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ABSTRACT 1 

 2 

How the fetus withstands an environment of reduced oxygenation during life in the 3 

womb has been a vibrant area of research since this field was introduced by Joseph 4 

Barcroft, a century ago.  Studies spanning five decades have since used the 5 

chronically instrumented fetal sheep preparation to investigate the fetal 6 

compensatory responses to hypoxia.  This defence is contingent on the fetal 7 

cardiovascular system, which in late gestation adopts strategies to decrease oxygen 8 

consumption and redistribute the cardiac output away from peripheral vascular 9 

beds and towards essential circulations, such as those perfusing the brain.  The 10 

introduction of simultaneous measurement of blood flow in the fetal carotid and 11 

femoral circulations by ultrasonic transducers has permitted investigation of the 12 

dynamics of the fetal brain sparing response for the first time.  Now we know that 13 

major components of fetal brain sparing during acute hypoxia are triggered 14 

exclusively by a carotid chemoreflex and that they are modified by endocrine 15 

agents and the recently discovered vascular oxidant tone.  The latter is determined 16 

by the interaction between nitric oxide and reactive oxygen species.  The fetal brain 17 

sparing response matures as the fetus approaches term, in association with the 18 

prepartum increase in fetal plasma cortisol and treatment of the preterm fetus with 19 

clinically-relevant doses of synthetic steroids mimics this maturation.  Despite 20 

intense interest into how the fetal brain sparing response may be affected by 21 

adverse intrauterine conditions, this area of research has been comparatively scant 22 

but it is likely to take centre stage in the near future.   23 
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Oxygen deprivation or hypoxia is one of the most common challenges in fetal life.  1 

Short term episodes of acute hypoxia, perhaps lasting a few minutes, are 2 

associated with labour and delivery, as a result of uterine contractions and/or 3 

compressions of the umbilical cord (Huch et al. 1977).  Oxygen deprivation to the 4 

unborn child lasting for several weeks or even months is denominated chronic fetal 5 

hypoxia.  This is the most common consequence of complicated pregnancy resulting 6 

from increased placental vascular resistance, as occurs during placental 7 

insufficiency, preeclampsia or any inflammatory condition during pregnancy, such 8 

as chorioamnionitis, gestational diabetes or even maternal obesity (see Table 1).  9 

An inadequate fetal defence to acute or chronic hypoxia renders the fetal brain 10 

susceptible to injury leading to hypoxic-ischaemic encephalopathy (Low et al. 1985; 11 

Gunn & Bennet, 2009).  The latter has long been known to be predictive of 12 

developing cerebral palsy and cognitive disability later in life (Hall, 1989).  13 

Therefore, the physiology underlying the fetal defence to hypoxia remains at the 14 

forefront of basic science and clinical interest. 15 

 16 

Fetal versus adult defence response to hypoxia 17 

Outside the womb, the supply of oxygen from the atmosphere is vast.  Therefore, 18 

in the adult period, episodes of hypoxia trigger both ventilator and cardiovascular 19 

compensatory responses.  These are designed to increase pulmonary oxygenation 20 

and cardiac output, permitting the maintenance of perfusion of oxygenated blood 21 

even to peripheral circulations during periods of systemic hypoxia (Rowell & 22 

Blackmon, 1987; Marshall, 1999).  Inside the womb, the supply of oxygenated 23 

blood is comparatively finite as it is limited by the placenta.  However, a number of 24 

adaptations unique to fetal life ensure that the supply of oxygen to the fetus 25 

exceeds its metabolic demands.  Therefore, under basal conditions during 26 

development, the unborn child is equipped with a considerable margin of safety for 27 
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oxygenation.  Relative to the adult, these adaptations allow the fetus to bind 1 

greater concentrations of oxygen in its haemoglobin, to have an increased basal 2 

blood flow to most tissues, and to relinquish this bound oxygen to the fetal tissues 3 

at lower oxygen tensions (Barcroft, 1935; Rudolph & Heymann, 1968; Maurer et al. 4 

1970).  Shunts in the fetal circulation, such as the ductus venosus and ductus 5 

arteriosus and preferential streaming further ensure an adequate supply of 6 

oxygenated blood to tissues most at risk of damage during adverse conditions 7 

(Rudolph & Heymann, 1968; Edelstone, 1980; Itskovitz et al. 1987; Godfrey et al. 8 

2012).  The fetus has also a greater capacity than the adult to hinder oxygen-9 

consuming processes.  The fetal defence strategy during episodes of acute hypoxia 10 

concentrate on increasing the efficiency of these compensatory mechanisms, 11 

thereby either consuming even less oxygen (Boyle et al. 1990), extracting even 12 

more oxygen from haemoglobin (Edelstone & Holzman, 1982; Gardner et al. 2003) 13 

or making better use of this limited supply of oxygenated blood (Rudolph, 1984; 14 

Cohn et al. 1974; Giussani et al. 1993; 1994).  The responses of the fetal 15 

cardiovascular system during episodes of acute hypoxia illustrate some of these 16 

strategies. 17 

 18 

When the late gestation fetus is exposed to acute hypoxia, fetal breathing 19 

movements cease (Boddy et al. 1974; Bekedam & Visser, 1985; Giussani et al. 20 

1995) and the fetal heart rate decreases (Boddy et al. 1974), both responses 21 

favouring a fall in fetal oxygen consumption (Rurak & Gruber, 1983; Fisher et al. 22 

1982). The reduction in fetal heart rate prolongs end diastolic filling time, increases 23 

end diastolic volume and thereby contributes to the maintenance of cardiac output 24 

and perfusion pressure despite bradycardia (Anderson et al. 1986).  The resulting 25 

increases in ventricular stretch will enhance sarcomere length, tension and 26 

contractility by means of the Frank-Starling mechanism, which has been shown to 27 
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be operational in the late gestation fetus (Kirkpatrick et al. 1976).  Through this 1 

mechanism, left and right ventricular stroke volumes are relatively well-maintained 2 

in the face of increases in afterload (Hawkins et al. 1989), with the left ventricle 3 

having a greater reserve capacity for increases in afterload than the right ventricle 4 

(Reller et al. 1987).  Although increases in preload and ventricular filling pressure 5 

may help maintain cardiac output during acute hypoxia, the Frank Starling 6 

mechanism may be somewhat limited to increase cardiac output above baseline 7 

during fetal life.  This is partly due to the working point of the fetal circulation being 8 

close to or on the plateaux of the ventricular function curves, thereby limiting the 9 

extent to which increases in ventricular stroke volume can actually lead to 10 

elevations in end diastolic ventricular filling pressures (Gilbert 1980; Thornburg & 11 

Morton 1986).  Fetal heart decelerations also slow down the passage of blood 12 

through the circulation, increasing the efficiency of gaseous exchange in essential 13 

vascular beds (Boudoulas et al. 1979).  In addition to fetal cardiac compensatory 14 

mechanisms, the fetal blood flow is redistributed in response to acute hypoxia away 15 

from peripheral vascular beds and prioritised towards essential circulations, such as 16 

those perfusing the brain - the so called ‘brain sparing effect’.  Since oxygen 17 

delivery is coupled to oxygen consumption, limiting blood flow to less essential 18 

vascular beds such as the fetal intestines and fetal hind limbs also contributes to 19 

the overall decrease in oxygen consumption by the fetal tissues during acute 20 

hypoxia (Edelstone & Holzman, 1982; Boyle et al. 1990).  Decreased oxygen 21 

delivery to the hind limbs increases lactate output, acidifying the fetal blood which 22 

facilitates the unloading of oxygen from haemoglobin to the fetal tissues as the 23 

fetal blood becomes hypoxic (Gardner et al. 2003).  Independent seminal studies 24 

have provided evidence of the end effect of this circulatory redistribution by 25 

calculation of the resulting blood flow in the target organs using radioactive or 26 

fluorescent microspheres (Rudolph & Heymann 1968; Cohn et al. 1974; Peeters et 27 
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al. 1979; Reuss et al. 1982; Rudolph, 1984; Yaffe et al. 1987; Rudolph, 1985; 1 

Peréz et al. 1989; Jansen et al. 1989; Mulder et al. 1998).  However, simultaneous 2 

measurement of carotid blood flow and femoral blood flow in response to acute 3 

hypoxia in the late gestation fetus by Transonic flowmetry permitted visualisation of 4 

the dynamics of this fetal brain sparing response in real time for the first time 5 

(Giussani et al. 1993; 1994a; Figure 1).  This revealed the fast speed of onset of 6 

some of these defence responses, implicating the involvement of neural reflexes.  7 

The technique also permits calculation of the ratio of simultaneous carotid relative 8 

to femoral blood flow during basal and acute hypoxic conditions.  This ratio, which I 9 

have called ‘the fetal brain sparing index’ clearly increases during acute hypoxia 10 

(Figure 1). 11 

 12 

Fetal brain sparing: Neural, endocrine and local components 13 

While vasodilatation in the fetal cerebral vascular bed during acute hypoxia occurs 14 

as result of local increases in adenosine and, to a lesser extent, nitric oxide (NO) 15 

and prostanoids (Kjellmer et al. 1989; van Bel et al. 1995; Pearce, 1995; Green et 16 

al. 1996; Blood et al. 2002; Hunter et al. 2003; Nishida et al. 2006), the fetal 17 

bradycardia and the fetal peripheral vasoconstriction are now known to be triggered 18 

by a chemoreflex.  Early experiments by Dawes and colleagues in the 1960’s 19 

introduced the idea of fetal peripheral chemoreflexes being active in utero (Dawes 20 

et al. 1968; 1969).  Those experiments were performed in exteriorised fetuses 21 

exposed to relative hypoxia from an artificially elevated oxygenation baseline under 22 

the effects of general anaesthesia.  Under such conditions, early ideas suggested 23 

that aortic chemoreceptors were more sensitive than carotid chemoreceptors to 24 

stimulants, such as hypoxia.  Deriving information from experiments using 25 

chronically instrumented, un-anaesthetised fetal sheep preparations in late 26 

gestation, it is now widely accepted that the fetal bradycardia and peripheral 27 



 7 

vasoconstrictor response to acute hypoxia are exclusively triggered by carotid and 1 

not aortic chemoreflexes.   It has been shown that selective carotid (Giussani et al. 2 

1993) but not aortic (Itskovitz et al. 1991; Bartelds et al. 1993) chemo-denervation 3 

completely prevents the fetal bradycardia and the initial increase in femoral 4 

vascular resistance during acute hypoxia (Figure 1).  Bilateral section of the carotid 5 

sinus nerves also diminishes the increase in the fetal brain sparing ratio (Figure 1) 6 

and prevents the initial fall in renal (Green et al. 1997) and pulmonary arterial 7 

(Moore & Hanson, 1991) blood flow in response to acute hypoxia in the late 8 

gestation fetus.  This highlights the greater contribution of the carotid 9 

chemoreceptors over the aortic chemoreceptors in mediating the redistribution of 10 

blood flow away from the periphery and towards the brain during periods of oxygen 11 

deprivation in the fetus.   12 

 13 

Since the seminal study of López-Barneo et al. (1998), discussion of the cellular 14 

processes within the carotid body that give sensitivity of this tissue to stimulants, 15 

such as fall in oxygenation, is still vibrant even for the adult individual; this being 16 

the topic of several elegant reviews and editorials (Kumar and Prabhakar, 2012; 17 

Vilares Conde and Peers, 2013).  It is generally accepted that ion channels are 18 

critical to this process, involving inhibition of potassium currents, depolarization of 19 

cell membranes and elevation in intracellular calcium.  However, more recent 20 

evidence suggests that gasotransmitters may also be involved (Prabhakar and 21 

Semenza, 2012; Kemp and Telezhkin, 2014).  Compared to the physiology of 22 

oxygen sensing in the adult period, research on cellular mechanisms mediating 23 

carotid body sensitivity in fetal life are almost absent.  A comprehensive report by 24 

Koos (2011) put forward the idea that adenosine A2A receptors mediate fetal 25 

chemoreflex responses, suggesting that oxygen sensing in the carotid bodies in 26 

fetal life is critically linked to activation of 5’nucleotidase.   Work in our group 27 
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support this idea, since treatment of the late gestation sheep fetus with the 1 

adenosine receptor antagonist 8-(p-sulfophenyl)-theophylline prevented fetal 2 

bradycardia and fetal femoral vasoconstriction during acute hypoxia in a manner 3 

similar to bilateral section of the carotid sinus nerves (Giussani et al. 2001).  A 4 

report by the laboratory of Lagercrantz stated that selective down-regulation of 5 

HIF-1α may be involved in the postnatal maturation of carotid body responsiveness 6 

to hypoxia (Roux et al. 2005). 7 

 8 

In fetal life, carotid chemoreflex influences on the fetal brainstem lead to an 9 

increase in both sympathetic and vagal outflow to the fetal heart, however vagal 10 

influences predominate leading to a fall in fetal heart rate (Court & Parer, 1984).  11 

Therefore, fetal treatment with the muscarinic antagonist atropine not only blocks 12 

bradycardia but leads to an increase in fetal heart rate, unveiling the unopposed 13 

increased cardiac sympathetic drive during acute hypoxia (Court & Parer, 1984; 14 

Giussani et al. 1993).  Carotid chemoreflex influences on the fetal brainstem also 15 

increase sympathetic outflow to peripheral vascular beds.  Vasoconstriction in fetal 16 

peripheral circulations is prevented by chemical sympathectomy (Iwamoto et al. 17 

1983; Booth et al. 2012), denervation of sympathetic efferent pathways (Robillard 18 

et al. 1986, Booth et al. 2012) or by fetal treatment with alpha adrenergic receptor 19 

antagonists, such as phentolamine or phenoxybenzamine (Lewis et al. 1980; Reuss 20 

et al. 1982; Giussani et al. 1993).  Once triggered by the carotid chemoreflex, the 21 

fetal heart and circulatory responses are modified by the release of chemicals into 22 

the fetal circulation.  Measureable increases in plasma catecholamines, vasopressin, 23 

angiotensin II and neuropeptide Y occur by 15 minutes from the onset of acute 24 

hypoxia (Broughton-Pipkin et al. 1974; Jones & Robinson, 1975; Rurak, 1978; 25 

Giussani et al. 1994b; Fletcher et al. 2000; 2006).  The increase in fetal plasma 26 

adrenaline and noradrenaline oppose vagal inputs to the heart, returning fetal heart 27 
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rate to baseline values by 30 minutes from the onset of acute hypoxia (Jones & 1 

Ritchie, 1983).  Accordingly, fetal treatment with the beta blocker propranolol 2 

prolongs the fetal bradycardic response to acute hypoxia (Court & Parer, 1984).  3 

The increase in catecholamines and other constrictor agents in the fetal circulation 4 

also maintain the neurally-triggered peripheral vasoconstrictor response, not only 5 

prolonging redistribution of the fetal cardiac output but helping maintain perfusion 6 

pressure as the episode of acute hypoxia continues.  Therefore, fetal treatment with 7 

alpha-adrenergic or vasopressin receptor antagonists decrease the ability of the 8 

fetus to maintain peripheral vascular resistance and arterial blood pressure during 9 

acute hypoxia (Peréz et al. 1989; Giussani et al. 1993).  There is some evidence 10 

that during periods of fetal oxygen deprivation the carotid chemoreflex is also 11 

involved in affecting the release of catecholamines from the adrenal medulla 12 

(Jensen & Hanson, 1995) and in sensitising the adrenal cortex to ACTH (Giussani et 13 

al. 1994a), enhancing the release of cortisol into the fetal circulation.  By contrast, 14 

the carotid chemoreceptors are not involved in the fetal plasma vasopressin or 15 

angiotensin II response to acute hypoxia (Giussani et al. 1994b; Green et al. 16 

1998). Some studies have implicated calcitonin gene related peptide (cGRP) as 17 

having an important role in the activation of the sympathetic nervous system 18 

during acute hypoxia in the late gestation fetus.  It has been reported that 19 

treatment of fetal sheep with cGRP antagonists markedly diminished the fetal 20 

femoral vasoconstrictor and the plasma NPY and catecholamine responses to acute 21 

hypoxia (Thakor et al. 2005). 22 

 23 

It is also known that fetal carotid chemoreflex and endocrine constrictor influences 24 

on the fetal peripheral circulations are opposed by hypoxia-induced increases in the 25 

dilator gas nitric oxide (NO).  Therefore, fetal treatment with the NO clamp, a 26 

technique that permits de novo synthesis of NO to be blocked while maintaining 27 
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basal cardiovascular function (Gardner et al. 2001; 2002b; Gardner & Giussani, 1 

2003), revealed a significantly greater femoral vasoconstrictor response to acute 2 

hypoxia in the late gestation fetus (Morrison et al. 2003).  More recently, in the last 3 

few years, our group has made the discovery that the influence of NO at the level 4 

of the fetal vasculature is itself limited by the generation of reactive oxygen species 5 

(ROS) during acute hypoxia (Thakor et al. 2010b).  This, in essence, creates a 6 

vascular oxidant tone that contributes to the regulation of blood flow in the fetal 7 

circulation and one that can be manipulated in favour of constriction or dilatation by 8 

altering the numerator or denominator of the fraction.  Hence, treatment of the 9 

sheep fetus with antioxidants, such as vitamin C (Thakor et al. 2010b), allopurinol 10 

(Kane et al. 2014), melatonin (Thakor et al. 2015) or agents that increase NO, such 11 

as statins (Kane et al. 2012), all shift the vasoactive balance in favour of dilatation, 12 

thereby diminishing the fetal peripheral vasoconstrictor response to acute hypoxia.  13 

Therefore, we now know that the magnitude of the fetal peripheral vasoconstrictor 14 

response to acute hypoxia, part of the fetal brain sparing response, represents the 15 

result of the combined influences of carotid chemoreflexes, endocrine responses 16 

and a vascular oxidant tone acting at the level of the fetal vasculature, the latter 17 

being determined itself by the interaction between NO and ROS (Figure 2).  Of 18 

related interest are reports that fetal treatment with antioxidants can also increase 19 

blood flow above basal levels in NO sensitive circulations, such as in the umbilical 20 

vascular bed, via quenching ROS and increasing NO bioavailability (Thakor et al. 21 

2010a Derks et al. 2010; Herrera et al. 2012).  This finding is of significance 22 

because, clinically, it is generally believed that basal placental and umbilical blood 23 

flow in late gestation is maximal.  This is clearly not true.   24 

 25 

Since fetal treatment with antioxidants diminishes the fetal peripheral 26 

vasoconstrictor response to acute hypoxia, it has been suggested that fetal 27 
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exposure to antioxidants, for instance via maternal antioxidant supplementation, 1 

might weaken the fetal brain sparing response to acute hypoxia (Thakor et al. 2 

2010b; Kane et al. 2012; 2014; Thakor et al. 2015; Peebles et al. 2012).  However, 3 

while enhanced NO bioavailability in the fetal circulation as a result of antioxidant 4 

treatment might oppose constriction in fetal peripheral circulations, it may maintain 5 

or even enhance blood flow in the cerebral circulation in which NO contributes to 6 

the local vasodilator response (Thakor et al. 2015; Peebles et al. 2012).  Hence, 7 

under conditions of fetal exposure to antioxidants, maintenance of cerebral blood 8 

flow might not be necessarily compromised.  However, the fetal cardiovascular 9 

strategy to defend itself against acute hypoxia may need to change to increase 10 

cardiac output and maintain perfusion in the presence of a generalised dilator 11 

response, akin, interestingly, to the response to acute hypoxia in the adult period 12 

(Rowell & Blackmon, 1987; Marshall, 1999).  Furthermore, several studies have 13 

dissociated the fetal peripheral vasoconstrictor and cerebral vasodilator responses 14 

to acute hypoxia.   For example, the magnitude of the increase in carotid blood flow 15 

during acute hypoxia is similar in intact fetuses and in carotid sinus denervated 16 

fetal sheep, despite an attenuated peripheral vasoconstriction and fetal brain 17 

sparing ratio in the latter group (Giussani et al. 1993; Figure 1).  Similarly, the 18 

magnitude of the increase in carotid blood flow (Giussani et al. 1993) and of the 19 

decrease in the vascular resistance in the cerebral (Reuss et al. 1982) vascular 20 

beds during acute hypoxia was similar in untreated fetuses and in fetuses treated 21 

with α-adrenergic receptor antagonists, despite abolition of peripheral 22 

vasoconstriction in the latter groups.  Therefore, while the fetal peripheral 23 

vasoconstrictor response aids the redistribution of blood flow away from less 24 

essential vascular beds, it is not indispensable at least to the maintenance of 25 

carotid blood flow during acute hypoxia in the late gestation fetus. 26 

       27 



 12 

Maturation of the fetal brain sparing response to acute hypoxia 1 

Prior to ca. 110 days of approximately a 150 day gestation, the sheep fetus has an 2 

immature cardiovascular defence to acute hypoxic stress.  This includes tachycardia 3 

rather than bradycardia and an inability to increase peripheral vascular resistance 4 

and maintain arterial blood pressure (Boddy et al. 1974; Iwamoto et al. 1989).  5 

After ca. 120 days of gestation, the pattern and the magnitude of the fetal heart 6 

and circulatory responses to acute hypoxia change as the fetus approaches term, in 7 

close temporal association with the prepartum increase in fetal plasma cortisol.  As 8 

the fetus approaches term, the bradycardic response to acute hypoxia switches 9 

from being transient to becoming sustained and more pronounced (Fletcher et al. 10 

2006).  In addition, the femoral vasoconstrictor response to acute hypoxia becomes 11 

much greater with advancing gestation (Fletcher et al. 2006; Figure 3).  The 12 

physiology underlying the enhanced and sustained bradycardia in the term 13 

compared with the preterm fetus includes maturation of carotid body chemoreflexes 14 

and reciprocal changes in the responsiveness of fetal heart to autonomic agonists.  15 

While fetal cardiac reactivity to muscarinic agonists increases, it decreases to β1-16 

adrenergic stimulation, thereby promoting cardiac vagal dominance with increased 17 

maturation (Fletcher et al. 2005; 2006).  Similarly, the greater increment in fetal 18 

femoral vascular resistance during acute hypoxia with advancing gestational age 19 

results, in part, from maturation of the carotid body chemoreflex and, in part, from 20 

greater plasma catecholamine, vasopressin and neuropeptide Y responses (Fletcher 21 

et al. 2006).  During episodes of acute hypoxia, the adrenal output of 22 

catecholamines may be stimulated both by the direct effects of hypoxia on the 23 

gland and by neuronal stimulation (Jones et al. 1988), especially following the 24 

establishment of splanchnic nerve synapses with adrenal chromaffin cells at around 25 

130 days of gestation (Boshier et al. 1989). The relative contribution of these two 26 

stimuli in promoting adrenal catecholamine secretion during acute hypoxia also 27 
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changes with advancing gestation, reported both in the acutely-exteriorised, 1 

anaesthetised fetal sheep preparation (Comline & Silver, 1961) and in the un-2 

anaesthetised chronically instrumented fetal sheep preparation (Cheung, 1990).  3 

Comline & Silver (1961) studied the effects of splanchnic nerve section on the 4 

outputs of adrenaline and noradrenaline from the adrenal gland in response to 5 

asphyxia in pentobarbitone-anaesthetised fetal sheep from 80 days to term.  The 6 

degree of attenuation of the noradrenaline and adrenaline outputs following 7 

splanchnic nerve section increased with advancing gestational age, suggesting an 8 

increasing dependence of the adrenal medulla on innervation to respond to acute 9 

oxygen deprivation.  In addition, it was shown that the adrenal outputs of 10 

adrenaline and noradrenaline evoked by electrical stimulation of the splanchnic 11 

nerves increased with advancing gestational age.  The timing of the increase in 12 

fetal adrenal noradrenaline content is coincident with an increase in adrenal 13 

tyrosine hydroxylase mRNA levels and the onset of splanchnic innervation of the 14 

fetal adrenal gland (80-120 days; see McMillen et al. 1997).  The main increase in 15 

adrenaline content occurs after 130 days, in close temporal association with an 16 

increase in phenylethanolamine N-methyltransferase (PNMT) mRNA and the 17 

prepartum increase in adrenal glucocorticoid production (McMillen et al. 1997).  18 

Using the un-anaesthetised chronically instrumented fetal sheep preparation in 19 

combination with hexamethonium blockade, Cheung (1990) detected both direct 20 

and neuronal release of catecholamines during hypoxia at 110 and 120 days, and 21 

showed that the adrenal medullary responses to hypoxia were solely under 22 

neuronal control by 130 days, again coinciding with completion of functional 23 

innervation (Boshier et al. 1989; see Cheung, 1990).  However, if the adrenal gland 24 

is separated from its splanchnic innervation and is perfused in vitro, it can also 25 

respond directly to hypoxia even after 135 days (Adams et al. 1996).  While 26 

information is available on the effects of gestational age on chemoreflex and 27 
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endocrine responses to acute hypoxia in the fetus, the contribution of alterations in 1 

the vascular oxidant tone to the fetal brain sparing response during hypoxia with 2 

advancing gestational age awaits investigation. 3 

 4 

It is now also established that exposure of the preterm ovine fetus to synthetic 5 

glucocorticoids, such as dexamethasone or betamethasone, administered in human 6 

clinically-relevant doses, can switch the pattern and magnitude of the fetal heart 7 

and circulatory responses to acute hypoxia in similar fashion to advancing 8 

gestational age.  Therefore, either fetal intravenous infusion with dexamethasone 9 

for 48h to yield human clinically relevant circulating doses of the synthetic steroid, 10 

or maternal intramuscular injection with a single course of dexamethasone of 2 x 11 

12 mg 24h apart at 0.7-0.8 of gestation both switch the fetal heart and femoral 12 

constrictor responses to acute hypoxia from the immature to the mature phenotype 13 

(Fletcher et al. 2000b; 2003, 2006; Jellyman et al. 2005; 2009; Figure 4).  As with 14 

advancing gestational age, synthetic steroids sensitise carotid chemoreflex function, 15 

they promote cardiac vagal dominance and enhance the fetal vasoconstrictor 16 

hormone responses to acute hypoxia (Fletcher et al. 2000b; 2003, 2006; Jellyman 17 

et al. 2005; 2009).  Therefore, in obstetric practice, it should be now known that 18 

antenatal glucocorticoid therapy not only accelerates fetal lung maturation but also 19 

the capacity of the fetal cardiovascular system to respond to acute hypoxic stress.   20 

 21 

An important point of related scientific and clinical interest is that the practise of 22 

intra-partum electronic fetal monitoring (EFM) has been implemented worldwide for 23 

several decades.  Intra-partum EFM attempts to use changes in fetal heart rate 24 

patterns to identify fetuses with a suspected hypoxic or asphyxic compromise in 25 

order to deliver them before fetal cardiovascular collapse.  Surprisingly, despite the 26 

knowledge that advancing gestational age as well as antenatal glucocorticoid 27 
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therapy affects the magnitude and pattern of the fetal heart rate, fetal endocrine 1 

and fetal metabolic responses to hypoxia (Fletcher et al. 2003, 2006; Jellyman et 2 

al. 2005; 2009), all of which contribute to alterations in fetal heart rate variability, 3 

how any of these factors influence EFM is not taken into account in the clinic.  4 

Clearly, investigation of the effects of gestational age and of antenatal 5 

glucocorticoid therapy on the mechanisms mediating changes in fetal heart rate 6 

variability is a highly significant area of urgently needed future clinical research. 7 

 8 

The fetal brain sparing response during acute hypoglycaemia 9 

Whether the carotid body can sense stimuli in addition to alterations in PO2, PCO2 10 

and pH, such as glucose concentration, has been a matter of scientific interest for 11 

some time.  Carotid body glomus cells have been found to detect hypoglycaemia in 12 

several non-primate mammals as well as humans in adult life (Alvarez-Buylla & de 13 

Alvarez-Buylla, 1988; for review, see Gao et al. 2014).  Pardal and Lopez Barneo 14 

(2002) proposed a new glucose-sensing role for the carotid body that serves to 15 

integrate information about blood glucose and O2 levels in adult animals.  16 

Consequently, there has been accruing interest in whether the carotid 17 

chemoreceptors might also contribute to a brain sparing response during acute 18 

episodes of glucose in addition to oxygen deprivation in fetal life. Insulin-induced 19 

fetal hypoglycaemia, without fetal hyperinsulinaemia, does promote a fall in basal 20 

heart rate and redistributes the fetal cardiac output in favour of essential vascular 21 

beds at the expense of peripheral circulations.  However, the cardiovascular 22 

responses are not marked or rapid in onset and they take time to develop (Burrage 23 

et al. 2009; Cleal et al. 2010).  Burrage et al. (2008) reported that carotid body 24 

denervation has subtle effects on differential perfusion, slowly influencing organ 25 

growth responses to maternal undernutrition in late gestation fetal sheep.  26 

Therefore, combined, current evidence suggests that the carotid bodies do not 27 
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trigger immediate neural compensatory cardiovascular responses to acute 1 

hypoglycaemia that may spare the fetal brain in a manner akin to fetal hypoxia.  2 

Rather, the fetal carotid bodies likely play a role in the longer term redistribution of 3 

blood flow, which may contribute to differential organ growth in pregnancy 4 

compromised by maternal undernutrition (Burrage et al. 2008).     5 

 6 

The fetal brain sparing response in chronic hypoxic pregnancy 7 

What happens to the fetal brain sparing response during chronic fetal hypoxia has 8 

been comparatively more difficult to study because of the technical difficulty to 9 

record fetal cardiovascular function in vivo in pregnancies complicated by chronic 10 

fetal hypoxia.  However, slowly accumulating evidence is beginning to suggest that 11 

the fetal brain sparing response persists during chronic fetal hypoxia (Kamitomo et 12 

al. 1993; Richardson et al. 1993; Richardson & Bocking, 1998; Gardner et al. 2001; 13 

Morrison, 2008; Poudel et al. 2015; Allison et al. 2015).  While persistent 14 

redistribution of the fetal cardiac output may serve to maintain oxygen and nutrient 15 

delivery to the brain during sub-optimal pregnancy, sustained reductions in oxygen 16 

and nutrient delivery to peripheral organs trigger a number of unwanted adverse 17 

side-effects.  Amongst the best described is that fetuses are not only small but they 18 

are asymmetrically intrauterine growth restricted, being thin for their length or 19 

having a relatively normal sized head with a shorter body length (Barker, 1998; 20 

McMillen et al. 2001; Halliday, 2009; Giussani et al. 2007; Soria et al. 2013).  21 

Persistent redistribution of oxygen and nutrient delivery away from peripheral 22 

circulations may also help explain the reduced endowment of kidney nephrons 23 

(Dorey et al. 2014) and of pancreatic beta cells in offspring of compromised 24 

pregnancy (Snoeck et al. 1990; Limesand et al. 2005).  Further, persistent 25 

increases in fetal peripheral vascular resistance in adverse pregnancy will increase 26 

fetal cardiac afterload, enforcing alterations in cardiomyocytes, remodelling of the 27 
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walls of the heart and major vessels (Veille et al. 1993; Skilton et al. 2005; Salinas 1 

et al. 2010) and resetting of the arterial baroreflex function (Fletcher et al. 2002).  2 

Not surprisingly, adverse intrauterine conditions have been consistently associated 3 

with an increased risk of cardiovascular, metabolic and renal diseases in the adult 4 

offspring (Barker, 1998; Fowden et al. 2006; Gluckman et al. 2008).  Programmed 5 

cardiovascular disease in later life linked specifically to chronic fetal hypoxia has 6 

been recently reviewed by Giussani & Davidge (2013). 7 

 8 

How adverse intrauterine conditions affect the capacity of the fetal cardiovascular 9 

system to unleash a brain sparing response during an acute hypoxic insult has been 10 

even less well studied because of the increasing layers of technological complexity 11 

modelling these situations.  In adverse pregnancy, such as during placental 12 

insufficiency or preeclampsia, it is generally accepted that the chronically 13 

compromised fetus may not necessarily experience sustained, clamped reductions 14 

in oxygenation but that it may be exposed to progressive hypoxia or repeated 15 

periods of hypoxia and re-oxygenation or ischaemia and reperfusion, which are of 16 

varying magnitude and duration.  Consequently, a fetus in late gestation may be 17 

exposed to acute hypoxia on a background of sustained reductions in fetal 18 

oxygenation, what is commonly denominated acute-on-chronic hypoxia.  19 

Alternatively, a fetus in late gestation may be exposed to acute hypoxia after a 20 

period of chronic hypoxia has resolved, following normalisation of fetal oxygenation, 21 

denominated acute-after-chronic hypoxia.  How acute-on-chronic hypoxia or acute-22 

after-chronic hypoxia affect the fetal brain sparing response has always been of 23 

intense clinical and scientific interest, however the breadth and depth of 24 

investigation to date have not matched this level of interest and these questions 25 

remain to be systematically addressed. 26 

 27 
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The few experimental studies modelling the effects on fetal cardiovascular function 1 

of acute-on-chronic hypoxia include studies by Robinson et al. (1983) who studied 2 

the effects of acute hypoxia on placentally-restricted fetuses, by Block et al. (1984) 3 

who induced chronic hypoxia by embolization of the uteroplacental vascular bed, by 4 

Kamitomo et al. (1993) and Tissot van Patot et al. (2012) who investigated fetal 5 

cardiovascular responses to acute hypoxia in sheep exposed to high altitude 6 

pregnancy, by Gagnon et al. (1997) who investigated redistribution of the fetal 7 

cardiac output in response to acute fetal placental embolization superimposed on 8 

chronic fetal placental embolization, and by Gardner et al. (2002a) who studied the 9 

fetal brain sparing response to acute hypoxia in fetuses which were chronically 10 

hypoxic after surgery.  Four of these studies concluded that redistribution of the 11 

fetal cardiac output during acute hypoxia was maintained in the chronically hypoxic 12 

fetus (Block et al. 1984; Kamitomo et al. 1993; Gagnon et al. 1997; Gardner et al. 13 

2002a) with some evidence of a sensitised cardiovascular defence to acute hypoxia 14 

by pre-existing chronic hypoxia (Block et al. 1984; Gardner et al. 2002a). Robinson 15 

et al. (1983) and Tissot van Patot et al. (2012) reported respectively a blunted 16 

bradycardic or even reversed cardiac response to acute hypoxia in the chronically 17 

hypoxic fetus, which could represent a desensitised carotid body chemoreflex.  18 

However, Robinson et al. (1983) favoured greater resting plasma catecholamine 19 

concentrations opposing the hypoxia-induced increase in vagal tone as a likely 20 

cause for the reduced bradycardic response in the placentally-restricted fetus.  21 

Gardner et al. (2002a) reported that the femoral vasoconstrictor and plasma 22 

vasopressin and catecholamine responses to acute hypoxia were significantly 23 

greater in chronically hypoxic relative to normoxic fetuses. These are similar 24 

sensitising effects on cardiovascular and endocrine responses to acute hypoxia as 25 

those determined in the fetal llama, a species adapted to the chronic hypoxia of life 26 

at high altitude (Giussani et al. 1999).  It is also recognized that chronic hypoxia in 27 
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the fetus rarely occurs in isolation, and that, in adverse pregnancy, it is often 1 

accompanied by acidaemia and/or hypoglycaemia (Nicolaides et al. 1989).  Some 2 

studies have reported that prevailing fetal acidaemia (Gardner et al. 2002a; Thakor 3 

& Giussani, 2009) or chronic fetal hypoglycaemia (Gardner et al. 2002a; Cleal et al. 4 

2010) can also sensitise the fetal cardiovascular responses to acute hypoxia.  5 

Clearly, the degree and duration of fetal acidosis is of paramount importance since 6 

the development of severe fetal acidaemia (pH < 7.05) has been deemed as a key 7 

turning point after which a large proportion of fetuses are unable to maintain 8 

cardiovascular defence mechanisms to superimposed challenges, rendering them at 9 

risk of asphyxial brain injury (Gunn & Bennet, 2009). 10 

 11 

Only one study to date appears to have investigated the effects on fetal 12 

cardiovascular function of acute-after-chronic hypoxia.  In contrast to acute-on-13 

chronic hypoxia, the technical advantage of the acute-after-chronic hypoxia model 14 

is that both groups of control fetuses and fetuses pre-exposed to chronic hypoxia 15 

have normal resting partial pressures of oxygen.  Consequently, an acute hypoxic 16 

challenge of similar magnitude and starting from a similar baseline can be induced 17 

in both groups, facilitating experimental comparison.  Gardner et al. (2002b) 18 

reported that exposure of the ovine fetus to reversible chronic hypoxia lasting a few 19 

days suppressed the femoral vasoconstriction but enhanced umbilical vasodilatation 20 

during subsequent acute hypoxia through elevated nitric oxide (NO) activity. 21 

 22 

Combined, therefore, available data imply that the fetal cardiovascular system may 23 

adopt different strategies to spare the fetal brain during acute hypoxia depending 24 

on whether this occurs as an isolated event or superimposed on chronic hypoxia or 25 

following recovery from chronic hypoxia.  While acute-on-chronic hypoxia may 26 

sensitise cardiovascular defence mechanisms (Block et al. 1984; Gardner et al. 27 
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2002a), acute-after-chronic hypoxia may switch the fetal defence strategy from a 1 

reliance on vasoconstrictor mechanisms to those promoting NO-dependent 2 

vasodilatation and increased perfusion and cardiac output (Gardner et al. 2002b).  3 

Clearly, these broad interpretations must now lay the foundation for future research 4 

asking focused and mechanistic questions, which do not shy away from but rather 5 

embrace the complexity of studying the cardiovascular function in vivo of the 6 

chronically hypoxic fetus.   7 
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FIGURE LEGENDS 

 

Figure 1.  Fetal cardiovascular responses to acute hypoxia. The data show 

the mean±SEM for the change in fetal carotid blood flow (a), fetal femoral blood 

flow (b) and fetal heart rate (c) in intact (○, n=14) and carotid body denervated (●, 

n=12) chronically-instrumented sheep fetuses at 0.8 of gestation during a 1 hour 

episode of acute hypoxia (PaO2 reduced from ca. 23 to 13 mmHg, box).  

Calculation of the ratio between simultaneous measurements of carotid and femoral 

blood yields the fetal brain sparing index (d).  Carotid body denervation prevents 

the fetal bradycardia and diminishes the fall in fetal femoral blood flow and the 

increase in the fetal brain sparing index during acute hypoxia.  However, carotid 

body denervation does not affect the increment in carotid femoral blood flow during 

acute hypoxia.  *P<0.05, intact vs. denervated.  Redrawn from Giussani et al. 

1993, with permission. 

 

Figure 2.  Physiology of fetal brain sparing during hypoxia.  The fetal brain 

sparing response to acute hypoxia is triggered by a carotid chemoreflex which leads 

to bradycardia and an increase in peripheral vasoconstriction.  The bradycardia is 

mediated by a dominant vagal influence on the fetal heart.  The neurally triggered 

peripheral vasoconstriction is maintained by the release of constrictor hormones 

into the fetal circulation as well as a local vascular oxidant tone, determined by the 

interaction between nitric oxide (NO) and ROS, such as the superoxide anion (O2
- 

).  Numbers represent some of the evidence available in the literature.   
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Figure 3.  Ontogeny of the fetal cardiovascular responses to acute hypoxia. 

The data show mean±SEM for the fetal heart rate, fetal arterial blood pressure, 

fetal femoral blood flow and fetal femoral vascular resistance during a 1 hour 

episode of acute hypoxia (box) in 13 fetuses between 125-130 days of gestation, 6 

fetuses between 135-140 days of gestation and 6 fetuses >140 days (term is ca. 

145 days). Basal fetal heart rate and basal fetal femoral blood flow decrease with 

advancing gestation. In addition, during acute hypoxia, the bradycardia becomes 

enhanced and persistent and the femoral vasoconstriction is more intense as the 

fetus approaches term. Redrawn from Fletcher et al. (2006), with permission. 

 

Figure 4.  Anteanatal glucocorticoid therapy and maturation of the fetal 

cardiovascular defence to acute hypoxia. The data show mean±SEM for the 

fetal heart rate,  fetal arterial blood pressure, fetal femoral blood flow and fetal 

femoral vascular resistance during a 1-hour episode of acute hypoxia (box) in 14 

fetuses at 127±1 day of gestation (term is ca. 145 days) following 2 days of 

continuous fetal i.v. infusion with saline or with dexamethasone treatment. Fetal 

treatment with dexamethasone switches the pattern and the magnitude of the fetal 

heart rate and the femoral vascular resistance responses to acute hypoxia towards 

those seen in fetuses close to term (see Figure 3). This indicates accelerated 

maturation of the fetal cardiovascular defence to acute hypoxia by antenatal 

glucocorticoid treatment. Redrawn from Fletcher et al. (2003), with permission. 

 

Abstract Figure.  The fetal brain sparing response to hypoxia.  The fetal brain 

sparing response to acute hypoxia is triggered by a carotid chemoreflex which leads 

to bradycardia and an increase in peripheral vasoconstriction.  The bradycardia is 

mediated by a dominant vagal influence on the fetal heart.  The neutrally-triggered 

peripheral vasoconstriction is maintained by the release of constrictor hormones 
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into the fetal circulation as well as a local vascular oxidant tone, determined by the 

interaction between NO and ROS, such as the superoxide anion (O2
-).   
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Table 1.  Causes and consequences of fetal hypoxia 
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Major antepartum haemorrhage Green-top Guideline No. 63. London (UK): RCOG; 20 
Abnormal presentation Leung TY et al. Brit J Obstet Gynaecol 118(4): 474-9, 2011 
Post-term labour Vorherr H. Am J Obstet Gynecol 123(1), 67-103, 1975 
Multiple pregnancy 
 

Roberts CL. Obstet Gynecol 125(1): 103-10, 2015 
Smith GC. BMJ 17;334:576, 2007 

Oligohydramnios  Robson SC et al. Am J Obstet Gynecol 166:78–82, 1992 
Intrapartum analgesia Ratcliffe FM, Evans JM. Eur J Anaesthesiol 10: 175–181, 1993 

 

Chronic fetal hypoxia  
Uteroplacental dysfunction 
 

Pardi G et al. N Engl J Med. 328(10): 692-6, 1993 
Baschat AA. Br J Obstet Gynaecol 111: 1031-1041, 2004 

Pre-eclampsia Kingdom JC, Kaufmann P. Placenta 18(8): 613-21, 1997 
Soleymanlou N et al. J Clin Endocrinol Metab 90: 4299-4308, 2005 

Gestational or Essential Hypertension Allen VM et al. BMC Pregnancy Childbirth 4:17–25, 2004 
Chorioamnionitis Maberry MC et al. Obstet Gynecol 76(3 Pt 1): 351-4, 1990 
Polyhydramnios Brace RA. Clin Obstet Gynecol 40(2): 280-9, 1997 
High altitude pregnancy Makowski EL et al. Am J Obstet Gynecol 100(6): 852-61, 1968 
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