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Abstract

A simply laced Dynkin diagram gives rise to a family of curves over Q and a coregular
representation, using deformations of simple singularities and Vinberg theory respectively.
Thorne has conjectured and partially proven a strong link between the arithmetic of these
curves and the rational orbits of these representations.

In this thesis, we complete Thorne’s picture and show that 2-Selmer elements of the
Jacobians of the smooth curves in each family can be parametrised by integral orbits of the
corresponding representation. Using geometry-of-numbers techniques, we deduce statistical
results on the arithmetic of these curves. We prove these results in a uniform manner. This
recovers and generalises results of Bhargava, Gross, Ho, Shankar, Shankar and Wang.

The main innovations are an analysis of torsors on affine spaces using results of Colliot-
Thélène and the Grothendieck–Serre conjecture, a study of geometric properties of compact-
ified Jacobians using the Białynicki-Birula decomposition, and a general construction of
integral orbit representatives.
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Chapter 1

Introduction

1.1 Context

This thesis is a contribution to arithmetic statistics of algebraic curves. Arithmetic statistics
is concerned with the study of number-theoretic objects in families. For example, given a
family F of (smooth, projective, geometrically integral) curves over Q, one may ask about
the statistical behaviour of:

• the rational points C(Q) of C ∈F ;

• the Mordell–Weil group, i.e. the rational points J(Q) of the Jacobian variety of C;

• the 2-Selmer group (or more generally m-Selmer group) Sel2 J of J.

Typically, understanding Selmer groups yields information about the Mordell–Weil group of
J, which in turn may tell us something about the rational points of C. See [5] for a survey of
conjectures concerning elliptic curves and [64] for a remarkable set of heuristics modelling
Selmer groups of abelian varieties.

Over the last twenty years, Bhargava and his collaborators have made spectacular progress
in arithmetic statistics. One of their key ideas is that many arithmetic objects can be
parametrised by rational or integral orbits of a representation (G,V ). When the represen-
tation is coregular, meaning that the ring of invariants Q[V ]G is a polynomial ring, they
have developed powerful geometry-of-numbers techniques to count integral orbits of V .
Combining orbit parametrisations with these counting techniques has led to many striking
results; see [16, 17, 14, 15, 9, 11] for some highlights and [41, 7] for surveys of these results.

This raises the question: how does one find such orbit parametrisations? Typically, one
may find them using classical constructions in algebraic geometry, such as in the following
primordial example:
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Example 1.1.1 (2-Selmer groups of elliptic curves). Let E/Q be an elliptic curve. Then
every element of the 2-Selmer group Sel2 E of E can be represented by the isomorphism
class of a double cover C 2:1−→ S ramified at four points, where S is a conic and the curve
C has Qv-points for every place v [31, §1.3]. Since S satisfies the Hasse principle and has
points everywhere locally, we have S≃ P1

Q and the curve C is defined by z2 = f (x,y) where
f ∈Q[x,y] is a binary quartic form. This induces a well-defined injection from Sel2 E to the
set of PGL2(Q)-orbits of binary quartic forms [16, Theorem 3.5].

Example 1.1.1 goes back to Birch and Swinnerton-Dyer [19] and has been used by
Bhargava and Shankar to compute the average size of the 2-Selmer group of elliptic curves
[16]. See [13] for an exhaustive list of orbit parametrisations of genus-1 curves which are
obtained using similar (but more difficult) algebro-geometric constructions. See also [9] for
an orbit parametrisation of 2-Selmer groups of odd hyperelliptic curves using the geometry
of pencils of quadrics [88]. Even though these considerations have been hugely successful,
Wei Ho writes that ‘Finding appropriate groups G and vector spaces V related to the Selmer
elements is still a relatively ad hoc process’ [41].

Gross [38] observed that most coregular representation employed in arithmetic statistics
arise from Vinberg theory, that is the theory of graded Lie algebras. This suggests the
possibility to take Vinberg theory as a starting point, and to attempt to naturally construct
families of curves in this setting. This is exactly the perspective taken in Thorne’s PhD thesis
[83] in the case of 2-Selmer groups. Given a simply laced Dynkin diagram of type A,D,E, he
canonically constructs a family of curves and a coregular representation whose rational orbits
should be related to the arithmetic of the curves in the family. This construction unifies many
orbit parametrisations in the literature and has already produced new results in arithmetic
statistics; see [84, 71, 86]. However, to obtain all the expected consequences in arithmetic
statistics, it remained to be shown that all elements of the 2-Selmer group give rise to rational
orbits [83, Conjecture 4.16] and that such rational orbits admit integral representatives.

The main goal of this thesis is to resolve both these questions, and to do so in a uniform
manner for all the ADE-families considered. By using geometry-of-numbers techniques
developed by Bhargava and his collaborators, we obtain an upper bound on the average
size of the 2-Selmer group of the Jacobians of the smooth curves in each family. This has
consequences for the ranks of the Jacobians and the rational points of the curves in these
families.
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Type Equation m
A2g y2 = x2g+1 + p2x2g−1 + · · ·+ p2g+1 1
A2g+1 y2 = x2g+2 + p2x2g + · · ·+ p2g+2 2
D2g+2 (g≥ 1) y(xy+ p2g+2) = x2g+1 + p2x2g + p4x2g−1 + · · ·+ p4g+2 3
D2g+1 (g≥ 2) y(xy+ p2g+1) = x2g + p2x2g−1 + p4x2g−2 + · · ·+ p4g+2 2
E6 y3 = x4 +(p2x2 + p5x+ p8)y+(p6x2 + p9x+ p12) 1
E7 y3 = x3y+ p10x2 + x(p2y2 + p8y2 + p14)+ p6y2 + p12y+ p18 2
E8 y3 = x5 +(p2x3 + p8x2 + p14x+ p20)y+(p12x3 + p18x2 + p24x+ p30) 1

Table 1.1 Families of curves

1.2 Statement of results

Let D be a Dynkin diagram of type An, Dn or En and let C→ B be the family of projective
curves over Q with affine equation given by Table 1.1. For example, if D = A2g, then
B = SpecQ[p2, . . . , p2g+1] and C→ B is the family of all monic odd hyperelliptic curves
of genus g. If D= E7, then C→ B is the family of all plane quartic curves with a marked
rational flex point. The family C→ B is a semi-universal deformation of its central fibre
(by setting all coefficients pi equal to zero), which is a simple singularity of type D. (See
Proposition 3.7.1.) We exclude the case D= A1.

Write Brs ⊂ B for the locus above which C→ B is smooth, the complement of a dis-
criminant hypersurface. For every field k/Q and b ∈ Brs(k), write Jb for the Jacobian of the
smooth projective curve Cb, an abelian variety over k of dimension equal to the genus of Cb.
Our first main theorem is an orbit parametrisation for elements of Jb(k)/2Jb(k).

To each diagram D one may canonically associate a representation V of a reductive group
G/Q. This construction, due to Thorne [83], is recalled in §3.1 and is based on Vinberg’s
theory of graded Lie algebras. See §3.2 for an explicit description of G and V , although
we will almost never use this description. The geometric quotient V //G = SpecQ[V ]G

(parametrising G-invariant polynomials of V ) turns out to be isomorphic to B. For every field
k/Q and b ∈ B(k), write Vb for the subset of elements of V which map to b under the map
V →V //G≃ B.

Theorem 1.2.1 (Theorem 6.3.2). For every field k/Q and element b ∈ Brs(k), there exists an
injection ηb : Jb(k)/2Jb(k) ↪→ G(k)\Vb(k) compatible with base change.

See Theorem 6.3.2 for a more precise formulation and an explicit construction of this
injection. Using a local-global principle for G, one can also embed the 2-Selmer group of Jb

inside the G(Q)-orbits of V (Q). Recall that the 2-Selmer group of an abelian variety A/Q is
a finite dimensional F2-vector space Sel2 A defined by local conditions and fitting inside an
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exact sequence
0→ A(Q)/2A(Q)→ Sel2 A→X(A/Q)[2]→ 0.

Theorem 1.2.2 (Corollary 6.4.2). For every b ∈ Brs(Q), the injection ηb extends to an
injection Sel2 Jb ↪→ G(Q)\Vb(Q).

If D is of type A2, C→ B is the family of elliptic curves in short Weierstrass form and we
essentially recover the injection of Example 1.1.1. If D is of type A2g, we recover the orbit
parametrisation of Bhargava and Gross [9].

Crucially, we additionally show that the G(Q)-orbits corresponding to Sel2 Jb using
Theorem 1.2.2 have integral representatives away from small primes, see Corollary 7.6.1.
Using geometry-of-numbers techniques to count integral orbits of V , Theorem 1.2.2 may thus
be used to give an upper bound on the average size of the 2-Selmer group of Sel2 Jb. Using
the identification B = SpecQ[pd1, . . . , pdr ] from Table 1.1, let F be the subset of elements
b = (pd1(b), . . . , pdr(b))∈Zr with b∈ Brs(Q). We define the height of b∈F by the formula

ht(b) := max
(
|pd1(b)|

1/d1, . . . , |pdr(b)|
1/dr
)
.

Note that for any X ∈ R>0, the set {b ∈F | ht(b)< X} is finite. To state the next theorem,
note that each curve Cb has points at infinity not lying in the affine patch of Table 1.1, and
we call those points the marked points. Their cardinality m is displayed in Table 1.1.

Theorem 1.2.3 (Theorem 9.1.1). Then when ordered by height, the average size of the
2-Selmer group of Jb for b ∈F is bounded above by 3 ·2m−1. More precisely, we have

limsup
X→+∞

∑b∈F , ht(b)<X #Sel2 Jb

#{b ∈F | ht(b)< X}
≤ 3 ·2m−1.

The same result holds true even if we impose finitely many congruence conditions on F .
Assuming a certain plausible uniformity estimate, we show that the limit exists and the bound
3 ·2m−1 is sharp, see §9.2 and the discussion at the end of §1.4. See §1.3 for a comparison of
this theorem with previously obtained results.

Bhargava and Shankar observed that bounding the 2-Selmer group gives an upper bound
on the average rank of elliptic curves. In our case we can bound the average of the Mordell–
Weil rank rk(Jb) of Jb, the rank of the finitely generated abelian group Jb(Q). Using the
inequalities 2rk(Jb)≤ 2rk(Jb) ≤ #Sel2 Jb, we obtain:

Corollary 1.2.4. Let m be the number of marked points of the family C→ B. Then when
ordered by height, the average rank rk(Jb) where b ∈F is bounded above by 3 ·2m−2.
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Theorem 1.2.3 has a number of interesting consequences for the rational points of
Cb, typically using various forms of the Chabauty–Coleman method. See for example [9,
Corollary 1.4] and [65] for such results in the case D = A2g, and [48, Corollary 1.3 &
Theorem 1.4] in the case D= E6. Theorem 1.2.3 should give similar such consequences for
other D.

1.3 Relation to other works

Theorem 1.2.3 has been previously obtained for many D:

• A2: Bhargava–Shankar [16], who even prove that the average exists and is exactly 3.

• A2g: Bhargava–Gross [9].

• A2g+1, g≥ 2: Shankar–Wang [75].

• D2g+1, g≥ 2: Shankar [76].

• A3,D4: Bhargava–Ho [12, Theorem 1.1(c),(g)].

• E6: Laga [48].

All these works combine geometry-of-numbers techniques with the orbit parametrisation of
Theorem 1.2.2 to obtain Theorem 1.2.3 in their specific case, just as we do here. However,
their construction of orbits (in other words, the proof of Theorem 1.2.2) and analysis of the
representation (G,V ) requires specific arguments in each case. One of the main points of
this thesis is that we are able to prove Theorem 1.2.3 in a uniform way. Inspecting the above
list, we see that the only cases not previously considered in the literature are D= D2g+2 with
g≥ 2, E7 and E8.

We describe what is new in this thesis compared with Thorne’s work. He has shown
the analogue of Theorem 1.2.1 for the subset of Jb(k)/2Jb(k) lying in the image of the
Abel–Jacobi map Cb(k)→ Jb(k)/2Jb(k) with respect to a fixed marked point [83, Theorem
4.15]. This allowed him to deduce arithmetic statistical results on the 2-Selmer set of the
curve Cb (a pointed subset of Sel2 Jb) and the integral points of the affine curve C◦b , see
[84, 71]. The first main innovation of this work is the construction of orbits associated to
all elements of Jb(k)/2Jb(k), as was conjectured in [83, Conjecture 4.16]. The second main
innovation is an integral study of the representations (G,V ). In particular, we show that
orbits arising from Theorem 1.2.2 admit integral representatives away from small primes
(Theorem 7.2.4). This technical result is essential for applying orbit-counting methods and
allows us to obtain new results on the arithmetic of the curves Cb.
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We briefly mention the relation to our previous work [48], which treats the case D= E6.
The construction of orbits there relies on the isomorphism Gsc ≃ Sp8 (where Gsc is the
simply connected cover of G) and the triviality of the Galois cohomology set H1(k,Sp8) for
every field k. However, this triviality fails to hold for general simply connected groups (for
example, Spin groups), so the same argument does not work for all D. Indeed, the proof of
Theorem 1.2.1 explained in §1.4 is completely different from the one given in [48].

1.4 Method of proof

We briefly describe the proof of Theorem 1.2.1, which is the first main novelty of this thesis.
Thorne has shown that the stabiliser ZG(v) of an arbitrary element v ∈Vb(k) is canonically
isomorphic to Jb[2], the 2-torsion subgroup of the Jacobian of Cb. In fact, there always
exists a distinguished orbit κb ∈ G(k)\Vb(k) and a well-known lemma in arithmetic invariant
theory (Lemma 2.4.2) shows that by twisting κb the set G(k)\Vb(k) can be identified with
the pointed kernel of the map on Galois cohomology H1(k,ZG(κb))→ H1(k,G).

To prove Theorem 1.2.1, it therefore suffices to prove that the composition

Jb(k)/2Jb(k)
δ−→ H1(k,Jb[2])≃ H1(k,ZG(κb))→ H1(k,G), (1.4.1)

where δ is the 2-descent map of Jb, is trivial. We solve this problem by considering it
universally. More precisely, a ‘categorified’ version of (1.4.1) associates to every element
P ∈ Jb(k) a G-torsor TP→ Speck such that its isomorphism class [TP] ∈ H1(k,G) equals the
image of P under (1.4.1). This process can be carried out in a relative setting: let Jrs be
the relative Jacobian of the family of smooth curves C|Brs → Brs. Then we may construct a
G-torsor T → Jrs whose pullback along a point P : Speck→ Jrs is isomorphic to TP. The
crucial observation is that the geometry of the total space Jrs is very simple, despite the fibres
of Jrs→ Brs being abelian varieties so arguably not so simple. For example, Jrs is a rational
variety. This fact (or rather a similar, more precise statement), together with an analysis of
G-torsors on affine spaces and progress on the Grothendieck–Serre conjecture on principal
bundles, allows us to prove Jrs admits a Zariski open cover above which T is trivial. This
implies that each TP is trivial, proving the theorem.

To analyse the geometry of Jrs, we introduce a compactification of Jrs over the whole of
B: there exists a projective scheme J̄→ B restricting to Jrs over Brs called the compactified
Jacobian of C → B. The scheme J̄ parametrises rank-1 torsion-free sheaves following
Altman–Kleiman [1], with the caveat that in the reducible fibres of C→ B we have to impose
a stability condition in the sense of Esteves [36] to obtain a well-behaved moduli problem.
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The main selling point of this thesis can be summarised as follows: geometric properties of
J̄ are very useful in the construction of orbits associated to elements of Jrs. For example,
we show that even though the fibres of J̄ → B might be highly singular, J̄ is a smooth
and geometrically integral variety. Moreover, the Białynicki-Birula decomposition from
geometric representation theory shows that J̄ has a decomposition into affine cells, so has a
very transparent geometry. The consequences for the geometry of Jrs are strong enough to
carry out the strategy of the previous paragraph and consequently prove Theorem 1.2.1.

The second main innovation of this thesis is a uniform construction of integral representa-
tives, and we again exploit the geometry of the compactified Jacobian. Constructing integral
orbits has often been a subtle point in the past. We achieve this by deforming to the case of
square-free discriminant and using a general result on extending reductive group schemes
over open dense subschemes of regular arithmetic surfaces (Lemma 7.3.6). We are able to
deform to this case using Bertini theorems over Qp and Fp and the smoothness of J̄. This
smoothness is essential and follows from the fact that C→ B is a semi-universal deformation
of its central fibre. We expect that our methods will have applications to the construction of
integral representatives in settings different to the one considered here.

We say a few words about counting integral orbits of V . The geometry-of-numbers
methods developed by Bhargava and his collaborators are fairly robust, so this part of the
argument is rather formal and requires little new input. We make two remarks. First of all,
because we cannot prove a uniformity estimate like [16, Theorem 2.13], we only obtain an
upper bound in our estimates on integral orbits. We expect that similar uniformity estimates
hold in our case (see Conjecture 8.9.3), which implies using the so-called square-free sieve
that the average size of the 2-Selmer group of Jb is in fact equal to 3 ·2m−1, see Proposition
8.9.4. Secondly, for every pair (G,V ) one needs to control orbits lying in the cuspidal region
of the fundamental domain; this is called ‘cutting off the cusp’. For every diagram D, this
relies on combinatorial calculations in the associated root system, and they have appeared in
the literature except in case D2g+2. We handle this case explicitly with the same methods
in an appendix chapter. This is the only part of the thesis where we rely on the previous
works listed at the beginning of §1.3. It would be very interesting to find a less computational
or even uniform proof for these calculations. This remark extends to other representations
employed in arithmetic statistics, for example the ones used in [14, 15]. See [15, Table 2] for
an example of the intricacies involved.
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1.5 Other coregular representations

There are at least two ways in which coregular representations can arise from Vinberg theory
that are not treated in this thesis. In both cases, we expect that our methods go a long way
towards proving analogous results to Theorem 1.2.3.

Firstly, one may try to incorporate gradings on nonsimply laced Lie algebras (so of type
B,C,F,G) into the picture. Again there will be families of curves, but the relevant Selmer
groups may arise from a general isogeny, not just multiplication by an integer. Such gradings
have already appeared in the literature, implicitly and explicitly: a Z/2Z-grading on G2 has
been used to study 2-Selmer groups of elliptic curves with a marked 3-torsion point [12,
Theorem 1.1(f)]; a Z/3Z-grading on G2 has been used to study 3-isogeny Selmer groups of
the curves y2 = x3 + k [8]; a Z/2Z-grading on F4 has been used to study 2-Selmer groups of
a family of Prym surfaces [47].

Secondly, although their occurrence is more sporadic, there are also interesting Z/mZ-
gradings on simple Lie algebras for m≥ 3; see for example [72], where the authors calculate
the average size of the 3-Selmer group of the family of odd genus-2 curves using a Z/3Z-
grading on E8.

We mention that there are also coregular representations used in arithmetic statistics
that do not arise from Vinberg theory. The most important example is the representation
Sym2(n)⊕ Sym2(n) of SLn, which is used in [11] to show that a positive proportion of
locally soluble hyperelliptic curves over Q of fixed genus have no points over any odd degree
extension. One feature that distinguishes this setting from ours is that their representation
lacks a ‘Kostant section’, which is related to the fact that the curves they study do not come
with specified marked points. We wonder if one can still interpret this representation in terms
of Lie theory and study its arithmetic from this perspective.

1.6 Organisation

We now summarise the chapters of this thesis. In §2 we recall some background results in
Vinberg theory and arithmetic invariant theory. In §3 we recall the constructions and main
results of Thorne’s thesis and introduce the Vinberg representation (G,V ) and family of
curves C→ B. In §4, we extend the results of Thorne’s thesis from the smooth fibres of
C→ B to those fibres admitting at most one singular nodal point. In §5, we introduce and
study compactified Jacobians of the family C→ B. In §6 we analyse torsors on affine spaces
and use this and our results from the previous chapters to prove Theorems 1.2.1 and 1.2.2 on
the construction of orbits. In §7 we prove that such orbits admit integral representatives away
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from small primes. In §8, we employ Bhargava’s orbit-counting techniques and count integral
orbits of the representation (G,V ). We combine all the results from the previous chapters
in §9 to obtain Theorem 1.2.3. In an appendix chapter, we perform some combinatorial
calculations in the root system of type D2n to complete the proof of Proposition 8.7.2 (cutting
off the cusp) in this case. We note that the main novel contributions of this thesis lie in
Chapters 4, 5, 6 and 7.

1.7 Notation

General

For a field k we write ks for a fixed separable closure and Γk = Gal(ks/k) for its absolute
Galois group.

If X is a scheme over S and T → S a morphism we write XT for the base change of X to
T . If T = SpecA is an affine scheme we also write XA for XT .

If G is a smooth group scheme over S then we write H1(S,G) for the set of isomorphism
classes of étale sheaf torsors under G over S, which is a pointed set coming from nonabelian
Čech cohomology. If S = SpecR we write H1(R,G) for the same object. If k is a field then
H1(k,G) coincides with the first nonabelian Galois cohomology set of G(ks).

If G→ S is a group scheme acting on X → S and x ∈ X(T ) is a T -valued point, we write
ZG(x)→ T for the centraliser of x in G. It is defined by the following pullback square:

ZG(x) T

G×S X X×S X

Here G×S X → X ×S X denotes the map (g,x) 7→ (g · x,x) and T → X ×S X denotes the
composition of x with the diagonal X → X×S X .

If V is a vector space over a field k we write k[V ] for the graded algebra Sym(V∨). Then
V is naturally identified with the k-points of the scheme Speck[V ], and we call this latter
scheme V as well. If G is a group scheme over k acting on V we write V //G := Speck[V ]G

for the GIT quotient of V by G.

Root lattices

We define a lattice to be a finitely generated free Z-module Λ together with a symmetric and
positive-definite bilinear form (·, ·) : Λ×Λ→ Z. We write Λ∨ := {λ ∈ Λ⊗Q | (λ ,Λ)⊂ Z}
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for the dual lattice of Λ, which is naturally identified with Hom(Λ,Z). We say Λ is a root
lattice if (λ ,λ ) is an even integer for all λ ∈ Λ and the set

{α ∈ Λ | (α,α) = 2}

generates Λ. If Φ⊂ Rn is a simply laced root system then Λ = ZΦ is a root lattice. In that
case we define the type of Λ to be the Dynkin type of Φ.

If S is a scheme, an étale sheaf of root lattices Λ over S is defined as a locally constant
étale sheaf of finite free Z-modules together with a bilinear pairing Λ×Λ→ Z (where Z
denotes the constant étale sheaf on S) such that for every geometric point s̄ of S the stalk Λs̄

is a root lattice. In that case Aut(Λ) is a finite étale S-group.

Reductive groups and Lie algebras

A reductive group scheme over S is a smooth S-affine group scheme G→ S whose geometric
fibres are connected reductive groups. See [78] for the basics of reductive groups over a field
and [30] for reductive group schemes over a general base. A reductive group is assumed to
be connected.

If G,H, . . . are algebraic groups then we will use gothic letters g,h, . . . to denote their
Lie algebras. If G is a reductive group with split maximal torus T ⊂ G, we shall write
Φt ⊂ X∗(T ) for the set of roots of T in g, and Φ∨t ⊂ X∗(T ) for its set of coroots. The map
α ∈Φt 7→ dα ∈ Hom(t,k) identifies Φt with the set of roots of t in g, and we will use this
identification without further comment.

If x is an element of a Lie algebra g then we write zg(x) for the centraliser of x in g, a
subalgebra of g. We note that if G is an algebraic group over a field k and x ∈ g any element,
then the inclusion LieZG(x)⊂ zg(x) is an equality if the characteristic of k is zero or if x is
semisimple [42, Proposition 1.10].



Chapter 2

Background

2.1 The adjoint quotient of a Lie algebra

To motivate the results in Vinberg theory, we first recall some classical results in the invariant
theory of Lie algebras.

Let H be a connected reductive group over a field k of characteristic zero with Lie algebra
h. The group H acts on h via the adjoint representation. Let p : h→ h//H = Speck[h]H

be the so-called adjoint quotient induced by the inclusion k[h]H ⊂ k[h]. We interpret h//H
as the space of invariants of the H-action on h and p as the morphism of taking invariants.
Recall that an element x ∈ h is said to be regular if dimzh(x) is minimal among elements of
h; this minimal value equals the rank of H. The subset of regular elements defines an open
subscheme hreg ⊂ h. The following classical proposition summarises the invariant theory of
h.

Proposition 2.1.1. • Every semisimple element of h is contained in a Cartan subalgebra,
and if k is algebraically closed every two Cartan subalgebras are H(k)-conjugate.

• Let c⊂ h be a Cartan subalgebra and let W = NH(c)/ZH(c). Then the inclusion c⊂ h

induces an isomorphism (the Chevalley isomorphism)

c//W ≃ h//H.

Since W is a finite reflection group, this quotient is isomorphic to affine space.

• If k is algebraically closed and b ∈ (h//H)(k), the fibre p−1(b) contains a unique open
H(k)-orbit (consisting of the regular elements with invariants b) and a unique closed
H(k)-orbit (consisting of the semisimple elements with invariants b).
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We will often use induction arguments to reduce a statement for h to a reductive Lie
algebra of smaller rank. To this end, the following lemma will be helpful. We suppose for
this lemma that H is split and T ⊂ H is a split maximal torus. This determines a root datum
(X∗(T ),Φt,X∗(T ),Φ∨t ) (in the sense of [78, §7.4]) and a Weyl group W = NG(T )/T .

Lemma 2.1.2. Let x ∈ t be a semisimple element. Then the centraliser ZH(x) is a (connected)
reductive group. Moreover, let

Φt(x) = {α ∈Φt | α(x) = 0} and Φ
∨
t (x) = {α∨ ∈Φ

∨
t | α ∈Φt(x)}.

Let Wx = ZW (x). Then the root datum of ZH(x) is (X∗(T ),Φt(x),X∗(T ),Φ∨t (x)), and the
Weyl group of ZH(x) with respect to T is isomorphic to Wx.

Proof. The centraliser ZH(x) is connected by [81, Theorem 3.14]. The fact that it is reductive
and has the above root datum follows from [81, Lemma 3.7]. The claim about the Weyl group
of ZH(x) follows from [81, Lemma 3.7(c)], again using the fact that ZH(x) is connected.

Let c⊂ h a Cartan subalgebra. The discriminant polynomial ∆ ∈ k[h]H is the image of
the product of all the roots ∏α ∈ k[c]W with respect to c under the Chevalley isomorphism
k[c]W ∼−→ k[h]H ; it is independent of the choice of c. For x ∈ h we have ∆(x) ̸= 0 if and only
if x is regular semisimple. The discriminant locus (or discriminant divisor) D⊂ h//H is the
zero locus of ∆. This subscheme will play a fundamental role later in this thesis (in particular
in Chapter 4).

The next lemma says that the étale local structure of h//H and D near a point is determined
by the centraliser of a semisimple lift of that point.

Lemma 2.1.3. Let x ∈ h be a semisimple element with centraliser zh(x). Let c ⊂ h be a
Cartan subalgebra containing x. Let W and Wx be the respective Weyl groups of h and zh(x)
with respect to c. Consider the diagram:

c

c//Wx c//W

φx
φ

ψ

Then ψ is étale at φx(x). Moreover, if D and Dx denote the discriminant divisors of h and
zh(x) respectively, then ψ∗D = Dx +R, where R is a divisor of c//Wx not containing φx(x) in
its support.

Proof. We may assume that k is algebraically closed and that h is split. Since φ and φx

are finite and faithfully flat (they are even Galois with Galois group W and Wx), the map ψ
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is finite and faithfully flat. The fact that ψ is étale at φx(x) follows from the fact that the
stabiliser of the W -action on x is precisely Wx (Lemma 2.1.2).

To prove the claim about the discriminant divisors, let ∆ = ∏α∈Φc
α ∈ k[c]W and ∆x =

∏α∈Φc(x)α ∈ k[c]Wx denote the respective discriminant polynomials. By definition of Φc(x),
∆ = ∆x ·R as elements of k[c]Wx , where R ∈ k[c]Wx is a polynomial that does not vanish at x.
Since D and Dx are the zero loci of ∆ and ∆x respectively, this proves the claim.

2.2 Vinberg theory

We keep the notations from §2.1. Let m ≥ 1 be an integer. A Z/mZ-grading on h is, by
definition, a direct sum decomposition

h=
⊕

i∈Z/mZ
h(i)

into linear subspaces satisfying [h(i),h( j)] ⊂ h(i+ j). Given a Z/mZ-grading on h, let
g = h(0) and V = h(1). Then g is a subalgebra of h and the restriction of the adjoint
representation induces an action of g on V . If ζ ∈ k is a primitive m-th root of unity, giving a
Z/mZ-grading amounts to giving, by considering ζ i-eigenspaces, an automorphism θ of h
of order dividing m. In general when no such ζ exists or is fixed, giving a Z/mZ-grading
amounts to giving a homomorphism µm→ Aut(h) of group schemes over k.

Let µm→ Aut(H) be a morphism of group schemes. The composition µm→ Aut(H)→
Aut(h) determines a Z/mZ-grading on h. If G is the identity component of the centraliser of
µm in H, then G has Lie algebra g and acts on V = h(1) by restriction of the adjoint action.
The pair (G,V ) is called a Vinberg representation, and its study is dubbed Vinberg theory
[87]. If h is a semisimple Z/mZ-graded Lie algebra, a natural choice for H is the adjoint
group Aut(h)◦ of h: this is the unique (up to nonunique isomorphism) connected semisimple
group with trivial centre and Lie algebra h.

We now summarise some of the highlights of Vinberg theory, referring to [60, 51] for
proofs. We call an element x ∈V semisimple, nilpotent or regular if it is so when considered
as an element of h. We call a subspace c ⊂ V that consists of semisimple elements, that
satisfies [c,c] = 0, and is maximal with these properties (among subspaces of V ) a Cartan
subspace.

Lemma 2.2.1. If x ∈V has Jordan decomposition x = xs + xn where xs,xn are commuting
elements that are semisimple and nilpotent respectively, then xs,xn ∈V .
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Proposition 2.2.2. Every semisimple x ∈V is contained in a Cartan subspace of V . Every
two Cartan subspaces are G(ks)-conjugate.

We call a triple (e,h, f ) an sl2-triple of h if e,h, f are nonzero elements of h satisfying
the following relations:

[h,e] = 2e, [h, f ] =−2 f , [e, f ] = h.

The classical Jacobson–Mozorov lemma states that every nilpotent element in h can be
completed to an sl2-triple. If h is Z/mZ-graded, we say an sl2-triple is normal if e ∈ h(1),
h ∈ h(0) and f ∈ h(−1).

Lemma 2.2.3. Let e ∈ h(1) be a nilpotent element. Then there exists an sl2-triple (e,h, f )
with h ∈ h(0) and f ∈ h(−1).

Proof. See [46, Proposition 4], which only treats the case m = 2 but whose proof works for
any m. (We will only need the m = 2 case in this thesis.)

The next proposition describes the basic geometric invariant theory of the representation
(G,V ). Let π : V →V //G = Speck[V ]G be the graded analogue of the adjoint quotient from
§2.1.

Proposition 2.2.4. • Let c⊂V be a Cartan subspace and W (c) = NG(c)/ZG(c). Then
the inclusion c⊂V induces an isomorphism

c//W (c)≃V //G.

The group W (c) is a finite pseudo-reflection group, so the quotient is isomorphic to
affine space.

• If k is algebraically closed and b ∈ (V //G)(k), then the fibre π−1(b) contains a unique
closed G(k)-orbit, the set of semisimple elements with invariants b.

Remark 2.2.5. In contrast to the m = 1 case, it is not true in general that two regular
element x,y ∈ V (k) with the same invariants (that is, with the same image in V //G) are
G(ks)-conjugate. Indeed, it follows from Proposition 3.5.1 below that the Z/2Z-gradings
introduced in §3.1 can have multiple G(ks)-orbits of regular nilpotent elements.

2.3 Stable gradings

We keep the notations of §2.1 and §2.2. Of particular interest to us are the stable gradings.
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Definition 2.3.1. Suppose that k is algebraically closed. We say a vector v ∈ V is stable
(in the sense of geometric invariant theory) if the G-orbit of v is closed and its stabiliser
ZG(v) is finite. We say (G,V ) is stable if V contains stable vectors. If k is not necessarily
algebraically closed, we say (G,V ) is stable if (Gks,Vks) is.

Stable gradings of simple Lie algebras over an algebraically closed field of characteristic
zero have been classified [68, §7.1, §7.2] in terms of regular elliptic conjugacy classes of
(twisted) Weyl groups. In the case of involutions, this classification takes the simple form of
Lemma 2.3.2, see [83, Lemma 2.6] for a proof. We say two involutions θ ,θ ′ : H→ H are
H(k)-conjugate if there exists an h ∈ H(k) such that θ ′ = hθh−1.

Lemma 2.3.2. Suppose that k is algebraically closed. Then there exists a unique H(k)-
conjugacy class of stable involutions.

For example, if H is a torus then the only stable involution is given by the inversion map
h 7→ h−1.

One of the main advantages of stable gradings is that they have a particularly good
invariant theory. The next proposition describes this more precisely in the case of Z/2Z-
gradings. In particular, it shows that regular semisimple orbits over algebraically closed
fields are well understood. We refer to [83, §2] for precise references.

Proposition 2.3.3. Suppose that θ : H → H a stable involution, with associated Vinberg
representation (G,V ). The following properties are satisfied:

1. Let c⊂V be a Cartan subspace and W (c) = NG(c)/ZG(c). Then c is a Cartan subal-
gebra of h and the map NG(c)→Wc := NH(c)/ZH(c) is surjective. Consequently, the
inclusions c⊂V ⊂ h induce isomorphisms

c//Wc ≃V //G≃ h//H.

In particular, the quotient is isomorphic to affine space.

2. Suppose that k is algebraically closed and let x,y ∈ V (k) be regular semisimple
elements. Then x is G(k)-conjugate to y if and only if x,y have the same image in
V //G.

3. Let ∆ ∈Q[V ]G be the restriction of the Lie algebra discriminant of h to the subspace
V and suppose that k is algebraically closed. Then for all x ∈ V (k), x is regular
semisimple if and only if ∆(x) ̸= 0, if and only if x is stable in the sense of Definition
2.3.1.
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2.4 Arithmetic Invariant Theory

Let k be a field with separable closure ks. Let G/k be a smooth algebraic group acting on a
k-vector space V . In general, a fixed G(ks)-orbit in V (ks) might break up into multiple G(k)-
orbits, and the study of this phenomenon is referred to as arithmetic invariant theory [10]. We
recall its relation to Galois cohomology, which lies at the basis of the orbit parametrisations
in this thesis.

Lemma 2.4.1. Suppose that G acts on a k-scheme X. Suppose that the k-point e ∈ X(k) has
smooth stabiliser ZG(e) and that the action of G(ks) on X(ks) is transitive. Then there is a
natural bijection

G(k)\X(k) 1:1←→ ker(H1(k,ZG(e))→ H1(k,G)).

Proof. This is [10, Proposition 1]. The bijection is explicitly constructed as follows: if
x ∈ X(k), transitivity ensures that there exists an element g ∈ G(ks) with x = g · e. For every
element σ ∈ Γk = Gal(ks/k), we again have x = σ(g) · e, so the map σ 7→ g−1σ(g) defines
a 1-cocycle with values in ZG(e) which is trivial in H1(k,G).

In fact, we will need a relative version of Lemma 2.4.1 which is valid over any base
scheme.

Lemma 2.4.2. Let G→ S be a smooth affine group scheme acting on an S-scheme X. Let
e ∈ X(S) be an S-point and suppose that the action map m : G→ X ,g 7→ g · e is smooth and
surjective. Then the assignment x 7→ ‘isomorphism class of the ZG(e)-torsor m−1(x)’ induces
a bijection between the set of G(S)-orbits of X(S) and the kernel of the map of pointed sets
H1(S,ZG(e))→ H1(S,G).

Proof. This is [30, Exercise 2.4.11]: the conditions imply that X ≃G/ZG(e) and since G and
ZG(e) (the fibre above e of the smooth map m) are S-smooth we can replace fppf cohomology
by étale cohomology.

2.5 The Grothendieck–Serre conjecture

We discuss some general results concerning principal bundles over reductive group schemes
which will be useful in §6. Recall from [30, Definition 3.1.1] that a reductive group scheme
over S is a smooth S-affine group scheme G→ S whose geometric fibres are connected
reductive groups.
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Definition 2.5.1. Let R be a regular local ring with fraction field K and let G→ SpecR be a
reductive group scheme. We say that the Grothendieck–Serre conjecture holds for R and G if
the restriction map

H1(R,G)→ H1(K,G)

is injective.

Note that the injectivity H1(R,G)→ H1(K,G) is stronger than requiring that this map
has trivial kernel, since this is merely a map of pointed sets. It is conjectured that the
Grothendieck-Serre conjecture holds for every reductive group scheme over every regular
local ring; see [59] for a survey and [25, §1.4] for a short summary of known results. Below
we will single out the known cases that we will need.

Lemma 2.5.2. Let X be a regular integral scheme with function field K. Let G be a reductive
X-group scheme. Suppose that the Grothendieck-Serre conjecture holds for all local rings
of X and G. Then every two G-torsors over X that are generically isomorphic (that is,
isomorphic over K) are Zariski locally isomorphic (that is, isomorphic after restricting to a
Zariski open cover).

Proof. Let T,T ′ be two G-torsors over X which are generically isomorphic and let x ∈ X .
We need to prove that x has an open neighbourhood over which T and T ′ are isomorphic.
Since the Grothendieck-Serre conjecture holds for the local ring OX ,x, the torsors T and
T ′ are isomorphic when restricted to SpecOX ,x. The result follows from spreading out this
isomorphism.

Proposition 2.5.3. Let R be a regular local ring and G a reductive R-group. Suppose that at
least one of the following is satisfied:

• R is a discrete valuation ring;

• R contains an infinite field.

Then the Grothendieck-Serre conjecture holds for R and G.

Proof. The case of a discrete valuation ring was proved by Nisnevich [56], with corrections
by Guo [40]. The case where R contains an infinite field was proved by Fedorov and Panin
[37].

The conjecture is known in many other cases; see [25] for a recent general result when R
is of mixed characteristic and [58] for the case where R contains a finite field.
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Corollary 2.5.4. Let X be a regular integral scheme and G a reductive X-group. Suppose
that at least one of the following conditions is satisfied:

• X is a Dedekind scheme;

• X has a map to the spectrum of an infinite field.

Then every two G-torsors over X that are generically isomorphic are Zariski locally isomor-
phic.

Proof. Combine Lemma 2.5.2 and Proposition 2.5.3.



Chapter 3

Around Thorne’s thesis

In the remainder of this thesis we will focus on a particular Vinberg representation. Given a
Dynkin diagram of type A,D,E, we will canonically construct a stable Z/2Z-grading on the
Lie algebra of the corresponding type following a construction of Thorne’s thesis [83, §2].
We then recall and extend some of its basic properties in §3.2–3.6. In §3.7 we introduce the
corresponding family of curves C→ B and in §3.8 we recall the relation between stabilisers
in V with the 2-torsion in the Jacobians of smooth fibres of C→ B. We do not claim any
originality in this chapter, except maybe for some of the calculations in §3.9.

3.1 A split stable Z/2Z-grading

Let H be a split adjoint simple group of type A,D,E over Q with Dynkin diagram D. We
have an exact sequence

1→ H→ Aut(H)→ Aut(D)→ 1. (3.1.1)

Assume that H is equipped with a pinning (T,P,{Xα}). By definition, this means that:

• T ⊂ H is a split maximal torus (which determines a root system ΦH := Φt);

• P⊂ H is a Borel subgroup containing T (which determines a root basis SH ⊂ΦH);

• Xα is a generator for each root space hα for α ∈ SH .

The subgroup Aut((H,T,P,{Xα}))⊂Aut(H) of elements preserving the pinning determines
a splitting of the sequence (3.1.1).
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On the other hand, if W = NH(T )/T denotes the Weyl group of ΦH , we have an exact
sequence

1→W → Aut(ΦH)→ Aut(D)→ 1. (3.1.2)

We define ϑ ∈Aut(H) as the unique element of Aut((H,T,P,{Xα})) whose image in Aut(D)
under (3.1.1) coincides with the image of −1 ∈ Aut(ΦH) in Aut(D) under (3.1.2). Note that
ϑ = 1 if and only if −1 ∈W .

Write ρ̌ ∈ X∗(T ) for the sum of the fundamental coweights with respect to SH , charac-
terised by the property that (α ◦ ρ̌)(t) = t for all α ∈ SH . Let

θ := ϑ ◦Ad(ρ̌(−1)) = Ad(ρ̌(−1))◦ϑ .

Then θ defines an involution of h and thus by considering (±1)-eigenspaces it determines a
Z/2Z-grading

h= h(0)⊕h(1).

Let G := (Hθ )◦ be the identity component of the centraliser of θ in H and let V := h(1).
The space V defines a representation of G by restricting the adjoint representation. If we
write g for the Lie algebra of G then V is a Lie algebra representation of g = h(0). The
Vinberg representation (G,V ) is a central object of study of this thesis. Its relevance can be
summarised in the following proposition, proved in [85, Proposition 1.9].

Proposition 3.1.1. Up to H(Q)-conjugacy, θ is the unique involution of H that satisfies the
following two properties:

1. θ is a stable involution (Definition 2.3.1);

2. The reductive group G is split over Q.

The first property of Proposition 3.1.1 is geometric: it characterises the H(Q̄)-conjugacy
class of θ . The second property is arithmetic, and it is equivalent to requiring the existence
of a regular nilpotent in V (Q). (For the last claim, see [83, Corollary 2.15].) Note that in our
construction of θ the element E = ∑α∈SH Xα is a regular nilpotent in V (Q).

Write B := V //G = SpecQ[V ]G and π : V → B for the natural quotient map. We have
a Gm-action on V given by λ · v = λv and there is a unique Gm-action on B such that π is
Gm-equivariant. The invariant theory of the pair (G,V ) is summarised in Proposition 2.3.3.
We additionally record the following fact concerning the smooth locus of π .
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Lemma 3.1.2. Let x ∈V and let dπx be the induced map on tangent spaces TxV → Tπ(x)B.
Then dπx is surjective if and only if x is regular. Consequently, the smooth locus of π

coincides with V reg :=V ∩hreg.

Proof. This follows from the proof of [83, Proposition 3.10]; we include the argument for
completeness. Let p : h→ B be the invariant map of h and let d px : Txh→ Tπ(x)B the induced
map on tangent spaces. Under the canonical isomorphism of vector spaces Txh≃ h, we claim
that d px(g) = 0. This is true if x is regular. Indeed, we then have g= [x,V ]⊂ [x,h] (compare
dimensions, see [83, Lemma 2.21]). So g is contained in the tangent space to the orbit H · x,
hence maps to zero under d px. Since the regular elements are dense in V , it follows that
d px(g) = 0 for all x ∈V .

Therefore dπx is surjective if and only if d px is surjective. The latter is true if and only if
x is regular, by a result of Kostant [45, Theorem 9]. This is equivalent to the smoothness of
π at x [23, §2.2, Proposition 8].

3.2 Explicit determination of (G,V )

Using the results of [67] applied to the Kac diagram of θ [68, §7.1, §7.2], one may calculate
the isomorphism class of the split group G and the representation V explicitly. These results
are summarised in Table 3.1, where we have used the following notation:

• If G is defined as a subgroup of GLn, then (n) denotes the representation of G corre-
sponding to this embedding.

• In case D2r, ∆(µ2) denotes the image of µ2 diagonally embedded in the centre µ2×µ2

of SO2r×SO2r.

• In case E6, ∧4
0(8) denotes the unique 42-dimensional subrepresentation of the PSp8-

representation ∧4(8).

• In case E8, Spin16 /µ2 denotes a µ2-quotient of Spin16 that is not isomorphic to SO16;
it does not seem to have a more succinct name.

We will only need these explicit identifications in the proof of Proposition 8.7.2. Moreover
we will calculate the component group of Hθ and the centre of G more uniformly in §3.3
and §3.4.

We treat the E7 case as an example. The extended Dynkin diagram is given by:
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Type G V π0(Hθ )

A2r SO2r+1. Sym2(2r+1) 1
A2r+1 PSO2r+2 Sym2(2r+2) Z/2Z
D2r (SO2r×SO2r)/∆(µ2) (2r)⊠ (2r) Z/2Z×Z/2Z
D2r+1 SO2r+1×SO2r+1 (2r+1)⊠ (2r+1) Z/2Z
E6 PSp8 ∧4

0(8) 1
E7 SL8 /µ4 ∧4(8) Z/2Z
E8 Spin16 /µ2 half spin 1

Table 3.1 Short description of each representation

α0 α1 α3 α4 α5 α6 α7

α2

The normalised Kac coordinates of θ (given in [68, §7.1, Table 4]) are everywhere zero,
except at the bottom node α2, which has coordinate 1. We may now apply the results of
[67, §2.4]. Since the Kac coordinates are invariant under the automorphism of the extended
diagram, the component group of Hθ is of order 2. Since the highest root has coordinate 2
at α2, the centre of G is of order 2. If we delete the node α2, we obtain a diagram of type
A7, so G semisimple is of type A7. Since G is split, it follows that G≃ SL8 /µ4. Moreover,
the representation V has highest weight the fundamental weight corresponding to α4, so is
isomorphic to ∧4(8), where (8) denotes the defining representation of SL8.

3.3 The component group of Hθ

The group Hθ is typically disconnected, and we have a tautological exact sequence

1→ G→ Hθ → π0(Hθ )→ 1.

The component group π0(Hθ ) is a finite étale group scheme over Q. We will show that
π0(Hθ ) is split and describe it in two different ways, which will be useful in the proof of
Proposition 6.5.1.

Firstly, we use Weyl groups. Recall that WH = NH(T )/T denotes the Weyl group of H.
We know that T θ = T ϑ is a maximal torus of G, and moreover the centraliser ZH(T θ ) of T θ

equals T ; these claims can be verified explicitly or follow from [69, Lemmas 5.1 and 5.3]. It
follows that NH(T θ )⊂ NH(T ), so WHθ := NHθ (T θ )/T θ is naturally a subgroup of WH . Let
WG := NG(T θ )/T θ be the Weyl group of G, a normal subgroup of WHθ . We have inclusions
WG ⊂WHθ ⊂WH .
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Lemma 3.3.1. The inclusion NHθ (T θ )⊂ Hθ induces an isomorphism WHθ /WG ≃ π0(Hθ ).

Proof. This is implicit in the proof of [67, Lemma 3.9]; we sketch the details. It suffices
to prove that Hθ = G ·NHθ (T θ ). This can be checked on geometric points, so let k/Q
be an algebraically closed field and h ∈ Hθ (k). The conjugate subgroup Ad(h) ·T θ is a
maximal torus of Gk. Since Gk is reductive, G(k) acts transitively on its maximal tori, so
Ad(h) ·T θ = Ad(g) ·T θ for some g ∈ G. We see that g−1h ∈ NHθ (T θ ), as claimed.

Corollary 3.3.2. The finite étale Q-group π0(Hθ ) is constant (in other words, has trivial
Galois action) and the map Hθ (Q)→ π0(Hθ ) is surjective.

Proof. It suffices to prove the latter claim. Since T is a maximal torus of H, WH is a constant
group scheme, so its subgroup WHθ is constant too. By Lemma 3.3.1 it suffices to show that
NHθ (T θ )(Q)→WHθ is surjective. This follows from Hilbert’s theorem 90 since the torus
T θ is Q-split.

Remark 3.3.3. If θ is inner, it is possible to describe a complement of WG in WHθ , see [67,
Remarks after Proposition 2.1]. It seems likely that one can give a similar description in the
general case using twisted root systems, but we will not need this in what follows.

For the second description, choose a Cartan subspace c⊂V and let C⊂H be the maximal
torus with Lie algebra c. Since θ acts as −1 on c it acts via inversion on C hence C[2]⊂ Hθ .
The next lemma is [46, Proposition 1]:

Lemma 3.3.4. We have Hθ = G ·C[2]. In other words, the inclusion C[2]⊂ Hθ induces a
surjection C[2]↠ π0(Hθ ).

Lemma 3.3.4 allows us to give an explicit description of π0(Hθ ).

Corollary 3.3.5. Let Hsc→ H be the simply connected cover of H and let π1(H) denote the
centre of Hsc. Then there is an isomorphism π0(Hθ )≃ π1(H)/2π1(H).

Proof. Let C ⊂ H be a maximal torus whose Lie algebra is a Cartan subspace of V . (Such
a torus certainly exists: take the centraliser of a regular semisimple element of V .) Let
Csc ⊂ Hsc be its preimage in Hsc. We have an exact sequence

1→ π1(H)→Csc→C→ 1. (3.3.1)

Examining the long exact sequence associated to the 2-torsion of (3.3.1) shows that we have
an isomorphism

C[2]
image(Csc[2]→C[2])

≃ π1(H)/2π1(H).
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We claim that the left-hand-side is isomorphic to π0(Hθ ). Indeed, the involution θ : H→ H
uniquely extends to an involution of Hsc, still denoted by θ , and a theorem of Steinberg
[80, Theorem 8.1] shows that Hθ

sc is connected. It follows that the induced map Hθ
sc→ Hθ

surjects onto G. Therefore the kernel of the natural map C[2]→ π0(Hθ ) (which is surjective
by Lemma 3.3.4) agrees with the image of the map Csc[2]→C[2], as claimed.

3.4 The fundamental group of G

Proposition 3.4.1. The group G is semisimple and its fundamental group has order 2#π0(Hθ ).

Proof. Let Hsc→ H be the simply connected cover of H and let π1(H) denote the centre
of Hsc. By a previously invoked theorem of Steinberg [80, Theorem 8.1], Hθ

sc is connected.
Therefore the induced map on θ -fixed points Hθ

sc→ G is surjective with kernel π1(H)[2].
Moreover π1(H)[2] has cardinality #π0(Hθ ) by Corollary 3.3.5. Hence it suffices to prove
that Hθ

sc is semisimple and its fundamental group is of order 2. This is a result of Kaletha,
see [85, Proposition A.1].

3.5 Regular nilpotent elements in V

The next proposition describes the set of regular nilpotent elements in V [83, Lemma 2.14].

Proposition 3.5.1. For every field k/Q, the group Hθ (k) acts simply transitively on the set
of regular nilpotent elements of V (k).

Corollary 3.5.2. Let k/Q be a field and E ∈ V (k) a regular nilpotent. (For example,
E = ∑α∈SH Xα .) Then the map h 7→ h ·E induces a bijection between π0(Hθ ) and the set of
G(k)-orbits of regular nilpotent elements in V (k).

Proof. Follows from Proposition 3.5.1 and the fact that Hθ (k) → π0(Hθ ) is surjective
(Corollary 3.3.2).

We see in particular that if Hθ is disconnected then there are multiple G-orbits of regular
nilpotent elements in V . To state the next result, recall from §2.2 the notion of a normal
sl2-triple.

Corollary 3.5.3. Let k/Q be a field and E ∈ V (k) a regular nilpotent element. Then E is
contained in a unique normal sl2-triple.

Proof. Proposition 3.5.1 shows that the stabiliser ZG(E) is trivial. Therefore the corollary
follows from [83, Lemma 2.17].
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3.6 Kostant sections

We describe sections of the GIT quotient π : V → B whose remarkable construction is
originally due to Kostant. Let E ∈V (Q) be a regular nilpotent element and let (E,X ,F) be
the unique normal sl2-triple containing E using Corollary 3.5.3. We define the affine linear
subspace κ :=

(
E + zh(F)

)
∩V ⊂V . We call κ the Kostant section associated to E, or simply

a Kostant section.

Proposition 3.6.1. 1. The composition κ ↪→V → B is an isomorphism.

2. κ is contained in the open subscheme of regular elements of V .

3. The morphism G×κ →V,(g,v) 7→ g · v is étale.

Proof. Parts 1 and 2 are [83, Lemma 3.5]; the last part is [83, Proposition 3.4], together with
the fact that G×κ and V have the same dimension (apply [83, Lemma 2.21] to x = 0).

Every Kostant section κ determines a morphism B→V that is a section of the quotient
map π : V → B, and we denote this section by κ too. For any b ∈ B(k) we write κb for the
fibre of κ over b.

Definition 3.6.2. Let k/Q be a field and v ∈V (k). We say v is k-reducible if v is not regular
semisimple or v is G(k)-conjugate to κb for some Kostant section κ and where b = π(v).
Otherwise, we call v k-irreducible.

3.7 A family of curves

If k/Q is a field, an element v ∈ h(k) is called subregular if dimzh(x) = r+ 2, where r is
the rank of h. By [83, Proposition 2.27], the vector space V contains subregular nilpotent
elements; let e ∈V (Q) be such an element and let (e,x, f ) be a normal sl2-triple extending it,
using Lemma 2.2.3.

Slodowy [77] has shown that the restriction of the invariant map (e+ zh( f ))→ B is a
family of surfaces. Moreover, he has shown that this family is a semi-universal deformation
of its central fibre, which is a simple surface singularity of the type corresponding to that of
H. Proposition 3.7.1 is a Z/2Z-graded analogue of Slodowy’s result, due to Thorne. Define
C◦ := (e+ zh( f ))∩V . Restricting the invariant map π : V → B to C◦ defines a morphism
ϕ : C◦→ B.

Proposition 3.7.1. 1. The geometric fibres of ϕ are reduced connected curves.
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2. The central fibre C◦0 = ϕ−1(0) has a unique singular point which is a simple singularity
of type Ar,Dr,Er, corresponding to that of H.

3. We can choose coordinates pd1, . . . , pdr on B and (x,y, pd1, . . . , pdr−1) on C◦ such that
C◦→ B is given by the affine equation of Table 1.1.

4. The formal completion of C◦→ B along its central fibre defines a morphism of formal
schemes Ĉ◦→ B̂ which is a semi-universal deformation of its central fibre.

5. The morphism ϕ is faithfully flat. It is smooth at x ∈C◦ if and only if x is a regular
element of V .

6. The action map G×C◦→V,(g,x) 7→ g · x is smooth.

Proof. This is proved in Thorne’s thesis. The first three parts are [83, Theorem 3.8]; for the
definition of a simple curve singularity, see [82, End of §2]. The fourth part follows from
the fact that the semi-universal deformation of an isolated hypersurface singularity can be
explicitly computed [77, §2.4] and agrees with the equations given in Table 1.1. The last two
parts are contained in [83, Proposition 3.4 and Proposition 3.10].

The next lemma describes the singularities of the fibres of C◦→ B very precisely; see
[83, Corollary 3.16] for its proof.

Lemma 3.7.2. Let k/Q be a field, b ∈ B(k) and v ∈ Vb(k) a semisimple element. Then
there is a bijection between the connected components of the Dynkin diagram of ZH(v) and
the singularities of C◦b , which takes each (connected, simply laced) Dynkin diagram to a
singularity of the corresponding type.

We compactify the flat affine family of curves C◦ → B to a flat projective family of
curves C→ B as described in [83, Lemma 4.9]. That lemma implies that the complement
C \C◦ is a disjoint union of sections ∞1, . . . ,∞m : B→C and C→ B is smooth in a Zariski
open neighbourhood of these sections. For every field k/Q and b ∈ B(k), the curve Cb has
k-rational points ∞1,b, . . . ,∞m,b ∈Cb(k); we call these the marked points of Cb.

Lemma 3.7.3. There are natural bijections between:

1. The sections ∞1, . . . ,∞m of C→ B;

2. Irreducible components of C0;

3. G-orbits of regular nilpotent elements of V whose closure contains e.
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The bijections are given as follows: given a section ∞i, map it to the irreducible component
containing ∞i,0 ∈C0; given an irreducible component of C0, map it to the G-orbit of any
point on its smooth locus.

Proof. See [83, Lemma 4.14] and its proof.

For the remainder of this thesis, we fix a section ∞1 = ∞ of C→ B and a regular nilpotent
element E ∈ V (Q) whose G-orbit corresponds to ∞ under Lemma 3.7.3. Moreover, we
fix a choice of polynomials pd1, . . . , pdr ∈ Q[V ]G and coordinates x,y of C◦ satisfying the
conclusions of Proposition 3.7.1. Recall that we have defined a Gm-action on B which satisfies
λ · pdi = λ di pdi . There exist unique positive integers a,b such that λ · (x,y, pd1, . . . , pdr−1) :=
(λ ax,λ by,λ 2d1 pd1, . . . ,λ

2dr−1 pdr−1) defines a Gm-action on C and such that the morphism
C→ B is Gm-equivariant with respect to the square of the usual Gm-action on B. (The
integers (a,b) are given by (wr,wr+1) in the table of [83, Proposition 3.6]. These weights
can also be defined Lie theoretically, but we will not need this fact in what follows.)

3.8 Universal centralisers

Recall from the last paragraph of §3.7 that we have fixed a regular nilpotent E ∈V (Q); let
κ : B→V be the Kostant section corresponding to E constructed in §3.6. Recall from our
conventions in §1.7 that if v : S→V is an S-point of V then ZG(v)→ S denotes the centraliser
of v in G.

Definition 3.8.1. Let Z→ B be the centraliser ZG(κ) of the Kostant section κ : B→V with
respect to the G-action on V . Similarly, let A→ B be the centraliser ZH(κ) of κ : B→ h with
respect to the H-action on h.

For every field k/Q and b ∈ B(k), the group scheme Zb (respectively Ab) is the centraliser
ZG(κb)⊂ G of κb in G (respectively ZH(κb)⊂ H). We have Z = A∩ (G×B). Since κ lands
in the regular locus of V , A and Z are commutative group schemes. To state the next lemma,
recall that V reg ⊂V denotes the open subscheme of regular elements and that π : V → B and
p : h→ B denote the morphisms of taking invariants.

Lemma 3.8.2. Let v : S→ V reg be a morphism with b = π(v) ∈ B(S). Then there is a
canonical isomorphism ZG(v)≃ Zb. Similarly if v : S→ hreg is a morphism with invariants
b = p(v) ∈ B(S) then there is a canonical isomorphism ZH(v)≃ Ab.

Proof. The isomorphism ZG(v)≃ Zb follows from [83, Proposition 4.1] and a very similar
proof works for A; we briefly sketch it. The morphism H ×B→ hreg,(h,b) 7→ h · κb is
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smooth and surjective [70, Lemma 3.3.1], so has sections étale locally. It follows that v is
H-conjugate to κb étale locally on S. Conjugating defines isomorphisms ZH(v)≃ Ab, again
étale locally on S. Since Ab is commutative, these isomorphisms do not depend on the choice
of element by which we conjugate v to κb. Using étale descent, these isomorphisms glue to
give an isomorphism of group schemes ZH(v)≃ Ab.

The next lemma gives a useful description of the fibres of Z→ B.

Lemma 3.8.3. Let k/Q be a field and x∈V (k) a regular element, with Jordan decomposition
x = xs+xn. Let c⊂V be a Cartan subspace containing xs and let C⊂H denote the maximal
torus with Lie algebra c. Let Hsc→ H be the simply connected cover of H and Csc→C its
restriction to C. Then there is a canonical isomorphism

Hom(ZG(x),F2)≃ image
(

X∗(C)

2X∗(C)+ZΦc(x)
→ X∗(Csc)

2X∗(Csc)+ZΦc(x)

)
. (3.8.1)

Proof. A theorem of Steinberg [80, Theorem 8.1] shows that (Hsc)
θ is connected. Therefore

ZG(x) = image(Z(Hsc)θ (x)→ ZHθ (x)). Now use [83, Corollary 2.9].

Let Brs denote the image of the subscheme of regular semisimple elements in V under
π : V → B. Then Brs is also the complement of the discriminant locus (∆ = 0) in B, by Part 3
of Proposition 2.3.3. For a B-scheme X , we denote its restriction to Brs by X rs. The group
scheme Zrs→ Brs is finite étale and Ars→ Brs is a family of maximal tori.

Definition 3.8.4. Let Λ→ Brs be the character group of Ars.

In other words, Λ is the Cartier dual Hom(Ars,Gm) of Ars. The Brs-scheme Λ is an étale
sheaf of root lattices in the sense of §1.7. In particular, it comes equipped with a pairing
⟨·, ·⟩ : Λ×Λ→ Z. This pairing induces an alternating pairing (·, ·) : Λ/2Λ×Λ/2Λ→ F2

which might be degenerate. Setting NΛ := image(Λ/2Λ→ Λ∨/2Λ∨), we see [83, Lemma
2.11] that (·, ·) descends to a nondegenerate pairing on NΛ. Lemma 3.8.3 implies:

Lemma 3.8.5. There exists a canonical isomorphism Zrs ≃ NΛ.

We use the isomorphism of Lemma 3.8.5 to transport the pairing from NΛ to Zrs: we thus
obtain a nondegenerate pairing Zrs×Zrs→ F2.

It follows from Lemma 3.7.2 that the restriction Crs→ Brs is a family of smooth projective
curves; write Jrs→ Brs for the relative Jacobian of the family of smooth projective curves
Crs→ Brs [23, §9.3; Theorem 1]. The next result is one of the main results of Thorne’s thesis
and a first step towards relating the curves Crs→ Brs to the representation (G,V ).
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Proposition 3.8.6. There exists an isomorphism Jrs[2]≃ Zrs of finite étale group schemes
that sends the Weil pairing on Jrs[2] to the pairing on Zrs defined above.

Proof. Since both group schemes are finite étale and Brs is normal, it suffices to prove the
statement above the generic point of Brs by [79, Tag 0BQM]. In that case the statement
follows from [83, Corollary 4.12].

3.9 Monodromy of Jrs[2]

We give some additional properties of the group scheme Jrs[2]→ Brs, which by Lemma 3.8.5
and Proposition 3.8.6 we may identify with NΛ→ Brs. Before we state them, we recall some
definitions and set up notation.

Recall from §3.1 that T is a split maximal torus of H with Lie algebra t and Weyl group
W . Let L := X∗(T ) be its character group and NL := image(L/2L→ L∨/2L∨). Consider the
composition t→ t//W ∼−→ h//H ∼−→ V //G = B, where t→ t//W is the natural projection,
t//W ∼−→ h//H the Chevalley restriction isomorphism (Proposition 2.1.1), and h//H ∼−→V //G
is the isomorphism induced from the inclusion V ⊂ h (Proposition 2.3.3). Restricting to
regular semisimple elements defines a finite étale cover f : trs→ Brs with Galois group W .

Proposition 3.9.1. The finite étale group scheme Jrs[2]→ Brs becomes trivial after the base
change f : trs→ Brs, where it becomes isomorphic to the constant group scheme NL. The
monodromy action is induced by the natural action of W on L.

Proof. Since Jrs[2] is isomorphic to NΛ, it suffices to prove that the torus A→ Brs is isomor-
phic to the constant torus T × trs→ trs after pulling back along f , with monodromy given by
the action of W on T .

To prove this, note that by Lemma 3.8.2, if x : S→ hrs is an S-point with invariants
b = p(x) ∈ Brs(S), then ZH(x) ≃ Ab as group schemes over S. (Here hrs ⊂ h denotes the
subset of regular semisimple elements.) In particular, we can apply this to the trs-point
i : trs→ hrs (where i is the inclusion map), giving an isomorphism T × trs ≃ Atrs . Since this
isomorphism is induced by étale locally conjugating i to κ by elements of H, the monodromy
action is indeed given by the natural action of W on T .

Proposition 3.9.1 shows that it suffices to understand the W -action on NL if we wish to
understand the group scheme Jrs[2]. To this end, we perform some root system calculations
in the following proposition.

Proposition 3.9.2. Suppose that H is not of type A1.

https://stacks.math.columbia.edu/tag/0BQM
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1. L∨/2L∨ has no nonzero W-invariant elements.

2. NL has no nontrivial proper W-invariant subgroups.

3. There exists an element w ∈W that has no nonzero fixed points on NL.

Proof. 1. Note that L∨/2L∨ = Hom(L/2L,F2), so let f : L/2L→ F2 be a nonzero W -
invariant functional. If f vanishes on a root of L, then f vanishes on all of them
since they form a single W -orbit. Since the roots of L generate L/2L, it follows that
f (α) = 1 for every root. Since we have assumed that L is not of type A1, there exists
roots α,β such that α +β is also a root. But then we would have 1 = f (α +β ) =

f (α)+ f (β ) = 1+1 = 0. This is a contradiction hence no such nonzero f exists.

2. Let S⊂ NL be a W -stable subgroup, and assume that v ∈ S is a nonzero element. Since
the pairing (·, ·) on NL is nondegenerate, there exists a root α ∈ L such that (v,α) ̸= 0 in
F2. If wα ∈W denotes the reflection associated to α , then wa(v) = v−(v,α)α = v+α

also lies in S. It follows that wa(v)− v = α lies in S. Since W acts transitively on
the roots, every root is contained in S. Since the roots generate L/2L, it follows that
S = NL, as claimed. (We thank Beth Romano for helping us with the proof of this fact.)

3. We first consider the case that the pairing on L/2L is nondegenerate, which is equivalent
to the projection map L/2L→ NL being injective. Since L/2L and L∨/2L∨ have the
same order, the latter statement is also equivalent to the fact that L/2L→ L∨/2L∨ is an
isomorphism. We show that in this case it suffices to take a Coxeter element wcox of W .
Indeed, let Hsc→ H be the simply connected cover of H, let π1 be the centre of Hsc

and let Tsc be the preimage of T in Hsc. It is a classical fact that the inclusion π1 ⊂ Tsc

restricts to an equality π1 = T wcox
sc , see [35, Theorem 1.6].1 Taking 2-torsion implies

that π1[2] = Tsc[2]wcox . Since the map L/2L→ L∨/2L∨ is an isomorphism, the same is
true for the map Tsc[2]→ T [2] which has kernel π1[2], hence Tsc[2]wcox = π1[2] = {1}.
Since Tsc[2]≃ L/2L, we have shown that (L/2L)wcox = Nwcox

L = 0, as claimed.

We now consider the general case. Let S be a root basis of L, which is an F2-basis of
the vector space L/2L. Since L/2L→ NL is surjective, there exists a subset SM ⊂ S
projecting onto a basis of NL. Let M be the F2-span of SM. Then M is a (possibly
reducible) root lattice associated to the sub-root system generated by SM, and the
composition M/2M ↪→ L/2L ↠ NL is an isomorphism. The pairing (·, ·) on L/2L
restricts to a pairing on M/2M, and the previous sentence shows that this pairing on

1The reference assumes that T is a maximal torus in a compact Lie group, but this implies the corresponding
result for a maximal torus in a semisimple group over a field of characteristic zero.
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M/2M is nondegenerate. It follows that M is a direct sum of irreducible root lattices
of the form considered in the first case of this proof. Let w be a Coxeter element with
respect to SM, i.e. a product of the simple reflections in SM. Then (M/2M)w = 0 by
the first case of the proof, so Nw

L = 0 too.





Chapter 4

The mildly singular locus

We keep the notations from Chapter 3. Recall from §3.8 that Brs ⊂ B denotes the locus where
the discriminant polynomial ∆ is nonzero, and that the family of curves C→ B is smooth
exactly above Brs (Lemma 3.7.2). In this chapter we introduce an open subset B1 ⊂ B strictly
containing Brs where we allow the fibres of C→ B to have one nodal singular point. We
therefore call B1 the ‘mildly singular locus’ of B. We then extend some results concerning
the representation V and the family of curves from Brs to B1 in §4.2 and §4.3, and generalise
Proposition 3.8.6 in §4.4. This will be useful for the construction of orbits in §6 and for
the analysis of integral orbits of square-free discriminant in §7.4. To avoid stating the same
assumption repeatedly, we will make the following assumption throughout the rest of this
thesis:

Convention 4.0.1. The group H is not of type A1.

4.1 The discriminant locus

Recall that we have fixed a maximal torus T ⊂ H in §3.1. Recall from §2.1 that the
discriminant polynomial ∆ ∈Q[h]H is the image of ∏α∈Φt

α ∈Q[t]W under the isomorphism
Q[t]W

∼−→ Q[h]H of the Chevalley restriction theorem. Using the isomorphism Q[h]H
∼−→

Q[V ]G =Q[B] from Proposition 2.3.3, we view ∆ as an element of Q[B].

Lemma 4.1.1. For every field k/Q, ∆ is irreducible in k[B].

Proof. It suffices to prove that we cannot partition Φt into two nonempty W -invariant subsets.
Equivalently, we need to prove that W acts transitively on Φt. This is true since Φt is
irreducible and simply laced.

We write D for the subscheme of B cut out by ∆. Lemma 4.1.1 implies:
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Corollary 4.1.2. The scheme D is geometrically integral.

Write Dsing for the singular locus of D, a closed subscheme of D.

Definition 4.1.3. We define B1 as the complement of Dsing in B; we call B1 the mildly singular
locus. We define D1 as the complement of Dsing in D.

The subscheme B1 ⊂ B is open and we have inclusions Brs ⊊ B1 ⊊ B. Since D is
geometrically integral, the complement of B1 in B has codimension ≥ 2. (In fact, Lemma
4.2.1 shows that it has codimension exactly 2.) As a general piece of notation, if X is a
B-scheme we write X1 for its restriction to B1.

4.2 Representation theory over B1

If b is a point of B we write hb for the fibre of the adjoint quotient h
p−→ h//H = B along this

point.

Lemma 4.2.1. Suppose that k/Q is an algebraically closed field and b ∈ B(k). Then
b ∈ D1(k) if and only if some (equivalently, every) semisimple x ∈ hb(k) has the property
that the derived subgroup of ZH(x) is of type A1.

Proof. Since every two semisimple elements in hb(k) are H(k)-conjugate (Proposition 2.1.1),
requiring the last claim for some semisimple element of hb(k) is equivalent to requiring it for
all of them. Let T ⊂ H be the fixed maximal torus of §3.1, with root system Φt and Weyl
group W . Let x be an element of t with invariants b. By Lemma 2.1.2, ZH(x) is a reductive
group with root system Φt(x) = {α ∈Φt | α(x) = 0} and its Weyl group Wx is the subgroup
of W generated by the reflections through Φt(x).

To prove the lemma, we need to prove that b ∈ D1(k) if and only if Φt(x) is of type A1.
Let bx be the image of x in t//Wx and let Dx ⊂ t//Wx be the discriminant locus of ZH(x), with
smooth locus D1

x . By Lemma 2.1.3, b ∈ D1(k) if and only if bx ∈ D1
x(k). So it suffices to

prove that bx ∈ D1
x(k) if and only if Φt(x) is of type A1.

Firstly, suppose that Φt(x) = {α,−α} is of type A1, so Wx = {1,wα} is generated by
the reflection through α . Then one can compute Dx explicitly: it is given, up to taking a
product with an affine space, by the quotient of Speck[X ] by the Z/2Z-action X 7→ −X . This
quotient is Speck[X2] so smooth, hence Dx is smooth as well. Therefore bx ∈ D1

x(k), which
proves one direction.

Conversely, suppose that Φt(x) is not of type A1. If Φt(x) were empty then b ∈ Brs(k),
so Φt(x) is nonempty and of rank ≥ 2. We need to prove that D is singular at b. Since the
singular locus of D is closed and x is the specialisation of a point y for which the rank of



4.2 Representation theory over B1 35

Φt(y) is exactly 2, we may assume that Φt(x) is either of type A2 or A1×A1. In both cases,
one can compute explicitly that Dx is not smooth at bx, as required.

Recall from Proposition 3.8.6 that if k/Q is a field and b∈Brs(k), we have an isomorphism
Zb ≃ Jb[2] of finite étale k-groups. So if g denotes the common arithmetic genus of the curves
Cb, the group scheme Zb has order 22g.

Lemma 4.2.2. If b ∈ D1(k), the group scheme Zb has order 22g−1.

Proof. The group scheme Zb is the centraliser of the element κb, which is regular by Propo-
sition 3.6.1. By Lemma 3.8.3, it suffices to prove that if L is a root lattice of the same type
as H, NL = image(L/2L→ L∨/2L∨) and α ∈ L is a root, then α is nonzero in NL. Since
L is not of type A1 (Convention 4.0.1), there exists a root β with (α,β ) = −1. Therefore
α ̸∈ 2L∨, so α is nonzero in NL, as claimed.

Before we state the last result of this section, we record a useful lemma.

Lemma 4.2.3. Let k/Q be a field and x ∈ h(k) a semisimple element with centraliser
L := ZH(x). Then the centre of L is connected.

Proof. We may assume that k is algebraically closed and that x lies in t(k), the Lie algebra
of the maximal torus T ⊂ H fixed in §3.1. It suffices to prove that the character group of the
centre of L is torsion-free. By Lemma 2.1.2 this group can be identified with X∗(T )/ZΦt(x).
Since H is adjoint, X∗(T ) = ZΦt. The definition of the root system Φt(x) shows that it is
Q-closed in the sense of [77, §3.5]. By [77, Proposition 3.5], every root basis of Φt(x) can
be extended to a root basis of Φt. This implies that ZΦt(x) is a direct summand of ZΦt so
the quotient ZΦt/ZΦt(x) is indeed torsion-free.

To state the next proposition, recall that V reg ⊂V denotes the open subscheme of regular
elements and that we have fixed a Kostant section κ in §3.8.

Proposition 4.2.4. The action map G×B1→V reg|B1, (g,b) 7→ g ·κb is surjective.

Proof. Part 2 of Proposition 2.3.3 implies that this map is surjective when restricted to Brs.
Therefore it suffices to prove that if k/Q is algebraically closed and b ∈ D1(k), then every
two elements x,y ∈V reg

b (k) are G(k)-conjugate. Let x = xs+xn and y = ys+yn be the Jordan
decompositions of x and y. Since the semisimple parts xs and ys are G(k)-conjugate by
Proposition 2.2.4, we may assume that xs = ys. The centraliser L := ZH(xs) is a reductive
group with derived subgroup of type A1 (Lemma 4.2.1); write l for its Lie algebra. The
involution θ restricts to a stable involution θ |L on L [83, Lemma 2.5]. Since x and y are
regular, xn,yn are regular nilpotent elements of lθ=−1. Therefore to prove the lemma, it
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suffices to prove that Lθ ∩G acts transitively on the regular nilpotents in lθ=−1. (Note that
Lθ ⊂ Hθ but we don’t have Lθ ⊂ G in general.)

We first claim that Lθ acts transitively on the regular nilpotents in lθ=−1. To this end, let
Z(L) denote the centre of L and consider the exact sequence

0→ Z(L)→ L→ PGL2→ 0. (4.2.1)

The involution θ preserves Z(L) (acting via inversion by [83, Lemma 2.7(3)]) and by Lemma
2.3.2 we may choose the isomorphism L/Z(L)≃ PGL2 so that θ corresponds to the standard
stable involution ξ = Ad(diag(1,−1)) of PGL2 from §3.1. An elementary computation
in sl2 (or Proposition 3.5.1) shows that PGLξ

2 acts transitively on the regular nilpotents in
lξ=−1. To prove the claim, we only need to show that Lθ → PGLξ

2 is surjective. Since Z(L)
is connected (Lemma 4.2.3), Z(L)/(1−θ)Z(L) is trivial and therefore taking θ -invariants of
(4.2.1) shows that indeed Lθ → PGLξ

2 is surjective, proving the claim.
To prove that Lθ ∩G acts transitively on the regular nilpotents in lθ=−1, it suffices to prove

that Lθ ∩G surjects onto PGLξ

2 . We first claim that there exists a semisimple element t ∈V
with centraliser M = ZH(t) such that L⊂M and such that the derived subgroup of M is of
type A2. Indeed, take a Cartan subspace c⊂V containing xs; then Φc(xs) = {±α} for some
root α . Since Φc is not of type A1, there exists a root β such that {±α,±β ,±(α +β )} ⊂Φc.
Taking t to be an element of c that vanishes exactly on those roots satisfies the requirements.

Again θ restricts to a stable involution on M and the isomorphism M/Z(M)≃ PGL3 can
be chosen so that θ agrees with the standard stable involution ψ of PGL3 from §3.1. Again
Z(M) is connected by Lemma 4.2.3 and taking θ -invariants of the analogue of the sequence
(4.2.1) for M gives an exact sequence

1→ Z(M)θ →Mθ → PGLψ

3 → 1. (4.2.2)

A component group calculation (Corollary 3.3.5) shows that PGLψ

3 is connected. Therefore
the identity component (Mθ )◦ maps surjectively onto PGLψ

3 . Since (Mθ )◦ ⊂Mθ ∩G, this
implies that Mθ = (Mθ ∩G) ·Z(M)θ . It follows that Lθ = (Lθ ∩G) ·Z(L)θ . Indeed, if l ∈ Lθ

there exists an element z ∈ Z(M)θ such that lz ∈Mθ ∩G. Since Z(M)θ ⊂ Z(L)θ , we have
lz∈ Lθ ∩G. We have established the equality Lθ = (Lθ ∩G) ·Z(L), and it implies that Lθ ∩G
surjects onto PGLξ

2 .

Remark 4.2.5. Proposition 4.2.4 is false when H is of type A1.
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4.3 Geometry over B1

Recall from §3.7 that we have introduced a family of projective curves C→ B which is
smooth exactly above Brs.

Lemma 4.3.1. Let k/Q be a field and b ∈ B(k). Then b ∈ D1(k) if and only if the curve Cb

has a unique nodal singularity.

Proof. A node is a simple singularity of type A1. Therefore the lemma follows from Lemmas
3.7.2 and 4.2.1.

The fibres of the morphism C→ B may be reducible. However, this does not happen over
B1:

Lemma 4.3.2. The fibres of C1→ B1 are geometrically integral.

Proof. The geometric fibres of C→ B are reduced, connected, and over Brs these fibres are
smooth. Therefore it suffices to prove that Cb is irreducible if k/Q is algebraically closed
and b ∈ D1(k). We prove this statement in two different ways.

For the first proof, let Z ⊂ D1 be the locus above which the fibres fail to be geometrically
integral. Then Z is closed by [39, Théorème 12.2.1(x)]. We claim that Z is also open. To
prove this, it suffices to prove that Z is closed under generalisation [79, Tag 0903]. By
[79, Tag 054F] this amounts to showing that for every complete discrete valuation ring
R and morphism SpecR→ D1, the generic point of SpecR lands in Z if the closed point
of SpecR does. If b ∈ D1(k) then Cb has a unique nodal singularity by Lemma 4.3.1, so
either Cb is irreducible with one node or a union of two irreducible components intersecting
transversally. Therefore if b ∈ D1(k), then Cb is reducible (in other words, b ∈ Z) if and only
if the generalised Jacobian Pic0

Cb/k is an abelian variety [23, §9.2, Example 8]. On the other
hand, since the locus of SpecR where the relative Jacobian Pic0

CR/R→ SpecR (which exists
and is a semi-abelian scheme by [23, §9.3, Theorem 7]) is an abelian variety is open (this
follows from looking at torsion points), we conclude that the generic fibre of Pic0

CR/R is an
abelian variety if its special fibre is. It follows that Z is closed under generalisation, proving
the claim. Since D1 is irreducible and Z is open and closed, it follows that Z is empty or
equal to D1; we will exclude the latter case.

To this end, it suffices to prove that Cη is geometrically integral, where η is the generic
point of D. Assume by contradiction that this is not the case. As observed in the previous
paragraph, this implies that Pic0

Cη/η
is an abelian variety. Therefore the finite étale group

scheme Jrs[2]→ Brs is unramified along D. By Zariski–Nagata purity for finite étale covers,
this implies that Jrs[2] extends to a finite étale cover over B. Since B is isomorphic to affine

https://stacks.math.columbia.edu/tag/0903
https://stacks.math.columbia.edu/tag/054F


38 The mildly singular locus

space over k, this cover must be trivial. However, a monodromy calculation (Propositions
3.9.1 and 3.9.2) shows that Jrs[2] is nontrivial. (Recall that we have excluded that H is of
type A1.) This is a contradiction, completing the first proof of the lemma.

For the second proof, which we only sketch, we argue on a case-by-case basis. The only
cases where reducible fibres occur are those of type A2n+1, Dn and E7. Let us treat the A2n+1

case and E7 case, omitting details for the Dn case.
In the A2n+1 case, note that a hyperelliptic curve defined by y2 = f (x) = x2n+2 + . . .

is reducible if and only if f (x) is the square of a polynomial h(x). In that case the curves
y = h(x) and y = −h(x) intersect in n+ 1 points, counted with multiplicity. If b ∈ D1(k),
then Cb has exactly one node, implying that n+1 = 1 so n = 0. Since we have excluded the
A1 case, this is a contradiction.

In the E7 case, note that if b ∈ B(k) then Cb is embedded in P2 as a plane quartic curve.
If Cb were reducible, it would be the union of a curve of degree d1 and d2 with d1 +d2 = 4.
By Bézout’s theorem, such curves intersect in d1d2 points (counted with multiplicity). If
b∈D1(k), then Cb has exactly one node, implying that d1d2 = 1, which is a contradiction.

Since C1 → B1 has geometrically integral fibres by Lemma 4.3.2, the group scheme
Pic0

C1/B1 is well-defined and we denote it by J1→ B1 [23, §9.3, Theorem 1]. It is a semi-
abelian scheme. The 2-torsion subgroup J1[2]→ B1 is a quasi-finite étale group scheme; we
may therefore view it as a sheaf on the étale site of B1.

Lemma 4.3.3. Let j : Brs ↪→ B1 be the open inclusion. Then j∗Jrs[2] = J1[2] as étale sheaves
on B1.

Proof. Consider the natural morphism φ : J1[2]→ j∗ j∗J1[2] = j∗Jrs[2] obtained by adjunc-
tion. Since J1→ B1 is separated, J1[2]→ B1 is separated as well so φ is injective. To prove
that φ is an isomorphism, it suffices to check this at geometric points of B1. Combining the
last two sentences, it suffices to prove that (J1[2])b̄ and ( j∗Jrs[2])b̄ have the same cardinality
for all geometric points b̄ of B1, or even that the cardinality of the latter is bounded above by
the cardinality of the first. This is obvious if b̄ lands in Brs, so assume that b̄ lands in D1.

By Lemma 4.3.2, Cb̄ is integral and has a unique singularity, which is a node. It follows
that J1

b̄ has order 22g−1, where g is the arithmetic genus of Cb. On the other hand, the order
of ( j∗Jrs[2])x for x ∈ D1 can only go down under specialisation. It therefore suffices to prove
that if η denotes the generic point of D, then ( j∗Jrs[2])η has order 22g−1. In fact, we claim
that φη is an isomorphism.

To this end, let K be the fraction field of the discrete valuation ring OB,η and let jη be the
inclusion SpecK ↪→ SpecOB,η . Then the pullback of j∗Jrs[2] along SpecOB,η → B equals
( jη)∗Jrs

K [2], where Jrs
K denotes the pullback Jrs along the generic point of B. The curve COB,η
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is regular, since SpecOB,η → B hence COB,η → C is formally smooth and the total space
C is smooth. Therefore a result of Raynaud [23, §9.5, Theorem 1] shows that the identity
component of the Picard functor of COB,η , which equals J1

OB,η
by definition, is isomorphic to

the Néron model of JK . By the Néron mapping property, this shows that J1
η [2] = ( j∗Jrs[2])η .

This completes the proof of the claim hence that of the lemma.

4.4 Summary of properties of B1

We summarise the properties of D1 in the next theorem.

Theorem 4.4.1. Let k/Q be an algebraically closed field and b ∈ B(k). Then the following
are equivalent:

1. b ∈ D1(k);

2. for every semisimple v ∈Vb(k), the derived subgroup of ZH(v) is of type A1;

3. Cb is irreducible and has a unique singular point, which is a node.

Proof. Combine Lemmas 4.2.1 and 4.3.1.

Theorem 4.4.2. The isomorphism Jrs[2]≃ Zrs from Proposition 3.8.6 uniquely extends to an
isomorphism J1[2]≃ Z1 of separated étale group schemes over B1.

Proof. Since Jrs[2] and Zrs are dense in J1[2] and Z1 respectively, uniqueness is clear. For the
existence, denote the open immersion Brs ↪→ B1 by j. Consider the composition ψ : Z1→
j∗Zrs ∼−→ j∗Jrs[2] ∼−→ J1[2] of the adjunction morphism Z1→ j∗Zrs, the pushforward of the
isomorphism Zrs ∼−→ Jrs[2] along j and the isomorphism j∗Jrs[2] ∼−→ J1[2] of Lemma 4.3.3.
Since Z1→ B1 is separated, ψ is injective. It therefore suffices to prove that Z1

b̄ and J1
b̄ have

the same cardinality for every geometric point b̄ of D1. If g denotes the common arithmetic
genus of the fibres of C→ B, then Z1

b̄ has cardinality 22g−1 by Lemma 4.2.2. On the other
hand, J1

b̄ also has cardinality 22g−1 by Lemmas 4.3.1 and 4.3.2.





Chapter 5

The compactified Jacobian

Recall from §3.8 that the family of smooth projective curves Crs→ Brs has Jacobian variety
Jrs → Brs which is itself a smooth and projective morphism. The goal of this chapter is
to extend the Brs-scheme Jrs to a proper B-scheme J̄ with good geometric properties. We
achieve this using the theory of the compactified Jacobian of Altman–Kleiman [1], extended
by Esteves [36] to incorporate reducible curves. Its construction is given in §5.2 and its basic
properties are summarised in Theorem 5.3.5. Note that the occurrence of reducible fibres is
the reason why the definition of J̄ is more involved here than in our previous work [48, §4.3],
which treats the E6 case and where only irreducible fibres are present.

The results of this chapter will be useful for the construction of orbits in §6 (specifically
§6.2) and the construction of integral representatives in §7.5.

5.1 Generalities on sheaves

The following material is largely taken from [36, 53]. Let k be an algebraically closed field.
By a curve we mean a reduced projective scheme of pure dimension 1 over k.

Definition 5.1.1. A coherent sheaf I on a connected curve X is said to be

1. rank-1 if Iη ≃ OX ,η as OX ,η -modules for every generic point η ∈ X;

2. torsion-free if the associated points of I are precisely the generic points of X;

3. simple if Endk(I) = k.

We remark that the first two conditions imply the third if X is irreducible and that every
torsion-free rank-1 sheaf on a smooth curve is invertible.
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A subcurve Z of a curve X is a closed k-subscheme that is reduced and of pure dimension
1. If I is a torsion-free sheaf on X , its restriction to a subcurve I|Z is not necessarily torsion-
free; it contains a biggest torsion subsheaf and the quotient of I|Z by this subsheaf is denoted
by IZ . The sheaf IZ is the unique torsion-free quotient of I whose support is equal to Z.

Definition 5.1.2. Let E be a vector bundle on a connected curve X of rank r ≥ 1 and
degree −rd for some integer d ∈ Z. Let I be a torsion-free rank-1 sheaf on X with Euler
characteristic χ(I) = d. We say that I is E-semistable if for every nonempty proper subcurve
Y ⊊ X we have that

χ(IY )≥−
deg(E|Y )

r
. (5.1.1)

We say that I is E-stable if for every nonempty proper subcurve the inequality (5.1.1) is strict.

Given a vector bundle E on X , we may define its multislope qE = {qE
Ci
} as follows. It is a

tuple of rational numbers, one for each irreducible component Ci of X , defined by setting

qE
Ci

:=−deg(E|Ci)

rankE
.

If Y ⊂ X is a subcurve, write qE
Y := ∑Ci⊂Y qE

Ci
, where the sum is taken over those irreducible

components Ci that are contained in Y . If E is of rank r and degree −rd then qE
X = d. When

the vector bundle E is clear from the context we omit the superscript from the notation qE .

Definition 5.1.3. Let X be a curve and E a vector bundle on X of rank r and degree−rd with
multislope q. We say that E is general if qY ̸∈ Z for any nonempty proper subcurve Y ⊊ X.

If I is torsion-free rank-1 on X , then I is E-semistable if and only if χ(IY )≥ qY for every
nonempty proper subcurve Y ⊂ X , and E-stable if every such inequality is strict. Therefore
if E is general, a torsion-free rank-1 sheaf on X is E-semistable if and only if it is E-stable.

The next lemma shows that a family of simple torsion-free rank-1 sheaves has no unex-
pected endomorphisms. For a quasi-coherent sheaf F on a scheme X , we write E nd(F ) for
the sheaf of OX -module endomorphisms of F , which is again a quasi-coherent sheaf on X .

Lemma 5.1.4. Let p : X → T be a flat family of projective curves whose geometric fibres
are reduced and connected. Let I be a locally finitely presented OX -module, flat over T ,
whose geometric fibres above T are simple torsion-free rank-1. Then p∗E nd(I) = OT .

Proof. Use [1, Corollary (5.3)] and the assumption that each geometric fibre is simple.
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5.2 The definition

Recall from §3.7 that C→ B is a flat projective morphism whose geometric fibres are reduced
connected curves, and that this morphism has sections ∞1, . . . ,∞m : B→C landing in the
smooth locus.

Lemma 5.2.1. For every field k/Q and b ∈ B(k), the irreducible components of Cb are
geometrically irreducible. Moreover, every such irreducible component contains ∞i,b in its
smooth locus for some i.

Proof. The first claim follows from the second one. For the second one, we may assume that
k is algebraically closed. Consider the line bundle L = OC(∞1 + · · ·+∞m) on C associated
to the divisors ∞i of C. For every b ∈ B(k), Lb is ample if and only if every irreducible
component of Cb contains ∞i,b for some i. Moreover, the locus of elements b ∈ B for which
Lb is ample is open [39, Corollaire (9.6.4)], Gm-invariant (with respect to the Gm-action on
C→ B introduced in §3.7) and contains the central point by Lemma 3.7.3. These three facts
imply that it must be the whole of B.

In order to define a compactified Jacobian of C→ B, we first construct a vector bundle
E on C using properties of the central fibre C0. Recall from Lemma 3.7.3 that each of the
m irreducible components of C0 contains a unique marked point ∞i,0. Let q = {q1, . . . ,qm}
be a tuple of rational numbers such that ∑

m
i=1 qi = χ(OC0) = 1− pa(C0) and ∑i∈I qi ̸∈ Z for

every nonempty proper subset I ⊂ {1, . . . ,m}; it is easy to see that such a tuple exists. Write
qi = ei/r for some ei ∈ Z and r ∈ Z≥1. By further multiplying ei and r, we may assume that
r ≥ m. Let E be the following vector bundle on C:

E = OC(−e1 ·∞1)⊕·· ·⊕OC(−em ·∞m)⊕O⊕r−m
C .

Since the image of ∞i : B→C is a divisor of C, the line bundles OC(−ei ·∞i) are well-defined.
Note that the vector bundle E|C0 has multislope q by construction. For every geometric point
b of B, E|Cb is a vector bundle of rank r and degree −r(1− pa(C0)) on the curve Cb.

Lemma 5.2.2. For every geometric point b of B, the vector bundle E|Cb is general in the
sense of Definition 5.1.3.

Proof. Follows from Lemma 5.2.1 and the construction of E.

We are now ready to define the compactified Jacobian associated to E. We assume we
have made a choice of q and E as above. Consider the functor

J̄E : {B-Schemes}→ {Sets} (5.2.1)
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sending a B-scheme T to the set of equivalence classes of pairs (I,φ), where

• I is a locally finitely presented OCT -module, flat over T , with the property that for
every geometric point t of T , It is simple torsion-free rank-1, χ(It) = χ(OC0) and It is
Et-stable;

• φ is an isomorphism ∞∗1,T I ≃ OT of OT -modules.

We say two pairs (I,φ) and (I′,φ ′) are equivalent if there is an isomorphism I ≃ I′ mapping
φ to φ ′. We have the following basic representability result [36, Theorem B]:

Proposition 5.2.3 (Esteves). The functor J̄E is representable by a B-scheme J̄E .

Proof. Let F be the functor from B-schemes to sets, sending a B-scheme T to the set of
equivalence classes of locally finitely presented OCT -modules I, flat over T , with the property
that for every geometric point t of T , It is simple torsion-free rank-1, χ(It) = χ(OC0) and
It is Et-stable. (In contrast to J̄E , we omit the rigidification φ .) Here we say I and I′ are
equivalent if there exists an invertible sheaf L on T such that I′ ≃LCT ⊗ I. Let Fet denote
the étale sheafification of F . By [36, Proposition 34], the functor Fet is representable by an
open subspace of the algebraic space parametrising simple torsion-free rank-1 sheaves with
no Euler characteristic or stability condition. By Lemma 5.2.1 and [36, Theorem B], the
latter algebraic space is in fact a scheme, so Fet is representable by a scheme as well.

On the other hand, the forgetful morphism J̄E → F,(T,φ) 7→ T is an isomorphism of
functors, since every I ∈ F(T ) is equivalent to another element I′ ∈ F(T ) admitting a
rigidification. Since elements of J̄E have no nontrivial automorphisms by Lemma 5.1.4,
étale descent of quasi-coherent sheaves implies that J̄E is an étale sheaf, so we have natural
identifications J̄E = F = Fet . Since Fet is representable by a scheme by the previous
paragraph, the same is true for J̄E .

Definition 5.2.4. We call J̄E a compactified Jacobian of C→ B associated to E.

If C→B has reducible fibres, different choices of q may give rise to different compactified
Jacobians. For our purposes, these differences will be harmless and for the remainder of this
thesis we fix a choice of q and E as above and we simply write J̄ = J̄E .

Lemma 5.2.5. Let k be a field and b ∈ B(k) such that the curve Cb is integral. Then J̄b

parametrises torsion-free rank-1 sheaves on Cb with degree zero, i.e. Euler characteristic
1− pa(C0).

Proof. If Cb is integral, the Eb-stability condition and the simplicity of the sheaves are
automatic.
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5.3 Basic properties of J̄

Lemma 5.3.1. The morphism J̄→ B is projective1.

Proof. Since the vector bundle E is chosen to be general (Lemma 5.2.2), the notions of
E-stable and E-semistable agree. Therefore, a theorem of Esteves [36, Theorem C.1 and
C.4] shows that J̄ is quasi-projective. Moreover, [36, Theorem A.1] shows that J̄→ B is
universally closed. We conclude that J̄ is projective over B.

Recall from §3.7 that we have defined a Gm-action on C such that C→B is Gm-equivariant
with respect to the square of the usual Gm-action on B. By functoriality, this induces a Gm-
action on J̄ too such that J̄→ B is Gm-equivariant (again with respect to the square of the
usual Gm-action on B). The following argument will be used in the next two lemmas: if
U ⊂ J̄ is an open Gm-invariant subset containing the central fibre J̄0, then U = J̄. Indeed, by
the properness of J̄→ B the complement of U in J̄ projects to a closed Gm-invariant subset
of B that does not contain the central point 0 ∈ B, so must be empty.

Lemma 5.3.2. The variety J̄ is smooth.

Proof. The family C→ B is a semi-universal deformation of the plane curve singularity C0

(Proposition 3.7.1). Therefore [53, Fact 4.2(ii)] implies that J̄ is smooth in a neighbourhood
of J̄0. Since the smooth locus of J̄ is open, Gm-invariant and contains J̄0, it must be the whole
of J̄.

We emphasise that the fibres of J̄→ B might be singular above points that do no lie in
Brs. In fact, we have a precise description of the smooth locus:

Lemma 5.3.3. The morphism J̄→ B is flat of relative dimension pa(C0). The smooth locus
of J̄→ B coincides with the locus of invertible sheaves.

Proof. By [53, Theorem 5.5(ii)], the morphism J̄→ B is flat in a neighbourhood of J̄0. Since
the flat locus is open and Gm-invariant, it follows that it must equal the whole of J̄. The claim
about the smooth locus is [53, Theorem 5.5(iii)].

Lemma 5.3.4. The geometric fibres of J̄→ B are reduced and connected. Consequently, J̄
is geometrically integral. Moreover, if k/Q is an algebraically closed field and b ∈ B(k) is
such that Cb is integral, then J̄b is integral.

1There are several nonequivalent definitions of a projective morphism but in this case they all agree, see [79,
Tag 0B45].

https://stacks.math.columbia.edu/tag/0B45
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Proof. Since all the fibres of C→ B have planar singularities, [53, Theorem A(i)-(iii)] shows
that J̄→ B has geometrically reduced and connected fibres. Since J̄ is B-flat, this implies
that J̄ is geometrically connected. Since J̄ is smooth, it follows that it is geometrically
irreducible. To establish the last claim, [53, Corollary 5.14] shows that the number of
irreducible components of J̄b can be calculated in terms of the intersections between the
irreducible components of Cb. This number is always 1 when Cb is irreducible, as can be
seen from [53, Definition 5.12].

For future reference, we summarise the above properties in the following theorem. Write
J̄1 for the restriction of J̄ to B1. Recall from §4.3 that J1→ B1 is the relative generalised
Jacobian of the family of integral curves C1 → B1. Note that by Lemma 5.2.5 and the
definition of J1 we have an open embedding J1→ J̄1.

Theorem 5.3.5. Let J̄→ B be a compactified Jacobian associated to some choice of E as
in Definition 5.2.4. Then the morphism J̄→ B is flat, projective and restricts to Jrs over Brs.
Its geometric fibres are reduced and connected. The scheme J̄ is geometrically integral and
smooth over Q. The smooth locus of J̄1→ B1 is isomorphic to J1→ B1. The complement of
J1 in J̄ has codimension ≥ 2.

Proof. Only the last two sentences remain to be established. The claim about the smooth
locus of J̄1 follows from Lemmas 5.2.5 and 5.3.3 and the definition of J1. For the claim
about the codimension, let Z be the complement of J1 in J̄. Then Z is supported above the
discriminant locus D of B. Moreover the fibres of the map J̄|D1 → D1 are geometrically
integral by Lemmas 4.3.2 and 5.3.4, so the fibres of the map Z|D1 → D1 have dimension
strictly less than those of J̄|D1→D1. Combining the last two sentences proves the claim.

5.4 The Białynicki-Birula decomposition of J̄

We recall the Białynicki-Birula decomposition [18] from geometric representation theory.
If k is a field and X is a scheme of finite type of k, we define a decomposition of X to be a
collection of locally closed subschemes X1, . . . ,Xn of X such that the underlying topological
space of X is a disjoint union of the underlying topological spaces of the Xi.

Proposition 5.4.1. Suppose that X is a smooth and separated scheme of finite type over a
field k, endowed with a Gm-action. Then the closed subscheme of fixed points XGm is smooth;
let F1, . . . ,Fn denote its connected components. Suppose in addition that limλ→0 λ · x exists
for every x ∈ X. Then there exists a decomposition of X into locally closed subschemes Xi

and morphisms Xi→ Fi which are affine space fibrations in the Zariski topology.
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Proof. See [43, Theorem 1.5] for a modern proof, which treats the generality in which we
have stated it. We may informally describe Xi as those points x ∈ X whose limit limλ→0 λ · x
lies in Fi, and the map Xi→ Fi as taking the limit x 7→ limλ→0 λ · x.

Corollary 5.4.2. In the setting of Proposition 5.4.1, assume furthermore that X is geometri-
cally integral and XGm is finite. Then there exists an open subset of X isomorphic to affine
space AdimX

k .

Proof. Let F1, . . . ,Fn denote the connected components of XGm; since XGm is smooth and
finite each Fi is the spectrum of a separable field extension ki of finite degree over k. Let
X1, . . . ,Xn be the decomposition of X of Proposition 5.4.1. Then each Xi is isomorphic to Ani

ki

for some integer ni ≥ 0. There exists an Xi, say X1, which is of maximal dimension dimX .
Since X1 is locally closed, it is an open subset of its closure X̄1 = X , so X1 is an open subset
of X . Since X is geometrically irreducible, the same is true for X1. This implies that X1×k k1

is irreducible, so k1 = k. Therefore X1 is isomorphic to AdimX
k .

Remark 5.4.3. The proof shows that under the assumptions of Corollary 5.4.2, X is even
decomposed into affine cells.

We will apply Corollary 5.4.2 to the compactified Jacobian J̄→ B constructed in §5.2.
Recall from §5.3 that J̄ inherits a Gm-action from C. We denote the central fibre of J̄ by J̄0.

Lemma 5.4.4. The set of Gm-fixed points J̄Gm
0 is finite.

Proof. This follows from calculations of Beauville [4, §4.1] if C0 is integral. It seems likely
that one can extend his analysis to reducible curves, but we will proceed differently. We
will assume that all schemes are base changed to a fixed algebraic closure k of Q. Let J(C0)

be the generalised Jacobian of C0 parametrising line bundles having multidegree zero, i.e.
degree zero on each irreducible component of C0. Then J(C0) is an algebraic group acting
on J̄0, compatibly with the Gm-actions on J(C0) and J̄0.

First we claim that the closure of every Gm-orbit of a point in J(C0) contains the identity.
Indeed, every point of [L] ∈ J(C0)(k) is represented by a Cartier divisor D1−deg(D1)∞1,0 +

· · ·+Dm−deg(Dm)∞m,0, where Di is a Cartier divisor supported on the smooth affine part
of the irreducible component C0,i of C0 containing ∞i,0. Since every smooth point P of C0,i

satisfies limλ→∞ λ ·P = ∞i,0 (as can be seen from the definition of the Gm-action on C0 in
§3.7 and Table 1.1), we see that λ · [L]→ 0 as λ → ∞, proving the claim.

Secondly, we claim that the action of J(C0) on J̄0 has finitely many orbits. Indeed, let
p ∈C0 be the unique singular point. Since p is an ADE-singularity, there are only finitely
many isomorphism classes of torsion-free rank-1 modules over the completed local ring
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ÔC0,p (see [44], in fact this property can be used to characterise ADE-singularities amongst
Gorenstein singularities). It therefore suffices to prove that if [F ], [G ] ∈ J̄0(k) are two
sheaves whose completed stalks at p are isomorphic, then F ≃ G ⊗L , where L is a line
bundle on C0 whose multidegree can only take finitely many values (independently of F

and G ). To prove this, consider the Hom-sheaf H = H om(F ,G ) and the endomorphism
sheaf E = E nd(F ). Since F |C0\{p} is a line bundle, E is a coherent commutative OC0-
algebra which is generically isomorphic to OC0 , and H is a coherent E -module. Since the
formation of H and E commutes with flat base change [79, Tag 0C6I], the completed stalk
Hp⊗ ÔC0,p is free of rank 1 over Ep⊗ ÔC0,p. It follows that Hp is free of rank 1 over Ep,
so the stalks Fp,Gp are isomorphic OC0,p-modules. (An isomorphism is given by choosing
an Ep-generator of Hp.) By spreading out such an isomorphism, we may find an open
subset U ⊂C0 containing p and an isomorphism φU : F |U

∼−→ G |U . The restrictions of F ,G

to C0 \ {p} are line bundles. Since C0 is connected and p is its unique singular point, the
complement C0 \U is a union of finitely many points. We may therefore find an open subset
V ⊂C0 \{p} containing those points and an isomorphism φV : F |V

∼−→ G |V . The transition
map (φV )|−1

U∩V ◦ (φU)|U∩V : F |U∩V
∼−→F |U∩V defines an element f ∈ H0(U ∩V,O×C0

). Let
L be the line bundle on C0 obtained by glueing OU and OV along the automorphism f . One
can then explicitly check that the maps

FU ⊗OU → GU : s⊗1 7→ φU(s),

FV ⊗OV → GV : s⊗1 7→ φV (s),

glue to an isomorphism F ⊗L ≃ G . The multidegree of L can only take on finitely many
values (when we vary F and G in J̄0) because of the E-stability condition imposed on
sheaves in J̄0. This completes the proof of the claim. (We thank Jesse Leo Kass for his help
with the proof of this claim.)

We now use the last two paragraphs to show that J̄Gm
0 is finite. Indeed, by the second

claim, it suffices to prove that every J(C0)-orbit contains at most one Gm-fixed point. If
x ∈ J̄Gm

0 and g ∈ J(C0) are such that g · x ∈ J̄Gm
0 , then g−1(λ ·g) lies in the stabiliser of x in

J(C0) for all λ ∈Gm. Since this stabiliser is closed, the first claim implies that it contains
limλ→∞ g−1λ ·g = g−1. Therefore g lies in the stabiliser of x, that is g · x = x. We conclude
that x is the only Gm-fixed point in the J(C0)-orbit of x.

Theorem 5.4.5. The variety J̄ has a dense open subset isomorphic to affine space Ad
Q for

some d ≥ 1.

Proof. The compactified Jacobian is a smooth, geometrically integral and quasi-projective
scheme over Q (Theorem 5.3.5). Since J̄→ B is proper and limλ→0 λ · b exists for every

https://stacks.math.columbia.edu/tag/0C6I
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b ∈ B, limλ→0 λ · x exists for every x ∈ J̄. We wish to apply Corollary 5.4.2, so it suffices to
prove that the fixed point locus J̄Gm is finite. Since BGm consists of the central point 0, it
suffices to prove that J̄Gm

0 is finite, which is exactly Lemma 5.4.4.

Remark 5.4.6. The Białynicki-Birula decomposition gives a canonical decomposition of J̄
into locally closed subschemes isomorphic to affine space. If H is of type A2g, C→ B is the
family of odd hyperelliptic curves of genus g (see Table 1.1) and this decomposition is closely
related to the Mumford representation of a point in the Jacobian of such a curve [55, IIIa]. It
would be interesting to obtain a similarly concrete interpretation of this decomposition for
other families of curves studied here.





Chapter 6

Constructing orbits

The goal of this chapter is to construct for every b ∈ Brs(Q) and every element of Sel2 Jb

a G(Q)-orbit of Vb(Q), see Corollary 6.4.2. The technical input is the Zariski triviality of
a certain universal torsor on Jrs in §6.2, see Theorem 6.2.1. This will be achieved using
generalities concerning torsors on open subsets of affine spaces developed in §6.1.

6.1 Torsors on open subsets of affine space

The purpose of this subsection is to prove the following theorem, which will be useful in the
proof of Theorem 6.2.1.

Theorem 6.1.1. Let k be a field of characteristic zero and X an open subset of An
k whose

complement has codimension ≥ 2. Let G be a reductive group over k and let T → X be
a G-torsor. Suppose that X contains a k-rational point over which T is trivial. Then T is
Zariski locally trivial.

Example 6.1.2. We illustrate Theorem 6.1.1 in the concrete case G = PGL2. If k and X
are as in the theorem, then a PGL2-torsor can alternatively be viewed as a Severi–Brauer
curve C → X. In other words, C → X is a smooth projective family of genus zero curves (i.e.
conics). Suppose that X contains a point x ∈ X(k) such that the conic Cx has a k-rational
point. Then Theorem 6.1.1 says that C is a projective bundle over X. This implies that all
the other fibres of C → X also contain a k-rational point.

Theorem 6.1.1 might be well known to experts, although we have not been able to locate
it explicitly in the literature. It will follow from a slight variant of the formalism developed
by Colliot-Thélène in [28, §1].
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Let k be a field and let F be a covariant functor from the category of local k-algebras
(with morphisms given by homomorphisms of k-algebras) to the category of pointed sets.
For any integral k-scheme X , we write

DF(X) :=
⋂

P∈X

image(F(OX ,P)→ F(k(X))) .

We interpret DF(X) as the subset of elements of F(k(X)) which have ‘good reduction’ at
every point P ∈ X . Consider the following properties of the functor F :

• We say F satisfies (S) (the specialisation property) if for every k-algebra A that is a
discrete valuation ring with fraction field K and residue field κ , two elements in F(A)
that have the same image in F(K) have the same image in F(κ).

• We say F satisfies (H) (the homotopy invariance property) if for every field extension
K/k, the natural map F(K)→ DF(A1

K) is a bijection.

The main input for the proof of Theorem 6.1.1 is the next proposition, which will occupy
the remainder of this subsection.

Proposition 6.1.3. Let X be an open subset of An
k whose complement has codimension ≥ 2.

Let F be a functor satisfying property (S) and (H). Suppose that k is infinite. Then the natural
map F(k)→ DF(X) is a bijection.

An analogue of Proposition 6.1.3 is proved in [28, Théorème 1.5], but where the functor
F takes values in abelian groups rather than pointed sets. Therefore the arguments are slightly
different at various points, and for the sake of completeness we give full details even though
all the ideas are already present in [28, §1]. The proofs of Proposition 6.1.3 and Theorem
6.1.1 are given after some preparatory lemmas.

Lemma 6.1.4. Suppose that F satisfies (S), and let (A,m) be a regular local k-algebra with
fraction field K and residue field κ . Then every two elements in F(A) that have the same
image in F(K) have the same image in F(κ).

Proof. We will prove the lemma by induction on the dimension of A. If dimA = 1, the lemma
holds by assumption (S), so suppose that dimA≥ 2. Let t ∈m be a regular parameter, and
write B = A/t. Then B is a regular local k-algebra with dimB = dimA−1 and with residue
field κ . Moreover A(t) (the localisation of A at the prime ideal (t)) is a discrete valuation
ring with fraction field K and residue field isomorphic to FracB, the fraction field of B. Let
x,y ∈ F(A) be two elements that have the same image in F(K). Since the conclusion of the
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lemma holds for the discrete valuation ring A(t) which also has fraction field K, x and y map
to the same element in F(A(t)/(t)) = F(FracB). By the induction hypothesis applied to B, x
and y have the same image in κ (the residue field of B), as required.

If f : X → Y is a dominant morphism between regular integral k-schemes, the pullback
map F(k(Y ))→ F(k(X)) restricts to a map DF( f ) : DF(Y )→ DF(X). If F satisfies (S), we
may extend this functorial assignment f 7→ DF( f ) to morphisms which are not necessarily
dominant.

Construction 6.1.5. Suppose that F satisfies (S). Let f : X → Y be a (not necessarily
dominant) morphism between regular integral k-schemes. Let η be the generic point
of X and let f (η) = P, which defines a homomorphism OY,P → k(X). Define the map
DF( f ) : DF(Y ) → DF(X) as follows: let α ∈ DF(Y ) be an arbitrary element and let
β ∈ F(OY,P) be an element mapping to α under F(OY,P)→ F(k(Y )). Define DF( f )(α)

as the image of β under F(OY,P)→ F(k(X)).

Lemma 6.1.6. Suppose that F satisfies (S). Then Construction 6.1.5 turns DF into a con-
travariant functor from the category of regular integral k-schemes to the category of pointed
sets.

Proof. We first show that DF( f )(α) does not depend on the choice of β , so is well defined.
Indeed, if β ′ ∈ F(OY,P) is another lift of α , then by Lemma 6.1.4 (which uses assumption
(S)) β and β ′ have the same image in F(k(P)), where k(P) denotes the residue field of Y at
P. Since the homomorphism OY,P→ k(X) factors through OY,P→ k(P), β and β ′ have the
same image in F(k(X)), as required.

Next we show that DF( f )(α) ∈ F(k(X)) actually lands in DF(X). Indeed, if x ∈ X with
f (x) = y, then by assumption α is the image of an element γ ∈ F(OY,y) under the map
F(OY,y)→ F(k(Y )). Since the generic point of X specialises to x, P specialises to y and
the morphism OY,y→ k(Y ) factors through OY,y→ OY,P. Therefore the image of γ under
F(OY,y)→ F(OY,P) is a lift of α to F(OY,P) and can be used to define DF( f )(α). The
commutative diagram

OY,y OY,P

OX ,x k(X)

shows that DF( f )(α) lies in the image of F(OX ,x)→ F(k(X)), as required.
Finally, the functoriality of DF follows from the construction and the functoriality of

F .
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Lemma 6.1.7. Let π : X → Y be a morphism between regular integral k-schemes. Let η

denote the generic point of Y and p : Xη → η = Speck(Y ) the generic fibre of π . Suppose
that F satisfies (S) and that:

1. π has sections Zariski locally: for each y∈Y there is an open subset U ⊂Y containing
y such that π|U : X |U →U admits a section;

2. The induced map DF(p) : F(k(Y ))→ DF(Xη) is a bijection.

Then the induced map DF(π) : DF(Y )→ DF(X) is a bijection.

Proof. Follows from a diagram chase similarly to [28, Proposition 1.3]. Indeed, let σ : U →
X be a section of π over an open subset U ⊂ Y , and let s : η → Xη be its generic fibre, a
section of p. Using the functoriality of DF , consider the following commutative diagram of
pointed sets:

DF(Y ) DF(X)

DF(U) DF(π−1(U)) DF(U)

F(k(Y )) DF(Xη) F(k(Y ))

π∗

⊆ ⊆

π∗U
⊆

σ∗

⊆ ⊆

p∗

∼
s∗
∼

Here we have written π∗ instead of DF(π) etcetera to ease notation. The map p∗ is a
bijection by assumption. Moreover s∗ ◦ p∗ = Id by functoriality, hence s∗ is a bijection too
and p∗ ◦s∗ = Id. The latter identity and functoriality again imply that π∗U and σ∗ are mutually
inverse bijections.

We prove that π∗ is a bijection. Since π∗ is the restriction of the injective map π∗U , it
is injective as well. To prove surjectivity, note that every α ∈ DF(X) has a unique lift to
F(k(Y )) under p∗ which moreover lies in DF(U). Since π has sections Zariski locally by
assumption and DF(X) equals the intersection of DF(U) where U ranges over an open cover
of X , this unique lift lies in DF(X), proving surjectivity.

Lemma 6.1.8. Suppose that k is infinite. Let X ⊂An
k be an open subset whose complement has

codimension ≥ 2. Then there exists a sequence of morphisms Xn
πn−→ ·· · → X2

π2−→ X1
π1−→ X0,

where each Xm is an open subset of Am
k , satifying the following properties:

1. Xn = X, X0 = Speck and for every m≥ 1 the complement of Xm in Am
k has codimension

≥ 2;
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2. Each πm : Xm→ Xm−1 has sections Zariski locally and has generic fibre isomorphic to
A1

η → η , where η is the generic point of Xm−1.

Proof. Apply [28, Proposition 1.4] repeatedly.

Proof of Proposition 6.1.3. Let X be an open subset of An
k whose complement has codimen-

sion ≥ 2. Choose a sequence of morphisms X = Xn
πn−→ Xn−1→ . . .

π2−→ X1
π1−→ X0 = Speck

satisfying the conclusions of Lemma 6.1.8. Since we have assumed that F satisfies (H) and
(S), we may apply Lemma 6.1.7 to obtain bijections DF(X0)

∼−→DF(X1)
∼−→ . . .

∼−→DF(Xn) =

DF(X). By functoriality of DF , the composition of these maps equals the natural map
F(k) = DF(Speck)→ DF(X), which is therefore a bijection.

Proof of Theorem 6.1.1. We claim that the functor F = H1(−,G) satisfies (S) and (H). Prop-
erty (S) follows from (a very weak form of) known cases of the Grothendieck–Serre conjec-
ture (Proposition 2.5.3). To prove Property (H), let K/k be a field extension and consider the
natural map h : F(K)→DF(A1

K). Since A1
K has a K-point, functoriality of DF (Lemma 6.1.6)

shows that h is injective. On the other hand, every element of DF(A1
K) extends to a G-torsor

on A1
K by [29, Proposition 6.8]. (Note that their definition of DG is not compatible with our

notation.) Since every G-torsor on A1
K is induced from SpecK by a result of Ranghunathan

and Ramanathan ([66, Theorem 1.1] and the remark immediately thereafter), it follows that
h is also surjective.

We may therefore apply Proposition 6.1.3, which says that the natural map F(Speck)→
DF(X) is a bijection. Let T be a G-torsor on X satisfying the assumptions of Theorem 6.1.1.
Since the generic fibre of T (which defines a class in DF(X)) is induced from F(Speck),
Corollary 2.5.4 shows that T is Zariski locally isomorphic to a G-torsor T ′ → X that is
induced from Speck. So to prove that T is Zariski locally trivial, it suffices to prove that T ′

is a trivial torsor. Since T ′ is induced from Speck, it suffices to prove that T ′ is trivial when
pulled back along a k-point of X . Since X has a k-point x ∈ X(k) above which T is trivial
and since T and T ′ are isomorphic in a neighbourhood of x, T ′ is also trivial above x, as
desired.

6.2 A universal torsor

Recall from §3.8 that Jrs→ Brs denotes the relative Jacobian of the family of smooth curves
Crs→ Brs, that Z→ B denotes the universal stabiliser of the Kostant section κ , and that there
is an isomorphism of finite étale group schemes Jrs[2]≃ Zrs over Brs.

Since Jrs→ Brs is an abelian scheme, the multiplication-by-2 map Jrs ×2−→ Jrs is a Jrs[2]-
torsor. Pushing out this torsor along the maps Jrs[2] ∼−→ Zrs ↪→G defines a G-torsor T rs→ Jrs.
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(This procedure is also called ‘changing the structure group’.) The following theorem is one
of the main technical results of this thesis, and is the essential input for constructing orbits
associated to elements of Jb(Q) (Theorem 6.3.2).

Theorem 6.2.1. The torsor T rs is Zariski locally trivial. That is, for every x ∈ Jrs there exists
an open subset U ⊂ Jrs containing x such that T rs|U is trivial.

To briefly explain why this is relevant for constructing orbits, note that if b ∈ Brs(Q)

and P ∈ Jb(Q), the image of P under the composition Jb(Q)/2Jb(Q)→ H1(Q,Jb[2])
∼−→

H1(Q,Zb)→ H1(Q,G) coincides with the isomorphism class of the pullback of T rs along
P : SpecQ→ Jrs. Theorem 6.2.1 implies that this pullback defines the trivial class in
H1(Q,G), which implies that it corresponds to a G(Q)-orbit of Vb(Q); see Theorem 6.3.2
for full details.

Proof of Theorem 6.2.1. Recall from §4 that B1 ⊂ B is an open subset containing Brs and
that the family of curves J1 → B1 is the relative (generalised) Jacobian of the family of
curves C1→ B1. By Theorem 4.4.2 the isomorphism Jrs[2]≃ Zrs extends to an isomorphism
J1[2] ≃ Z1 of quasi-finite étale group schemes over B1. The multiplication-by-two map
J1 ×2−→ J1 is a J1[2]-torsor, and pushing out this torsor along the composition J1[2] ∼−→ Z1→G
defines a G-torsor T 1→ J1. By construction, the restriction of T 1 to Jrs is isomorphic to T rs.

To prove the theorem, it suffices to prove that T 1 is Zariski locally trivial. Using known
cases of the Grothendieck–Serre conjecture (Corollary 2.5.4) it even suffices to prove that T 1

is Zariski locally trivial when restricted to a nonempty open subset of J1.
Recall from §5 that we have constructed a scheme J̄ → B containing J1 as an open

subscheme. By Theorem 5.3.5, the complement of J1 in J̄ has codimension ≥ 2; by Theorem
5.4.5, J̄ contains an open dense subscheme U isomorphic to affine Q-space. This implies
that the complement of U1 :=U ∩ J1 in U has codimension ≥ 2.

We claim that T 1|U1 is Zariski locally trivial. By Theorem 6.1.1, it suffices to prove
that T 1

x is trivial for some x ∈U1(Q). In fact, we will show the stronger statement that
{x ∈ J1(Q) | T 1

x is trivial} is Zariski dense in J1. Indeed, since J1 is a rational variety (it
contains U1 as a dense open subscheme), the set J1(Q) is dense in J1. Since the multiplication-
by-two map J1 ×2−→ J1 is dominant, the subset 2J1(Q) ⊂ J1(Q) is still dense in J1. By
construction of T 1, the pullback of T 1 along a point x ∈ 2J1(Q) is trivial. This completes the
proof of the claim, hence the proof of the theorem.
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6.3 Constructing orbits for 2-descent elements

We start by applying a well known lemma from arithmetic invariant theory recalled in §2.4
to give a cohomological description of the G-orbits of V .

Corollary 6.3.1. Let R be a Q-algebra and b ∈ Brs(R). Then the association v 7→ {g ∈ G |
g · v = κb} induces an injection

γb : G(R)\Vb(R) ↪→ H1(R,Jb[2]).

Its image coincides with the pointed kernel of the map H1(R,Jb[2])
∼−→H1(R,Zb)→H1(R,G).

Proof. We apply Lemma 2.4.2 to the action of GBrs on V rs. Indeed, the action map G×Brs→
V rs,(g,b) 7→ g ·κb is étale (Proposition 3.6.1) and it is surjective by Proposition 2.3.3. Pulling
back along b : SpecR→ Brs and using the isomorphism Jb[2]≃ Zb from Proposition 3.8.6
gives the desired bijection.

We now piece all the ingredients obtained so far together to deduce our first main theorem.

Theorem 6.3.2. Let R be a local Q-algebra (for example, a field of characteristic zero) and
b ∈ Brs(R). Then the image of the 2-descent map Jb(R)/2Jb(R)→ H1(R,Jb[2])≃ H1(R,Zb)

lies in the image of γb of Corollary 6.3.1. Consequently, there is a canonical injection

ηb : Jb(R)/2Jb(R) ↪→ G(R)\Vb(R)

compatible with base change.

Proof. By Corollary 6.3.1, it suffices to prove that the composition Jb(R)/2Jb(R)→H1(R,Jb[2])≃
H1(R,Zb)→H1(R,G) is trivial. Recall that in §6.2 we have constructed a G-torsor T rs→ Jrs

such that its pullback along a point P : SpecR→ Jrs defines a G-torsor T rs
P → SpecR whose

isomorphism class equals the image of P under the above composite map. Since T rs is
Zariski locally trivial by Theorem 6.2.1, T rs

P is Zariski locally trivial. Since R is a local ring,
it follows that T rs

P is trivial. This completes the proof.

Remark 6.3.3. In the proof of Theorem 6.2.1 we have shown the stronger statement that the
torsor T 1→ J1 (a natural extension of T rs to J1) is Zariski locally trivial. A straightforward
adaption of the proof of Theorem 6.3.2 then shows that if R is a local ring and b ∈ B1(R)
(instead of b ∈ Brs(R)), then there exists an injection J1

b(R)/2J1
b(R) ↪→G(R)\V reg

b (R). We do
not know if this observation is useful.
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6.4 Constructing orbits for 2-Selmer elements

The next proposition might be well known to experts — see for example [61, Remark after
Theorem 6.22] — but we believe it deserves to be stated explicitly. We slightly deviate
from our standing notation and allow G to be an arbitrary split semisimple group in this
proposition.

Proposition 6.4.1. Let G be a split semisimple group over a number field k. Then the kernel
of H1(k,G)→∏v H1(kv,G) (where v runs over all places) is trivial.

Proof. We have an exact sequence

1→ µ → Gsc→ G→ 1

where Gsc is simply connected and µ is a finite subgroup of a split torus (i.e. a product
of µn’s). This sequence induces a long exact sequence in nonabelian cohomology. Let
α ∈ H1(k,G) be a class with αv = 1 for all v. Since H2(k,µ)→∏v H2(kv,µ) is injective by
the Hasse principle for the Brauer group, we see that α lifts to a class β ∈ H1(k,Gsc). Since
µ is a central subgroup of Gsc, any other lift of α is given by λβ , where λ ∈ H1(k,µ) is a
cocycle. We will show that we can choose λ so that λβ is trivial. By the Hasse principle
for simply connected groups [61, Theorem 6.6], the map H1(k,Gsc)→ ∏v H1(kv,Gsc) is
injective. (This map is even bijective.) If v is a finite or complex place, then H1(kv,Gsc)

is trivial [63, Theorem 5.12.24(b)]. If v is real then βv ∈ H1(kv,Gsc) has trivial image in
H1(kv,G) so comes from an element of H1(kv,µ). Since H1(k,µ)→ ∏v real H1(kv,µ) is
surjective (this follows from the case µ = µn), we may choose λ ∈ H1(k,µ) such that
λvβv = 1 for every real place v. This implies that λβ is trivial, as required.

Corollary 6.4.2. Let k be a number field and b ∈ Brs(k). Let Sel2 Jb be the 2-Selmer group
of the abelian variety Jb/k. Then Sel2 Jb ⊂ H1(k,Jb[2]) is contained in the image of γb.
Consequently, the injection ηb from Theorem 6.3.2 extends to an injection

Sel2 Jb ↪→ G(k)\Vb(k).

Proof. We have a commutative diagram for every place v:

Jb(k)/2Jb(k) H1(k,Jb[2]) H1(k,G)

Jb(kv)/2Jb(kv) H1(kv,Jb[2]) H1(kv,G)

δ

δv
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By Corollary 6.3.1 it suffices to prove that 2-Selmer elements in H1(k,Jb[2]) are killed under
the composition H1(k,Jb[2])

∼−→ H1(k,ZG(κb))→ H1(k,G). By definition, an element of
Sel2 Jb consists of a class in H1(k,Jb[2]) whose restriction to H1(kv,Jb[2]) lies in the image
of δv for every place v. So by Theorem 6.3.2 the image of such an element in H1(kv,G) is
trivial for every v. Proposition 6.4.1 completes the proof.

6.5 Reducible orbits and marked points

Recall from Definition 3.6.2 that an element of V rs(k) is k-reducible if it is G(k)-conjugate
to a Kostant section. Recall from §3.7 that ∞1, . . . ,∞m denote the set of marked points of
C→ B.

Proposition 6.5.1. Let k/Q be a field and b∈Brs(k). Then the image under ηb : Jb(k)/2Jb(k) ↪→
G(k)\Vb(k) of the subgroup of Jb(k)/2Jb(k) generated by {∞2−∞1, . . . ,∞m−∞1} coincides
with the set of k-reducible G(k)-orbits of Vb(k). Moreover, the set of k-reducible G(k)-orbits
has the maximal size 2m−1 if and only if the inclusion ZG(κb) ⊂ ZHθ (κb) is surjective on
k-points.

Proof. The proof is very similar to [71, Lemma 2.11]. Let K be an algebraic closure of k.
For a scheme X/k we write H1(X ,F2) := Hom(H1

et(XK,F2),F2), where H1
et denotes étale

cohomology. We have an exact sequence of étale homology groups

1→ µ
m
2 /∆(µ2)→ H1(C◦b ,F2)→ H1(Cb,F2)→ 1. (6.5.1)

Let Hsc→ H be the simply connected cover of H and let CHsc be the centre of Hsc. By [83,
Theorem 4.10], the sequence (6.5.1) is isomorphic to

1→CHsc[2]→ ZHθ
sc
(κb)→ ZG(κb)→ 1. (6.5.2)

It follows that the duals of these sequences are also isomorphic. We will calculate these duals
and their connecting maps in Galois cohomology.

The dual of (6.5.1) is isomorphic to

1→ Jb[2]→ H1
et(C

◦
b,K,F2)→ (µm

2 )Σ=0→ 1. (6.5.3)

Here we use the identification Jb[2] = H1
et(Cb,K,F2), and (µm

2 )Σ=0 denotes the subset of µm
2

of elements summing to zero. An explicit calculation shows that the image of the connecting
map (µm

2 )Σ=0(k)→ H1(k,Jb[2]) coincides with the image of the subgroup of Jb(k)/2Jb(k)
generated by {∞2−∞1, . . . ,∞m−∞1} under the 2-descent map Jb(k)/2Jb(k) ↪→H1(k,Jb[2]).
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On the other hand, we claim that the dual of (6.5.2) is isomorphic to

1→ ZG(κb)→ ZHθ (κb)→ π0(Hθ )→ 1. (6.5.4)

Indeed, the identification of the first two terms follows from [83, Corollary 2.9] and the
existence of a nondegenerate pairing on ZG(κb) [83, Corollary 2.12]. It follows from Lemma
3.3.4 that we may identify the last term with π0(Hθ ). Next, we claim that the image of the
connecting map π0(Hθ )→ H1(k,ZG(κb)) coincides with the image of the k-reducible orbits
in Vb(k) under the map G(k)\Vb(k) ↪→ H1(k,ZG(κb)) from Lemma 2.4.2. Indeed, consider
the commutative diagram

G(k)\Vb(k) Hθ (k)\Vb(k)

H1(k,ZG(κb)) H1(k,ZHθ (κb))

where the horizontal maps are induced by the inclusions G ⊂ Hθ and ZG(κb) ⊂ ZHθ (κb),
and the vertical maps arise from Lemma 2.4.2. It follows from Corollary 3.3.2 that the
map H1(k,G)→ H1(k,Hθ ) has trivial pointed kernel. Moreover all k-reducible elements in
Vb(k) are Hθ (k)-conjugate by Proposition 3.5.1. Therefore the set of k-reducible G(k)-orbits
corresponds to the kernel of H1(k,ZG(κb))→H1(k,ZHθ (κb)) which, using (6.5.4), coincides
with the image of the map π0(Hθ )→ H1(k,ZG(κb)). This proves the claim and the first part
of the proposition.

To prove the remaining part, note that there are 2m−1 k-reducible orbits if and only if
the map (µm

2 )Σ=0(k)→ H1(k,Jb[2]) is injective. By considering the long exact sequences
associated to the isomorphic sequences (6.5.3) and (6.5.4), this is equivalent to the surjectivity
of H0(k,ZG(κb))→ H0(k,ZHθ (κb)).



Chapter 7

Integral representatives

In this chapter we introduce integral structures for G and V and prove that for large primes p,
the image of the map from Theorem 6.3.2 applied to R =Qp lands in the orbits which admit
a representative in Zp. See Theorem 7.2.4 for a precise statement. In §7.6, we deduce an
integrality result for orbits over Q (as opposed to orbits over Qp).

7.1 Integral structures

So far we have considered properties of the pair (G,V ) over Q. In this subsection we define
these objects over Z.

Indeed, the pinning of H chosen in §3.1 extends to a Chevalley basis of h (in the sense
of [22, §1.2]), hence a Z-form h. This determines a Z-form g∩ h of g, and the Z-lattice
V = V ∩ h is admissible [22, Definition 2.2] with respect to this form (the admissibility
follows from [22, Proposition 2.6]). Define G as the Zariski closure of G in GL(V ). The
Z-group scheme G has generic fibre G and acts faithfully on the free Z-module V .

Let H be the unique split reductive group over Z extending H. The automorphism
θ : H→ H extends by the same formula to an automorphism H→ H, still denoted by θ .

Lemma 7.1.1. 1. G is a split reductive group over Z.

2. The equality (Hθ )◦ = G extends to an isomorphism (Hθ

Z[1/2])
◦ ≃ GZ[1/2], where

(Hθ

Z[1/2])
◦ is the relative identity component of Hθ

Z[1/2].

Proof. For the first claim, since G is Q-split it suffices to prove that G→ SpecZ is smooth
and affine and that its geometric fibres are connected reductive groups. But G is Z-flat and
affine by construction, and its geometric fibres are reductive by [22, §4.3] hence smooth. The
second claim follows from the fact that (Hθ

Z[1/2])
◦ is a reductive group scheme of the same

type as GZ[1/2], which follows from [30, Remark 3.1.5].



62 Integral representatives

Recall from §3.7 that we have fixed polynomials pd1 , . . . , pdr ∈ Q[V ]G satisfying the
conclusions of Proposition 3.7.1. Note that those conclusions are invariant under the Gm-
action on B. By rescaling the polynomials pdi using this Gm-action, we can assume they lie in
Z[V ]G. We may additionally assume that the discriminant ∆ from §4.1 lies in Z[V ]G. Define
B := SpecZ[pd1, . . . , pdr ] and Brs := B[∆−1]. Taking invariants defines a map π : V → B.

We extend the family of curves given by the equation in Table 1.1 to the family C→ B
given by that same equation.

Proposition 7.1.2. G has class number 1: G(A∞) = G(Q)G(Ẑ).

Proof. The group G is the Zariski closure of G in GL(V ) and in a suitable basis of V , G
contains a maximal Q-split torus consisting of diagonal matrices in GL(V ). Therefore G
has class number 1 by [61, Theorem 8.11; Corollary 2] and the fact that Q has class number
one.

7.2 Spreading out

Our constructions and theorems for (G,V ) of the previous chapters will continue to be valid
over Z[1/N] for some appropriate choice of integer N, in a sense we will now explain.

Let us call a positive integer N admissible if the following properties are satisfied (set
S := Z[1/N]):

1. Each prime dividing the order of the Weyl group of H is a unit in S. (In particular, 2 is
a unit in S.)

2. The zero locus DS → SpecS of the discriminant ∆ is flat and its smooth locus D1
S

coincides with the regular locus of DS. Moreover, the nonsmooth locus of DS→ SpecS
is flat over SpecS.

3. The morphism CS→ BS is smooth exactly above Brs
S .

4. The affine curve C◦S is a closed subscheme of V S and the action map GS×C◦S →
V S,(g,x) 7→ g · x is smooth.

5. For a field k of characteristic not dividing N, b ∈D1(k) if and only if every semisimple
lift v ∈V b(k) has centraliser ZH(v) of semisimple rank 1, if and only if the curve Cb

has a unique nodal singularity. In that case, the curve Cb is geometrically integral.

6. There exists open subschemes V rs⊂V reg⊂V S such that if S→ k is a map to a field and
v ∈V (k) then v is regular if and only if v ∈V reg(k) and v is regular semisimple if and
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only if v ∈V rs(k). Moreover, V rs is the open subscheme defined by the nonvanishing
of the discriminant polynomial ∆ in V S.

7. The morphism π : V S→ BS is smooth exactly at V reg.

8. S[V ]G = S[pd1, . . . , pdr ]. The Kostant section κ fixed in §3.7 extends to a section
κ : BS→V reg of π satisfying the following property: for any b ∈ B(Z)⊂ BS(S), we
have κN·b ∈V (Z). Moreover, each G(Q)-orbit of Kostant sections has a representative
which satisfies the same property.

9. Let B1 be the complement of the singular locus of D in B. Then the action map
GS×BS→V reg,(g,b) 7→ g ·κb is étale and its image contains V reg|B1

S
.

10. Let J1
S→ BS denote the relative generalised Jacobian of the family of integral curves

CS|B1
S
→ B1

S [23, §9.3, Theorem 1] and let Jrs
S → Brs

S denote its restriction to Brs
S .

Let ZS → BS be the centraliser of the Kostant section κ in GS. Then there is an
isomorphism Jrs

S [2]≃ Zrs
S of finite étale group schemes over Brs

S whose restriction to
Brs is the isomorphism of Proposition 3.8.6. It extends to an isomorphism J1

S[2]≃ Z1
S.

11. The B-scheme J̄ constructed in §5 extends to a BS-scheme J̄S → BS which is flat,
projective, with geometrically integral fibres and whose restriction to Brs

S is isomorphic
to Jrs

S . Moreover, J̄S→ S is smooth with geometrically integral fibres, and the smooth
locus of the morphism J̄S → BS is an open subscheme of J̄S whose complement is
S-fibrewise of codimension at least two.

12. The G-torsor T → Jrs from §6.2 extends using the same definition to a GS-torsor
T S→ Jrs

S , and T S is Zariski locally trivial.

It might be possible to construct an explicit admissible integer for every pair (G,V ). We
will content ourselves with the following:

Proposition 7.2.1. There exists an admissible integer N.

Proof. The proof is very similar to the proof of [48, Proposition 4.1]. It follows from the
results of the previous chapters and the principle of spreading out [63, §3.2]. It suffices to
treat every property individually. We only treat a few properties in detail, but refer in each
case to the corresponding property over Q.

1. Take N to be the product of all the primes dividing the Weyl group of H.
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2. We first choose N large enough such that DS→ SpecS is flat. In that case, let U sm⊂DS

be the smooth locus of DS→ SpecS and let U reg ⊂DS be the regular locus of DS. Then
both U sm and U reg are open subsets of DS (for U reg this uses the excellence of DS)
which coincide over Q. It follows that they must coincide over an open subset S′ ⊂ S
by spreading out. By shrinking S′, we may additionally suppose that the nonsmooth
locus of DS′ → SpecS′ is flat over SpecS′.

3. We first choose an N such that CS → BS is flat and proper. The locus of BS above
which the morphism CS→ BS is smooth is an open subscheme which coincides with
the open subscheme Brs

S after base change to Q by Lemma 3.7.2. Again by spreading
out, we can enlarge N such that these two open subschemes coincide over S.

4. Follows from the definition of C◦ in §3.7 and the smoothness of the action map
G×C◦→V (Proposition 3.7.1).

5. Follows from Theorem 4.4.1.

6. We will construct open subschemes hrs
S ⊂ hreg

S ⊂ hS with similar properties; the sub-
schemes V rs ⊂V reg ⊂V S will be obtained by restricting them to V S. Let Z→ h be the
universal centralizer of the adjoint action of H on h, so Z = ZH(Idh). If k is any field
and x ∈ h(k) then by definition x is regular if and only if the dimension of Zx equals
rankH. By [39, Théorème 13.1.3] and the fact that the dimension of a group scheme
can be computed at the identity, the function x 7→ dimZx is upper-semicontinuous on
h. So the locus hreg where the fibre has dimension rankH is an open subscheme of h.
Let Zreg→ hreg be the restriction of Z to hreg. By [70, Remark 4.4.2], the morphism
Zreg

S → hreg
S is smooth for some N. In that case the locus hrs

S where the fibres are tori is
an open subscheme of hreg

S [2, Exposé X; Corollaire 4.9], as required. The statement
about the discriminant locus follows from spreading out.

7. Follows from Lemma 3.1.2.

8. Note that Z[V ]G is a finitely generated Z-algebra by [74, Theorem 2] and the fact
that G is reductive over Z. Moreover it contains the subring Z[pd1, . . . , pdr ]. Since
this inclusion of finitely generated Z-algebras is an equality after tensoring with Q,
the same holds after tensoring with Z[1/N] for some N. The claim about the Kostant
section follows from considering the denominators of the morphism κ : B→ V and
spreading out.
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Property 9 follows from Propositions 3.6.1 and 4.2.4; Property 10 follows from Proposition
3.8.6 and Theorem 4.4.2; Property 11 follows from Theorem 5.3.5; finally Property 12
follows from Theorem 6.2.1.

For the remainder of the thesis, we fix an admissible integer N and continue to write
S = SpecZ[1/N]. Moreover, to simplify notation, we will drop the subscript ()

S
and write

G,V,B,J,C . . . for GS,V S,BS,JS,CS . . . .
Using these properties, we can extend our previous results to S-algebras rather than

Q-algebras. We mention in particular:

Proposition 7.2.2 (Analogue of Corollary 6.3.1). Let R be an S-algebra and b ∈ Brs(R).
Then we have a natural bijection of pointed sets:

G(R)\Vb(R)≃ ker
(
H1(R,Jb[2])→ H1(R,G)

)
. (7.2.1)

Proposition 7.2.3 (Analogue of Theorem 6.3.2). Let R be a local S-algebra and b ∈ Brs(R).
Then there is an injective map

ηb : Jb(R)/2Jb(R) ↪→ G(R)\Vb(R)

compatible with base change on R.

We are now ready to state the main theorem of this chapter whose proof will be given at
the end of §7.5. Write Ep for the set of all b ∈ B(Zp) that lie in Brs(Qp). It consists of those
elements of B(Zp) of nonzero discriminant.

Theorem 7.2.4. Let p be a prime not dividing N. Then for any b ∈ Ep, the image of the map

ηb : Jb(Qp)/2Jb(Qp)→ G(Qp)\Vb(Qp)

from Theorem 6.3.2 is contained in the image of the map V (Zp)→ G(Qp)\V (Qp).

7.3 Some stacks

For technical purposes related to the proof of Theorem 7.2.4, we need to introduce some
stacks relevant to our setup. This can be seen as an attempt to ‘geometrise’ the set of G-orbits
of V , and allows for more flexibility in glueing and descent arguments. Hopefully we soothe
the reader by mentioning that we will not need any serious properties of stacks, and we
mainly think of them as collections of groupoids where one can glue objects suitably. All



66 Integral representatives

stacks introduced in this thesis are considered in the étale topology. Recall from §7.2 that we
have fixed an admissible integer N and we have set S = Z[1/N].

Definition 7.3.1. Let BG = [SpecS/G] be the classifying stack of G. By definition, for any
S-scheme X the groupoid BG(X) has as objects G-torsors over X. Morphisms are given by
isomorphisms of G-torsors.

Definition 7.3.2. Let M = [G\V ] be the quotient stack of V by the natural G-action on V .
By definition, for any S-scheme X an object of M (X) consists of a G-torsor T → X together
with a G-equivariant morphism φ : T → V . A morphism between two objects (T,φ) and
(T ′,φ ′) consists of an isomorphism α : T → T ′ of G-torsors satisfying φ ′ ◦α = φ .

Finally, recall that Z→ B denotes the centraliser of the Kostant section κ , an extension
of the group scheme of Definition 3.8.1 to S. Consider the quotient stack [B/Z], where Z acts
trivially on B. For any B-scheme X , an X-point of [B/Z] (X) consists of a Z-torsor on X .

These stacks come with a few natural maps between them:

• M → BG: sends a pair (T,φ) to the G-torsor T .

• M → B: sends a pair (T α−→ X ,T
φ−→V ) to the unique morphism X

f−→ B fitting in the
commutative diagram:

T V

X B

φ

α π

f

(Here π denotes the invariant map, and the existence and uniqueness of f follows from
étale descent.) We will often regard M as a stack over B. In particular, if b ∈ B(X) is
an X-point we write Mb for the pullback of M along this point; it is isomorphic to
[G\Vb].

• V →M : sends an X-point X v−→V to (G×X ,φv), where φv : G×X →V sends (g,x)
to g · v(x).

• There is a substack [B/Z] ↪→M obtained by ‘twisting’ the Kostant section. For any
B-scheme X , its image consists of those elements of M that are étale locally conjugate
to κb. (Or rather its image under V →M .)

If G is a groupoid, we write π0G for its set1 of isomorphism classes.

1Assuming it is a set, which will always be the case in this thesis.
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Lemma 7.3.3. Let b be an X-point of B. The map Vb(X)→Mb(X) induces a bijection
between the G(X)-orbits of Vb(X) and elements of π0(Mb(X)) that map to the trivial element
in π0(BG(X)).

Proof. This follows formally from the definitions. Indeed, if v,v′ ∈Vb(X) give rise to iso-
morphic elements (G×X ,φv) and (G×X ,φv′) in Mb(X), then there exists an isomorphism
G×X ∼−→ G×X of G-torsors mapping φv to φv′ . Such an isomorphism is defined by multi-
plying an element of G(X), so v and v′ are G(X)-conjugate. The argument can be reversed,
so we obtain an injection G(X)\Vb(X) ↪→ π0(Mb(X)). Since an object (T,φ) of Mb(X)

is isomorphic to (G×X ,φv) for some v ∈ Vb(X) if and only if T is the trivial torsor, we
conclude.

The next lemma can be interpreted as a categorical version of Corollary 6.3.1.

Lemma 7.3.4. The inclusion [B/Z] ↪→M induces an isomorphism of stacks [Brs/Zrs]≃M rs

over Brs.

Proof. It suffices to prove that for any B-scheme X and b ∈ Brs(X), every two objects in
Mb(X) are étale locally isomorphic. (For then every object will be étale locally isomorphic to
the Kostant section.) By passing to an étale extension, we may assume that these objects map
to the trivial element in π0(BG(X)). It therefore suffices to prove that every two elements
of V rs

b (X) are étale locally G(X)-conjugate. This is true, since G×Brs→V rs is smooth and
surjective so has sections étale locally; see Part 9 of §7.2.

Let M reg ⊂M be the open substack consisting of those objects (T,φ) of M (X) such
that φ lands in the locus of regular elements V reg, and all morphisms between them. Note
that the map [B/Z]→M factors through M reg by (a spreading out of) Part 2 of Proposition
3.6.1.

Lemma 7.3.5. The inclusion [B/Z] ↪→M reg induces an isomorphism of stacks [B1/Z1]≃
M reg|B1 over B1.

Proof. By the same reasoning as the proof of Lemma 7.3.4, it suffices to prove that G×B1→
V 1,reg is smooth and surjective. This follows from Part 9 of §7.2, which is a spreading out of
Propositions 3.6.1 and 4.2.4.

The next useful lemma is a purity result for the stack M .

Lemma 7.3.6. Let X be a regular integral 2-dimensional scheme, let U ⊂ X be an open
subscheme whose complement is finite and let b ∈ B(X). Then the restriction Mb(X)→
Mb|U (U) is an equivalence of categories.
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Proof. We will use the following fact [29, Lemme 2.1(iii)] repeatedly: if Y is an affine
X-scheme of finite type, then restriction of sections Y (X)→ Y (U) is bijective. To prove

essential surjectivity, let (TU ,TU
φU−→Vb) be an object of Mb|U (U). By [29, Théoreme 6.13],

the G-torsor TU →U extends to a G-torsor T on X . By the fact above applied to Y = Vb,
φU uniquely extends to a morphism φ : T → Vb. The uniqueness of φ guarantees that φ

is G-equivariant. Since the scheme of isomorphisms IsomM (A ,A ′) between two objects
of Mb(X) is X-affine, fully faithfulness follows from the fact applied to this isomorphism
scheme.

7.4 Orbits of square-free discriminant

In this subsection we study orbits of square-free discriminant, which will be useful in the
proof of Theorem 7.2.4 and in Chapter 9. For the remainder of §7.4, we fix a discrete
valuation ring R with fraction field K, uniformiser π , residue field k and normalised discrete
valuation ordK : K×↠ Z. We assume that the integer N fixed in §7.2 is a unit in R.

Lemma 7.4.1. Suppose that b ∈ B(R) satisfies ordK(∆(b)) = 1. Then bk ∈ D1(k).

Proof. We may assume that R is complete. Since ∆(b) reduces to 0 ∈ k, we have bk ∈
D. Since ∆(b) is a uniformiser of R, the quotient of the regular ring H0(BR,OBR) =

R[pd1, . . . , pdr ] by the maximal ideal (pd1 − pd1(b), . . . , pdr − pdr(b),∆) is isomorphic to
k. Therefore the elements {pd1− pd1(b), . . . , pdr − pdr(b),∆} form a regular system of pa-
rameters at bk. Hence DR = SpecR[{pdi}]/(∆) is regular at bk. We conclude that bk is a
regular point of DR. To prove the lemma, it suffices to prove that the regular locus of DR

coincides with the smooth locus D1
R of DR→ SpecR.

Indeed, let Z ⊂ D be the nonsmooth locus of D→ SpecS, which coincides with the
nonregular locus of D and is S-flat by Part 2 of §7.2. Let Z′ be the nonregular locus of DR,
which is closed by the excellence of R. Since taking the smooth locus commutes with base
change, ZR agrees with the nonsmooth locus of DR→ SpecR. It therefore suffices to show
that ZR = Z′. Since every smooth point of DR→ SpecR is regular, Z′ ⊂ ZR. To prove the
opposite inclusion, let L be the prime subfield of K, in other words the residue field of the
image of SpecK→ SpecS. Since L is perfect, ZL is the nonregular locus of DL and every
point of DL \ZL is geometrically regular. It follows that ZK is the nonregular locus of DK

and so ZK = Z′K . Since Z is S-flat by assumption, ZR is R-flat so ZK is dense in ZR. Since Z′

contains the closure of Z′K = ZK which is ZR, we conclude that ZR ⊂ Z′.

Lemma 7.4.2. Suppose that b ∈ B(R) satisfies ordK(∆(b)) = 1. Then the scheme Vb is
regular.
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Proof. The idea of the proof is to reduce the statement to sl2; this will be achieved by a
sequence of standard but somewhat technical reduction steps. Since regularity can be checked
after étale extensions and completion, we may assume that R is complete and k is separably
closed. By Lemma 7.4.1, bk ∈ D1(k). Let v ∈ Vb(k) be a semisimple element. Then the
centraliser ZH(v) is a reductive group of semisimple rank one (Part 5 of §7.2).

We claim that there exists a lift ṽ ∈V (R) of v such that ṽK ∈V (K)⊂ h(K) is semisimple
and such that the group scheme ZH(ṽ)→ SpecR is smooth with connected fibres. Indeed, let
c ⊂Vk be a Cartan subspace containing v (here we use the extension of Vinberg theory to
positive characteristic of [51]). Let x ∈V (R) be a lift of some regular semisimple element
in c. Then xK is regular semisimple (this being an open condition) and its centraliser
c̃ := zh(x)⊂VR is a Cartan subspace lifting c. Since k is separably closed, c is a split Cartan
subalgebra; since R is complete the same is true for c̃. We may therefore choose an element
ṽ∈ c̃ lifting v that vanishes on the same roots of c as v; this ṽ will satisfy the desired properties.
The smoothness of the centraliser L := ZH(ṽ)→ SpecR follows from the fact that it coincides
with the centraliser of a subtorus (of the form considered in [30, Lemma 4.1.3]) and that torus
centralisers are smooth [30, Lemma 2.2.4]. The connectedness of the fibres follows from
Lemma 2.1.2, whose proof continues to hold if the characteristic of k is not a torsion prime
for h, which is weaker than our assumption that the order of the Weyl group is invertible in k
(Part 1 of §7.2).

The involution θ : h→ h restricts to a stable involution of the Lie algebra l of L by [83,
Lemma 2.5]. We claim that the morphism of R-schemes G× lθ=−1→ VR,(g,x) 7→ g · x is
smooth. Since the domain and target are R-flat, it suffices to check this R-fibrewise [34,
(I.7.4)]. This then follows from [83, Proposition 4.5] (noting that X1 = lθ=−1 in this case),
whose proof continues to hold when the characteristic of k does not divide the order of the
Weyl group of H.

Let l πL−→ BL := l //L be the GIT quotient and let φ : BL → B the map induced by the
inclusion l ⊂ h. Since φ is étale at πL(v) ∈ BL(k) (Lemma 2.1.3), the R-point b ∈ B(R)
uniquely lifts to an R-point bL ∈ BL(R) satisfying bL,k = πL(v). Since bL is open in the fibre
φ−1(b), lbL := π

−1
L (bL) is an open subscheme of l∩hb. Using the previous paragraph, this

implies that the action map m : G× lθ=−1
bL

→Vb is smooth. We claim that m is also surjective.
By Part 9 of §7.2, the image of m contains the set V reg

b of regular elements (in the sense of
Lie theory). The complement Vb \V reg

b consists of the semisimple elements of the special
fibre Vb,k. Since all such semisimple elements are G(k̄)-conjugate and since the image of m
contains v, we conclude that m is surjective.

Since regularity is a smooth-local property [79, Tag 036D], the smooth surjective mor-
phism m shows that it suffices to prove that lθ=−1

bL
is a regular scheme. We now make l more

https://stacks.math.columbia.edu/tag/036D
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explicit. Since 2 is invertible in R and since L is reductive of semisimple rank 1, l= Z(l)⊕ lder,
where Z(l) and lder are the centre and the derived subalgebra of l respectively. Since k is
separably closed, lder ≃ sl2,R. We claim that any two stable involutions on l are étale locally
conjugate. Indeed, the subscheme of elements of L mapping one such involution to another
is smooth, so to prove that it has sections étale locally we merely have to show it surjects
on SpecR, which follows from a spreading out of Lemma 2.3.2. (See [47, Proposition 5.6]
for the proof of a similar statement.) Therefore we may assume that in the decomposition
l≃ Z(l)⊕ sl2,R, θ corresponds to the standard stable involution Ad((1,−1)) of sl2,R and to
−1 on Z(l). Moreover if ∆L denotes the discriminant polynomial of l then ∆L(bL) equals
∆(b) up to a unit in R (Lemma 2.1.3). We may now calculate that lθ=−1

bL
is isomorphic to the

scheme (xy = ∆L(bL)). This scheme is regular since ∆(b) and hence ∆L(bL) is a uniformiser
of R.

Lemma 7.4.3. Let b ∈ B(R) with ordK(∆(b)) = 1. Then Cb is regular and its geometric
special fibre is integral and has a unique singularity, which is a node. Moreover, the group
scheme J1

b → SpecR (where J1 is introduced in §4.3) is the Néron model of its generic fibre.

Proof. By Lemma 7.4.2 the scheme Vb is regular. Moreover since C◦ is (the spreading out
of) a transverse slice of the G-action on V , the map G×C◦b →Vb is smooth (Part 4 of §7.2).
Since regularity is smooth-local, it follows that C◦b is a regular scheme. Since Cb is smooth in
a Zariski neighbourhood of the marked points ∞i,b, the scheme Cb is regular too. We have
bk ∈ D1(k) by Lemma 7.4.1. Therefore the special fibre Cbk is geometrically integral and has
a unique nodal singularity (Part 5 of §7.2). The claim about J1

b follows from the regularity of
Cb and a result of Raynaud [23, §9.5, Theorem 1].

The next theorem is not necessary for the proof of Theorem 7.2.4, but completely
determines the integral orbits in the case of square-free discriminant and will be useful in
§8.10 and Chapter 9.

Theorem 7.4.4. Let R be a discrete valuation ring in which N is a unit. Let K = FracR
and let ordK : K×↠ Z be the normalised discrete valuation. Let b ∈ B(R) and suppose that
ordK ∆(b)≤ 1. Then:

1. If x ∈Vb(R), then ZG(x)(K) = ZG(x)(R).

2. The natural map α : G(R)\Vb(R)→ G(K)\Vb(K) is injective and its image contains
ηb (Jb(K)/2Jb(K)).

3. If furthermore R is complete and has finite residue field then the image of α equals
ηb (Jb(K)/2Jb(K)).
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Proof. If ordK ∆(b) = 0, Jb is smooth and proper over R. Since ZG(x) is finite étale over R,
the first part follows. By Proposition 7.2.2 and Lemma 7.4.5 below, α is injective. Proposition
7.2.3 and the equality Jb(K) = Jb(R) implies that ηb : Jb(K)/2Jb(K)→ G(K)\Vb(K) factors
through G(R)\Vb(R), so the second part follows. If R is complete and the residue field k
is finite, the pointed sets H1(R,G) and H1(R,Jb) are trivial by [54, III.3.11(a)] and Lang’s
theorem. The third part then follows from the fact that the 2-descent map Jb(R)/2Jb(R)→
H1(R,Jb[2]) is an isomorphism.

We now assume that ordK ∆(b) = 1. Then bk ∈D1(k) by Lemma 7.4.1. By Lemma 7.4.3,
Cb/R is regular, has geometrically integral fibres and its special fibre has a unique nodal
singularity. By the same lemma the group scheme J1

b/R introduced in §4.3 is the Néron
model of its generic fibre. Moreover we have an isomorphism Z1

b ≃ J1
b [2] of quasi-finite étale

group schemes over R by Theorem 4.4.2 (or rather its spreading out, Part 10 of §7.2).
By Lemmas 7.4.2 and 3.1.2 (and the spreading out of the latter, Part 7 of §7.2) the scheme

Vb is regular and the smooth locus of the morphism Vb→ SpecR coincides with the locus
V reg

b of regular elements of Vb (this time in the sense of Lie theory). Since a section of a
morphism between regular schemes lands in the smooth locus [23, §3.1, Proposition 2], we
see that Vb(R) =V reg

b (R). By Part 9 of §7.2, the morphism G×SpecR→V reg
b ,(g,b) 7→ g ·κb

is a torsor under the group scheme Z1
b from §4.2. By Lemma 2.4.2 we obtain a bijection of

pointed sets

G(R)\Vb(R) = G(R)\V reg
b (R)≃ ker(H1(R,J1

b [2])→ H1(R,G)). (7.4.1)

We now prove the first part of the theorem. Since x ∈V reg
b (R) is étale locally G-conjugate to

κb by the previous paragraph, we may assume that x = κb. But then ZG(κb) = Z1
b ≃ J1

b [2]
and J1

b satisfies the Néron mapping property, so J1
b [2](R) = J1

b [2](K).
To prove the remaining parts, note that the map H1(R,J1

b [2])→ H1(K,J1
b [2])) is injective

(Lemma 7.4.5 below), so by (7.4.1) the map G(R)\Vb(R)→G(K)\Vb(K) is injective too. To
show that the image of G(R)\Vb(R)→ G(K)\Vb(K) contains ηb (Jb(K)/2Jb(K)), note that
we have an exact sequence of smooth group schemes

0→ J1
b [2]→ J1

b
×2−→ J1

b → 0,

since J1
b has connected fibres. This implies the existence of a commutative diagram:

J1
b(R)/2J1

b(R) Jb(K)/2Jb(K)

H1(R,J1
b [2]) H1(K,Jb[2])

=
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It therefore suffices to prove that every element in the image of the map J1
b(R)/2J1

b(R)→
H1(R,J1

b [2]) has trivial image in H1(R,G). This is true, since the pointed kernel of the map
H1(R,G)→ H1(K,G) is trivial (Proposition 2.5.3).

If R has finite residue field then [54, III.3.11(a)] and Lang’s theorem imply that H1(R,G)=

{1}. In this case the G(R)-orbits of Vb(R) are in bijection with H1(R,J1
b [2]) by (7.4.1). The

triviality of H1(R,J1
b) (again by Lang’s theorem) shows that H1(R,J1

b [2]) is in bijection with
J1

b(R)/2J1
b(R) = Jb(K)/2Jb(K). This proves Part 3, completing the proof of the proposi-

tion.

Lemma 7.4.5. Let Γ be a quasi-finite étale commutative group scheme over SpecR. Suppose
that Γ is a Néron model of its generic fibre: for every étale extension R→ R′ of discrete
valuation rings, we have Γ(R′) = Γ(FracR′). Then the map H1(R,Γ)→H1(K,Γ) is injective.

Proof. Let j : SpecK → SpecR denote the natural inclusion. Then the Néron mapping
property translates into the equality of étale sheaves j∗ j∗Γ = Γ. The map H1(R,Γ)→
H1(K,Γ) is therefore injective because it is the first term in the five-term exact sequence
associated to the Leray spectral sequence Hp(R,Rq j∗ j∗Γ)⇒ Hp+q(K,Γ).

7.5 Proof of Theorem 7.2.4

In this section we use the results from §7.3 and §7.4 to complete the proof of Theorem 7.2.4.
We will do this by deforming to the case of square-free discriminant, with the help of the
following Bertini type theorem over Zp.

Proposition 7.5.1. Let p be a prime number. Let Y → Zp be a smooth, quasiprojective
morphism of relative dimension d ≥ 1 with geometrically integral fibres. Let D ⊂ Y be an
effective Cartier divisor. Assume that YFp is not contained in D (i.e. D is horizontal) and
that DQp is reduced. Let P ∈ Y (Zp) be a section such that PQp ̸∈DQp . Then there exists a
closed subscheme X ↪→ Y containing the image of P satisfying the following properties.

• X → Zp is smooth of relative dimension 1 with geometrically integral fibres.

• XFp is not contained in D and the (scheme-theoretic) intersection XQp ∩DQp is
reduced.

Proof. If d = 1 we can take X = Y and there is nothing to prove. Thus for the rest of
the proof we may assume that d ≥ 2. Fix a locally closed embedding Y ⊂ Pn

Zp
. We will

induct on d by finding a suitable hypersurface section using Bertini theorems over Fp and Qp.
Combining [62, Theorem 1.2] and [26, Theorem 1.1], there exists a hypersurface H in Pn

Fp
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such that the (scheme-theoretic) intersection YFp ∩H is smooth, geometrically irreducible of
codimension 1 in YFp , contains the point PFp and is not contained in D .

We will lift this hypersurface to a hypersurface in Pn
Zp

with similar properties, as follows.
Let M be the projective space over Qp parametrizing hypersurfaces of degree degH in Pn

Qp

containing the point PQp . By the classical Bertini theorem over Qp, there exists an open
dense subscheme U of M such that every hypersurface H ′ in U has the property that H ′∩YQp

is smooth, geometrically irreducible of codimension 1 and that H ′∩DQp is reduced. The
subset of M(Qp) whose reduction mod p is the hypersurface H is an open p-adic ball of
M(Qp). Consequently, it intersects U(Qp) nontrivially. (Since an open p-adic ball in a
projective Qp-space cannot be contained in a proper Zariski closed subscheme.) So there
exists a hypersurface H ⊂ Pn

Zp
lifting H such that HQp ∈U(Qp).

By [52, Theorem 22.6], the scheme Y ∩H is flat over Zp. It follows that the scheme
Y ∩H → Zp is smooth with geometrically integral fibres. By construction the special
fibre of Y ∩H is not contained in D and the generic fibre of H ∩D is reduced. The
proposition now follows by replacing Y by Y ∩H and induction on the relative dimension
of Y → Zp.

Recall that J̄ denotes the compactified Jacobian introduced in §5, which has been spread
out in §7.2 to a scheme over Z[1/N].

Corollary 7.5.2. Let p be a prime not dividing N. Let b ∈ B(Zp)∩Brs(Qp) and P ∈ Jb(Qp).
Then there exists a morphism X → Zp which is of finite type, smooth of relative dimension
1 and has geometrically integral fibres, together with a morphism X → J̄Zp satisfying the
following properties.

1. Let b̃ be the composition X → J̄Zp → BZp . Then the discriminant of b̃, seen as a map
X → A1

Zp
, is square-free on the generic fibre of X and not identically zero on the

special fibre.

2. There exists a section x ∈X (Zp) such that the composition SpecQp
xQp−−→X → J̄Zp

coincides with P.

Proof. We apply Proposition 7.5.1 with Y = J̄Zp . We define D to be the pullback of the
discriminant locus {∆ = 0} ⊂ BZp

under the morphism J̄Zp→ BZp
. Since the latter morphism

is proper, we can extend P ∈ Jb(Qp) to an element of J̄b(Zp), still denoted by P.
We claim that the triple (Y ,D ,P) satisfies the assumptions of Proposition 7.5.1. Indeed,

the properties of Y follow Part 11 of §7.2. Moreover YFp is not contained in D since
∆ is nonzero mod p by Part 1 of §7.2. Since J̄Qp → BQp

is smooth outside a subset of
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codimension 2 in J̄Qp and {∆ = 0}Qp ⊂ BQp is reduced, the scheme DQp is reduced too.
Finally, PQp ̸∈DQp since b has nonzero discriminant.

We obtain a closed subscheme X ↪→ J̄Zp satisfying the conclusion of Proposition 7.5.1.
Write x ∈X (Zp) for the section corresponding to P and b̃ for the restriction of J̄Zp → BZp

to X . We claim that the pair (X ,x) satisfies the conclusion of the corollary. This follows
readily from Proposition 7.5.1, except perhaps the statement that the discriminant map
X → A1

Zp
is square-free on the generic fibre. This statement is equivalent to the pullback

of the discriminant locus {∆ = 0} ⊂ BQp along b̃Qp : XQp → BQp being reduced. Since this
pullback is XQp ∩DQp which is reduced by Proposition 7.5.1, the statement is true and the
corollary follows.

Proof of Theorem 7.2.4. Choose a relative curve X → Zp, a map X → J̄Zp and a section
x ∈X (Zp) satisfying the conclusions of Corollary 7.5.2, and let b̃ be the composition
X → J̄Zp → BZp . Recall that J1 is an open subscheme of J̄; let X 1 denote the open
subscheme of X landing in J1

Zp
.

We claim that the complement of X 1 in X is a union of finitely many closed points.
Indeed, by Lemma 7.4.3 and the fact that the discriminant of b̃Qp is square-free, the group
scheme J1

b̃Qp
→XQp is a Néron model of its generic fibre. By the Néron mapping property,

the section XQp → J̄1
Qp

must land in J1
Qp

. Since the discriminant of X is nonzero on the
special fibre, it follows that X 1

Fp
is nonempty. Combining the last two sentences and the fact

that XFp is irreducible proves the claim.
To finish the proof, we will use the stacks introduced in §7.3. Pulling back the J1[2]-torsor

J1 ×2−→ J1 along X 1→ J1 and using the isomorphism J1[2]≃ Z1, we obtain a Z1-torsor on
X 1, which determines a point X 1→ [B/Z]. Postcomposing with the morphism [B/Z] ↪→M

determines a morphism X 1→Mb̃. By Lemma 7.3.6 — and this is the key point — this
morphism extends (uniquely) to a morphism X →Mb̃. Precomposing with x ∈X (Zp)

defines an object A of Mb(Zp), whose Qp-fibre corresponds to ηb(P) via Lemma 7.3.3.
Since H1(Zp,G) = {1} ([54, III.3.11(a)] and Lang’s theorem), every G-torsor on SpecZp is
trivial, so again by Lemma 7.3.3 the object A of Mb(Zp) arises from an element of Vb(Zp).
This proves that ηb(P) has a representative in Vb(Zp), completing the proof.

7.6 Orbits over Z

Recall that Ep = B(Zp)∩ Brs(Qp) for all p. Define E := B(Z)∩ Brs(Q). We state the
following corollary, whose proof is completely analogous to the proof of [72, Corollary 5.8]
and uses the fact that G has class number 1 (Proposition 7.1.2).
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Corollary 7.6.1. Let b0 ∈ E . Then for each prime p dividing N we can find an open
compact neighbourhood Wp of b0 in Ep and an integer np ≥ 0 with the following property.
Let M = ∏p|N pnp . Then for all b ∈ E ∩

(
∏p|N Wp

)
and for all y ∈ Sel2(JM·b), the orbit

ηM·b(y) ∈ G(Q)\VM·b(Q) contains an element of V M·b(Z).

This statement about integral representatives will be strong enough to obtain the main
theorems in §8.





Chapter 8

Geometry-of-numbers

In this chapter we will apply the counting techniques of Bhargava to provide estimates for the
integral orbits of bounded height in the representation (G,V ). We will follow the arguments
of [47, §6] very closely. We keep the notation from the previous chapters and continue to
assume that H is not of type A1.

8.1 Heights

Recall that B = SpecZ[pd1, . . . , pdr ] and that π : V → B denotes the morphism of taking
invariants. For any b ∈ B(R) we define the height of b by the formula

ht(b) := sup
1≤i≤r

|pi(b)|1/i.

We define ht(v) = ht(π(v)) for any v ∈V (R). We have ht(λ ·b) = |λ |ht(b) for all λ ∈R and
b ∈ B(R). If A is a subset of V (R) or B(R) and X ∈ R>0 we write A<X ⊂ A for the subset of
elements of height < X . For every such X , the set B(Z)<X is finite.

The next lemma records a numerological fact, which implies that B(Z)<X has order of
magnitude XdimV .

Lemma 8.1.1. We have d1 + · · ·+dr = dimQV .

Proof. Recall from §3.1 that ΦH denotes a root system of H. We prove the two equalities
d1+ · · ·+dr =

1
2#ΦH + rankH = dimV . The first one is classical, see [24, Corollary 10.2.4];

the second one follows from [83, Lemma 2.21] applied to x = 0.
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8.2 Measures on G

Let ωG be a generator for the Q-vector space of left-invariant top differential forms on G
over Q. It is well-defined up to an element of Q× and it determines Haar measures dg on
G(R) and G(Qp) for each prime p.

Recall from §3.7 that m denotes the number of marked points of the family of curves
C→ B.

Proposition 8.2.1. The product vol(G(Z)\G(R)) ·∏p vol(G(Zp)) converges absolutely and
equals 2m, the Tamagawa number of G.

Proof. Proposition 7.1.2 implies that the product equals the Tamagawa number τ(G) of
G. By Proposition 3.4.1, the group G is semisimple and its fundamental group has order
2#π0(Hθ ); let Gsc→ G be its simply connected cover. The proof of Proposition 6.5.1 (more
precisely the isomorphism between (6.5.3) and (6.5.4)) shows that #π0(Hθ ) has order 2m−1.
Now use the identities τ(G) = 2mτ(Gsc) [57, Theorem 2.1.1] and τ(Gsc) = 1 [50].

We study the measure dg on G(R) using the Iwasawa decomposition, after introducing
some notation. Recall from §3.1 that we have fixed a maximal torus T ⊂ H with set of roots
ΦH . Moreover we have fixed a Borel subgroup P containing T , which determines a root basis
SH ⊂ΦH and a set of positive roots Φ

+
H . Then T θ is a maximal torus of G and Pθ a Borel

subgroup of G [69, Lemma 5.1]. Let ΦG = Φ(G,T θ ) be its set of roots, SG = {b1, . . . ,bk}
the corresponding root basis and Φ

±
G the subset of positive/negative roots. Fix, once and for

all, a maximal compact subgroup K ⊂ G(R). If N is the unipotent radical of Pθ we have a
decomposition Pθ = T θ N ⊂ G. Let P̄ = T N̄ ⊂ G be the opposite Borel subgroup. Then the
natural product maps

N̄(R)×T θ (R)◦×K→ G(R), T θ (R)◦× N̄(R)×K→ G(R)

are diffeomorphisms. If t ∈ T θ (R), let δG(t) = ∏β∈Φ
−
G

β (t) = detAd(t)|Lie N̄(R). The fol-
lowing result follows from well-known properties of the Iwasawa decomposition; see [49,
Chapter 3;§1].

Lemma 8.2.2. Let dt,dn,dk be Haar measures on T θ (R)◦, N̄(R),K respectively. Then the
assignment

f 7→
∫

t∈T θ (R)◦

∫
n∈N̄(R)

∫
k∈K

f (tnk)dk dndt =
∫

t∈T θ (R)◦

∫
n∈N̄(R)

∫
k∈K

f (ntk)δG(t)−1 dk dndt

defines a Haar measure on G(R).
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We now fix Haar measures on the groups T θ (R)◦,K and N̄(R), as follows. We give
T θ (R)◦ the measure pulled back from the isomorphism ∏β∈SG

β : T θ (R)◦→ R#SG
>0 , where

R>0 gets its standard Haar measure d×λ = dλ/λ . We give K the probability Haar measure.
Finally we give N̄(R) the unique Haar measure dn such that the Haar measure on G(R) from
Lemma 8.2.2 coincides with dg.

8.3 Measures on V

Let ωV be a generator of the free rank one Z-module of left-invariant top differential forms
on V . Then ωV is uniquely determined up to sign and it determines Haar measures dv on
V (R) and V (Qp) for every prime p. We define the top form ωB = d pd1 ∧·· ·∧d pdr on B. It
defines measures db on B(R) and B(Qp) for every prime p.

Lemma 8.3.1. There exists a unique rational number W0 ∈Q× with the following property.
Let k/Q be a field extension, let c a Cartan subalgebra of hk contained in Vk, and let
µc : Gk× c→Vk be the action map. Then µ∗c ωV =W0ωG∧π|∗cωB.

Proof. The proof is identical to that of [84, Proposition 2.13]. Here we use the fact that
the sum of the invariants equals the dimension of the representation: d1 + · · ·dr = dimQV
(Lemma 8.1.1).

Lemma 8.3.2. Let W0 ∈Q× be the constant of Lemma 8.3.1. Then:

1. Let V (Zp)
rs := V (Zp)∩V rs(Qp) and define a function mp : V (Zp)

rs → R≥0 by the
formula

mp(v) = ∑
v′∈G(Zp)\(G(Qp)·v∩V (Zp))

#ZG(v′)(Qp)

#ZG(v′)(Zp)
. (8.3.1)

Then mp is locally constant.

2. Let B(Zp)
rs := B(Zp)∩Brs(Qp) and let ψp : V (Zp)

rs→ R≥0 be a bounded, locally
constant function which satisfies ψp(v) = ψp(v′) when v,v′ ∈V (Zp)

rs are conjugate
under the action of G(Qp). Then we have the formula

∫
v∈V (Zp)rs

ψp(v)dv = |W0|p vol(G(Zp))
∫

b∈B(Zp)rs
∑

g∈G(Qp)\V b(Zp)

mp(v)ψp(v)
#ZG(v)(Qp)

db.

(8.3.2)

Proof. The proof is identical to that of [71, Proposition 3.3], using Lemma 8.3.1.
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8.4 Fundamental sets

Let K ⊂ G(R) be the maximal compact subgroup fixed in §8.2. For any c ∈ R>0, define
Tc := {t ∈ T θ (R)◦ | ∀β ∈ SG, β (t)≤ c}. A Siegel set is, by definition, any subset Sω,c :=
ω ·Tc ·K, where ω ⊂ N̄(R) is a compact subset and c > 0.

Proposition 8.4.1. 1. For every ω ⊂ N̄(R) and c > 0, the set

{γ ∈ G(Z) | γ ·Sω,c∩Sω,c ̸= /0}

is finite.

2. We can choose ω ⊂ N̄(R) and c > 0 such that G(Z) ·Sω,c = G(R).

Proof. The first part follows from the Siegel property [21, Corollaire 15.3]. By [61, Theorem
4.15], the second part is reduced to proving that G(Q) = P(Q) ·G(Z). This follows from [20,
§6, Lemma 1(b)], using that (in the terminology of that paper) the lattice V is special with
respect to the pinning (T θ ,Pθ ,{Xα}).

Now fix ω ⊂ N̄(R) and c > 0 so that Sω,c satisfies the conclusions of Proposition 8.4.1.
By enlarging ω , we may assume that Sω,c is semialgebraic. We drop the subscripts and
for the remainder of §8 we write S for this fixed Siegel set. The set S will serve as a
fundamental domain for the action of G(Z) on G(R).

A G(Z)-coset of G(R) may be represented more than once in S, but by keeping track of
the multiplicities this will not cause any problems. The surjective map ϕ : S→ G(Z)\G(R)
has finite fibres and if g ∈S we define µ(g) := #ϕ−1(ϕ(g)). The function µ : S→ N is
uniformly bounded by µmax := #{γ ∈ G(Z) | γS∩S ̸= /0} and has semialgebraic fibres. By
pushing forward measures via ϕ , we obtain the formula∫

g∈S
µ(g)−1 dg = vol(G(Z)\G(R)) . (8.4.1)

We now construct special subsets of V rs(R) which serve as our fundamental domains
for the action of G(R) on V rs(R). By the same reasoning as in [84, §2.9], we can find
open subsets L1, . . . ,Lk of {b ∈ Brs(R) | ht(b) = 1} and sections si : Li→V (R) of the map
π : V → B satisfying the following properties:

• For each i, Li is connected and semialgebraic and si is a semialgebraic map with
bounded image.
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• Set Λ = R>0. Then we have an equality

V rs(R) =
k⋃

i=1

G(R) ·Λ · si(Li). (8.4.2)

If v ∈ si(Li) let ri = #ZG(v)(R); this integer is independent of the choice of v. We record
the following change-of-measure formula, which follows from Lemma 8.3.1.

Lemma 8.4.2. Let f : V (R)→ C be a continuous function of compact support and i ∈
{1, . . . ,k}. Let G0 ⊂ G(R) be a measurable subset and let m∞(v) be the cardinality of the
fibre of the map G0×Λ×Li→V (R),(g,λ , l) 7→ g ·λ · si(l) above v ∈V (R). Then∫

v∈G0·Λ·si(Li)
f (v)m∞(v)dv = |W0|

∫
b∈Λ·Li

∫
g∈G0

f (g · si(b))dgdb,

where W0 ∈Q× is the scalar of Lemma 8.3.1.

8.5 Counting integral orbits of V

For any G(Z)-invariant subset A⊂V (Z), define

N(A,X) := ∑
v∈G(Z)\A<X

1
#ZG(v)(Z)

.

(Recall that A<X denotes the elements of A of height < X .) Let k be a field of characteristic
not dividing N. We say an element v ∈V (k) with b = π(v) is:

• k-reducible if ∆(b) = 0 or if it is G(k)-conjugate to a Kostant section, and k-irreducible
otherwise.

• k-soluble if ∆(b) ̸= 0 and v lies in the image of the map ηb : Jb(k)/2Jb(k)→G(k)\Vb(k)
of Proposition 7.2.3.

For any A ⊂ V (Z), write Airr ⊂ A for the subset of Q-irreducible elements. Write
V (R)sol ⊂V (R) for the subset of R-soluble elements. Write g for the common arithmetic
genus of the curves C→ B.

Theorem 8.5.1. We have

N(V (Z)irr∩V (R)sol,X) =
|W0|
2g vol(G(Z)\G(R))vol(B(R)<X)+o

(
XdimV

)
,
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where W0 ∈Q× is the scalar of Lemma 8.3.1.

We first explain how to reduce Theorem 8.5.1 to Proposition 8.5.2. Recall that there exists
Gm-actions on V and B such that the morphism π : V → B is Gm-equivariant and that we
write Λ = R>0. By an argument identical to [48, Lemma 5.5], the subset V (R)sol ⊂V rs(R)
is open and closed in the Euclidean topology. Therefore by discarding some of the subsets
L1, . . . ,Lk of §8.4, we may write V (R)sol =

⋃
i∈J G(R) ·Λ · si(Li) for some J ⊂ {1, . . . ,k}.

Moreover for every b ∈ Brs(R) we have equalities

#
(

G(R)\Vb(R)sol
)
/#ZG(κb)(R) = #(Jb(R)/2Jb(R))/#Jb[2](R) = 1/2g,

where the first follows from the definition of R-solubility and Proposition 3.8.6, and the
second is a general fact about real abelian varieties. Therefore by the inclusion-exclusion
principle, to prove Theorem 8.5.1 it suffices to prove the following proposition.

For any subset I of {1, . . . ,k}, write LI = π (∩i∈IG(R) · si(Li)). Write sI for the restriction
of si to LI and write rI = ri for some choice of i ∈ I. (The section sI may depend on i but the
number rI does not if LI is nonempty.)

Proposition 8.5.2. In the above notation, let (L,s,r) be (LI,sI,rI) for some I ⊂ {1, . . . ,k}.
Then

N(G(R) ·Λ · s(L)∩V (Z)irr,X) =
|W0|

r
vol(G(Z)\G(R))vol((Λ ·L)<X)+o

(
XdimV

)
.

So to prove Theorem 8.5.1 it remains to prove Proposition 8.5.2. For the latter we will
follow the general orbit-counting techniques established by Bhargava, Shankar and Gross
[16, 9] closely. The only notable differences are that we work with a Siegel set instead of a
true fundamental domain and that we have to carry out a case-by-case analysis for cutting off
the cusp in §8.11. For the remainder of §8 we fix a triple (L,s,r) as above with L ̸= /0.

8.6 First reductions

We first reduce Proposition 8.5.2 to estimating the number of (weighted) lattice points in
a region of V (R). Recall that S denotes the Siegel set fixed in §8.4 which comes with a
multiplicity function µ : S→N. Because G(Z) ·S= G(R), every element of G(R) ·Λ · s(L)
is G(Z)-equivalent to an element of S ·Λ · s(L). In fact, we can be more precise about
how often a G(Z)-orbit will be represented in S ·Λ · s(L). Let ν : S ·Λ · s(L)→ R>0 be the
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‘weight’ function defined by

x 7→ ν(x) := ∑
g∈S

x∈g·Λ·s(L)

µ(g)−1. (8.6.1)

Then ν takes only finitely many values and has semialgebraic fibres. We now claim that
if every element of S ·Λ · s(L) is weighted by ν , then the G(Z)-orbit of an element x ∈
G(R) ·Λ · s(L) is represented exactly #ZG(x)(R)/#ZG(x)(Z) times. More precisely, for any
x ∈ G(R) ·Λ · s(L) we have

∑
x′∈G(Z)·x∩S·Λ·s(L)

ν(x′) =
#ZG(x)(R)
#ZG(x)(Z)

. (8.6.2)

Indeed, suppose that x = g · xL with g ∈S and xL ∈ Λ · s(L). Then for any g′ ∈ G(R), g′xL is
G(Z)-conjugate to x if and only if g and g′ represent the same element in the double coset

G(Z)\G(R)/ZG(xL)(R).

This implies that the left-hand-side of (8.6.2) equals the sum of µ(g′)−1 over all g′ ∈ S

which represent the same element as g in this double coset. Now consider the natural maps

S
ϕ−→ G(Z)\G(R) ψ−→ G(Z)\G(R)/ZG(xL)(R).

The left-hand-side of (8.6.2) equals the cardinality of ψ−1(g) by definition of µ . By the
orbit-stabiliser lemma, #ψ−1(g) equals #ZG(x)(R)/#ZG(x)(Z), proving (8.6.2).

In conclusion, for any G(Z)-invariant subset A⊂V (Z)∩G(R) ·Λ · s(L) we have

N(A,X) =
1
r

# [A∩ (S ·Λ · s(L))<X ] , (8.6.3)

with the caveat that elements on the right-hand side are weighted by ν . (Recall that r =
#ZG(v)(R) for some v ∈ s(L).)

8.7 Averaging and counting lattice points

We consider an averaged version of (8.6.3) and obtain a useful expression for N(A,X)

(Lemma 8.7.1) using a trick due to Bhargava. Then we use this expression to count orbits
lying in the ‘main body’ of V using geometry-of-numbers techniques, see Proposition 8.7.4.
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Fix a compact, semialgebraic subset G0⊂G(R)×Λ of nonempty interior, that in addition
satisfies K ·G0 = G0, vol(G0) = 1 and the projection of G0 onto Λ is contained in [1,K0] for
some K0 > 1. Moreover we suppose that G0 is of the form G′0× [1,K0] where G′0 is a subset
of G(R). Equation (8.6.3) still holds when L is replaced by hL for any h ∈G(R), by the same
argument given above. Thus for any G(Z)-invariant A⊂V (Z)∩G(R) ·Λ · s(L) we obtain

N(A,X) =
1
r

∫
h∈G0

# [A∩ (S ·Λ ·hs(L))<X ] dh. (8.7.1)

We use Equation (8.7.1) to define N(A,X) for any subset A⊂V (Z)∩G(R) ·Λ · s(L) which
is not necessarily G(Z)-invariant.

For any subset A, the integral on the right-hand side of (8.7.1) equals by definition:∫
h∈G0

#{ν-weighted elements of A∩ (S ·Λ ·hs(L))<X}dh = ∑
x∈A<X

∫
h∈G0

∑
g∈S

x∈gΛhs(L)

µ(g)−1 dh.

(8.7.2)

Let x ∈ A<X and let xL ∈ s(L) be the unique point that is (G(R)×Λ)-conjugate to x. There
exists a finite number of elements (g1,λ1), . . . ,(gm,λm) ∈ G(R)×Λ satisfying x = giλi · xL.
We have x ∈ gλhs(L) if and only if ghλ = giλi for some i. Therefore the summand on the
right-hand side of (8.7.2) corresponding to x equals

∫
h∈G0

m

∑
i=1

#{(g,λ ) ∈S×Λ | g = gih−1
λiλ
−1}µ(gih−1)−1 dh =

m

∑
i=1

∫
h∈G0∩(S−1gi×Λ)

µ(gih−1)−1 dh.

(8.7.3)

(Here we define µ((g,λ )) := µ(g) if (g,λ ) ∈S×Λ.) Since the Haar measure on G(R)×Λ

is unimodular, the transformation h 7→ gih−1 is measure preserving. So the right-hand side
of (8.7.3) equals

m

∑
i=1

∫
g∈giG−1

0 ∩(S×Λ)
µ(g)−1 dh =

m

∑
i=1

∫
g∈S×Λ

#{h ∈ G0 | gh = giλi}µ(g)−1 dh.

Since gh = giλi if and only if x = gh ·xL, we conclude that for any subset A⊂V (Z)∩G(R) ·
Λ · s(L) we have

N(A,X) =
1
r

∫
g∈S×Λ

# [A∩ (gG0 · s(L))<X ]µ(g)−1 dg, (8.7.4)
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where an element of v ∈ A∩gG0 · s(L) is counted with weight #{h ∈G0 | v ∈ gh · s(L)}. Note
that the weight of an element of gG0 · s(L) is a positive integer ≤ r and that gG0 · s(L) is
partitioned into semialgebraic subsets of constant weight.

We can rewrite the integral of (8.7.4) using the decomposition S= ω ·Tc ·K and Lemma
8.2.2. Using the fact that µ(gk) = µ(g) for all k ∈ K and K ·G0 = G0, we obtain:

Lemma 8.7.1. Given X ≥ 1, n∈ N̄(R), t ∈ T θ (R) and λ ∈Λ, define B(n, t,λ ,X) := (ntλG0 ·
s(L))<X . Then for any subset A⊂V (Z)∩ (G(R) ·Λ · s(L)) we have

N(A,X) =
1
r

∫ X

λ=K−1
0

∫
t∈Tc

∫
n∈ω

# [A∩B(n, t,λ ,X)]µ(nt)−1
δG(t)−1 dndt d×λ , (8.7.5)

where an element v ∈ A∩B(n, t,λ ,X) on the right-hand side is counted with weight #{h ∈
G0 | v ∈ ntλh · s(L))}.

Before estimating the integrand of (8.7.5) by counting lattice points in the bounded
regions B(n, t,λ ,X), we first need to handle the so-called cuspidal region after introducing
some notation.

Let ΦV be the set of weights of the T θ -action on V . Any v ∈V (Q) can be decomposed
as ∑va where va lies in the weight space corresponding to a ∈ ΦV . For a subset M ⊂ ΦV ,
let V (M) ⊂ V be the subspace of elements v with va = 0 for all a ∈ M. Define S(M) :=
V (M)(Q)∩V (Z).

Let a0 ∈ X∗(T θ ) denote the restriction of the highest root α0 ∈ ΦH to T θ . It turns out
that a0 ∈ΦV : if H is not of type A2n, this follows from the fact that the Coxeter number of
H is even so the root height of α0 with respect to SH is odd; if H is of type A2n, this can be
checked explicitly.

We define S(a0) as the cuspidal region and V (Z)\S(a0) as the main body of V . The next
proposition, proved in §8.11, says that the number of irreducible elements in the cuspidal
region is negligible.

Proposition 8.7.2. There exists δ > 0 such that N(S(a0)
irr,X) = O(XdimV−δ ).

Having dealt with the cuspidal region, we may now count lattice points in the main body
using the following proposition [3, Theorem 1.3], which strengthens a well-known result
of Davenport [32]. We prefer to cite [3] since the possibility of applying [32] to a general
semialgebraic set rests implicitly on the Tarski–Seidenberg principle (see [33]).

Proposition 8.7.3. Let m,n≥ 1 be integers, and let Z ⊂Rm+n be a semialgebraic subset. For
T ∈ Rm, let ZT = {x ∈ Rn | (T,x) ∈ Z}, and suppose that all such subsets ZT are bounded.
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Then for any unipotent upper-triangular matrix u ∈ GLn(R), we have

#(ZT ∩uZn) = vol(ZT )+O(max{1,vol(ZT, j}),

where ZT, j runs over all orthogonal projections of ZT to any j-dimensional coordinate
hyperplane (1≤ j ≤ n−1). Moreover, the implied constant depends only on Z.

Proposition 8.7.4. Let A =V (Z)∩ (G(R) ·Λ · s(L)). Then

N(A\S(a0),X) =
|W0|

r
vol(G(Z)\G(R))vol((Λ ·L)<X)+o(XdimV ).

Proof. Choose generators for the weight space V a (as a finite free Z-module) for every
a ∈ΦV and let ∥·∥ denote the supremum norm of V (R) with respect to this choice of basis.
Since the set ω ·G0 ·s(L) is bounded, we can choose a constant J > 0 such that ∥v∥ ≤ J for all
v ∈ ω ·G0 · s(L). Let F(n, t,λ ,X) = {v ∈ B(n, t,λ ,X) | va0 ̸= 0}. If F(n, t,λ ,X)∩V (Z) ̸= /0,
there exists an element v ∈ B(n, t,λ ,X) such that ∥va0∥ ≥ 1, hence λa0(t)≥ 1/J.

We wish to estimate #[(A \ S(a0))∩B(n, t,λ ,X)] = #[V (Z)∩F(n, t,λ ,X)] for all t ∈
Tc,n ∈ ω,λ ≥ K−1

0 and X using Proposition 8.7.3. An element v ∈ F(n, t,λ ,X) has weight
#{h ∈G0 | v ∈ ntλh · s(L))}, and F(n, t,λ ,X) is partitioned into finitely many bounded semi-
algebraic subsets of constant weight. Moreover we have an equality of (weighted) volumes
vol(F(n, t,λ ,X)) = vol(B(n, t,λ ,X)). Since t and λ stretch the elements of V a by a factor
a(t) and λ respectively, for any M ⊂ ΦV the volume of the projection of F(n, t,λ ,X) to
V (M)(R) is bounded above by O

(
λ dimV−#M

∏a∈ΦV \M a(t)
)
. Since ΦV is closed under inver-

sion, we have ∏a∈ΦV a(t) = 1. Moreover since a0 is the highest weight of the representation
V , we know that for every a ∈ΦV we can write a = a0−∑β∈SG

nβ β for some nonnegative
rationals nβ . Since t ∈ Tc by assumption, we have a(t)≥ c−∑nβ a0(t). It follows that

λ
dimV−#M

∏
a∈ΦV \M

a(t) = λ
dimV−#M

∏
a∈M

a(t)−1≪ λ
dimV−#Ma0(t)−#M.

Putting the results from the previous paragraph together, we conclude by Proposition
8.7.3 that the number of weighted elements of [(A\S(a0))∩B(n, t,λ ,X)] is given by:0 if λa0(t)< 1/J,

vol(B(n, t,λ ,X))+O(λ dimV−1a0(t)−1) otherwise.
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By that same proposition, the implied constant in this estimate is independent of t ∈ Tc,n ∈
ω,λ ≥ K−1

0 and X . Therefore by Lemma 8.7.1 N(A\S(a0),X) equals

1
r

∫ X

λ=K−1
0

∫
t∈Tc,a0(t)≥1/λJ

∫
n∈ω

(
vol(B(n, t,λ ,X))+O(λ dimV−1a0(t)−1)

)
µ(nt)−1

δG(t)−1 dndt d×λ .

(8.7.6)

We first show that the integral of the second summand is o(XdimV ). One easily reduces to
showing that

∫ X

λ=K−1
0

∫
t∈Tc,a0(t)≥1/λJ

λ
dimV−1a0(t)−1

δG(t)−1 dt d×λ = o(XdimV ). (8.7.7)

Write SG = {β1, . . . ,βk} and identify T θ (R)◦ with Rk
>0 using the isomorphism t 7→ (βi(t)).

Write a0 = ∑hiβi and ∑Φ
+
G

β = ∑δiβi with hi,δi ∈ Q. Since the coefficients δi are strictly
positive, there exists an 0 < ε < 1 such that δi− εhi > 0 for all i. Since λ 1−εa0(t)1−ε ≫ 1
on {t ∈ Tc | a0(t)≥ 1/λJ}, it follows that

∫ X

λ=K−1
0

∫
t∈Tc,a0(t)≥1/λJ

λ
dimV−1a0(t)−1

δG(t)−1 dt d×λ (8.7.8)

≪
∫ X

λ=K−1
0

λ
dimV−ε

∫
t∈Tc,a0(t)≥1/λJ

a0(t)−ε
δG(t)−1 dt d×λ . (8.7.9)

Since the exponents of ti in a0(t)−εδG(t)−1 are strictly positive, the inner integral of
the right-hand side of (8.7.9) bounded independently of λ . It follows that (8.7.9) is ≪∫ X

λ=K−1
0

λ dimV−εd×λ = O(XdimV−ε), as claimed.
On the other hand, the integral of the first summand in (8.7.6) is

1
r

∫
g∈S

vol
(
(g ·Λ ·G0 · s(L))<X

)
µ(g)−1 dg+o(XdimV ),

using the fact that vol(B(n, t,λ ,X)) = O(λ dimV ). Lemma 8.4.2 shows that

vol
(
(g ·Λ ·G0 · s(L))<X

)
= |W0|vol

(
(Λ ·L)<X

)
vol(G0) = |W0|vol

(
(Λ ·L)<X

)
.

The proposition follows from Formula (8.4.1).
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8.8 End of the proof of Proposition 8.5.2

The following proposition is proven in §8.10.

Proposition 8.8.1. Let V red denote the subset of Q-reducible elements v ∈ V (Z) with v ̸∈
S(a0). Then N(V red,X) = o(XdimV ).

We now finish the proof of Proposition 8.5.2. Again let A = V (Z)∩ (G(R) ·Λ · s(L)).
Then

N(Airr,X) = N(Airr \S(a0),X)+N(S(a0)
irr,X)

The second term on the right-hand side is o(XdimV ) by Proposition 8.7.2, and N(Airr \
S(a0),X) = N(A\S(a0),X)+o(XdimV ) by Proposition 8.8.1. Using Proposition 8.7.4, we
obtain

N(Airr,X) =
|W0|

r
vol(G(Z)\G(R))vol((Λ ·L)<X)+o(XdimV ).

This completes the proof of Proposition 8.5.2, hence also that of Theorem 8.5.1.

8.9 Congruence conditions

We now introduce a weighted version of Theorem 8.5.1. If w : V (Z)→ R is a function and
A⊂V (Z) is a G(Z)-invariant subset we define

Nw(A,X) := ∑
v∈G(Z)\A
ht(v)<X

w(v)
#ZG(v)(Z)

. (8.9.1)

We say a function w is defined by finitely many congruence conditions if w is obtained from
pulling back a function w̄ : V (Z/MZ)→R along the projection V (Z)→V (Z/MZ) for some
M ≥ 1. For such a function write µw for the average of w̄ where we put the uniform measure
on V (Z/MZ). The following theorem follows immediately from the proof of Theorem 8.5.1,
compare [16, §2.5].

Theorem 8.9.1. Let w : V (Z)→ R be defined by finitely many congruence conditions. Then

Nw(V (Z)irr∩V (R)sol,X) = µw
|W0|
2g vol(G(Z)\G(R))vol(B(R)<X)+o

(
XdimV

)
,

where W0 ∈Q× is the scalar of Lemma 8.3.1.
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Next we will consider infinitely many congruence conditions. Suppose we are given for
each prime p a G(Zp)-invariant function wp : V (Zp)→ [0,1] with the following properties:

• The function wp is locally constant outside the closed subset {v∈V (Zp) | ∆(v) = 0} ⊂
V (Zp).

• For p sufficiently large, we have wp(v) = 1 for all v ∈V (Zp) such that p2 ∤ ∆(v).

In this case we can define a function w : V (Z)→ [0,1] by the formula w(v) = ∏p wp(v) if
∆(v) ̸= 0 and w(v) = 0 otherwise. Call a function w : V (Z)→ [0,1] defined by this procedure
acceptable.

Theorem 8.9.2. Let w : V (Z)→ [0,1] be an acceptable function. Then

Nw(V (Z)irr∩V sol(R),X)≤ |W0|
2g

(
∏

p

∫
V (Zp)

wp(v)dv

)
vol(G(Z)\G(R))vol(B(R)<X)+o(XdimV ).

Proof. This inequality follows from Theorem 8.9.1; the proof is identical to the first part of
the proof of [16, Theorem 2.21].

To obtain a lower bound in Theorem 8.9.2 when infinitely many congruence conditions
are imposed, one needs a uniformity estimate that bounds the number of irreducible G(Z)-
orbits whose discriminant is divisible by the square of a large prime. The following conjecture
is the direct analogue of [16, Theorem 2.13].

Conjecture 8.9.3. For a prime p, let Wp(V ) denote the subset of v ∈ V (Z)irr such that
p2 | ∆(v). Then for any M > 0, we have

lim
X→+∞

N(∪p>MWp(V ),X)

XdimV = O
(

1
logM

)
,

where the implied constant is independent of M.

Conjecture 8.9.3 is related to computing the density of square-free values of polynomials.
See [6] for some remarks about similar questions, for known results and why these uniformity
estimates seem difficult in general. By an identical proof to that of [16, Theorem 2.21], we
obtain:

Proposition 8.9.4. Assume that Conjecture 8.9.3 holds for (G,V ). Let w : V (Z)→ [0,1] be
an acceptable function. Then

Nw(V (Z)irr∩V sol(R),X)=
|W0|
2g

(
∏

p

∫
V (Zp)

wp(v)dv

)
vol(G(Z)\G(R))vol(B(R)<X)+o(XdimV ).
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8.10 Estimates on reducibility and stabilisers

In this subsection we give the proof of Proposition 8.8.1 and the following proposition, which
will be useful in §9.

Proposition 8.10.1. Let V bigstab denote the subset of Q-irreducible elements v ∈V (Z) with
#ZG(v)(Q)> 1. Then N(V bigstab,X) = o(XdimV ).

By the same reasoning as [9, §10.7] it will suffice to prove Lemma 8.10.2 below, after
having introduced some notation.

Let N be the integer of §7.1 and let p be a prime not dividing N. We define V red
p ⊂V (Zp)

to be the set of vectors whose reduction mod p is Fp-reducible. We define V bigstab
p ⊂V (Zp)

to be the set of vectors v ∈V (Zp) such that p|∆(v) or the image of v in V (Fp) has nontrivial
stabiliser in G(Fp).

Lemma 8.10.2. We have
lim

Y→+∞
∏

N<p<Y

∫
V red

p

dv = 0,

and similarly

lim
Y→+∞

∏
N<p<Y

∫
V bigstab

p

dv = 0.

Proof. The proof is very similar to the proof of [72, Proposition 6.9] using the root lattice
calculations of §3.9. We first treat the case of V bigstab

p . Let p be a prime not dividing N. We
have the formula∫

V bigstab
p

dv =
1

#V (Fp)
#{v ∈V (Fp) | ∆(v) = 0 or ZG(v)(Fp) ̸= 1}.

Since {∆ = 0} is a hypersurface we have

1
#V (Fp)

#{v ∈V (Fp) | ∆(v) = 0}= O(p−1). (8.10.1)

If v ∈V rs(Fp) then #ZG(v)(Fp) depends only on π(v) by (the Z[1/N]-analogue of) Lemma
3.8.2. Therefore if b ∈ Brs(Fp), Proposition 7.2.2 and Lang’s theorem imply that #Vb(Fp) is
partitioned into #H1(Fp,Jb[2]) many orbits under G(Fp), each of size #G(Fp)/#Jb[2](Fp).
Since #Jb[2](Fp)= #(Jb(Fp)/2Jb(Fp))= #H1(Fp,Jb[2]), we have #V rs(Fp)= #G(Fp)#Brs(Fp).

So to prove the lemma in case of V bigstab
p it suffices to prove that there exists a 0 < δ < 1

such that
1

#Brs(Fp)
#{b ∈ Brs(Fp) | Jb[2](Fp) ̸= 1}→ δ
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as p→+∞. We will achieve this using the results of [73, §9.3]. Recall from §3.1 that T is a
split maximal torus of H with Lie algebra t and Weyl group W . These objects spread out to
objects T ,H, t over Z. In §3.9 we have defined a W -torsor f : trs→ Brs which extends to a
W -torsor trsS → Brs

S , still denoted by f . The group scheme J[2]→ Brs
S is trivialised along f

and the monodromy action is given by the natural action of W on NL using the same logic
and notation as Proposition 3.9.1. Let C ⊂W be the subset of elements of W which fix some
nonzero element of NL. Then [73, Proposition 9.15] implies that

1
#Brs(Fp)

#{b ∈ Brs(Fp) | Jb[2](Fp) ̸= 1}= #C
#W

+O(p−1/2). (8.10.2)

Since C ̸=W by Part 3 of Proposition 3.9.2, we conclude the proof of the lemma in this case.
We now treat the case V red

p . Again by (8.10.1) it suffices to prove that there exists a
nonnegative δ < 1 such that

1
#V rs(Fp)

#{v ∈V rs(Fp) | v is Fp-reducible}< δ (8.10.3)

for all sufficiently large p. By the first paragraph of the proof of this lemma, there are exactly
#Jb[2] orbits of Vb(Fp) for all b ∈ Brs(Fp), each of size #G(Fp)/#Jb[2](Fp). Since exactly
one of these orbits consists of Fp-reducible elements, the left-hand-side of (8.10.3) equals

1
#Brs(Fp)

∑
b∈Brs(Fp)

1
#Jb[2](Fp)

(8.10.4)

Each summand in (8.10.4) is the inverse of an integer; let ηp be the proportion of b ∈ Brs(Fp)

for which this summand equals 1. The the quantity in (8.10.4) is ≤ ηp +(1−ηp)/2 =

1/2+ηp/2. By (8.10.2), ηp→ η := 1−#C/#W as p tends to infinity. Since 1 ∈C, we see
that η < 1, completing the proof of the lemma.

We explain why Lemma 8.10.2 implies Propositions 8.8.1 and 8.10.1. We first claim that
if v ∈V (Z) with b = π(v) is Q-reducible, then for each prime p not dividing N the reduction
of v in V (Fp) is Fp-reducible. Indeed, either ∆(b) = 0 in Fp (in which case v is Fp-reducible),
or p ∤ ∆(b) and v is G(Q)-conjugate to κ ′b for some Kostant section κ ′. In the latter case
Part 2 of Theorem 7.4.4 implies that v is G(Zp)-conjugate to κ ′b, so their reductions are
G(Fp)-conjugate, proving the claim. By a congruence version of Proposition 8.7.4, for every
subset L⊂ B(R) considered in Proposition 8.5.2 and for every Y > 0 we obtain the estimate:

N(V red ∩G(R) ·Λ · s(L),X)≤C

(
∏

N<p<Y

∫
V red

p

dv

)
·XdimV +o(XdimV ),
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where C > 0 is a constant independent of Y . By Lemma 8.10.2, the product of the integrals
converges to zero as Y tends to infinity, so N(V red ∩G(R) ·Λ · s(L),X) = o(XdimV ). Since
this holds for every such subset L, we obtain Proposition 8.8.1.

Note that we have not used Theorem 8.5.1 in this argument, but we may use it now to prove
Proposition 8.10.1. Again the reduction of an element of V bigstab modulo p lands in V bigstab

p

if p does not divide N, by Part 1 of Theorem 7.4.4. Since limX→+∞ N(V bigstab,X)/XdimV is
O(∏N<p<Y

∫
V red

p
dv) by Theorem 8.9.1 and the product of the integrals converges to zero by

Lemma 8.10.2, this proves Proposition 8.10.1.

8.11 Cutting off the cusp

In this section we consider the only remaining unproved assertion of this chapter, namely
Proposition 8.7.2. This is the only substantial part of this thesis where we rely on previous
papers treating specific cases. Case A2g is treated in [9, Proposition 10.5]; Case A2g+1

(g≥ 1) is [75, Proposition 21]; Case D2g+1 (g≥ 2) is [76, Proposition 7.6]; Case E6 is [84,
Proposition 3.6]; Case E7,E8 is [71, Proposition 4.5]. Note that these authors sometimes use
a power of the height that we use. It remains to consider the case where H is of type D2n

and n≥ 2. We first reduce the statement to a combinatorial result, after introducing some
notation. This reduction step is valid for any H, and we do not yet assume that H is of type
D2n.

Recall that every element a ∈ X∗(T θ )⊗Q can be uniquely written as ∑
k
i=1 ni(a)βi for

some rational numbers ni(a). We define a partial ordering on X∗(T θ )⊗Q by declaring that
a ≥ b if ni(a−b) ≥ 0 for all i = 1, . . . ,k. By restriction, this induces a partial ordering on
ΦV . The restriction of the highest root a0 ∈ΦV is the unique maximal element with respect
to this partial ordering.

If (M0,M1) is a pair of disjoint subsets of ΦV we define S(M0,M1) := {v ∈V (Z) | ∀a ∈
M0,va = 0;∀a ∈M1,va ̸= 0}. Let C be the collection of nonempty subsets M0 ⊂ ΦV with
the property that if a ∈ M0 and b ≥ a then b ∈ M0. Given a subset M0 ∈ C we define
λ (M0) := {a ∈ΦV \M0 |M0∪{a} ∈ C }, i.e. the set of maximal elements of ΦV \M0.

By definition of C and λ we see that S({a0}) =∪M0∈C S(M0,λ (M0)). Therefore to prove
Proposition 8.7.2, it suffices to prove that for each M0 ∈ C , either S(M0,λ (M0))

irr = /0 or
N(S(M0,λ (M0)),X) = O(XdimV−ε) for some ε > 0. By the same logic as [84, Proposition
3.6 and §5] (itself based on a trick due to Bhargava), the latter estimate holds if there exists a
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subset M1 ⊂ΦV \M0 and a function f : M1→ R≥0 with ∑a∈M1 f (a)< #M0 such that

∑
β∈Φ

+
G

β − ∑
a∈M0

a+ ∑
a∈M1

f (a)a

has strictly positive coordinates with respect to the basis SG. It will thus suffice to prove the
following combinatorial proposition, which is the analogue of [9, Proposition 29].

Proposition 8.11.1. Let M0 ∈ C be a subset such that V (M0)(Q) contains Q-irreducible
elements. Then there exists a subset M1 ⊂ΦV \M0 and a function f : M1→ R≥0 satisfying
the following conditions:

• We have ∑a∈M1 f (a)< #M0.

• For each i = 1, . . . ,k we have ∑β∈Φ
+
G

ni(β )−∑a∈M0 ni(a)+∑a∈M1 f (a)ni(a)> 0.

We will prove Proposition 8.11.1 in the remaining case D2n in Appendix A.





Chapter 9

The average size of the 2-Selmer group

9.1 An upper bound

In this chapter we prove Theorem 1.2.3 stated in the introduction. Recall that we write E

for the set of elements b ∈ B(Z) of nonzero discriminant. We recall that we have defined
a height function ht for E in §8.1. We say a subset F ⊂ E is defined by finitely many
congruence conditions if F is the preimage of a subset of B(Z/NZ) under the reduction
map E → B(Z/NZ) for some N ≥ 1.

Theorem 9.1.1. Let F ⊂ E be a subset defined by finitely many congruence conditions. Let
m be the number of marked points. Then we have

limsup
X→+∞

∑b∈F , ht(b)<X #Sel2 Jb

#{b ∈F | ht(b)< X}
≤ 3 ·2m−1.

The proof is along the same lines as the discussion in [72, §7].
We first prove a ‘local’ result. Recall that Ep denotes the set of elements b ∈ B(Zp) of

nonzero discriminant. Define Fp as the closure of F in Ep, equivalently Fp is the preimage
in Ep of a subset of B(Z/NZ) that defines F .

For every b ∈ Brs(Q), consider the subgroup of Jb(Q)/2Jb(Q) generated by differences
of the marked points {∞1−∞2, . . . ,∞1−∞m}. The image of this subgroup under the map
Jb(Q)/2Jb(Q) ↪→ Sel2 Jb is by definition the subgroup Seltriv

2 Jb of ‘marked’ elements. Its
complement Seltriv2 Jb is the subset of ‘nonmarked’ elements.

Proposition 9.1.2. Let b0 ∈F . Then we can find for each prime p dividing N an open
compact neighbourhood Wp of b0 in Ep such that the following condition holds. Let FW =
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F ∩
(
∏p|N Wp

)
. Then we have

limsup
X→+∞

∑b∈FW , ht(b)<X #Seltriv
2 Jb

#{b ∈FW | ht(b)< X}
≤ 2m.

Proof. Choose the sets Wp and integers np ≥ 0 for p|N satisfying the conclusion of Corollary
7.6.1. If p does not divide N, set Wp = Fp and np = 0. Let M := ∏p pnp .

For v ∈V (Z) with π(v) = b, define w(v) ∈Q≥0 by the following formula:

w(v) =


(

∑v′∈G(Z)\(G(Q)·v∩V (Z))
#ZG(v′)(Q)

#ZG(v′)(Z)

)−1 if b∈pnp ·Wp and
G(Qp)·v∈ηb(Jb(Qp)/2Jb(Qp)) for all p,

0 otherwise.

Define w′(v) by the formula w′(v) = #ZG(v)(Q)w(v). Corollaries 6.4.2 and 7.6.1 and Propo-
sition 6.5.1 imply that if b ∈ M ·FW , nonmarked elements in the 2-Selmer group of Jb

correspond bijectively to G(Q)-orbits of Vb(Q) that intersect V (Z) nontrivially, that are
Q-irreducible and that are soluble at R and Qp for all p. In other words, in the notation of
(8.9.1) we have the formula:

∑
b∈FW

ht(b)<X

#Seltriv2 Jb = ∑
b∈M·FW
ht(b)<MX

#Seltriv2 Jb = Nw′(V (Z)irr∩V (R)sol,MX). (9.1.1)

Proposition 8.10.1 implies that

Nw′(V (Z)irr∩V (R)sol,MX) = Nw(V (Z)irr∩V (R)sol,MX)+o(XdimV ). (9.1.2)

It is more convenient to work with w(v) than with w′(v) because w(v) is an acceptable
function in the sense of §8.9. Indeed, for v ∈V (Zp) with π(v) = b, define wp(v) ∈Q≥0 by
the following formula

wp(v)=


(

∑v′∈G(Zp)\(G(Qp)·v∩V (Zp))
#ZG(v′)(Qp)

#ZG(v′)(Zp)

)−1
if b ∈ pnp ·Wp and G(Qp) · v ∈ ηb(Jb(Qp)/2Jb(Qp)),

0 otherwise.

Then an argument identical to [16, Proposition 3.6] (using that G has class number 1 by
Proposition 7.1.2) shows that w(v) = ∏p wp(v) for all v ∈V (Z). The remaining properties
for w(v) to be acceptable follow from Part 1 of Lemma 8.3.2 and Theorem 7.4.4. Using
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Lemma 8.3.2 we obtain the formula∫
v∈V (Zp)

wp(v)dv = |W0|p vol(G(Zp))
∫

b∈pnp ·Wp

#Jb(Qp)/2Jb(Qp)

#Jb[2](Qp)
db. (9.1.3)

Using the equality #Jb(Qp)/2Jb(Qp) = |1/2g|p#Jb[2](Qp) for all b ∈ Ep (which is a gen-
eral fact about abelian varieties), we see that the integral on the right-hand side equals
|1/2g|p vol(pnp ·Wp) = |1/2g|p p−np dimQV vol(Wp). Combining the identities (9.1.1) and
(9.1.2) shows that

limsup
X→+∞

X−dimV
∑

b∈FW
ht(b)<X

#Seltriv2 Jb = limsup
X→+∞

X−dimV Nw(V (Z)irr∩V (R)sol,MX).

This in turn by Theorem 8.9.2 is less then or equal to

|W0|
2g

(
∏

p

∫
V (Zp)

wp(v)dv

)
vol(G(Z)\G(R))2dimBMdimV .

Using (9.1.3) this simplifies to

vol(G(Z)\G(R))∏
p

vol(G(Zp))2dimB
∏

p
vol(Wp).

On the other hand, an elementary point count shows that

lim
X→+∞

#{b ∈FW | ht(b)< X}
XdimV = 2dimB

∏
p

vol(Wp).

We conclude that

limsup
X→+∞

∑b∈FW , ht(b)<X #Seltriv2 Jb

#{b ∈FW | ht(b)< X}
≤ vol(G(Z)\G(R)) ·∏

p
vol(G(Zp)) .

Since the Tamagawa number of G is 2m (Proposition 8.2.1), the proposition follows.

To deduce Theorem 9.1.1 from Proposition 9.1.2, choose for each i≥ 1 sets Wp,i ⊂ Ep

(for p dividing N) such that if Wi = E ∩
(
∏p|N Wp,i

)
, then Wi satisfies the conclusion of

Proposition 9.1.2 and we have a countable partition F = FW1 ⊔FW1 ⊔·· · . By an argument
identical to the proof of Theorem 7.1 in [72], we see that for any ε > 0, there exists k ≥ 1
such that

limsup
X→+∞

∑b∈⊔i≥kFWi ,ht(b)<X #Seltriv2 Jb

#{b ∈F | ht(b)< X}
< ε.
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This implies that

limsup
X→+∞

∑b∈F ,ht(b)<X #Seltriv2 Jb

#{b ∈F | ht(b)< X}
≤ 2m limsup

X→+∞

#{b ∈ ⊔i<kFWi | ht(b)< X}
#{b ∈F | ht(b)< X}

+ ε

≤ 2m + ε.

Since the above inequality is true for any ε > 0, it is true for ε = 0. Since the subgroup
Seltriv Jb has size at most 2m−1, we conclude the proof of Theorem 9.1.1.

Remark 9.1.3. A small modification of the above argument shows that Theorem 9.1.1 remains
valid when F ⊂ E is the subset of so-called ‘minimal’ elements, namely those elements
b ∈ E with N−1 ·b ̸∈ B(Z) for all integers N ≥ 1.

9.2 A conditional lower bound

We show that the upper bound in Theorem 9.1.1 is sharp if we assume Conjecture 8.9.3. We
first need to establish (unconditionally) a lower bound for the subgroup of marked elements
Seltriv Jb.

Proposition 9.2.1. Let F ⊂ E be a subset defined by finitely many congruence conditions.
Then the limit

lim
X→+∞

#{b ∈F | ht(b)< X ,#Sel2(Jb)
triv = 2m−1}

#{b ∈F | ht(b)< X}

exists and equals 1.

Proof. Let b ∈ F and consider the maximal torus ZH(κb) of H. By Proposition 6.5.1,
#Sel2(Jb)

triv = 2m−1 if and only if the map ZG(κb)→ ZHθ (κb) is surjective on Q-points.
The Galois action on ZH(κb) induces a homomorphism Gal(Qs | Q)→W by Proposition
3.9.1, where W is the Weyl group of the split torus T ⊂ H with character group L. If this
homomorphism is surjective, then ZHθ (κb)(Q) = T [2]W = (L∨/2L∨)W = {0} by Part 1 of
Proposition 3.9.2, so ZG(κb)→ ZHθ (κb) is automatically surjective on Q-points.

It therefore suffices to prove that the limit

lim
X→+∞

#{b ∈F | ht(b)< X ,Gal(Qs |Q)→W surjective}
#{b ∈F | ht(b)< X}

exists and equals 1. This follows from a version of Hilbert’s irreducibility theorem; see [27,
Theorem 2.1], adapted as in [27, §5, Notes (iii)] to account for the fact that the coordinates
of B have unequal weights.
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Theorem 9.2.2. Assume that Conjecture 8.9.3 holds for (G,V ). Let F ⊂ E be a subset
defined by finitely many congruence conditions. Then the limit

lim
X→+∞

∑b∈F , ht(b)<X #Seltriv
2 Jb

#{b ∈F | ht(b)< X}

exists and equals 2m. Moreover, the average size of the 2-Selmer group Sel2 Jb exists and
equals 3 ·2m−1.

Proof. The proof of the first statement is identical to the proof of Theorem 9.1.1, using
Proposition 8.9.4 instead of Theorem 8.9.2. The second statement follows from the first and
Proposition 9.2.1.
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Appendix A

Cutting off the cusp for D2n

In this appendix chapter we prove Proposition 8.7.2 in the case that H is of type D2n for
all n≥ 2. The methods employed here are fairly standard but somewhat intricate, and are
sometimes inspired by [76, §7.2.1]. In §A.1 we recall some results and notation on groups of
type Dn. In §A.2 we make the representation (G,V ) in the case D2n and some related objects
explicit. In §A.3 we establish sufficient conditions for a vector v ∈V (Q) to be Q-reducible.
In §A.4 we finish the proof of Proposition 8.7.2.

A.1 Recollections on even orthogonal groups

Let n ≥ 2 be an integer. Let W be a 2n-dimensional Q-vector space with basis B =

{e1, . . . ,en,e∗n, . . . ,e
∗
1}. Let b be the symmetric bilinear form with the property that b(ei,e j) =

b(e∗i ,e
∗
j) = 0 and b(ei,e∗j) = δi j for all 1≤ i, j ≤ n. For every linear map f : W →W , there

is a unique adjoint linear map f ∗ : W →W satisfying b( f v,w) = b(v, f ∗w) for all v,w ∈W .
We define the Q-algebraic group H := SO(W,b) = {g ∈ SL(W ) | gg∗ = 1}. Then h := LieH
can be naturally identified with { f ∈ End(W ) | f + f ∗ = 0}. Below we will make various
aspects of the semisimple group H explicit.

Using B to represent an element f : W →W as a (2n)×(2n)-matrix A, f ∗ corresponds to
reflecting A along its antidiagonal. Consider the maximal torus T = {diag(t1, . . . , tn, t−1

n , . . . , t−1
1 )}⊂

H. Its character group X∗(T ) is freely generated by the characters (t1, . . .) 7→ ti with 1≤ i≤ n,
and we abusively denote these characters by ti ∈ X∗(T ) too.

Root system The roots of h with respect to T are given by

ΦH = {±ti± t j | 1≤ i ̸= j ≤ n} ⊂ X∗(T ). (A.1.1)
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The standard upper triangular Borel subgroup of GL2n (with respect to the basis B of W )
determines a root basis of ΦH , given by

SH = {t1− t2, . . . , tn−1− tn, tn−1 + tn} (A.1.2)

We denote the elements of this root basis by α1, . . . ,αn. The highest root of ΦH with respect
to SH is t1 + t2, which has height 2n−3.

Weyl group The Weyl group WH is isomorphic to Sn ⋊ (Z/2Z)n−1. Explicitly, elements of
WH correspond to pairs (σ ,(εi)), where σ ∈ Sn is a permutation and εi ∈ {±1} is a sign for
each 1≤ i≤ n, with the property that ∏i εi = 1. An element (σ ,(εi)) acts on X∗(T ) via the
rule ti 7→ εitσ(i). In particular, −1 ∈WH if and only if n is even.

Stable involution To describe the stable involution of H in §A.2 in the case that n is even,
we determine the elements s ∈ T with the property that α(s) = −1 for every simple root
α ∈ SH . Such an s is not uniquely determined since H is not adjoint, but it is uniquely
determined up to multiplication by the element (−1, . . . ,−1) ∈ T of the centre of H. Using
the description (A.1.2) we see that s is of the form

±(1,−1,1,−1, . . . ,(−1)n). (A.1.3)

Change of variables We record the following computation which will be useful in §A.4:
ti = αi + · · ·+αn−2 +

1
2(αn−1 +αn), (1≤ i≤ n−2)

tn−1 =
1
2(αn−1 +αn),

tn = 1
2(−αn−1 +αn).

(A.1.4)

Sum of positive roots The sum of the positive roots of ΦH with respect to SH is

∑
α∈Φ

+
H

α = 2(n−1)t1 +2(n−2)t2 + · · ·+2tn−1 (A.1.5)

=
n−2

∑
k=1

k(2n− k−1)αk +
n(n−1)

2
(αn−1 +αn) (A.1.6)

Discriminant Let t := LieT and write an element of t as diag(t1, . . . , tn,−tn, . . . ,−t1). Let
∆ ∈Q[h]H be the discriminant polynomial of H, defined as the image of ∏α∈ΦH α under the
Chevalley isomorphism Q[t]WH →Q[h]H of Proposition 2.1.1. Let Pff ∈Q[h]H be the image
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of the product ∏
n
i=1 ti ∈ k[t]WH under the Chevalley isomorphism. If we write ti := t2n+1−i

for n+1≤ i≤ 2n, then we may compute that

∏
1≤i< j≤2n

(ti− t j)
2 = ∏

α∈ΦH

α(t)2
n

∏
i=1

t2
i . (A.1.7)

It follows that if we write χv for the characteristic polynomial of a square matrix v and
disc(χv) for its discriminant, we have the identity

disc(χv) = ∆(v)2 Pff(v)2 (A.1.8)

for every v ∈ h.

A.2 An explicit model for the split stable involution of D2n

Let n≥ 2 be an integer. Let W1 be the Q-vector space with basis {e1, . . . ,en,e∗n, . . . ,e
∗
1}, and

let b1 be the symmetric bilinear form with the property that b1(ei,e j) = b1(e∗i ,e
∗
j) = 0 and

b1(ei,e∗j)= δi j for all 1≤ i, j≤ n. Let W2 be the Q-vector space with basis { f1, . . . , fn, f ∗n , . . . , f ∗1 },
and let b2 be the bilinear form of W2 constructed similarly to b1 with ei and e∗i replaced by fi

and f ∗i . Let (W,b) := (W1,b1)⊕ (W2,b2). Let H ′ := SO(W,b), let H be the quotient of H ′

by its centre of order 2 and let h := LieH = LieH ′. With respect to the basis

{e1, . . . ,en,e∗n, . . . ,e
∗
1, f1, . . . , fn, f ∗n , . . . , f ∗1 }, (A.2.1)

the adjoint of a (4n)× (4n)-block matrix(
A B
C D

)
(A.2.2)

with respect to b is given by (
A∗ C∗

B∗ D∗

)
. (A.2.3)
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Here if X is a (2n)× (2n)-matrix we write X∗ for its reflection around the antidiagonal. It
follows that in this basis h is given by{(

B A
−A∗ C

)
| B∗ =−B,C∗ =−C

}
. (A.2.4)

Stable involution The ordered basis

{e1, f1, . . . ,en, fn, f ∗n ,e
∗
n, . . . , f ∗1 ,e

∗
1} (A.2.5)

of W determines a maximal torus and root basis of H as in §A.1. Let θ be the involution of
H constructed using the recipe in §3.1 with respect to this root basis. Since −1 is contained
in the Weyl group of H (as observed in §A.1), θ is inner. The description of (A.1.3) shows
that with respect to the first basis (A.2.1) of W , θ is given by conjugating by the element
s′ = diag(1, . . . ,1,−1, . . . ,−1), where the first 2n entries are 1’s and the last 2n entries are
−1’s. Using this description, it is easy to see that

g := hθ =

{(
B 0
0 C

)
| B∗ =−B,C∗ =−C

}
,

V := hθ=−1 =

{(
0 A
−A∗ 0

)
| A ∈Mat2n,2n

}
.

Moreover G := (Hθ )◦ is isomorphic to (SO(W1)×SO(W2))/∆(µ2), where ∆(µ2) denotes
the image of the diagonal inclusion of µ2 into the centre µ2×µ2 of SO(W1)×SO(W2). Using
these identifications, we see that the map(

0 A
−A∗ 0

)
7→ A

establishes a bijection between V and the representation Hom(W2,W1), where (g,h) ∈
SO(W1)× SO(W2) acts on f : W2 →W1 via g ◦ f ◦ h−1. In terms of matrices, the action
is given by (g,h) ·A = gAh−1. We will typically view an element of V (Q) as a (2n)× (2n)-
matrix A or a linear operator f : W2→W1.

Roots Let T ′ be the maximal torus diag(t1, . . . , tn, t−1
n , . . . , t−1

1 ,s1, . . . ,sn,s−1
n , . . . ,s−1

1 ) of
H ′ (again using the basis (A.2.1)), and let T be its image in H. Then T is a maximal
torus of H and G; let ΦH and ΦG be the corresponding sets of roots. Let WH = NH(T )/T
and WG = NG(T )/T be the respective Weyl groups. The basis (A.2.5) determines a set of
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positive roots Φ
+
H of H (as in §A.1) and by restriction a set of positive roots Φ

+
G of G. The

corresponding simple roots are given by:

SH = {t1− s1,s1− t2, . . . ,sn−1− tn, tn− sn, tn + sn},
SG = {t1− t2, . . . , tn−1− tn, tn−1 + tn}∪{s1− s2, . . . ,sn−1− sn,sn−1 + sn}.

We label the elements of SG by {β1, . . . ,βn−1,βn}∪{γ1, . . . ,γn−1,γn}. We have ΦH = ΦG⊔
ΦV and ΦV = {±ti± s j | 1≤ i, j ≤ n}.

Component group Let s be the image of s′ in T (Q). Lemma 3.3.1 shows that the inclusion
NHθ (T ) ↪→ Hθ induces an isomorphism ZWH (s)/WG ≃ Hθ/G. In fact, let

Ω := {w ∈WH | w(SG) = SG}. (A.2.6)

Then using the description of the Weyl group of H and G from §A.1 we see that ZWH (s) =
WG ⋊Ω and Ω≃ Z/2×Z/2. Explicit generators of Ω are given by ω1,ω2, where

ω1 : ti↔ si,

ω2 :

si 7→ si, ti 7→ ti, (1≤ i≤ n−1)

tn 7→ −tn,sn 7→ −sn.

Weights Using the description of elements of V as (2n)× (2n) matrices, we organise the
weights ΦV using the position of their eigenspaces:

t1− s1 · · · t1− sn t1 + sn · · · t1 + s1
... . . . ...

... . . . ...
tn− s1 · · · tn− sn tn + sn · · · tn + s1

−tn− s1 · · · −tn− sn −tn + sn · · · −tn + s1
... . . . ...

... . . . ...
−t1− s1 · · · −t1− sn −t1 + sn · · · −t1 + s1


(A.2.7)

The group Ω acts on the set of weights ΦV as follows: ω1 flips the elements of ΦV along the
antidiagonal of (A.2.7), and ω2 swaps the two middle rows and the two middle columns.

The partial ordering Recall from §8.11 that we have defined a partial ordering on X∗(T ′)
by declaring that a≥ b if and only if a−b has nonnegative coordinates with respect to the
basis SG. Note that this partial ordering is preserved by the action of Ω on X∗(T ′).
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We describe the induced partial ordering on the subset ΦV using the organisation (A.2.7).
We first consider the restriction of the partial ordering to the rows and columns of (A.2.7).
Let 1 ≤ i ≤ 2n and write ti := −t2n+1−i,si := −s2n+1−i if i ≥ n+1. The Hasse diagram of
the partial ordering restricted to the weights of row i is given by:

ti− s1 · · · ti− sn−1

ti− sn

ti + sn

ti + sn−1 · · · ti + s1

(In this diagram, a≤ b if and only if b is to the right of a.) The Hasse diagram of column
2n+1− i is given by swapping the roles of s j and t j in the above diagram for every 1≤ j≤ 2n.
The partial ordering ΦV is the one generated by the relations between two elements lying in
the same row or column.

For example, t1 + s1 is the maximal element of ΦV , and the restriction of the partial
ordering to the four n×n blocks is given by: a≤ b if and only if b is to the top right of a.

Regular nilpotent element For α ∈ΦV , let Xα be the (2n)× (2n)-matrix with coefficient
1 at the entry corresponding to α using (A.2.7) and zeroes elsewhere. The element E :=

∑α∈SH Xα is a regular nilpotent element of V (Q) and gives rise to an sl2-triple (E,X ,F) and
Kostant section κ = E + zh(F), see §3.6. Since elements of zh(F) are supported on ΦV ∩Φ

−
H

(where Φ
−
H = ΦH \Φ

+
H), every element of κ is of the form

1 0 · · · 0 0 · · · · · · 0

∗ . . . . . . ...
... . . . . . . ...

... . . . . . . ... 0 . . . . . . ...
∗ · · · ∗ 1 1 0 · · · 0
∗ · · · · · · ∗ ∗ 1 · · · 0
... . . . . . . ...

... . . . . . . ...
... . . . . . . ...

... . . . . . . 1
∗ · · · · · · ∗ ∗ · · · · · · ∗


(A.2.8)

If ω ∈ Ω, then Eω := ∑α∈ω(SH)Xα is again regular nilpotent and gives rise to a Kostant
section κω . Then {κω | ω ∈ Ω} is a full set of representatives of G(Q)-orbits of Kostant
sections.
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A.3 Reducibility conditions

Recall that if A is a (2n)× (2n)-matrix then A∗ denotes its reflection along the antidiagonal.

Proposition A.3.1. Let k/Q be a field and A ∈V (k). The following are equivalent:

1. A is a regular semisimple element of V (k);

2. AA∗ is a regular semisimple (2n)× (2n)-matrix (in other words, the characteristic
polynomial of AA∗ has distinct roots in ks);

3. A∗A is a regular semisimple (2n)× (2n)-matrix.

Proof. Let ∆ ∈Q[V ]G be the discriminant polynomial of h≃ so4n restricted to V . Let B be

the block matrix

(
0 A
−A∗ 0

)
. If C is a square matrix, write χC ∈ k[X ] for its characteristic

polynomial. If f is a polynomial, write disc( f ) for its discriminant in the usual sense. The
identity (A.1.8) implies that disc(χB) = ∆(A)2 ·Pff(B)2. We have Pff(B) = ±det(A) since
both square to det(B), so

disc(χB) = ∆(A)2 ·det(A)2. (A.3.1)

On the other hand, if f (X) = g(X2) for some polynomial g ∈ k[X ], then it is elementary
to check that disc( f ) = ±disc(g)2 f (0). Moreover, by calculating determinants of block
matrices we have χB(X) = χ−AA∗(X2). Therefore

disc(χB) =±disc(χ−AA∗)
2 ·det(A)2. (A.3.2)

Both identities (A.3.1) and (A.3.2) hold in Q[V ][X ], i.e. they hold when the coefficients
of A are interpreted as variables. Since det ∈ Q[V ] is not identically zero, it follows that
∆(A) = ±disc(χ−AA∗) = ±disc(χAA∗). Since χAA∗ = χA∗A we have ∆(A) = ±disc(χA∗A).
Since A is a regular semisimple element of V (k) if and only if ∆(A) ̸= 0, the proposition
follows.

In the next lemma, we organise the set ΦV using the matrix (A.2.7), and we recall from
§8.7 that for a subset M ⊂ΦV we have defined V (M) as the subspace of v = ∑a∈ΦV va ∈V
with the property that va = 0 for all a ∈M.

Corollary A.3.2. Suppose that a subset M ⊂ ΦV satisfies at least one of the following
conditions:

1. M contains a top right i× (2n+1− i) block for some 1≤ i≤ 2n;
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2. M contains the top right i× j and j× i blocks for some i, j ≥ 1 satisfying i+ j = 2n.

Then every element of V (M)(Q) is not regular semisimple.

Proof. 1. We may suppose (using the fact that A 7→ A∗ preserves regular semisimplicity)
that i ≤ n. Let X1 = span{e1, . . . ,en} ⊂W1. Then GL(X1) embeds inside SO(W1),

using the map g 7→

(
g 0
0 (g∗)−1

)
. Suppose that A ∈ V (M)(Q). Using the GL(X1)-

action to put the top left i× (i−1) block of A in row echelon form, we may suppose
that M contains the top right 1×2n block; in other words, we may suppose that i = 1.
In that case, the matrix AA∗ has zeroes on the first row and the last column. This
implies that the characteristic polynomial of AA∗ is divisible by X2, which implies that
A is not regular semisimple by Proposition A.3.1.

2. Assume that i≤ j and let A ∈V (M)(Q). Then the matrix B = AA∗ is of the form: B1 0 0
∗ B2 0
∗ ∗ B3

 . (A.3.3)

Here B1,B3 are i× i matrices and B2 is a ( j− i)× ( j− i) matrix (it is possible that
i = j). Recall that χC denotes the characteristic polynomial of a square matrix C.
Then we have χAA∗ = χB1 χB2 χB3 . Since B3 = B∗1, the polynomial χAA∗ = χ2

B1
χB2 has

repeated roots. By Proposition A.3.1, this shows that A is not regular semisimple.

Recall from §A.2 that we may interpret an element A ∈V (Q) as a linear map W2→W1.
Using the perfect pairings bi on Wi we may thus interpret A∗ as a linear map W1→W2, and
AA∗ as a linear map W1→W1.

Proposition A.3.3. Let k/Q be a field and A ∈ V (k). Assume that there exists an (n−1)-
dimensional subspace X ⊂W1 such that span{X ,AA∗(X)} is an n-dimensional isotropic
subspace of (W1,b1). Then A is k-reducible.

Proof. If A is not regular semisimple then A is k-reducible by definition, so assume that
A has invariants b ∈ Brs(k). (Recall that B =V //G.) The Grassmannian of n-dimensional
isotropic subspaces of (W1,b1) has two connected components called rulings of (W1,b1), and
the subspaces spanned by {e∗1, . . . ,e∗n} and {e∗1, . . . ,e∗n−1,en} lie in distinct rulings [89, §2.2];
let R be the ruling containing the subspace X1 := span{e∗1, . . . ,e∗n}. Using the Ω-action we
may assume that span{X ,AA∗(X)} lies in R. To prove the proposition, it suffices to prove
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the claim that G(k) acts simply transitively on the set of pairs (D,Y ), where D ∈Vb(k) and
Y ⊂W1 is an (n−1)-dimensional subspace such that span{Y,DD∗(Y )} is an n-dimensional
isotropic subspace of (W1,b1) contained in the ruling R. Indeed, the description of the
Kostant section κb from (A.2.8) shows that (κb,X1) is such a pair, so the claim implies that
(A,X) and (κb,X1) are G(k)-conjugate. The proof of the claim is identical to the proof of
[76, Proposition 4.4] using the results of [89, §2.2.2]; we omit the details.

Corollary A.3.4. Suppose that M contains the top right (n−1)× (n+1) and n× (n−1)
blocks. Then every element of V (M)(Q) is Q-reducible.

Proof. If A ∈V (M)(Q), a computation shows that the entries of AA∗ in the top right (n−
1)×n and n× (n−1) blocks are zero. In other words, AA∗ looks like:

∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗


. (A.3.4)

It follows that the subspace X = span{e∗n−1, . . . ,e
∗
1} satisfies the assumptions of Proposition

A.3.3.

Recall that C denotes the collection of subsets M of ΦV with the property that for all
a,b ∈ ΦV with b ∈ M and a ≥ b it follows that a ∈ M. Also recall the description of the
partial ordering on ΦV in §A.2.

Proposition A.3.5. Let M ∈ C and suppose that V (M)(Q) contains Q-irreducible elements.
Then the following properties hold:

1. {ti− si,si− ti} ⊂ΦV \M for all 1≤ i≤ n−1;

2. {tn− sn, tn + sn,−tn + sn,−tn− sn} ⊂ΦV \M;

3. for every 1≤ i≤ n−2, either ti− si+1 or si− ti+1 lies in ΦV \M;

4. #({tn−1− sn, tn−1 + sn, tn + sn−1,−tn + sn−1}∩M)≤ 2.

Proof. Note that if ω ∈ Ω then V (M)(Q) contains Q-irreducible elements if and only if
V (ω(M))(Q) does. The first three parts follow from applying Corollary A.3.2 to ω(M)

for all ω ∈ Ω and properties of the partial ordering of ΦV . Part 4 follows from applying
Corollary A.3.4 to ω(M) for ω ∈M.
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The reader is invited to visualise the conditions of Proposition A.3.5 using the organisation
of the weights ΦV of (A.2.7).

A.4 Bounding the remaining cusp integrals

Let C good be the subset of C consisting of those M ∈ C that satisfy Condiditions 1–4 of
Proposition A.3.5. Note that ω(M) ∈ C good if M ∈ C good and ω ∈Ω.

Lemma A.4.1. If M ∈ C good , then every element of SG is of the form a1 + a2 for some
a1,a2 ∈ΦV \M.

Proof. Using the Ω-action it suffices to consider β1, . . . ,βn−1. For 1 ≤ i ≤ n−2, we have
identities

βi = ti− ti+1 = (ti− si)+ (si− ti+1)

= (ti− si+1) +(si+1− ti+1).

At least one of the two boxed terms is in ΦV \M by Part 3 of Proposition A.3.5, and the
black terms are always in ΦV \M by Part 1 of that proposition. To treat βn−1, consider the
identities

βn−1 = tn−1− tn = (tn−1− sn) +(sn− tn)

= (tn−1 + sn) +(−sn− tn)

= (tn−1− sn−1)+ (sn−1− tn) .

One of the three boxed terms must be contained in ΦV \M by Part 4 of Proposition A.3.5,
and all the black terms are contained in ΦV \M by Parts 1 and 2 of that proposition.

The discussion in §8.11 and Proposition A.3.5 show that in order to prove Proposition
8.7.2 when H is of type D2n for all n≥ 2, it suffices to prove the following proposition.

Proposition A.4.2. For every M ∈ C good , there exists a function f : ΦV \M→ R≥0 with the
following properties:

1. ∑a∈ΦV \M f (a)< #M;

2. the vector

∑
β∈Φ

+
G

β − ∑
a∈M

a+ ∑
a∈ΦV \M

f (a)a (A.4.1)
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has strictly positive coefficients with respect to the basis SG.

We prove Proposition A.4.2 using induction on n. The base case n = 2 is easy to check
explicitly, and also follows from Case 1 of the proof of Proposition A.4.3 below (which only
assumes n≥ 2). See [86, p. 1217] which considers the D4 case in detail and also proves this
induction step.

To perform the induction step, let Φ
[1]
V be the subset of ΦV of vectors of the form

{±t1± si}∪{±ti± s1}; in other words, Φ
[1]
V consists of the first and last rows and columns

of (A.2.7). Similarly let Φ
[1]
G for the subset of roots of ΦG that have a nonzero coordinate

at β1 or γ1 in the root basis SG. Write ΦV = Φ
[1]
V ⊔Φ

[n−1]
V and ΦG = Φ

[1]
G ⊔Φ

[n−1]
G . Then

Φ
[n−1]
V and Φ

[n−1]
G arise from the constructions of §A.2 with n replaced by n−1. Moreover

∑
β∈Φ

[1],+
G

β = (2n− 2)t1 +(2n− 2)s1. To prove Proposition A.4.2, it therefore suffices to
prove the following statement.

Proposition A.4.3. Let n≥ 3 be an integer, let M ∈ C good and write M[1] := M∩Φ
[1]
V . Then

there exists a function f [1] : ΦV \M→ R≥0 with the following properties:

1. ∑a∈ΦV \M f [1](a)< #M[1];

2. the vector

(2n−2)t1 +(2n−2)s1− ∑
a∈M[1]

a+ ∑
a∈ΦV \M

f [1](a)a (A.4.2)

has strictly positive coefficients with respect to the basis SG.

Proof. Note that if the proposition is true for M, it is also true for ω(M) for every ω ∈ Ω.
We may therefore replace M by a Ω-conjugate in what follows. We also note that it suffices
to find for each M ∈ C good a function f [1] : ΦV \M→R≥0 that satisfies the first property and
such that (A.4.2) has nonnegative (instead of positive) coefficients with respect to SG. Indeed,
by Lemma A.4.1, every element of β ∈ SG is a sum a1 +a2 of two elements of ΦV \M so by
adding to f [1] the function a1 7→ ε,a2 7→ ε for some very small ε , we may ensure that f [1]

has strictly positive coefficient at every element of SG.
We will distinguish three cases, after introducing some notation. We say M ∈ C good

is bounded if there exists a function f [1] : ΦV \M → R≥0 satisfying the conclusions of
Proposition A.4.3. If M ∈ C good we write w1(M) := (2n− 2)t1 +(2n− 2)s1−∑a∈M[1] a.
Recall that if n+1≤ i≤ 2n then we write ti :=−t2n+1−i and si :=−s2n+1−i. We use O(≥ 0)
as a shorthand for an element of X∗(T ′) that has nonnegative coordinates with respect to SG.
We also recall the useful formulae (A.1.4).



118 Cutting off the cusp for D2n

Case 1. Suppose that M[1] ⊂ {t1− sn, t1 + sn, . . . , t1 + s1, . . . , tn + s1,−tn + s1}. Let a
(respectively b) be the number of elements of M[1] contained in the first row (respectively
last column). Then 1 ≤ a,b ≤ n+ 1 and since we may switch the roles of tn and −tn and
similarly for ±sn, we may assume that M[1] = {t1 + sa, . . . , t1 + s1, . . . , tb + s1}. Using the
Ω-action we may assume that a≥ b. We have

w1(M) = (2n−2−a)t1− t2−·· ·− tb

+(2n−2−b)s1− s2−·· ·− sa.

If a,b≤ n−1, then (A.1.4) shows that w1(M) has positive SG coefficients, so M is evidently
bounded. We may therefore assume that a = n or n+ 1. A computation shows that the
coefficients of w1(M) at {β1, . . . ,βn−2} ∪ {γ1, . . . ,γn−2} are nonnegative (in fact at least
n+1−a), so we focus on the coefficients at βn−1,βn,γn−1,γn. If b≤ n−1, then w1(M) =

O(≥ 0)+ 1
2(n− a)(βn−1 +βn). This is negative only when a = n+ 1, so assume that this

is the case. Using Lemma A.4.1, write βn−1 = a1 +a2,βn = a3 +a4 for some ai ∈ΦV \M.
Choose a function f [1] : ΦV \M→ R≥0 such that f [1] supported on {a1, . . . ,a4}, such that

∑a∈ΦV \M f [1](a)a = 1
2(βn−1 +βn) and such that ∑a∈ΦV \M f [1](a)< #M[1]. Such a function

exists since 2 < #M[1] and shows that M is bounded in this case.
It remains to treat the case where n≤ a,b≤ n+1. A calculation shows that

w1(M) =


O(≥ 0)− 1

2βn− 1
2γn if (a,b) = (n,n),

O(≥ 0)−βn if (a,b) = (n+1,n),

O(≥ 0)− 1
2(βn−1 +βn + γn−1 + γn) if (a,b) = (n+1,n+1).

In each of these cases, we can use Lemma A.4.1 to show that M is bounded.
Case 2. Suppose that M[1] contains an element of the form t1−sa with 2≤ a≤ n−1 and is

contained in the set {t1−sa, . . . , t1+s1, . . . , tn+s1,−tn+s1}. Let b be the number of elements
of M[1] contained in the last column, so that #M[1] = (n−a)+n+b. Then 1 ≤ b ≤ n+1,
and by using the Ω-action we may assume that M[1] = {t1− sa, . . . , t1 + s1, . . . , tb + s1}. We
have

w1(M) = (a−3)t1− t2−·· ·− tb

+(2n−2−b)s1− s2−·· ·− sa−1.
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By assumption t1− sa−1 ∈ΦV \M and 2n−a−b≥ 0. We compute that

w1(M)+(2n−a−b)(t1− sa−1) = (2n−b−3)t1− t2−·· ·− tb +O(≥ 0) (A.4.3)

All the SG coefficients of the above expression are nonnegative unless 2n− b− 2− b <

0, in other words unless b ≥ n. Therefore if b < n the function f [1] mapping t1− sa−1

to 2n− a− b and all other elements of ΦV \M to zero shows that M is bounded, since
2n−a−b < #M[1] = 2n−a+b. If b = n, (A.4.3) equals O(≥ 0)−βn. Therefore Lemma
A.4.1 and the inequality (2n−a−b)+2 < #M[1] show that M is bounded in this case. If
b = n+ 1, (A.4.3) equals O(≥ 0)− βn−2− βn−1− βn. Therefore Lemma A.4.1 and the
inequality (2n−a−b)+6 < #M[1] (which holds since n≥ 3) show that M is again bounded
in this case.

Case 3. Suppose that M[1] is of the form {t1− sa, . . . , t1− sn, t1 + sn, . . . , t1 + s1, . . . , tn +
s1,−tn + s1, . . . ,−tb + s1} for some 2 ≤ a,b ≤ n− 1. Using the Ω-action we may assume
that a≥ b. A calculation using (A.1.4) shows that

w1(M) = (a−3)t1− t2−·· ·− tb−1

+(b−3)s1− s2−·· ·− sa−1

= (a−3)β1 + · · ·+(a−b−1)βb−1 + · · ·+(a−b−1)βn−2 +
1
2
(a−b−1)(βn−1 +βn)

+(b−3)γ1 + · · ·+(b−a−1)γa−1 + · · ·+(b−a−1)γn−2 +
1
2
(b−a−1)(γn−1 + γn).

By assumption s1− tb−1 ∈ΦV \M and a≥ b, and we compute that

w1(M)+(a−b)(s1− tb−1) = O(≥ 0)−βb−1−·· ·−βn−2−
1
2
(βn−1 +βn)

+O(≥ 0)− γa−1−·· ·− γn−2−
1
2
(γn−1 + γn).

Therefore to prove that M is bounded it suffices to prove (using Lemma A.4.1) that

(a−b)+2((n−b+1)+(n−a+1))< #M[1] = 4n−a−b+1.

This inequality is equivalent to 2b > 3, which is true since b≥ 2.
Conclusion. Since M ∈ C good , every M has an Ω-conjugate that falls under one of the

above three cases.
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