays off x

(κ)
t+κ.14 The no arbitrage

pricing conditions for the short and long portfolio, respectively, can be expressed as follows,

πt+κ|t+κ−jE
PE
t+κ−j

[
Mt+κ

Mt+κ−j
x
(j)
t+κ

]
+ (1− πt+κ|t+κ−j)ENPEt+κ−j

[
Mt+κ

Mt+κ−j
x
(j)
t+κ

]
= 0

πt+κ|tE
PE
t

[
Mt+κ

Mt
x
(κ)
t+κ

]
+ (1− πt+κ|t)ENPEt

[
Mt+κ

Mt
x
(κ)
t+κ

]
= 0

13A recent contribution by Farhi et al. (2015) stresses that the pricing equation has explanatory power even if
Peso events occur in sample.

14Lustig et al. (2019) present a different version of long-run UIP expressed in holding period returns. They
show that the returns to a one period carry trade portfolio consisting of κ maturity bonds are also zero because
bond premia and exchange rate premia offset one another.
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Rearranging these equations in terms of excess returns in the non-Peso event state yields,

E
NPE
t+κ−j

[
Mt+κ

Mt+κ−j
x
(j)
t+κ

]
= −π̂t+κ|t+κ−j EPEt+κ−j

[
Mt+κ

Mt+κ−j
x
(j)
t+κ

]
, (6)

E
NPE
t

[
Mt+κ

Mt
x
(κ)
t+κ

]
= −π̂t+κ|t EPEt

[
Mt+κ

Mt
x
(κ)
t+κ

]
where π̂t+κ|t+κ−j is the conditional odds ratio at any time t+ κ− j of being in a Peso event at

t+ κ.

Consider a benchmark case where investors value carry trade returns outside Peso event

equally for κ− and j < κ maturity portfolios:

Et

[
MNPE
t+κ

Mt
x
NPE (κ)
t+κ

]
= Et+κ−j

[
MNPE
t+κ

Mt+κ−j
x
NPE (j)
t+κ

]
, for all j < κ (7)

This expression follows from (6) under the assumptions that: (i) the ex-post valuation of losses

on carry trade portfolios are similar across maturities and (ii) the probability of disaster is i.i.d.,

such that πt+κ|t+κ−j is given by some constant p.15 To take equation (6) to the data, we can

further assume that (iii) SDF and portfolio returns are i.i.d. conditional on being in a Peso

event and not being in a Peso event, possibly with different mean and variance across the two.

Under this assumption, valuation and expected returns move proportionally.

By virtue of condition (i) we can isolate the time variation in the conditional probability

of disasters as the main driver of carry trade returns (outside of Peso events). A candidate

process for the probability of a disaster event is one resulting from the sum of a permanent and

a transitory component:

πt = πPt + πTt , (8)

such that, conditional on a positive transitory shock to disaster probability εt+j > 0,

Et[π
P

t+1] = πPt ;πt+j ≥ πPt and Et[πt+κ] = πPt , (9)

for some j < κ.16 Such a process has two key implications. First, limκ→∞Et[π̂t+κ] = π̂Pt , which

implies that carry trade returns on infinite maturity bonds, i.e evaluating (6) for κ→∞, reflect

the permanent component of disaster risk only.17 Second, taking the difference in the return on

15Condition (i) implies,

Et

[
MPE
t+κ

Mt
x
PE (κ)
t+κ

]
≈ Et+κ−j

[
MPE
t+κ

Mt+κ−j
x
PE (j)
t+κ

]
, for all j < κ

16The decomposition above, derived in Lloyd and Marin (2019), is useful since, as we show below, deviations
from long run UIP correspond to differences in the permanent (long-run) exposure of currencies to disasters,
extending the result in Lustig et al. (2019) who attribute long-run UIP deviations to permanent (Gaussian)
innovations to the SDF.

17As in Alvarez and Jermann (2005) and Lustig et al. (2019), we use returns on 10-year bonds to approximate
infinite maturity bonds.
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the ∞−maturity portfolio and the j−maturity portfolio, shown below,

Et+κ−j

[
Mt+κ

Mt+κ−j
x
(j)
t+κ|st+κ = NPE

]
= −π̂t+κ|t+κ−j Et+κ−j

[
Mt+κ

Mt+κ−j
x
(j)
t+κ|st+κ = PE

]
approximately yields the transitory component of the probability process,

π̂t+κ|t+κ−j − π̂Pt = π̂Tt+κ|t+κ−j

In periods when there are positive transitory innovations to disaster risk between t and t+κ− j
(as per (9)), the term-structure of carry trade is decreasing.18 This may not be true in all

periods but, as we highlight in our numerical example below, over long samples, because πPt is

small and πt ≥ 0, the term-structure is decreasing on average. As Barro puts it, “disasters are

not offset in a probabilistic sense by bonanzas” (see Barro (2006), p.26).

Our benchmark predicts that the valuation of carry trade returns on 10-year portfolios are

smaller than those on short (3-month) portfolios.

E
NPE
t+κ−1

[
Mt+κ

Mt+κ−1
x
(1)
t+κ

]
> E

NPE
t

[
Mt+κ

Mt
x
(κ)
t+κ

]
(10)

Qualitatively, this is in line with our evidence on the Fama coefficient estimated at difference

horizons (Figure 1), and, under condition (iii) above, our evidence that annualised carry trade

profits are smaller at long horizons (Figure 2). It is also consistent with the fact documented

by Lustig et al. (2019), that holding period carry trade returns are decreasing. Quantitatively,

relatively to the benchmark model, our evidence suggests that the losses of long-maturity carry

trade in a Peso event are too small—implying that the return outside Peso events are also too

small.

A caveat is in order however. In our framework we take interest rates as given and thus

attribute variation in carry trade profits resulting from disaster risk exclusively to variations

in exchange rates. However, disaster risk may be also priced in cross-country interest rate

differentials. In this case, losses during Peso events for long maturity portfolios would be partly

offset by bond term premia—a point discussed e.g. by Farhi and Gabaix (2016). This is a

promising avenue to improve the match of the model with the data, that we explore in related

research.

3.3 A numerical illustration

To illustrate how, under the probability process (9), a disaster risk model can account for the

three dimensions of the UIP puzzle discussed above, we conduct a simple simulation exercise.

Since our mechanism does not rely on risk aversion, we set Mt+κ/Mt+κ−j = 1 for all 0 < j < κ.19

18In contrast, if we were looking at the term structure of expected carry trade returns, these would be driven by
πt+κ|t− πt+j|t, which would depend on the particular process for innovations to transitory disaster probabilities,
as in Lloyd and Marin (2019).

19Note that in (6) the discount factor (β) appears in both sides of the equation, to the same power. Therefore
setting β = 1 is without loss of generality.
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We posit that, during a Peso event, annualised carry trade portfolios of all maturities deliver a

loss of −100. This normalisation implies that the excess return outside of Peso events is given

by 100 times the perceived probability of a Peso event. To calibrate πPt , we draw on Farhi et al.

(2015), who use currency options to elicit the probability of sudden crashes in the 1996-2014

period and find that disaster probabilities remain low, stable and close to zero until 2007—since

then, they fluctuate dramatically, exceeding 25%. Consistently, we assume that log(πT) follows

an AR(1) process with ρ = 0.9 and normally distributed mean-zero innovations with σ = 0.35.

We set πPt = 0.025 in line with Barro (2006). Figure 3 (left) shows a simulation of short and long

run, annualised carry trade returns, and Figure 3 (right), calculate the average term structure

over the simulation.
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Figure 3: (Left) Ex-post carry trade returns outside of Peso event over a simulation of 250
periods. (Right) Sample average term structure of carry trade.

In our simulation, in each period t, a cohort of identical investors form κ carry trade port-

folios, each consisting of κ ∈ {1, 2, ...T − 1} maturity bonds. Key to our result on the term

structure of carry trade is that an investor purchasing a κ maturity bond at time t, expecting a

payout at t+κ, prices in the probability of a Peso event according to πt+κ|t, whereas an investor

purchasing a one period bond at time t + κ − 1 prices according to a probability πt+κ|t+κ−1.

If innovations to the probability process between t and t+ κ− 1 are mostly positive, then the

term structure of carry trade is decreasing. Intuitively, agents forming expectations nearer to

the disaster (when they purchase short maturity bonds) are more likely to attribute a higher

probability to a disaster, than agents who formed expectations several periods earlier (when

they purchased long maturity bonds).

In closing, two straightforward extensions of our framework warrant discussion. The first

assumes a stochastic πPt , subject to the restrictions outlined above which serves to increase

the volatility of long-maturity carry trade returns, helping the model to improve the fit with

the evidence in Figure 2b. The second introduces a regime switching process, allowing for

“high” and “low risk” periods (or periods of “risk on”-“risk off”), consistent with evidence from

currency options in Farhi et al. (2015), such that πt = πPt + 1tπ
T
t , where 1t ∈ {0, 1}.
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4 Concluding Remarks

In the conventional textbook treatment, the Fama puzzle refers to the empirical finding that

positive differentials systematically forecast an appreciation. In the time series of the pound-

dollar currency pair over the past century, however, systematic excess appreciation of high yield

currencies in normal times alternates with a reversal in the anomaly. A switch in the sign of

the anomaly is a recurrent feature of the data, and thus neither specific to the Great Financial

Crisis, nor, arguably, incongruent with existing theories. In this sense, a reversal in the UIP

anomaly cannot be primarily attributed to the unconventional monetary policy pursued during

the Great Financial Crisis.

A number of contributions have pursued the idea that the UIP anomaly could be explained

by events that have large consequences on asset prices and wealth (hence on discount rates of

investors), but occur with very small probability and may not materialize in finite samples. If

we think of crises as the realization of such events, it is natural to think of reversals in the UIP

puzzle as implied by no arbitrage pricing conditional on the economy being in a “peso event”.

Our contribution consists of using a long time series with non-overlapping Peso events to

articulate the UIP puzzle in three key empirical dimensions that should be jointly used to

discipline theory: the failure of UIP during normal times at short investment horizons, the

reversal in the Fama coefficient during crises and the relative success of the UIP hypothesis at

long horizons. We show that a simple framework allowing for time-varying probability of a Peso

event can go a long way in explaining these three dimensions of the UIP anomaly.
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5 Appendix: Supplementary Data

Figure 4. plots the returns to 1 year, 5 year and 10 year carry trade portfolios using zero coupon

bond data for the USD-GBP currency pair, analogously to Figure 2. Data on interest rates are

obtained from central banks and Wright (2011), as detailed in Lloyd and Marin (2019).
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Figure 4: Log carry trade returns for USD-GBP currency pair, for maturities of 1, 5 and 10
years sing data from Lloyd and Marin (2019).
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