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Abstract

We consider nonlinear moment restriction semiparametric models where both the di-

mension of the parameter vector and the number of restrictions are divergent with sample

size and an unknown smooth function is involved. We propose an estimation method

based on the sieve generalized method of moments (sieve GMM). We establish consis-

tency and asymptotic normality for the estimated quantities when the number of param-

eters increases modestly with sample size. We also consider the case where the number

of potential parameters/covariates is very large, i.e., increases rapidly with sample size,

but the true model exhibits sparsity. We use a penalized sieve GMM approach to se-

lect the relevant variables, and establish the oracle property of our method in this case.

We also provide new results for inference. We propose several new test statistics for the

over-identification and establish their large sample properties. We provide a simulation

study that shows the performance of our methodology. We also provide an application to

modelling the effect of schooling on wages using data from the NLSY79 used by Carneiro

et al. [17].
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1 Introduction and examples

Large models are the focus of much current methodological research. As pronounced by Athey

et al. [5]: “There is a large literature on semiparametric estimation of average treatment effects

under unconfounded treatment assignment in settings with a fixed number of covariates. More

recently attention has focused on settings with a large number of covariates”. Belloni et al.

[9] review a number of approaches to estimation and selection in large models defined through

linear moment restrictions. We consider a class of nonlinear moment restriction models where

there are many Euclidean-valued parameters as well as unknown infinite dimensional functional

parameters. The setting includes as a special case the partial linear regression model with

some weak instruments and endogeneity, Robinson [60], except in our case the number of

covariates in the linear part may be large, i.e., increase to infinity with sample size. There are

sometimes many binary covariates whose effect can be restricted to be linear, perhaps after

a transformation of response, but other continuous covariates whose effect is thought to be

nonlinear. In panel data, one may wish to allow for many fixed effects or interactive effects

in an essentially parametric fashion, but capture the potential nonlinear effect of a critical

covariate or a continuous treatment variable nonparametrically. If both the cross-section and

time series dimension are large then these quantities are all estimable. See for example Connor

et al. [27].

We use the generalized method of moments (GMM) to deliver simultaneous estimation of all

unknown quantities from a large dimensional moment vector. There is a considerable literature

on GMM in parametric cases following Hansen [41]. There is a general theory available for

non-smooth objective functions of finite dimensional parameters (e.g., Pakes and Pollard [55]

and Newey and McFadden [50, Section 7]). Some recent work has focused on the extension to

the case where there are many moment conditions but some conditions are more informative

than others, the so-called weak instrument case, see Newey and Windmeijer [53] and Han and

Phillips [40]. There is a large literature on semiparametric estimation problems with smooth

objective functions of both finite and infinite dimensional parameters (e.g., Bickel et al. [14],

Andrews [2], Newey [48], Newey and McFadden [50, Section 8], Pakes and Olley [54], Chen

and Shen [25] and Ai and Chen [1]). Chen et al. [23] extended this theory to allow for non-

smooth moment functions. Other work has sharpened and broadened the applicability of the

semiparametric case where the number of Euclidean parameters is finite but there are unknown

function-valued parameters and endogeneity (see, for example Chen and Liao [22]). Our work

extends the semiparametric theory to the case where the parametric component is growing in

complexity, which is of particular relevance for modern big data settings.

We suppose that

E[m(V, α
ᵀ
X, g(Z))] = 0, (1.1)
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where m is a known vector of functions whose dimension q is large. Here, α is an unknown

Euclidean-valued parameter whose dimension p is large, while g is a vector of unknown smooth

functions. The random variable V typically represents a dependent variable and possible in-

strumental variables, while the vectors X and Z are explanatory variables. We suppose that

Z is of finite dimension, but the dimension of X (and V ) may be large, i.e., diverge. We

suppose that a random sample {Vi, Xi, Zi, i = 1, . . . , n} is observed and that p = p(n) → ∞
and q = q(n)→∞ as n→∞ with q > p. For our main inference results we consider the case

where (at least) p/n→ 0, similar to Portnoy [57], Portnoy [58] and Mammen [47]. The moment

restriction model (1.1) features high dimensionality in two ways: a high dimensional Euclidean

parameter (α) (that shows up in a single-index form), and an infinite dimensional unknown

function g(·). The number of moment conditions necessarily increases to infinity. Together this

represents a new framework in the literature.

The parameters of interest are particular functionals of α and g. In many applications

both types of quantities are of interest. For example, the weighted average MTE parameter

in Carneiro et al. [17] depends on both α and g. In financial econometrics a leading example

is the conditional value at risk, which depends on the parameters of the dynamic mean and

variance model and on the quantile of the error distribution. We simultaneously estimate α

and g in the parameter spaces defined below and then compute plug-in estimators from the

estimates of α and g. Chen et al. [23] study a fixed-dimensional moment restriction model

containing an unknown function. They consider both two step and profiled two-step methods.

A similar approach is used in Chen and Liao [22]. Kernel estimation techniques in particular

require an additional (albeit related) estimating equation for the function valued part, and

either two-step or profile methods are common, see, for example, Powell [59]. We use the sieve

methodology ( see Chen [20] for a review) to estimate the model (1.1) in one step. Suppose

that g(·) belongs to a suitable Hilbert space. We expand the function g(·) into an infinite

orthogonal series in terms of a basis in the Hilbert space, {ϕj(z)}, say. As a result, g(z) can

be approximated by the partial sum
∑K−1

j=0 βjϕj(z) in the norm of the space. In this way, the

unknown function is completely parameterized, which enables us to estimate the parameter

vector α and the function g(·) in model (1.1) simultaneously. Simultaneous estimation should

lead to small sample efficiency gains; it also allows us to impose ”cross-species” restrictions

that link α and g. This approach also avoids high level assumptions, such as in Chen et al.

[23] and Han and Phillips [40]. We establish the consistency and (self–normalized) asymptotic

normality of the parameters of interest (which are general functionals of (α, g)) and provide a

feasible central limit theorem (CLT) that allows normal based inference about the parameters

of interest. We also propose some new test statistics to address the over-identification issue,

and establish their large sample properties.
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We then consider the ultra-high dimensional case where the number of potential X variables

is extremely large, i.e., much larger than the sample size, but only a smaller subset of them

are relevant, i.e., the parametric part of the model possesses sparsity. That is, we suppose that

p >> n but α contains many zero elements, although we do not know a priori the location

of these zeros. This case has been considered by a number of recent studies in econometrics,

Belloni et al. [12], and is the focus of much research in statistics. To address this issue we

combine the GMM objective function with a specific penalty function, a folded concave penalty

function (see Fan and Li [33]). We show that variable selection and estimation can be done

simultaneously and our method achieves the oracle property, like Fan and Liao [34]. We also

provide a result on post model selection inference, which allows us to use the distribution theory

obtained in the first part of the paper. In a series of innovative papers by Belloni et al. [6],

Belloni and Chernozhukov [7], Belloni et al. [11], Belloni et al. [9], and Belloni et al. [10], the

authors develop the approximate linear model (ALM) framework. In that setting there is no

formal distinction between parametric and nonparametric components and the methodology

is built around the selection tools. Our more traditional semiparametric approach is explicit

about the model components and their relative complexity. In particular, we specify that g is

nonparametric and has to be estimated simultaneously with the parametric part.

We close with a discussion of applications. A common genesis for the unconditional moment

restrictions (1.1) is conditional moment restrictions perhaps from some economic model (Hansen

[41]). Let Wi be a sub-vector of (X
ᵀ

i , Z
ᵀ

i )
ᵀ

and let ρ(Yi, α
ᵀ
Xi, g(Zi)) be a known J-dimensional

vector residual. Then, suppose that (α, g) is determined by the conditional moment restriction

E[ρ(Yi, α
ᵀ
Xi, g(Zi))|Wi] = 0, almost surely.

Let ΦK(w) = (h1(w), . . . , hK(w)) be a vector of functions whose combination can approximate

any square integrable function of W in some sense arbitrarily as K →∞. Then, the conditional

moment restriction implies that

E[ρ(Yi, α
ᵀ
Xi, g(Zi))⊗ ΦK(Wi)] = 0.

Define m(Vi, α
ᵀ
Xi, g(Zi)) = ρ(Yi, α

ᵀ
Xi, g(Zi))⊗ΦK(Wi), where Vi = (Yi,W

ᵀ

i )
ᵀ

and “⊗” denotes

the Kronecker product. Notice that the dimension of the function m is q = JK, which increases

with K. Therefore, the pair (α, g) can be solved from the unconditional moment equation

E[m(Vi, α
ᵀ
Xi, g(Zi))] = 0. A specific example is a high dimensional partially linear model with

endogenous covariates. Let Yi = α
ᵀ
Xi+g(Zi) + ei, i = 1, . . . , n, where α ∈ Rp and ei is an error

term such that E[ei] = 0 for all i. Here, Xi is endogenous in the sense that E[ei|Xi] 6= 0. In the

case where the dimensionality of α is fixed, there are various results available in the literature

(see, for example, Robinson [60]; Gao and Liang [36]; Gao and Shi [37]; Härdle et al. [42]).
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To deal with the endogeneity, let Wi be a vector of instrumental variables and define a set

of valid instruments λi = λ(Zi,Wi) with dimension q (q > p). Denote

m(Vi, α
ᵀ
Xi, g(Zi)) = (Yi − α

ᵀ
Xi − g(Zi))λ(Zi,Wi)

with Vi = (Yi,W
ᵀ

i )
ᵀ
. Then, we have the moment condition E[m(Yi,Wi, α

ᵀ
Xi, g(Zi))] = 0,

which can be used to identify the parameter α and the nonparametric function g(·). Moti-

vated by Robinson [60] and Belloni et al. [6] an alternative moment condition in this case is

m(Vi, α
ᵀ
Xi, g(Zi)) =

(
Yi − gY (Zi)− α

ᵀ
(Xi − gX(Zi)) , Yi − gY (Zi), (Xi − gX(Zi))

ᵀ)
λ(Zi,Wi),

where gY (Zi) = E(Yi|Zi) and gX(Zi) = E(Xi|Zi). Essentially this is the efficient score func-

tion for α in a special case, Bickel et al. [14]. One can jointly estimate α, gY , gX from this

moment condition and then obtain g(Z) = gY (Z)−αᵀ
gX(Z). See Chernozhukov et al. [26] for a

more general discussion of the advantages of certain moment functions over others in a general

semiparametric moment condition setting. A slightly more complex model appears in Carneiro

et al. [17] who consider the following in their equation (9):

E[Y −Xᵀ
δ − P (Z)X

ᵀ
α−R(Z)|X,Z] = 0,

E[I(S = 1)− P (Z)|Z] = 0,
(1.2)

where P (·), R(·) are nonparametric, I(·) is the indicator function, and S is the selection indi-

cator. The outcome variable is the log wage, and X,Z are observed individual characteristics.

Here, because the dimension of Z in general is greater than three, a single-index structure is

adopted for the nonparametric function P (Z), i.e., P (Z) := Λ(θ
ᵀ

0Z). Furthermore, the function

R(z) = g(P (z)), where g is unknown. The dimension of X may be large.

The rest of the paper is organized as follows. Section 2 gives the estimation procedure.

Section 3 establishes the large sample theory for the estimator. In Section 4 we provide two

methods for testing over-identification. In Section 5 we propose and analyze procedures for

selecting covariates/parameters under sparsity. In Section 6 we evaluate the performance of

our procedures using simulations. In Section 7 we apply our method to investigate the effect

of schooling on earnings using the model and data of Carneiro et al. [17]. The last section

concludes.

Throughout, ‖ · ‖ can be either Euclidean norm for vector or Frobenius norm for matrix, or

the norm of functions in function space depending on the context; ⊗ denotes Kronecker product

for matrices or vectors; := means equal by definition; Ir is the identity matrix of dimension r.

2 Estimation procedure

We can allow multiple indexes in m but for simplicity of notation we suppose that α is a vector

rather than a matrix. The unknown function g(·) can be a vector of functions or a multivariate
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function. Both of these contexts are useful in practice and they may be dealt with similarly using

the sieve method. For the sake of easy exposition, however, we suppose in this paper that g is a

single multivariate function defined on Z ⊂ Rd. Let g ∈ L2(Z, π) = {f :
∫
Z f

2(z)π(z)dz < ∞}
a Hilbert function space, where π(·) is a user-chosen density function on Z. The choice of the

density π relates to how large the Hilbert space is chosen, since the thinner the tail of the

density is, the larger the space is. For example, L2(R, 1/(1 + z2)) ⊂ L2(R, exp(−z2)). An inner

product in the Hilbert space is given by 〈f1, f2〉 =
∫
Z f1(z)f2(z)π(z)dz, and hence the induced

norm ‖f‖ =
√
〈f, f〉 for any f1(z), f2(z), f(z) ∈ L2(Z, π). Two functions f1, f2 ∈ L2(Z, π) are

called orthogonal if 〈f1, f2〉 = 0, and further are orthonormal if ‖f1‖ = 1 and ‖f2‖ = 1.

The parameter space for model (1.1) is defined as, Θ = {(a, f) : a ∈ Rp, f ∈ L2(Z, π)},
which contains the true parameter (α, g) as an interior point by the measure defined below in

(2.2).

Assumption 2.1 Suppose that {ϕj(·)} is a complete orthonormal function sequence in L2(Z, π),

that is, 〈ϕi(·), ϕj(·)〉 = δij the Kronecker delta.

Recall that any Hilbert space has a complete orthogonal sequence (see Theorem 5.4.7 in

Dudley [31, p. 169]). In our setting, although g is multivariate, the orthonormal sequence

{ϕj(·)} can be constructed from the tensor product of univariate orthogonal sequences. Thus,

we hereby briefly introduce some well known univariate orthonormal sequences.

Generally speaking, an orthonormal sequence depends on its support on which it is defined

and the density by which the orthogonality is defined. Hermite polynomials form a complete

orthogonal sequence on R with respect to the density e−u
2
; Laguerre polynomials are a complete

orthogonal sequence on [0,∞) with density e−u; Legendre polynomials and also orthogonal

trigonometric polynomials are complete orthogonal sequence on [0, 1] with the uniform density;

Chebyshev polynomials are complete orthogonal on [−1, 1] with density 1/
√

1− u2. See, e.g.

Chapter one of Gautschi [38], and Chen [20] for a more recent exposition.

For the function g(z) ∈ L2(Z, π), we may have an infinite orthogonal series expansion

g(z) =
∞∑
j=0

βjϕj(z), where βj = 〈g, ϕj〉. (2.1)

The convergence of (2.1) normally can be understood in the sense of the norm in the space,

whereas in the situation where g is smooth, the convergence in the pointwise sense may hold.

For positive integer K, define gK(z) =
∑K−1

j=0 βjϕj(z) as a truncated series and γK(z) =∑∞
j=K βjϕj(z) the residue after truncation. Then, gK(z) → g(z) as K → ∞ in some sense.

Note that gK(z) is a parameterized version of g(z) in terms of the basis {ϕj(z)} where only

the coefficients remain unknown. This is the main advantage of the sieve method. In addition,

the Parseval equality gives
∑∞

j=0 β
2
j = ‖g‖2 < ∞, implying the attenuation of the coefficients.
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For better exposition, denote ΦK(z) = (ϕ0(z), . . . , ϕK−1(z))
ᵀ

and β = (β0, . . . , βK−1)
ᵀ

two

K-vectors. Thus, gK(z) = β
ᵀ
ΦK(z).

Our primary goal is to estimate the unknown parameters (α, g) and functionals thereof.

The consistency studied below is defined in terms of a norm given by

‖(a, f)‖ = ‖a‖E + ‖f‖L2 , (2.2)

where ‖ · ‖E denotes the Euclidean norm on Rp and ‖f‖L2 signifies the norm on the Hilbert

space, of which the subscript may be suppressed whenever no ambiguity is incurred.

In order to facilitate the implementation of nonlinear optimization, α should be confined

to a compact subset of Rp and the truncated series gK(z) = β
ᵀ
ΦK(z) of the function g should

be included in an expanding finite dimensional bounded subset of L2(Z, π). It is noteworthy

that in an infinite dimensional space, a bounded subset may not necessarily be compact. A

detailed discussion for the compactness in infinite dimensional space can be found in Chen

and Pouzo [24]. Nevertheless, in the case that the function m is linear in the second and the

third arguments, such restrictions are not necessary (we shall discuss this in Section 6 using an

example).

Assumption 2.2 Suppose that B1n and B2n are positive real numbers diverging with n such

that α in model (1.1) is included in Θ1n := {a ∈ Rp : ‖a‖ ≤ B1n} and for sufficient large n,

gK(z) is included in Θ2n := {bᵀ
ΦK(z) : ‖b‖ ≤ B2n}.

It is a common convention that the true parameter is assumed to be contained within a

bounded set (Newey and Powell [51, p. 1569]); in this paper we allow the bounds for α to

diverge with the sample size since the dimensionality of α grows to infinity.1 Furthermore,

since ‖gK‖ = ‖β‖ ≤ ‖g‖ it is clear that there exists an integer n0 such that gK(z) ∈ Θ2n

for all n ≥ n0. Similar to the orthogonal expansion in (2.1), any f(z) ∈ L2(Z, π) can be

approximated by
∑K−1

j=0 bjϕj(z) = b
ᵀ
ΦK(z) arbitrarily in the sense of norm, where bj and b are

defined similarly to βj and β, respectively. This means that Θ2n is approximating the function

space with the increase of the sample size. Thus, the parametric space can be approximated

by Θn = Θ1n ⊗ Θ2n as n→∞. In the literature, Θ2n is the so-called linear sieve space. More

importantly, Θn is bounded and compact for each n. The above setting is similar to but broader

than that in Newey and Powell [51].

We estimate α and β by

(α̂, β̂) = argmin
a∈Rp,b∈RK

‖Mn(a,b)‖2, subject to ‖a‖ ≤ B1n and ‖b‖ ≤ B2n,

where Mn(a,b) =
1
√
q

1

n

n∑
i=1

m(Vi, a
ᵀ
Xi,b

ᵀ
ΦK(Zi)).

(2.3)

1Here, unlike in a general single-index model, we do not require ‖α‖ = 1 for identification. This is because

the function m(·) is known and hence we are able to identify any scaling for α.
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Here, the involvement of q in Mn(a,b) takes into account the divergent dimensions of the

vector m in order to avoid the issue that ‖Mn(a,b)‖ could be large even if each element is

small that would arise if we had not put q into Mn(a,b). This issue does not arise when the

vector–valued m function has fixed dimension. If there are additional restrictions on the model,

say f(α, g(.)) = 0, these can be incorporated into the optimization problem.

Define for any z ∈ Z
ĝ(z) = β̂

ᵀ
ΦK(z), (2.4)

which is our estimator of g(z). In the next section we establish consistency of this estimator in

the sense that ‖(α̂− α, ĝ − g)‖ →P 0 as n→∞ where the norm is defined in (2.2).

3 Asymptotic theory

3.1 Consistency

Before establishing our asymptotic theory, we state some assumptions that we rely on in the

sequel.

Assumption 3.1 Suppose that

(a) For each n, {(Vi, X
ᵀ

i , Z
ᵀ

i ), i = 1, . . . , n} is an independent and identically distributed (i.i.d.)

sequence (although the distribution depends on n, which we suppress notationally in the

sequel);

(b) For the density fZ of Z, there exist two constants, 0 < c < C < ∞, such that cπ(z) ≤
fZ(z) ≤ Cπ(z) on the support Z of Z, where π(z) is given in the preceding section;

(c) Each moment function mj(·, ·, ·), j = 1, . . . , q, is continuous in the second and third argu-

ments ;

(d) q(n)− p(n) ≥ K.

The i.i.d. property in Assumption 3.1(a) simplifies the presentation and some of the cal-

culations, although it is possible to relax it to a weakly dependent data setting. Regarding

Assumption 3.1(b), the relation between the densities of the variable Z and the function space

is widely used in the literature. See, e.g. Condition A.2 and Proposition 2.1 of Belloni et al. [8,

p.347]. This condition is used to bound the eigenvalues of the Gram matrix for the sieve method.

When the support is compact, researchers simply impose that the density fZ(z) bounded away

from zero and above from infinity that is a special case where π(z) ≡ 1 in our setting. Our

theory allows for unbounded support for Z provided the density π is chosen appropriately.
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Regarding Assumption 3.1(c), the continuity of the m function is weak, and commonly used

moment functions satisfy this. In Assumption 3.1(d) we allow for possible overidentification of

the parameter vector in the moment conditions, and we shall discuss this issue further in the

next section.

Assumption 3.2 Suppose that there is a unique function g(·) ∈ L2(Z, π) and for each n there

is a unique vector α ∈ Rp such that model (1.1) is satisfied. In other words, for any δ > 0,

there is a sufficiently small constant ε > 0 such that

inf
(a,f)∈Θ

‖(a−α,f−g)‖≥δ

q−1‖Em(Vi, a
ᵀ
Xi, f(Zi))‖2 > ε.

This type of condition is quite standard in the parametric and semiparametric literature, see

Pakes and Pollard [55] and Chen et al. [23]. The squared norm is scaled down by its dimension

due to the same reason as in the formulation of Mn in the last section.

Assumption 3.3 Suppose that for each n, there is a measurable positive function A(V,X,Z)

such that

q−1/2‖m(V, a
ᵀ

1X, f1(Z))−m(V, a
ᵀ

2X, f2(Z))‖ ≤ A(V,X,Z)[‖a1 − a2‖+ |f1(Z)− f2(Z)|]

for any (a1, f1), (a2, f2) ∈ Θn, where (V,X,Z) is any realization of (Vi, Xi, Zi) and the function

A satisfies that E[A2(Vi, Xi, Zi)] ≤ C <∞.

This is a kind of Lipschitz condition. We note that this condition can be substituted by

some high level condition such as stochastic equicontinuity, in order to derive the large sample

behavior of the estimator. See, for instance, Pakes and Pollard [55] and Chen et al. [23].

As argued in Chen et al. [23, p.1597], when the moment function is Lipschitz continuous the

covering number with bracketing is bounded above by the covering number for the parametric

space, and hence a stochastic equicontinuity condition holds. Among others, Chen and Shen

[25] used this approach. We would like to keep the low level condition because additionally it

facilitates calculation in some situations.

The positive function A(V,X,Z) may be viewed as the upper bound of the norm of the

partial derivatives of q−1/2m(V, a
ᵀ
X,w) with respect to the vector a and the scalar w, re-

spectively, and thus the condition is fulfilled if the second moment of A(V,X,Z) is bounded.

The assumption guarantees the approximation of m(Vi, α
ᵀ
Xi, β

ᵀ
ΦK(Zi)) to m(Vi, α

ᵀ
Xi, g(Zi)),

because

‖m(Vi, α
ᵀ
Xi, β

ᵀ
ΦK(Zi))−m(Vi, α

ᵀ
Xi, g(Zi))‖

≤A(Vi, Xi, Zi)‖g(Zi)− β
ᵀ
ΦK(Zi)‖ = OP (1)‖γK‖ = oP (1)
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by virtue of Assumption 3.1(b). Also, it ensures that ‖Em(Vi, α
ᵀ
Xi, β

ᵀ
ΦK(Zi))‖ = o(1), since

Em(Vi, α
ᵀ
Xi, g(Zi)) = 0. More importantly,

q−1E‖m(Vi, a
ᵀ
Xi, f(Zi))‖2

≤2q−1E‖m(Vi, 0, 0)‖+ 2E[A(Vi, Xi, Zi)
2][‖a‖2 + Ef(Zi)

2] = O(B2
1n +B2

2n)

uniformly on (a, f) ∈ Θn.

Theorem 3.1 (Consistency). Suppose that Assumptions 2.1-2.2 and 3.1-3.3 hold, and that

B2
1n +B2

2n = o(n). Then, we have ‖(α̂− α, ĝ − g)‖ →P 0 as n→∞.

The proof is given in Appendix B.

3.2 Limit distributions of the estimators

Since the dimension of α diverges, we cannot establish a limit distribution for α̂ − α itself.

Instead, we shall consider some finite dimensional transformations of α, for which plug-in

estimators are used. Likewise, we consider functionals of g(·). Let L be a linear transformation

from Rp 7→ Rr with r ≥ 1 fixed, and let F = (F1, . . . ,Fs)
ᵀ

with fixed s be a vector of

functionals on L2(Z, π). Normally, the transformation L can be understood as an r×p matrix

with rank r, while in the literature one usually takes r = 1. See, e.g. Theorem 4.2 in Belloni

et al. [8, p. 352] and several results such as Theorems 2 and 6 in Chang et al. [19]. The elements

of F can be, for example, as described in Newey [49, p.151], the integral of ln[g(z)] on some

interval, which stands for consumer’s surplus in microeconomics. Other examples include: the

partial derivative function, the average partial derivative, and the conditional partial derivative.

Thus, we shall consider the limit distributions of L (α̂) −L (α) and F (ĝ) −F (g). Towards

this end, we need the following assumptions.

Assumption 3.4 Suppose that each element function mj of the m function is differentiable

with respect to its second and third arguments up to the second order; the second derivative

functions satisfy a Lipschitz condition in a neighbourhood of the (α, g):

|∂(u)mj(V, α
ᵀ
X, g(Z))− ∂(u)mj(V, a

ᵀ
X, f(Z)|

≤ Bj(V, α
ᵀ
X, g(Z))(‖a− α‖+ ‖g − f‖)τ

for some τ ∈ (0, 1] where u is two-dimensional multiple index with |u| = 2, ∂(u) stands for the

partial derivative of the function with respect to the second and third arguments and Bj are

positive functions such that max1≤j≤q E[Bj(V, α
ᵀ
X, g(Z))2] ≤ C <∞.

The Lipschitz condition for the components of the m function enables us to approximate

the Hessian matrix within a neighbourhood of the true parameter, which in turn facilitates the
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derivation of the limit theory. We will suppose that the function g is smooth; this is implicitly

spelt out in Assumption 3.6 below.

Assumption 3.5 Suppose that

(a) E
∥∥m(V, α

ᵀ
X, g(Z))

∥∥2
= O(q), E‖X‖2 = O(p) and E‖ΦK(Z)‖2 = O(K);

(b) E
∥∥ ∂
∂u
m(V, α

ᵀ
X, g(Z))

∥∥2
= O(q), and E

∥∥ ∂
∂w
m(V, α

ᵀ
X, g(Z))

∥∥2
= O(q);

(c) E
∥∥ ∂
∂u
m(V, α

ᵀ
X, g(Z))⊗X

∥∥2
= O(pq), and

E
∥∥ ∂
∂w
m(V, α

ᵀ
X, g(Z))⊗ ΦK(Z)

∥∥2
= O(Kq);

(d) E
∥∥∥ ∂2

∂u2
m(V, α

ᵀ
X, g(Z))⊗XXᵀ

∥∥∥2

= O(p2q), and

E
∥∥∥ ∂2

∂w2m(V, α
ᵀ
X, g(Z))⊗ ΦK(Z)ΦK(Z)

ᵀ
∥∥∥2

= O(K2q).

We have the following comments. It is not necessary that all elements of the m vector

have uniformly bounded second moments to satisfy the first supposition in 3.5(a). Because

the dimension p of X diverges with n, in 3.5(a) we allow that the second moment E‖X‖2

diverges too; moreover, E‖ΦK(Z)‖2 = O(K) can be true for many orthogonal sequences given

the relation between the densities of Z and the L2 space in Assumption 3.1. In 3.5(b) we impose

a similar condition for the norm of the function’s first partial derivatives, while in 3.5(c) and

(d) we stipulate moment conditions for the norms of the tensor product for regressor and the

partial derivatives (the first and second, respectively) of the m function. These hold similarly

as (a) and (b) but with larger dimensions, particularly when the m function is linear in its

arguments.

Assumption 3.6 Suppose that

(a) ‖γK‖2p2 = o(1), n−1p2 = o(1);

(b) ‖γK‖2K2 = o(1), n−1K2 = o(1).

Assumption 3.6 stipulates the relation between the truncation parameter K, the diverging

dimension p of the regressor, and the sample size. Normally, ‖γK‖2 = O(K−a), where a > 0

is related to the smoothness order of the function g. See, for example, Newey [49]. Thus, the

assumption implicitly puts some conditions on the smoothness. Notice that the combination

of 3.6(a) and (b) implies that ‖γK‖2pK = o(1) and n−1pK = o(1), which are used in the proof

of the lemmas in the supplemental material.

Assumption 3.7 The partial derivatives of m(v, u, w) satisfy

11



(a) q−1/2
∥∥ ∂
∂u
m(V, a

ᵀ

1X, f1(Z))− ∂
∂u
m(V, a

ᵀ

2X, f2(Z))
∥∥ ≤ A1(V,X,Z)[‖a1−a2‖+|f1(Z)−f2(Z)|],

where E[A1(V,X,Z)2] <∞ and E[A1(V,X,Z)2‖X‖2] = O(p).

(b) q−1/2
∥∥ ∂
∂w
m(V, a

ᵀ

1X, f1(Z))− ∂
∂w
m(V, a

ᵀ

2X, f2(Z))
∥∥ ≤ A2(V,X,Z)[‖a1−a2‖+|f1(Z)−f2(Z)|],

where E[A2(V,X,Z)2] <∞ and E[A2(V,X,Z)2‖ΦK(Z)‖2] = O(K).

The assumption is similar to Assumption 3.3 but is stipulated for the partial derivatives with

the additional requirements that E[A1(V,X,Z)2‖X‖2] = O(p) and E[A2(V,X,Z)2‖ΦK(Z)‖2]

= O(K).

We are now ready to establish the asymptotic normality result. Recall the Fréchet derivative

operator for an operator from one Banach space to another. It is a bounded linear operator.

The Fréchet derivative of F at g(·) is an s-vector of functionals, denoted by F ′(g), such that

F (ĝ)−F (g) = F ′(g) ◦ (ĝ − g) + λ(g, ĝ − g),

where λ(g, ĝ − g) = o(‖ĝ − g‖). Define

Σ2
n :=Γn[ΨnΨ

ᵀ

n]−1ΨnΞnΨ
ᵀ

n[ΨnΨ
ᵀ

n]−1Γ
ᵀ

n, in which (3.1)

Γn :=

L 0

0 F ′(g) ◦ ΦK
ᵀ


(r+s)×(p+K)

,

Ξn := E[m(V1, α
ᵀ
X1, g(Z1))m(V1, α

ᵀ
X1, g(Z1))

ᵀ
]q×q,

Ψn := E

 ∂
∂u
m(V1, α

ᵀ
X1, g(Z1))

ᵀ ⊗X1

∂
∂w
m(V1, α

ᵀ
X1, g(Z1))

ᵀ ⊗ ΦK(Z1)


(p+K)×q

,

provided that ΨnΨ
ᵀ

n is invertible; here u and w stand for the second and the third arguments

of the vector function m(v, u, w), respectively.

Theorem 3.2 (Normality). Let Assumptions 2.1-2.2, 3.1-3.7 hold. Suppose that ΨnΨ
ᵀ

n is

invertible for large enough n. Suppose also that B2
1n +B2

2n = o(n). Then as n→∞

√
nΣ−1

n

L (α̂)−L (α)

F (ĝ)−F (g)

 d→ N(0, Ir+s), (3.2)

provided that
√
nΣ−1

n (0
ᵀ

r , (F
′(g) ◦ γK)

ᵀ
)
ᵀ

= o(1), where Σn is given by the square root of Σ2
n

defined in (3.1).

The proof of the theorem is given in Appendix B. Note that the conditions in the theorem

imply the consistency of the estimator in Theorem 3.1. If r = 1, the transformation L will

transform the vector α into a scalar, L (α) = a
ᵀ

0α, for some a0 ∈ Rp and a0 6= 0. This is the
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case commonly encountered in the literature. See, for example Chang et al. [19] and Belloni

et al. [8]. Apart from the diverging dimensions of Ψn and Ξn and the use of the transformation

L and the functional F , the form of the covariance matrices Σ2
n is the same as in the standard

semiparametric literature such as Hansen [41], Pakes and Pollard [55] and Chen et al. [23].

In general the convergence order of F (ĝ) −F (g) is proportional to (F ′(g) ◦ ΦK(z)
ᵀ
F ′ᵀ ◦

ΦK(z))1/2n−1/2, which is similar to the result in Theorem 2 of Newey [49]. Here, the matrix in

the front of n−1/2 is of dimension s × s and is associated with the derivative of the functional

F . To understand how it affects the rate, consider a special case that s = 1 and F (g) = g(z)

for some particular z, implying F (ĝ)−F (g) = ĝ(z)− g(z) and F ′(g) ≡ 1. Then, the matrix

is a scalar and the rate becomes ‖ΦK(z)‖n−1/2, which coincides with the nonparametric rates

of convergence in the literature. See, for example, Dong and Linton [30].

In general the convergence order of L (α̂− α) is n−1/2; however, Theorem 3.2 does not rule

out the mildly weak instrument case where the matrix Σn is close to singular, i.e., det(Σn) 6= 0

but det(Σn) → 0 with n at a certain rate; this would reduce the convergence rate of the

estimators but the self-normalized distribution theory we have presented continues to hold

under our conditions. However, we do rule out the more extreme cases considered in Han and

Phillips [40], which would change the limiting distribution.

The requirement that
√
nΣ−1

n (0
ᵀ

r , (F
′(g) ◦ γK)

ᵀ
)
ᵀ

= o(1) is an ”undersmoothing” condition,

playing a similar role to, for example, the condition
√
nV −1

K K−p/d = o(1) in Corollary 3.1 of

Chen and Christensen [21, p. 454] and Comment 4.3 of Belloni et al. [8]. The precise form of the

condition may vary according to the parameters of interest and the underlying model; it reflects

the bias variance trade-off that is relevant for estimation of those quantities in the particular

model.2 In the large dimensional α case, the bias variance trade-off can be different from usual

since the parametric part can contribute a large variance; the presence of weak instruments

may also affect the bias variance trade-off for certain parameters. For inference results about

g(z) it is quite common practice to undersmooth/overfit to avoid the bias term. Some recent

research advocates using extreme undersmoothing for better inference about finite dimensional

parameters in semiparametric models. See for example Cattaneo et al. [18]. Cattaneo et al.

[18] recently develop heteroskedasticity robust inference methods for the finite dimensional

parameters of a linear model in the presence of a large number of linearly estimated nuisance

2Linton [46], Donald and Newey [28], and Ichimura and Linton [43] considered the issue of tuning parameter

choice in semiparametric models. The optimal tuning parameter depends on the model and the parameter of

interest as well as on the estimating equations. In some cases the optimal rates for parametric components are

the same as the optimal rates for the infinite dimensional components, specifically in adaptive cases, but even

then the constants in the smoothing parameters will differ. In other cases, the optimal rates for the bandwidth

in estimating the parametric part are different. This is often called “undersmoothing”, although it seems a little

prejudicial, perhaps ”different smoothing” would be more accurate.
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parameters in the case where essentially p is fixed but K(n) ∝ n. In this case, the function g(·)
is not consistently estimated. In our methodology we pay equal attention to the function g,

which itself can be of interest. See for example, Engle et al. [32]; Robinson [60]; Gao and Liang

[36]; Gao and Shi [37] and Härdle et al. [42]. Our methodology is also robust to conditional

heteroskedasticity.

The limiting normal distribution involves unknown parameters in the matrix Σn. In practice

one would need a consistent estimator for this matrix. It is easily seen that the estimator, Σ̂n,

in which we replace α and g(·) in Σn by α̂ and ĝ(·), as well as the expectations in Ξn and Ψn

by their sample versions, is consistent. More precisely, let

Σ̂2
n = Γ̂n[Ψ̂nΨ̂

ᵀ

n]−1Ψ̂nΞ̂nΨ̂
ᵀ

n[Ψ̂nΨ̂
ᵀ

n]−1Γ̂
ᵀ

n,

where Γ̂n is Γn with replacement of F ′(g) by F ′(ĝ) and

Ξ̂n :=
1

n

n∑
i=1

[m(Vi, α̂
ᵀ
Xi, ĝ(Zi))m(Vi, α̂

ᵀ
Xi, ĝ(Zi))

ᵀ
], (3.3)

Ψ̂n :=
1

n

n∑
i=1

 ∂
∂u
m(Vi, α̂

ᵀ
Xi, ĝ(Zi))

ᵀ ⊗Xi

∂
∂w
m(Vi, α̂

ᵀ
Xi, ĝ(Zi))

ᵀ ⊗ ΦK(Zi)

 . (3.4)

Then, the feasible version of the CLT (3.2), with Σ̂n replacing Σn, follows by similar arguments

to those in the proof of Theorem 3.2. This allows the construction of simultaneous confidence

intervals and consistent hypothesis tests about L (α),F (g). In practice it may be necessary to

regularize the large dimensional covariance matrix Ψ̂nΨ̂
ᵀ

n, which can be done by a variety of

methods, see, for example, Bickel and Levina [15].

We may improve efficiency by using a weight matrix. Let Wn be a q × q positive definite

matrix that may depend on the sample data. Then, ‖Mn(a,b)‖2, which measures the metric

of Mn(a,b) from zero, can be substituted by Mn(a,b)
ᵀ
WnMn(a,b) in the minimization of

(2.3), which is also a measure of the metric for the vector Mn(a,b) from zero but in terms of

the weight matrix Wn. Meanwhile, ‖Mn(a,b)‖2 can be viewed as a special case that Wn is

the identity matrix. We require the matrix Wn to be not too close to singular to prevent the

possibility that Mn(a,b)
ᵀ
WnMn(a,b) may be close to zero when (a,b) is far from (α, β).

Proposition 3.1. Suppose that the eigenvalues of Wn are bounded away from zero and above

from infinity uniformly in n, and there exists a deterministic matrix W ∗ such that ‖Wn −W ∗‖ =

oP (1) as n → ∞. Let (α̃, β̃) be the minimizer of Mn(a,b)
ᵀ
WnMn(a,b) and define g̃(z) =

ΦK(z)
ᵀ
β̃.

Then, (1) Under the same conditions in Theorem 3.1, the consistency of the weighted estima-

tor holds; (2) Under the same conditions the normality for the weighted estimator in Theorem

3.2 holds with Σ2
n replaced by

Γn[ΨnW
∗Ψ

ᵀ

n]−1ΨnW
∗ΞnW

∗Ψ
ᵀ

n[ΨnW
∗Ψ

ᵀ

n]−1Γ
ᵀ

n.
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(3) If W ∗ = Ξ−1
n , the optimal covariance matrices is obtained, Γn[ΨnΞ−1

n Ψ
ᵀ

n]−1Γ
ᵀ

n.

The proof is given in Appendix B. Here, the optimal covariance is in the sense that

Γn[ΨnWΨ
ᵀ

n]−1ΨnWΞnWΨ
ᵀ

n[ΨnWΨ
ᵀ

n]−1Γ
ᵀ

n ≥ Γn[ΨnΞ−1
n Ψ

ᵀ

n]−1Γ
ᵀ

n,

for all W satisfying the conditions in the proposition. Though Wn = Ξ−1
n could make the

estimator efficient, it is not feasible since Ξn involves the true parameters. In practice, both

Ξn and Ψn can be replaced by their sample versions of (3.3) and (3.4), so that the optimal

covariance matrices are easily estimable. To do so, one will need to implement a two-step

estimation method, as has normally been done in the literature, that is, at the first step

minimizing ‖Mn(a,b)‖2 to have α̂ and ĝ(·) that are used to construct Ŵn = Ξ̂−1
n ; then at

the second step one may minimize Mn(a,b)
ᵀ
ŴnMn(a,b) to have a pair of optimal estimators,

(α̃, g̃(·)).
There is an alternative way that achieves efficiency in one-step estimation, viz., the contin-

uous updating estimator (CUE)3 Define Wn(a,b) = [Ξn(a,b)]−1, where

Ξn(a,b) :=
1

n

n∑
i=1

[m(Vi, a
ᵀ
Xi,b

ᵀ
ΦK(Zi))m(Vi, a

ᵀ
Xi,b

ᵀ
ΦK(Zi))

ᵀ
].

Then, (α̃, g̃(·)) can be estimated by minimizing Mn(a,b)
ᵀ
Wn(a,b)Mn(a,b) over (a,b).

3.3 Semiparametric single-index structure

The multivariate function g(Z) could make the model (1.1) suffer from the so-called “curse of

dimensionality” when the dimension of Z is moderately large, Stone [61] and Chernozhukov

et al. [26]. This feature would limit the use of the model in practice. One way to tackle the

curse of dimensionality is to adopt a semiparametric single-index structure so that, as argued

in Dong et al. [29], the model still enjoys some nonparametric flexibility but circumvents the

curse of dimensionality. Let us consider

E[m(Vi, α
ᵀ
Xi, g(θ

ᵀ

0Zi))] = 0, (3.5)

where the notation involved is the same as in model (1.1) except that the unknown function

g(·) is defined on R, and the single-index vector has true parameter θ0 ∈ Rd and ‖θ0‖ = 1 with

the first element being positive for the sake of identification.

The model of Carneiro et al. [17] is of this form. In their case, the marginal treatment

effect (MTE) is MTE(x, p) = x
ᵀ
α+g ′(p) and the parameter of interest is the weighted average

3The empirical likelihood method considered in Imbens [44], Newey and Smith [52] and Chang et al. [19] can

also be developed here.
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MTE, ∆ =
∫ 1

0
MTE(x, p)h(x, p)dp for some known weighting function h.4 The parameter θ0

can be estimated from the moment equation derived from the second conditional moment in

(1.2), E
[
(I(S = 1)− Λ(θ

ᵀ

0Z))Ψq(Z)
]

= 0, with or without the specification of the function Λ,

using the conventional technique for dealing with single-index models, such as Ai and Chen [1]

and Dong et al. [29].

Although θ0 can be estimated by the second equation of (1.2), in order to derive asymptotic

distributions for the estimators of α and g defined later, it is convenient if θ̂, the estimate

of θ0, is independent of the data used to estimate α and g by the first equation. This is

possible and one way to do is as follows. Let us split the observations {Vi, Xi, Zi, i = 1, . . . , n}
into two subsamples randomly, Sub1 := {(Vi, Xi, Zi), i = 1, . . . , n′} and Sub2 := {Vi, Xi, Zi,

i = n′+ 1, . . . , n}, with n′ = [n/2]. The ordering in both subsamples in general is not the same

as in the original sample but we keep using subscript i after partition. The first subsample Sub1

can be used to estimate θ0 by an additional moment restriction (say), resulting in θ̂, and the

second Sub2 is used to estimate the parameter α and function g. Here, due to the i.i.d. property

of the sample, the independence property holds naturally. Additionally,
√
n(θ̂ − θ0) = OP (1)

( e.g. Yu and Ruppert [63]). The data-splitting technique is used in the literature, such as

Bickel [13] and Belloni et al. [6]. The independence property is important for our theoretical

development and thus we recommend the use of the data-splitting method in the rest of this

section. Due to this reason, we make the following assumption.

Assumption 3.8 For θ0 in (3.5), there exists an estimator θ̂ such that
√
n(θ̂− θ0) = OP (1) as

n→∞ and assume that θ̂ is independent of observations used in minimization (3.6) below.

With the single-index structure the nonparametric function is defined on the real line.

Therefore, for the establishment of our theory, we need assumptions that are counterparts of

Assumptions 2.1, 3.1-3.3, 3.5 and 3.7, denoted by Assumptions 2.1*, 3.1*-3.3*, 3.5* and 3.7*,

respectively, and are given in Appendix A for brevity.

Under Assumption 2.1* we have the expansion of g(z) and hence g(z) can be approximated

by the partial sum, that is, g(z) =
∑K−1

j=0 bjϕj(z)+γK(z) with γK(z)→ 0 in some sense. Hence,

we can estimate β = (b0, . . . , bK−1)
ᵀ
, together with α, by

(α̂, β̂) = argmin
a∈Rp,b∈RK

‖M̃n(a,b)‖2, subject to ‖a‖ ≤ B1n and ‖b‖ ≤ B2n,

where M̃n(a,b) =
1
√
q

1

n− n′
n∑

i=n′+1

m(Vi, a
ᵀ
Xi,b

ᵀ
ΦK(θ̂

ᵀ
Zi)),

(3.6)

where ΦK(z) is the vector of the basis functions. With this β̂, we can define similarly ĝ(z) =

β̂
ᵀ
ΦK(z).

4We may be interested in estimating MTE or in estimating the parameters subject to the cross parameter

restriction that MTE= 0.
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Theorem 3.3. (1) Under Assumptions 2.1*, 2.2, 3.1*, 3.2*, 3.3* and 3.8, the consistency in

Theorems 3.1 are satisfied by the α̂ and ĝ(z) defined in this subsection.

(2) Let Assumptions 2.1*, 2.2, 3.1*-3.3*, 3.4, 3.5*, 3.6, 3.7* and 3.8 hold. Then, the

normality in Theorem 3.2 is valid for the α̂ and ĝ(z) defined in this subsection with replacement

of Ξn and Ψn respectively by

Ξ̃n :=E[m(V, α
ᵀ
X, g(θ

ᵀ

0Z))m(V, α
ᵀ
X, g(θ

ᵀ

0Z))
ᵀ
]q×q,

Ψ̃n :=E

 ∂
∂u
m(V, α

ᵀ
X, g(θ

ᵀ

0Z))
ᵀ ⊗X

∂
∂w
m(V, α

ᵀ
X, g(θ

ᵀ

0Z))
ᵀ ⊗ ΦK(θ

ᵀ

0Z)


(p+K)×q

.

Using Lemmas A.4-A.6 in Appendix A, the theorem is proven in the supplemental material

of the paper. The estimation of the covariance matrix can be obtained similarly to that in

Theorem 3.2 and we omit this for brevity.

The above procedure can be repeated as many times as we wish (with different subsamples)

and the subsamples can be exchanged for the estimations of θ0 and (α, g). Then, we can average

these estimates that would improve the accuracy.

4 Statistical inference

4.1 Test of over-identification

Hansen [41] proposes the J–test for over-identification in the situation where both p and q are

fixed but q > p. This J-test has an asymptotic χ2
q−p null distribution. In the case where an

unknown infinite dimensional parameter is involved, and both p and q are still fixed with q > p,

Chen and Liao [22] establish a statistic for over-identification testing that has an F distribution

in large samples. We propose an alternative test below, which as far as we are aware, is new.

We consider the following hypotheses:

H0 : E[m(Vi, α
ᵀ
Xi, g(Zi))] = 0 for some (α, g) ∈ Θ,

H1 : E[m(Vi, a
ᵀ
Xi, h(Zi))] 6= 0 for any (a, h) ∈ Θ,

where Θ is defined in Section 2.

Define, for a ∈ Rp,b ∈ RK and any given κ ∈ Rq such that ‖κ‖ = 1,

Ln(a,b;κ) =
1

Dn(a,b;κ)

n∑
i=1

κ
ᵀ
m(Vi, a

ᵀ
Xi,b

ᵀ
ΦK(Zi)),

where Dn(a,b;κ) =
(∑n

i=1[κ
ᵀ
m(Vi, a

ᵀ
Xi,b

ᵀ
ΦK(Zi))]

2
)1/2

.

Under the null hypothesis, by the procedure in Section 2 and the conditions of Theorem 3.1,

the estimator (α̂, ĝ) is consistent. The statistic Ln(α̂, β̂;κ) can be used to detect H0 against
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H1, as shown in Theorems 4.1 and 4.2 below. This test also works for the conventional moment

restriction models with fixed p and q. Before establishing the asymptotic distribution under

the null and the consistency under the alternative, we introduce some assumptions.

Assumption 4.1 Let m∗n(α̂, ĝ;κ) = oP (1) when n → ∞, where we denote m∗n(a, f ;κ) =

n−1/2
∑n

i=1 E[κ
ᵀ
m(Vi, a

ᵀ
Xi, f(Zi))] for (a, f) ∈ Θ and κ such that ‖κ‖ = 1.

Assumption 4.2 Suppose that (i) qp2 = o(n) and qK2 = o(n); and (ii) supz γ
2
K(z) =

o(q−1) as, along with n→∞, K, p, q →∞.

These are technical requirements. Noting E[m(V, α
ᵀ
X, g(Z))] = 0, Assumption 4.1 requires

that E[m(V, a
ᵀ
X, f(Z))] drops to zero very quickly when (a, f) approaches (α, g). This is

the same, in spirit, as Assumption 3.2, but here it is a sample version and the decay of the

expectation needs a certain rate. A similar assumption is also imposed by equation (4.9) of

Andrews [2, p.58] and equation (5.2) of Belloni et al. [11, p. 774]. Assumption 4.2 (i) stipulates

the relationships for p, q,K with n when they are diverging, while Assumption 4.2(ii) imposes

a decay rate for the residue γ2
K(z) uniformly for all z not slower than o(q−1). This particularly

is satisfied for the cases where z is located in some compact set or g(z) is integrable on the real

line, given that the g function is sufficiently smooth.

Theorem 4.1. Let Assumptions 4.1-4.2 hold, and the conditions of Theorems 3.1 and 3.2

remain true. For any κ ∈ Rq such that ‖κ‖ = 1, under H0,

Ln(α̂, β̂;κ)→D N(0, 1),

as n→∞, where (α̂, β̂) is the estimator given by (2.3).

Notice that if there is a zero function in m, the quantity κ
ᵀ
m can be a zero function for

some particular choice of κ. Thus, the requirement on the nonzero function is trivial. The

theorem establishes the normality of the proposed statistic under the null that enables us to

make statistical inference.

Theorem 4.2. Suppose that the eigenvalues of E[m(V, a
ᵀ
X, h(Z))m(V, a

ᵀ
X, h(Z))

ᵀ
] are bounded

away from zero and infinity uniformly in n and (a, h) ∈ Θ. Under H1, suppose further

that there exists a positive sequence δn such that inf(a,h)∈Θ ‖E[m(V, a
ᵀ
X, h(Z))]‖ ≥ δn and

lim infn→∞
√
nδn = ∞. Then, for any vectors a and b, there exists some κ∗ ∈ Rq such that

‖κ∗‖ = 1 and Ln(a,b;κ∗)→P ∞, as n→∞.

The condition on the eigenvalues is commonly adopted in the literature, see, e.g. Chang et al.

[19] and Belloni et al. [8]. In the special case where δn = δ, the condition that lim infn→∞
√
nδn =

∞ is satisfied automatically, and this is the most commonly used assumption in the literature,

see, equation (24) of Chang et al. [19, p.290]. However, we allow for δn → 0 with a rate slower
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than n−1/2. This means that the strongest signal (δn = δ) can be weakened (δn → 0) when our

test statistic is used.

4.2 Student t test

We next propose an alternative test for model (1.1) under H0. Define ê = (ê1, . . . , êq)
ᵀ and

σ̂2 = (σ̂2(i, j))q×q, where

ê :=
1

n

n∑
i=1

m̂(i), and σ̂2 :=
1

n

n∑
i=1

m̂(i)m̂(i)
ᵀ
,

in which for simplicity m̂(i) := m(Vi, α̂
ᵀ
Xi, ĝ(Zi)) and correspondingly, for later use define

m(i) := m(Vi, α
ᵀ
Xi, g(Zi)). Here, ê and σ̂2 may be understood as the estimated mean and

covariance matrix of the error vector, respectively. Define

Tn :=
1

q

q∑
j=1

( √
n êj

σ̂n(j, j)

)2

.

The statistic is constructed from
√
nêj/σ̂n(j, j), which is somewhat like the traditional t-test.

Pesaran and Yamagata [56] proposed a similar statistic in the context of testing linear asset

pricing models.

Theorem 4.3. Let the conditions of Theorems 3.1-3.2 hold. Let Assumptions 4.1-4.2 hold

under H0. Suppose also that E[m(i)m(i)
ᵀ
] is a diagonal matrix with min1≤j≤q E[mj(i)

2] > c > 0

and sup1≤j≤q E[mj(i)
4] <∞. Then,

√
q/2(Tn − 1)→D N(0, 1) as n→∞.

The proof is given in Appendix B. The requirement on E[m(i)m(i)
ᵀ
] to be a diagonal

matrix implies the orthogonality between the errors. This is not stringent because, if not so,

we may make a transformation m̃(i) = (E[m(i)m(i)
ᵀ
])−1/2m(i) and then m̃(i) would meet the

requirement. Moreover, in many situations it is satisfied naturally. For instance, in Example

1.1 of Section 1, m(i) is consisting of orthogonal functions of the conditional variable. This

requirement is also used in some other papers, such as Gao and Anh [35]. These moment

requirements are commonly used in the literature since mj(i) are generalized error terms, so we

do not explain them in detail. In addition, the behaviour of Tn is like χ2(q) but with diverging

q. Therefore, after normalization we have asymptotic normal distribution for Tn.

Next, consider the consistency of Tn. For any vector a ∈ Rp and function h(·), define

m̃(i) ≡ m̃(i; a, h) = m(Vi, a
ᵀ
Xi, h(Zi)), ẽ = (ẽ1, . . . , ẽq)

ᵀ
and σ̃ = (σ̃ij)q×q, where

ẽ =
1

n

n∑
i=1

m̃(i), and σ̃ =
1

n

n∑
i=1

m̃(i)m̃(i)
ᵀ
.

Define also

T̃n :=
1

q

q∑
j=1

( √
n ẽj

σ̃n(j, j)

)2

.
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Note that if H0 is true, T̃n would become Tn when a and h(·) are substituted by α̂ and ĝ,

respectively, while if H1 is true, T̃n would diverge as shown in the following theorem.

Theorem 4.4. Suppose that max1≤j≤q supa,h E[m̃j(i)
2] ≤ C <∞ for some constant C. Then,

under the conditions in Theorem 4.2 and H1, for any vector a ∈ Rp and function h(·), as

n→∞, T̃n →P ∞ provided that
√
n/qδn →∞.

The proof is given in Appendix B. Notice that in terms of statistical inference in practice it

is impossible to distinguish Tn from T̃n. Instead, one needs only to use our estimation procedure

to obtain the “estimates” of the parameters, then construct T̃n and finally make an inference

according to Theorem 4.3. The uniform boundedness of the second moment is reasonable in the

i.i.d. setting. Comparing with Theorem 4.2, the attenuation of δn is slowed down as we require√
n/qδn →∞. This is because of the difference in the constructions of Tn and Ln(a,b;κ).

5 Penalised GMM under sparsity

We now consider the ultra-high dimensional situation where the potential number of covariates

is larger than the sample size (i.e., p = en
a

with 0 < a < 1), but the parameter vector α has

sparsity. That is, there are many zeros in α, but the identity of the non-zero elements is not

known a priori. In addition, the coefficient vector β in the partial sum of the expansion of the

nonparametric function may also possess sparsity in two potential scenarios: a) its elements

may be zero if the unknown function is located in a subspace that has small dimensionality (e.g.

the simulation below), and b) its elements are attenuated as the number of terms increases,

so that many of them are negligible statistically. Hence, this section is devoted to estimate

(α, g) under the sparsity condition. This “big-data” context is becoming increasingly relevant

in applications.

There are some existing papers on the variable selection under sparsity. Belloni et al. [11]

propose the combination of least squares and L1 type lasso approach to select coefficients of

the sieve in nonparametric regression. Also, Su et al. [62] use L1 type lasso approach to study

continuous treatment in nonseparable models with high dimensional data. In a high dimensional

conditional moment restriction model, Fan and Liao [34] propose to use a folded concave penalty

function combined with instrumental variables to select the important coefficients. Caner [16]

uses the same approach with a particular class of penalty functions to select variables. As

Caner [16, p.271] argued, the Lasso-type GMM estimator selects the correct model much more

often than GMM-BIC and the “downward testing” method proposed by Andrews and Lu [3].

We shall tackle the selection issue by the combination of a penalty function and our GMM

approach.
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We partition the parameter vectors as α = (α
ᵀ

0S, α
ᵀ

0N)
ᵀ

and β = (β
ᵀ

0S, β
ᵀ

0N)
ᵀ
, where the

vectors α0S and β0S contain all “important coefficients” from α and β (i.e. nonzero coefficients),

respectively, as referred in the literature such as Fan and Liao [34], while α0N and β0N are zero.

For convenience in this section, denote v0 = (α
ᵀ
, β

ᵀ
)
ᵀ ∈ Rp+K the true parameter whose

dimension varies with the sample size. In addition, v0S = (α
ᵀ

0S, β
ᵀ

0S)
ᵀ

is referred to as an oracle

model. Define tn = |v0S| the dimension of v0S, which may diverge with n.

Let v̂ ∈ Rp+K be the estimated parameter of v0 by the penalized GMM, which solves:

v̂ = (α̂
ᵀ
, β̂

ᵀ
)
ᵀ

= argmin
v=(a

ᵀ
,b

ᵀ
)
ᵀ∈Rp+K

Qn(v) := ‖Mn(v)‖2 +

p+K∑
j=1

Pn(|vj|), (5.1)

where Mn(v) = Mn(a,b) is as defined in Section 2, and Pn(·) is a penalty function discussed

later. Our framework also accommodates the case where some components of α, β are entered

without selection, as in Belloni et al. [10], although we do not inscribe this in the notation for

simplicity.

5.1 Oracle Property

Let T be the support of v0, the indexes of the nonzero components, i.e., T = {j : 1 ≤ j ≤
p + K, v0j 6= 0}. We may equivalently say that T is the oracle model. Moreover, for a generic

vector v ∈ Rp+K , denote by vT the vector in Rp+K whose j-th element equals vj if j ∈ T and zero

otherwise. Also, define vS as the short version of vT after eliminating all zeros in the position

T c (the complement set of T ) from vT . In the literature, the subspace V = {vT , v ∈ Rp+K} is

called the “oracle space” of Rp+K . Certainly, v0 ∈ V .

Recall that the score vector Sn(·) denotes the partial derivative of ‖Mn(·)‖2 defined in

Section 3. Now, denote SnT (vS) the partial derivative of ‖Mn(v)‖2 with respect to vj for j ∈ T ,

at vT (bearing in mind that vS is the short version of vT ). Hence, the vector SnT (vS) has

dimension tn = |T | = |vS|. Here and hereafter, for set T , |T | stands for its cardinality, while

for a vector v, |v| stands for its dimension. Also, define in a similar fashion HnT (vS) the tn× tn
Hessian matrix for ‖Mn(v)‖2.

Suppose that Pn(·) belongs to the class of folded concave penalty functions (see Fan and Li

[33]). For any generic vector v = (v1, . . . , vtn)
ᵀ ∈ Rtn with vj 6= 0, for all j, define

φ(v) = lim sup
ε→0+

max
j≤tn

sup
u1<u2,(u1,u2)⊂O(|vj |,ε)

−P
′
n(u2)− P ′n(u1)

u2 − u1

,

where O(·, ·) is the neighbourhood with specified center and radius, respectively, implying that

φ(v) = maxj≤tn −P ′′n (|vj|) if P ′′n is continuous. Also, for the true parameter v0, let

dn =
1

2
min{|v0j| : v0j 6= 0, j = 0, . . . , p+K}
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represent the strength of the signal. The following assumption is about the penalty function.

Assumption 5.1 The penalty function Pn(u) satisfies (i) Pn(0) = 0; (ii) Pn(u) is concave,

nondecreasing on [0,∞), and has a continuous derivative P ′n(u) for u > 0; (iii)
√
tn P

′
n(dn) =

o(dn); (iv) There exists c > 0 such that supv∈O(v0S ,cdn) φ(v) = o(1).

There are many classes of functions that satisfy these conditions. For example, with properly

chosen tuning parameter, the Lr penalty (0 < r ≤ 1 ), hard-thresholding (Antoniadis [4]),

SCAD (Fan and Li [33]) and MCP (Zhang [64]) satisfy the requirements.

Denoting the oracle model T = T1 ∪ T2, where T1 is the set of indices of nonzero elements

in α and T2 that of β, accordingly, we have tn = p1 +K1 for the corresponding cardinalities.

Assumption 5.2 Let Assumptions 3.5-3.7 hold with p being replaced by p1 and K by K1.

The assumption is a counterpart of Assumptions 3.5-3.7 under sparsity.

Assumption 5.3 There exist b1, b2 > 0 such that (i) for any ` ≤ q and u > 0,

P (|m`(V, α
ᵀ
X, β

ᵀ
ΦK(Z))| > u) ≤ exp(−(u/b1)−b2);

and (ii) V ar(m`(V, α
ᵀ
X, β

ᵀ
ΦK(Z))) are bounded away from zero and above from infinity uni-

formly for all `.

This assumption is often encountered in the literature, such as Assumption 4.3 in Fan and

Liao [34]. It is known that there are many classes of distributions satisfying this condition, e.g.,

a continuous distribution with compact support, a normal distribution, and an exponential

distribution and so on. The thin tail of the distribution postulated in the assumption enables

us to bound the score function.

For simplicity, denote ∂m the partial derivative of m; and FiS = diag(XiS,ΦKS(Zi)) a

tn × 2 matrix where XiS is the sub-vector of Xi consisting of all Xij for j ∈ T1; ΦKS(Zi) is the

sub-vector of ΦK(Zi) consisting of all ϕj(Zi) for j ∈ T2.

Assumption 5.4 (i) There are constants C1, C2 > 0 such that λmin(E∂mᵀ
(Vi, v

ᵀ

0SFiS) ⊗
FiS)( E∂mᵀ

(Vi, v
ᵀ

0SFiS) ⊗ FiS)
ᵀ
) > C1 and λmax(E∂mᵀ

(Vi, v
ᵀ

0SFiS) ⊗ FiS)(E∂mᵀ
(Vi, v

ᵀ

0SFiS) ⊗
FiS)

ᵀ
) < C2; (ii) P ′n(dn) = o(n−1/2) and max‖vS−v0S‖<dn/4 φ(vS) = o((tn log(q))−1/2); (iii)

t
3/2
n log(q) = o(n), t

3/2
n P ′n(dn)2 = o(1) , tn maxj∈T Pn(|v0j|) = o(1).

All these are technical requirements on the Hessian matrix, the penalty function, the rela-

tionship among the dimensions of the important coefficients, the sparsity and the sample size.

These conditions are commonly used in the literature, for example, Assumptions 4.5-4.6 in Fan

and Liao [34] among others. There are several penalty functions that satisfy these conditions,

for example, SCAD and MCP with tuning parameter λn = o(dn). Thence, the conditions (ii)

and (iii) are satisfied if tn
√

log(q)/n+t
3/2
n log(q)/n� λn � dn. However, noting that the exact
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identification is allowed, the total number of parameters p+K of α and β to be estimated can

be as large as exp(na) for some 0 < a < 1, an implication of the restriction on q.

To state the following theorem, define:

Σ2
nT :=Γn[ΨnTΨ

ᵀ

nT ]−1ΨnTΞnTΨ
ᵀ

nT [ΨnTΨ
ᵀ

nT ]−1Γ
ᵀ

n, in which (5.2)

Γn :=

L 0

0 F ′(g)ΦKT
ᵀ


(r+s)×(p1+K1)

,

ΞnT := E[m(V1, α
ᵀ

0SX1S, g(Z1))m(V1, α
ᵀ

0SX1S, g(Z1))
ᵀ
]q×q,

ΨnT := E

 ∂
∂u
m(V1, α

ᵀ

0SX1S, g(Z1))
ᵀ ⊗X1S

∂
∂w
m(V1, α

ᵀ

0SX1S, g(Z1))
ᵀ ⊗ ΦKT (Z1)


(p1+K1)×q

,

provided that ΨnTΨ
ᵀ

nT is invertible, in which u and w stand for the second and the third

arguments of the vector function m(v, u, w), respectively; and the transformation Lr×p1 and

s-vector functional F are defined similarly in Section 3.

Theorem 5.1. Let Assumptions 2.1, 2.2, 3.1, 3.3 and 5.1-5.4 hold. Then, there exists a local

minimizer v̂ = ((α̂
ᵀ

S, α̂
ᵀ

N)
ᵀ
, (β̂

ᵀ

S, β̂
ᵀ

N)
ᵀ
), for which we have (i)

lim
n→∞

P (α̂N = 0, β̂N = 0) = 1.

In addition, the local minimizer v̂ is strict with probability arbitrarily close to one for all large

n.

(ii) Let T̂ = {j : 1 ≤ j ≤ p+K, v̂j 6= 0}. Then,

lim
n→∞

P (T̂ = T ) = 1.

(iii) Meanwhile, for the transformation Lr×p1 and s-vector functional F ,

√
nΣ−1

nT

L (α̂S)−L (α0S)

F (ĝ)−F (g)

 d→ N(0, Ir+s),

as n → ∞ provided that
√
nΣ−1

nT (0
ᵀ

r ,F
′(g)γ

ᵀ

K)
ᵀ

= o(1), where ΣnT is given by the square root

of Σ2
nT defined in (5.2).

The proof is given in Appendix B. We remark that the post selection version of the standard

errors defined in (3.3) and (3.4) can be shown to be consistent in this case thereby allowing

consistent confidence intervals for the selected parameters. Furthermore, post selection versions

of Theorems 4.2 and 4.3 can be shown to hold.

The estimators in this theorem are all local. This is why we exclude the identification

condition in Assumption 3.2 currently, while in the next theorem we shall discuss the global
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property of a local minimizer. The results (i) and (ii) indicate that under these conditions in

the theorem we are able to recover the sparsity in the model; meanwhile, the discussion on the

result (iii) of the theorem is similar to Theorem 3.2.

5.2 Global Property

In this section we show that under Assumption 3.2, the local minimizer in Theorem 5.1 is nearly

global. Recall that Assumption 3.2 is an identification condition that excludes all the other

points to be the minimizer of the objective function in the population sense.

Theorem 5.2. In addition to the conditions of Theorem 5.1, suppose Assumption 3.2 holds.

Then, the local minimizer v̂ satisfies that, for any δ > 0, there exists η > 0 such that

lim
n→∞

P

(
Qn(v̂) + η < inf

‖v−v0‖≥δ
Qn(v)

)
= 1.

The theorem says that the local minimizer of the oracle space in Theorem 5.1 is also with

high probability a global minimizer in Rp+K . Note that by Theorems 5.1 and 5.2, the min-

imization in equation (5.1) enables one to recover the sparsity in the ultra high dimensional

case since q ≥ p+K, where q can be as large as en
ε

for some ε > 0. This is a bit different from

Fan and Liao [34] where there is no nonparametric function involved and q = p (the number

of IV is the same as that of regressors). Note that, given the consistency of the sparsity, the

inference can be done in a similar way to Theorem 3.2.

6 Simulation experiments

In this section we investigate the performance of the proposed estimators in finite sample

situations.

Example 6.1. This experiment uses the partial linear model with endogenous covariates

considered in the introduction. Let vector Xi = (X1i, X
ᵀ

2i)
ᵀ
, where X1i takes values 1 and

−1 with probability 1/2, respectively, X2i ∼ N(0,Σp−1), where Σp−1 = (σi,j)(p−1)×(p−1) with

σi,i = 1, σi,j = 0.3 for |i − j| = 1 and σi,j = 0 for |i − j| > 1. Here, the first component of Xi

is a discrete variable with which we intend to show that our theoretical results do not confine

application to continuous variables only. Let Zi be uniformly distributed on (0, 1).

Suppose that E[Yi − α
ᵀ
Xi − g(Zi)|Wi] = 0 with Wi = Zi, and g(·) ∈ L2[0, 1] = {u(r) :∫ 1

0
u2(r)dr < ∞}. Let ϕ0(r) ≡ 1, and for j ≥ 1, ϕj(r) =

√
2 cos(πjr). Then, {ϕj(r)} is an

orthonormal basis in the Hilbert space L2[0, 1]. In the experiment, put α = (0.4, 0.1, 0, . . . , 0)
ᵀ ∈

Rp and g(z) = z2 + sin(z).

Denote m(Vi, α
ᵀ
Xi, g(Zi)) = (Yi − α

ᵀ
Xi − g(Zi))Φq(Zi) where Vi = (Yi,Wi), Wi = Zi and

Φq(·) = (ϕ0(·), . . . , ϕq−1(·))ᵀ
. Notice that the dimension of m function is q which increases
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with the sample size n. Thus, (α, g) can be solved from unconditional moment equations

E[m(Vi, α
ᵀ
Xi, g(Zi))] = 0 for i = 1, . . . , n.

According to the estimation procedure in Section 2, define (α̂, β̂) = argmin
a∈Rp,b∈RK

‖Mn(a,b)‖2,

where Mn(a,b) = 1√
q

1
n

∑n
i=1m(Vi, a

ᵀ
Xi,b

ᵀ
ΦK(Zi)). Thus, α̂ and ĝ(·) := β̂

ᵀ
ΦK(·) are the

estimates of (α, g(·)).
Here, we emphasize that since the m function is linear in both α

ᵀ
Xi and g(Zi), Mn(a,b)

actually has a linear relationship with a and b,

Mn(a,b) =
1
√
q

1

n

n∑
i=1

(Yi − a
ᵀ
Xi − b

ᵀ
ΦK(Zi))Φq(Zi)

=
1
√
q

1

n

n∑
i=1

YiΦq(Zi)−

(
1
√
q

1

n

n∑
i=1

Φq(Zi)X
ᵀ

i

)
a−

(
1
√
q

1

n

n∑
i=1

Φq(Zi)ΦK(Zi)
ᵀ

)
b.

Accordingly, (α̂, β̂) has an explicit expression simply as OLS. This means that in any similar

situation the optimization in Section 2 does not need the compactness restrictions.

For n = 200, 500 and 1000, let K = [C1n
τ1 ] with C1 = 1 and τ1 = 1/4, and p = [C2n

τ2 ] with

C2 = 1 and τ2 = 1/5. Also, let q = p+K+ν (ν ≥ 0 specified in the sequel) satisfy Assumption

3.1. The replication number of the experiment is M = 1000. We shall report for the estimate of

the g function the bias (denoted by Bg(n)), standard deviation (denoted by πg(n)) and RMSE

(denoted by Πg(n)), that is,

Bg(n) :=
1

Mn

M∑
`=1

n∑
i=1

[ĝ`(Zi)− g`(Zi)],

πg(n) :=

(
1

Mn

M∑
`=1

n∑
i=1

[ĝ`(Zi)− ĝ(Zi)]
2

)1/2

,

Πg(n) :=

(
1

Mn

M∑
`=1

n∑
i=1

[ĝ`(Zi)− g`(Zi)]2
)1/2

,

where the superscript ` indicates the `-th replication, ĝ(·) is the average of ĝ`(·) over Monte

Carlo replications ` = 1, . . . ,M , and g`(·) means the value of g in the `-th replication.

Regarding the parameter α, we report the following quantities, Bα(n) := ‖α − α̂‖ and

Mα(n) := median(‖α− α̂‖), where α̂ is the average of α̂` and median(· · · ) is the median of the

sequence over Monte Carlo replications. Notice that, due to the divergence of the dimension,

it might not make any sense to compare the estimated results for different sample sizes.

It can be seen that all of the statistical quantities about the estimate of g are reasonably

attenuated with the increase of both the sample size and ν that provides more information for

the parameters being estimated. For the quantities about the estimate of α, we observe that

they normally do not decrease with the sample size. This is because, as mentioned before,
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Table 1: Simulation results of Example 6.1, q = p+K + ν

ν = 2 ν = 4

n 300 600 1000 n 300 600 1000

Bg(n) 0.0046 -0.0040 -0.0026 Bg(n) -0.0023 -0.0019 0.0006

πg(n) 0.3533 0.1965 0.1948 πg(n) 0.1660 0.1530 0.1520

Πg(n) 0.3401 0.1700 0.1682 Πg(n) 0.1356 0.1217 0.1176

Bα(n) 0.0700 0.0410 0.0684 Bα(n) 0.0281 0.0271 0.0501

Mα(n) 0.0355 0.0282 0.0665 Mα(n) 0.0259 0.0244 0.0319

ν = 6 ν = 8

n 300 600 1000 n 300 600 1000

Bg(n) 0.0023 0.0019 -0.0000 Bg(n) 0.0009 0.0011 -0.0000

πg(n) 0.1544 0.1445 0.1444 πg(n) 0.1482 0.1370 0.1359

Πg(n) 0.1218 0.1092 0.1031 Πg(n) 0.1176 0.1015 0.0945

Bα(n) 0.0124 0.0267 0.0265 Bα(n) 0.0078 0.0048 0.0250

Mα(n) 0.0254 0.0154 0.0464 Mα(n) 0.0117 0.0098 0.0306

the dimension of α is increasing with the sample size; and hence it does not make sense to

compare them among different sample sizes. However, we find that, given the sample size, both

quantities related to the estimate of α decrease with the increase of ν that gives more moment

restrictions.

This is understandable. Because the conditional moment E[Yi−α
ᵀ
Xi−g(Zi)|Zi] determines

a function U(z) := E[Yi − α
ᵀ
Xi − g(Zi)|Zi = z] and {ϕj(z)} is an orthonomal sequence in the

space that contains U(z), the greater the ν is, the more axes in the space we use to explain the

unknown function U(z).

Additionally, the involvement of the discrete variable X1i does not affect the performance

of all measures. This might suggest for the practitioner that in this setting discrete variables

are as tractable as continuous variables.

Example 6.2. We consider the binary choice model where Yi is either 0 or 1, and

P (Yi = 1|Xi, Zi) = F (α
ᵀ
Xi + g(Zi)),
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for i = 1, . . . , n, where α,Xi ∈ Rp and Zi ∈ R. The log likelihood function is

ln
n∏
i=1

F Yi(α
ᵀ
Xi + g(Zi))[1− F (α

ᵀ
Xi + g(Zi))]

1−Yi .

Let the distribution function F (u) = exp(u)/[1 + exp(u)]. Here, let Xi ∼ N(0,Σx), where

Σx = (σi,j)p×p with σi,i = 1, σi,j = 0.5 for |i − j| = 1 and σi,j = 0 for |i − j| > 1, and

Zi ∼ N(0, 1). In this experiment, put α = (0.5, 0.3, 0, . . . , 0)
ᵀ ∈ Rp and g(z) = z2 + sin(z).

The Hilbert space that contains g(·) is L2(R, exp(−z2)). Let {pj(z), j ≥ 0} be the sequence of

Hermite polynomials that forms an orthonormal basis in L2(R, exp(−z2)).

Denote ΦK(z) = (p0(z), . . . , pK−1(z))
ᵀ

and define

Qn(α, β) := ln
n∏
i=1

F Yi(α
ᵀ
Xi + β

ᵀ
ΦK(Zi))[1− F (α

ᵀ
Xi + β

ᵀ
ΦK(Zi))]

1−Yi ,

Mn(α, β) :=

(
∂Qn

∂αᵀ ,
∂Qn

∂βᵀ

)ᵀ

,

and (α̂, β̂) = argmin
a∈Rp,b∈RK

‖Mn(a,b)‖2 and naturally ĝ(·) := β̂
ᵀ
ΦK(·) is the estimate of g(·).

For n = 200, 500 and 1000, let K = [C1n
τ1 ] and p = [C2n

τ2 ] where Ci and τi, i = 1, 2,

take the same values as in the preceding example. The replication number of the experiment

is M = 1000. We report the bias Bg(n), standard deviation πg(n) and RMSE Πg(n) for the

estimate of g and Bα(n) and Mα(n) for the estimate of α defined in the above example.

Table 2: Simulation results for Example 6.2

n 300 600 1000 n 300 600 1000

Bα(n) 0.0130 0.0105 0.0065 Bg(n) -0.0100 0.0059 0.0037

Mα(n) 0.0125 0.0103 0.0075 πg(n) 0.3608 0.3128 0.2315

Πg(n) 0.3320 0.2323 0.1732

In this experiment the moment restriction model is exactly identified, since it is formulated

from the partial derivatives that imply q = p+K. All results in Table 2 converge satisfactorily,

though it seems in this example the estimate of the g function converges a bit slower than that

in the last example. This might be because in the last example there is an explicit solution

while this example needs a minimization of the nonlinear distribution function to have the

estimates.

Example 6.3. This example is to verify the proposed schedule for variable selection and

parameter estimation under sparsity studied in Section 5. The model is almost the same one
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in Example 6.1 but the conditional variables are different. Suppose that

E[Yi − α
ᵀ
Xi − g(Zi)|Wi] = 0

where (α1, . . . , α4) = (2,−4, 3, 5), αj = 0 for 5 ≤ j ≤ p. Here, Wi = (X1i, X2i)
ᵀ

and g(·) ∈
L2[0, 1]. The conditional moment gives the function H(W ) ≡ 0, where H(W ) = E[Yi−α

ᵀ
Xi−

g(Zi)|Wi = W ]. Thus, the instrument variable should be Ψq(Wi), a basis vector of bivariate

functions.

The same basis as in Example 6.1 is used for the orthogonal expansion of g(z), viz., ϕ0(r) ≡
1, and for j ≥ 1, ϕj(r) =

√
2 cos(πjr). Here, put g(z) = 1 +

√
2 cos(πz). Thus, the expansion

of g(z) has coefficients βi = 1, i = 0, 1, while βi = 0 for all i ≥ 2, implying the sparsity of the

coefficient vector β (equivalently, the sparse nonparametric function g(z)).

Suppose that p-vector Xi are i.i.d. N(0, Ip) and Zi are i.i.d. U(0, 1). Given the normal

distribution of Xi, we use Hermite polynomial sequence to form Ψq(Wi), that is, Ψq(Wi) =

(hj1−1(X1i)hj2−1(X2i), j1, j2 = 1, . . . , q1), where q1 = [
√
q + 1] and {hj(·)} is the Hermite poly-

nomial sequence. The rationale behind the formulation of Ψq(w1, w2) is that the tensor product

{hj1(w1)hj2(w2)} is an orthogonal basis system to expand H(w1, w2).

In the simulation, we use SCAD of Fan and Li [33] with predetermined tuning parameters of

λ as the penalty function. Therefore, the objective function is ‖Mn(v)‖2+
∑p+K

j=1 Pn(|vj|), where

v = (α
ᵀ
, β

ᵀ
)
ᵀ

a (p+K)-dimensional vector and Mn(v) = 1
q1n

∑n
i=1(Yi−α

ᵀ
Xi−β

ᵀ
ΦK(Zi))Ψq(Wi).

Four performance measures are reported. The first measure is the mean standard error

(MSES) of the important regressors, that is, the average of ‖α̂S − αS‖ and that of ‖β̂S − βS‖
over Monte Carlo replications. The second measure is the mean standard error (MSEN) of

the unimportant regressors for α and β, respectively. The third measure, denoted by TPS,

is the number of correctly selected nonzero coefficients, and the fourth, TPN , the number of

correctly selected unimportant coefficients for α and β, respectively. The initial value for v in

the simulation is taken as (0, . . . , 0). The results are reported in Tables 3 and 4 with different

parameters.

It can be seen from the tables that all MSE’s perform reasonably and particularly those for

αN and βN are really well. They also seem to be smaller when both n and q become larger.

Although the dimensions of α and β increase and q ≥ n, the scheme can always correctly choose

all the important coefficients. This is perhaps because all important coefficients in absolute are

significantly greater than zero, as suggested by the literature that we do not pursue here. By

contrast, some unimportant coefficients may be chosen as important ones, implying the scheme

possibly does not lead to parsimonious models.

28



Table 3: Simulation results of Example 6.3(n = 100)

p = 8, K = 6, q = 100 p = 12, K = 6, q = 120

λ 0.4 0.2 0.08 λ 0.4 0.2 0.08

MSES(α) 0.2017 0.2811 0.1915 MSES(α) 0.3065 0.2322 0.1970

MSES(β) 0.1288 0.1009 0.0789 MSES(β) 0.1900 0.0837 0.0624

MSEN(α) 0.0001 0.0026 0.0031 MSEN(α) 0.0015 0.0039 0.0016

MSEN(β) 0.0000 0.0004 0.0001 MSEN(β) 0.0000 0.0000 0.0008

TPS(α) 4 4 4 TPS(α) 4 4 4

TPS(β) 2 2 2 TPS(β) 2 2 2

TPN(α) 3.48 3.24 3.55 TPN(α) 6.88 6.72 5.90

TPN(β) 3.28 3.40 2.96 TPN(β) 3.46 3.36 2.92

7 Empirical illustration

There are many papers dealing with the marginal treatment effect (MTE) of a selection process.

For example, Carneiro et al. [17, CHV, hereafter] study MTE for schooling, while most recently

Su et al. [62] study continuous MTE in nonseparable models. Economists would like to know,

on average, how the marginal return to schooling changes as the number of years of education

increases, and would also like to be able to evaluate policies that change the probability of

attaining a certain level of schooling. Let Y1 be the potential log wage if the individual were

to attend college and Y0 be the potential log wage if the individual were not to attend college.

Define potential outcome equations:

Y1 = µ1(X) + U1, and Y0 = µ0(X) + U0,

where X is a vector of relevant variables, µ1(x) = E(Y1|X = x) and µ0(x) = E(Y0|X = x).

Then, a selection process can be described as follows:

S =

1, IS > 0,

0, otherwise,
where IS = µS(Z)− V,

here IS stands for the net benefit of attending college, µS(Z) is defined in CHV, in which Z

is observable and V is unobservable, so that S = 1 means that the agent goes to college while

S = 0 means that he/she does not. Let Y = SY1 + (1− S)Y0 be the earnings of an individual.
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Table 4: Simulation results of Example 6.3 (n = 150)

p = 15, K = 10, q = 150 p = 20, K = 10, q = 200

λ = 0.4 0.2 0.05 λ = 0.4 0.2 0.05

MSES(α) 0.2068 0.2130 0.1848 MSES(α) 0.2212 0.2228 0.1530

MSES(β) 0.1485 0.0868 0.0475 MSES(β) 0.1327 0.0937 0.0482

MSEN(α) 0.0000 0.0000 0.0014 MSEN(α) 0.0008 0.0001 0.0007

MSEN(β) 0.0000 0.0000 0.0006 MSEN(β) 0.0000 0.0000 0.0006

TPS(α) 4 4 4 TPS(α) 4 4 4

TPS(β) 2 2 2 TPS(β) 2 2 2

TPN(α) 10.36 10.2 9.40 TPN(α) 14.88 14.00 13.28

TPN(β) 7.48 7.50 6.90 TPN(β) 7.44 7.15 6.84

CHV analyse the marginal treatment effect for schooling, defined by the derivative of

E(Y |X = x, P (Z) = p) with respect to p, denoted by MTE(x, p). The dataset constructed

by CHV is available at www.aeaweb.org/articles?id=10.1257/aer.101.6.2754. Specifi-

cally, the data comes from the 1979 National Longitudinal Survey of Youth (NLSY79), which

surveys individuals born in 1957-1964 and includes basic demographic, economic and educa-

tional information for each individual. It also includes a well-known proxy for ability of earning

that is thought of beyond schooling and work experience: the Armed Forces Qualification Test

(AFQT), which gives a measure usually understood as a proxy for the “intrinsic ability” of the

respondent. This data has been used repeatedly to either control for or estimate the effects of

ability in empirical studies in economics and other disciplines. See CHV for further details and

references.

We shall use exactly the variables X and Z in CHV but with our proposed methodology to

estimate parameters and test hypotheses of interest.5

5The vector X consists of the year of mother’s education, number of siblings, average of log earnings 1979-

2000 in county of residence at 17, average of unemployment 1979-2000 in state of residence at 17, urban residence

at 14, cohort dummies, years of experience in 1991, average of local log earnings in 1991, local unemployment

in 1991, while Z contains some variables in X, as well as instruments, that is, presence of a College at Age 14

(Card 1993, Cameron and Taber 2004), local earnings at 17 (Cameron and Heckman 1998, Cameron and Taber

2004), local unemployment at 17 (Cameron and Heckman 1998), local tuition in public 4 year colleges at 17

(Kane and Rouse 1995). These papers in parentheses are such papers that previously used these instruments.

See CHV for details and their explanation.
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7.1 Estimation of MTE

We note that equation (9) of CHV implies that

Y =X
ᵀ
δ0 + P (Z)X

ᵀ
θ0 + g(P (Z)) + ε, (7.1)

Pr(S = 1|Z) = P (Z) = Λ(Z
ᵀ
γ0), E(ε|X,Z) = 0, (7.2)

where P (Z) stands for the probability of attending college for the individual with characteristic

Z, which is specified in the form of Λ(Z
ᵀ
γ0). In this case, MTE(x, p) = x

ᵀ
θ0 + g′(p). The

equations (7.1) and (7.2) motivate an alternative way to estimate MTE. Precisely, equation

(7.2) implies

E[
(
I(S = 1)− Λ(Z

ᵀ
γ0)
)

Φq(Z)] = 0, (7.3)

where Λ(z) = exp(z)/[1 + exp(z)] and Φq(·) is a q-vector consisting of basis functions.

Note that in CHV the vector Z has dimension 34 which is relatively large. Hence, our

theoretical result in Section 5 enables us to estimate γ0 utilising the moment condition (7.3)

coupled with a penalty function (we use SCAD).

With γ̂ at hand, we first calculate the average derivative of each variable in the choice model

(7.1), that is, for each individual we compute the effect of increasing each variable by one unit

(keeping all the others constant) on the probability of enrolling in college and then we average

across all individuals. The results are reported in Table 5.

Table 5: Average marginal derivatives in decision model

AFQT 0.2073

Mother’s years of schooling 0.0400

Number of siblings -0.0209

Urban residence at 14 0.0028

Permanent local log earnings of 17 -0.0265

Permanent state unemployment rate at 17 0.0013

Presence of a college at 14 0.0190

Local log earnings at 17 -0.0250

Local unemployment rate at 17 0.0092

Tuition in 4 year public college at 17 -0.0017

The marginal derivatives reflect the changes in probability of attending a college when

some policy was implemented to increase the relevant variable by one unit. For example, the

31



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

MT
E

Figure 1: Estimated MTE calculated at x = X̄ and the 95% Confidence Interval

marginal derivative of “Permanent local log earnings of 17”, −0.0265, means that when the

earnings increases 100 dollars, the probability on average of attending a college would decrease

2.65%. By contrast, this derivative in CHV is 0.1820, meaning that a 100 dollar increase in

the labor market would result in an increase of 18.20% enrolling in a college. This seems

contradictory with intuition.

Moreover, equation (7.2), along with γ̂, allows us to estimate θ0 and g(·) by transforming it to

unconditional moments. The estimation procedure and asymptotic theory for this semiparamet-

ric single-index structure has been established in Section 3.3. Since the function g(·) is defined

on [0, 1], a power series {pj, j ≥ 1} in L2[0, 1] is employed to approximate the unknown g(·), and

the same procedure as in Example 6.1 gives θ̂ and ĝ(p). Hence, we have the estimate of MTE,

M̂TE(x, p) = x
ᵀ
θ̂ + ĝ′(p), where θ̂ is given in Table 6 and ĝ′(p) = 0.6462− 0.3898p− 0.4470p2.

The plot of M̂TE(x, p) with x = X̄, along with the upper and lower 95% significance bounds, is

given in Figure 1. It can be seen that with the increase of the probability of attending college,

the MTE decreases. The plot is quite similar to Figure 4 in CHV(p. 20).

For the implementation of the estimation above, we emphasize that in order to coincide

with the theoretical procedure described in Section 3.3, we use a subsample with size 874

drawn randomly to estimate γ0 to obtain γ̂, then the rest of the sample with size 873 is used

to estimate θ0 and g(·), obtaining θ̂ and ĝ(p). The number of basis functions used is selected

by the minimum MSE criterion over a candidate set. To have the standard deviations of the

coefficients in θ̂ and ĝ(p), a bootstrap method is employed with 250 replications. The standard

deviations of the coefficients in ĝ(p) are 0.5319, 0.0919 and 0.0738, implying that the last two

coefficients are significant at the 95% level.

Furthermore, with regard to testing whether g(p) is a constant function, in CHV this test

is implemented through specifying g(p) as polynomials of order 2-5, respectively, and then

test whether their coefficients are jointly zero. Nonetheless, we actually have done this in

the estimate of ĝ(p) without any specification, because we treat g(p) as a nonparametrically

unknown function, and two coefficients in ĝ(p) are found to be significant. Thus, we think the

test would not be necessary.
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Table 6: Estimated coefficients of θ0 and ĝ(p) in MTE

Estimated coefficients of θ0

-0.2852 -0.2089 0.2382 -0.1296 -0.3728 -0.0458 0.4915 0.8161

(0.2840) (0.1530) (0.1611) (0.2420) (0.1612) (0.0108) (0.3908) (0.7419)

0.0454 0.1059 0.0115 -0.7552 1.1762 0.2706 0.3666 -1.1519

(0.0924) (0.1372) (0.0167) (0.4263) (0.6864) (0.5630) (0.3185) (0.4768)

-0.2508 -0.0428 -0.9744 -0.2847 -1.3112 -0.0417

(0.2811) (0.0653) (0.4925) (0.3183) (0.5518) (0.0159)

Estimated coefficients in ĝ(p)

0.6462 -0.1949 -0.1490

(0.5319) (0.0919)** (0.0738)**

** indicates that they are significant at the 95% level

7.2 Nonlinearity of AFQT

We realize that an individual’s ability of earning (AFQT) may affect the wage in a complicated

way, instead of in linear or quadratic form in CHV. The pattern of this affect is possibly different

in different groups of people. To evaluate this issue, we split the sample constructed by CHV

into two subsamples: the first one for high school dropouts or graduated students (Subsample H,

hereafter), while the second includes college dropouts, graduates and postgraduates (Subsample

C, hereafter). The sample sizes are n1 = 882 and n2 = 865, respectively.

Let Y be the log wage of individual, U be the AFQT, X−1 be the vector consisting of all

variables in X except U . Consider conditional moment model E[(Y − αᵀ
X−1 − f(U))|W ] = 0,

where W is the instrument. Then we have unconditional moment equations E[(Y − αᵀ
X−1 −

f(U))Ψq(W )] = 0, where Ψq(W ) is a q-vector of basis functions on the instrument W , q =

Π4
j=1qj and qj = 3, meaning that the conditional moment function is developed using the

same number of basis functions in all directions of coordinates. The model will be fitted by

Subsamples H and C, respectively.

Since the score of AFQT has been standardized, we use the Hermite polynomial sequence

for the development of the f(U). We choose the truncation parameter based on the estimation

for different truncation parameters, and the optimal parameter is the one that the estimated

variance σ̂ = σ̂(K), using the procedure in Section 2, is the minimum among chosen K’s.

Denote by σ̂1(K) and σ̂2(K) the variances calculated using the two subsamples, respectively.
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Table 7: Estimated standard deviation (×104)

Truncation parameter

K =1 K = 2 K =3 K =4 K =5 K =6

σ̂1(K) 10.1768 7.0663 9.3926 8.6882 8.2505 7.7928

σ̂2(K) 4.1264 4.7496 4.9697 3.7082 3.8777 3.8558

It can be seen from Table 7 that the optimal choices of the truncation parameters are

K̂1 = 2 and K̂2 = 4 for f1 in Subsample H and f2 in Subsample C, respectively. Accordingly,

the estimated functions are

f̂1(u) =0.2622h1(u) + 0.0778h2(u), (7.4)

f̂2(u) =0.0713h1(u) + 0.1086h2(u) + 0.0826h3(u)− 0.1233h4(u), (7.5)

where hj(u) = Hj(u)/
√√

π2jj! and Hj(u) are Hermite polynomials. Notice that there is no

constant term in the estimated function as the constant is not identifiable from the intercept of

the equations. Since we mainly focus on the estimate of nonparametric function, all estimated

coefficients of X−1 by the two subsamples are given in the supplementary material of the paper.

Figure 2: The plots of f̂1(u) and f̂2(u)
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(a) The plot of f̂1(u)
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(b) The plot of f̂2(u)

Figure 2 shows the plots of two functions f̂1(u) and f̂2(u) estimated by the subsamples H

and C, respectively, and the 95% confidence upper and lower bounds on the main support of

the dataset. As can be seen from Figure 2a, for the high school dropouts and graduates their

corrected scores of AFQT contribute to their earnings by an increasing function. Thus, the

higher the score is, the higher the earning is. On the other hand, from Figure 2b we see that

the estimated function is mainly increasing as well, except a small sub-interval where it is a bit

downward. This means that for college graduates and postgraduates the contribution of the
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AFQT is somewhat complicated; specifically, with AFQT greater than the mean (i.e. zero),

individuals’ income is increasing as AFQT increases, whereas with AFQT less than the mean,

individuals’ income firstly increases and then decreases with their AFQTs. This phenomenon

motivates that some interactive terms might be included. We however do not pursue this issue

here since it is beyond the scope of our theoretical setting. Note that the negative values of

the functions do not imply anything since the score has been corrected to have mean zero and

unit variance, and we fail to identify their intercepts. Here, we only emphasize their forms.

8 Conclusion

We provided estimation and inference tools for a class of high dimensional semiparametric

moment restriction models based on the sieve GMM method and the penalized sieve GMM

method. Our approach is based on simultaneous selection of and estimation of the unknown

quantities. The theoretical results are verified through finite sample experiments. We found

that the more the number of moment restrictions, the more accurate the estimates. In addition,

in our empirical study we also found our results to be more reasonable in some respects than the

existing literature. The framework we have considered is quite general but can be generalized in

a number of ways. First, we may allow explicitly for panel data and allow for weak dependent

sampling schemes. Second, we may allow for a large number of nonparametric functions to

enter the moment condition provided they are each defined on low dimensional spaces. Another

question of interest here is efficiency; Jankova and Geer [45] develop some results about efficiency

in the large linear model framework.
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A Lemmas

This section gives all technical lemmas, additional assumptions and some notation used for the theo-

retical derivations, while the proofs of these lemmas are postponed to the supplementary material of

the paper.
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Lemma A.1. Under Assumptions 2.1-2.2 and 3.1-3.3, we have

1. ‖Mn(α, β)‖2 = OP (‖γK‖2) +OP (n−1).

2. Given B2
1n + B2

2n = o(n), sup‖a‖≤B1n,‖b‖≤B2n

‖(a−α,b−β)‖>δ
‖Mn(a,b)‖−2 = OP (1) for each δ > 0, when n is

large.

Denote m(v, u, w) = (m1(v, u, w), . . . ,mq(v, u, w))
ᵀ

. To investigate the asymptotics, denote the

Score and Hessian functions of ‖Mn(a,b)‖2 as

Sn(a,b) :=

 ∂
∂a

∂
∂b

 ‖Mn(a,b)‖2, Hn(a, b) :=

 ∂2

∂a∂a
ᵀ

∂2

∂a∂b
ᵀ

∂2

∂b∂a
ᵀ

∂2

∂b∂b
ᵀ

 ‖Mn(a,b)‖2.

Since ‖Mn(a,b)‖2 = 1
qn2

∑q
`=1

(∑n
i=1m`(Vi,a

ᵀ
Xi,b

ᵀ
ΦK(Zi))

)2
, we have

∂

∂a
‖Mn(a,b)‖2 =2

1

qn2

q∑
`=1

n∑
i=1

m`(Vi,a
ᵀ
Xi,b

ᵀ
ΦK(Zi))

×
n∑
j=1

∂

∂u
m`(Vj ,a

ᵀ
Xj ,b

ᵀ
ΦK(Zj))Xj ,

∂

∂b
‖Mn(a,b)‖2 =2

1

qn2

q∑
`=1

n∑
i=1

m`(Vi,a
ᵀ
Xi,b

ᵀ
ΦK(Zi))

×
n∑
j=1

∂

∂w
m`(Vj ,a

ᵀ
Xj ,b

ᵀ
ΦK(Zj))ΦK(Zj),

and

∂2

∂a∂aᵀ ‖Mn(a,b)‖2 =2
1

qn2

q∑
`=1

n∑
i=1

n∑
j=1

∂

∂u
m`(Vi,a

ᵀ
Xi,b

ᵀ
ΦK(Zi))

× ∂

∂u
m`(Vj ,a

ᵀ
Xj ,b

ᵀ
ΦK(Zj))XjX

ᵀ

i

+ 2
1

qn2

q∑
`=1

n∑
i=1

n∑
j=1

m`(Vi,a
ᵀ
Xi,b

ᵀ
ΦK(Zi))

× ∂2

∂u2
m`(Vj ,a

ᵀ
Xj ,b

ᵀ
ΦK(Zj))XjX

ᵀ

j ,

∂2

∂a∂bᵀ ‖Mn(a,b)‖2 =2
1

qn2

q∑
`=1

n∑
i=1

n∑
j=1

∂

∂w
m`(Vi,a

ᵀ
Xi,b

ᵀ
ΦK(Zi))

× ∂

∂u
m`(Vj ,a

ᵀ
Xj ,b

ᵀ
ΦK(Zj))XjΦK(Zi)

ᵀ

+ 2
1

qn2

q∑
`=1

n∑
i=1

n∑
j=1

m`(Vi,a
ᵀ
Xi,b

ᵀ
ΦK(Zi))

× ∂2

∂u∂w
m`(Vj ,a

ᵀ
Xj ,b

ᵀ
ΦK(Zj))XjΦK(Zj)

ᵀ
,

∂2

∂b∂bᵀ ‖Mn(a,b)‖2 =2
1

qn2

q∑
`=1

n∑
i=1

n∑
j=1

∂

∂w
m`(Vi,a

ᵀ
Xi,b

ᵀ
ΦK(Zi))

× ∂

∂w
m`(Vj ,a

ᵀ
Xj ,b

ᵀ
ΦK(Zj))ΦK(Zj)ΦK(Zi)

ᵀ
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+ 2
1

qn2

q∑
`=1

n∑
i=1

n∑
j=1

m`(Vi,a
ᵀ
Xi,b

ᵀ
ΦK(Zi))

× ∂2

∂w2
m`(Vj ,a

ᵀ
Xj ,b

ᵀ
ΦK(Zj))ΦK(Zj)ΦK(Zj)

ᵀ
.

The unimportant constant shall be ignored in what follows.

Denote each block of Hn(a,b) by

H11(a,b) :=
∂2

∂a∂aᵀ ‖Mn(a,b)‖2, H12(a,b) :=
∂2

∂a∂bᵀ ‖Mn(a,b)‖2,

H22(a,b) :=
∂2

∂b∂bᵀ ‖Mn(a,b)‖2, H21(a,b) =H12(a,b)
ᵀ
,

and define

h11(α, g) :=
1

q

q∑
`=1

(
E
∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

)(
E
∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

)ᵀ

=
1

q

[
E
(
∂

∂u
m(V1, α

ᵀ
X1, g(Z1))

)ᵀ

⊗X1

][
E
(
∂

∂u
m(V1, α

ᵀ
X1, g(Z1))

)ᵀ

⊗X1

]ᵀ

,

h12(α, g) :=
1

q

q∑
`=1

(
E
∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

)(
E
∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))ΦK(Z1)

)ᵀ

=
1

q

[
E
(
∂

∂u
m(V1, α

ᵀ
X1, g(Z1))

)ᵀ

⊗X1

][
E
(
∂

∂w
m(V1, α

ᵀ
X1, g(Z1))

)ᵀ

⊗ ΦK(Z1)

]ᵀ

,

h21(α, g) := h12(α, g)
ᵀ
,

h22(α, g) :=
1

q

q∑
`=1

(
E
∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))ΦK(Z1)

)(
E
∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))ΦK(Z1)

)ᵀ

=
1

q

[
E
(
∂

∂w
m(V1, α

ᵀ
X1, g(Z1))

)ᵀ

⊗ ΦK(Z1)

][
E
(
∂

∂w
m(V1, α

ᵀ
X1, g(Z1))

)ᵀ

⊗ ΦK(Z1)

]ᵀ

.

Denote

hn(α, g) =

h11(α, g) h12(α, g)

h21(α, g) h22(α, g)

 =
1

q
ΨnΨ

ᵀ

n, (A.1)

where

Ψn = E

 ∂
∂um(V1, α

ᵀ
X1, g(Z1))

ᵀ ⊗X1

∂
∂wm(V1, α

ᵀ
X1, g(Z1))

ᵀ ⊗ ΦK(Z1)


(p+K)×q

.

Lemma A.2. Let Assumptions 2.1–2.2 and A.1-A.3 hold. If, in addition, (1) Hn(α, β) is asymp-

totically almost surely positive definite; (2) let hn(α, g) be defined in (A.1), then we have ‖Hn(α, β)−

hn(α, g)‖ = oP (1) as n→∞.

Denote Sn(a,b) = (S1n(a,b)
ᵀ
, S2n(a,b)

ᵀ
)
ᵀ
. We now focus on Sn(α, β) with sub-vectors S1n(α, β)

and S2n(α, β). Define

s1n(α, g) =
1

qn

q∑
`=1

n∑
i=1

m`(Vi, α
ᵀ
Xi, g(Zi))E

∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1,
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=

[
1

q
E
(
∂

∂u
m(V1, α

ᵀ
X1, g(Z1))

ᵀ ⊗X1

)]
1

n

n∑
i=1

m(Vi, α
ᵀ
Xi, g(Zi)),

s2n(α, g) =
1

qn

q∑
`=1

n∑
i=1

m`(Vi, α
ᵀ
Xi, g(Zi))E

∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))ΦK(Z1)

=

[
1

q
E
(
∂

∂w
m(V1, α

ᵀ
X1, g(Z1))

ᵀ ⊗ ΦK(Z1)

)]
1

n

n∑
i=1

m(Vi, α
ᵀ
Xi, g(Zi)),

and hence

sn(α, g) = (s1n(α, g)
ᵀ
, s2n(α, g)

ᵀ
)
ᵀ

=
1

q
Ψn

1

n

n∑
i=1

m(Vi, α
ᵀ
Xi, g(Zi)), (A.2)

where Ψn is given by (A.1).

Lemma A.3. Under Assumptions 2.1-2.2, 3.1, 3.3, A.1-A.3, as n→∞ we have

‖Sn(α, β)− sn(α, g)‖ = oP (1).

The following lemmas A.4-A.6 are used to prove the results in Subsection 3.3.

Lemma A.4. Under Assumptions 2.1*-2.2, 3.1*-3.3*, we have

1. ‖M̃n(α, β)‖2 = OP (‖γK‖2) +OP (n−1).

2. Given B2
1n + B2

2n = o(n), sup‖a‖≤B1n,‖b‖≤B2

‖(a−α,b−β)‖>δ
‖M̃n(a,b)‖−2 = OP (1) for each δ > 0, when n is

large.

The following assumptions are imposed for the case of single-index structure in Section 3. Their

discussions are similar to their counterparts and hence are omitted.

Assumption 2.1* Let Z be the support of θ
ᵀ

0Zi. Suppose that {ϕj(·)} is a complete orthonormal

function sequence in L2(Z, π(·)), that is, 〈ϕi(·), ϕj(·)〉 = δij the Kronecker delta.

Assumption 3.1* Assumptions (a), (c) and (d) in Assumption 3.1 remain the same but (b) is

replaced by :

(b*) for the density fθ(z) of θ
ᵀ
Z1, there exists two constants 0 < c < C < ∞ such that cπ(z) ≤

fθ(z) ≤ Cπ(z) on the support Z of θ
ᵀ
Z1 for θ in some neighbourhood of θ0.

Assumption 3.2* Suppose that there is a unique function g(·) ∈ L2(Z, π) and for each n there is

a unique vector α ∈ Rp such that model (3.5) is satisfied. In other words, for any δ > 0, there is an

ε > 0 such that

inf
(a,f)∈Θ

‖(a−α,f−g)‖≥δ

q−1‖Em(Vi,a
ᵀ
Xi, f(θ

ᵀ

0Zi))‖2 > ε.

Assumption 3.3* Suppose that for each n, there is a measurable positive function A(V,X,Z) such

that

q−1/2‖m(V,a
ᵀ

1X, f1(θ
ᵀ
Z))−m(V,a

ᵀ

2X, f2(θ
ᵀ
Z))‖ ≤ A(V,X,Z)[‖a1 − a2‖+ |f1(θ

ᵀ
Z)− f2(θ

ᵀ
Z)|]
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for any (a1, f1), (a2, f2) ∈ Θ and for θ in some neighbourhood of θ0, where (V,X,Z) is any realization

of (Vi, Xi, Zi) and the function A satisfies that E[A2(V,X,Z)] <∞ uniformly in n.

Assumption 3.5*. All statements in Assumption 3.5 are true when Z1 is replaced by θ
ᵀ

0Z1.

Assumption 3.7* The partial derivatives of m(v, u, w) satisfy all inequalities in Assumption 3.7

when Z is replaced by θ
ᵀ

0Z.

Similar to Hn(a,b), we define H̃n(a,b) as the Hessian matrix of ‖M̃n(a,b)‖2, which has the

following blocks:

H̃11(a,b) :=
∂2

∂a∂aᵀ ‖M̃n(a,b)‖2, H̃12(a,b) :=
∂2

∂a∂bᵀ ‖M̃n(a,b)‖2

H̃22(a,b) :=
∂2

∂b∂bᵀ ‖M̃n(a,b)‖2 H̃21(a,b) =H̃12(a,b)
ᵀ
.

Meanwhile, define h̃n(α, g) in the same way as hn(α, g) given by (A.1) with Z1 being replaced by

θ
ᵀ

0Z1.

Lemma A.5. Let Assumptions 2.1*-2.2 and 3.5*, 3.6 and 3.7* hold. Then (1) H̃n(α, β) is asymp-

totically almost surely positive definite; and (2) we have ‖H̃n(α, β)− h̃n(α, g)‖ = oP (1) as n→∞.

Similarly to Sn(a,b), we define S̃n(a,b) = (S̃1n(a,b)
ᵀ
, S̃2n(a,b)

ᵀ
)
ᵀ

as the Score function of

M̃n(a,b) and define s̃n(α, g) := (s̃1n(α, g)
ᵀ
, s̃2n(α, g)

ᵀ
)
ᵀ
, which is the same as sn(α, g) but with Zi

being replaced by θ
ᵀ

0Zi. Therefore,

s̃n(α, g) = (s̃1n(α, g)
ᵀ
, s̃2n(α, g)

ᵀ
)
ᵀ

=
1

q
Ψ̃n

1

n

n∑
i=1

m(Vi, α
ᵀ
Xi, g(θ

ᵀ

0Zi)). (A.3)

Lemma A.6. Under Assumptions 2.1*-2.2, 3.1*, 3.3*, 3.5*, 3.6, 3.7*, as n→∞ we have

‖S̃n(α, β)− s̃n(α, g)‖ = oP (1).

The following two lemmas are made for the proofs of the theorems in Section 5.

Lemma A.7. Let Assumptions 5.1-5.2 hold. Suppose that (i) There exists a positive sequence an =

o(dn) such that ‖SnT (v0S)‖ = OP (an); (ii) For any ε > 0, there exists a constant C = C(ε) > 0 such

that for all large n, P (λmin(HnT (v0S)) > C) > 1− ε; (iii) For any ε > 0, δ > 0 and any nonnegative

sequence ηn = o(dn), there is an N > 0 such that whenever n > N ,

P

(
sup

‖vT−v0‖≤ηn
‖HnT (vT )−HnT (v0)‖ ≤ δ

)
> 1− ε.

Then there exists a local minimizer v̂ ∈ V of

Qn(vT ) = ‖Mn(vT )‖2 +
∑
j∈T

Pn(|vj |),

such that ‖v̂ − v0‖ = OP (an +
√
tn P

′
n(dn)). Moreover, for any arbitrary ε > 0, the local minimizer v̂

is strict with probability at least 1− ε for all large n.
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The proof and the verification of the conditions of the lemma are relegated to Appendix C.

It is worth noting that, under an additional condition stated below, we show in Appendix C that

‖SnT (v0S)‖ = OP (
√
tn log(q)/n) and therefore we have ‖v̂− v0‖ = OP (

√
tn log(q)/n+

√
tn P

′
n(dn)).

The oracle consistency in Lemma A.7 is derived based on the knowledge of T , the support of v0.

To make the result useful, it is desirable to show that the local minimizer of Qn restricted on V is also

a minimizer of Qn on Rp+K .

Lemma A.8. Let the conditions in Lemma A.7 hold. Suppose that with probability approaching one,

for v̂ ∈ V in Lemma A.7, there exists a neighbourhood O1 ⊂ Rp+K of v̂ such that for all v ∈ O1 but

v 6∈ V, we have

‖Mn(vT )‖2 − ‖Mn(v)‖2 <
∑
j 6∈T

Pn(|vj |). (A.4)

Then, (i) With probability close to unity arbitrarily, the v̂ ∈ V is a local minimizer in Rp+K of

Qn(v) = ‖Mn(v)‖2 +
∑p+K

j=1 Pn(|vj |); (ii) For ∀ε > 0, the local minimizer v̂ is strict with probability at

least 1− ε for all large n.

The proof and the verification of the conditions of the lemma are relegated to Appendix C.

B Proofs of the main results

Proof of Theorem 3.1. In Lemma A.1, we have shown that

(i) ‖Mn(α, β)‖2 = oP (1),

(ii) sup‖a‖≤B1n,‖b‖≤B2n

‖(a−α,b−β)‖>δ
‖Mn(a,b)‖−2 = OP (1) for each δ > 0.

Fix ε > 0 and δ > 0. Assertion (ii) means that there exists a large but fixed M for which

lim supP

 sup
‖a‖≤B1n,‖b‖≤B2n

‖(a−α,b−β)‖>δ

‖Mn(a,b)‖−2 > M

 < ε.

Meanwhile, by the definition of the estimator and (i) we have

‖Mn(α̂, β̂)‖2 = inf
‖a‖≤B1n,‖b‖≤B2n

‖Mn(a,b)‖2 ≤ ‖Mn(α, β)‖2 = oP (1),

which gives

P
(
‖Mn(α̂, β̂)‖−2 > M

)
→ 1.

It follows that, with probability of at least 1− 2ε for all n large enough,

‖Mn(α̂, β̂)‖−2 > M ≥ sup
‖a‖≤B1n,‖b‖≤B2n

‖(a−α,b−β)‖>δ

‖Mn(a,b)‖−2.
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Hence, the inclusion (α̂, β̂) ∈ {(a,b) : ‖a‖ ≤ B1n, ‖b‖ ≤ B2n, ‖(a − α,b − β)‖ > δ} holds with

probability at most 2ε,

P
(
‖(α̂− α, β̂ − β)‖ > δ

)
≤ 2ε.

As ε and δ are arbitrarily chosen, we then have ‖(α̂− α, β̂ − β)‖ →P 0. Notice further that

‖(α̂− α, ĝ(z)− g(z))‖2 =‖α̂− α‖2 +

∫
[ĝ(z)− g(z)]2π(z)dz

=‖α̂− α‖2 +

∫
[(β̂ − β)

ᵀ
ΦK(z)− γK(z)]2π(z)dz

=‖α̂− α‖2 + ‖β̂ − β‖2 + ‖γK(z)‖2

=‖(α̂− α, β̂ − β)‖2 + ‖γK(z)‖2 →P 0,

as n,K →∞, by the orthogonality of the basis sequence, which then completes the proof.

Proof of Theorem 3.2. Notice that the conditions of the theorem imply the consistency of the esti-

mator that is used in the sequel. By the first order condition Sn(α̂, β̂) = 0, consistency and Taylor

expansion, we have expansion

0 = Sn(α̂, β̂) =Sn(α, β) +Hn(ᾱ, β̄)

α̂− α
β̂ − β


=Sn(α, β) +Hn(α, β)

α̂− α
β̂ − β

+ [Hn(ᾱ, β̄)−Hn(α, β)]

α̂− α
β̂ − β

 ,

where (ᾱ, β̄) is some point on the joint line between (α̂, β̂) and (α, β). Notice that the last term is

of smaller order in probability comparing to the second term. Indeed, by the Lipschitz condition in

Assumption 3.4, the last term in norm is bounded by OP (p + K)[‖α̂ − α‖ + ‖β̂ − β‖]1+τ , while the

second term is OP (p+K)[‖α̂− α‖+ ‖β̂ − β‖]. Thus, we may write

0 = Sn(α̂, β̂) =Sn(α, β) +Hn(α, β)

α̂− α
β̂ − β

 (1 + oP (1)),

in view of the consistency and for simplicity we shall ignore the term oP (1) in the sequel. As shown in

Lemmas A.2-A.3, under Assumptions 2.1-2.2, 3.1, 3.3 and 3.5-3.7 in Section 3, Hn(α, β) is asymptoti-

cally positive definite, and Hn(α, β) and Sn(α, β) are approximated by hn(α, g) and sn(α, g) (defined in

(A.1) and (A.2)), respectively, that is, ‖Hn(α, β)−hn(α, g)‖ = oP (1) and ‖Sn(α, β)−sn(α, g)‖ = oP (1).

Hence, for large n,α̂− α
β̂ − β

 = −Hn(α, β)−1Sn(α, β) = −hn(α, g)−1sn(α, g)(1 + oP (1)). (B.1)
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Noting that ĝ(z)− g(z) = ΦK(z)
ᵀ
(β̂ − β)− γK(z), the linearity of Fréchet derivative and ignoring

the higher order term in the definition of Fréchet derivative,L (α̂)−L (α)

F (ĝ)−F (g)

 =

 L (α̂− α)

F ′(g)(ĝ(z)− g(z))


=

 L (α̂− α)

F ′(g)ΦK(z)
ᵀ
(β̂ − β)

−
 0

F ′(g)γK(z)


=

L 0

0 F ′(g)ΦK(z)
ᵀ


α̂− α
β̂ − β

−
 0

F ′(g)γK(z)


=−

L 0

0 F ′(g)ΦK(z)
ᵀ

hn(α, g)−1sn(α, g)−

 0

F ′(g)γK(z)


:=Λ1n + Λ2n, say.

Recall hn(α, g) = 1
qΨnΨ

ᵀ

n and sn(α, g) = 1
qΨn

1
n

∑n
i=1m(Vi, α

ᵀ
Xi, g(Zi)) by (A.1) and (A.2).

Hence, Λ1n = 1
nΓn(ΨnΨ

ᵀ

n)−1Ψn
∑n

i=1m(Vi, α
ᵀ
Xi, g(Zi)) where

Γn =−

L 0

0 F ′(g(z))ΦK(z)
ᵀ

 .

Then, the covariance matrix of
√
nΛ1n is

Σ2
n := Γn(ΨnΨ

ᵀ

n)−1ΨnΞnΨ
ᵀ

n(ΨnΨ
ᵀ

n)−1Γ
ᵀ

n,

in which Ξn := E[m(V1, α
ᵀ
X1, g(Z1))m(V1, α

ᵀ
X1, g(Z1))

ᵀ
]. It follows from the standard central

limit theorem that
√
nΣ−1

n Λ1n →D N(0, Ir+s) as n → ∞. Then the assertion follows because of
√
nΣ−1

n (0
ᵀ

r ,F
′(g)γK(z)

ᵀ
)
ᵀ

= o(1), yielding
√
nΛ2n = o(1).

Proof of Proposition 3.1. The assertions (1) and (2) can be shown similarly to Lemmas 3.4 and 3.5

in Pakes and Pollard [55]. For brevity we omit the proof. For (3), factor Ξn = CnC
ᵀ

n and denote

Ωn = [ΨnWΨ
ᵀ

n]−1ΨnWCn and Tn = Ωn − [ΨnΞ−1
n Ψ

ᵀ

n]−1Ψn(C−1
n )

ᵀ
. It follows that

TnT
ᵀ

n = ΩnΩ
ᵀ

n − [ΨnΞ−1
n Ψ

ᵀ

n]−1,

from which

Γn[ΨnWΨ
ᵀ

n]−1ΨnWΞnWΨ
ᵀ

n[ΨnWΨ
ᵀ

n]−1Γ
ᵀ

n ≥ Γn[ΨnΞ−1
n Ψ

ᵀ

n]−1Γ
ᵀ

n,

for all W satisfying the conditions, in view of the nonnegative definiteness of TnT
ᵀ

n .

Proof of Theorem 4.1. By the conventional central limit theorem(
n∑
i=1

[κ
ᵀ
m(Vi, α

ᵀ
Xi, g(Zi))]

2

)−1/2 n∑
i=1

κ
ᵀ
m(Vi, α

ᵀ
Xi, g(Zi))→D N(0, 1),
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as n→∞ for any κ ∈ Rq such that ‖κ‖ = 1.

Thus, the result follows immediately if we show

Ln(α̂, β̂;κ) =

(
n∑
i=1

[κ
ᵀ
m(Vi, α

ᵀ
Xi, g(Zi))]

2

)−1/2 n∑
i=1

κ
ᵀ
m(Vi, α

ᵀ
Xi, g(Zi)) + oP (1).

Toward this end, we shall show

(1).
1

n
Dn(α̂, β̂;κ)2 − 1

n

n∑
i=1

[κ
ᵀ
m(Vi, α

ᵀ
Xi, g(Zi))]

2 = oP (1); and

(2).
1√
n

n∑
i=1

κ
ᵀ
m(Vi, α̂

ᵀ
Xi, β̂

ᵀ
ΦK(Zi))−

1√
n

n∑
i=1

κ
ᵀ
m(Vi, α

ᵀ
Xi, g(Zi)) = oP (1).

(1). Notice that

1

n
Dn(α̂, β̂;κ)2 =

1

n

n∑
i=1

[κ
ᵀ
m(Vi, α̂

ᵀ
Xi, β̂

ᵀ
ΦK(Zi))]

2

=
1

n

n∑
i=1

[κ
ᵀ
m(Vi, α

ᵀ
Xi, g(Zi))]

2

+
1

n

n∑
i=1

{[κᵀ
m(Vi, α̂

ᵀ
Xi, ĝ(Zi))]

2 − [κ
ᵀ
m(Vi, α

ᵀ
Xi, g(Zi))]

2}

and we shall show that the second term is oP (1). First of all, we need the convergence rates of ‖α̂−α‖2

and ‖β̂ − β‖2. It follows from (B.1) in the proof of Theorem 3.2 that ((α̂− α)
ᵀ
, (β̂ − β)

ᵀ
) has leading

term hn(α, g)−1sn(α, g). Then, by the expressions of hn(α, g) and sn(α, g) it is readily seen that

‖α̂− α‖2 = OP (p/n) and ‖β̂ − β‖2 = OP (K/n).

Moreover, by the first order Taylor expansion,

1

n

n∑
i=1

|[κᵀ
m(Vi, α̂

ᵀ
Xi, ĝ(Zi))]

2 − [κ
ᵀ
m(Vi, α

ᵀ
Xi, g(Zi))]

2|

≤ 1

n

n∑
i=1

|κᵀ
[m(Vi, α̂

ᵀ
Xi, ĝ(Zi))−m(Vi, α

ᵀ
Xi, g(Zi))]|2

+ 2
1

n

n∑
i=1

|κᵀ
[m(Vi, α̂

ᵀ
Xi, ĝ(Zi))−m(Vi, α

ᵀ
Xi, g(Zi))]||κ

ᵀ
m(Vi, α

ᵀ
Xi, g(Zi))|

≤ 2

n

n∑
i=1

∣∣∣∣κᵀ ∂m(Vi, α
ᵀ
Xi, g(Zi))

∂u
(α̂− α)

ᵀ
Xi

∣∣∣∣2
+

2

n

n∑
i=1

∣∣∣∣κᵀ ∂m(Vi, α
ᵀ
Xi, g(Zi))

∂w
(ĝ(Zi)− g(Zi))

∣∣∣∣2
+

2

n

n∑
i=1

∣∣∣∣κᵀ ∂m(Vi, α
ᵀ
Xi, g(Zi))

∂u
(α̂− α)

ᵀ
Xi

∣∣∣∣ |κᵀ
m(Vi, α

ᵀ
Xi, g(Zi))|

+
2

n

n∑
i=1

∣∣∣∣κᵀ ∂m(Vi, α
ᵀ
Xi, g(Zi))

∂w
(ĝ(Zi)− g(Zi))

∣∣∣∣ |κᵀ
m(Vi, α

ᵀ
Xi, g(Zi))|

≤‖α̂− α‖2 2

n

n∑
i=1

∥∥∥∥∂m(Vi, α
ᵀ
Xi, g(Zi))

∂u
⊗Xi

∥∥∥∥2
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+ ‖β̂ − β‖2 4

n

n∑
i=1

∥∥∥∥∂m(Vi, α
ᵀ
Xi, g(Zi))

∂w
⊗ ΦK(Zi)

∥∥∥∥2

+
4

n

n∑
i=1

∣∣∣∣κᵀ ∂m(Vi, α
ᵀ
Xi, g(Zi))

∂w

∣∣∣∣2 γ2
K(Zi)

+ 2‖α̂− α‖

(
1

n

n∑
i=1

∥∥∥∥∂m(Vi, α
ᵀ
Xi, g(Zi))

∂u
⊗Xi

∥∥∥∥2
)1/2

×

(
κ

ᵀ 1

n

n∑
i=1

m(Vi, α
ᵀ
Xi, g(Zi))m(Vi, α

ᵀ
Xi, g(Zi))

ᵀ
κ

)1/2

+ 2

(
1

n

n∑
i=1

∣∣∣∣κᵀ ∂m(Vi, α
ᵀ
Xi, g(Zi))

∂w

∣∣∣∣2 (ĝ(Zi)− g(Zi))
2

)1/2

×

(
κ

ᵀ 1

n

n∑
i=1

m(Vi, α
ᵀ
Xi, g(Zi))m(Vi, α

ᵀ
Xi, g(Zi))

ᵀ
κ

)1/2

=‖α̂− α‖2OP (pq) + ‖β̂ − β‖2OP (Kq) +OP (q) sup
z
γ2
K(z)

+ ‖α̂− α‖OP (
√
pq) + ‖β̂ − β‖OP (

√
Kq) +OP (

√
q) sup

z
|γK(z)|

=oP (1)

by Assumptions 3.5 and 4.2. Thus, the assertion of (1) holds.

(2). We first consider

νn(a, f ;κ) =
1√
n

n∑
i=1

κ
ᵀ
(m(Vi,a

ᵀ
Xi, f(Zi))− E[m(Vi,a

ᵀ
Xi, f(Zi))]), (B.2)

for any κ ∈ Rq such that ‖κ‖ = 1 and (a, f) ∈ Θ. Because of the convergence in Theorem 3.2, we

eventually will show νn(α̂, ĝ;κ)− νn(α, g;κ) = oP (1).

Notice by the first order Taylor expansion that

m(Vi,a
ᵀ
Xi, f(Zi))−m(Vi, α

ᵀ
Xi, g(Zi))

=
∂m(Vi, α

ᵀ
Xi, g(Zi))

∂u
(a− α)

ᵀ
Xi +

∂m(Vi, α
ᵀ
Xi, g(Zi))

∂w
(f(Zi)− g(Zi)), (B.3)

for all (a, f) in the neighbourhood of (α, g), where f has the form b
ᵀ
ΦK(·). Thus

P

(
sup

‖(a,f)−(α,g)‖<δ
|νn(a, f ;κ)− νn(α, g;κ)| > η

)

≤P

(
sup

‖(a,f)−(α,g)‖<δ

∣∣∣∣∣ 1√
n

n∑
i=1

κ
ᵀ
[
∂m

∂u
(a− α)

ᵀ
Xi − E

∂m

∂u
(a− α)

ᵀ
Xi]

∣∣∣∣∣ > η/2

)

+ P

(
sup

‖(a,f)−(α,g)‖<δ

∣∣∣∣∣ 1√
n

n∑
i=1

κ
ᵀ
[
∂m

∂w
(f(Zi)− g(Zi))− E

∂m

∂w
(f(Zi)− g(Zi))]

∣∣∣∣∣ > η/2

)

≤P

(
sup

‖(a,f)−(α,g)‖<δ

∣∣∣∣∣ 1√
n

n∑
i=1

[
κ

ᵀ ∂m

∂u
Xi − Eκ

ᵀ ∂m

∂u
Xi

]ᵀ
(a− α)

∣∣∣∣∣ > η/2

)

+ P

(
sup

‖(a,f)−(α,g)‖<δ

∣∣∣∣∣ 1√
n

n∑
i=1

[
κ

ᵀ ∂m

∂w
ΦK(Zi)− Eκ

ᵀ ∂m

∂w
ΦK(Zi)

]ᵀ
(b− β)

∣∣∣∣∣ > η/4

)
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+ P

(
sup

‖(a,f)−(α,g)‖<δ

∣∣∣∣∣ 1√
n

n∑
i=1

[
κ

ᵀ ∂m

∂w
γK(Zi)− Eκ

ᵀ ∂m

∂w
γK(Zi)

]∣∣∣∣∣ > η/4

)

≤P

(
sup

‖(a,f)−(α,g)‖<δ

∥∥∥∥∥ 1
√
np

n∑
i=1

[
κ

ᵀ ∂m

∂u
Xi − Eκ

ᵀ ∂m

∂u
Xi

]∥∥∥∥∥ ‖√p(a− α)‖ > η/2

)

+ P

(
sup

‖(a,f)−(α,g)‖<δ

∥∥∥∥∥ 1√
nK

n∑
i=1

[
κ

ᵀ ∂m

∂w
ΦK(Zi)− Eκ

ᵀ ∂m

∂w
ΦK(Zi)

]∥∥∥∥∥ ‖√K(b− β)‖ > η/4

)

+ P

(
sup

‖(a,f)−(α,g)‖<δ

∣∣∣∣∣ 1√
n

n∑
i=1

[
κ

ᵀ ∂m

∂w
γK(Zi)− Eκ

ᵀ ∂m

∂w
γK(Zi)

]∣∣∣∣∣ > η/4

)
:=I1n + I2n + I3n, say.

Observe by the i.i.d. property that

1
√
np

n∑
i=1

[
κ

ᵀ ∂m

∂u
Xi − Eκ

ᵀ ∂m

∂u
Xi

]
= OP (1), (B.4)

1√
nK

n∑
i=1

[
κ

ᵀ ∂m

∂w
ΦK(Zi)− Eκ

ᵀ ∂m

∂w
ΦK(Zi)

]
= OP (1). (B.5)

It follows that if ‖√p(a − α)‖ and ‖
√
K(b − β)‖ are sufficiently small, I1n < ε/3 and I2n < ε/3.

Meanwhile, using the condition that
√
q supz |γK(z)| = o(1) we have I3n < ε/3. This shows that, in

view of Theorem 3.2, when n is large, P (|νn(α̂, ĝ;κ)− νn(α, g;κ)| > η) < ε for any given ε, η > 0.

Furthermore, since

1√
n

n∑
i=1

κ
ᵀ
[m(Vi, α̂

ᵀ
Xi, β̂

ᵀ
ΦK(Zi))−m(Vi, α

ᵀ
Xi, g(Zi))]

= νn(α̂, ĝ;κ)− νn(α, g;κ) +
√
nm∗n(α̂, ĝ;κ),

the assertion of (2) holds by virtue of Assumption 4.1. This finishes the proof.

Proof of Theorem 4.2. Because for any (a,b) and κ with ‖κ‖ = 1,

1√
n
Dn(a,b;κ) =

(
E[κ

ᵀ
m(V1,a

ᵀ
X1,b

ᵀ
ΦK(Z1))]2

)1/2
+ oP (1)

=
(
κ

ᵀ
E[m(V1,a

ᵀ
X1,b

ᵀ
ΦK(Z1))m(V1,a

ᵀ
X1,b

ᵀ
ΦK(Z1))

ᵀ
]κ
)1/2

+ oP (1),

which is bounded away from zero and infinity in probability, it suffices to show that there is some κ∗

with ‖κ∗‖ = 1 such that

1√
n

n∑
i=1

κ∗
ᵀ
m(Vi,a

ᵀ
Xi,b

ᵀ
ΦK(Zi))→P ∞

as n→∞ for any (a,b) ∈ Rp+K .

Note by the Law of Large Numbers that

1√
n

n∑
i=1

κ
ᵀ
m(Vi,a

ᵀ
Xi,b

ᵀ
ΦK(Zi)) =

√
n

1

n

n∑
i=1

κ
ᵀ
m(Vi,a

ᵀ
Xi,b

ᵀ
ΦK(Zi))

=
√
n{E[κ

ᵀ
m(Vi,a

ᵀ
Xi,b

ᵀ
ΦK(Zi))] + oP (1)}.
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Let κ∗ = E[m(Vi,a
ᵀ
Xi,b

ᵀ
ΦK(Zi))]/‖E[m(Vi,a

ᵀ
Xi,b

ᵀ
ΦK(Zi))]‖. Then,

1√
n

n∑
i=1

κ∗
ᵀ
m(Vi,a

ᵀ
Xi,b

ᵀ
ΦK(Zi)) =

√
n{‖E[m(Vi,a

ᵀ
Xi,b

ᵀ
ΦK(Zi))]‖+ oP (1)}

≥
√
n{ inf

(a,h)∈Θ
‖E[m(Vi,a

ᵀ
Xi, h(Zi))]‖+ oP (1)} ≥

√
n(δn + oP (1))→P ∞,

as n→∞, which finishes the proof.

Proof of Theorem 4.3. Note that

σ̂2 =
1

n

n∑
i=1

m(i)m(i)
ᵀ

+
1

n

n∑
i=1

[m̂(i)m̂(i)
ᵀ −m(i)m(i)

ᵀ
]

:=E[m(i)m(i)
ᵀ
](1 +OP (qn−1/2)) + ∆σ,n

by the Law of Large Numbers, where m(i) := m(Vi, α
ᵀ
Xi, g(Zi)) for simplicity, and it follows from

Assumption 3.3 that

‖∆σ,n‖ ≤
1

n

n∑
i=1

‖m̂(i)m̂(i)
ᵀ −m(i)m(i)

ᵀ‖

≤ 1

n

n∑
i=1

‖m̂(i)−m(i)‖2 + 2
1

n

n∑
i=1

‖m(i)‖‖(m̂(i)−m(i))‖

=
√
q OP (‖α̂− α‖+ ‖ĝ − g‖) = oP (1).

This gives Λn = M2
q + oP (1) where Λn := Diag(σ̂(j, j)2, j = 1, · · · , q) and M2

q := Diag(E[mj(i)
2], j =

1, · · · , q). Notice also that

ê =
1

n

n∑
i=1

m(i) +
1

n

n∑
i=1

[m̂(i)−m(i)] := en + ∆e,n,

where
√
nκ

ᵀ
∆e,n →P 0 has been proven by Theorem 4.1, implying ê = en + oP (1) as n→∞.

Because the difference of using ∆σ,n and ∆e,n is negligible in probability, as shown in the above,

we may consider, a bit loosely use of the notation,

Tn =
1

q

q∑
j=1

1

E[mj(i)2]

(
1√
n

n∑
i=1

mj(i)

)2

=
1

q

q∑
j=1

1

E[mj(i)2]

1

n

n∑
i=1

n∑
i′=1

mj(i)mj(i
′)

=
1

qn

n∑
i=1

 q∑
j=1

1

E[mj(i)2]
mj(i)

2

+
2

qn

n∑
i=2

 q∑
j=1

1

E[mj(i)2]
mj(i)

i−1∑
i′=1

mj(i
′)


:=Tn1 + Tn2, say. (B.6)

We first consider the second term Tn2. It is obvious that, given Fi−1 the information up to i− 1,

ξni :=
2

qn

q∑
j=1

1

E[mj(i)2]
mj(i)

i−1∑
i′=1

mj(i
′)

is a martingale difference sequence, so that Tn2 =
∑n

i=2 ξni becomes a martingale. The conditional

variance is

D2
n =

n∑
i=2

E[ξ2
ni|Fi−1]
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=

n∑
i=2

E

 2

qn

q∑
j=1

1

E[mj(i)2]
mj(i)

i−1∑
i′=1

mj(i
′)

2 ∣∣∣Fi−1


=

4

q2n2

n∑
i=2

q∑
j=1

(
i−1∑
i′=1

mj(i
′)√

E[mj(i)2]

)2

+
4

q2n2

n∑
i=2

q∑
j=1

q∑
j′=1,6=j

E[mj(i)mj′(i)]

E[mj(i)2]

i−1∑
i′=1

mj(i
′)
i−1∑
i′=1

mj′(i
′)

=
4

q2n2

n∑
i=2

q∑
j=1

 i−1∑
i′=1

mj(i
′)2

E[mj(i)2]
+

i−1∑
i1=1

i−1∑
i2=1,6=i1

mj(i1)mj(i2)

E[mj(i)2]

 ,

due to E[mj(i)mj′(i)] = 0 for j 6= j′. It follows that

E[D2
n] =

4

qn2

n∑
i=2

(i− 1) =
4

qn2

n(n− 1)

2
= 2

n− 1

qn
.

In addition,

E[(D2
n − E[D2

n])2]

=E

 4

q2n2

n∑
i=2

q∑
j=1

 i−1∑
i′=1

mj(i
′)2

E[mj(i)2]
+

i−1∑
i1=1

i−1∑
i2=1,6=i1

mj(i1)mj(i2)

E[mj(i)2]

− 4

qn2

n∑
i=2

(i− 1)

2

=
16

q4n4
E

 n∑
i=2

q∑
j=1

 i−1∑
i′=1

mj(i
′)2 − E[mj(i)

2]

E[mj(i)2]
+

i−1∑
i1=1

i−1∑
i2=1,6=i1

mj(i1)mj(i2)

E[mj(i)2]

2

≤ 32

q4n4
E

 n∑
i=2

q∑
j=1

i−1∑
i′=1

mj(i
′)2 − E[mj(i)

2]

E[mj(i)2]

2

+
32

q4n4
E

 n∑
i=2

q∑
j=1

i−1∑
i1=1

i−1∑
i2=1,6=i1

mj(i1)mj(i2)

E[mj(i)2]

2

:=I1 + I2, say.

Moreover,

I1 =
32

q4n4
E

 n∑
i=2

q∑
j=1

i−1∑
i′=1

mj(i
′)2 − E[mj(i

′)2]

E[mj(i′)2]

2

=
32

q4n4

n∑
i=2

E

 q∑
j=1

i−1∑
i′=1

mj(i
′)2 − E[mj(i

′)2]

E[mj(i′)2]

2

+
64

q4n4

n∑
i3=3

i3−1∑
i4=2

E

 q∑
j=1

i3−1∑
i′=1

mj(i
′)2 − E[mj(i

′)2]

E[mj(i′)2]

 q∑
j=1

i4−1∑
i′=1

mj(i
′)2 − E[mj(i

′)2]

E[mj(i′)2]


=

32

q4n4

n∑
i=2

i−1∑
i′=1

E

 q∑
j=1

mj(i
′)2 − E[mj(i

′)2]

E[mj(i′)2]

2

+
64

q4n4

n∑
i3=3

i3−1∑
i4=2

E

 q∑
j=1

i4−1∑
i′=1

mj(i
′)2 − E[mj(i

′)2]

E[mj(i′)2]

2
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=
32

q4n4

n∑
i=2

i−1∑
i′=1

q∑
j=1

E
(
mj(i

′)2 − E[mj(i
′)2]

E[mj(i′)2]

)2

+
64

q4n4

n∑
i=2

i−1∑
i′=1

q∑
j1=2

j1−1∑
j2=1

E
(
mj1(i′)2 − E[mj1(i′)2]

E[mj1(i′)2]

mj2(i′)2 − E[mj2(i′)2]

E[mj2(i′)2]

)

+
64

q4n4

n∑
i3=3

i3−1∑
i4=2

i4−1∑
i′=1

q∑
j=1

E
(
mj(i

′)2 − E[mj(i
′)2]

E[mj(i′)2]

)2

+
64

q4n4

n∑
i3=3

i3−1∑
i4=2

i4−1∑
i′=1

q∑
j1=2

q∑
j1=2

E
(
mj1(i′)2 − E[mj1(i′)2]

E[mj1(i′)2]

mj2(i′)2 − E[mj2(i′)2]

E[mj2(i′)2]

)
≤C 1

q2n
,

and

I2 =
64

q4n4
E

 n∑
i=3

q∑
j=1

i−1∑
i1=2

i1−1∑
i2=1

mj(i1)mj(i2)

E[mj(i)2]

2

=
64

q4n4

n∑
i=3

E

 i−1∑
i1=2

i1−1∑
i2=1

q∑
j=1

mj(i1)mj(i2)

E[mj(i)2]

2

+
128

q4n4

n∑
i5=4

i5−1∑
i6=3

E

i5−1∑
i1=2

i1−1∑
i2=1

q∑
j=1

mj(i1)mj(i2)

E[mj(i)2]

 q∑
j=1

i6−1∑
i1=2

i1−1∑
i2=1

mj(i1)mj(i2)

E[mj(i)2]


=

64

q4n4

n∑
i=3

i−1∑
i1=2

E

i1−1∑
i2=1

q∑
j=1

mj(i1)mj(i2)

E[mj(i)2]

2

+
128

q4n4

n∑
i=3

i−1∑
i1=3

i1−1∑
i7=2

E

i1−1∑
i2=1

q∑
j=1

mj(i1)mj(i2)

E[mj(i)2]

i7−1∑
i2=1

q∑
j=1

mj(i7)mj(i2)

E[mj(i)2]


+

128

q4n4

n∑
i5=4

i5−1∑
i6=3

E

i6−1∑
i1=2

i1−1∑
i2=1

q∑
j=1

mj(i1)mj(i2)

E[mj(i)2]

2

=
64

q4n4

n∑
i=3

i−1∑
i1=2

i1−1∑
i2=1

E

 q∑
j=1

mj(i1)mj(i2)

E[mj(i)2]

2

+
128

q4n4

n∑
i5=4

i5−1∑
i6=3

i6−1∑
i1=2

i1−1∑
i2=1

E

 q∑
j=1

mj(i1)mj(i2)

E[mj(i)2]

2

≤C 1

q3n
.

Thus, D2
n − E[D2

n] = OP (n−1/2q−1). Also note that(
D2
n

E[D2
n]
− 1

)2

=
(D2

n − E[D2
n])2

(E[D2
n])2

= OP
(
n−1

)
= oP (1).

To show the asymptotic normality of Tn2 =
∑n

i=2 ξni, according to Corollary 3.1 of Hall and Heyde

[39], we need to check whether for any η > 0,
n∑
i=2

E[ξ2
niI(|ξni| > η)|Ft−1]→P 0.
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To this end, it suffices to show
∑n

i=2 E[ξ4
ni|Ft−1]→P 0, or to show

∑n
i=2 E[ξ4

ni]→ 0. Indeed,

n∑
i=2

E[ξ4
ni] =

16

q4n4

n∑
i=2

E

 q∑
j=1

1

E[mj(i)2]
mj(i)

i−1∑
i′=1

mj(i
′)

4

=
16

q4n4

n∑
i=2

q∑
j=1

E

(
1

E[mj(i)2]
mj(i)

i−1∑
i′=1

mj(i
′)

)4

+
96

q4n4

n∑
i=2

q∑
j1=1

q∑
j2=1, 6=j2

E

( 1

E[mj1(i)2]
mj1(i)

i−1∑
i′=1

mj1(i′)

)2(
1

E[mj2(i)2]
mj2(i)

i−1∑
i′=1

mj2(i′)

)2


=
16

q4n4

n∑
i=2

q∑
j=1

1

(E[mj(i)2])4
E[mj(i)

4]E

(
i−1∑
i′=1

mj(i
′)

)4

+
96

q4n4

n∑
i=2

q∑
j1=1

q∑
j2=1, 6=j2

1

(E[mj1(i)2])2

1

(E[mj2(i)2])2

E[mj2(i)2mj1(i)2]E

( i−1∑
i′=1

mj1(i′)

)2( i−1∑
i′=1

mj2(i′)

)2


=
16

q4n4

n∑
i=2

q∑
j=1

1

(E[mj(i)2])4
E[mj(i)

4]

×

 i−1∑
i′=1

E[mj(i
′)4] + 6

i−1∑
i1=1

i−1∑
i2=1,6=i1

E[mj(i1)2mj(i2)2]


+

96

q4n4

n∑
i=2

q∑
j1=1

q∑
j2=1, 6=j2

E[mj2(i)2mj1(i)2]

(E[mj1(i)2])2(E[mj2(i)2])2

× E

 i−1∑
i′=1

mj1(i′)2 +

i−1∑
i1=1

i−1∑
i2=1,6=i1

mj1(i1)mj1(i2)


×

 i−1∑
i′=1

mj2(i′)2 +

i−1∑
i3=1

i−1∑
i4=1,6=i3

mj2(i3)mj2(i4)


≤C1

1

q4n4

n∑
i=2

q∑
j=1

(i+ i2)

+
96

q4n4

n∑
i=2

q∑
j1=1

q∑
j2=1, 6=j2

E[mj2(i)2mj1(i)2]

(E[mj1(i)2])2(E[mj2(i)2])2

×

 i−1∑
i′=1

E[mj1(i′)4] + 2

i−1∑
i1=1

i−1∑
i2=1,6=i1

E[mj1(i1)2mj1(i2)2]


≤C 1

q2n
→ 0.

Thus, D−1
n

∑n
i=2 ξni →D N(0, 1) as n→∞.
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On the other hand, the first term Tn1 of Tn in (B.6) converges to 1 in probability. In fact,

E

 1

qn

n∑
i=1

 q∑
j=1

1

E[mj(i)2]
mj(i)

2

− 1

2

=E

 1

qn

n∑
i=1

 q∑
j=1

1

E[mj(i)2]
(mj(i)

2 − E[mj(i)
2])

2

=
1

q2n2

n∑
i=1

E

 q∑
j=1

1

E[mj(i)2]
(mj(i)

2 − E[mj(i)
2])

2

=
1

q2n2

n∑
i=1

q∑
j=1

E
[

1

E[mj(i)2]
(mj(i)

2 − E[mj(i)
2])

]2

+
1

q2n2

n∑
i=1

q∑
j1=1

q∑
j2=1, 6=j1

E
[
(mj1(i)2 − E[mj1(i)2])(mj2(i)2 − E[mj2(i)2])

]
E[mj1(i)2]E[mj2(i)2]

≤C 1

qn
.

It follows that Tn1 − 1 = OP ((qn)−1/2). Thence,√
q/2(Tn − 1) =

√
q/2OP ((qn)−1/2) +

Dn√
E(D2

n)

1

Dn
Tn2

d→ N(0, 1),

as n→∞.

Proof of Theorem 4.4. Note by the i.i.d property of the data that

∥∥σ̃ − E[m̃(i)m̃(i)
ᵀ
]
∥∥ =

∥∥∥∥∥ 1

n

n∑
i=1

m̃(i)m̃(i)
ᵀ − E[m̃(i)m̃(i)

ᵀ
]

∥∥∥∥∥ = OP

(
1√
n
q

)
= oP (1).

Moreover,

T̃n =
1

q

q∑
j=1

( √
n ẽj

σ̃n(j, j)

)2

= (1 + oP (1))
1

q
n

q∑
j=1

1

E[m̃j(i)2]
(E[m̃j(i)])

2

≥C−1(1 + oP (1))
1

q
n

q∑
j=1

(E[m̃j(i)])
2 = C−1(1 + oP (1))

1

q
n‖E[m̃j(i)]‖2

≥C−1(1 + oP (1))
1

q
nδ2

n →P ∞,

as n→∞.

Proof of Theorem 5.1. (i) and (ii). As shown in Lemma A.8, if Qn(v) has a local minimizer v̂ =

(v̂
ᵀ

S , v̂
ᵀ

N )
ᵀ
, then v̂N = 0 with probability arbitrarily close to one for large n, which implies the assertion

(i) and P (T̂ ⊂ T )→ 1.

On the other hand,

P (T 6⊂ T̂ ) =P (∃j ∈ T, v̂j = 0) ≤ P (∃j ∈ T, |v0j − v̂j | ≥ |v0j |)

≤P (max
j
|v0j − v̂j | ≥ dn) ≤ P (‖v̂ − v0‖ ≥ dn) = o(1),
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implying P (T ⊂ T̂ )→ 1. Accordingly, P (T = T̂ )→ 1.

(iii). Let v̂ = (v̂
ᵀ

S , v̂
ᵀ

N )
ᵀ

be the local minimizer of Qn(v) where v̂N = 0 with probability arbitrarily

close to one. Define P ′n(|v̂S |) := (P ′n(|v̂S1|), · · · , P ′n(|v̂St|))
ᵀ

and sgn(v̂S) := (sgn(v̂S1), · · · , sgn(v̂St))
ᵀ
.

By the Karush-Kuhn-Tucker (KKT) condition,

SnT (v̂S) = −P ′n(|v̂S |) � sgn(v̂S),

where the operator � is the product in elementwise.

It follows from Taylor theorem that

SnT (v̂S) = SnT (v0S) +HnT (v0S)(v̂S − v0S),

where a higher order term is ignored, which further implies

v̂S − v0S =HnT (v0S)−1[SnT (v̂S)− SnT (v0S)]

=−HnT (v0S)−1[SnT (v0S) + P ′n(|v̂S |) � sgn(v̂S)]

=− hnT (α0S , g)−1[snT (α0S , g) + P ′n(|v̂S |) � sgn(v̂S)](1 + oP (1))

under the condition for tn = p1 +K1 by Lemmas A.2 and A.3 where hnT (α0S , g) and snT (α0S , g) are

the counterparts of hn(α, g) and sn(α, g), respectively, under the oracle model T .

Similar to the proof of Theorem 3.2, by ĝ(z) := ΦKT (z)
ᵀ
β̂S , L (α̂S)−L (α0S)

F (ĝ(z))−F (g(z))

 = Γn(v̂S − v0S) +

 0

F ′(g)γK(z)


=− ΓnhnT (α0S , g)−1[snT (α0S , g) + P ′n(|v̂S |) � sgn(v̂S)] +

 0

F ′(g)γK(z)

 .

Notice that the structure

ΓnhnTα0S , g)−1snT (α0S , g) =
1

n
Γn(ΨnTΨ

ᵀ

nT )−1ΨnT

n∑
i=1

m(Vi, α
ᵀ

0SXiS , g(Zi))

is standard, so that invoking classical central limit theorem gives

√
nΣ−1

nTΓnhnTα0S , g)−1snT (α0S , g)
d→ N(0, Ir+s)

as n→∞. It remains to show
√
nΣ−1

nTP
′
n(|v̂S |) � sgn(v̂S) = oP (1). Similar to Lemma C.2 of Fan and

Liao [34] we may show that

‖P ′n(|v̂S |) � sgn(v̂S)‖ = OP ( max
‖vS−v0S‖≤dn/4

φ(vS)
√
tn log(q)/n+ P ′n(dn)).

Note also that ΣnT has fixed dimension and its eigenvalues are bounded from zero and above. Thus,

the assertion holds under Assumption 5.4. This finishes the proof.
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Proof of Theorem 5.2. Recall that v̂ = (v̂
ᵀ

S , v̂
ᵀ

N )
ᵀ

and P (v̂N = 0) → 1. Also, recall the notation

v̂T = (α̂
ᵀ

S , 0
ᵀ
, β̂

ᵀ

S , 0
ᵀ
)
ᵀ
.

First, we shall show that ‖Mn(v̂T )‖2 = OP (t
3/2
n log(q)/n + t

3/2
n P ′n(dn)2 + tn

√
log(q)/nP ′n(dn)).

Notice that ‖Mn(v̂T )‖2 = ‖Mn(v0)‖2 + ‖Mn(v̂T )‖2 − ‖Mn(v0)‖2 and by the mean value theorem,

‖Mn(v̂T )‖2 − ‖Mn(v0)‖2 =SnT (v∗S)
ᵀ
(v̂S − v0S)

=SnT (v0S)
ᵀ
(v̂S − v0S) + [SnT (v∗S)− SnT (v0S)]

ᵀ
(v̂S − v0S).

where v∗S is a point on the segment joining v̂S and v0S .

Notice further,

|SnT (v0S)
ᵀ
(v̂S − v0S)| ≤ ‖SnT (v0S)‖‖v̂S − v0S‖ = OP (tn log(q)/n+ tn

√
log(q)/nP ′n(dn))

due to ‖SnT (v0S)‖ = OP (
√
tn log(q)/n) and ‖v̂S−v0S‖ = OP (

√
tn log(q)/n+

√
tnP

′
n(dn)). Meanwhile,

it follows from Assumption 5.2 that

|[SnT (v∗S)− SnT (v0S)]
ᵀ
(v̂S − v0S)| ≤ ‖SnT (v∗S)− SnT (v0S‖‖v̂S − v0S‖

≤OP (
√
tn)‖v∗S − v0S‖‖v̂S − v0S‖ ≤ OP (

√
tn)‖v̂S − v0S‖2

=OP (t3/2n log(q)/n+ t3/2n P ′n(dn)2).

The assertion then follows by noting from (C.2) that ‖Mn(v0)‖2 = log(q)/n.

Second, we shall show that Qn(v̂T ) = OP (t
3/2
n log(q)/n + t

3/2
n P ′n(dn)2 + tn

√
log(q)/nP ′n(dn) +

tn maxj∈T Pn(|v0j |)). Indeed, using the mean value theorem again∑
j∈T

Pn(|v̂j |) ≤
∑
j∈T

Pn(|v0j |) +
∑
j∈T

P ′n(|v∗0j |)|v̂j − v0j |

≤tn max
j∈T

Pn(|v0j |) +
∑
j∈T

P ′n(dn)|v̂j − v0j |

≤tn max
j∈T

Pn(|v0j |) +
√
tnP

′
n(dn)‖v̂ − v0‖,

from which the assertion follows. Combining the two steps gives Qn(v̂T ) = oP (1).

Notice further that

Qn(v) ≥ ‖Mn(v)‖2 =
1

q

∥∥∥∥∥ 1

n

n∑
i=1

m(Vi, v
ᵀ
Fi)

∥∥∥∥∥
2

≥ 1

2q
‖Em(V1, v

ᵀ
F1)‖2 − 1

q

∥∥∥∥∥ 1

n

n∑
i=1

m(Vi, v
ᵀ
Fi)− Em(V1, v

ᵀ
F1)

∥∥∥∥∥
2

=
1

2q
‖Em(V1, v

ᵀ
F1)‖+ oP (n−1/2),

uniformly in v. Then, for any δ > 0,

inf
‖v−v0‖≥δ

Qn(v) ≥ inf
‖v−v0‖≥δ

1

2q
‖Em(V1, v

ᵀ
F1)‖+ oP (n−1/2)

= inf
‖(a−α,f−g)‖≥δ+‖γK(z)‖

1

q
‖Em(V1,a

ᵀ
X1, f(Z1))‖+ oP (n−1/2),
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due to by definition ‖v − v0‖ = ‖a − α‖ + ‖b − β‖ = ‖a − α‖ + ‖f − g‖ − ‖γK(z)‖. As a result, by

Assumption 3.2, there exists ε > 0 such that inf‖v−v0‖≥δ Qn(v) ≥ ε for sufficient large n.

Taking 0 < η < ε,

P

(
Qn(v̂) + η > inf

‖v−v0‖≥δ
Qn(v)

)
=P

(
Qn(v̂T ) + η > inf

‖v−v0‖≥δ
Qn(v)

)
+ o(1)

≤P (Qn(v̂T ) + η > ε) + P

(
inf

‖v−v0‖≥δ
Qn(v) < ε

)
+ o(1)

≤P (Qn(v̂T ) > ε− η) + o(1) = o(1)

because Qn(v̂T ) = oP (1).
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Appendix C

Proof of Lemma A.1. 1. Observe that

‖Mn(α, β)‖2 =
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,

where we denote m(· · · ) = (m1(· · · ), · · · ,mq(· · · ))
ᵀ
. Moreover,
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due to the property of the i.i.d. sequence.

Since E[m(V1, α
ᵀ
X1, g(Z1)) = 0, it follows from Assumption 3.3 that
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≤{E[A(V1, X1, Z1)]|γK(Z1)|}2 ≤ E[A(V1, X1, Z1)]2E|γK(Z1)|2

≤C‖γK(z)‖2 = o(1),

by virtue of Assumption 3.1(b), and for the second term,
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by the dominated convergence theorem, implying the second term is O(n−1).

2. First, note that
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It follows from the property of i.i.d. sequence and Assumption 3.3 that
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Second, for any ‖b‖2 ≤ B2n, we have b
ᵀ
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‖γK(z)‖2 by the orthogonality of the basis sequence.

For any δ > 0, let n be large (so K large) such that δ > ‖γK(z)‖. Moreover, by Assumption 3.2,
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due to Θn ⊂ Θ, which, along with the approximation in the first part, implies the assertion.

Proof of Lemma A.2. (1) Split the matrix Hn(α, β) := H̃n(α, β) + ∆n(α, β), where H̃n(α, β) is a
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and ∆21(α, β) = ∆12(α, β)
ᵀ
. To fulfil the assertion, we shall show

(i) H̃n(α, β) is almost surely positive definite and

(ii) ‖∆n(α, β)‖ = oP (1).

Firstly, for any vectors a ∈ Rp and b ∈ RK where either a 6= 0 or b 6= 0, we have
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which is almost surely positive. Hence, H̃n(α, β) is almost surely positive definite.

Secondly, to show ‖∆n(α, β)‖ = oP (1), it suffices to prove the result for each block. Indeed,

applying the triangle inequality and Cauchy-Schwarz inequality,
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Because ‖Mn(α, β)‖2 = OP (‖γK(z)‖2)+OP (n−1) by Lemma A.1, we need only to deal with the second

factor. Note that
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where by Assumption 3.5 the first term is O(p2), while by the iid property for the second we have
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ᵀ

∥∥∥∥2

≤2
1

q

q∑
`=1

∥∥∥∥E ∂2

∂u∂w
m`(V1, α

ᵀ
X1, β

ᵀ
ΦK(Z1))X1ΦK(Z1)

ᵀ

∥∥∥∥2

+ 2
1

n

1

q

q∑
`=1

E
∥∥∥∥ ∂2

∂u∂w
m`(V1, α

ᵀ
X1, β

ᵀ
ΦK(Z1))X1ΦK(Z1)

ᵀ

∥∥∥∥2

5



=2
1

q

∥∥∥∥E ∂2

∂u∂w
m(V1, α

ᵀ
X1, β

ᵀ
ΦK(Z1))⊗X1ΦK(Z1)

ᵀ

∥∥∥∥2

+ 2
1

n

1

q
E
∥∥∥∥ ∂2

∂u∂w
m(V1, α

ᵀ
X1, β

ᵀ
ΦK(Z1))⊗X1ΦK(Z1)

ᵀ

∥∥∥∥2

=O(pK) +O(n−1pK),

which implies ‖∆12(α, β)‖2 = OP (‖γK(z)‖2pK) +OP (n−1pK) = oP (1).

Furthermore,

‖∆22(α, β)‖2 ≤‖Mn(α, β)‖2 1

q

q∑
`=1

∥∥∥∥∥∥ 1

n

n∑
j=1

∂2

∂w2
m`(Vj , α

ᵀ
Xj , β

ᵀ
ΦK(Zj))ΦK(Zj)ΦK(Zj)

ᵀ

∥∥∥∥∥∥
2

,

where the second factor can be derived similarly

1

q

q∑
`=1

E

∥∥∥∥∥∥ 1

n

n∑
j=1

∂2

∂w2
m`(Vj , α

ᵀ
Xj , β

ᵀ
ΦK(Zj))ΦK(Zj)ΦK(Zj)

ᵀ

∥∥∥∥∥∥
2

≤2
1

q

∥∥∥∥E ∂2

∂w2
m(V1, α

ᵀ
X1, β

ᵀ
ΦK(Z1))⊗ ΦK(Z1)ΦK(Z1)

ᵀ

∥∥∥∥2

+ 2
1

n

1

q
E
∥∥∥∥ ∂2

∂w2
m(V1, α

ᵀ
X1, β

ᵀ
ΦK(Z1))⊗ ΦK(Z1)ΦK(Z1)

ᵀ

∥∥∥∥2

=O(K2) +O(n−1K2),

giving that ‖∆22(α, β)‖2 = OP (‖γK(z)‖2K2) +OP (n−1K2) = oP (1). This finishes the assertion (i).

Now, we show (ii). Because ‖Hn(α, β) − hn(α, g)‖ ≤ ‖∆n(α, β)‖ + ‖H̃n(α, β) − hn(α, g)‖ =

oP (1) + ‖H̃n(α, β)−hn(α, g)‖, what we need to show is ‖H̃n(α, β)−hn(α, g)‖ = oP (1). It is sufficient

to show the result in block-sense. Indeed,

H̃11(α, β)− h11(α, g)

=
1

q

q∑
`=1

 1

n

n∑
j=1

∂

∂u
m`(Vj , α

ᵀ
Xj , β

ᵀ
ΦK(Zj))Xj

( 1

n

n∑
i=1

∂

∂u
m`(Vi, α

ᵀ
Xi, β

ᵀ
ΦK(Zi))Xi

)ᵀ

− 1

q

q∑
`=1

(
E
∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

)(
E
∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

)ᵀ

=
1

q

q∑
`=1

1

n

n∑
j=1

(
∂

∂u
m`(Vj , α

ᵀ
Xj , β

ᵀ
ΦK(Zj))Xj − E

∂

∂u
m`(Vj , α

ᵀ
Xj , g(Zj))Xj

)

×

(
1

n

n∑
i=1

∂

∂u
m`(Vi, α

ᵀ
Xi, β

ᵀ
ΦK(Zi))Xi

)ᵀ

+
1

q

q∑
`=1

(
E
∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

)

× 1

n

n∑
i=1

(
∂

∂u
m`(Vi, α

ᵀ
Xi, β

ᵀ
ΦK(Zi))Xi − E

∂

∂u
m`(Vi, α

ᵀ
Xi, g(Zi))Xi

)ᵀ

:=I1 + I2, say.
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Notice further that

I1 =
1

q

q∑
`=1

1

n

n∑
j=1

(
∂

∂u
m`(Vj , α

ᵀ
Xj , β

ᵀ
ΦK(Zj))Xj −

∂

∂u
m`(Vj , α

ᵀ
Xj , g(Zj))Xj

)

×

(
1

n

n∑
i=1

∂

∂u
m`(Vi, α

ᵀ
Xi, β

ᵀ
ΦK(Zi))Xi

)ᵀ

+
1

q

q∑
`=1

1

n

n∑
j=1

(
∂

∂u
m`(Vj , α

ᵀ
Xj , g(Zj))Xj − E

∂

∂u
m`(Vj , α

ᵀ
Xj , g(Zj))Xj

)

×

(
1

n

n∑
i=1

∂

∂u
m`(Vi, α

ᵀ
Xi, β

ᵀ
ΦK(Zi))Xi

)ᵀ

.

Hence, using Cauchy-Schwarz inequality,

‖I1‖2 ≤
1

q

q∑
`=1

∥∥∥∥∥∥ 1

n

n∑
j=1

(
∂

∂u
m`(Vj , α

ᵀ
Xj , β

ᵀ
ΦK(Zj))−

∂

∂u
m`(Vj , α

ᵀ
Xj , g(Zj))

)
Xj

∥∥∥∥∥∥
2

× 1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
i=1

∂

∂u
m`(Vi, α

ᵀ
Xi, β

ᵀ
ΦK(Zi))Xi

∥∥∥∥∥
2

+
1

q

q∑
`=1

∥∥∥∥∥∥ 1

n

n∑
j=1

(
∂

∂u
m`(Vj , α

ᵀ
Xj , g(Zj))Xj − E

∂

∂u
m`(Vj , α

ᵀ
Xj , g(Zj))Xj

)∥∥∥∥∥∥
2

× 1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
i=1

∂

∂u
m`(Vi, α

ᵀ
Xi, β

ᵀ
ΦK(Zi))Xi

∥∥∥∥∥
2

:=I11 × I13 + I12 × I13, say.

Due to the i.i.d. property and the Law of Large Numbers (LLN, hereafter), I11 has the same order

in probability as

1

q

q∑
`=1

∥∥∥∥E( ∂

∂u
m`(V1, α

ᵀ
X1, β

ᵀ
ΦK(Z1))− ∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))

)
X1

∥∥∥∥2

=
1

q

∥∥∥∥E( ∂

∂u
m(V1, α

ᵀ
X1, β

ᵀ
ΦK(Z1))− ∂

∂u
m(V1, α

ᵀ
X1, g(Z1))

)
⊗X1

∥∥∥∥2

≤E[A1(V1, X1, Z1)2‖X1‖2]E[γK(Z1)2] = O(‖γK(z)‖2p),

while for I12, by the iid property,

E[I12] =
1

n2

1

q

q∑
`=1

n∑
j=1

E
∥∥∥∥ ∂∂um`(Vj , α

ᵀ
Xj , g(Zj))Xj − E

∂

∂u
m`(Vj , α

ᵀ
Xj , g(Zj))Xj

∥∥∥∥2

=
1

n

1

q

q∑
`=1

E
∥∥∥∥ ∂∂um`(V1, α

ᵀ
X1, g(Z1))X1 − E

∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

∥∥∥∥2

≤ 1

n

1

q

q∑
`=1

E
∥∥∥∥ ∂∂um`(V1, α

ᵀ
X1, g(Z1))X1

∥∥∥∥2

≤ 1

n

1

q
E
∥∥∥∥ ∂∂um(V1, α

ᵀ
X1, g(Z1))⊗X1

∥∥∥∥2

= O(n−1p)
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by Assumption 3.5. Moreover, by virtue of the i.i.d. property and the LLN, I13 has the same order in

probability as

1

q

q∑
`=1

∥∥∥∥E ∂

∂u
m`(Vi, α

ᵀ
Xi, g(Zi))Xi

∥∥∥∥2

+
1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
i=1

[
∂

∂u
m`(Vi, α

ᵀ
Xi, β

ᵀ
ΦK(Zi))−

∂

∂u
m`(Vi, α

ᵀ
Xi, g(Zi))

]
Xi

∥∥∥∥∥
2

=
1

q

∥∥∥∥E ∂

∂u
m(V1, α

ᵀ
X1, g(Z1))⊗X1

∥∥∥∥2

+
1

q

q∑
`=1

∥∥∥∥E [ ∂∂um`(V1, α
ᵀ
X1, β

ᵀ
ΦK(Z1))− ∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))

]
X1

∥∥∥∥2

=O(p) +
1

q

∥∥∥∥E [ ∂∂um(V1, α
ᵀ
X1, β

ᵀ
ΦK(Z1))− ∂

∂u
m(V1, α

ᵀ
X1, g(Z1))

]
⊗X1

∥∥∥∥2

≤O(p) + (E[A1(V1, X1, Z1)|γK(Z1)|‖X1‖])2 ≤ O(p) +O(‖γK(z)‖2p)

due to Assumptions 3.5 and 3.7, implying that ‖I1‖2 = OP (n−1p2) + OP (‖γK(z)‖2p2) = oP (1) by

Assumption 3.6.

Now, we consider I2. Note that

‖I2‖2 ≤
1

q

q∑
`=1

∥∥∥∥E ∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

∥∥∥∥2

× 1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
i=1

(
∂

∂u
m`(Vi, α

ᵀ
Xi, β

ᵀ
ΦK(Zi))Xi − E

∂

∂u
m`(Vi, α

ᵀ
Xi, g(Zi))Xi

)∥∥∥∥∥
2

≤2
1

q

∥∥∥∥E ∂

∂u
m(V1, α

ᵀ
X1, g(Z1))⊗X1

∥∥∥∥2

× 1

q

∥∥∥∥∥ 1

n

n∑
i=1

(
∂

∂u
m(Vi, α

ᵀ
Xi, β

ᵀ
ΦK(Zi))−

∂

∂u
m(Vi, α

ᵀ
Xi, g(Zi))

)
⊗Xi

∥∥∥∥∥
2

+ 2
1

q

∥∥∥∥E ∂

∂u
m(V1, α

ᵀ
X1, g(Z1))⊗X1

∥∥∥∥2

× 1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
i=1

(
∂

∂u
m`(Vi, α

ᵀ
Xi, g(Zi))Xi − E

∂

∂u
m`(Vi, α

ᵀ
Xi, g(Zi))Xi

)∥∥∥∥∥
2

:=2I21(I22 + I23), say.

By Assumption A.1, I21 = O(p). In addition, by the LLN I22 has the same order in probability as

1

q

∥∥∥∥E( ∂

∂u
m(V1, α

ᵀ
X1, β

ᵀ
ΦK(Z1))− ∂

∂u
m(V1, α

ᵀ
X1, g(Z1))

)
⊗X1

∥∥∥∥2

≤(E[A1(V1, X1, Z1)|γK(Z1)|‖X1‖])2 ≤ O(p)‖γK(z)‖2

using Assumption 3.7; meanwhile, by the i.i.d. property,

E[I23] =
1

n2

1

q

q∑
`=1

n∑
i=1

E
∥∥∥∥ ∂∂um`(Vi, α

ᵀ
Xi, g(Zi))Xi − E

∂

∂u
m`(Vi, α

ᵀ
Xi, g(Zi))Xi

∥∥∥∥2

8



=
1

n

1

q

q∑
`=1

E
∥∥∥∥ ∂∂um`(V1, α

ᵀ
X1, g(Z1))X1 − E

∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

∥∥∥∥2

≤ 1

n

1

q

q∑
`=1

E
∥∥∥∥ ∂∂um`(V1, α

ᵀ
X1, g(Z1))X1

∥∥∥∥2

=
1

n

1

q
E
∥∥∥∥ ∂∂um(V1, α

ᵀ
X1, g(Z1))⊗X1

∥∥∥∥2

= O(n−1p)

by Assumption 3.5. Hence, ‖I2‖2 = OP (n−1p2) + OP (‖γK(z)‖2p2) = oP (1). Thus, ‖H̃11(α, β) −
h11(α, β)‖2 = OP (1).

Moreover,

H̃12(α, β)− h12(α, g)

=
1

q

q∑
`=1

 1

n

n∑
j=1

∂

∂u
m`(Vj , α

ᵀ
Xj , β

ᵀ
ΦK(Zj))Xj

( 1

n

n∑
i=1

∂

∂w
m`(Vi, α

ᵀ
Xi, β

ᵀ
ΦK(Zi))ΦK(Zi)

)ᵀ

− 1

q

q∑
`=1

(
E
∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

)(
E
∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))ΦK(Z1)

)ᵀ

=
1

q

q∑
`=1

 1

n

n∑
j=1

∂

∂u
m`(Vj , α

ᵀ
Xj , β

ᵀ
ΦK(Zj))Xj − E

∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1


×

(
1

n

n∑
i=1

∂

∂w
m`(Vi, α

ᵀ
Xi, β

ᵀ
ΦK(Zi))ΦK(Zi)

)ᵀ

+
1

q

q∑
`=1

(
E
∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

)

×

(
1

n

n∑
i=1

∂

∂w
m`(Vi, α

ᵀ
Xi, β

ᵀ
ΦK(Zi))ΦK(Zi)− E

∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))ΦK(Z1)

)ᵀ

:=I3 + I4, say.

Similar to I1, ‖I3‖2 = OP (n−1pK) + OP (‖γK(z)‖2pK) = oP (1) by Assumption 3.6; and similar

to I2, we may have ‖I4‖2 = OP (n−1pK) + OP (‖γK(z)‖2pK) = oP (1). We then have ‖H̃12(α, β) −
h12(α, β)‖2 = oP (1).

Finally, we derive similarly for H̃22(α, β)− h22(α, β),

H̃22(α, β)− h22(α, g)

=
1

q

q∑
`=1

 1

n

n∑
j=1

∂

∂w
m`(Vj , α

ᵀ
Xj , β

ᵀ
ΦK(Zj))ΦK(Zj)

( 1

n

n∑
i=1

∂

∂w
m`(Vi, α

ᵀ
Xi, β

ᵀ
ΦK(Zi))ΦK(Zi)

)ᵀ

− 1

q

q∑
`=1

(
E
∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))ΦK(Z1)

)(
E
∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))ΦK(Z1)

)ᵀ

=
1

q

q∑
`=1

 1

n

n∑
j=1

∂

∂w
m`(Vj , α

ᵀ
Xj , β

ᵀ
ΦK(Zj))ΦK(Zj)− E

∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))ΦK(Z1)


×

(
1

n

n∑
i=1

∂

∂w
m`(Vi, α

ᵀ
Xi, β

ᵀ
ΦK(Zi))ΦK(Zi)

)ᵀ
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+
1

q

q∑
`=1

(
E
∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))ΦK(Z1)

)

×

(
1

n

n∑
i=1

∂

∂w
m`(Vi, α

ᵀ
Xi, β

ᵀ
ΦK(Zi))ΦK(Zi)− E

∂

∂w
m`(V1, α

ᵀ
X1, g)ΦK(Z1)

)ᵀ

:=I5 + I6, say.

Using the same approach, we have ‖I5‖2 = OP (n−1K2) + OP (‖γK(z)‖2K2) = oP (1) and ‖I6‖2 =

OP (n−1K2) +OP (‖γK(z)‖2K2) = oP (1) by Assumption 3.6. The whole proof is completed.

Proof of Lemma A.3. It is sufficient to show that ‖S1n(α, β) − s1n(α, g)‖ = oP (1) and ‖S2n(α, β) −
s2n(α, g)‖ = oP (1). Observe that

S1n(α, β)− s1n(α, g)

=
1

q

q∑
`=1

1

n

n∑
i=1

[m`(Vi, α
ᵀ
Xi, β

ᵀ
ΦK(Zi))−m`(Vi, α

ᵀ
Xi, g(Zi))]

× 1

n

n∑
j=1

∂

∂u
m`(Vj , α

ᵀ
Xj , β

ᵀ
ΦK(Zj))Xj

+
1

q

q∑
`=1

1

n

n∑
i=1

m`(Vi, α
ᵀ
Xi, g(Zi))

× 1

n

n∑
j=1

(
∂

∂u
m`(Vj , α

ᵀ
Xj , β

ᵀ
ΦK(Zj))−

∂

∂u
m`(Vj , α

ᵀ
Xj , g(Zj))

)
Xj

+
1

q

q∑
`=1

1

n

n∑
i=1

m`(Vi, α
ᵀ
Xi, g(Zi))

× 1

n

n∑
j=1

(
∂

∂u
m`(Vj , α

ᵀ
Xj , g(Zj))Xj − E

∂

∂u
m`(Vj , α

ᵀ
Xj , g(Zj))Xj

)
:=I1 + I2 + I3, say.

Then, using Cauchy-Schwarz inequality gives

‖I1‖2 ≤
1

q

q∑
`=1

(
1

n

n∑
i=1

[m`(Vi, α
ᵀ
Xi, β

ᵀ
ΦK(Zi))−m`(Vi, α

ᵀ
Xi, g(Zi))]

)2

× 1

q

q∑
`=1

∥∥∥∥∥∥ 1

n

n∑
j=1

∂

∂u
m`(Vj , α

ᵀ
Xj , β

ᵀ
ΦK(Zj))Xj

∥∥∥∥∥∥
2

:=I11 × I12, say.

Observe further that

E[I11] =
1

q

q∑
`=1

E

(
1

n

n∑
i=1

[m`(Vi, α
ᵀ
Xi, β

ᵀ
ΦK(Zi))−m`(Vi, α

ᵀ
Xi, g(Zi))]

)2

=
1

q

q∑
`=1

Var

(
1

n

n∑
i=1

[m`(Vi, α
ᵀ
Xi, β

ᵀ
ΦK(Zi))−m`(Vi, α

ᵀ
Xi, g(Zi))]

)

10



+
1

q

q∑
`=1

(
1

n

n∑
i=1

E[m`(Vi, α
ᵀ
Xi, β

ᵀ
ΦK(Zi))−m`(Vi, α

ᵀ
Xi, g(Zi))]

)2

=
1

q

q∑
`=1

1

n2

n∑
i=1

Var[m`(Vi, α
ᵀ
Xi, β

ᵀ
ΦK(Zi))−m`(Vi, α

ᵀ
Xi, g(Zi))]

+
1

q

q∑
`=1

(
Em`(V1, α

ᵀ
X1, β

ᵀ
ΦK(Z1))

)2
=

1

n

1

q

q∑
`=1

Var[m`(V1, α
ᵀ
X1, β

ᵀ
ΦK(Z1))−m`(V1, α

ᵀ
X1, g(Z1))]

+
1

q

∥∥Em(V1, α
ᵀ
X1, β

ᵀ
Φk(Z1))

∥∥2

≤ 1

n

1

q

q∑
`=1

E[m`(V1, α
ᵀ
X1, β

ᵀ
ΦK(Z1))−m`(V1, α

ᵀ
X1, g(Z1))]2

+
1

q

∥∥Em(V1, α
ᵀ
X1, β

ᵀ
ΦK(Z1))

∥∥2

=
1

n

1

q
E‖m(V1, α

ᵀ
X1, β

ᵀ
ΦK(Z1))−m(V1, α

ᵀ
X1, g(Z1))‖2

+
1

q

∥∥E[m(V1, α
ᵀ
X1, β

ᵀ
ΦK(Z1))−m(V1, α

ᵀ
X1, g(Z1))]

∥∥2

≤ 1

n
E|A(V1, X1, Z1)γK(Z1)|2 + E|A(V1, X1, Z1)|2)‖γK(z)‖2

=o(n−1) +O(‖γK(z)‖2)

by Assumptions 3.1 and 3.3, the dominated convergence theorem and Cauchy-Schwarz inequality.

Moreover, it is clear by Assumptions 3.3 and 3.5 that

E[I12] ≤ 1

q
E
∥∥∥∥ ∂∂um(V1, α

ᵀ
X1, g(Z1))⊗X1

∥∥∥∥2

= O(p).

Hence, I1 = oP (1) by Assumption 3.6.

For I2, by Cauchy-Schwarz inequality again,

‖I2‖2 ≤
1

q

q∑
`=1

(
1

n

n∑
i=1

m`(Vi, α
ᵀ
Xi, g(Zi))

)2

× 1

q

q∑
`=1

∥∥∥∥∥∥ 1

n

n∑
j=1

(
∂

∂u
m`(Vj , α

ᵀ
Xj , β

ᵀ
ΦK(Zj))Xj −

∂

∂u
m`(Vj , α

ᵀ
Xj , g(Zj))Xj

)∥∥∥∥∥∥
2

:=I21 × I22, say.

By virtue of the i.i.d. property and Assumption 3.5,

E[I21] =
1

n2

1

q

q∑
`=1

n∑
i=1

Em`(Vi, α
ᵀ
Xi, g(Zi))

2

=
1

n

1

q

q∑
`=1

Em`(V1, α
ᵀ
X1, g(Z1))2 =

1

n

1

q
E‖m(V1, α

ᵀ
X1, g(Z1))‖2

=O(n−1).
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Meanwhile, invoking of the LLN, I22 has the same order in probability as

1

q

q∑
`=1

∥∥∥∥E [ ∂∂um`(V1, α
ᵀ
X1, β

ᵀ
ΦK(Z1))X1 −

∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

]∥∥∥∥2

=
1

q

∥∥∥∥E [ ∂∂um(V1, α
ᵀ
X1, β

ᵀ
ΦK(Z1))⊗X1 −

∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))⊗X1

]∥∥∥∥2

≤ |E[A1(V1, X1, Z1)|γK(Z1)|‖X1‖]|2 ≤ O(‖γK(z)‖2p) = o(1)

due to Assumption 3.7 and Cauchy-Schwarz inequality, implying I2 = oP (1).

Again, using Cauchy-Schwarz inequality gives

‖I3‖2 ≤
1

q

q∑
`=1

(
1

n

n∑
i=1

m`(Vi, α
ᵀ
Xi, g(Zi))

)2

× 1

q

q∑
`=1

∥∥∥∥∥∥ 1

n

n∑
j=1

(
∂

∂u
m`(Vj , α

ᵀ
Xj , g(Zj))Xj − E

∂

∂u
m`(Vj , α

ᵀ
Xj , g(Zj))Xj

)∥∥∥∥∥∥
2

=OP (n−1)OP (p) = OP (n−1p) = oP (1)

due to the iid property and Assumption 3.5. This finishes the proof of ‖S1n(α, β)−s1n(α, g)‖ = oP (1).

Now, we are to show ‖S2n(α, β)− s2n(α, g)‖ = oP (1). Note that

S2n(α, β)− s2n(α, g)

=
1

qn2

q∑
`=1

n∑
i=1

m`(Vi, α
ᵀ
Xi, β

ᵀ
ΦK(Zi))

×
n∑
j=1

∂

∂w
m`(Vj , α

ᵀ
Xj , β

ᵀ
ΦK(Zj))ΦK(Zj)

− 1

qn

q∑
`=1

n∑
i=1

m`(Vi, α
ᵀ
Xi, g(Zi))E

∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))ΦK(Z1)

=
1

qn2

q∑
`=1

n∑
i=1

[m`(Vi, α
ᵀ
Xi, β

ᵀ
ΦK(Zi))−m`(Vi, α

ᵀ
Xi, g(Zi))]

×
n∑
j=1

∂

∂w
m`(Vj , α

ᵀ
Xj , β

ᵀ
ΦK(Zj))ΦK(Zj)

+
1

qn2

q∑
`=1

n∑
i=1

m`(Vi, α
ᵀ
Xi, g(Zi))

×
n∑
j=1

(
∂

∂w
m`(Vj , α

ᵀ
Xj , β

ᵀ
ΦK(Zj))−

∂

∂w
m`(Vj , α

ᵀ
Xj , g(Zj))

)
ΦK(Zj)

+
1

qn

q∑
`=1

n∑
i=1

m`(Vi, α
ᵀ
Xi, g(Zi))

×

 1

n

n∑
j=1

∂

∂w
m`(Vj , α

ᵀ
Xj , g(Zj))ΦK(Zj)− E

∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))ΦK(Z1)


:=I4 + I5 + I6, say.
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Note further by Cauchy-Schwarz inequality that

‖I4‖2 ≤
1

q

q∑
`=1

(
1

n

n∑
i=1

[m`(Vi, α
ᵀ
Xi, β

ᵀ
ΦK(Zi))−m`(Vi, α

ᵀ
Xi, g(Zi))]

)2

× 1

q

q∑
`=1

∥∥∥∥∥∥ 1

n

n∑
j=1

∂

∂w
m`(Vj , α

ᵀ
Xj , β

ᵀ
ΦK(Zj))ΦK(Zj)

∥∥∥∥∥∥
2

≤2
1

q

q∑
`=1

(
1

n

n∑
i=1

[m`(Vi, α
ᵀ
Xi, β

ᵀ
ΦK(Zi))−m`(Vi, α

ᵀ
Xi, g(Zi))]

)2

× 1

q

q∑
`=1

∥∥∥∥∥∥ 1

n

n∑
j=1

[
∂

∂w
m`(Vj , α

ᵀ
Xj , β

ᵀ
ΦK(Zj))−

∂

∂w
m`(Vj , α

ᵀ
Xj , g(Zj))

]
ΦK(Zj)

∥∥∥∥∥∥
2

+ 2
1

q

q∑
`=1

(
1

n

n∑
i=1

[m`(Vi, α
ᵀ
Xi, β

ᵀ
ΦK(Zi))−m`(Vi, α

ᵀ
Xi, g(Zi))]

)2

× 1

q

q∑
`=1

∥∥∥∥∥∥ 1

n

n∑
j=1

∂

∂w
m`(Vj , α

ᵀ
Xj , g(Zj))ΦK(Zj)

∥∥∥∥∥∥
2

,

where due to Assumption 3.7 the second term is the leading one, which by the LLN has the same

order as

1

q

q∑
`=1

(
E[m`(V1, α

ᵀ
X1, β

ᵀ
ΦK(Z1))−m`(V1, α

ᵀ
X1, g(Z1))]

)2
× 1

q

q∑
`=1

∥∥∥∥E ∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))ΦK(Z1)

∥∥∥∥2

=
1

q

∥∥E[m(V1, α
ᵀ
X1, β

ᵀ
ΦK(Z1))−m(V1, α

ᵀ
X1, g(Z1))]

∥∥2

× 1

q

∥∥∥∥E ∂

∂w
m(V1, α

ᵀ
X1, g(Z1))⊗ ΦK(Z1)

∥∥∥∥2

≤ |E[A(V1, X1, Z1)γK(Z1)]|2O(K) ≤ O(‖γK(z)‖2K) = o(1)

in probability by Assumption 3.6 as n→∞.

Moreover, invoking Assumptions 3.6-3.7, I5 = oP (1). Finally,

‖I6‖2 ≤
1

q

q∑
`=1

(
1

n

n∑
i=1

m`(Vi, α
ᵀ
Xi, g(Zi))

)2

× 1

q

q∑
`=1

∥∥∥∥∥∥ 1

n

n∑
j=1

[
∂

∂w
m`(Vj , α

ᵀ
Xj , g(Zj))ΦK(Zj)− E

∂

∂w
m`(Vi, α

ᵀ
Xi, g(Zi))ΦK(Zi)

]∥∥∥∥∥∥
2

:=I61 × I62, say.

Here, I61 = I21 and thus E[I61] = O(n−1). Meanwhile,

E[I62] =
1

q

1

n2

q∑
`=1

n∑
j=1

E
∥∥∥∥ ∂

∂w
m`(Vj , α

ᵀ
Xj , g(Zj))ΦK(Zj)− E

∂

∂w
m`(Vi, α

ᵀ
Xi, g(Zi))ΦK(Zi)

∥∥∥∥2
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=
1

q

1

n

q∑
`=1

E
∥∥∥∥ ∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))ΦK(Z1)− E

∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))ΦK(Z1)

∥∥∥∥2

=
1

q

1

n
E
∥∥∥∥ ∂

∂w
m(V1, α

ᵀ
X1, g(Z1))⊗ ΦK(Z1)− E

∂

∂w
m(V1, α

ᵀ
X1, g(Z1))⊗ ΦK(Z1)

∥∥∥∥2

≤1

q

1

n
E
∥∥∥∥ ∂

∂w
m(V1, α

ᵀ
X1, g(Z1))⊗ ΦK(Z1)

∥∥∥∥2

= O(n−1K) = o(1)

appealing to Assumptions 3.5-3.6, implying ‖I6‖2 = oP (n−1K) = oP (1). The proof is complete.

Proof of Lemmas A.4-A.6. The proof should be the same as that of Lemmas A.1-A.3 but we have to

take into account the approximation
√
n(θ̂ − θ0) = OP (1). Since θ̂ is independent of the sample used

to estimate the α and g, this is easy but lengthy so omitted.

Proof of Theorem 3.3. Using Lemmas A.4-A.6, we may prove Theorem 3.3. Due to the same reason

as above, the proof is omitted.

Proof of Lemma A.7. Define ρn = an +
√
tn P

′
n(dn) and then ρn = o(1) by Assumption 5.1. Denote

Nτ = {v ∈ Rp+K : ‖vT − v0‖ ≤ ρnτ} for τ > 0. Let ∂Nτ be the boundary of Nτ . Also, define an

event

An(τ) =

{
Qn(v0) < inf

v∈∂Nτ
Qn(vT )

}
.

On the event An(τ), by the continuity of Qn(v) with respect to vj for j ∈ T , there exists a

local minimizer of Qn(vT ) inside Nτ . That is, there exists a local minimizer v̂ ∈ V of Qn(vT ) such

that ‖v̂ − v0‖ < τρn. Therefore, it suffices to show that for ∀ε > 0, there exists a τ > 0 such that

P (An(τ)) ≥ 1− ε for all large n.

For any v ∈ ∂Nτ , viz. ‖vT − v0‖ = τρn, there is an v∗ lying on the segment joining v and v0 such

that by the mean value theorem,

Qn(vT )−Qn(v0) =(vS − v0S)
ᵀ
SnT (v0S) +

1

2
(vS − v0S)

ᵀ
HnT (v∗S)(vS − v0S)

+
∑
j∈T

[Pn(|vSj |)− Pn(|v0S,j |)],

where v0S and vS are defined before, so is v∗S .

Invoking the condition ‖SnT (v0S)‖ = OP (an), for ∀ε > 0, there exists a C1 > 0 such that the event

A1 given below satisfies P (A1) > 1− ε/4 for all large n, where

A1 = {(vS − v0S)
ᵀ
SnT (v0S) ≥ −C1an‖vS − v0S‖}.

Also, by Condition (ii) and for this ε, there exists a C2 such that P (A2) > 1 − ε/4 for all large n,

where

A2 = {(vS − v0S)
ᵀ
HnT (v0S)(vS − v0S) ≤ C2‖vS − v0S‖2}.

Meanwhile, define event A3 = {‖HnT (v0S)−HnT (v∗S)‖ ≥ C2/4}. By Condition (iii) and ‖vT − v0‖ =

‖vS − v0S‖ = τρn, for any τ , P (A3) ≥ 1− ε/4 for all large n. Hence, A4 ⊂ A2 ∩A3 where

A4 = {(vS − v0S)
ᵀ
HnT (v∗S)(vS − v0S) >

3

4
C2‖vS − v0S‖2}.
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On the other hand, it follows from Lemma B.1 in Fan and Liao [34] that
∑

j∈T [Pn(|vSj |) −
Pn(|v0S,j |)] ≥ −

√
tnP

′
n(dn)‖vS − v0S‖. Whence, for any v ∈ ∂Nτ , on A1 ∩A4,

Qn(vT )−Qn(v0) ≥ρnτ
(

3

8
ρnτC2 − C1an −

√
tnP

′
n(dn)

)
.

For ρn = an +
√
tnP

′
n(dn), C1an +

√
tnP

′
n(dn) ≤ (C1 + 1)ρn. Thus, choosing τ > 8(C1 + 1)/3C2 yields

that Qn(vT )−Qn(v0) > 0 uniformly on v ∈ ∂Nτ . It follows that for large n, with τ > 8(C1 + 1)/3C2,

P (An(τ)) > P (A1 ∩A4) ≥ 1− ε.
We next show that the local minimizer, denoted by v̂ ∈ V, is strict with a probability arbitrarily

close to one. For each h 6= 0, define

ψ(h) = lim sup
ε→0+

sup
(u1,u2)∈O(|h|,ε)

−P
′
n(u2)− P ′n(u1)

u2 − u1
.

By the concavity, ψ(·) ≥ 0. For any v ∈ Nτ , let Ω(v) = HnT (vS) − diag(ψ(vS1), · · · , ψ(vSt)). It

suffices to show that Ω(v̂) is positive definite with probability arbitrarily close to unity. On the event

A5 = {φ(v̂S) ≤ supvS∈O(v0S ,cdn) φ(vS)} where v̂S is the tn-vector consisting of nonzero elements of v̂,

and c is the same in (iv) of Assumption 5.1, we have

max
j≤tn

ψ(v̂Sj) ≤ φ(v̂S) ≤ sup
vS∈O(v0S ,cdn)

φ(vS).

Let A6 = {‖HnT (v̂S)−HnT (v0S)‖ < C2/4} and A7 = {λmin(HnT (v0S)) > C2}. Then, for any u ∈ Rtn

with ‖u‖ = 1, it follows from (iv) of Assumption 5.1 that

u
ᵀ
Ω(v̂)u =u

ᵀ
HnT (v̂S)u− uᵀ

diag(ψ(v̂S1), · · · , ψ(v̂St))u

≥uᵀ
HnT (v0S)u− |uᵀ

[HnT (v̂S)−HnT (v0S)]u| −max
j≤s

ψ(v̂Sj)

≥3C2/4− sup
vS∈O(v0S ,cdn)

φ(vS) ≥ C2/4

on the event A5 ∩A6 ∩A7 for all large n.

Finally, we are about to show that P (A5 ∩A6 ∩A7) ≥ 1− ε. As P (A7) ≥ 1− ε, it suffices to show

P (A5 ∩A6) ≥ 1− ε for ∀ε > 0. Indeed, due to ρn = o(dn), P (A5) ≥ P (v̂S ∈ O(v0S , cdn)) ≥ 1− ε/2 for

all large n. Also,

P (Ac6) ≤P (Ac6, ‖v̂ − v0‖ ≤ ρn) + P (‖v̂ − v0‖ > ρn)

≤P

(
sup

vS∈O(v0S ,cdn)
‖HnT (vS)−HnT (v0S)‖ ≥ C2/4

)
+ ε/4 ≤ ε/2.

Proof of Lemma A.8. Recall that v̂ ∈ V is a local minimizer of Qn(vT ). Hence, there is a small

neighbourhood O1 of v̂ such that for any v ∈ O1 with v 6∈ V we have Qn(v̂) ≤ Qn(vT ). However, by

the condition of (A.4),

Qn(vT )−Qn(v) = ‖Mn(vT )‖2 − ‖Mn(v)‖2 −
∑
j 6∈T

Pn(|vj |) < 0. (C.1)

This means Qn(v̂) < Qn(v), yielding the first assertion, while, from which and the last statement of

Lemma A.7, the second assertion is also implied.
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Verification of Conditions in Lemma 5.1

Condition (i): Notice that SnT (v0S) = ∂v0S‖Mn(v0)‖2 = 2An(v0S)Mn(v0), where

An(v0S) =
1
√
qn

n∑
i=1

∂m
ᵀ
(Vi, v

ᵀ

0SFiS)⊗ FiS .

By Assumption 5.2, ‖An(v0S)‖ = OP (
√
tn). Meanwhile, due to Em(·) = 0 at the true parameter, by

virtue of Assumption 5.3, Bernstein inequality and Bonferroni inequality, there exist C > 0, for any

u > 0,

P

(
max
`≤q

∣∣∣∣∣ 1n
n∑
i=1

m`(Vi, v
ᵀ

0SFiS)

∣∣∣∣∣ > u

)

≤qmax
`≤q

P

(∣∣∣∣∣ 1n
n∑
i=1

m`(Vi, v
ᵀ

0SFiS)

∣∣∣∣∣ > u

)
≤ exp(log q − Cu2/n).

Hence, max`≤q
∣∣ 1
n

∑n
i=1m`(Vi, α

ᵀ

0SXiS , β
ᵀ

0SΦKS(Zi))
∣∣ = OP (

√
log(q)/n), which then gives

‖Mn(v0)‖ =

∥∥∥∥∥ 1
√
qn

n∑
i=1

m(Vi, α
ᵀ

0SXiS , β
ᵀ

0SΦKS(Zi))

∥∥∥∥∥ = OP

(√
log(q)/n

)
. (C.2)

Accordingly, ‖SnT (v0S)‖ = OP (
√
tn log(q)/n).

Condition (ii): It is clear that HnT (vS) = 2An(vS)An(vS)
ᵀ

+ 2A1n(vS)Mn(vT ) where

A1n(vS) =
1
√
qn

n∑
i=1

∂2m(Vi, v
ᵀ

0SFiS)⊗ FiSF
ᵀ

iS .

Here, ∂2m stands for the second order partial derivative of m with respect to its arguments where the

parameter is involved.

As shown in Lemma A.2 that An(vS)An(vS)
ᵀ

is almost surely positive definite, while similar to

the verification of Condition (i), the second term is oP (1). Thus, using Assumption 5.4, the condition

can be verified using arguments similar to Fan and Liao [34].

Condition (iii): Observe that

HnT (vS)−HnT (v0S)

=2[An(vS)An(vS)
ᵀ −An(v0S)An(v0S)

ᵀ
] + 2A1n(vS)Mn(vT ) + 2A1n(v0S)Mn(v0)

=2[An(vS)−An(v0S)]An(vS)
ᵀ
] + 2An(v0S)[An(vS)−An(v0S)]

ᵀ
]

+ 2A1n(vS)Mn(vT ) + 2A1n(v0S)Mn(v0),

and each term is oP (1), from which the condition follows.

Verification of the condition in Lemma A.8: Let v̂ ∈ V be the minimizer of Qn. We shall

show that there is a neighbourhood of v̂ in which for any v 6∈ V, the condition of (A.4) holds, that is,

‖Mn(vT )‖2 − ‖Mn(v)‖2 <
∑

j 6∈T Pn(|vj |). This is equivalent to showing Qn(vT ) < Qn(v).
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Using the mean value theorem, there exists a v∗ on the segment joining vT and v such that

‖Mn(vT )‖2 − ‖Mn(v)‖2 = Sn(v∗)
ᵀ
(vT − v) = Sn(v∗)

ᵀ
vT c ,

where T c is the complement set of T w.r.t. {1, . . . , p+K} and noting v = vT + vT c for any v.

Here, we know ‖Sn(v0S)‖ = OP (
√
tn log(q)/n), ‖v̂ − v0‖ = OP (

√
tn log(q)/n +

√
tn P

′
n(dn)). In

a small neighbourhood of v̂, O(v̂, rn/(p + K)) say, where rn is a sufficient small number, ‖Sn(v)‖ =

OP (
√
tn log(q)/n) uniformly holds in v and supv∈O ‖v − v̂‖1 ≤ rn.

On the other hand, for some µ ∈ (0, 1),∑
j 6∈T

Pn(|vj |) =
∑

j 6∈T,vj 6=0

|vj |P ′n(µ|vj |) ≥
∑

j 6∈T,vj 6=0

|vj |P ′n(rn)

by the nonincreasingness of P ′n(u). Let rn so small that P ′n(rn) ≥ P ′n(0+)/2. Hence,
∑

j 6∈S Pn(|βj |) ≥

Crn in probability.

Then, by virtue of Assumption 5.4 and following a similar argument as Fan and Liao [34], the

condition is verified.
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Appendix D

The estimates of some important coefficients in Section 7 are reported in this section.

Table 8: Estimated coefficients for Subsample H

Mother’s Years of Schooling 0.1349

Number of Siblings 0.0215

Urban Residence at 14 0.2936

“Permanent” Local Log Earnings at 17 -0.0263

“Permanent” State Unemployment Rate at 17 -0.0745

Instruments (W ):

Local Log Earnings at 17 0.2531

State Unemployment Rate at 17 0.0097

Tuition in 4 Year Public Colleges at 17 -0.0006

Table 9: Estimated coefficients for Subsample C

Mother’s Years of Schooling 0.0030

Number of Siblings -0.0190

Urban Residence at 14 -0.0472

“Permanent” Local Log Earnings at 17 -0.0045

“Permanent” State Unemployment Rate at 17 -0.0205

Instruments (W ):

Local Log Earnings at 17 0.2092

State Unemployment Rate at 17 0.0244

Tuition in 4 Year Public Colleges at 17 -0.0075
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