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Abstract

Pectin is a major component of the primary plant cell wall and is known to play an im-
portant role in many physiological processes. It also has has many uses in the food and
biomedical industries as it is abundant, mechanochemically versatile and non-toxic. However,
the relationship between its chemistry and mechanical properties is not fully understood.
In this thesis, pectin in vitro and the pectin-rich outer cells of Arabidopsis seedlings are
studied using an AFM methodology adapted from the animal rheology literature. The effects
of the degree of methylation, and degree of blockiness on the viscoelastic properties of
pectin are explored. Elastic and viscous properties of pectin are found to be negatively
correlated with its degree of methylesterification, whilst elastic properties are positively
correlated with its degree of blockiness. Mixed gels, composed of pectin with differing
degrees of methylesterification are also investigated and their parameters are found to scale
in accordance with their volume fraction. In vivo mechanical properties observed in the Ara-
bidopsis hypocotyl are harder to disentangle, but a number of interesting differences between
transverse and axial cell walls are observed. A modelling approach is taken, and although
a model based on exponentially decaying terms is found to be adequate for the two mate-
rial types studied, a fractional viscoelastic model is found to be far superior for pectin in vitro.

Fractional viscoelasticity is the use of fractional differential equations for the modelling
of viscoelastic phenomena. In addition to its aforementioned use for pectin, its utility is
evidenced here by re-analysis of data gathered from the biomechanical literature. In spite
of the apparently simple qualitative behaviours they exhibit, there are a number of unique
challenges associated with the selection and fitting of fractional viscoelastic models due
to their mathematical complexity. This complexity may, in part, explain why fractional
viscoelasticity has seen limited use thus far, even though it captures many of the qualitative
behaviours commonly observed in biomaterials. This observation led to the development
of an open-source rheology analysis software package, RHEOS, which has many of the
common fractional and non-fractional viscoelastic models built-in. The architecture, features
and implementation specifics of RHEOS are discussed.
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Chapter 1

Introduction

Cell and tissue, shell and bone, leaf and
flower, are so many portions of matter,
and it is in obedience to the laws of
physics that their particles have been
moved, moulded and conformed.

[9] D. W. Thompson, 1945
On Growth and Form

1.1 Rheology and Its Application to Biology

If one wants to evaluate the ripeness of an avocado how can this be achieved? Countless
generations of human experience suggest that the most straightforward method is a gentle
squeeze. It is worthwhile taking the time to apprehend this simple but effective squeeze test
in scientific terms; our exemplar imposes a low force, usually via the forefinger and thumb,
and through these articles senses the resultant deformation, which can be compared with
a learned memory of squeeze/tastiness relations. Indeed, through this apparently ordinary
test, we can identify some rather extraordinary phenomena, the most relevant being that
the human body is capable of such fine grained force transduction and deformation sensing.
In addition, we might presume that those early humans who tested fruit for ripeness using
the squeeze test can claim the title of the first practitioners of rheology, a field of scientific
inquiry which will be defined below.

Although the word ‘rheology’ is derived from the Greek word for ‘flow’, it is generally
understood to refer to the science of both deformation and flow [10]. The name was
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officially given by Bingham, who proposed the term after consultation with some classicists
in 1928 [11]. By 1929 the constitution for the first rheological society had been written [11].
Indeed, whilst there is evidence that rheological investigation has preoccupied humanity
since its inception [11] – it was only in the early 1900s that it emerged as a rigorous scientific
discipline. The fruit-ripeness example above has an aspect of the whimsical, but in fact many
scientists are interested in the rheology of food for the purposes of satiating their intellectual
appetite in addition to their belly. For example, the 1937 study by Davis in which creep
tests were conducted on various type of cheese, shown in Figure 1.1. Not all problems of
flow come under the rheology umbrella; for example, fluid mechanics is usually referred
to as a field in its own right – though it does indeed have significant crossover with the
field of rheology, particularly in the Stokes regime where inertial effects are ignored. In
general, the term rheology is used when it is not just the deformation and flow behaviours of
a material being considered, but also their relation to its composition and architecture [12].
Indeed, the rheologist’s desire to connect the phenomenological with the structural is a
key aspect of the modelling paradigm discussed in more detail in Chapter 2. However, the
interest in the structural aspect should not be misinterpreted. Rheological models are largely
phenomenological and not mechanistic. Even at small length scales, they are firmly grounded
in the framework of continuum mechanics.

Fig. 1.1 Cyclical creep tests on Cheddar, Cheshire, Leicester and Lancashire cheese, from Davis [1].

Figure of creep tests on cheese removed for copyright 
reasons. Copyright holder is Proprietors of Journal of Dairy 
Research. Figure 14 in original source. 
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Concurrent with the emergence of rheology as a discipline was a growing awareness of
the role of mechanics in biological systems – as poetically articulated by D’Arcy Thompson
in the above quote from his classic work ‘On Growth and Form’. There are now abundant
examples of biological phenomena in which mechanical processes are known to play an
essential role. More closely related to this thesis, there are also manifold examples of interplay
between rheology and biology. For instance, the 2006 study by Engler et al. which found that
when mesenchymal stem cells are placed on substrates with stiffnesses comparable to brain,
muscle and bone tissue, they differentiate into brain, muscle and bone cells respectively [13].
Building on this, modifications of the viscous properties of the substrate, in addition to the
elastic properties, have been shown to induce their own nuances on stem cell fate [14, 15].
Another example is the 2017 study by Laronda et al. [16], who 3D printed a bio-prosthetic
mouse ovary which successfully restored ovarian function in sterilised mice: tuning of
rheological properties was important in both ensuring bio-compatibility of the prosthetic
ovary, and during the 3D printing process.

1.2 Purview and Structure of Thesis

The previous section introduced rheology and its utility in biology. This section provides
a brief overview of the main subjects and unifying themes of this thesis, along with their
placement in the overall structure of the text.

Rheology is a broad subject, and a great many textbooks are filled with exposition of its
theoretical details, much of which is not directly relevant to the work in Chapters 3 and 4. For
this reason, the thesis begins in Chapter 2 with enough theory for the complete dissertation
to be relatively self-contained. To this end, it contains an overview of one-dimensional linear
elasticity and viscoelasticity, linear modelling using springs and dashpots, contact models,
and experimental methods.

Pectin is a hydrophilic polysaccharide gel which is produced in the Golgi of land plants
and deposited at the cell wall [17]. As will be detailed in Chapter 3, it has many uses in food
and biotechnology, and is known to play a key role in plant development – likely due to the
diverse mechanical properties it can be imbued with depending on its precise formulation.
As to its importance in food science, we can return to our initial question of fruit ripeness
assessment for an example; pectin is known to play a crucial role in the ripening process
and associated mechanical changes [18, 19]. During plant development, mechano-chemical
pectin changes are known to underlie numerous morphological symmetry breaking events,
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some of which will be detailed in Chapter 3. For the above reasons, tools for the mechanical
characterisation of pectin in vitro and its putative effect on plant rheology are valuable. The
advancement of such tools is the main aim of Chapter 3. It begins with a detailed discussion
of pectin and its uses, with in vivo context provided by discussion of other plant cell wall
components. Following this, the literature on mechanical testing of pectin and plants is
reviewed. This leads in to the main body of experimental work, in which atomic force
microscopy (AFM) force relaxation and creep protocols are established for pectin in vitro
and the Arabidopsis hypocotyl, that part of a young seedling’s stem which is above its roots
but below its cotyledons (leaves). These methods are used to probe the relationship between
pectin chemistry and mechanical properties in vitro, and viscoelastic properties which may
contribute to symmetry breaking of the Arabidopsis hypocotyl in vivo.

Chapter 4 links together the previous work and builds on it by use of more advanced
viscoelastic theory – fractional viscoelasticity. The centre piece of this theory, the springpot,
is an idealised viscoelastic prototype which can be used to model power law behaviour, and
can be combined with the aforementioned spring and dashpot units to capture more complex
behaviour. Viscoelastic modelling is dominated by the idealised spring and dashpot proto-
types which leads to models with a mathematical form depending on a number of exponential
terms. Many complex and biological materials exhibit power law rheology, which a finite
sum of exponential terms can only approximate. The use of springpots for capturing power
law behaviour thus leads to viscoelastic models which use far less parameters than would
be required using springs and dashpots, and which confers a number of advantages. In the
chapter, a brief history of fractional viscoelasticity is given, followed by a technical overview.
Its relevance to biorheology is demonstrated with numerous examples, presented in a format
which lies somewhere in between a review and original scientific work. The pectin data from
Chapter 3, which was found to exhibit power law behaviour, is re-evaluated with the benefit
of the fractional viscoelastic concepts introduced previously. In the second half, a fractional
viscoelastic open-source data analysis program is introduced (RHEOS). This is motivated
by the potentially inaccessible complexity of fractional viscoelasticity, the interdisciplinary
research groups who may find it useful, and the wider benefits of open-source scientific
software, all of which are discussed in greater detail within the chapter. The architecture,
main features, implementation details and planned future work of RHEOS are also discussed.

Although the main findings and future work of Chapters 3 and 4 are summarised at the
end of each chapter respectively, the overall conclusions are summarised more holistically in
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Chapter 5.

1.3 Main Aims of Thesis

The key aims of the thesis are listed below.

• Validate an AFM protocol for viscoelastic testing of pectin in vitro.

• Use the above methodology to improve understanding of pectin mechano-chemistry.

• Adapt the AFM protocol for relaxation and creep testing in planta and use this to
investigate symmetry breaking in the Arabidopsis hypocotyl and its potential relation
to pectin mechano-chemistry.

• Highlight the efficacy of the fractional viscoelastic framework for biological materials,
and in particular, demonstrate its clear suitability for the modelling of pectin.

• Demonstrate the need for, and utility of, an open-source software package, RHEOS,
for rheological data analysis.





Chapter 2

Mechanical Characterisation of
Materials

The organization of our science is thus
seen as a very recent development;
indeed, its importance as a factor in
human development is only now coming
to be realized, but from time immemorial
men must have been interested in the
flow and deformation-properties of
materials.

[11] G. W. Scott-Blair, 1949
A Survey of General

and Applied Rheology

2.1 Overview of Chapter

In this chapter, the main elements of one-dimensional linear elastic and viscoelastic theory
are summarised, and several linear viscoelastic models are examined and discussed. This
is followed by a brief discussion of the contact mechanics relevant to subsequent parts of
the thesis. Lastly, a curated selection of biomaterials testing methods are discussed, with
particular emphasis on Atomic Force Microscopy which has been used in Chapter 3.
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2.2 Fundamentals of Rheology

2.2.1 Elastic Deformation
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Fig. 2.1 A) Schematic of a square with a normal force Fx applied along the x axis. Solid line is
deformed shape, dashed line is original shape. B) Schematic of a square under shear stress τ . ϕ is the
shear strain. Solid line is deformed shape, dashed line is original shape.

It is convenient to begin theoretical discussion with the simplest type of rheology – re-
versible deformation without dependence on time. This is known as the elastic regime. In the
one dimensional case that is most relevant to this thesis, there are three physical quantities
that we are concerned with: force, deformation, and a physical constant which relates the
two. With two or three dimensions, we rely on an additional constant for each dimension
known as the Poisson’s ratio which relates extension in one dimension to compression in
another, and vice versa (if the material is isotropic the Poisson’s ratio is the same for all
three dimensions). Often the quantities are re-scaled. In the case of a normal force, as shown
in Figure 2.1A, the force might be re-scaled by the square cross-sectional area to which
it is applied. However, if we imagine the square in Figure 2.1A is isotropic and projects
into the page with unit length, we can see that the area that the force is initially applied
to reduces after the force is actually applied. True stress takes this updated surface area
into account, so here it would be defined as σtrue = Fx/A1, where A1 is the surface area
after the force has been applied. However, it is much more common to use engineering
stress in which the original surface area is always used. For very small deformations, the
difference between the two can be small. Regarding the deformation re-scaling, there is a
similar duality. True strain is defined as εtrue = ln(1+∆L/L), whilst engineering strain is
defined simply as εeng = ∆L/L; the two are approximately equal for small deformations,
which can be seen by Taylor expanding the natural logarithm. In this thesis, stress and strain
will always refer to engineering stress and engineering strain respectively, so stress σ = σeng
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and strain ε = εeng. If the force acts parallel to the plane rather than normal to it, the shear
stress and shear strain are used, for example as shown in Figure 2.1B. For convenience,
in what follows below, normal stress and strain are always used except where noted otherwise.

In the general case, the constant which links the stress and the strain is known as an
elastic modulus. For the case of a normal stress applied to a hyptothetical one-dimensional
bar, we have the following constitutive equation

σ = Eε
γ , (2.1)

where E is the elastic modulus and γ is an elastic index. If γ < 1 then the material is
hypoelastic, if γ = 1 the material is linear elastic, and if γ > 1 the material is hyperelastic.
Many materials under small amounts of tension or compression can be approximately
described by the linear elastic theory, in which case γ = 1. In this linear case, the constant
is known as the Young’s Modulus. A key feature of this linear elastic regime was noted by
Hooke in 1678, who visualised it as a spring and said that “the power of any spring is in the
same proportion with the tension thereof” [20]. In concrete terms, applying twice the strain
yields twice the stress and vice versa. This feature is depicted in Figure 2.3A.

2.2.2 Relaxation, Creep and Linear Viscoelasticity

Having introduced the quasi-static elastic theory, the ‘flow’ (time dependent) aspect of rhe-
ology can now be discussed. This is of interest as many materials exhibit time dependent
behaviour. For an example of this, the reader is again directed to Figure 1.1 in Chapter 1,
in which it can be seen that when a constant force is applied to various cheeses, they all
deform over time. Although in that study by Davis [1], the load was increased at several
intervals, the general idea is essentially the same as a creep test – in which a constant load
is applied to a material and the deformation is observed. In contrast, a relaxation test is
where a displacement is imposed and the load required to hold that displacement is observed.
Relaxation and creep tests are the two canonical viscoelastic testing paradigms; they are
shown graphically in Figure 2.2. The motivations for the choice of either one can depend on
several factors including the experimental hardware used, and the physical modes of defor-
mation under investigation. Of course, more complicated loading patterns are sometimes
used that defy classification as either a creep or relaxation test, these will be discussed further
in Section 2.2.3.
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Fig. 2.2 A) Canonical stress relaxation test. Material is subjected to a step strain resulting in an
instantaneous stress which then decreases monotonically over time. B) Canonical creep test. Material
is subjected to a step stress resulting in an instantaneous strain which then increases monotonically
over time.

So how are these behaviours modelled? In general, this is done through the use of either
relaxation or creep moduli as appropriate. These moduli are time dependent functions that
are analogues of stiffness and compliance – their output has the same physical units as those
quantities respectively (Pa and Pa−1). Indeed, the creep modulus is often referred to as the
creep compliance. Further, the symbols used are the same respectively, but they are denoted
as functions of time, i.e. E(t) is the relaxation modulus and J(t) is the creep compliance. To
model a relaxation test, with a step in strain at time t = t0 we can write the following

σ(t) = E(t − t0)ε0H(t − t0), (2.2)

where H is the Heaviside function and ε0 is the magnitude of the step strain. This relaxation
test is depicted in Figure 2.2A. For the special case in which E(t) is equal to a constant,
Equation 2.2 represents a linear elastic material. However, in the general viscoelastic case,
E(t) is a monotonically decreasing function of time. To model a creep test, with a step in
stress at time t = t0 we can write

ε(t) = J(t − t0)σ0H(t − t0), (2.3)
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where σ0 is the amplitude of the stress step at t0. The creep test is shown in Figure 2.2B.
Unlike the elastic compliance, which is just the inverse of the stiffness, the process of
inverting the linear viscoelastic modulus is more complicated as it involves passing into
Laplace space – this is touched on in section 2.2.5.
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Fig. 2.3 A) Stress response of an elastic model to two different step strain loads both applied at time
t = t0, one twice the strain of the other. The doubled strain results in double the stress. B) The same
two strains applied to a linear viscoelastic material. With twice the strain load applied, the stress is
doubled for all time.

As with elasticity, there are both linear and non-linear variations of the theory. Although
this thesis is largely concerned with linear viscoelasticity it worth mentioning briefly their
differences. The moduli of the linear viscoelastic theory are functions of time only, whereas
the moduli of non-linear viscoelasticity may also depend on the displacement/strain itself. A
key consequence of viscoelastic linearity is that two step strains of different magnitude yield
two stress relaxation curves which are proportional to each other for all time. A concrete
example of this is depicted in Figure 2.3B; the upper curve is the resultant stress from a step
strain of 2ε0 and is always 2 times larger than the stress relaxation resulting from a step strain
of ε0. A similar implication of linearity is also true in the case of creep.

2.2.3 Arbitrary Loading and the Hereditary Integral

There are a number of reasons why it might be important to consider arbitrary loading of
stress/strain rather than be confined to canonical creep/relaxation tests. For example, in
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Fig. 2.4 A) Strain loading partitioned into a series of step-on and step-off blocks. The stress resulting
from the change in strain at each block start is also shown. B) The same strain loading before, but
now the total resultant stress is shown rather than just that for a change in strain.

practice, an instantaneous step strain or stress is not possible to achieve. Although many
studies simply ramp as fast as possible and approximate their data fitting by assuming a step
loading, this may not always be feasible – particularly if the very short time-scale behaviours
are of interest. In other cases, more complex loading patterns might be preferred for any
number of reasons, motivated by either scientific questions or hardware constraints.

When considering arbitrarily complex loading patterns, the entire loading history must
be accounted for. Although we discussed the relaxation and creep moduli in the context
of idealised relaxation and creep tests, they can still be used to capture arbitrary loading
by use of the hereditary integral. Essentially, the hereditary integral captures the idea
that arbitrary loading/deformation can be thought of as a series of increasingly small step
loads/deformations, so the response is a summation of infinitesimally small creep/relaxation
tests. In what follows, the viscoelastic hereditary integral is derived for the case of arbitrary
strain loading. A similar process can be used to derive the arbitrary stress loading and this
form will be summarised. The derivation is adapted from that given by Gutierrez-Lemini [21].
The first step in the derivation is to visualise some arbitrary strain deformation history and
then discretize it into a number of individual steps as shown in Figure 2.4A. Due to linearity,
each step change in strain can be considered independent of the others. This is one way
of stating Boltzmann’s superposition principle. Thus, a single change in strain can first be
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considered
∆ε(tk) = ε(tk)− ε(tk−1), (2.4)

where tk is the time of current step initiation and tk−1 is the time of previous step initiation.
The value ∆ε is depicted in Figure 2.4A. Next, the resultant stress due to this change in strain
can be considered

∆σ(tk) = E(t − tk)∆ε(tk). (2.5)

The relaxation modulus E is shifted to start at t = tk as we only need to consider the response
to this single step change at present. This individual stress response is also plotted in
Figure 2.4A. For each time point, we can now sum over the history of individual step loads
yielding the following

σ(t = tN) =
N

∑
k=−∞

E(t − tk)∆ε(tk), (2.6)

where it should be noted that tk ≤ tN and is thus valid for any time point t without the need
for Heaviside functions. Multiplying and dividing the right hand side by ∆t leads to

σ(t = tN) =
N

∑
k=−∞

E(t − tk)
∆ε(tk)

∆tk
∆tk. (2.7)

Equation 2.7 is now amenable to be transformed into a continuous integral. Letting ∆t → 0
and replacing the discrete tk with the continuous variable τ we attain the viscoelastic heredi-
tary integral for arbitrary strain loading

σ(t) =
∫ t

−∞

E(t − τ)
dε

dτ
dτ. (2.8)

An equivalent derivation can be pursued for arbitrary stress loading which leads to

ε(t) =
∫ t

−∞

J(t − τ)
dσ

dτ
dτ. (2.9)

In practical application, Equations 2.8 and 2.9 are of limited use. Computationally, the
infinite lower limit causes difficulties. Physically, it seems unlikely that the entire load history
of a material could ever be accounted for. For these reasons, it is commonly assumed that
significant stress or strain loads only occur at the beginning of a specific experiment, and this
moment is set to t = 0. For example in the case of the stress relaxation hereditary integral
this leads to

σ(t) =
∫ t

0
E(t − τ)

dε

dτ
dτ. (2.10)
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The behaviour when subject to a step loading at time t = 0 can be clarified by noting that

∫ 0+

0−
E(t − τ)

dε

dτ
dτ +

∫ t

0+
E(t − τ)

dε

dτ
dτ = E(t)ε(0+)+

∫ t

0+
E(t − τ)

dε

dτ
dτ, (2.11)

under the assumption that ε(0−) = 0. In this thesis, when the lower limit of the hereditary
integral is set to 0, it will be assumed that this refers to 0− such that any instantaneous
loading at time t = 0 is included. The task of computing the simplified viscoelastic hereditary
integral has additional important subtleties which are discussed briefly in Chapter 3, where a
Python/SciPy convolution algorithm was used for analysis, and in more detail in Chapter 4
with reference to a Julia-based open source implementation written as part of this PhD.

2.2.4 Dynamic Mechanical Analysis
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Fig. 2.5 A) Steady-state oscillatory stress loading and out-of-phase strain response. T is the time
period of oscillation. B) Argand diagram representation of the complex modulus where the real axis
represents the storage modulus and the imaginary axis represents the loss modulus.

In addition to creep and relaxation tests, a third common testing methodology is dynamic
mechanical analysis (DMA) in which an oscillatory (normal or shear) load is applied to the
material. In viscoelastic materials, a steady-state phase difference emerges between the stress
and the strain once transients have faded, this steady-state is depicted in Figure 2.5A. For
purely elastic materials the phase difference is 0° and for purely viscous materials the phase
difference is 90°. For viscoelastic materials, the phase difference lies between these two
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values. Once this phase difference is known, a modulus, usually denoted E∗, can be found.
This modulus takes the form of a complex number with real and imaginary components of
E ′ and E ′′, often referred to as the storage and loss modulus respectively. Explicitly

E∗(ω) = E ′(ω)+ iE ′′(ω), (2.12)

where ω represents the frequency in radians. The moduli names come from the fact that
energy is stored in an idealised elastic material but dissipated in a purely viscous material.
An example complex modulus is shown represented on an Argand diagram in Figure 2.5B in
which the significance of the phase angle φ can be seen; when the angle is 0° the complex
modulus is entirely real and all the energy is stored, when the angle is 90° the complex
modulus is entirely imaginary and all the energy is lost (dissipated). The tangent of this
angle is simply the ratio of loss modulus to storage modulus, tan(φ) = E ′′/E ′. With DMA,
generally speaking, the time scale being investigated is the inverse of the testing frequency,
1/ f . For real materials and viscoelastic models, the complex modulus E∗ varies with
frequency so a spectral analysis over a range of relevant frequencies is normally carried out.
Although often presented in the literature on their own, complex moduli can be fitted to
models in much the same way as relaxation and creep test data, though no hereditary integral
is required as the behaviour is steady-state. It is possible to explicitly convert a relaxation
modulus to a complex modulus by the following relations [22]

E ′(ω) = Ee +ω

∫
∞

0
[E(τ)−Ee]sin(ωτ)dτ, (2.13)

E ′′(ω) = ω

∫
∞

0
[E(τ)−Ee]cos(ωτ)dτ, (2.14)

where Ee = limt→∞ E(t) is known as the equilibrium or plateau modulus. A complex compli-
ance can also be used, but is much less common – it brings no particular benefits over the
regular complex modulus.

2.2.5 Viscoelastic Models

Background

In the previous section, linear viscoelasticity was introduced, the viscoelastic hereditary
integral was derived, and the complex modulus was presented. However, a key part of
rheological modelling was left generic – the form of the creep, relaxation and complex
moduli. Indeed, this is the ‘model’ part of viscoelastic modelling theory and is discussed in
more detail in this section. Viscoelastic models are useful for a number of reasons. In a best
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case scenario, parameters of the model can be related to mechanistic modes of a material’s
deformation. In other cases, the parameters can be related to intuitive or sensory criteria.
Even if neither of the above are possible, models are often still informative, particularly with
regards to dominant material time-scales and their qualitative manifestation. In any case, the
identification of a suitable constitutive material model facilitates commensurability between
different studies.

There are manifold different forms that viscoelastic moduli can take, with the only restric-
tion on their form being adherence to the laws of thermodynamics. For this reason, and with
the exception of a spring which is constant, creep moduli of passive viscoelastic materials
are monotonically increasing whilst relaxation moduli are monotonically decreasing with
time. The moduli may asymptotically approach a plateau or not, and this distinction is
generally used to determine whether a material is a viscoelastic solid or viscoelastic fluid
respectively. Generally speaking, there are two ways in which the specific mathematical
form of the moduli is derived. The first will be referred to in this thesis as the ‘empirical’
method, and moduli derived by this method as ‘empirical models’. The method consists of
qualitative inspection of the creep, relaxation or DMA data by use of different scale plots and
formulating a mathematical ansatz that captures the main qualitative features. The end result
of this process is usually a single modulus of interest that may or may not be analytically
converted into the other moduli. The second method, though still empirical in a sense, is
more systematic than the first. It relies on viscoelastic units, each with their own constitutive
differential equation, that can be combined in series or parallel, much like electrical compo-
nents in a circuit model. There are numerous different viscoelastic units in the literature that
can be used to model elastic, viscous, power law and plastic deformation [11, 20]. By far the
most common of these are the Hookean spring and the Newtonian dashpot, and these will
form the basis of discussion in the next section. An intermediate between the two, known as
a springpot, is discussed in Chapter 4. Before discussion of springs and dashpots, it is worth
briefly discussing the advantages of the systematic framework of viscoelastic units over the
empirical moduli. Firstly, the viscoelastic units can be represented schematically and provide
a helpful visual intuition for a model’s behaviour. This also increases commensurability
between studies as it easy to compare models visually, regardless of the parameterisation
used. Further, they necessarily yield a constitutive differential equation from which, as we
will see later in this section, it is straightforward to derive relaxation, creep and complex
moduli.
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Springs and Dashpots

(B)(A)

Fig. 2.6 A) Schematic representation of a Hookean spring unit. B) Schematic representation of a
Newtonian dashpot unit.

The first viscoelastic unit discussed here is the Hookean spring, shown in Figure 2.6A.
It is a linear elastic unit, thus its constitutive equation is the same as Equation 2.1, but its
physical constant is often parameterised using k instead of E, to avoid confusion with the
Young’s modulus. Its constitutive equation is therefore

σ(t) = kε(t). (2.15)

The second fundamental unit is the Newtonian dashpot, its schematic representation is shown
in Figure 2.6B. For this unit, the stress is directly proportional to the first derivative of the
strain, i.e.

σ(t) = η
dε(t)

dt
. (2.16)

The responses of the spring and dashpot units to a step in stress are shown in Figure 2.7B.
The responses to a step in strain are not shown at this stage – the behaviour of the spring
would be qualitatively the same as in Figure 2.3A, but the dashpot is simply a singularity at
the moment of step application – it will be discussed further in later sections.

Combinations of Springs and Dashpots

Now that the basic units are defined, we can investigate their combination. The main goal
when deriving the constitutive differential equation of a combination model is to obtain a
relationship between the total stress and total strain in the system. To achieve this, we need
to know how the stresses and strains of the individual components can be combined. The
two fundamental rules for combining viscoelastic units in series and parallel respectively are
depicted in Figure 2.8. In the series case, the strain seen by the two units are simply summed
to attain the total strain. The stress σ in all units is equal to the applied stress. In parallel
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Fig. 2.7 A) Stress loading σ0 = 1Pa imposed at time t = 25 s. B) The strain response to the loading
for the case of a spring and dashpot respectively, where k = 1Pa and η = 80Pas.

however, the converse is true. The strain is the same for both viscoelastic units but the stress
is distributed between the two units. Note that in the above, the term ‘unit’ can be thought
of more generally than just a spring or dashpot – the unit could itself be a series/parallel
combination of springs and dashpots.

(B)(A)

Fig. 2.8 A) Schematic showing stress and strain relationships when adding viscoelastic units in series.
B) Schematic showing stress and strain relationships when adding viscoelastic units in parallel.

Three Canonical Models

There are two prototypical viscoelastic combinations, from which many more complex
models are derived; they are known as the Maxwell model and the Kelvin-Voigt model, and
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Fig. 2.9 A) Maxwell model spring/dashpot schematic. B) Kelvin-Voigt model spring/dashpot
schematic. C) Standard Linear Solid (Maxwell form) spring/dashpot schematic. D) Standard Linear
Solid (Kelvin-Voigt form) spring/dashpot schematic.

are shown in Figures 2.9A and 2.9B respectively. From these figures, it can be seen that
the Maxwell model is a series combination of a spring and dashpot whilst the Kelvin-Voigt
model is a parallel combination. The series and parallel stress/strain summation rules shown
in Figure 2.8 can be applied to derive the two models’ differential equations. The following
is a brief derivation of the Maxwell model. First noting that in series the stress in each unit is
equal to the other we can write

σ(t) = kε1(t) = ηε̇2(t), (2.17)

where k is the spring constant, η is the dashpot constant, and ε1 and ε2 are the strain
contributions from each element. We can then differentiate the constitutive equation for the
spring leading to

σ̇(t) = kε̇1(t). (2.18)

Noting the above mentioned rule, in series the total strain is the sum of the individual strains.
This relationship can be differentiated leading to

ε̇1(t)+ ε̇2(t) = ε̇(t). (2.19)
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Lastly, we substitute a rearranged Equation 2.18 and the constitutive equation for the dashpot
into the above and multiply through by η yielding

σ(t)+
η

k
σ̇(t) = ηε̇(t), (2.20)

which is the differential equation for the Maxwell model. A similar process to the above
can be carried out to derive the constitutive differential equation of the Kelvin-Voigt model,
which turns out to be

σ(t) = ηε̇(t)+ kε(t), (2.21)

where it should be noted that k and η now represent parameters of the Kelvin-Voigt model.

The last step of this Chapter’s excursion into spring and dashpot models concerns the
Standard Linear Solid (SLS) model. It is one of the most popular viscoelastic models in
the literature and serves as a good example of a combination that is more complex than
the standard Maxwell or Kelvin-Voigt models. First, its differential equation is derived,
which is then used to obtain the model’s creep, relaxation and complex moduli. The SLS
model can be represented in two different ways, the spring/dashpot schematics of these
are shown in Figure 2.9C and 2.9D. The first is known as the Maxwell representation as
it can be viewed as a Maxwell model with an additional spring in parallel. The second is
known as the Kelvin-Voigt representation as it can be viewed as a Kelvin-Voigt model with
an additional spring in series. The parameters are different in the two models, but can be
interconverted; apart from this difference, the choice of representation is arbitrary. For the
sake of example, the Maxwell representation of the SLS is used herein. First, the upper arm
should be considered as it is the more complex of the two. Noting that the upper arm stress
σ1 is equal in both units, we can differentiate the upper spring’s constitutive equation and
combine with the dashpot’s constitutive equation to find the total strain derivative. Explicitly

ε̇(t) = ε̇1(t)+ ε̇2(t) =
1
η

σ1(t)+
1
k1

σ̇1(t). (2.22)

Now we need to find a way to sum stresses σ1 and σ2 to obtain the total stress in terms of
the total strain. To do this, we turn to the constitutive equation for the lower arm and its
rearranged, differentiated forms

σ2(t) = k2ε(t), (2.23)

1
η

σ2(t) =
k2

η
ε(t),

1
k1

σ̇2(t) =
k2

k1
ε̇(t). (2.24)
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Adding the forms in Equation 2.24 to Equation 2.22 and multiplying through by η , and
noting that σ(t) = σ1(t)+σ2(t) and the same for its derivative leads to

σ(t)+
η

k1
σ̇(t) = k2ε(t)+η

(
1+

k2

k1

)
ε̇(t), (2.25)

which is the constitutive differential equation of the SLS model. From this we can derive the
various moduli.
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Fig. 2.10 A) Stress response to step load in strain at t = 25 s and removal at t = 75 s for the SLS and
Maxwell models. Maxwell model: η = 1Pas, k = 0.5Pa. SLS model (Maxwell form): η = 3Pas,
k1 = 0.5Pa, k2 = 1Pa. B) Strain response to step load in stress at t = 25 s and removal at t = 75 s for
the SLS, Maxwell and Kelvin-Voigt models. Maxwell model: η = 200Pas, k = 2Pas. Kelvin-Voigt
model: η = 9.5Pas, k = 2Pa. SLS model (Kelvin-Voigt form): J0 = 1Pa, J1 = 0.5Pa, τr = 9s.

First, the relaxation and creep moduli can be derived. This is done by taking the Laplace
transform of the differential equation shown in Equation 2.25. The process converts our
differential equation into an algebraic one. Assuming initial conditions are equal to zero, the
Laplace transform results in(

1+
η

k1
s
)

σ(s) =
(

k2 +ηs
(

1+
k2

k1

))
ε(s), (2.26)

where σ(s) and ε(s) are the Laplace transforms of stress and strain respectively. The
derivation of a relaxation modulus assumes a step loading of strain, which in Laplace space
means that ε = ε0 = 1. All that is then left to do is rearrange 2.26 such that the stress is
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written in terms of all the parameters on the RHS. Lastly, inverting the Laplace transform
results in

G(t) = k2 + k1e−tk1/η . (2.27)

Note that the parameters in the exponent, η/k1, form a time-scale which is known as the
relaxation time-scale. A similar process can be carried, but with σ = σ0 = 1 assuming a step
load of stress, which leads to the creep modulus

J(t) = J0 − J1e−t/τr , (2.28)

where
J0 =

1
k2
, J1 =

k1

k2(k1 + k2)
, τr =

η(k1 + k2)

k1k2
, (2.29)

and τr is usually referred to as the retardation time-scale. It is interesting to note that the
retardation time scale is scaled by a ratio that is similar in form to an arithmetic mean divided
by a geometric mean of the spring constants. The relaxation and creep responses to a step-up
and step-down loading of the SLS model, in addition to the Maxwell and Kelvin-Voigt
models are shown in Figure 2.10. The Kelvin-Voigt relaxation response is not shown as its
behaviour is singular at the step loading points.
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Fig. 2.11 A) Storage modulus behaviour over three frequency decades for the SLS, Kelvin-Voigt
(KV) and Maxwell models. All model parameters set to unity. B) Loss modulus behaviour over three
frequency decades for the SLS, Kelvin-Voigt (KV) and Maxwell models. All model parameters set to
unity.
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Lastly, the complex modulus of the SLS is derived. This is done by taking the Fourier
transform of Equation 2.25 instead of the Laplace transform used previously. Also, unlike
last time we do not need to transform back as we are specifically interested in the frequency
response of the model. The Fourier transform of Equation 2.25 is(

1+
η

k1
( jω)

)
σ̂(ω) =

(
k2 +η( jω)

(
1+

k2

k1

))
ε̂(ω), (2.30)

where σ̂(ω) and ε̂(ω) are the Fourier transforms of stress and strain respectively, j =
√
−1,

and ω is frequency. The next step is to find the ratio σ̂(ω)/ε̂(ω) in terms of the model
parameters. After some algebra the following is obtained

σ̂(ω)

ε̂(ω)
=

k1η2ω2 + k2
1η jω

k2
1 +η2ω2 + k2, (2.31)

which is equal to the complex modulus G∗(ω). Separating the real and imaginary parts yields
the storage and loss moduli

G′(ω) =
k1η2ω2

k2
1 +η2ω2 + k2, (2.32)

G′′(ω) =
k2

1ηω

k2
1 +η2ω2 . (2.33)

The behaviour of the storage and loss moduli are plotted in Figure 2.11 along with that of the
Maxwell and Kelvin-Voigt models for comparison.

2.3 Experimental Methods in Plants and Pectin

There are many different tools used for the viscoelastic testing of plants and pectin. In this
section, their diversity will be highlighted through discussion of the main testing paradigms,
along with a curated set of examples. Atomic Force Microscopy (AFM) will then be dis-
cussed in more detail as it was used for the experimental work in Chapter 3 of this thesis.
Lastly, contact models which are utilised during indentation methods such as AFM are
introduced.
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motions happen in a finite time, they are generally assumed to occur fast enough such that
the result can be modelled as an instantaneous, elastic procedure. It is for this reason that the
indentation curves are generally plotted as force against indentation depth, with no reference
to time, as can be seen in Figure 2.14B. In other words Figure 2.14B can be thought of
as follows, the red line shows the decreasing height of the cantilever as it approaches the
sample and when it makes contact the force rises as the cantilever deflects, the reverse occurs
during cantilever retraction. Adhesion to the sample can be detected by analysis of any
negative portions of the force during approach or retract – in Figure 2.14B a small amount
of adhesion can be observed during the retraction phase. The effect of cantilever bending
on the actual height of the cantilever tip is often corrected for in post-processing, this is the
quantity referred to as ‘tip-sample separation’ in Figure 2.14B. Although the term ‘tip-sample
separation’ may initially appear to be a misnomer, it is used by some AFM manufacturers
in place of ‘indentation depth’ or ‘cantilever depth’ as a metric that should be considered
positive when not in-contact with the sample and negative when in-contact with the sample.
The simplest possible analysis fits a straight line to either the approach or retract curves and
uses the slope as a metric for elastic strength. Generally however, an appropriate contact
model will be applied to one of the curves to extract a Young’s Modulus. This approach is
discussed further in Section 2.3.3.

For further intuition building, two prototypical AFM experiments are depicted in Fig-
ure 2.15. In Figure 2.15A, the dynamic time evolution of Force and Cantilever Depth are
shown for a perfectly elastic material, whilst in Figure 2.15B, the phase-space represen-
tation (without reference to time) is shown. As discussed above, the assumption is often
made that sample behaviour can be approximated as elastic and thus only the phase-space
representation of data need be considered. The above force spectroscopy method can be
extended for viscoelastic analysis by use of a holding period during which the force or depth
of displacement is held constant. This is shown in the time-domain and phase-space in
Figures 2.15C and D respectively. In Figure 2.15C we can also observe another interesting
feature which is that, in the first region, the cantilever is not in contact with the sample.
Detecting the point in time at which the indenter makes contact with the sample requires
some consideration and is discussed further in the Methods section of Chapter 3. In the
second region, the depth of the cantilever increases linearly (in our idealised sketch) whilst
the force response evolves. The third section is when the depth is held by the AFM and force
is allowed to relax. The cantilever is retracted in the fourth section and finally leaves the
sample in the fifth section. The phase space representation of this idealised experiment can
be seen in Figure 2.15D, the cantilever approaches and then follows the phase-space diagram
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Fig. 2.15 A) Idealised sketch of elastic material indentation experiment, Force and Cantilever Depth
against time for a spherical indenter. B) Phase-space representation (without reference to time) of
the data sketched in Figure A. C) Idealised sketch of a viscoelastic AFM test, Force and Cantilever
Depth against time, now also depicting the ‘pre-contact’ region. The five regions separated by vertical
dashed lines represent pre-contact, approach, hold, retract and post-contact parts of the experiment.
D) Phase-space representation of the viscoelastic idealised experiment in Figure C. Area of curve
represents energy dissipated. Green arrows represent direction of time.
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around the line in a clockwise fashion.

Another AFM method involves oscillation of the cantilever whilst in contact with the
sample and then extracting the complex modulus. Likely due to hardware limitations, often
only a small number of frequencies are investigated, though larger frequency ranges have
been used in more recent studies [30]. The situation can be improved in some AFM setups
by simultaneous excitation of the cantilever at its resonance modes; often only the first two
are used (bimodal) but higher mode counts can be found in the literature [31]. Due to the
low Reynolds number context of AFM indentation owing to the small length scales involved,
and the fact that drag in the Stokes’ regime increases with proximity to boundaries [32],
hydrodynamic drag effects often need to be considered for oscillatory tests, but are less
relevant for creep/relaxation tests which are relatively static after the initial indentation. A hy-
drodynamic correction protocol for oscillatory AFM tests was proposed by Alcaraz et al. [33].

AFM has emerged as a valuable tool for high spatial resolution mechanical testing of
plants and other soft materials, though much of the work in plants has focused on the
elastic response [34–36]. AFM viscoelastic testing of animal cells appears to be more
common, with examples in lung, ovary, breast and epithelial cells [37–41]. The plant AFM
viscoelastic examples found for this literature review investigated the Arabidopsis shoot
apical meristem [42], Arabidopsis epidermal roots cells in vivo [43]. Further, a recent
(2018) PhD thesis used bimodal oscillatory AFM testing to investigate the Arabidopsis
hypocotyl [44]. Where relevant, some of the above studies are discussed in more detail in
Chapter 3.

2.3.3 Contact Models

As mentioned above, the mechanical properties of a material at a relatively fine spatial
resolution are often of interest. In other cases, there may be a desire to connect the bulk
mechanical properties with those at a smaller scale. A commonly used tool to achieve the
above is indentation methods, in which an indenter is pressed into the surface of a material.
In regular normal and shear rheology tests, the relationship between the force and area
of application is well defined. In contrast, the contact area between an indenter and the
indented sample varies significantly during indentation. Contact models can be used to
apprehend the often complicated and non-linear relationship between subjected force and
sample displacement during indentation. There are many different types of indenter geometry
used. In what follows, the relatively simple case of a spherical indenter is considered.
Assuming the sample can be treated as an infinite elastic half space, that the indenter is
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approximately rigid, and that friction and adhesion between the two is negligible, we can use
the classic Hertz contact expression for a spherical indenter [45]

f =
4
√

R
3

E
(1−ν2)

δ
3/2, (2.34)

where f is the force applied in the Z direction, R is the radius of the sphere indenter, E is the
Young’s modulus, ν is the Poisson’s ratio of the sample, and δ is the Z axis displacement
into the sample. The set up is depicted in Figure 2.16.

Fig. 2.16 Diagram of the Hertz model for spherical indentation of an infinite elastic half space.
Adapted from [46].

There are a number of more complicated elastic contact models which model additional
physical phenomena such as the Johnson-Kendall-Roberts (JKR) model which accounts for
adhesion outside of the contact zone [47], or the Derjaguin–Muller–Toporov (DMT) model
which accounts for adhesion within the contact region [48]. The Hertz model above has, by
use of an elastic-viscoelastic correspondence principle developed by Lee and Radok [49],
been extended for viscoelastic testing. By assuming incompressibility of the sample (ν =

0.5), and thus noting that the shear modulus G = E/3 and applying the elastic-viscoelastic
correspondence principle the following relationship can be found for relaxation [50]

f (t) =
8
√

R
3

∫ t

0
G(t − τ)

dδ 3/2

dτ
dτ, (2.35)

and equivalently for creep [8]

δ
3/2(t) =

3
8
√

R

∫ t

0
J(t − τ)

d f
dτ

dτ. (2.36)

Figure of Hertz contact removed for copyright reasons. Copyright holder is Springer-Verlag Berlin 
Heidelberg. Figure 5.3 in original source. 
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It should be noted that the above are only valid for monotonically increasing contact area,
though further extensions have been developed that allow decreasing contact area as well [51,
52]. A viscoelastic analogue of the JKR model has also been developed [47].





Chapter 3

Mechanical Properties of Pectin In vitro
and In vivo

Then to find out the reason of the
operation of Herbs, plants, &c., by the
Stars ... I consulted with my two
brothers, Dr. Reason and
Dr. Experience, and took a voyage to
visit my mother Nature, by whose advice,
together with the help of Dr. Diligence, I
at last obtained my desire

[53] N. Culpeper, 1653
The Complete Herbal

3.1 Author Contributions

Thomas Torode (SLCU post-doctoral researcher) made all pectin gels and performed initial
elastic tests on the DM50(41/60), DM50(33/70), DM40 (block) and DM40 (random) gels.
Firas Bou Daher (SLCU/UCLA post-doctoral researcher) cultivated plant samples and
performed plant viscoelastic testing experiments. Apart from the above, all experiments and
analysis were performed by JLK.
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3.2 Overview of Chapter

In this chapter, a protocol for viscoelastic micro-indentation using atomic force microscopy
(AFM) is developed and applied to pectin in vitro and in vivo. After determining linear
viscoelasticity as a suitable theoretical framework for in vitro pectin, two models are eval-
uated for their goodness of fit for pectin relaxation: the 2 time-scale standard linear solid,
and the Burgers model, the former was found to provide a better fit. Further analyses were
conducted with the 2 time-scale standard linear solid viscoelastic model. The results indicate
a strong coupling between elastic and viscous properties over a range of degrees of methyl-
esterification (DM). Both elasticity and viscosity were found to vary non-linearly with DM
which had interesting consequences for pectin gels of mixed DM. In Arabidopsis cell walls,
the 2 time-scale standard linear solid model was also found to fit the data well. In this in
vivo composite material a weaker elastic-viscous coupling was exhibited and correlated with
DM. The viscoelastic testing in vivo of rapidly elongating cell walls, rich in high DM pectin,
displayed a longer viscous time-scale. The implications of the testing method and results are
discussed in the context of mechanobiology, mechano-chemistry, and cell growth.

The chapter begins with an overview of pectin’s usual habitat, the cell wall of land plants.
The cell wall’s major constituents are briefly discussed along with their putative mechanical
roles. This is followed by an overview of pectin itself in more detail. Relevant literature on
the mechanical testing of pectin and plants is then reviewed, followed by the experimental
work.

3.3 Introduction

3.3.1 The Plant Cell Wall

In contrast to the cells of most other multicellular eukaryotic organisms, plant cells are
encased in a cell wall which can take myriad forms across species, as well as a single plant’s
organs and developmental life-cycle. Rheological diversity of the plant cell wall has not
always been appreciated. In the 1974 book ‘An introduction to biorheology’ [12], D. C.
Spanner authored the single chapter on plant rheology and declared that “Compared with
the animal world, the world of plants has relatively little to offer in the way of rheological
interest; that is, if we exclude the phenomena associated with protoplasm itself” [54]. This is
in stark contrast to the current field of plant rheology which has grown significantly since
then, particularly with regards to that part of the plant cell which is exterior to the protoplasm
– the cell wall – now acknowledged to be a critical arbiter of plant morphogenesis. It is
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generally understood that the wall’s role is performed via mechanochemical alterations of its
constituent parts, thereby enabling selective yield to turgor pressure [55–57].

The following will largely focus on the primary cell walls of land plants with occasional
comparisons made to functionally analogous cell wall components in algae and secondary
cell walls of land plants. From a high level perspective the primary cell wall of land plants
is traditionally viewed as a composite material in which rigid cellulose fibres are tethered
together by flexible hemi-cellulose linkers and embedded in a pectin gel [58] – as depicted
in Figure 3.1. Each of these three components comprises approximately one third of the
biomass in the cell wall [59, 60], though of course this varies across species, cell type and
developmental stage. Furthermore, these three components each in turn exhibit rich diversity
in terms of architecture, chemical composition, and resultant mechanical properties; and all
of these properties vary dynamically, across organs, tissues and even within single cell walls.
In short, those studying the mechanochemical properties of cell walls and their relation to
plant development have a tremendous amount of complexity to contend with.

Fig. 3.1 Schematic diagram of the primary plant cell wall of land plants. Reproduced under Creative
Commons License (LadyofHats)

Attempts to understand the relationship between endogenous biochemicals, cell wall
mechanical properties and morphogenesis took place as early as 1931 by Heyn [23, 61]
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who focused on the phytohormone auxin, and subsequently by many others [62, 2, 63]. It
was not until later on that the role of specific cell wall components began to be articulated.
The orientation of cellulose and lignin in secondary cell walls were studied as early as
1961 [64]. In the 1962 paper ‘Mechanism for Plant Cellular Morphogenesis’ [55], Paul
Green described how the orientation of cellulose in the green alga Nitella and Bryopsis acted
analogously to ‘hoops around a barrel’ and thusly facilitated the development of anisotropic
form. Sketches from this paper are shown in Figure 3.2B, which illustrate bulk orientations
of cellulose over sections of plant organ (not individual cells). Concurrently, a similar line of
investigation was pursued by Probine and Perseus [65] who demonstrated creep anisotropy
in Nitella, and hypothesised cellulose orientation as its cause. More recently, this hypothesis
was tested in Allium sativum (onion) and Kalanchoe blossfeldiana using DMA [58]. The
authors found that in onion, which had significant cellulose orientation anisotropy, the storage
modulus was much higher parallel to the mean cellulose orientation than perpendicular to
it. In Kalanchoe the near-isotropic cellulose orientation corresponded with an isotropic
storage moduli. The resultant cell shapes of the two species matched well with Green’s
‘hoops round a barrel’ analogy; the onion cells showed distinctly anisotropic growth whilst
the Kalanchoe cells exhibited isotropic growth (Figure 3.2A). (The undulations visible in
the Kalanchoe cell wall perimeter are fairly common in plant pavement cells [66] and are
generally believed to be caused by elastic buckling instabilities, though recent work sug-
gests that specific mechanochemical heterogeneities in cell wall pectin play an important
role [35].) In other cases, the applicability of Green’s hypothesis appears less clear due to
mean cellulose orientation varying greatly over the multi-lamellar structure of primary walls
and on the internal and external sides of epidermal cell walls [60, 67]. Further, in 2000 it was
found that elongation of pea internodes, oat and rice coleoptiles, oat mesocotyls, soybean
hypocotyls, dandelion peduncles, and the Arabidopsis hypocotyl takes place even though
the mean cellulose orientation matches the axis of cell elongation [68, 69]. These studies
clearly demonstrate that non-cellulosic cell wall components make significant contributions
to growth anisotropy in many plant systems.

The hemicelluloses are a group of polysaccharides consisting of heteromannans, xy-
loglucan, heteroxylans, and mixed-linkage glucan [59]. Although the precise structure and
connections of these hemicelluloses are still not fully understood, significant progress has
been made in recent years [70]. The following will focus on xyloglucan as it is the most
abundant hemicellulose in dicots [71] and thus Arabidopsis, which has been studied experi-
mentally for this thesis. Xyloglucan was once thought to have a ubiquitous role in cell walls
as a binder of cellulose microfibrils, but is now believed to act in a more localised manner at
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key feature of HG is its initial state, which is highly methyl-esterified [82]. These methyl-
ester groups can be selectively removed in a blockwise contiguous mode, a non-contiguous
random mode, or somewhere in between as quantified by the degree of blockiness (DB)
metric [83–86]. Similarly, the percentage of methyl-ester groups (as opposed to free carboxyl
groups) is quantified by the degree of methyl-esterification (DM) metric [87–89], sometimes
alternatively named the degree of esterification (DE) [90]. (In the literature, low DM gels
are sometimes referred to as low methoxyl pectins, LMPs, and high DM pectins as high
methoxyl pectins, HMPs, with the crossover DM being either DM45 or DM50 [91, 92];
in this thesis DM50 will be taken as the crossover point.) The DM and DB of HG largely
depend on the method of de-esterification used. For example, in Arabidopsis there are
sixty-six (66) pectin methyl-esterase (PME) enzymes [93], each of which is thought to yield
specific patterns of methyl-esterification [88, 94]. Strong acid and alkali solutions are known
to induce de-esterification with significantly lower DB than the enzymatic methods; acid
de-esterification is sometimes preffered as the alkaline method tends to depolymerise the
pectin chains [83, 95–97]. When a methyl-ester group is removed (i.e. de-esterification) a
negative charge is left in its place and two negatively charged sugars can cross-link using
Ca2+ ions [92]. Indeed, calcium cross-linking is the primary method of gelation for low
DM gels and longer ‘blocks’ of de-esterified units form stronger bonds – provided there is
sufficient free calcium available to do so [83]. Further, it has been found that a minimum
number of consecutive calcium junctions, estimated to be between 6-20, are required for
stable inter-chain bonding [98–100]. These type of ionic bonds in HG are often referred to as
‘egg-box’ bonds and were first identified by Grant et al. in 1973 [92, 101]. More recently, a
2012 study found evidence for more complex pectin-calcium gel structure when there was an
abundance of calcium: at higher calcium concentrations the number of egg-box type bonds
may decrease and be replaced by monocomplexes of single ionic bonds, leading to a reduced
gel stiffness [79]. See Figure 3.3 for a graphical representation of these HG egg-box and
monocomplex bonding structures. In the literature, the molar calcium concentration used to
gelate pectin is sometimes defined in terms of a stoichiometric ratio R (the over-bar has been
added in this thesis to avoid confusion with the radius R symbol used elsewhere), defined
as [102]

R =
2[Ca2+]

[COO– ]
, (3.1)

which comes from the fact that every two free carboxyls require one calcium ion in order
to bond. Sometimes an effective ratio, Re f f , is defined that considers [COO– ]e f f , which
represents only those carboxyl groups that are part of a contiguous chain longer than that
required for stable egg-box bonding [103]. However, if monocomplexes do occur at high R
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then use of an Re f f may not be helpful in high calcium scenarios. Lastly, it has been shown
that low DM HG can gelate using divalent ions other than calcium [95, 104].

(A) (B)

(C) (D)

Fig. 3.4 Pectin schematic diagrams: blue squares are methyl groups, green circles are calcium bonds,
sticks are de-esterified pectin sections that have not bonded and have a single negative ionisation. A)
Low DM, high DB HG showing relatively long, contiguously de-esterified sections of pectin that
have successfully bonded via calcium ions. B) Low DM, low DB HG with intermittently de-esterified
sections of pectin resulting in a weaker bonding pattern than that seen in A. C) High DM HG with
limited bonding sites available. D) Partially de-esterified pectin with chains that have been split apart
through the action of pectinase enzymes.

In contrast to the above, high DM HG relies on hydrogen bonds and hydrophobic inter-
actions for gelation [89, 100]. The hydrogen bonds are generally thought to be relatively
weak, unless they exist closely and in large number [105, 106]. Hydrophobicity is localised
at the methyl-esterified groups and the inter-chain bonding that arises from these parts is
a natural consequence of the minimisation of free hydrophobic surface area, and thus total
energy of the system. The importance of hydrophobic interactions versus hydrogen bonds
can vary greatly depending on the presence of sugar solutes. A study of high DM pectin with
all sucrose removed and substituted with ethanol, t-butanol or dioxane solutions estimated
the contribution of hydrophobic interaction to the free energy of gelation to be approximately
half of that from hydrogen bonds [91]. A more recent investigation found that a 30% sucrose
solution increased the storage moduli of high DM pectin by 2-5 times, demonstrating that hy-
drophobic interactions may be more important than hydrogen bonding in some scenarios [84].
Further work has been done to elucidate the effects of different sugars on the gelation and
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rheological properties of pectin [107–112].

The RG-I and RG-II pectin side-chains, which can be covalently linked to HG [113],
are considerably more complex than HG and our understanding of their effects on bulk
mechanical properties of pectin in vivo and in vitro is limited [114]. An in vitro 2016 study by
Lin et al. [115] found evidence that pectic side-chains increased pectin bonding to cellulose
by as much as 33%; this cellulose-pectin bonding increased the effective stiffness of the
material, an effect which may or may not be replicated in plants as the cellulose-pectin
composite materials in that study were constructed without any calcium present. RG-II is
able to form boron cross-links in an analogous way to HG calcium cross-linking, but the
precise plant physiological role of these boron cross-links has not yet been elucidated [116].

Industrial Uses of Pectin

Pectin isolate has manifold uses. In fact, even when pectin was first identified as a material
in its own right in 1824 by both Payen and Braconnot separately, the latter author noted
its potential for use in confectionery and pharmaceutical products [117, 118]. Circa 1909,
Goldthwaite was reportedly the first to evaluate pectin’s utility in jellies with scientific rigour,
though it was likely used in a more ad hoc artisanal manner before this [119]. Pectin has
now become a common food ingredient. With this knowledge, a clear motivation for under-
standing the effects of different sugars on pectin gelation and rheology emerges, with studies
from as recently as 2017 [108–110, 120]. Perhaps given the dietary hazards associated with
excess sugar consumption, flavour requirements or other economic concerns, there has long
been prevalent use of low DM pectin with calcium as a substitute for high DM gels whilst
attaining similar textural-rheological properties. Low DM pectins have been manufactured
since the 1940s and research into their rheological properties either on their own, or in
some high/low DM pectin mixture is still ongoing [84, 97]. The many studies of different
pectin formulations’ effect on a food’s rheological properties sometimes cross over into the
territory of psychorheology, a field which attempts to rigorously apprehend the nuanced
relationship between the rheology of materials and the psychological perception of their
texture [121–124]. In addition to jams and jellies, a non-exhaustive list of food products
that sometimes have added pectin are bakers’ glazes, malted-milk thickener, milk gels and
puddings, barbecue sauce, salad dressings, and cheese [124, 125]. Pectin has numerous
pharmaceutical uses. It is known to reduce the coagulation time of blood, whilst sulfated
pectin increases the coagulation time [89, 126]. Pectins sourced from various fruits have
been found to significantly reduce cholestorol levels in vivo [127]. In 2006 modified citrus
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pectin was shown to increase the urinary excretion of various toxic substances and it was
hypothesised that this was due to chelation by RG-II [128]. Lastly, products, or product
prototypes containing pectin have been developed for nasal, oral, and ocular drug delivery,
as well as gene delivery and tissue engineering [104, 129]. For overviews of the many
other demonstrated pharmaceutical and other non-food use cases of pectin, see the reviews
by Thakur et al. [89], Liu et al. [129], Munarin et al. [104], and the book chapter by En-
dress [130].

The Mechanical Roles of Pectin In Vivo

Fig. 3.5 A) Location of the Middle Lamella, from Bou Daher and Braybrook [131]. B) Composition
of the Middle Lamella, from Bou Daher and Braybrook [131].

What are the known roles of pectin in vivo? To answer this question, it is convenient
to begin with that part of the plant which consists of mostly pectin. The middle lamella
is a narrow region between adjacent cell walls; it is significantly richer in pectin than the
walls themselves [131]. Much of the time, its role is to adhere the adjacent cell walls, but
at other times it is necessary for cells to separate. Two examples of developmental cell
separation are dehiscence, the separation of cells to allow seed release [132], and abscission,
the purposeful removal of plant parts (e.g. leaves dropping in autumn, or fruit dropping
when ripe) [133]. For adhesion maintenance, evidence suggests that de-esterified, calcium
cross-linked HG is key [131, 134, 135]. For separation, the polygalacturonase (PG) enzymes
are critical [131, 136, 137]; they depolymerise the HG pectic backbone via hydrolysis with
strong substrate preference for lower DM HG, thereby implicating the PME enzymes as
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important precursors for PG-mediated separation [131, 138]. Interestingly, the pattern of
de-esterification (or DB) appears to be significant, with more blockwise (higher DB) PME
de-esterification being associated with adhesion and more random (lower DB) PME de-
esterification being associated with regions of separation [88].

Additionally, in more structurally complex cell walls, the action of PGs has been found
to play a role in the selective pectin weakening associated with cell growth [94, 139]. It’s
also possible that PG plays a role during the formation of the lobe patterns observed in many
pavement cells; a 2017 study on Arabidopsis pavements cells found that the concave side cell
wall of lobes was less stiff and had lower DM pectin relative to the convex side [35] (though
this could could also be due to spatial variation in calcium levels available for cross-linking).
At the shoot apical meristem (the location of plant meristem cells above ground), a lower DM
has been correlated with a decrease in stiffness [140, 42]. Again, PG is one possible culprit in
this case, but a lack of available calcium would also have the same effect. Importantly, auxin
is thought to be the first step in organ initiation but the intermediate steps between auxin
delivery and actual formation of organ primordia are still in question. Acid growth theory
provides a framework for understanding this auxin-mediated growth, but a limit on the spatial
resolution of current pH testing methods places a major technical barrier in the way of its
validation [56, 141]. Given that pectin’s rheology is sensitive to pH [83, 108], it is plausible
that pH changes at the shoot apical meristem contribute to the observed compliance. Similarly
to the shoot apical meristem, de-esterification of pectin in leaf primordia of Arabidopsis is
also negatively correlated with stiffness. Further, the de-esterification pattern displays strong
abaxial/adaxial asymmetry which, in conjunction with computational modelling work by the
authors, suggests pectin plays an important role in leaf asymmetry [142].

In contrast to the previous two examples, localised de-esterification of plant stomata
(guard cells) pectin corresponds with an increased stiffness of the guard cell wall [144, 145]
suggesting calcium cross-linking. Further, polygalacturonase appears to be important in
regulating stomatal geometry and opening/closing dynamics [146]. The strongly directed,
cylindrical growth of pollen tubes appears to be largely enabled by softening at the apical
end via high DM HG, relative to the stiffer low DM HG around the stem of the tubes [114,
147, 148]. The hypocotyl is that part of a young seedling’s stem which is above the root but
below its cotyledons, it elongates rapidly for the first few days of growth, with very little cell
division occurring (Figures 3.6 and 3.7). A 2007 study observed a correlation between DM
and hypocotyl elongation and hypothesised calcium cross-linking of HG as a key elongation
limiter [149]. A 2015 study by Peaucelle et al. [150] attributed the cause of hypocotyl growth
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Fig. 3.6 Hypocotyl growth wave adapted from Bou Daher et al. [143]. A) Scanning electron micro-
graph of 24H after germination hypocotyl with indices of non-dividing cells highlighted. B) Cell
length and width by cell position index. C) Cell shape anisotropy by cell index. D) Relative growth
rates for length and width of cells by index.

anisotropy to be a higher stiffness in transverse (lateral) walls compared to longitudinal (axial,
upward growing) walls. Confusingly, the authors correlated this stiffness with higher DM
pectin in the transverse walls relative to the axial walls. In contrast, a 2018 study by Bou
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Daher et al. noted the same mechanical difference in stiffness between the walls but observed
via immunoassay that there was more de-esterified pectin in the transverse walls than the
axial walls; this supports the data found by Derbyshire et al. [149] and suggests that calcium
cross-linked HG is an important player in hypocotyl growth anisotropy.

Fig. 3.7 AFM stiffness maps showing the onset of anisotropic growth in an Arabidopsis hypocotyl
from 9 to 32 hours after germination, adapted from Peaucelle et al. [150]. Scale bars 50 µm.

The above discussion, a curated selection of the most relevant known roles of pectin in
planta, should be evidence enough that the rheological properties of pectin are carefully
spatio-temporally regulated by plants throughout their life-cycle [57, 151]. What is particu-
larly interesting is that most of the examples above can be loosely thought of as forms of
fine-grained symmetry breaking, suggesting a developmental niche of pectin. For example,
the breaking of radial symmetry in pavement cells, and the breaking of mirror symmetry in
hypocotyl cell elongation. This is particularly interesting as pectin is not found configured in
an architecturally directional manner, as is the case for cellulose, but achieves the symmetry
breaking through highly localised changes in mechanical properties. This observation, com-
bined with the other more macro putative roles of pectin [70], affirms pectin’s central role in
plant development. However, it is also clear that a number of questions remain. In the context
of this thesis, we are particularly interested in those results based on elastic mechanical tests,

Figure of hypocotyl microscopy removed for copyright reasons. Copyright holder is Elsevier Ltd. 
Figure 1A in original source.
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which may benefit from the added depth of insight that time dependent viscoelastic testing
can bring.

3.3.3 Mechanical Testing of Pectin and the Plant Cell Wall

Historical Perspective of Pectin In Vitro Mechanical Testing

Due to its popularity as a gelling agent in foods, much of the early pectin isolate mechanical
testing, in the first half of the 1900s, focused on high DM pectin-sugar gels and measured
their viscosity and the so-called ‘jellying power’ of the pectins used; the latter metric was
somewhat cumbersome and derived from the amount of a specific pectin required to form
a gel under a specific set of preparation conditions, limiting commensurability between
different gel preparations [117, 152, 153]. Furthermore, the ‘jellying power’ metric relied on
a subjective interpretation of when a gel had been sufficiently formed.

Creep, Relaxation and Dynamic Mechanical Analysis of Pectin In Vitro

Although an elaborate analog rheology testing device for pectin was proposed as early as
1947 [4], it was not until the 1960s when evaluation of pectin using a more universally
commensurable rheology framework, that incorporated viscoelasticity rather than just vis-
cosity, began to develop. Harvey in 1960, and then Watson in 1966 appear to have been
among the first to explicitly note pectin’s viscoelastic nature and use standard rheological
testing methodologies [154]. In Watson’s paper, high DM sugar-gelled pectin was subjected
to creep using a mechanical compression device. Sucrose, glucose and cerelose sugars
were tested, no viscoelastic model was fitted to the data, and elastic or plastic behaviour
was observed depending on the strain applied. In 1976, Kawabata and Sawayama used
a parallel plate viscoelastometer to perform creep tests on a variety of high and low DM
pectin gels [155]. Although the majority of the main text remains untranslated from the
original Japanese, useful information can still be gleaned from the tables, equations and
figures. The authors used a six element extended Burgers-type model: two Kelvin-Voigt
units in series with a Maxwell unit. Interestingly, the low DM pectin gels appear to have
been tested using milk, and then (separately) a water-based calcium chloride solution to
provide the calcium required for gelation – suggesting that the precise molar calcium concen-
tration may not have been controlled. A 1979 study by Plashchina et al. also used a parallel
plate rheometer for creep tests of sugar-gelled DM60 pectin extracted from citrus [156], no
viscoelastic models were fitted, the authors were focused on the effects of temperature and
concentration on creep behaviour at particular time points. Plaschina et al. followed this
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up in 1983 with a similar study, again testing pectin of approximately DM60, but with the
addition of glycerol [157]. Comby et al. (1985) used an Instron machine for compressive
stress relaxation of high DM (DM60) pectins at a range of pectin concentrations (1.4% -
1.8% w/w) and sucrose concentrations (60.3% - 72.3% w/w), they also varied the pH within
the acidic range (2.4 - 3.2) [158]. For viscoelastic analysis they used a generalised Maxwell
model with 2 time-scales – or equivalently, 2 Maxwell models in parallel. Elastic parameters
were positively correlated with concentration, negatively correlated with pH, and positively
correlated with sucrose concentration. The larger time-scale of the model also followed the
elastic correlations, whilst the second time-scale parameter’s behaviour was more ambiguous.

Over a similar time period, a number of low DM studies were conducted. A 1976 study
by Mitchell and Blanshard tested very low DM4 pectin using parallel plate rheometry [159].
They fitted an unusually complex 8 parameter model to the creep data – an extended Burgers
model consisting of three Kelvin-Voigt units and a Maxwell unit in series; a square root
relationship between the concentration and inverted creep compliance was observed. Two
years later, Kim et al. studied the relaxation behaviour of pectins of approximately DM30 -
DM40, and amidated pectins de-esterified using an acid-ammonia protocol [87]. Sucrose
was added to the gels, no rheological model was used, and the gels were compressed up
to point of fracture. In 1980, Gross et al. performed creep and stress relaxation tests on
low DM pectins, ranging from approximately DM25 to DM40, using an Instron Universal
Testing Machine for relaxation tests and a custom designed compressive loader for creep tests
[90]. They explored several mechanical models and in the end decided that a 2 time-scale
generalised Maxwell model was best suited for fitting stress relaxation data, and that the
Burgers model was better suited to creep data; psychorheological tests of firmness, coarseness
and graininess were also conducted and some correlations between model parameters and
the sensory metrics were identified. All elastic and viscous parameters of both models were
found to have moderate negative correlation with DM, which might be expected due to the
increased ionic bonding activity. However, a clearer negative correlation may have been
inhibited by the fact that the gels were made in low pH and with 30% sucrose which would
lessen dependence of calcium cross-linking. Furthermore, the calcium concentration was not
adjusted for different DMs so optimum ionic bonding may not have been achieved.

Apart from the above discussed relaxation and creep studies, several of which fitted
viscoelastic models to the data, almost all chronologically subsequent pectin rheology studies
found for this literature review took a model-free, oscillatory approach by only finding exper-
imental values of the complex modulus G∗. DMA studies on a single, low DM pectin type
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have investigated their rheology with varying pectin concentration, formation temperature
and stoichiometric ratio R [160, 161]. Similar studies were conducted on sucrose-containing
high DM pectins but also investigated their gel formation and ageing process [162–164].
Interestingly, Lopes da Silva et al., in their study of temperature effects on both high and low
DM pectins, did use an empirical model for viscosity but chose not to model the viscoelastic-
ity [162]. In fact, after the 1985 stress relaxation paper by Comby et al. [158], only a small
number of exceptions to the oscillatory, model-free approach found for this literature review
were found. Examples of note include a 2002 study by Alonso-Mougan et al. on amidated
low DM pectin [165] and a 2009 study by Gigli et al. [166] on low DM pectin. The paper
by Alonso-Mougan et al. fitted a power-law model to their DMA frequency spectrum data
obtained from amidated low DM pectin testing and it fitted well over a fairly large range
of frequencies. The Gigli et al. study investigated the effects of calcium concentration and
curing temperatures on DM22.5 pectin rheology via DMA and creep testing; the data were
fitted to a generalised Kelvin-Voigt model consisting of 5 Kelvin-Voigt units in series, a
model with 10 parameters in total. For further evidence of the dominance of the model-free
DMA approach in pectin rheology, see the numerous modern studies of added sugar effects
on high DM pectins [107–112] and the rheological contribution of RG-I and RG-II side-
chains [116, 167–170].

From the mechanochemical perspective, the work in this chapter is most closely related
to the following three studies on pectin-calcium gels. In 2007, Ström et al. performed DMA
tests on calcium-pectin gels that had been de-esterified by means of alkali and two different
plant-derived enzymes [171]. The stoichiometric calcium ratio was R = 0.3, which was
chosen as it was found to be the minimum that enabled gelation of the alkali de-esterified
pectin – the others were presumably able to gelate at lower calcium concentrations. For
the three pectin types tested (one alkali and two enzyme de-esterified pectin types) it was
found that G′ positively correlated with the DB, and negatively correlated with DM – with
the alkali de-esterified pectin storage modulus dropping off most sharply with increase in
DM. The G′ vs. DM correlation is shown in Figure 3.8A. For both DM and DB, the storage
modulus changed over several orders of magnitude with respect to the correlative directions
mentioned above. Unfortunately the loss modulus was only reported for a small subsection
of the tested pectins, shown in Figure 3.8B. Fraeye et al. performed a related study in 2009 in
which similar correlations were observed [86]; as before, the loss modulus was not reported
in the main DM and DB plots, however a subset of the pectins tested were shown separately
with loss modulus shown. The authors also investigated different pectin and calcium concen-
trations and found that storage and loss moduli were positively correlated with both up to a
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with the intuition that a higher number of ionic bonds (lower DM) that are increasingly stable
(higher DB) will result in stiffer gels, provided there is sufficient calcium and polymerisation
of the HG chains.

Pectin Composites – In Vitro Cell Wall Analogues

In order to bridge the complexity between pure pectin gels and primary cell walls, some
have investigated artificial composites containing only selected cell wall components. For
relatively large compression of cellulose/pectin mixtures, the presence of pectin was found to
increase resistance to compression, possibly due to reduced permeability [173]. Additional
composites containing high or low DM pectin found that that the viscoelastic properties and
DM of the pectin used played a role in bulk properties [174]. A recent study investigating
the viscoelastic properties of cellulose/pectin composites found that both the storage and
loss modulus decreased approximately 5-fold from DM69 to DM33 [175] – possibly a
consequence of insufficient free calcium as calcium is not mentioned in the paper. As a
more general comment, the above composites are certainly interesting from an applied and
industrial perspective, but some have questioned how much of this insight is transferable to
plant developmental mechanics [114]. Furthermore, the cellulose used in the above studies
was constructed by bacteria – it is not known whether it has similar heterogeneous properties
recently observed in plant cellulose [75] or how important these properties are to plant cell
walls’ bulk rheology.

Viscoelastic Testing of Plants at High Spatial Resolution

Moving to plants, though a number of studies have used viscoelastic theory more formally,
measures of ‘extensibility’ have often dominated the literature. The term is used in a number
of ways, as summarised by Cosgrove [176]:

1. Strain/stress.

2. Strain rate/stress.

3. Strain at breaking point.

4. Stress at breaking point.

5. ∆ Length after fixed time under fixed force.
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Though not explicitly defined as such, items 1, 2 and 5 each have an equivalent in the
viscoelastic modelling framework described in Chapter 2. Item 1 could be represented by a
Hookean spring; item 2 could be represented by a Newtonian dashpot; item 5 would then
simply represent the dashpot from item 2 as convolved with the force history. (Items 3 and 4
are part of plasticity theory and fracture mechanics and are of less interest to us here, where
testing deformations are small.) For these reasons, employing the viscoelastic framework
directly seems wise as it gives greater commensurability between studies, whilst losing no
descriptive accuracy, in fact it gains accuracy by making no a priori assumptions about the
elastic, viscous or viscoelastic nature of the material being tested. Though a number of
viscoelastic studies have been conducted on plants using a variety of tools [63, 42, 177, 25,
43, 178], the AFM has emerged as the tool best suited for high spatial resolution mechanical
testing in vivo [35, 34, 36]. However, possibly due to the difficulty of viscoelastic testing
using AFM and the interdisciplinary nature of subject, viscoelastic studies of plants using
AFM appears to have only been done a handful of times, with AFM studies generally only
considering the elastic response of the plant specimens. The AFM viscoelastic examples
found for this literature review did tests on the Arabidopsis shoot apical meristem [42]
and on Arabidopsis epidermal roots cells in vivo [43]. This is in contrast to the more
widespread use of AFM for viscoelastic tests of animal cells [37–41]. The papers most
closely related to the work in this chapter are the elastic AFM studies by Peaucelle et al. [150]
and Bou Daher et al. [143], both of whom conducted AFM elastic indentation tests to better
understand the origins of Arabidopsis hypocotyl growth anisotropy – as discussed earlier in
this chapter. The experimental work here attempts to expand rheological understanding of
this growth anisotropy by use of AFM viscoelastic tests. (It should be noted that some time
after the experimental and analysis work presented here was completed, a PhD thesis was
released (2018, University of Oxford) [44] in which viscoelastic DMA data from Arabidopsis
hypocotyls were presented.)

3.4 Overview of Experimental Work

We have seen from the above discussion that insight into pectin rheology is important in
both applied and plant developmental contexts. In the following work, a protocol for the
rheological testing of pectin gels using AFM was developed and used to test the viscoelastic
properties of pectins of various DM (33, 41, 50) and DB (random and blocky). Due to the
putative DM heterogeneity of pectin in vivo, mixed DM pectin was also tested. Although
high/low DM mixtures have been tested in previous studies [84, 179], sucrose was included
which would have increased the bonding of high DM chains. As there appears to be no evi-
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dence of sucrose presence in Arabidopsis cell walls in quantities that would have significant
effects on the mechanical strength of pectin, the previous sucrose-containing studies may
not be developmentally relevant. We generated two mixed gels with an effective DM50, one
using a combination of DM33 and DM70, and another using a combination of DM41 and
DM60. We also generated one mixed gel with an effective DM41 using a combination of
DM33 and DM50 pectin. Inspired by the early pectin rheology, but in contrast to the majority
of studies over the last two decades, a model-based force relaxation approach was used in an
attempt to make connections between model parameters and pectin mechanochemistry.

A number of investigations have been conducted to better understand the relationship
between the fine-grained structure of pectin and its bulk mechanical properties [102, 179–
186]. Rheological tests have generally been conducted at either the bulk scale, length-scales
distinguishable by the human eye, or a much smaller scale, elastic tests of single pectic
chains. There is certainly interest in understanding the architecture and mechanochemistry
of pectin at intermediate length scales, and this has been attempted using particle tracking
rheology [186]. Whilst AFM has been used in at least one pectin study to investigate elastic
extension of single pectic chains [180], its potential for mesoscale viscoelastic pectin testing
has not been explored. In addition to the above, the AFM viscoelastic testing methodology
used in pectin was adapted for use on the Arabidopsis hypocotyl. Recent work [143],
discussed above, showed that in the elongating dark-grown Arabidopsis hypocotyl, epidermal
cells display an elastic asymmetry coincident with a difference in pectin DM; faster growing
axial cell walls were more compliant and had a higher DM compared to slower growing
transverse walls. The AFM viscoelastic testing methodology developed here was used to
provide greater rheological insight into the differences between the transverse and axial walls.
Short time-scale results mirrored previous elastic work closely but at longer time-scales
the compliance of axial and transverse walls appeared to get closer, suggesting a possible
coupling. In summary, it is expected that the work presented below will be of interest to both
pectin and plant rheology investigators alike.

3.5 Materials and Methods

3.5.1 Preparation of HG Gels

The DM40 Block and DM40 Random pectin pre-gel mixtures were made in the laboratory
of Prof. Bill Williams at the University of Massey, New Zealand. A highly methyl-esterified



3.5 Materials and Methods 53

pectin was the starting point for both block and random pectins. The DM40 Random pectin
was de-esterified using alkali NaOH. The DM40 block was de-esterified with a processive
Valencia orange peel PME from Sigma Aldrich (P5400). The DB of the block and random
pectins was estimated to be 95% and 39% respectively. For further detail on the methods for
the block and random pectins see the paper by Ström et al. [171]. The DM33, DM41, DM50,
DM60 and DM70 HG pre-gel mixtures were from Herbstreith & Fox, UK. The Herbstreith
& Fox HG Samples had the following galacturonic acid contents: DM33 - 84%, DM41 -
90%, DM50 - 86%, DM60 - 89%, DM70 - 83%); the samples were therefore mostly HG and
assumed to have behaviour approximately equivalent to 100% HG. All the pectin gels (or gel
blends) were dissolved in de-ionised water, neutralised with NaOH to pH6.5, and made up
to 1.5% (w/v). Gels were set using the CaCO3/gluconolactone (GDL) method commonly
used to set calcium cross-linked hydrogels [103], via addition of CaCO3 (Cat. No. 21061,
Sigma, UK) and GDL (Cat. No. G4750, Sigma, UK) into the pectin solution to facilitate
the controlled, slow release of Ca2+ ions. The pectic/CaCO3/GDL mixture was left on a
microscope slide for 12 hours at room temperature to fully set prior to use in experiments.
The ratio of calcium ions available to bind pairs of de-methylated galacturonan residues was
kept at R = 1 for all gels, where R is defined in Equation 3.1. A stoichiometric ratio of GDL,
[GDL] = 2 x [Ca2+], was used to solubilise all CaCO3 in the gel, without altering the pH via
excessive proton release. Prior to AFM experiments, the homogalacturonan hydrogels were
soaked for 30 minutes in CaCl2 solutions of equal molarity of Ca2+ as within the hydrogels.

3.5.2 Preparation of Plant Material

Arabidopsis thaliana ecotype Col-0 seeds were surface sterilized with 70% ethanol for five
minutes then rinsed with 100% ethanol for one minute and left to dry prior to plating them
on half strength Murashige and Skoog (MS) media. Seeds were stratified for 2 days at 4 ◦C
in the dark before transferring them to a growth chamber with 16/8-hours light/dark cycle
at 20 ◦C for germination. Germinated seeds were transferred to half strength MS plates
containing 87.6 mM sorbitol, sealed with aluminum foil and left to grow for 24 hours prior
to AFM scanning.

3.5.3 AFM-based indentation tests

Gels: Elastic and Viscoelastic Tests

A 50 µm diameter silicon bead (Cat# C-SIO-50.0 from Microspheres-Nanospheres, Corpus-
cular, Cold Spring, NY, USA) was mounted on a nominally rated 2.8 Nm−1 tipless cantilever
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(TL-FM-10, Windsor Scientific Co., UK) for DM50 gels and DM50 mixtures, and a nomi-
nally rated 48 Nm−1 tipless cantilever (TL-NCL-10, Windsor Scientific Co., UK) for lower
DM gels, using standard 2-component epoxy as in [36]. Before bead fixation, due to slight
manufacturing differences in the cantilevers used, they were calibrated in the following way.
Firstly, the AFM cantilever holder was sonicated to remove debris and then wiped down with
lint-free microfiber tissue and ethanol. Sensitivity was then determined by indenting a glass
cover-slip and measuring the nmV−1 slope. After this, the spring constant was measured
using the thermal noise method as described in the JPK manual [187]. Indentation speed
used was 50 µms−1. After the gels had been left to swell for 30 minutes in CaCl2 (of equal
molarity of calcium ions as within the hydrogels) the slides were carefully placed on the
stage of a Nano Wizard 3 AFM (JPK Instruments, DE) and covered with just enough CaCl2
solution to cover the gels. For elastic tests, a new (previously unindented) point near the
centre of the gel was then subjected to a range of elastic indentations over a force range
that was found to contain the indentation depths of interest. At each point the up/down
direction of force variation was alternated to ensure pre-stress was not affecting the results
(no pre-stress effects were observed). For elastic tests, six gel samples were tested, at three
points on each sample. For viscoelastic indentations, the same settings as for elastic were
used apart from the introduction of a 15 second constant height hold. For viscoelastic tests,
six samples at each DM were used. Depending on time available, 3 - 5 points at each sample
were tested. However, as the AFM was not optimally isolated from external noise, not all
samples could be used. To filter out excessively noisy samples in an automated way, those
found to have a time-scale 10x greater than the median were removed from further analysis.
Sample numbers for each DM are as follows: N33 = 15, N41 = 20, N50 = 25, N(33/50) = 19,
N(41/60) = 22, N(33/70) = 27, Nblock = 17, Nrandom = 21.

Plants: Elastic and Viscoelastic Tests

24 hour old seedlings were gently stuck on a double sided tape placed on a glass slide,
immediately covered with a solution of 600 mM mannitol and plasmolysed for 15 minutes
prior to scanning. A Nano Wizard 3 AFM (JPK Instruments, DE) mounted with a 10 nm
diameter pyramidal tip (Windsor Scientific, UK) on a 45 Nm−1 stiffness cantilever was used
for indentations. The cantilevers used were calibrated using the same methods as in the above
section. For elasticity testing, an area of 100 µm x 50 µm at the base of the hypocotyl was
indented with a resolution of 64 x 32 points using 500 nN force. Indentation speed used was
100 µms−1. In elastic analysis 19 transverse and 15 axial wall indentation points were used.
(Transverse walls run across the stem perpendicular to main direction of growth, axial walls
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run parallel to the main growth axis.) For viscoelastic testing, 10 points were chosen on the
cell wall of a basal cell (5 on the transverse wall and 5 on the axial wall) with a 15 second
indentation hold time on each point. Seven hypocotyls were used. Of the viscoelastic data
collected, 19 transverse and 18 axial wall indentation points were analyzed from across these
seven hypocotyls, with the remainder discarded due to excess noise.

Indentation Speed Discussion

All indentations, both elastic and viscoelastic, were done at a fast indentation rate of 50 µms−1

(pectin gels) and 100 µms−1 (plants). For elastic indentations, this speed was in line with pre-
vious studies [36, 188]. However, as it is known that both HG and plants are not solely elastic,
it is probable that the speed of indentation does affect the apparent elastic measurements.
Indeed, preliminary experiments on gels and plants (data not shown) did indicate a slight
positive correlation between apparent stiffness and indentation speed. However, the main
focus of the experiments in this chapter is viscoelastic behaviour, where indentation speed is
not likely to be a significant source of spurious results. More specifically, indentation speed
would be an issue if a step loading assumption was used, but the analysis in this Chapter
and Chapter 4 made use of the full loading history, taking into account the full Boltzmann
convolution integral, which means that an arbitrarily complex loading pattern could be used.
This is discussed further in Sections 3.5.5 and 4.4.4.

3.5.4 Hertz Contact Model for A Spherical Indenter

The Hertz contact model for a rigid sphere indenting a flat elastic half-space modified
appropriately for AFM indentation [189] is

f =
4
√

R
3

E
(1−ν2)

(z− z0)
3/2H(z− z0)+ξ +β z, (3.2)

where f is force applied, R is the radius of the indenting sphere, E is the Young’s Modulus, ν

is the Poisson ratio which is assumed to be 0.5 (implying incompressibility), z is the position
of the indenter as represented internally by the AFM, z0 is the reference contact point, H is
the Heaviside step function, ξ and β are used to represent the offset and drift respectively
that commonly occur during AFM indentation. The offset and drift terms are caused by either
internal AFM noise or noise from the surrounding environment; they are the main differences
between Equation 3.2 and Equation 2.34. The Heaviside function is necessary as the AFM
only sees the movement of the cantilever base, regardless of whether it is in contact with a
sample or not; if the function were not there, it would incorrectly appear in our analysis that,
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before contact, the sample is being displaced with no force being applied. For elastic analysis,
the offset and drift were found to be minuscule for the majority of files but in any case were
subtracted from the data using the JPK (JPK Instruments, DE) data processing software
provided by the AFM manufacturer. For viscoelastic analysis β was taken as 0 in order to not
affect the constant deformation/force section of the data for relaxation/creep tests respectively.

Regarding the value of the Poisson ratio, an exact value is unknown but values of 0.3 -
0.5 have been suggested and used in the literature [35, 42, 140, 190]. (Note that ν may vary
with a significant degree of spatiotemporal resolution in vivo.) In this study, the value of
ν = 0.5 was used, which implies that the material is assumed incompressible. By inspection
of Equation 3.2 we can see that the lower the Poisson ratio, the higher our estimation of E
will become (for a fixed ratio of force over displacement). As such, if the actual value of ν is
lower than 0.5 then we would be underestimating E, whereas if ν is higher than 0.5 then we
would be overestimating E.

The reference contact point z0 is not known a priori. Various methods of identifying
the contact point have been proposed [191, 192, 189]. In this study, the contact point was
found using a qualitatively determined force threshold. A specific threshold was selected
for each material tested by plotting the force/displacement curves for that material semi-
logarithmically in the force axis and observing where the largest change in force took place –
which corresponds to initial contact. After this the material displacement, δ , could be found
using the relation δ = z− z0. An example of this ‘thresholding’ is shown in Figure 3.9A,
where orange dashed line shows the force threshold intersecting the curve at a particular
height, which is then taken as our point of contact. The main advantage of this method
is its simplicity, both conceptually and practically. It’s key disadvantage is that it tends to
overestimate the force at which the contact point is determined. However, as this is a minor
systematic bias for all data, relative comparisons between fitted parameters are still valid.

3.5.5 Computation of Viscoelastic Response

As described in Section 2.3.3, in the case of viscoelastic testing the elastic-viscoelastic corre-
spondence principle [50] can be used to derive the time-dependent analogue of Equation 3.2
for displacement controlled (relaxation) tests. Noting that E = 3G for the incompressible
case, where G is the shear modulus, the linear viscoelastic relaxation equation is repeated
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Fig. 3.9 A) Semi-logarithmic representative plot of force vs. depth for an ‘approach’ section of AFM
curve, material is DM41 pectin. The orange dashed line shows the force threshold used to approximate
the contact point. B) Representative plot of force vs. time showing the ‘approach’ and ‘hold’ sections
of the AFM curve, with the predicted stress relaxation shown in the orange dashed line.

here for the reader’s convenience

f (t) =
8
√

R
3

∫ t

0
G(t − τ)

dδ 3/2(τ)

dτ
dτ, (3.3)

where f , δ and G now represent dynamic functions and τ serves as an integration dummy
variable. (Note this is the same as Equation 2.35.) A similar method can be followed [8] to
derive the dynamic force-displacement relationship for stress controlled creep tests, this is
already shown in Equation 2.36 but, as before, shown again here for the reader’s convenience

δ
3/2(t) =

3
8
√

R

∫ t

0
J(t − τ)

d f (τ)
dτ

dτ, (3.4)

where J is the material creep function and all other symbols have their previous meaning.

Now we have identified our contact point and offset, we can discard the data before
contact (as the Heaviside function is not ‘switched on’ before that time), and the offset
transform has already been applied. We also discard the ‘retract’ section where the AFM
tip is leaving the sample as it is not accounted for in the elastic-viscoelastic correspondence
principle. The key point regarding the above two equations is that we can use them ‘as-is’
without further modification (apart from discretisation, of course). Furthermore, the approach
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used in the analysis here is far more flexible than other approaches used in the literature. For
example, some authors have used assumptions of perfectly linear ramp and hold loading
to simplify the above integral [8, 50]. However, the complex force/displacement feedback
cycle used by the AFM meant it was not feasible to generate an accurate linear ramp. This
motivated development of a more flexible method. To understand this more flexible method
we first note that both equations can be solved using regular quadrature methods for arbitrary
loading patterns, but this is usually prohibitively slow. Instead, we take advantage of the
fact the both equations can in fact be viewed as convolutions, and there already exist highly
optimised convolution algorithms available to us in Python. Therefore, to calculate the
response to arbitrary force or displacement loading, a numerical convolution was performed
using the NumPy Python package (‘numpy.convolve’). This predicted response can then be
subtracted from the actual response, and then squared, to form our squared-error cost function
that is sent to the optimisation routine in order to find the most suitable set of parameters
for a given model. The optimisation function used was ‘scipy.optimize.least_squares’, with
the ‘Trust Region Reflective algorithm’ selected as, in trials, it was found to be the quickest
to converge upon suitable solutions. A representative example fit is shown in Figure 3.9B.
Computation of the viscoelastic response, and determination of model parameters from data,
is discussed in significantly more detail in Chapter 4. In particular, Section 4.4.4.

3.5.6 Viscoelastic/Poroelastic Framework Evaluation

For a linear viscoelastic material, relaxation curves at different indentation depths will reduce
to a single master curve when the following rescaling is applied

f (t)− f (t ′)
f (0)− f (t ′)

, (3.5)

where in our case t = 0 was recalibrated to be the moment that the AFM reached its force
setpoint and t ′ was set to be 14 seconds after that, near the end of the relaxation hold. The
poroelastic rescaling used was

f (t)− f (t∗)
f (0)− f (t∗)

, (3.6)

where t∗ = αδ as the tests did not generally reach a plateau within the time-frame of the
experiment (see Moeendarbary et al. [193] and Strange et al. [194] for the more general
case). The above curve is plotted against rescaled time t = t/δ . Also, as before, t = 0 was
recalibrated to be the moment that the AFM reaches its force setpoint. δ was taken to be
the average displacement occurring between 6 and 9 seconds into the experiment as a good
approximation. The constant α was fixed for all curves and is arbitrary in the case of a
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poroelastic material that reduces to a master curve – though it will introduce a ‘pinch-point’
where all the curves meet. This can be seen algebraically by converting t∗ to rescaled time
such that t∗ = α and noting that the numerator of Equation 3.6 will always be equal to 0 at
this time point.

3.5.7 Viscoelastic Models

0

0

(A) (B)

(C)

Fig. 3.10 A) 4 parameter Burgers model in relaxation form. B) 5 Parameter, 2 time-scale standard
linear solid in relaxation form. C) 2 time-scale standard linear solid model as in previous, but in creep
form. Alternate parameterisation is depicted by the bar over the glyphs.

The relaxation and creep moduli of the SLS2 model take the form of Prony series:

G(t) = G0 +G1e−t/τr1 +G2e−t/τr2 , (3.7)

J(t) = J0 − J1e−t/τc1 − J2e−t/τc2, (3.8)
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where τr and τc are relaxation and creep (retardation) time-scales respectively. Elastic/viscous
ratios can be defined on the relaxation [50] and creep moduli in the following way:

(E/V )G = Gt→inf/Gt=0 =
G0

G0 +G1 +G2
, (3.9)

(E/V )J = Jt=0/Jt→inf =
J0 − J1 − J2

J0
. (3.10)

In particular, the second ratio is acceptable due to the thermodynamic condition that there
cannot be negative compliance so J0 > J1 + J2. These ratios are depicted graphically
in Figure 3.11. They are useful because the capture the ratio of static to dynamic be-
haviour in a material in a single number. Another shorthand value used in this chapter is
the Instantaneous Shear Stiffness (ISS), which is equivalent to Gt=0 = G0 +G1 +G2 and
1/Jt=0 = 1/(J0 − J1 − J2). The ISS provides a convenient metric for comparison to studies
which only reported elastic moduli or storage moduli.

For comparison with the canonical parameterisations of the spring-dashpot diagrams
shown in Figures 3.10B and C, the following relationships are noted:

G0 = k0, G1 = k1, G2 = k2, (3.11)

τr1 = η1/k1, τr2 = η2/k2, (3.12)

J0 = 1/k0 +1/k1 +1/k2, J1 = 1/k1, J2 = 1/k2, (3.13)

τc1 = η1/k1, τc2 = η2/k2. (3.14)

The parameters G and J are helpful as they are more in line with the literature and, in the
case of G, explicitly remind us of the fact that they are dynamic shear moduli. The abstracted
time-scale parameters are often useful parameters to associate with material deformation
time-scales.

The Burgers model used here is the same as that given by Mainardi [195], and in its
relaxation form is equivalent to two Maxwell units in parallel. Its relaxation modulus is
written as:

G(t) = G1e−t/τ1 +G2e−t/τ2, (3.15)

which is similar to the SLS2 modulus in Equation 3.7 but does not have a plateau stiffness.
This same model is sometimes referred to as a Generalised Maxwell model (truncated to two
time-scales). Its spring-dashpot schematic can be seen in Figure 3.10A, and the following
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Fig. 3.11 A) SLS2 relaxation modulus response to a unit step at t =10 s. Gt=0 and Gt→inf are shown
in dashed lines. Parameters used are G0 =4 Pa, G1 =2 Pa, η1 =3 Pas, G2 =1 Pa, η2 =10 Pas. B)
SLS2 creep modulus response to a unit step at t =10 s. Jt=0 and Jt→inf are shown in dashed lines.
Parameters used are J0 =7 Pa, J1 =2 Pa, η1 =3 Pas, J2 =1 Pa, η2 =10 Pas.

relationships with the canonical parameters are noted:

G1 = k1, G2 = k2, (3.16)

τr1 = η1/k1, τr2 = η2/k2, (3.17)

Lastly, an Instantaneous Shear Stiffness (ISS) metric can also be defined for the Burgers
model. As above, it is defined as Gt=0.

3.6 Results and Discussion

3.6.1 Acquiring Force-Displacement Proxy Relationships

Due to the arbitrary nature of the AFM’s displacement coordinate system and the absence of
a closed loop control system on sample deformation, only a target force can be prescribed,
not a target displacement. To ensure that tests across all gel types were done at comparable
displacements in case of non-linearities, a number of forces were trialled on all the different
HG gels until force ranges were found that covered between 1 µm and 4 µm displacement.
Once the upper and lower limits of these ranges were identified, a higher resolution force-
displacement mapping was obtained by finding several points on each gel and performing
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Fig. 3.12 A), B) and C) Plots of prescribed indentation forces against resultant indentation depth
for the full variety of pectin gels tested. D) The prescribed indentation force versus the resultant
indentation depth for the DM40 Block gel type, with markers coloured according to whether they
were incrementing up or down the force range at a specific point on the gel.

repeated elastic indentations, alternately moving up or down the force range at each new
point to investigate whether pre-stressing or plastic deformation was affecting the results
significantly. Three (or more where time allowed) points were tested on six different gel
samples, so there were a minimum of 18 points tested for each different gel type. The
points shown in Figures 3.12A, B, C and D have been extracted from the final sample of the
‘approach’ phase of the AFM curves (see Figure 2.15 for reference). Note that brackets after
a DM type indicates a mixture made up of the bracketed DM types with a resultant bulk DM
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of that specified. For example, DM50 (41/60) is a pectin mixture with average DM50 but
made up of DM41 and DM60 combined.

As stated above, the purpose of the experiment was to obtain force-displacement proxy
relationships. However, some interesting observations were noted. Qualitatively, the general
elastic strengths of all the gels agree well with the storage moduli presented by Fraeye et
al. [86] and Ngouémazong et al. [172]. In Figure 3.12B, there is a stiffer grouping of three
points in DM50 (41/60). The three outliers were found to all originate from the same gel
sample. Although the gel sample thicknesses were on the order of millimetres it is likely that
this particular sample was too thin and thereby increased the apparent stiffness, so it was duly
noted to ensure adequate thickness of at least several millimetres in future samples. There is
also one DM33 outlier and two DM41 (33/50) outliers, shown in Figure 3.12A, which were
much stiffer than the other points, likely due to the testing point being to close to the edge of
the sample where it was thinner so thereafter, more care was taken to test points closer to the
centre of the sample.

In Figure 3.12C, a qualitatively bimodal behaviour was observed in the DM40 Block
HG gels. Colorising the data points according to the direction of force traversal (up/down
the range of test forces) identified the reason for this. The stresses at the higher end of
the force range (5000 nN) stiffened the HG at subsequent lower forces. The pre-stressing
effect appears to be caused only at the upper range of forces as both up and down directions
overlap at the top of the range but not at the bottom of the range. Due to this behaviour, only
the data going up the force range was used in subsequent analysis. It is plausible that the
specific, highly blockwise configuration of the ionic cross-linking junctions in the DM40
block pectin becomes somehow further entangled by the higher stresses, giving rise to the
apparent increase in stiffness at lower forces.

3.6.2 HG Is Linear Viscoelastic Under Micro-indentation

During indentation of HG gels, there may be several physical modes of deformation which
occur simultaneously. These could include near-instantaneous extension and contraction
of the pectin chain network, rearrangement of the network via breaking and reforming of
ionic bonds, and flow of solution through the network. A number of in vitro pectin studies
have found their samples to behave in accordance with linear viscoelasticity, and some others
have assumed it [90, 171, 172, 196]. However, in vitro cellulose-pectin composites have
been found to exhibit poroelasticity [173, 197] and it has been suggested that pectin acts a
mediator of porosity in vivo [198]. Further, the dominant physical mechanisms observed may
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depend not just on the pectin formulation, but also the length and time-scales of the testing
method used [194, 26]. Thus, before a thorough comparison between different DM HG gels
could be made, the appropriate theoretical framework to analyse the rheological data had to
be identified.
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Fig. 3.13 A) Averaged relaxation data from DM41 HG at 2 µm, 3 µm and 4 µm rescaled according to
the linear rescaling formula, x-axis is log scale. B) The same data rescaled according to the poroelastic
rescaling formula, x-axis is log scale.

To achieve this, indentation depth data from the DM41 gel elastics tests were averaged and
linear interpolation was used to estimate the forces that would yield the desired indentation
depths. 15 second AFM force relaxation tests, in which deformation was held constant while
force was monitored over a prescribed time, were performed on six DM41 gels at 2 µm, 3 µm
and 4 µm indentation depths (corresponding to prescribed forces of 1911 nN, 3185 nN and
4690 nN respectively). These forces corresponded well to the indentation depths predicted
by the first set of experiments. Every relaxation test on a specific gel sample was done at a
unique point. Suitable rescalings were then applied to the data to assess the suitability of
a poroelastic or viscoelastic theoretical framework (See Methods, Equations 3.5 and 3.6).
The poroelastic scaling did not collapse to a master curve except at the start and a single
pinch-point (Figure 3.13B); the pinch-point at t/δ = 4e3 sm−1 is due to the selection of the
rescaling parameter, α . If the gels were poroelastic, the curves would collapse to a master-
curve regardless of the value of α . However, by further varying of α , this was definitively
found not to be the case. Qualitatively, the linear viscoelastic rescaling resulted in a clear
master-curve collapse (Figure 3.13A) suggesting it is the correct framework for subsequent
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analysis. A possible explanation for this can be constructed using scaling arguments. The
experimental length scale here is L =

√
Rδ ∼ 10−6 m. As L3 is many orders of magnitude

smaller than L2, the force required for the bulk displacement of water volume may be less
significant than the direct pressure applied onto the material by the indenter’s surface. Further,
it may be that the permeability of the gel is high enough that there is negligible obstruction
to fluid flow. A third explanation, similar to that proposed by Zhao et al. [26] for alginate
relaxation with sufficient sample size, could be that the non-poroelastic behaviour is due to
ionic cross-links reforming at a much faster rate than water migration. Unfortunately, average
pore-size and permeability data for pectin of similar composition to that tested here could
not be found in the literature. Having said this, it has been shown that sucrose-containing
low DM pectin and pectin-alginate blends have relatively large pore sizes, in the order of
100 nm. If similar large pore sizes exist in the low DM gels tested here than that would go a
long way to accounting for the absence of observable poroelastic behaviour.

In summary, these data indicate that HG gels behave as linear-elastic viscoelastic solids
under micro-indentation. Subsequent tests on all gel types were conducted at 2 µm to ensure
data were in the linear viscoelastic range. Lastly, it should be noted that these results, and
other similar tests from the literature, do not preclude in vitro pectin poroelasticity in all
cases. Although very high pectin concentrations (>30% w/w, which would be comparable to
the concentration in the plant cell wall) of high DM pectin have been found to be linear at
small deformation [196], reducing the DM and raising the concentration of divalent ions may
induce the gel closer to the syneresis-like phase sometimes alluded to in the literature [103] –
in which permeability is likely to decrease significantly.

3.6.3 A Modelling Approach to in vitro Pectin Viscoelastic Analysis

As discussed earlier, much of the pectin testing literature has been done using a model-
free DMA approach. Whilst informative, the fitting of viscoelastic models to data can
yield greater insight into the material and improve commensurability across studies. In this
section, inspiration is drawn from the early pectin investigations which used Generalised
Maxwell and extended Burgers-type models to capture the creep and relaxation behaviours
observed [90, 155, 158, 159]. The simplest two possible variants of the models tested in the
above studies are a Generalised Maxwell model (two Maxwell units in parallel, depicted
in Figure 3.10A) and a 2 time-scale Standard Linear Solid (SLS2, two Maxwell units in
parallel, both in parallel with single spring which provides a relaxation stress plateau, shown
in Figure 3.10B). The 2-unit Generalised Maxwell model is often referred to as the Burgers
model and that is the term that is used in the remainder of this Chapter. Further, the Burgers
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model can be considered a special case of the 2 time-scale Standard Linear Solid model where
the spring G0 = 0 Pa. See Equations 3.7 and 3.15 for comparison of their mathematical form.
Figure 3.10A shows the spring-dashpot schematic of the Burgers model, whilst Figures 3.10B
and C show the schematic of the SLS2 model in relaxation and creep form respectively. The
distinction between having a stress relaxation plateau (e.g. the SLS2 model) and not having
one (e.g. the Burgers model) is sometimes viewed as the defining characteristic of whether a
material is a viscoelastic solid (with plateau) or a viscoelastic fluid (no plateau).
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Fig. 3.14 A) Averaged relaxation data from all tests on DM41 HG at a depth of 2 µm, the averaged
predicted relaxation response of the fitted Burgers model, and the averaged predicted relaxation
response of the fitted SLS2 model. B) The same data as in A) but plotted in log-log scale.

The two models were fitted to all relaxation data samples from the DM41 gel at 2 µm
indentation depth (N = 20 across 6 gel samples). The averaged data, along with the averaged
responses of the two models is shown in Figure 3.14A. As can be seen from qualitative
examination of the figure, the SLS2 model appears to fit better at very short and longer
time-scales (although it does overshoot at the very beginning), whereas the Burgers model
appears to fit better during the transition at approximately t = 1 s (and undershoots at the
beginning). The averaged data was plotted in log-log scale for further analysis and from
this (Figure 3.14B) it can be seen that the gel behaves as a power-law for much of time past
t = 0.5 s. This is an important observation – it implies that our exponential-based models
are only an approximation of the actual behaviour. Whilst two pectin studies have observed
a power-law frequency dependence and fitted an empirical power-law model to the data
with differing degrees of success [165, 199], the use of empirical models has its own set of
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drawbacks. The power-law relaxation and its implications are further discussed in Chapter 4,
in which the data is revisited with a more powerful modelling framework. Quantitatively, the
averaged, normalised sum of squared residual error for the SLS2 model was 42.26 and the
error for the Burgers model was 45.42. In the end it was decided to use the SLS2 model for
subsequent investigations due its quantitatively better fit, and the fact that it was the more
general model of the two – the fitting procedure could always find that the best fit plateau
was 0.0 if appropriate. One drawback of the AFM method used here is that relaxation times
longer than 15 seconds were found to be unfeasible due to the need for greater acoustic and
vibration isolation, small amounts of piezo creep also appeared to occur during some of the
longer indentations [200]. This meant that during the model fitting process, the models may
have been implicitly extrapolating the plateau behaviour.

3.6.4 Elastic and Viscous SLS2 Parameters Are Inversely Correlated
with DM

As discussed, the works of Ström et al., Fraeye et al. and Ngouémazong et al. investigated the
effect of changing DM and DB on pectin-calcium gels using a model-free DMA approach.
Whilst Ström et al. and Ngouémazong et al. only presented the storage modulus data,
Fraeye et al. also presented the loss modulus G′′ data but only for a subset of tested pectin
gels [86, 171, 172]. For better characterisation of pectin rheology and potential insight
into pectin’s plant developmental role, it was decided to pursue a model-based approach
to viscoelastic analysis. To assess the viscoelastic properties of the different pectin types
available to us, 15 second AFM force relaxation tests were performed on HG gels with
different DM but the same amount of available calcium (R = 1, on the calcium saturation
threshold). Tests on all gels were conducted at an indentation depth of 2 µm, where necessary
forces to attain this depth were found by the previously discussed analysis of the elastic data.
Resulting curves were analysed using the SLS2 model. The fitting results for testing gels
of different DM are shown in Figures 3.15 and 3.16, and for testing gels of different DB in
Figures 3.17 and 3.18. Mean parameters +/- standard error are also shown in tables 3.1 and 3.2.
Parametric group-wise, and non-parametric pair-wise statistical analysis is summarised in
Appendix D.

The first point of interest is a comparison of the absolute values of instantaneous shear
stiffness (ISS) to the most closely related metric in other studies, the storage modulus, for
the pure DMs tested (33, 41 and 50). The stoichiometric ratio R used by Ström et al. [171]
and Fraeye et al. [86] for comparable DM pectins was significantly lower (0.3 and 0.2
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Fig. 3.15 SLS2 model parameters for the HG and HG mixtures tested. 33/50 represents the DM41
equivalent mixture, 41/60 and 33/70 represent the two DM50 equivalent mixtures. Continuous
horizontal lines represent the median of the data, dashed lines represent the mean. Edges of the box
represent the upper and lower quartiles and the whiskers represent the range of the observations.

respectively) which appears to have resulted in reported storage moduli of approximately
an order of magnitude less than the ISS found here. However, Ngouémazong et al. [172]
included data at R = 1 and our results agree well at DM33 and DM41, though a slightly
sharper decrease in ISS at DM50 was observed compared to their reported storage modulus.
Indeed, the sharp drop in ISS observed is particularly dramatic. Whilst the mean ISS drops
only 33% from DM33 to DM41, it drops 85% from DM41 to DM50. Looking at both
dashpot values of the SLS2 model (Figures 3.15C and D), a similar qualitative pattern can
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Fig. 3.16 SLS2 model relaxation time-scales for the HG and HG mixtures tested. 33/50 represents the
DM41 equivalent mixture, 41/60 and 33/70 represent the two DM50 equivalent mixtures. Continuous
horizontal lines represent the median of the data, dashed lines represent the mean. Edges of the box
represent the upper and lower quartiles and the whiskers represent the range of the observations.

HG DM ISS (kPa) η1 (kPas) η2 (kPas) τ1 (s) τ2 (s) E/V
33 58.7±3.2 1.38±0.15 31.5±4.8 0.05±0.01 3.64±0.37 0.22±0.01
41 39.1±1.2 1.14±0.09 27.3±2.9 0.06±0.01 4.13±0.29 0.22±0.01
50 5.90±0.22 0.17±0.00 3.79±0.29 0.05±0.00 3.95±0.19 0.28±0.00
33/50 30.4±0.8 0.62±0.03 15.0±1.3 0.03±0.00 3.43±0.18 0.24±0.01
41/60 17.8±0.8 0.47±0.04 10.5±2.0 0.05±0.00 3.40±0.21 0.25±0.01
33/70 20.9±1.8 0.49±0.02 9.50±0.98 0.04±0.00 3.17±0.16 0.21±0.00

Table 3.1 Mean SLS2 model derived parameters for all HG types +/- standard error. ‘E/V’ is
Elastic/Viscous Ratio. ‘33/50’ is the DM41 mixture. ‘41/60’ and ‘33/70’ are the two DM50 mixtures.

be seen. Furthermore, the elastic/viscous ratios shown in Figure 3.15B suggest that viscous
effects varied approximately proportionally to elastic effects, an observation corroborated
by the small subset of storage and loss moduli data presented by Ngouémazong et al. [172].
Although the variation of the elastic/viscous ratio means was fairly low, a groupwise ANOVA
statistical test suggested a significant difference between the gel types tested (p<0.001, see
Appendix D for more details). Regarding the SLS2 time-scales, shown in Figures 3.16A and
B, τ1 appears somewhat correlated with DM whilst τ2 is fairly constant for all three pure
DMs. ANOVA tests of both τ1 and τ2 suggested that the differences observed across gel
types may not be statistically significant (p>0.001 for both time-scales); however, the binary
nature of statistical significance tests can obscure subtle observations so the statistical tests
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are interpreted here with caution. It is difficult to physically interpret a possible correlation
between τ1 and DM as the time-scales involved are very close to the approximate ramp time.
The indentation speed used was 50 µms−1 and the depth was approximately 2 µm, so the
time for indentation ramp was approximately 0.04 s. The fact that it was the force that was
prescribed, not depth, complicates things further as there may be subtle interactions between
force and displacement via the AFM’s control system. Another reason for the difficulty of
physical interpretation of SLS2 time-scales is the fact that we know from Figure 3.14B that
HG displays power-law relaxation behaviour, so the two time-scales detected by the model
are only approximations of the distribution of time-scales observed. This is discussed further
in Chapter 4, in which a simpler yet more powerful model is fitted to the pectin data.

The tight coupling between elastic and viscous parameters has also been seen in previous
studies where calcium and DMA frequency was varied as opposed to DM [86]. This coupling
is suggestive of a single unified physical mechanism for both short-time deformation and
longer-time relaxation/dissipation processes. The most parsimonious candidate for this
mechanism is the breaking and reforming of ionic chains as it would successfully explain
both the negative elastic and viscous correlations with DM, and the tight coupling of elastic
and viscous properties themselves. Interestingly, this was the same conclusion reached by
Zhao et al. [26] in their rheological study of pectin’s algal equivalent, alginate, when the
alginate was gelled ionically. Although speculative, it is a useful thought experiment to ask,
assuming that the above hypothesis is true, what do the elastic and viscous parameters of our
model represent physically? Perhaps the elastic, or approximately elastic, material response
is determined by the presence of short but stable ionically bonded junctions whilst the longer
time-scale processes are determined by the contiguously longer junctions. In this scenario it
might be expected that HG with a more random pattern of de-esterification would appear
more elastic due to the preponderance of shorter ionic junctions, whilst more blockwise
de-esterified HG would appear more viscous due to the abundance of longer ionic junctions.
This hypothesis would also suggest that in the above experiments, the concentration of short
and long bonds changed proportionately across the different DMs. This physical hypothesis
is discussed further in Section 3.6.6.

As noted above, a clear non-linear relationship between pectin DM and the coupled
elastic and viscous parameters was observed. The rapid drop off in ISS and viscosity of
both dashpots at approximately DM50 and above may be due to the minimum number
of consecutive calcium bonds (approximately 6-20) required to form a stable inter-chain
bond [98, 99, 96]; higher DM gels have a much lower probability of attaining the minimum
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number of consecutive bonds required for consistent stable ionic junction formation. Initial
tests were attempted on higher DM (60 and 70) gels but they were found to be so soft as to
be incomparable to lower DM gels at similar indentation depths. This DM threshold may be
analogous to a ‘percolation threshold’ which is a type of gel/solution transition point [201].
Intriguingly, the Arabidopsis hypocotyl study by Derbyshire et al. [149] found that a min-
imum DM of approximately 60% was required for hypocotyl elongation, suggesting the
presence of a pectin-mediated percolation threshold in vivo that is remarkably close to that
found in this in vitro study. The consequences of this non-linearity on mixed DM gels are
investigated in Section 3.6.5.

3.6.5 Pectin Strength vs. DM is Non-Linear – Consequences For Mixed
DM Gels

For the reasons discussed in Section 3.4, we wanted to build on the previous results in a
more developmentally relevant direction. To this end, we generated two mixed gels with
an effective DM50, one using a combination of DM33 and DM70, and another using a
combination of DM41 and DM60. We also generated one mixed gel with an effective DM41
using a combination of DM33 and DM50 pectin. These were subjected to the same AFM
force relaxation tests and SLS2 model fits as above to investigate whether their mechanical
properties would be similar to the homogeneous DM pectin gels. The resulting data is sum-
marised in Table 3.1 and Figures 3.15 and 3.16. Parametric group-wise, and non-parametric
pair-wise statistical analysis is summarised in Appendix D.

As with the pure DMs, the elastic and viscous properties were found to be coupled across
gel mixtures, as shown in Figure 3.15. Given the coupling between elastic and viscous
parameters, we focus our discussion in this paragraph on the ISS metric for simplicity. The
ISS of the gel mixtures were found to be significantly different to their effective homogeneous
DM counterpart (pairwise ISS p-values between pure gels and mixtures were all p<0.001).
Comparing ISS: the effective DM41 was 22% more compliant than pure DM41, the effective
DM50 (41/60 mix) was 202% stiffer than the pure DM50 gel, and the effective DM50 (33/70
mix) was 255% stiffer than the pure DM50 gel. These differences may be explained by the
non-linear relationship between pectin DM and elastic/viscous properties discussed above.
Given that pure DM50 ISS (mean 5.9 kPa) is roughly an order of magnitude less stiff than
DM41 (mean 39.1 kPa) and DM33 (mean 58.7 kPa), and DM60 and DM70 have almost
negligible stiffness in comparison to those two gels, it makes sense that a DM volume fraction
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mix of the 41/60 or 33/70 would be significantly stronger than DM50 alone. (Indeed, the
fact that the DM50 mixtures’ mechanical integrity is dominated by the low DM contribution
explains why the DM50 mixture based on DM33 was slightly stronger than the DM50
mixture based on DM41, as DM33 is slightly stronger than DM41.) The same phenomenon
in reverse explains the relative weakness of the effective DM41 mixture. We can try and
quantify this. Using the DM50 (41/60) mixture for example, the mass fraction, φ , of HGs
used for the mixtures were found as follows

50 = 41φ +(1−φ)60, (3.18)

yielding 0.526 (3 d.p.). Multiplying this by the experimentally determined ISS for DM41
and assuming the DM60 ISS is negligible:

ISS41/60 = ISS41φ +(1−φ)ISS60 ≈ 20.6 kPa, (3.19)

which is approximately 15% greater than the actual experimental mean value found for that
mixture, which was 17.8 kPa. Repeating the same calculation for the other two mixtures
estimates ISS33/70 ≈ 31.8 kPa (experimental mean was 20.9 kPa) and ISS33/50 ≈ 33.8 kPa
(experimental mean was 30.4 kPa). Although the hierarchy of magnitudes of mixtures’
ISS is correctly found by these rough calculations, ISS41/60 < ISS33/70 < ISS33/50, they all
overestimate to some extent and the DM mixture made of DMs of the largest difference
is overestimated the most. Perhaps there is a physically manifested lack of ionic bonding
synergy between two HGs with different DMs, and the bonding synergy reduces as the
DM difference increases. This hypothesis certainly goes some way towards explaining the
discrepancy between calculated and experimentally observed ISS values of mixtures.

3.6.6 Elasticity, Not Viscosity, Correlated with DB

In order to further validate the AFM viscoelastic testing methodology of in vitro pectin and
explore the effects of different de-esterification patterns on the parameters of the SLS2 model,
two DM40 pectins de-esterified by different means were tested. Although not found explicitly
for this work, in a previous study by the same lab that made the pectin pre-mixtures, the pectin
de-esterified by alkali was estimated to have a DB of 39% whilst the pectin de-esterified
by highly processive PME derived from Valencia orange was estimated to have a DB of
95% [171]. As exact values were not found for this study, the two gels are referred to as
‘random’ (for alkali de-esterified) and ‘block’ (for PME de-esterified) herein. As before, 15
second AFM force relaxation tests at a depth of 2 µm were carried out on six samples of each
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pectin type with at least 3 unique points tested on each gel sample, with necessary prescribed
forces found via interpolation of the data in Figure 3.12C. The results of the SLS2 fitting are
summarised in Table 3.2 and Figures 3.17 and 3.18. Parametric and non-parametric statistical
analysis is summarised in Appendix D
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Fig. 3.17 SLS2 model parameters for the block and random de-esterified pectins tested. Continuous
horizontal lines represent the median of the data, dashed lines represent the mean. Edges of the
box represent the upper and lower quartiles and the whiskers represent the non-outlier range of the
observations. Open circles are considered outliers as they are greater than 1.5*(interquartile range)
distance away from the upper or lower quartiles.
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Fig. 3.18 SLS2 model relaxation time-scales for the block and random de-esterified pectins tested.
Continuous horizontal lines represent the median of the data, dashed lines represent the mean. Edges
of the box represent the upper and lower quartiles and the whiskers represent the non-outlier range
of the observations. Open circles are considered outliers as they are greater than 1.5*(interquartile
range) distance away from the upper or lower quartiles.

HG DB ISS (kPa) η1 (kPas) η2 (kPas) τ1 (s) τ2 (s) E/V
Block 39.3±2.5 1.23±0.26 33.9±3.6 0.06±0.01 3.94±0.43 0.15±0.00
Random 26.4±1.7 1.40±0.26 32.3±3.5 0.14±0.01 5.30±0.53 0.34±0.01

Table 3.2 Mean SLS2 model derived parameters for both pectin types +/- standard error. E/V is
Elastic/Viscous Ratio.

As before, the absolute values of ISS agree well with the storage moduli previously re-
ported in a study by Ngouémazong et al. [172], and are approximately an order of magnitude
greater than that found by Ström et al. [171] who used a much lower calcium concentration.
The key relative observation is that the block pectin was significantly stiffer than the random
pectin (parametric p<0.001, non-parametric p=0.0069). This is likely due to the increased
number of stronger, longer contiguous ionic junction zones. However, unlike the different
DM mixtures tested, where the interquartile range of elastic/viscous ratios overlapped at
least a small amount, the random elastic/viscous ratio was significantly higher than the
block one (parametric and non-parametric p<0.001), and both dashpot means and medians
were similar for both gel types (parametric and non-paremetric p>0.001). Indeed, whereas
the largest drop in mean elastic/viscous ratio in the previous test was 22% from DM50 to
DM33, the difference in mean elastic/viscous ratio between the block and random pectins
was found to be 55%. The reported ratios support the hypothesis discussed above whereby
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(A) (B)
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Fig. 3.19 Schematic diagrams of the proposed physical behaviour of pectin chains during indentation.
Blue squares are methyl groups, green circles are calcium bonds, sticks are de-esterified pectin sections
that have not bonded and have a single negative ionisation. De-esterified carboxyl groups repel each
other due to their single positive charge. A) Two pairs of HG pectin chains before indentation, one has
1 strong linkage (7 ionic bonds) and 1 weak linkage, the other has two weak linkages. B) The same
pectin chains at a short time-scale after indentation – the weak bonds have been broken. C) The same
pectin chains after prolonged indentation, at longer time-scsale. Stronger bond is now also broken.

a larger number of short bonds break and reform at very small time-scales and contribute
to an apparent elasticity, whilst longer bonds break and reform over longer time-scales
contributing to the observed relaxation. As predicted, the block pectin is more dominated
by longer time behaviour (longer ionic junction zones) whereas the random pectin is more
dominated by elastic short time behaviour (shorter ionic junction zones). Lastly, there were
more outliers observed in the block and random pectin gels, marked on the plots by open
circles, as compared to the previously tested HG gels where none were found. In the block
pectin it is possible that these were caused by more, or less ‘blocky’ regions; in the random
pectin it may be that there were regions of greater or less depolymerisation than the average.
In short, whilst DM appears to determine both viscous and elastic properties in a coupled
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fashion, the DB also determines elastic properties but correlations in the viscous parameters
of the model are not present.

The physical hypothesis proposed here is shown schematically in Figure 3.19 and its
justification is worthwhile discussing at greater length. We know that pectin of higher
DB will have a greater concentration of longer ionically bonded junctions than pectin of
lower DB. We also know that shorter chains of bonds are less strong than longer chains,
so it seems reasonable to propose that these are the first to break upon indentation, as
shown in Figure 3.19B. As the indentation force is held on the pectin, the longer bonds in
the area surrounding indentation may either spontaneously break, or perhaps break when
an opportunity arises to form a new bond with another pectin chain in a more suitable
configuration with lower strain energy. Indeed, longer bonds may have to wait longer for
a suitable pectin chain (with a similar number of free carboxyl groups) to arrive in close
enough proximity to form a new, lower strain energy configuration. A longer time-scale
schematic is shown in Figure 3.19C, after breaking of bonds but before potential reformation
at lower strain energy configurations. In contradiction to the above, the block pectin has
a higher ISS than the random pectin so longer pectin bond junctions must also contribute
instantaneously but it is possible that this could be through an entanglement-like effect on
the bulk short-time mechanical response, rather than their breaking apart in the short-time
region after indentation.

3.6.7 The Arabidopsis Hypocotyl Cell Wall – From Elastic to Viscoelas-
tic Analysis

As discussed in the literature review, it has recently been shown that the rapidly elongating
axial cell walls of the dark-grown Arabidopsis hypocotyl epidermis displayed a reduced
elastic modulus and increased amount of high DM pectin, when compared to more slowly
growing walls in the same sample [143]. As the tests in that study were solely elastic, not
viscoelastic, this system provided us with an ideal testing opportunity for our AFM-based
rheology method in planta. It also allowed us to investigate whether our rheological results
in gels translated to the Arabidopsis cell wall, which is more complex. The methodology
used above with gels for the evaluation of poroelastic vs. viscoelastic dominance is much
more difficult in the context of the primary cell wall. Although in vitro pectin has been found
to be linear viscoelastic at concentrations similar to the cell wall (∼30%) [196], there are
a multitude of potential sources of non-linear mechanical behaviour in the plant cell wall.
As pectin is the largest constituent of the primary cell wall in Arabidopsis, it was assumed
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that the dominant behaviour would be linear viscoelastic, as in the HG gels. This assumption
was in line with previous elastic studies which assumed linear elasticity based on the use
of indentations of less than than 10% of cell height [140]; further, the assumption greatly
facilitated ease of comparison between in vivo and in vitro pectin results.

Fig. 3.20 A) Representative map of elastic indentation moduli over a section of Arabidopsis hypocotyl,
wall marked as ‘Trans’ is a transverse wall perpendicular to elongation axis, other marked wall is an
axial wall parallel to elongation axis. Width of figure represents 50 µm real-scale. B) Representative
Arabidopsis hypocotyl viscoelastic creep data with SLS2 fit.

Before diving in to the data, the effect of AFM tip and model used to obtain the presented
results should be discussed. In contrast to the spherical bead AFM tip used for the gels, a
pyramidal indenter was used in the plant tests for greater localisation. The pyramid has a
rounded point and it is the radius of this point (5 nm) that was provided by the manufacturer.
Without knowing the precise geometry of the rounded point, the analysis in this chapter
assumed that it was approximately hemi-spherical and thus the same Hertz model as for gels
could be used. However, it is difficult to know how good of an approximation this is. There
are several other models that may have been suitable if more information about the tip geome-
try was known. These include a higher-order spherical approximation and four-sided pyramid
model [202]. Although the four-sided pyramid model seems perhaps the most plausible it is
parameterized by a pyramidal angle which is not known in our case. In short, the difference in
tip geometry between gel and plant experiments makes absolute comparisons of mechanical
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Fig. 3.21 Plant model fit results – continuous line represents median of data and dashed line represents
mean of data. Edges of the box represent the upper and lower quartiles and the whiskers represent
the range of the observations. A) ISS, or equivalent shear stiffness at time t=0, as found by the SLS2
model for both Arabidopsis wall types tested. B) Elastic/Viscous ratio as found by the SLS2 model
for both Arabidopsis wall types tested. C) Retardation time scale 1 of the SLS2 model for fitted to
both Arabidopsis wall types tested. D) Retardation time scale 2 of the SLS2 model for fitted to both
Arabidopsis wall types tested.

parameters unfeasible. However, given the known difference in DM between axial and trans-
verse walls in the Arabidopsis hypocotyl, a relative comparison to the in vitro data is valuable.

An elastic stiffness map was generated using the same AFM-based nanoindentation
method utilized in the previous study [140, 143]. The basal, rapidly elongating, region of the
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hypocotyl was exposed to rapid indentation. More precisely, the indentations were done in
the same region as a previous study by Bou Daher et al. [143], approximately one third of
the way up the hypocotyl; in Figure 3.6A, this approximately pertains to cell numbers 4 -
7. A Hertzian indentation model was used to generate a map of ‘indentation modulus’ (IM)
24 hours post-germination; Figure 3.20; indentation modulus is defined here as the Hertz-
derived Young’s Modulus (E) for a plant cell where the cellular-solid nature of the material
is non-standard for analysis of E. The IM map showed that the transverse walls were signifi-
cantly stiffer than the axial walls (Transverse: 13.60±1.82 MPa, Axial: 6.19±0.60 MPa,
p < 0.001), in good agreement with the previous work [143, 150]. The IM map was used
to select points on each sample’s axial and transverse walls (5 points on each wall type per
sample) at which creep tests were conducted of duration 15 s and force 500 nN. Creep tests
were performed on the plants, instead of force relaxation used for HG testing, for two reasons:
firstly, the AFM signal in plant viscoelastic testing was found to be far noisier and creep tests
provided the best signal/noise ratio due to the force-feedback AFM controller. Secondly,
the data would be more comparable to organ level extensometer data in the literature [3].
As exponential relaxation type models have been successfully used in various mechanical
studies of plant cells, including those of the Arabidopsis hypocotyl [63, 42, 177, 25, 44], an
SLS2 model was selected for the analysis of the plant viscoelastic data to facilitate commen-
surability with the HG data. A representative fit is shown in Figure 3.20B.

3.6.8 In muro DM Negatively Correlated With ISS and Rate of Creep
– Predicted Plateau Shear Stiffness Appears To Be Coupled In
Axial/Transverse Walls

Since we knew that transverse walls exhibited lower DM than axial walls [143], we could
explore how DM was related to the SLS2 parameters in a more complex wall material.
Figure 3.21A shows the ISS of the SLS2 model for both transverse and axial cell walls. As
with the elastic force map, the ISS data demonstrate that at near-instantaneous time-scales the
axial walls are significantly less stiff than the transverse walls (315±46 kPa for axial walls
compared to 488±104 kPa for transverse walls, a 55% difference, non-parametric p < 0.05).
This difference is in line with the elastic results found in this (Figure 3.20A), and earlier
studies [150, 143]. When combined with our gel data above our results fit the hypothesis
expounded by Bou Daher et al. [143] that lower DM pectin in the transverse hypocotyl cell
wall results in an increased stiffness compared to the axial wall. However, it is should be
noted that the ISS values found by fitting the viscoelastic SLS2 model are approximately
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Fig. 3.22 A) PSS, or equivalent shear stiffness as time t → ∞, as found by the SLS2 model for both
Arabidopsis wall types tested – continuous line represents median of data and dashed line represents
mean of data. Edges of the box represent the upper and lower quartiles and the whiskers represent
the range of the observations. B) Simulated creep compliance for both wall types predicted by the
fitted SLS2 model subject to a step load, line uses the mean parameters for that wall type, shaded area
represents +/- one standard error of the parameters.

one order of magnitude smaller than the IM values at the same point, found using an elastic
Hertz fit. This indicates that some of the deformation that the elastic analysis interpreted as
stiffness may have been implicitly incorporated into the viscous elements of the viscoelastic
model.

In the pectin gels examined earlier, the time for relaxation did not change with DM. In
the primary cell wall, we found that increasing DM increased both time-scales τ1 and τ2.
Figures 3.21C and 3.21D show the time scales τ1 and τ2 as fitted by the SLS2 model. The
mean values of both time-scales were higher in the axial walls (0.11±0.02 s vs. 0.06±0.01 s
for τ1, and 7.2±1.7 s vs 4.7±0.9 s for τ2, axis and transverse walls respectively). However,
only the difference in τ1 was found to be statistically significant (non-parametric p < 0.05
for τ1 compared to non-parametric p ∼= 0.39 for τ2). This difference was mirrored in the elas-
tic/viscous ratio of the two wall types (Figure 3.21B); unlike the pure pectin gels tested earlier
(Figure 3.15C), the plant cell walls exhibited different elastic/viscous ratios (0.82±0.02 for
axial walls and 0.67±0.03 for transverse walls, non-parametric p < 0.05). So the viscoelas-
tic response of the axial walls was dominated more by its small time-scale behaviour than
the transverse walls. This could be due to any number of interactions between the pectin,
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hemicelluloses and cellulose; or as we have seen from the tests in DM40 pectin gels of
different DBs, the de-esterification pattern of the pectin itself may play a role.

Since our creep experiments on plant cell walls did not always reach plateaus during
the maximum experimental time (15 s), we used our fitted SLS2 parameters to simulate the
response of the creep moduli for axial and transverse walls to a step loading (Figure 3.22B;
the solid lines represent response found using mean average parameters, shaded areas are
responses using +/- standard error parameters). This simulation yielded a clear graphical
explanation for the E/V ratio difference and provides insight into the difference in time-
scales: the axial walls were less stiff instantaneously but plateaued at a similar time to the
transverse walls. This would require a slower rate of creep and higher effective time-scale.
Both axial and transverse wall compliance then plateaued at similar values, reflected in
the overlap of their standard-error compliance in Figure 3.22B. Equivalently, these similar
plateau compliances can be inverted and thought of as plateau shear stiffnesses (PSS), as
plotted in Figure 3.22A. Compared to the 55% difference in ISS, there was only a 21%
difference in the means of the two PSS values (PSS = 301±53 kPa for transverse walls,
PSS = 248±31 kPa for axial walls); the PSS statistical significance was p = 0.21 (2 s.f.)
reflecting greater overlap than the ISS. As this closeness in PSS was not observed across
DMs in pure HG gels, it seems there must be a cell-wall-specific explanation. Given the
small tip diameter (10 nm) the AFM results should be fairly localized. Therefore, one pos-
sibility is that other locally situated components of the cell wall play a role in setting the
plateau shear stiffness of the axial and transverse walls, the mightily strong cellulose [203]
being the most probable candidate. If longer range effects do come into play, it is possible
that the axial and transverse walls are architecturally and geometrically coupled in such a
way that is only mechanically realized at longer time-scales. For example, the cellulose fi-
bres in the cell wall could be contiguous across cell faces which would provide such coupling.

3.7 Conclusion

In this study an AFM-based viscoelastic methodology has been developed and used to
test the viscoelastic properties of pectin gels and Arabidopsis hypocotyl cells. For in vitro
pectin, linear viscoelasticity was identified as a suitable theoretical framework with which to
analyse the time-dependent mechanical data. Two possible constitutive models were fitted
and analysed for their suitability: an SLS2 and a Burgers model. Although fairly close,
quantitative evidence favoured the SLS2 model which was also more general. The choice of
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model and its implications are discussed further in Chapter 4. Through use of the SLS2 model,
it was observed that both elastic and viscous parameters changed in tandem with changes
in DM; they were both negatively correlated with DM. From this, it was hypothesised that
dynamic ionic bond reformation was the dominant mode of physical deformation during the
force relaxation tests. The AFM viscoelastic methodology was further validated against two
DM40 pectin gels with different patterns of de-esterification, one random and one blockwise,
and only ISS was found to be correlated with DB. Explicit viscous parameters did not
change significantly across the gel types, but the elastic/viscous ratio changed significantly,
in line with the hypothesis that ionic bond reformation in random de-esterified pectin will
be percieved as more elastic by the model, whereas block de-esterified relaxation behaviour
will be more dominated by longer time-scale behaviours. The SLS2 model was then used
to investigate several mixed DM HG gels. The non-linear relationship between gel ISS
and DM was thought to explain the discrepancies between mixed and pure DM gels’ ISS.
Interestingly, the reports by Löfgren and Hermansson [179, 84] found that their calcium
and sucrose containing high/low DM mixtures exhibited heterogeneous architecture, with
clusters of low DM pectin forming.

In future work, it would be interesting to test these mixed gels with (and without)
sucrose, using a more fine resolution AFM probe to better understand potential rheological
heterogeneities, at what length scale they occur, and whether they can inform understanding
on high/low DM pectin bonding synergies or lack thereof. Further, improving the speed
of viscoelastic fitting could facilitate large-scale topographical maps of pectin viscoelastic
properties. From a developmental perspective, further work could be done to investigate the
conditions required for linearity. In particular, it would be interesting to evaluate poroelastic
effects closer to syneresis. If poroelastic effects are found, the DM mixtures could also
be retested under these conditions; although the high DM gels were found to have limited
contributions to viscoelastic integrity, their presence may affect permeability when the bulk
gel is close to syneresis. This would help inform our understanding of whether or not pectin
regulates permeability in muro. Lastly, evaluation of plastic deformation using AFM is not
straightforward. Near the end of this study, a novel way of evaluating plastic deformation
was conceived and a preliminary test carried out. The method works as follows, a unique
point is tested under creep conditions (4000 nN, 7.5 s and 15 s durations were tested), then at
the moment of creep finish, a timer is started and after a fixed interval of time has passed, a
rapid elastic indentation is carried out. From the contact point detected in this second, elastic
indentation, the percentage indentation depth recovery can be calculated. A phase-space
schematic of the experiment is shown in Figure 3.23. The results of this preliminary test are
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Fig. 3.23 Idealised phase-space schematic of the proposed plastic deformation experiment. In the first
run (blue line), a creep test is performed. Time is in the direction of the blue line clockwise around the
area it encloses. After this, some time is allowed to pass, and then an elastic indentation is conducted.
From the difference in contact points between the two runs, the lasting deformation from the creep
run, ∆h, can be identified.

shown in Figure 3.24. As each test for different creep durations and recovery durations had
to be done at a unique point, it is a time-consuming experiment. However, it does appear to
yield a useful recovery curve which plateaus after approximately 30 s in the DM41 gel tested.
This should be tested further as if the results are validated it would imply that a dashpot in
series is required to be added to the model used to represent the plastic deformation.

The in vivo AFM creep protocol, already achieved in animal cells but adapted here for
plant testing, appears to work well and complements the bimodal AFM viscoelastic method
developed by Seifert [44] and the dissipation based method of Fernandes et al. [43]. The in
vivo viscoelastic results built upon previous work on the elastic properties of Arabidopsis
hypocotyl cell walls [143] and demonstrated that the SLS2 model provides a good fit to
experimental creep data. The instantaneous shear stiffness was found to be in line with
indentation moduli found in elastic indentation tests. Both data sets were congruent with HG
gel mechanical data here and the hypothesis that pectin DM is significantly correlated with
short time-scale mechanical compliance. The time for creep to plateau was found to be slower
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Fig. 3.24 Results of a preliminary investigation of a novel AFM protocol for detection of depth
recovery dynamics and plastic deformation.

in axial walls than transverse walls, in contrast to the gels which displayed similar timescales
over the range of DMs tested. Lastly, the mean plateau shear stiffness was far closer between
wall types than the instantaneous shear stiffness indicating the possibility of a mechanical
coupling between axial and transverse walls that is only realised at longer time-scales. As
cell walls must have anisotropic mechanical properties to allow anisotropic growth, the
differences in stiffness at short time-scale but similarities at longer time-scale suggest that
short time-scale mechanical properties may be the arbiters of growth processes. This would
partly explain why elastic moduli have been successfully used as developmental correlates
and in plant growth modelling [56, 143]. This hypothesis is also supported by the fact that
although there were differences between the elastic/viscous ratio of axial and transverse
walls, they were both fairly elastic and thus their dynamics were concentrated more at shorter
time-scales. However, given the fact that cell walls are clearly viscoelastic, the dynamic data
presented here may be useful in development of more detailed growth models, computational
or otherwise. Further work should be done to validate the SLS2 model as a constitutive
phenomenological model for plant cell walls so that fitting and prediction can be done, and
to establish it as a standard that can be used to compare chemically treated plants or genetic
mutants. In addition, if the SLS2 is fully validated, the physical significance of the 2 time
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scales should be established. Additional work could also explore longer time-scales, a finer
spatial resolution, and probe the mechanisms that might be contributing to the apparent weak
mechanical coupling between axial and transverse hypocotyl walls at longer time-scales.





Chapter 4

The Utility of Fractional Viscoelasticity
and Its Software Implementation

Their problems of form are in the first
instance mathematical problems... there
is no branch of mathematics, however
abstract, which may not some day be
applied to phenomena of the real world.

[9] D. W. Thompson, 1945
On Growth and Form

4.1 Author Contributions

The first sections (up to the pectin re-analysis), and Appendix B, are based on a collaborative
work with Alessandra Bonfanti (AB – post-doctoral researcher at CUED) and Alexandre
Kabla (AK – supervisor at CUED) as part of a forthcoming paper/review. JLK wrote the
majority of the code and documentation of the software package RHEOS; overall the software
was a collaborative process involving discussion and testing feedback from AB and AK.

4.2 Overview of Chapter

This chapter can be considered as two halves. In the first, a brief history of fractional vis-
coelasticity is given, followed by an overview of its main technical elements, and comparisons
with traditional spring and dashpot viscoelastic models. The pectin data from Chapter 3 is
re-evaluated with the benefit of the fractional viscoelastic concepts introduced priorly. In the
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second half, the motivation, architecture and features of a fractional viscoelastic open-source
data analysis program is discussed (RHEOS).

4.3 Fractional Viscoelasticity

4.3.1 Introduction

In Chapter 2, the existence of power law rheology was briefly mentioned, whilst in Chapter
3, power law stress relaxation was observed in pectin in vitro and was approximated by a
number of exponential terms arising from a spring and dashpot model. In what follows, the
origins and uses of power law rheology are discussed in more detail. Power law rheology
is also discussed with regards to its placement within the broader theoretical framework of
fractional viscoelastictiy. The power law model of viscoelasticity was first suggested by
Nutting whilst studying pitch-like substances in 1921 [204]. The use of a power law model
was continued by Scott Blair and others, who in the 1940s noted the fact that power law
viscoelasticity arose naturally as the solution to a fractional differential equation [205, 206].
Although there had been intermittent theoretical progress of fractional calculus for several
centuries before, Scott Blair and his colleagues appear to be the first to have used it in
an applied context [207, 208]. Since that time, fractional viscoelasticity has found use in
manifold different materials with the common attribute of complexity, wherein numerous
mechanistic processes contribute simultaneously to the material’s relaxation and creep pro-
cesses such that a distribution of time-scales is observed. For instance, many examples can be
found of fractional viscoelasticity applied to complex geological and construction materials
such as bitumen (asphalt) [209, 210], concrete [211, 212], rock mass [213–218] and waxy
crude oil [219, 220]. Numerous examples can also be found of fractional viscoelasticity
applied to biological materials such as epithelial cells [7], breast tissue cells [221, 222],
lung parenchyma [223], blood flow [224, 225] and others, as well as polymers more gener-
ally [226, 227].

From the above, it would be wrong to conclude that the use of fractional viscoelasticity
is commonplace. Of popular rheology textbooks published in 1989 [20, 228], 2008 [229],
2009 [22] and 2013 [230], fractional viscoelasticity is only mentioned briefly in one of
them [22]. This is in spite of the considerable rheological interest in materials that exhibit
power law behaviour. In its place, a multitude of empirically derived moduli and approx-
imations have been used. These include the empirical power law model [199], as well as
more intricate models involving numerous power law terms [231] or products of power
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law and exponential terms [232]. The approximation of power law behaviour by spring
and dashpot models also appears to be fairly widespread, with one study using as many as
ten parameters [166]. The topic of power law approximation via springs and dashpots is
discussed in Section 4.3.2.

Before exploring some of the many interesting aspects of fractional viscoelasticity, it
is worthwhile briefly placing the discussion that follows below within the wider context
of power law material behaviour. As mentioned in Chapter 1, the work contained in this
thesis is largely concerned with phenomenological viscoelastic models, sometimes described
as ‘top-down’ models [233] because they attempt to accurately capture and predict the
observed phenomena without explicitly accounting for its underlying causes. Although we
may attempt to relate our model parameters to physical properties of a material, fractional
viscoelasticity is still considered a phenomenological approach as it does not directly model
the mechanistic causes of the behaviour. Other phenomenological approaches to modelling
power law material behaviour used in the literature often involve some form of power law
mathematical ansatz as mentioned in the above paragraph; in some cases these models can
actually be shown to have direct fractional viscoelastic equivalents and this is discussed
in Section 4.3.5. Alternatively, there also exist more mechanistic approaches to modelling
power law behaviour such as soft glassy rheology (SGR) [234] and worm-like chain (WLC)
models [235, 236]. WLC models have garnered interest from the biophysical community for
their ability to model materials constructed of biofilaments [236, 235], though SGR models
have also been used in a biological context [231]. In SGR theory, material elements are
embedded in potential energy wells across a matrix, each well’s energy is defined according
to a model-wide probability distribution [231, 234]. Indeed, the idea of distributions of
physical quantities giving rise to power law behaviour appears to be a unifying theme. Some
particular cases of SGR models have been shown to be exactly equivalent to fractional
viscoelastic models in their resultant behaviour [237].

4.3.2 The Limitations of Spring and Dashpot Systems

A key tenet of this thesis is that a self-consistent, unified framework for viscoelastic modelling
is better than an arbitrary, empirical method of moduli selection; this conviction is held by
many others and motivated the development of the springpot. However, before discussion
of the springpot itself, it is illuminating to first assess whether it is truly necessary by
exploring the limitations of viscoelastic models based on the springpot’s spring and dashpot
predecessors. More explicitly, to ask whether or not spring and dashpot models are capable
of capturing power law viscoelasticity. Schiessel and Blumen [238] approached this question
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(A) (B)

Fig. 4.1 A) Generalized Maxwell model with n Maxwell arms in parallel, each with its own time-scale,
and an equilibrium (plateau) stiffness. B) Generalised Kelvin-Voigt model with n Kelvin-Voigt units
in series, and a spring in series allowing instantaneous deformation. In both figures, double wave
lines symbolise n repetitions of the Maxwell/Kelvin-Voigt units respectively. Overbars on parameter
glyphs emphasise the fact that the parameters are not the same in both models, though they can be
interconverted.

by use of self-similar ladder and fractal networks of springs and dashpots. Here however, the
relaxation modulus of a generalised Maxwell (GM) model is used; the model consists of a
number of Maxwell models in parallel and sometimes one spring in parallel which provides
a relaxation plateau. Alternatively, one could explore the above question using a generalised
Kelvin-Voigt model, which consists of a number of Kelvin-Voigt models, sometimes in series
with a spring. (In fact, the pectin analysis in Chapter 3 utilised both of the above models,
truncated to two time-scales.) The schematic diagrams of the two generalised models are
shown in Figures 4.1A and B. From the fact that relaxation moduli are additive in parallel
and creep moduli are additive in series, the relaxation modulus of the GM and the creep
modulus of the generalised Kelvin-Voigt model can be deduced:

E(t) = k0 +
n

∑
i=1

kie−kit/ηi, (4.1)

J(t) =
n

∑
i=0

1
ki
−

n

∑
i=1

1
ki

e−kit/η i. (4.2)
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The key feature of both Equations 4.1 and 4.2 is that they consist of n summed exponen-
tial terms, each of which has its own time-scale. For the GM model these are relaxation
time-scales, τi = ηi/ki, and for the generalised Kelvin-Voigt model they are retardation
time-scales, τi = ηi/ki. On first inspection, these well defined time-scales appear phenomeno-
logically incompatible with scale-free power law behaviour. However, a sum of multiple
well defined time-scales can be used to approximate scale-free power law behaviour, and
this approximation process is useful to a number of fields beyond rheology. A method of
optimal power law approximation by exponential terms has been suggested in the context
of quantitative finance [239]. In a 2001 study on the distribution of genomic indel lengths,
a complex signal exhibiting two power laws was fitted using 600 exponential terms [240];
however, inspection of the results found that just four terms contributed significantly, so the
final empirical function was reduced to those four. If n → ∞ then an exact power law can be
recovered. For example, Winter and Chambon [241] derived, from physical considerations
of a crosslinked polymer, a relaxation modulus that could be equivalently defined as either a
power law or an infinite sum of exponential terms.

To get a better understanding of the GM model’s ability to capture power law behaviour,
three different truncations of the model were fitted to a true power law decay. The results
of this are shown in Figure 4.2A. With only one Maxwell arm, a clear exponential curve is
visible, as would be expected. With an increasing number of Maxwell arms the fit improves.
Finally, with 6 Maxwell arms, a good fit is achieved over the full three decades of time.
The increasing goodness of fit can be quantified, with the sum-of-squares error for 1, 2
and 6 time-scale truncations being 295.04, 60.97 and 3.45 respectively. From this, it may
be tempting to conclude that spring and dashpot models are adequate, even for power law
viscoelasticity. However, this is not the case due to three critical reasons. Firstly, increasing
the number of parameters can lead to the problem of overfitting, defined by Hawkins as “the
use of models or procedures that violate parsimony – that is, that include more terms than are
necessary or use more complicated approaches than are necessary” [242]. To give a concrete
example, if parsimony was ignored one could fit an elaborate polynomial to the above power
law and claim it was an equally good model as any other. The second reason is that the
rheologist is often interested in the physical interpretation of model parameters; a difficult
task which becomes even more so when faced with an increasing number of parameters,
some of which may be redundant. Thirdly, increasing the number of parameters greatly
increases the computational burden of model fitting. The ideal modelling paradigm is one
which fits the data well, enables accurate prediction, and where the qualitative features of the
data are captured by a minimum number of parameters. The springpot brings us closer to
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Fig. 4.2 A) Power law (with plateau) stress relaxation response fitted with generalised Maxwell
models truncated at 1, 2 and 6 time-scales. Sum-of-squares errors are 295.04, 60.97 and 3.45 for each
time-scale truncation respectively. B) Relaxation spectra of the power law response and generalised
Maxwell models truncated at 1, 2, and 6 time-scales as fitted for in Figure A above. Note that the
time-scales are approximately evenly spaced in logarithmic time.

this paradigm whereas a circumscription to springs and dashpots leads us astray.
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It should also be noted that sometimes a continuous spectrum of time-scales, rather than
a discrete infinite sum, is considered [243]:

E(t)−E∞ =
∫

∞

0
H(τ)e−t/τ dτ, (4.3)

where E∞ is the relaxation plateau and H(τ) is known as the relaxation spectrum. The
relaxation spectrum determines the relative dominance of particular time-scales. Simple
relaxation spectra consisting of Dirac delta functions reduce Equation 4.3 to a regular GM
model. This is shown qualitatively in Figure 4.2B which shows the relaxation spectra of the
fitted GM models’ spectra along with the power law spectrum. A number of more intricate
spectra can be found in textbooks and papers [22]. A relaxation spectrum that yields an exact
power law response could not be not found for this thesis, but a closely related relationship
was identified [244]

1
Γ(λ )

∫
∞

0
xλ−1

0 e−tx0 dx0 = t−λ , (4.4)

where Γ is the gamma function, x0 is a dummy integration variable, λ is the power law
parameter and t is time. This can be seen by writing the LHS of 4.4 with the integral
definition of the Γ function explicit

1
Γ(λ )

∫
∞

0
xλ−1

0 e−tx0 dx0 =

∫
∞

0 xλ−1
0 e−tx0 dx0∫

∞

0 xλ−1
1 e−x1 dx1

, (4.5)

where x1 is another dummy integration variable. Now, substituting x1 = tx0, so that dx1 =

tdx0, we find∫
∞

0 xλ−1
0 e−tx0 dx0∫

∞

0 xλ−1
1 e−x1 dx1

=

∫
∞

0 xλ−1
0 e−tx0 dx0∫

∞

0 (tx0)λ−1e−tx0t dx0
=

∫
∞

0 xλ−1
0 e−tx0 dx0

tλ
∫

∞

0 xλ−1
0 e−tx0 dx0

= t−λ . (4.6)

In the last simplification step, the integrals in the numerator and denominator cancelled each
other out. Thus, the power law can be represented exactly in terms of a weighted average of
exponential terms.

4.3.3 The Springpot

Power law viscoelasticity is observed in many materials, and we have seen in the previous
section that spring and dashpot models are, in practice, inadequate tools for capturing power
law behaviour. This leaves us with two options, an empirical power low formula can be
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used, i.e. At−x, or a proper viscoelastic element can be defined which is capable of capturing
power law behaviour. The latter option is advantageous as it yields a constitutive differential
equation which can be combined with springs and dashpots elements to capture more complex
behaviours in a systematic manner. In this section, the constitutive differential equation of the
springpot is derived and its response discussed. The first step in our semi-rigorous derivation
of the springpot’s constitutive equation is to integrate the strain, ε(t), n times which results in

D−n
ε(t) =

∫ t

0

∫
τn−1

0
...
∫

τ1

0
ε(τ0)dτ0 ... dτn−2 dτn−1, (4.7)

where τi are dummy variables of integration and Di is the differintegral operator which
represents differentiation for positive i and integration for negative i [245]. The above can be
simplified using Cauchy’s repeated integral formula [246], leading to

D−n
ε(t) =

1
(n−1)!

∫ t

0
(t − τ)n−1

ε(τ)dτ. (4.8)

Next, we generalise the above function to real numbers by rewriting the factorial term using
its real number generalisation, the Γ function, for consistency with later notation we also
re-label n = α . These changes lead to the following

D−α
ε(t) =

1
Γ(α)

∫ t

0
(t − τ)α−1

ε(τ)dτ. (4.9)

The substitution α = 1−β is then made in equation 4.9, which leads to

Dβ−1
ε(t) =

1
Γ(1−β )

∫ t

0
(t − τ)−β

ε(τ)dτ. (4.10)

Applying the single derivative differintegral operator D1 to both sides, and noting that
DaDb = Da+b and thus the operator is commutative [247], yields the definition of the Caputo
fractional derivative of degree β [248]

Dβ
ε(t) =

1
Γ(1−β )

∫ t

0
(t − τ)−β dε

dτ
dτ =

dβ ε

dtβ
. (4.11)

Now, considering the most general power law viscoelastic relaxation form E(t) = At−β and
substituting it into the viscoelastic hereditary integral derived in Chapter 2 yields

σ(t) = A
∫ t

0
(t − τ)−β dε

dτ
dτ, (4.12)
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which is essentially Equation 4.11 in disguise. Comparing the two, we find that in order
to capture the full generality of the empirical power law in Equation 4.12, Equation 4.11
requires one more degree of freedom in the form of an additional parameter, henceforth
called cβ . Putting it all together, we arrive at the constitutive differential equation for the
springpot element

σ(t) = cβ

dβ ε

dtβ
. (4.13)

The differential constitutive equation of the springpot could also have been derived via
the Laplace transform of the empirical modulus. However, the above derivation highlights
the remarkable congruence between the Caputo fractional derivative (Equation 4.11) and
the viscoelastic hereditary integral with a power law kernel (Equation 4.12). Further, it
has recently been found that the relaxation moduli of more complicated combinations of
springs, dashpots and springpots are coincident with other definitions of the fractional
derivative, e.g. that given by Baleanu and Fernandez [249]; this is the topic of an ongoing
research collaboration. It should also be noted that differential equations involving fractional
differintegrals are sometimes referred to as extraordinary differential equations [208].

Fig. 4.3 The springpot (at centre) and its relation to the spring and dashpot elements via its β parameter.
When β = 0 the springpot is equal to a spring, when β = 1 the springpot is equal to a dashpot.

An advantage of the springpot, as opposed to an empirical power law formulae, is its well
defined fractional differential equation which reveals that power law viscoelasticity is in fact
the interpolating behaviour between a spring and a dashpot. This can be seen from Equa-
tion 4.13 by letting β → 0 and relabeling cβ = k thus reducing it to the constitutive equation
of the Hookean spring shown in Chapter 2; letting β → 1 and relabelling cβ = η leads to
the constitutive equation for the Newtonian dashpot shown in Chapter 2. In application,
the constraint 0 < β < 1 is adhered to. The springpot’s visual symbol, and its parametric
relationship to the spring and dashpot are shown in Figure 4.3.
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Fig. 4.4 A) Normalised relaxation response of a springpot when subject to a step strain load for β

varying from 0 (red) to 1 (blue) in increments of 0.1. B) Normalised creep response of a springpot
when subject to a step stress at t = 0.0 which is removed at t = 0.5. The same values of β and
colours apply. C) Springpot storage modulus G′ in solid line, and loss modulus G′′ in dashed line, for
β = 0, 0.5, 1 in red, yellow and blue respectively. D) As in previous figure but β = 0, 1 replaced by
β = 0.3, 0.7 in orange and green respectively.

For qualitative insight, it is beneficial to see the response of the springpot firsthand. To
this end, the relaxation modulus, creep modulus and complex modulus are written below and
their responses with varying coefficient of dissipation β shown in Figure 4.4. The moduli are
derived in exactly the same way as shown in Chapter 2: via Laplace transform for the creep
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and relaxation moduli, and assuming oscillatory loading for the complex modulus.

E(t) =
cβ

Γ(1−β )
t−β , J(t) =

1
cβ Γ(1+β )

tβ , (4.14)

G′ = cβ ω
β cos(

π

2
β ), G′′ = cβ ω

β sin(
π

2
β ). (4.15)

The plots in Figure 4.4 demonstrate the behavioural diversity that a single springpot is capable
of. In particular, it can be seen from Figure 4.4 that the springpot qualitatively interpolates
between springs and dashpots, regardless of which modulus is considered.

Due to the fact that fractional physical dimensions lie beyond the grasp of ordinary
intuition, a difficulty associated with springpots, and fractional calculus more generally, is
their physical interpretation (although this also applies to the empirical power law model).
The springpot pioneer Scott Blair also contributed greatly to the field of psychorheology,
introduced in Chapter 3; after carrying out investigations into the (admittedly subjective)
perception of power law materials with colleague Flora Coppen, the term ‘firmness’ was
decided appropriate for the parameter cβ , which has the admittedly inscrutable physical units
of Pa s−β . By similar methods, the dimensionless parameter β was named the ‘coefficient of
dissipation’ [250, 251], alluding to the fact that Hookean springs (β = 0) store all energy,
Newtonian dashpots (β = 1) dissipate all energy, and springpots interpolate between the two
behaviours.

4.3.4 Multi-element Fractional Models

Deriving a Simple Fractional Model

Springpots can be combined with springs and dashpots in any series/parallel configuration
desired. In this section, a simple combination of two springpots in series is derived. Note that
the differential equations, moduli and graphic responses are shown for a number of general
fractional models in Appendix B. First, we remind ourselves (from Chapter 2) that in series,
the stress is equal and opposite at every junction in the system such that

σ = σα = σβ , (4.16)

where σ is the applied stress, σα is the stress in the first springpot and σβ is the stress in
the second springpot. Then we can consider the differential equations of the two springpots
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separately
σ = cαDα

εα , (4.17)

σ = cβ Dβ
εβ , (4.18)

where Di is the differintegral operator as before, and εα and εβ are the strain contributions
of the first and second springpot respectively. Reminding ourselves that strain is additive in
series, the following relationship can be found

ε = εα + εβ , (4.19)

where ε is the total strain. Differentiating Equation 4.19 using the operator Dα leads to

Dα
ε = Dα

εα +Dα
εβ . (4.20)

For the first term on the RHS, we can simply rearrange Equation 4.17 to get Dαεα = σ/cα .
For the second term on the RHS we can rearrange Equation 4.18 yielding Dα−β σ/cβ .
Substituting these into Equation 4.20, multiplying through by cα and flipping the sides of the
equation round we find that

σ +
cα

cβ

Dα−β
σ = cαDα

ε, (4.21)

which can be written in the more traditional differential notation as

σ(t)+
cα

cβ

dα−β σ(t)
dtα−β

= cα

dαε(t)
dtα

. (4.22)

The above equation constitutes the governing extraordinary differential equation for the
fractional Maxwell model consisting of two springpots in series. For adherence to the laws
of thermodynamics it is required that the highest derivative in stress is lower than, or equal
to, the lowest derivative in strain [252, 253]. This is satisfied for the springpot parameters
0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. However, due to mathematical properties of the Mittag-Leffler
function, which arises in the moduli of this model, it required that α ≥ β . So the final bounds
on the parameters are 0 ≤ β ≤ α ≤ 1. A strong advantage of deriving the above model in
its most generic form of two springpots allows them to be specialised. By appropriately
setting springpot coefficients to 0 or 1, a total of four different models are attainable. In
particular, by setting β = 0 and α = 1, the tradition spring and dashpot Maxwell model is
recovered. The full range of possible models for the above and other springpot combinations
are enumerated in Appendix B along with plots of their qualitative response. By the process
outlined in Chapter 2, Laplace and Fourier transforms of the fractional Maxwell differential
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equation can be taken to find the creep, relaxation and complex moduli. These are written
out in full in Appendix B.

There is one caveat to the above mentioned model specialisation process. For some
models, it is essential that the springpot parameters are specialised before the moduli are
derived from the differential equation. For example, the relaxation modulus of the fractional
Kelvin-Voigt model (2 springpots in parallel) is the following

E(t) =
cα

Γ(1−α)
t−α +

cβ

Γ(1−β )
t−β . (4.23)

To attempt to reduce this to a standard Kelvin-Voigt model, the second (β ) springpot could
be simplified to a spring without problem, but reducing the first (α) springpot to a dashpot
yields undefined behaviour. This is due to the fact that limα→1 Γ(1−α) tends to infinity,
whilst limt→0 tα tends to 0. So for α = 1, the first springpot term is 0 everywhere apart from
at t = 0 s where it’s behaviour is undefined. By simplifying parameters before deriving the
modulus, this can be clarified and reveals that the term reduces to a Dirac delta function. This
is in agreement with the relaxation modulus for a traditional Kelvin-Voigt model [228].

The Mittag-Leffler Function

The moduli of many models constructed using springpots contain the Mittag-Leffler function.
As this function arises frequently in the study of fractional viscoelasticity and fractional
calculus more generally it is worthwhile introducing it properly – it can appear intractable at
first, but there are some general qualitative observations about its behavior that can provide
insight. There are one, two and three parameter versions of the Mittag-Leffler function [254],
only the first two are discussed as they are most relevant. The function has a series definition
and an integral definition [255], the former is more amenable to intuition so will be used
here. The one parameter series representation is

Eα(z) =
∞

∑
k=0

zk

Γ(1+αk)
, α ≥ 0, z ∈ C. (4.24)

The first special case of note is E0(z) = 1/(1 − z), which can be confirmed by Taylor
expanding the fraction about z = 0 and comparing with the series definition in Equation 4.24,
noting that Γ(1) = 1. The second special case of note is E1(z) = ez, which can be seen by
comparing Equation 4.24 to the series definition of the exponential function and noting that
Γ(k+1) = k! for k ∈ N0. These two special cases illuminate the fact that the Mittag-Leffler
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function is capable of interpolating between power law and exponential behaviour. For values
of 0 < α < 1 the behaviour is more complicated but asymptotic analysis has been done by
others and is discussed in subsequent sections. The one parameter Mittag-Leffler function is
in fact a special case of the two parameter function, Eα,1 = Eα . The series representation of
the two parameter Mittag-Leffler function is

Eα,β (z) =
∞

∑
k=0

zk

Γ(β +αk)
, α > 0, β ∈ R, z ∈ C. (4.25)

As might be expected, the two parameter Mittag-Leffler function is capable of even greater
behavioural diversity than the one parameter version. Although the manifold behaviours
are not summarised here in their entirety as they lie beyond the scope of this thesis, one
important property is noted: if 0 ≤ α = β ≤ 1 then the Mittag-Leffler function behaves as
a power law for small time scales and a power law at large time-scales, with a significant
exponential transition region between the two. This was exploited in the recent work by
Bonfanti et al. [7] which is discussed in more detail in Section 4.3.5.

Model Selection

Fractional viscoelastic models can appear dauntingly complex at first. This is significant
because – as will be evidenced in later sections – they are of great utility in interdisciplinary
fields such as geomechanics and biomechanics. Therefore, it is important that non-specialists
in those fields are able to assess whether or not fractional viscoelastic models are appropriate
for their line of inquiry, and if so, to identify the most appropriate fractional model with which
to analyse the data. In fact, the process of identifying an appropriate viscoelastic model,
fractional or otherwise, is not as complex as their mathematical form might suggest. Plotting
the data in semi-logarithmic scale on the y-axis can quickly reveal whether, and where the
viscoelastic behaviour behaves exponentially as it will appear as a straight line. Plotting
the data in logarithmic scale on both axes can reveal whether, and where the viscoelastic
behaviour behaves as a power law. In the case of multiple springpots, multiple different
power laws, dominating at different times, are visible. A model selection heuristic which
captures the above is shown in Figure 4.5. The red and blue lines represent the contributions
of the α and β springpot respectively, and the intersection of those two lines is the point
at which both power laws contribute equally to the response. From the figure, it can also
be seen that for a spring to result in a plateau as time t → ∞ the spring must be in parallel,
otherwise it only contributes to the instantaneous response. In the case of specialising to
dashpots, the situation becomes a little more complex. A qualitative heuristic for this case
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Fig. 4.5 Model selection heuristic showing the qualitative behaviour of two springpots in series and
parallel. When two springpots are placed in series, the short time scale response is dominated by
the springpot with lower dissipation coefficient, while the long time-scale response is dominated by
the springpot with higher dissipation coefficient. The contrary is true for two springpots in parallel.
Parameters of the models used are cα = 1 Pa s−α , α = 0.8, cβ = 1 Pa s−β , β = 0.2. t̄ and ω̄ are the
intersections of the two springpot contributions in time or frequency respectively.
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can be seen in Figure 4.7, adapted from the study by Bonfanti et al. [7], and is discussed
subsequently.

4.3.5 Comparison with Empirical Moduli

Studies using standard empirical power law models of viscoelasticity are too numerous to
mention individually. However, an important general observation about these papers is that,
in using power law viscoelasticity, they are making use of fractional viscoelasticity but often
without either knowledge, or acknowledgement of the fact. A smaller number of studies
have used more complicated empirical models which involve power law terms. This section
compares some of these complex empirical models with their closest possible equivalent
derived using fractional viscoelasticity proper.
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Fig. 4.6 Modified power law empirical model fitted with the fractional standard linear solid (FSLS)
model. Parameters for MPL are: E0 = 0.5, E∞ = 0.5, t ′ = 1e−3 and α ′ takes values of 0.3, 0.4, 0.6
and 0.8 for each line from the highest to the lowest respectively. Respective errors are: 2.59e-01,
9.57e-03, 3.17e-05, 6.30e-05.
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Modified Power Law and Fractional SLS Models

The first empirical model considered here is known as a modified power law (MPL). It is a
convenient place to start as its form is only slightly different from a standard empirical power
law relaxation modulus. It can be written as

E(t) = E∞ +
E0 −E∞

(1+ t
t ′ )

α ′ , (4.26)

where E0 is the instantaneous or ‘glassy’ modulus, E∞ is the plateau or ‘rubbery’ modulus,
t ′ is a time scaling, and α ′ determines the power law gradient of relaxation. In contrast to
a regular power law modulus, the MPL has the convenient property of being well defined
at t = 0 s. For t ≫ t ′, the MPL behaves as a scaled power law, with scaling determined
by the parameter t ′. As t → ∞ the MPL approaches a plateau E∞. The MPL has been
used in several asphalt and asphalt-concrete studies [256–258], and more recently for the
viscoelastic analysis of various benign and malignant cell lines [40]. As far as this model
can be considered as a power law transition between two well defined points, its behaviour
is notably similar to a fractional standard linear solid (FSLS) model, which is equivalent
to a fractional Zener model with two springpots specialised to springs i.e. β = γ = 0. Its
schematic diagram can be seen in Appendix B. The relaxation modulus of the FSLS model is

E(t) = kβ Eα,1

(
−

kβ

cα

tα

)
+ kγ , (4.27)

where kβ and kγ are the two spring constants, cα and α are the springpot parameters, and
E is the Mittag-Leffler function. (See Appendix B for the more generic differential form.)
The similarity between the two models was also discussed by Bagley [259], who made
comparisons between their relaxation spectra. Here we show their similarity by directly
matching their boundary condition parameters at t = 0 and t → ∞ and fitting the FSLS
parameters cα and α to the MPL (Figure 4.6). The fractional model fits the MPL well,
especially at longer time scales where both the Mittag-Leffler function and the MPL asymp-
totically approach a simple power law – though it tends to undershoot as t → 0 where the
Mittag-Leffler function has an infinitely negative derivative [260]. In this model comparison,
the number of parameters in each is the same. However, the FSLS has the advantages of
differential and dynamic representations, as well as a graphical spring/springpot schematic to
aid intuition. Furthermore, the FSLS is able to express a wider variety of near-exponential
decay behaviours as opposed to just power law decay.
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Friedrich-Heymann and Fractional BK Models
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Fig. 4.7 Figures adapted from Bonfanti et al. [7]. A) Log-log plot of epithelial cell monolayer
relaxation data to demonstrate the model selection heuristic. B) Fractional BK model fitted to several
untreated epithelial monolayer relaxation tests. C) Fractional BK model fitted to several chemically
treated epithelial monolayer relaxation tests.

Another power law based model – inspired by the work of Winter and Chambon [241] on
the crosslinking polymer polydimethylsiloxane at its gel point – was given by Friedrich and
Heymann [232] who added exponential behaviour and a plateau to the relaxation modulus,
allowing a larger range of the gel data to be captured. Its form is the following

E(t) = At−αe−t/τ +B, (4.28)

where A, α , τ and β are the four parameters of the model. This model has also been used
to capture the rheological behaviour of alginate-based gels [261–264]. More recently, the
model was independently constructed by Khalilgharibi et al. [24], who used it to analyse
the viscoelasticity of epithelial monolayers. Although the connection between the fluid
form of Equation 4.28 (i.e. without the plateau, B) and fractional viscoelasticity was noted
by Friedrich in a follow-up paper [265], it was not until much more recently that its full
(solid) fractional viscoelastic sibling was identified and utilised to its full potential. The
study, by Bonfanti et al. [7], builds on the work of Khalilgaribi et al. [24] by reanalysing
viscoelastic data of epithelial monolayers and individual epithelial cells using a fractional
model consisting of a dashpot and springpot in series, both in parallel with a single spring.
(For a schematic diagram of the model, see Appendix B.) The model is henceforth referred
to as the fractional BK (Bonfanti-Kabla) model. The log-log scale plot heuristic used in the
paper to deduce this model is shown in Figure 4.7A. This is an extension of the heuristic
shown in Figure 4.5; by first ignoring the plateau, it is clear that the initial behaviour is power
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law and requires a springpot, whilst subsequent behaviour is the limiting case where the
coefficient of dissipation approaches unity thereby leading to exponential relaxation. If the
behaviour was first exponential and then power law, a springpot in parallel with a dashpot
would have been necessary. Finally, considering the plateau, this is essentially a stiffness
(or the limiting case when the coefficient of dissipation approaches 0) which occurs at the
largest timescales recorded, and must necessarily be placed in parallel. The mathematical
form of the fractional BK’s relaxation modulus is the following

E(t) = cβ t−β E1−β ,1−β

(
−

cβ

η
t1−β

)
+ k, (4.29)

where cβ , β , η and k are model parameters, and E is the two parameter Mittag-Leffler
function. As in the previous case study, an advantage of the fractional model is increased
generality by virtue of the Mittag-Leffler function, which can represent an exponential func-
tion as a special case. Furthermore, the real power of this model is evidenced by its ability to
accurately predict the response of epithelial monolayers to loads different to those that the
parameters were trained on. The authors use this fit-predict model testing paradigm to make
a strong case for the fractional BK model as a constitutive model for epithelial monolayers.
The model is also tested on viscoelastic data from other studies on HeLa Kyoto cells and
articular zonal chondrocytes with much success, suggesting that the fractional BK model may
be a powerful, unifying tool for the mechanical investigation of many biological materials.

Fractional Kelvin-Voigt, Dual Power Law and Hysteretic Damping Models

The fractional Kelvin-Voigt model mentioned in the previous section, consisting of two
springpots in parallel, has been used in some studies without knowledge or explicit acknowl-
edgement of its fractional viscoelastic nature. In this aspect, an empirically derived model
exactly matches one derived via the more rigourous fractional viscoelastic framework. Its
springpot schematic diagram, differential equation and moduli are shown in Appendix B.
However, for the reader’s convenience its complex modulus is repeated below

G∗(ω) = cα(iω)α + cβ (iω)β , (4.30)

where cα , α , cβ , β are the parameters of the first and second springpot. DMA studies of
bovine trachea muscle cells [266] and ATP-depleted epithelial cells [267] used the following
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empirical complex modulus

G∗(ω) = A(iω)α +B(iω)β , (4.31)

which is the same as the fractional Kelvin-Voigt complex modulus, only with differing
parameter names. (Note that the paper by Hoffman et al. [267] used a slightly different
parameterisation, however it still amounts to the same model.) The comparisons between
fractional and empirical can be continued further by specialising one of the springpots of the
model into a dashpot, i.e. letting α = 1. Further modifying the parameterisation as follows:
cα = µ , cβ = G0/ω

β

0 , η = tan
(
β

π

2

)
, after some algebra yields

G∗(ω) = µ (iω)+G0

(
ω

ω0

)β

(1+η i)cos
(

β
π

2

)
. (4.32)

This is in fact the exact form of an empirically derived model known as the structural (or
hysteretic) damping model. It has been used in numerous biomechanics studies on different
cell types including epithelial, mouse fibroblast and embryonic carcinoma lines amongst
others [231, 268–273].

4.3.6 Fractional Models for Biological Materials

In this section, the data from several rheological studies of biological materials are re-
analysed using fractional viscoelastic models and, where possible, comparison is made to the
non-fractional models used in the original studies. The first study, by Darling et al. [274],
investigates the rheological properties of zonal articular chondrocytes by use of AFM. As
the Hertz model was used, the force and displacement data could be transformed into an
effective stress and strain and the models fitted via a similar process as in Chapter 3. An
SLS model was used in the original paper so this was first fitted to the data, followed by
fractional models with the same or less parameters. The fractional Kelvin-Voigt model with
one springpot specialised to a spring was found to be the best-fit fractional model. As this
fractional model has the same number of parameters as the SLS model, and no physical
interpretation of the SLS parameters is offered in the paper, the goodness of fit is the best
metric with which to decide the most appropriate model. The qualitative difference between
the two fits can be seen in Figure 4.8A, the fractional model is clearly the better fit. The SLS
model appears to undershoot at small time scales, this can also be seen in the original paper.
Quantitatively, the sum of squared residual errors for the SLS and fractional model were
2.41×10−2 and 1.04×10−2 respectively, therefore the error from the fractional model was
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Fig. 4.8 A) Relaxation data from zonal articular chondrocytes [274] fitted with an SLS model and
fractional Kelvin-Voigt specialised by one spring. B) Relaxation data from tomato mesocarp cells [25]
fitted with an SLS2 model and a fractional Maxwell model specialized by one dash-pot. C) Relaxation
data from PCL/bio-active glass [275] fitted with an SLS2 model a fractional BK model. D) Relaxation
data from collagen fibrils [276] fitted with an SLS2 model and a fractional BK model. Quantified
goodness of fits are discussed in text.

79% lower than the SLS model. The second study revisited using fractional models tested
tomato mesocarp cells under high speed microcompression [25]. In the original paper, an
SLS2 model was used – the same as was used for pectin gels and Arabidopsis hypocotyl
tissue in Chapter 3. On qualitative inspection of the data, no plateau was observed, so no
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spring in parallel was required; yet there appeared to be a short initial power law region
followed by exponential relaxation. For these reasons, a fractional Maxwell model with one
springpot specialised to a dashpot was used. It contains three parameters versus five for the
traditional SLS2 model. From Figure 4.8 it can be seen that the fractional model provides
a similarly good fit as the SLS2. Quantitatively, the sum of squared residual errors for the
traditional and the fractional model was 1.70× 10−3 and 1.42× 10−3 respectively. Thus,
the fractional model yielded 18% less error whilst using two less parameters than the SLS2.
Combined with the fact that the SLS2 parameters do not appear to correspond directly to
any physical mechanisms of relaxation, the case for using the fractional model appears strong.

The third and fourth examples come from rheological studies of polycaprolactone bioac-
tive glass [275] and isolated collagen fibrils [276] respectively. In both original papers, the
SLS2 model was fitted to the data; and for both sets of data, the fractional BK model was
found to be the best fitting. The fractional BK model has one less parameter than the SLS2
model. However, it can be seen from Figures 4.8C and 4.8D that the fractional model is
still able to obtain a qualitatively comparable goodness of fit as the SLS2 model. Regarding
the two relaxation curves extracted from the work of Shahin-Shamsabadi et al. [275], the
SLS2 sum of squared errors were 4.53×10−5 and 1.40×10−4 compared to the fractional
BK which yielded errors of 2.28×10−5 and 2.16×10−4. So the fractional model had 66%
lower error than the SLS2 for the first relaxation curve, but a 43% higher error than the SLS2
for the second relaxation curve. The second curve is the only one of these examples in which
the fractional model yielded a higher error than the traditional. However, given that the
error of both models is so small in absolute terms, and that the fractional model has one less
parameter, there is still a good case for the fractional viscoelastic model. Regarding the three
relaxation curves extracted from the work of Shen et al. [276], the SLS2 sum of squared
errors were 5.08×10−3, 3.86×10−3 and 4.43×10−3, compared to the fractional BK sum
of squared errors of 4.33×10−3, 3.55×103 and 4.07×10−3 respectively. Equivalently, the
fractional BK model yielded an error that was 16%, 8% and 8% lower for each relaxation
curve respectively. Again, a strong case for the advantages of the fractional model. Lastly, it
should be noted that the first two examples are special cases of the fractional BK model, the
first example takes the dashpot constant to be 0, the second takes the spring constant to be 0.
This further consolidates the fractional BK model as a unifying phenomenological model
across a diverse array of materials.

Lastly, it is briefly worth discussing the examples in Figure 4.8 with respect to the model
selection guidelines outlined in Section 4.3.4 and Figure 4.5. In Figure 4.8A, the response
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is convex in shape. From this, we know that the early time response must decay faster than
the later time response, suggestive of two springpots in parallel as shown in Figure 4.5. As
the response appears to plateau eventually, this suggests that one of those springpots may
be specialised to a spring. In contrast, Figures 4.8B, C and D exhibit a concave relaxation
response which is strongly suggestive of two springpots in parallel. In case B, the later time
response developed into a more rapid exponential decay which led to the specialisation of
one the springpots into a dashpot. In cases C and D, the same applied but with the inclusion
of a spring in parallel to capture the plateau behaviour.

4.3.7 A Fractional Perspective on Pectin

Background

In the above sections, the limitations of spring and dashpot viscoelastic models and the utility
of fractional viscoelastic modelling have been demonstrated. Armed with this insight, the
pectin data presented in Chapter 3 can be revisited; some relevant background literature is
first discussed. As outlined in Chapter 3, not many pectin studies take a modelling approach
to analysing their viscoelastic data but rather assess the dynamic complex modulus in its raw
form. The few studies that do take a modelling approach use models with a relatively large
number of parameters. For example, Mitchell and Blanshard [159] fitted pectin creep data
using a generalised Kelvin-Voigt model with three time-scales and an additional dashpot in
series, amounting to eight model parameters in total. Or Kawabata and Sawayama [155],
who fitted the same model less one time-scale for their viscoelastic study of pectin. A
2009 pectin viscoelastic study by Gigli et al. used a generalised Kelvin Voigt with five
time-scales, implying a total of ten model parameters [166]! It seems likely that the reason
for the apparent success of these models lies in the discussion above – that a large number
of exponential modelling terms can be used to capture power law behaviour; but for the
same reasons as discussed above, their use is fraught with several disadvantages. During
the literature review for this thesis, only two pectin papers could be found that explicitly
noted the power law nature of the response, both of these fitted a single empirical power law
model to the data and did not acknowledge the fractional viscoelastic nature of the power law.
The first, a 2002 paper by Alonso-Mougán et al. [165], studied the behaviour of amidated
pectin using DMA – the storage and loss modulus were fairly well fitted by an empirical
power law from approximately 0.01 Hz - 100 Hz. The second, a 2018 study by Zhang
et al., performed DMA on pectin extracted from black cherry tomato waste; the viscosity
was well fitted by an empirical power law up to approximately 10 Hz, above which it plateaud.
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For further insight into potential modelling pathways, we can look beyond pectin. Al-
ginate is brown algae’s analogue of pectin, and can be extracted from its cell wall [277];
the two materials are similar enough that well blended mixtures are able to gelate succes-
fully [89]. From the literature, it appears that there is greater recognition of alginate’s power
law viscoelastic nature than in pectin. For example, the numerous studies using a power law
model [278, 279], and others using the extended model mentioned above which features an
exponential power law product (Equation 4.28) [261–264]. Another polysaccharide hydrogel
of interest is agarose. It is derived from red algae and has been blended with pectin in previous
biomedical studies [280, 281]. In the 2004 study by Chen et al. on the viscoelastic properties
of agarose, a single springpot captured the oscillatory behaviour well over two decades of
frequency [227]. This appears to be the only example of explicit fractional viscoelasticity as
applied to pectin or its algal siblings.

Looking beyond pectin and its algal analogues, there are plenty of examples of fractional
viscoelastic modelling applied to a diverse array of gels and polymers. One of the early exam-
ples is the aforementioned work of Winter and Chambon [241] who derived a springpot-like
modulus for crosslinking polymers at their gelation point, which was subsequently used for
analysis of polydimethylsiloxane gel data; as well as the aforementioned empirical extension
by Friedrich et al. [232], shown in Equation 4.28. Both colloidal [282] and carbopol [283]
gel rheology data have been successfully analysed using a fractional Maxwell-type model
consisting of a spring in series with a springpot – though the latter authors did not make their
use of fractional viscoelasticity explicit. Two gelatin-based gel rheology studies [284, 285],
a potato starch gel study [286], and a simulated three-dimensional particulate gel investiga-
tion [287] have all made use of the fractional Kelvin-Voigt model (a spring and springpot
in parallel). Alcoutlabi and Martinez-Vega modelled the glassy amorphous polymer poly-
methyl-methacrylate [226] using a fractional Zener model.

Pectin Model Review

The pectin samples tested in Chapter 3 exhibited rapid initial relaxation, quickly followed
by a power law region which dominated for the rest of the relaxation holds. In light of the
above discussion on the limitations of spring and dashpot systems, it appears that although
the data were fairly well fitted by the SLS2 model, it is not the most parsimonious choice as
it merely approximates the power law region by virtue of its excess parameters. To remedy
this, the simplest possible fractional model was identified that featured a power law transition
but still had well defined boundaries – the FSLS model. (See Appendix B, Zener section
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for the schematic and full constitutive equations, and Equation 4.27 above for the relaxation
modulus.) Furthermore, although the very short time behaviour (shown in Figure 4.9) was
difficult to decipher qualitatively, it does appear to decay at faster rate than power law. The
early time rapid exponential of the FSLS model was thus seen as a convenient approximation
to this otherwise intractable region of behaviour. Another benefit of the FSLS model is that it
is arguably the closest fractional analogue of a generalised Maxwell model truncated with
one time scale, also known as a standard linear solid model; this enables exploration of any
congruence or disharmony between the two models’ results. Lastly, it is worth noting that in
addition to the polymer study by Alcoutlabi and Martinez-Vega [226], other studies that also
used the FSLS model include the viscoelastic analysis of arteries [224, 225], breast tissue
cells [222] and lung parenchyma [223]. Indeed, in a similar vein to this section’s analysis,
the study by Dai et al. made comparisons between a one, and two timescale GM model and
the FSLS model before concluding the FSLS was most appropriate for lung parenchyma.
Carmichael et al. also made comparisons between a one timescale GM model (a.k.a the
standard linear solid) and an FSLS model, and concluded that the fractional model was more
suitable for breast tissue.
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Fig. 4.9 A) Averaged relaxation data from all tests on DM41 HG at a depth of 2 µm, the averaged
predicted relaxation response of the fitted FSLS model, and the averaged predicted relaxation response
of the fitted SLS2 model. B) The same data as in A) but plotted in log-log scale.

Using the same methods of Chapter 2 the data were fitted to two models, the SLS2
and the FSLS model. (See Equation 4.27 for the relaxation modulus of the FSLS model.)
Figure 4.9A shows the averaged data and relaxation responses of the SLS2 and FSLS models.
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From the regular scale plot, it is clear that at shorter time-scales, the FSLS model yields a
better fit than the SLS2 model. The log-log scale plot in Figure 4.9B confirms this, though
we can see that even the FSLS model does not completely capture the early time behaviour
for t < 1 s. The slight wavering in the SLS2 prediction that can be observed in Figure 4.9B
is reminiscent of the almost oscillatory behaviour exhibited in Figure 4.2. Quantitatively,
the SLS2 model did have lower bulk mean-squared-errors than the FSLS models for the
gels tested (see Appendix C for full info), though the errors were all in the same order of
magnitude. Perhaps more importantly, all the mean-squared-errors for both SLS2 fits and
FSLS fits were many orders of magnitude lower than the data values themselves so relatively
speaking, both can claim to fit the data well. These results are encouraging, especially
given that the FSLS model has one less parameter than the SLS2 model, thus the short
time-scale improvement is unlikely to be an artefact of overfitting. To further justify analysis
using a fractional viscoelastic model, it is worthwhile revisiting the physical significance
of the power law relaxation in more depth than Chapter 3. At the scale of individual sugar
chains, there is a distribution of ionic egg-box junction lengths; which may give rise to a
distribution of time-scales that result in power law viscoelasticity. A 2014 study by Basak
and Bandyopadhyay [288] found that low DM pectin gelated via calcium crosslinking con-
sisted of polydisperse flocs bonded to each other, and as the calcium concentration increased
significantly higher than that required for concentration the size of flocs did not increase
significantly but their interlinking did; interestingly they observed a power law increase in
storage modulus with calcium concentration. Although it is possible that the pectin flocs
have spatial self-similar properties which contribute to the power law behaviour [289–291],
this cannot be taken for granted as a recent study found that a fractal microstructure does not
necessarily lead to fractional viscoelasticity at the macroscale [292].

Revisiting Pectin In Vitro and In Vivo

Armed with the fractional viscoelastic model, the pectin relaxation data across different DMs
and DBs was re-evaluated using a similar fitting process as in Chapter 3. The results of this
are summarised in Figures 4.10 and 4.11, and Tables 4.1 and 4.2. The ISS derived parameter
and the springpot parameter α are shown to maximise commensurability between the results
of the two chapters.

For different DMs, the relative differences in ISS between gel types follow a similar
qualitative trend for both SLS2 and FSLS models. Both showed a slight decrease in ISS
in DM 41 pectin compared to DM 33, and a significant decrease in ISS at DM 50. In the
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Fig. 4.10 FSLS model parameters for the HG and HG mixtures tested. 33/50 represents the DM41
equivalent mixture, 41/60 and 33/70 represent the two DM50 equivalent mixtures. Continuous
horizontal lines represent the median of the data, dashed lines represent the mean. Edges of the box
represent the upper and lower quartiles and the whiskers represent the range of the observations. Open
circles are considered outliers as they are greater than 1.5*(interquartile range) distance away from
the upper or lower quartiles.

HG DM ISS (kPa) Springpot Parameter α

33 128.9±23.7 0.40±0.02
41 73.4±5.9 0.31±0.02
50 11.4±0.8 0.37±0.02
33/50 67.7±1.2 0.33±0.02
41/60 40.5±2.8 0.36±0.01
33/70 52.4±6.5 0.36±0.02

Table 4.1 Mean FSLS model derived parameters for all HG types +/- standard error. ‘E/V’ is
Elastic/Viscous Ratio. ‘33/70’ is the DM41 mixture. ‘41/60’ and ‘33/70’ are the two DM50 mixtures.

same way that the elastic/viscous ratios of the SLS2 model (shown in Figure 3.15B) were
fairly consistent over the full range of DMs tested, the spring parameter α of the FSLS
model (Figure 4.10B) also remained fairly consistent between gels tested (ANOVA p=0.094
including DM33, p=0.35 without DM33, pairwise p-values also suggest similarities) – in line
with the proposed hypothesis that the elastic and viscous properties are coupled, and both
are determined by DM; except for the relatively large, 25% difference between α values for
DM33 and DM41. In contrast, the largest difference in E/V found by the SLS2 model was
between DM33 and DM50 (24% difference). There was a large difference in the absolute
values of instantaneous shear stiffness (ISS) between the two models. Compared to the SLS2
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model, the FSLS ISS was 75%, 61% and 64% higher on average for DM 33, 41 and 50
respectively. This suggests that the FSLS model attributed more of its mechanical resistance
to its instantaneous elastic elements whilst the SLS2 model attributed more of its mechanical
resistance to its viscous elements (dashpots).
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Fig. 4.11 FSLS model parameters for the block and random de-esterified pectins tested. Continuous
horizontal lines represent the median of the data, dashed lines represent the mean. Edges of the box
represent the upper and lower quartiles and the whiskers represent the range of the observations. Open
circles are considered outliers as they are greater than 1.5*(interquartile range) distance away from
the upper or lower quartiles.

Considering the results from the pectin of different DBs, again the general trend is
the same for both models, with the blockwise de-esterified pectin exhibiting an ISS 13%
higher than the random de-esterified pectin. However, both parametric and non-parametric
p-values were greater than 0.1 suggesting questionable statistical difference. Interestingly,
this is considerably smaller than the 40% difference in ISS found using the SLS2 model.
The springpot parameter α was 16% higher for the block pectin (though again, parametric
and non-parametric p>0.1). As this was the only non-spring element this suggests that the
random pectin was more elastic than the block pectin. Reassuringly, this is in agreement with
the SLS2 findings although the difference was much more pronounced in the SLS2 model
parameters. The SLS2 E/V ratio was 78% higher in the random de-esterified pectin than the
block. Both models agree that the randomly de-esterified DM40 pectin is the most elastic
of all the samples tested. In contrast, the FSLS model suggests that the DM33 pectin is the
most viscous, whilst the SLS2 model suggests that blockwise de-esterified DM40 pectin is
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HG DB ISS (kPa) Springpot Parameter α

Block 60.0±7.8 0.34±0.04
Random 52.6±5.5 0.29±0.04

Table 4.2 Mean FSLS model derived parameters for all HG types +/- standard error. ‘E/V’ is
Elastic/Viscous Ratio. ‘33/70’ is the DM41 mixture. ‘41/60’ and ‘33/70’ are the two DM50 mixtures.

the most viscous. As the exact de-esterification process used to make the DM33 pectin is not
known, it is difficult to ascertain the significance of this incongruity. As the two parameters
do not convey the same metric but are only analogous, the difference in the results is perhaps
not too concerning. Though the physical interpretation of the above results discussed in
Chapter 3 is not repeated here, it is noted that the FSLS model does not appear to be in
conflict with it. Indeed, this raises the question of what advantages the FSLS model provides.
The first is that, given the comparable fit accuracy whilst using one less parameter than the
SLS2, it is plausible that the parameters yielded provide a better foundation upon which
to build physically meaningful hypotheses. Secondly, it brings us a step closer to having
a constitutive model for pectin that is able to make rheological predictions without testing
all possible different compositions and loading patterns. This would certainly be useful in
industrial application. More work should be done in future to test the FSLS model’s ability
to correctly predict gel response, and for the limits of the model’s capability to be ascertained
(it may not be suitable for very different pectin formulations and very large deformations).

Given the success of the FSLS model in gels, and the fractional MD model in tomato
mesocarp cells (Figure 4.8B, refitted digitised data from [25]), the utility of fractional models
for the Arabidopsis hypocotyl was of great interest – particularly as they appear to be little
explored for plant systems. Only one paper could be found in the literature that made use
of fractional viscoelastic modelling for plant material – Belović et al. performed DMA on
tomato pomace and successfully fitted the data to a fractional Kelvin-Voigt-type model
consisting of a spring and a springpot in series [293]. However, this model selection does
not necessarily apply to the Arabidopsis hypocotyl as tomato pomace is considerably more
fibrous and less pectinaceous than Arabidopsis hypocotyl cells. Yamamoto et al. [63] used a
three time-scale GM model with a plateau (7 parameters in total) applied to stress relaxation
data from Avena coleoptile and green pea stem under various auxin treatments; the authors
noted that this was an approximation of the observed exponential and logarithmic decay
signatures. Moving to the experimental results obtained for this thesis from the Arabidopsis
hypocotyl system discussed in Chapter 3, the qualitative behaviour of the plant data creep
curves were far more heterogeneous than the pectin and there was not a consistent pattern of
power law or exponential behaviour amongst the collected data. The creep data was fitted
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to the FSLS model. It was found that the springpot parameter of the FSLS model, α , was
equal to 0.9958±0.0031 and 0.99991±0.00001 for axial and transverse walls respectively.
This implied that the fractional springpot element essentially behaved as a standard dashpot.
This suggests that any power law growth in compliance was negligible. This fits with
the experience others have had using one and two time-scale SLS models in Arabidopsis
seedlings [42, 177, 44]. Further, the FSLS model appeared to qualitatively struggle to fit
some of the plant data (see Appendix C) and quantitative error was higher than the SLS2.
For the above reasons, the use of fractional models for Arabidopsis hypocotyl rheology was
not pursued further.

4.4 RHEOS - Open Source Rheology Software

4.4.1 Motivation

The second part of this Chapter details the motivation, architecture and features of an open
source rheology data analysis software package – RHEOS [294]. In the above sections, the
utility of fractional viscoelasticity has been demonstrated. Further, it has been shown that the
conceptual process for fractional model selection is not excessively complicated; this last
point is important given its demonstrable utility in interdisciplinary fields where non-experts
may be interested in analysing rheological data. However, what has also been evidenced is
the inherent mathematical complexity of fractional viscoelasticity, which also translates into
difficulty of computational implementation, thus potentially rendering it beyond the reach of
many interdisciplinary research groups. Indeed, this may be a key reason why its use has not
become more commonplace. Thus, the main aim of RHEOS is to make the process of fitting
fractional viscoelastic models to data as straightforward as possible.

There are also more general motivations worth discussing. The popularity of open source
scientific software has grown massively over the last few decades, and this growth shows
no sign of slowing [295]. It allows researchers to make more effective use of their time
and budget, whilst also facilitating reproducibility of data analysis. Prominent examples of
open source scientific software packages are NumPy, SciPy and Bioconductor [296], which
have facilitated countless scientific investigations. Open-source utility software such as the
LaTeX package ecosystem and the Zotero reference manager are also of great importance to
the scientific community – and more personally, both were used extensively in producing
this thesis! Furthermore, numerous recent scientific scandals have raised awareness of the
importance of scrutinising scientific software and methodology [297]. In turn, this has led to
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calls for making software review as important a part of paper publication as the review of the
results themselves [298, 299].

4.4.2 Deliverables

The main aims of RHEOS are to provide the following:

• A library of standard and fractional linear viscoelastic models, with the facility to add
user-defined models.

• Stress/strain/time data fitting to linear viscoelastic models.

• G′/G′′/frequency data fitting to linear viscoelastic models.

• Predict response given arbitrary time or frequency domain loading and a linear vis-
coelastic model.

• Efficient generation of artificial loading for intuition development.

• All of the above functionality must be achievable with minimal programming experi-
ence.

It is the authors conviction that RHEOS has met all these deliverables. Furthermore, RHEOS
has been peer-reviewed and published in a journal for open-source scientific software [300]
(Journal of Open-Source Software). The fulfilment of the first deliverable is demonstrated
by the fact that all the models in Appendix B, including their specialised forms, are imple-
mented in RHEOS. This model library is a comprehensive and useful tool for the research
community, and the models are also included in the Annex of a review written by the same
authors as RHEOS that has been accepted to a peer-reviewed journal, with a preprint already
released [301], both of which will broaden their visibility. For the other deliverables, their
fulfilment is demonstrated in subsequent sections by use of workflow examples. Where
appropriate, code samples are included to demonstrate the simplicity of the syntax. Code
used for plotting is not included for brevity. The sections are largely based on the RHEOS
documentation. For a full list of functions and data structures, please see the API section of
the documentation which is available online at the link in reference [302]. To demonstrate
that RHEOS has met the above deliverables, there are detailed code examples and discussion,
along with plotted results in Appendix A.

For further evidence that RHEOS has met the above aims, it should be noted where it has
been used already. RHEOS has recently been used by Messaoud et al. [303] to investigate
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the rheological properties of novel lipid lamellar hydrogels they developed. In their paper,
they explore the fractional Kelvin-Voigt, fractional Maxwell, and fractional Zener models;
and found that the fractional Zener model fitted the hydrogel data particularly well. RHEOS
was used to perform all the analysis in the paper discussed above by Bonfanti et al. [233]
which focused on the rheological response of epithelial cells. The researchers found that
the fractional BK model was able to both fit and predict the behaviour of the cells with a
high degree of accuracy. Furthermore, RHEOS was used for all the analysis in this Chapter
apart from the pectin section, and is being used for the analysis of multiple forthcoming
publications. It was presented at the Julia programming language conference in 2018 [304].
With regards to other software with similar functionality, other labs must have generated
software with some overlapping functionality, but only one could be found that was published
online as open-source software: ForceMetric written by Jacob Seifert as part of his PhD
thesis [44, 305]. However, the package is specifically designed for analysis of AFM data
files from one specific manufacturer and does not feature any fractional viscoelastic models.

It is important to note that RHEOS is not an optimisation package. It builds on another
optimisation package, NLopt [306], by adding a large number of abstractions and functional-
ity specific to the exploration of viscoelastic data. The optimisation routine used by RHEOS
is discussed in Section 4.4.3.

4.4.3 Architecture

High-level Overview

To get a better sense of how RHEOS fits together, and how its design facilitates its aims, it is
helpful to have a top-down overview of the main data objects which RHEOS uses, and how
they interact with each other. RHEOS is built around four main data types, RheoTimeData,
RheoFreqData, RheoModelClass and RheoModel. Each will be discussed in more detail
but briefly: RheoTimeData and RheoFreqData contain data information either generated or
obtained experimentally, RheoModelClass and RheoModel contain modelling data where the
parameters are either not known, or known respectively. These data structures enable the
typical rheology data analysis workflows which are discussed in the following section.

Typical Workflows

RHEOS can fit and predict both time and frequency data, and the workflow for doing so is
very similar. As such, in this section a very brief description of the workflow for fitting time
data only is provided, as it maps very closely to the frequency domain case. A schematic
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Fig. 4.12 Diagram showing the main objects used by RHEOS and how they relate to each other in a
typical workflow case of fitting time-domain data to a viscoelastic model and evaluating its goodness
of fit.

diagram of this workflow is shown in Figure 4.12. First, the data can be imported from
three column CSV files into a RheoTimeData type using a convenience function provided by
RHEOS. This data is then fitted to a RheoModelClass, which embeds expressions for key
characteristics of the model (relaxation function, creep response, complex modulus) involving
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Fig. 4.13 Qualitative assessment of the model fitted and predicted using RHEOS. Sum-of-squares
error of fit: 2.23e-02 as reported by RHEOS.

symbolic parameters. This fitting process results in a fitted RheoModel where the previously
symbolic parameters in the RheoModel are now substituted with the best-fit parameters
found during the fitting process. In the prediction step, the fitted RheoModel is combined
with partial data (here only time and strain) to simulate the stress values expected from the
model. The original data and model can then be compared graphically and numerically.
(RHEOS reports the squared-error of the model at the end of the fitting process.) Although
the particular example shown in Figure 4.12 shows predicting against the same data used
for fitting in order to evaluate the fit, one could also predict against new data not seen by
RHEOS during the fitting stage to evaluate how well the model can extrapolate beyond data
that it has been fitted against. Lastly, a more concrete demonstration of the above is provided
by a figure of the resultant plot from a RHEOS fitting process, Figure 4.13. It is important to
note that this was achieved using only three lines of RHEOS code: one for importing the data
from a CSV file, one for fitting and one for predicting. Also, it should be noted that the data
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for this particular example has been generated computationally by RHEOS for the purpose
of this workflow example.

Discussion of Main Data Structures

In this section, the four main data structures of RHEOS are described in more detail. Rheo-
TimeData contains the time, strain and stress data as vectors of floating point numbers.
It is not necessary for all three to be filled, often only time and strain or time and stress
will be filled, such as when predicting data. (For example, you only need time and stress
combined with a model to predict a resultant strain.) RheoTimeData also contains a log.
The log contains information of any processing that has been done to the data (the exact
RHEOS functions used and the parameters provided in those function calls). This could
include, for example, resampling or smoothing operations. A log can be extracted from one
RheoTimeData object and applied to another RheoTimeData object so that it is processed in
exactly the same way. In this way, the log feature can aid reproducibility of analysis. The
only difference between RheoTimeData and RheoFreqData is that RheoFreqData contains
frequency, storage and loss moduli fields (specific values at all frequencies) as opposed to
time, stress and strain fields.

The RheoModelClass object contains a number of fields. It contains all of the model’s
moduli (creep, relaxation, complex). It also stores information on any constraints (such as
those on combinations of springpots shown in Appendix B) and these are checked against
the initial conditions provided for the fit to make sure they are not violated. The name of the
model and an ASCII art schematic representation of it can also be included (and are included
for all the models built-in to RHEOS). The symbolic names of the model parameters (e.g. η

and k for a Maxwell model) are stored for specialisation purposes after the fitting process. As
for the RheoModelClass object, the RheoModel object stores all the moduli of the model but
now they are specialised to the parameters provided (either by the fitting process or the user
directly). This means that the moduli embedded in a RheoModel object are only functions of
time, not time and parameters as would be the case for a RheoModelClass object.

Optimisation

In the case of time-domain data, the functions that RHEOS optimises for are essentially
rearrangements of the viscoelastic Boltzmann hereditary integrals derived in Chapter 2.
Note that for any loading (stress or strain) that is more complex than a perfect step, it
is not straightforward to compute the viscoelastic Boltzmann hereditary integral and this
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computation is discussed in more detail in Section 4.4.4. Each predicted value is subtracted
from the known data value, and this difference is squared. The sum of all these squared
differences is the number that is sent to the specialised optimisation routine (not contained
within RHEOS) to try and minimise. Written explicitly, the minimisation function if fitting
via the relaxation modulus E is the following:

min
P∈Rn

(
T

∑
ti

(∫ ti

0
E(ti − τ, P)ε̇(τ)dτ −data(ti)

)2
)
, (4.33)

where P is a vector of length n containing the parameters to be fitted, ti is a specific time
sample, T is the final time sample, τ is a dummy integration variable, ε̇ is the first derivative
of strain, and data(ti) is the ith data sample of the known force data. Note that the integral in
Equation 4.33 must be considered as a discrete integral for computational purposes but the
exact method of computing it has been left generic as it is discussed in detail in Section 4.4.4.
For fitting against the creep modulus J, we have the following:

min
P∈Rn

(
T

∑
ti

(∫ ti

0
J(ti − τ, P)σ̇(τ)dτ −data(ti)

)2
)
, (4.34)

where σ̇ is the first derivative of stress, and all other symbols have the same meaning as
previously, except data(ti) now represents the ith data sample of the known strain data.

Fitting frequency data is slightly more straightforward as it does not require computation
of the viscoelastic Boltzmann hereditary integral. It’s minimisation objective is written:

min
P∈Rn

(
Ω

∑
ωi

(
E ′(ωi, P)−dataE ′(ωi)

)2
+
(
E ′′(ωi, P)−dataE ′′(ωi)

)2

)
, (4.35)

where E ′ and E ′′ are the storage and loss moduli, ωi is the ith frequency sample, Ω is the
highest frequency, dataE ′(ωi) is the ith data sample of the known storage modulus data and
dataE ′′(ωi) is the ith data sample of the known loss modulus data. Equation 4.35 involves
the summation of two squared difference which can sometimes present difficulties to the
optimisation algorithm used, especially if dataE ′(ωi) and dataE ′′(ωi) occupy very different
orders of magnitude. Techniques used by RHEOS to alleviate this problem are discussed in
Section 4.4.4.
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Internally, RHEOS sends the above cost functions to the NLOpt library [306], which itself
uses a local optimisation algorithm known as the subplex algorithm, originally developed by
in a doctoral thesis [307].

4.4.4 Implementation Discussion

Computation of the Hereditary Integral

A central part of almost any rheology analysis of time domain data involves computation of
the hereditary integral derived in Chapter 2. For the reader’s convenience, its stress relaxation
and creep forms are written below

σ(t) =
∫ t

0
E(t − τ)ε̇(τ)dτ, (4.36)

ε(t) =
∫ t

0
J(t − τ)σ̇(τ)dτ, (4.37)

where (˙) represents the first time derivative. For brevity, the subsequent discussions will just
use the relaxation form for examples, though all discussion applies equally to both moduli.
There are several ways to approach the computation of the above integrals. A simple method
that is extensively used in the literature is to assume a step loading. Mathematically, this is
equivalent to assuming that ε̇(t) = ε0δ (t), where ε0 is the constant step amplitude and δ (t)
is the Dirac delta function. Substituting this into Equation 4.36 leads to

σ(t) =
∫ t

0
E(t − τ)ε0δ (τ)dτ, (4.38)

and due to the sifting property of the Dirac delta function this can be simplified to

σ(t) = ε0E(t), t ≥ 0. (4.39)

From this, the appeal of the step approximation is immediately clear – it enables the mod-
ulus to be used directly which vastly reduces the computational burden. It is the fastest
approximation as it only requires a multiplication of the array of modulus values. For this
reason, RHEOS includes functions to fit and predict using the step approximation. However,
depending on the type of test and the hardware used, the step approximation may not be
accurate enough. This is particularly important if the short time behaviour, close to the ramp
up in stress or strain, is of interest. Or if the stress or strain is not held constant for any
reason.
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ramps, for example the loading shown in Figure 4.14B. The main limitation of this method is
that any ramp sections in the loading must be well approximated as linear ramps.

For more complex loading, the entire load history must be taken into account. There are
numerous ways of doing this. The most conspicuous method of computation would be to
note that it is an integral equation, so regular quadrature methods can be used to compute
the value of stress/strain at each time point. However, the computational complexity of this
is O(n2), where n is the length of the time array. This means that the speed of computation
rapidly decreases as the number of time samples increase – this is particularly critical if
the modulus depends on the Mittag-Leffler function, which is itself slow to compute. For
exponential kernels, which qualifies all non-fractional models but precludes fractional models,
the integral’s computation can be quickened by splitting up the exponential terms and using
the algorithm of Perdikaris and Karniadakis [224]. The key part of this is noting the following

It+∆t =
∫ t+∆t

0
e−

(t+∆t−τ)
τi ε̇(τ)dτ = e−

∆t
τi It +

∫ t+∆t

t
e−

(t+∆t−τ)
τi ε̇(τ)dτ, (4.42)

in which the ith exponential term has been considered and τi is its respective time-scale.
In the second form of the RHS, the first term is essentially a memory term. Clearly the
above method does not work with power law or Mittag-Leffler kernels, so for fractional
models we need to look further. Singh and Chatterjee [309] have developed a method of local
Galerkin approximation for some types of fractional viscoelastic kernels, whilst Diethelm
and Freed [310] have suggested a highly optimised quadrature algorithm.

A useful property of Equations 4.36 and 4.37 is that they are essentially convolutions,
and convolution is just multiplication in frequency space. For this reason, RHEOS takes
advantage of the fast FFT based convolution algorithms already implemented in Julia [311]
to compute viscoelastic hereditary integrals. Using this method, the algorithmic complexity
of the convolution itself is O(n log n). More importantly however, the viscoelastic kernel
can be precomputed so that the number of calls to the expensive Mittag-Leffler function
is minimised at O(n). In this way, RHEOS is able to compute the viscoelastic hereditary
integral with excellent speed performance and for arbitrary loading patterns. A limitation of
this method is that it cannot presently be used for variable sample rates, so in the variable
case the full quadrature integration is used. However, there are several options to explore for
improving this which are discussed in the Future Development section.
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Normalisation Procedures for Complex Modulus Fitting

The storage and loss moduli can sometimes occupy different orders of magnitude, see
Figure A.4 for an example of this. This can cause problems during fitting as the optimisation
routine will weight errors at the higher orders of magnitude more strongly than those at the
lower orders of magnitude. This is a more general problem often faced during multi-objective
optimisation problems [312]. The main two approaches to solving this issue are careful
choice of global optimisation routine, or rescaling. Regarding the former, extensive fittings
tests of complex moduli were conducted using RHEOS and local optimisation routines were
found to be superior in terms of both computational efficiency and goodness of fit. Regarding
the latter, rescaling was found to be increasingly important as the storage and loss modulus
diverged in magnitude. For this reason, RHEOS offers four rescaling options. The two that
have worked most succesfully so far are the local and logarithmic scaling options. The local
option rescales the cost at every point by each value of the data point itself, i.e.

min
P∈Rn

(
Ω

∑
ωi

(E ′(ωi, P)−dataE ′(ωi))
2

dataE ′(ωi)
+

(E ′′(ωi, P)−dataE ′′(ωi))
2

dataE ′′(ωi)

)
, (4.43)

where all symbols have the same meaning as described for Equation 4.35. The logarith-
mic approach simply re-scales all the storage and loss moduli and their predicted values
logarithmically before finding the error between them, explicitly:

min
P∈Rn

(
Ω

∑
ωi

(
log(E ′(ωi, P)/dataE ′(ωi))

)2
+
(
log(E ′′(ωi, P)/dataE ′′(ωi))

)2

)
, (4.44)

where log is the natural logarithm and the subtraction has been simplified using standard
logarithm manipulation. In both cases, the benefit arises from the fact that the optimisation
weighting is rebalanced in favour of smaller values. The logarithmic rescaling method
seems to work particularly well but runs into problems if logarithm input is exactly 0 at
any frequency, this is due to the negative singularity of the logarithmic function for the 0
argument. A third option in RHEOS divides the cost at each point by the mean value of the
storage and loss modulus known data respectively, explicitly:

min
P∈Rn

(
Ω

∑
ωi

(E ′(ωi, P)−dataE ′(ωi))
2

mean(dataE ′)
+

(E ′′(ωi, P)−dataE ′′(ωi))
2

mean(dataE ′′)

)
, (4.45)

where mean(dataE ′) and mean(dataE ′′) are the mean averages of the known storage and
loss moduli values respectively, and they are no longer functions of ωi. This can work well
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but performance is hindered if the storage or loss moduli individually vary over many orders
of magnitude. The fourth option offered by RHEOS is simply manual weightings provided
by the user for each modulus. Explicitly:

min
P∈Rn

(
Ω

∑
ωi

φ0
(
E ′(ωi, P)−dataE ′(ωi)

)2
+φ1

(
E ′′(ωi, P)−dataE ′′(ωi)

)2

)
, (4.46)

where φ0 and φ1 are the user-supplied weighting constants. Although this method does not
always work well, it is included to provide more flexibility to users.

Choice of Programming Language

The choice of programming language in which RHEOS is written should be briefly discussed.
RHEOS is written in Julia [313]. It is a fairly new programming language – the first major
version was only released in August 2018, though it has been growing in popularity since
at least 2012 [314, 315]. Given the language’s novelty, it might at first seem a strange
choice for scientific software that is intended to be as approachable as possible. In fact, it is
an ideal choice. Julia provides just-in-time compilation, multiple dispatch and a powerful
type system which enables it to achieve C/Fortran levels of computational speed, whilst
using syntax that is very straightforward and heavily influenced by Python and MATLAB.
Just-in-time compilation ensures that functions are compiled down to optimised machine
code, whilst multiple dispatch essentially uses the type system in order to run the correct
method with minimal overhead. The computational speed was found to be very important
for the more complicated fractional viscoelastic models. The syntax’s similarities to Python
and MATLAB are no coincidence, this was an important part of the design of Julia. Python
and MATLAB are two of the most popular languages for scientific programming so the
syntactic similarity facilitates an easy transition to Julia for the many scientific users of those
languages. Lastly, Julia’s design, with multiple dispatch at its core, encourages the so-called
‘generic’ programming paradigm, wherein data structures and algorithms can be defined in a
generic way that accomplishes multiple programming tasks simultaneously and facilitates
inter-linking of different scientific software packages [316]. This may help RHEOS become
integrated into other related projects.

Software Engineering Best Practice

Scientific software has a reputation for being structured in ways that increase the risk of
pernicious errors, and reduce readability and maintainability [317]. As such, there is growing
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awareness of the need for properly tested and documented scientific software [318]. Through-
out the development of RHEOS, effort has been made to follow software engineering best
practice as far as possible. The ways in which this has been achieved are briefly discussed
in the following. First, from the ground up the code has been written to be as readable as
possible so that it can quickly be understood by more advanced users who may desire to
understand exactly what RHEOS is doing, and to facilitate peer review of the code. Secondly,
RHEOS is fully documented using Julia’s documentation package which allows online doc-
umentation to be easily updated, promoting long term maintanence. All the user-exposed
functions have a doc string attached so that their call signatures and description can be
accessed locally in a convenient manner. In terms of tooling, GIT has been used throughout
RHEOS’ development to facilitate collaboration with other members of the group. It is hoped
that this will also encourage collaboration from other users in the future. Further, the Julia
testing suite has been used, though complete testing coverage is still under development. The
testing has been setup to work with the continuous integration services Travis CI [319] and
AppVeyor [320] which run the tests on servers running Linux and Windows, thus promoting
cross platform compatibility. Lastly, RHEOS has been licensed under the MIT open-source
license which is extremely permissive and will hopefully encourage participation from the
open-source scientific community.

4.4.5 Future Development

Functionality Extensions

There are plans to add a number of additional features to RHEOS – some of these are
mentioned here. Regarding frequency based data, a convenience function will be added to
transform |G∗| and complex phase angle into G′ and G′′ data which can then be fitted in
RHEOS. Regarding the hereditary integral, the most pressing requirement is an improvement
to the computational speed of variable sample-rate datasets, and also those fractional vis-
coelastic kernels that contain the Mittag-Leffler function. Regarding the former, non-uniform
fast Fourier transform convolutions will be investigated, aswell as the algorithms by Singh
and Chatterjee [309], and Diethelm and Freed [310]. Regarding the latter, a similar method
to Perdikaris and Karniadakis [224] will be tested as it enabled the computation of the hered-
itary integral in the Laplace domain in such a way as to avoid computing the Mittag-Leffler
function in the time domain entirely. Another approach which could potentially benefit both
issues is computing the model fitting process via the differential equation itself rather than the
creep or relaxation moduli; preliminary testing of this approach has already proved promising.
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Two further benefits of this approach are that it is entirely creep/relaxation agnostic so no
choice of modulus would required by the user, and it provides a good way of handling moduli
singularities. (The latter point is discussed in more detail in the next section.) Lastly, the
biggest current limitation of RHEOS is the fact that it only handles linear viscoelasticity.
Work will be undertaken to implement non-linear viscoelasticity.

Singularities Within the Hereditary Integral

Although RHEOS has a fairly good method of approximating fractional viscoelastic models
with singularities, several other approaches for handling these singularities are still under
investigation. To be clear, this section is mostly concerned with singularities within the
fractional viscoelastic moduli and not the Dirac delta function used to simulate step loading
in stress or strain. The Dirac delta function is more amenable to approximation by a simple
hat function, so long as it is ensured that integrating across it yields a Heaviside function
then it will behave as required for our needs. It appears that the MPL model discussed above,
and other empirical models such as the logarithmic Kuhn/Becker model [22, 321], were
formulated specifically to get around the issue of the singular moduli. Indeed, this provides
us with the simplest way to remove the issue, just add a spring in series or otherwise modify
the moduli such that the singularity is removed. However, this approach would result in
RHEOS no longer fitting into the self-consistent fractional viscoelastic framework of springs,
springpots and dashpots, and the models provided would just be a collection of moduli with
ad-hoc singularity removals. In fact, for the singularities encountered in Appendix B, the
removal of the singularity should not be necessary because although the singular moduli
yield hereditary integrals that are stated improperly, they are convergent. To see this we can
consider a twice differentiable loading ε , which numerical experimental data always will be,
and the springpot relaxation modulus. Integrating by parts, and noting that zΓ(z) = Γ(z+1),
we find

σ(t) =
1

Γ(1−β )

∫ t

0
(t − τ)−β

ε̇(τ) dτ

=
−(t − τ)1−β ε̇(τ)

Γ(2−β )

∣∣∣∣∣
t

0

−
∫ t

0

−(t − τ)1−β ε̈(τ)

Γ(2−β )
dτ

=
t1−β ε̇(0)
Γ(2−β )

+
∫ t

0

(t − τ)1−β ε̈(τ)

Γ(2−β )
dτ

(4.47)

which is now stated in proper form so the convergence of the integral is immediately clear.
From this, we know that there is a convergent answer which can be calculated, but the best
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way to achieve this numerically is still not obvious. At present RHEOS approximates the
singularity by a method known as ‘avoiding the singularity’ [310, 322]. In concrete terms,
this is done by not actually including the singular point but approximating it by taking a
small offset distance from it, set to ∆t/10 where ∆t is the sample period. This works well but
can introduce a small error that is difficult to quantify exactly as its value depends upon the
loading imposed. (A representative example is shown in Appendix E.) For this reason, other
approaches will be considered in future versions of RHEOS.

One approach that will be investigated is the same method used to attain Equation 4.47,
i.e. integration by parts, which yields an equation that is immediately amenable to quadra-
ture or FFT convolutional methods without modification as there are no singularities in
the kernel. Another nice feature of this method is its ability to handle a step at time t = 0;
as long as the step is approximated by a hat function as discussed above and we allocate
the apex of the hat function to be the first element of the strain derivative array ε̇ . Two
possible drawbacks of this approach are the accumulation of error when using finite differ-
ence on noisy experimental error to calculate the second derivative, and the requirement
that the integral of all singular moduli need to be stored in RHEOS which is slightly inelegant.

Another option is to keep the Laplace transform of the modulus stored in RHEOS and
use it to calculate the convolution in the complex domain. This is similar to the method
used by Perdikaris and Karniadakis [224] but the model used in that study was a fractional
SLS that does not have any singularities, the authors used it to avoid approximation of
the Mittag-Leffler function in the time domain. The numerical stability with time-domain
singular models requires further exploration. A third possibility is to always use creep moduli
when fitting as these never contain singularities. However, without testing it is not clear
whether this works in all cases of arbitrary data.

Lastly, a fourth approach which at present appears the most promising. It avoids creep
and relaxation moduli completely and just uses the differential equation of the model. For
this reason it is currently only suitable for fitting, though if the method could be achieved
using spectral differentiation then it could also be extended for predicting responses as well
as fitting duties. Clearly it is also limited to models for which the differential equation is
known, which may preclude some empirical models. The true strength of this method can be
seen by considering the relaxation modulus of the dashpot, and noting that it is equal to its
differential form

σ(t) = η

∫ t

0
δ (t − τ)ε̇(τ)dτ = ηε̇. (4.48)
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The intermediate representation is numerically intractable, whilst the differential representa-
tion is well defined and easy to compute. From this it can be seen that because the assumption
of an unphysical step is a necessary part of the derivation of creep/relaxation moduli, the
creep/relaxation moduli paradigm leads to numerical issues which can be effortlessly avoided
by use of the constitutive differential equations of the models. (This is another strong benefit
of the viscoelastic models derived through a framework of well defined viscoelastic units as
they naturally yield a constitutive differential equation.) For a more complicated example,
consider the differential equation of the fractional Kelvin-Voigt model from Appendix B

σ(t) = cα

dαε(t)
dtα

+ cβ

dβ ε(t)
dtβ

(4.49)

which can easily be rearranged to form an objective function for minimisation routines.
Explicitly:

min
cα , α, cβ , β ∈ R

 T

∑
ti

(
cα

dαε(ti)
dtα

+ cβ

dβ ε(ti)
dtβ

−σ(ti)

)2
 , (4.50)

where ε(ti) and σ(ti) are known data samples of the strain and stress respectively. The
relaxation function of this model has singularities, whilst the creep form depends on the
Mittag-Leffler function. By using the differential equation form, we have avoided all
singularity issues, avoided computation of the expensive Mittag-Leffler function, and we
have made the entire fitting process completely creep/relaxation agnostic. This last point can
be exploited to make the RHEOS user interface simpler, as a modulus would not even have to
be chosen by the user. To calculate the fractional derivatives in Equation 4.49, the integration
by parts method shown in Equation 4.47 could be used, followed by convolution, or one of
the many numerical Caputo derivative algorithms presented in the literature [207, 323–327] –
spectral methods are of particular interest for the reason discussed above that they may also
allow the differential equation form to be used for prediction as well as fitting.

Future RHEOS Extension With Contact Models

There are also plans to build additional rheology software packages on top of RHEOS. For
one, a project which already has some preliminary work done is a package that contains
additional functions and data structures designed for experiments whose data can be mapped
to an effective stress and effective strain. This could enable those doing indentation or
magnetic tweezer experiments to easily make use of RHEOS’ functionality. Consider for
example the Hertz model used in Chapter 3, apart from raising the displacement to the
power 3/2 element-wise and multiplying by a prefactor, all of the other operations that might
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be required for fitting and predicting viscoelastic behaviour are the same. Concretely, the
hereditary integral with a Hertz indentation model can be written

f (t) =
8
√

R
3

∫ t

0
G(t − τ)

d
dτ

δ
3/2(τ)dτ, (4.51)

letting σe f f = f (t), and εe f f = (8
√

R/3)δ 3/2 results in

σe f f (t) =
∫ t

0
G(t − τ)

d
dτ

εe f f (τ)dτ, (4.52)

which can be treated as a regular hereditary integral by RHEOS. Although the physical
units are not the same, they are conceptually comparable. The Julia programming language,
particularly the fields and properties feature added in version 1.0, will greatly facilitate
integration of this extension package with RHEOS. Of course, it must be noted that not all
contact models are amenable to the above type of transform and additional work will be
required to implement those models.

4.5 Conclusion

In this chapter, fractional viscoelasticity has been introduced, and its utility demonstrated.
Fractional viscoelastic counterparts to a number of empirical models from the literature
have been discussed, and a number of studies on biomaterials have been re-analysed using
fractional viscoelastic models with comparison made to the traditional models used in the
original studies. It was shown that the fractional viscoelastic models were able to better
characterise the biomaterials using the same or fewer parameters. The pectin data from
Chapter 3 was re-evaluated using a fractional SLS model which was found to provide a
similarly good fit whilst using one less parameter. The results across different pectin gel
types were then discussed in light of the fractional viscoelastic results; a phenomenological
interpretation of the fractional model’s parameters was consistent with that found previously
using the SLS2 model.

A software implementation of fractional viscoelastic models and their fitting and predict-
ing functionality was then discussed. The motivation was outlined, followed by the main
deliverables of the software, which were claimed to have already been fulfilled. (To further
demonstrate the meeting of the main goals of RHEOS, the main features were demonstrated
with the aid of code examples and plots where appropriate in Appendix A.) This was followed
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by more detailed discussion of the technical implementation of RHEOS. Finally, plans for
the future development of RHEOS and associated packages was detailed.





Chapter 5

Conclusions

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

T. S. Eliot, 1942
Little Gidding

5.1 Summary of Findings

In this thesis, methods for the viscoelastic analysis of pectin in vitro and Arabidopsis seedlings
using the AFM have been developed and used to further understanding of their viscoelas-
tic character. Whilst AFM does not appear to have been used previously for viscoelastic
testing of pectin in vitro, it has been used in viscoelastic tests on Arabidopsis. The creep
methodology presented in this thesis complements the bimodal AFM analysis developed
by Seifert [44], and the dissipation based methods developed by Fernandes et al. [43]. For
both material types, an SLS2 model was used for the majority of the discussion as it was
found to provide a good fit. A fractional SLS model was found to provide a similarly good fit
for pectin in vitro whilst using using one less model parameter. Fitting the fractional model
to the Arabidopsis hypocotyls data yielded a near exponential springpot component which
suggested that a fractional modelling approach was not appropriate in vivo. This is perhaps
surprising given that pectin is the largest constituent of the hypocotyl cell wall by volume;
although the stiff elastic cellulose microfibrils in the wall, perhaps in conjunction with the
hemicelluloses, likely account for the discrepancy, their precise role could not be pinned
down by the methods used in this study. Regarding in vitro pectin, physical insights from
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both the traditional and fractional models were in agreement. Where possible, comparisons
were made with bulk DMA rheology data from the literature which was in good general
agreement with the findings from both models. Having said this, it is the authors conviction
that the relaxation test and model based approach presented here contribute a greater physical
insight into pectin gels behaviour than the model-free DMA approach. It was observed that
both elastic and viscous parameters were negatively correlated with DM. In DM40 pectin
gels with different patterns of de-esterification, one random and one blockwise, the ISS was
found to be correlated with DB and inversely correlated with elastic/viscous ratio. This is in
accordance with the hypothesis that ionic bond reformation of random de-esterified pectin is
perceived as more elastic by the models, whereas block de-esterified relaxation behaviour
is dominated by longer time-scale behaviours. Mixed DM gels were also investigated and
the non-linear relationship between gel ISS and DM was found to explain the discrepancies
between mixed and pure DM gels’ mechanical integrity. With regards to the Arabidopsis
hypocotyl testing, the relative ISS was found to be in agreement with previous elastic studies,
i.e. significantly higher in transverse walls than axial walls. The time for creep to plateau
was found to be slower in axial walls than transverse walls, in contrast to the gels which
displayed similar timescales over the range of DMs tested. The mean plateau shear stiffness
was closer between wall types than the instantaneous shear stiffness indicating the possibility
of mechanical coupling between axial and transverse walls at longer time-scales.

Fractional viscoelasticity was explored through use of existing data in the literature and
was found to provide an improved goodness of fit using the same or less parameters for the
studies examined. This observation, in addition to the aforementioned suitability of a frac-
tional model for pectin in vitro, and the mathematical complexity of fractional viscoelasticity,
led to the development of an open-source software package for rheology analysis, RHEOS.
The deliverables of the software were enumerated. The features and implementation specifics
were also outlined.

In summary, the main contributions of this thesis are the following.

• Development and validation of an AFM protocol for viscoelastic testing of pectin in
vitro.

• Use of the above to improve understanding of pectin mechano-chemistry.

• Adaptation of the AFM methodology for testing in planta, used to investigate symmetry
breaking in the Arabidopsis hypocotyl.
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• Demonstration of fractional viscoelastic models’ capacity to improve fitting quality
and/or model parsimony for several studies in the literature, and in vitro pectin data.

• Development of an open-source software package, RHEOS, for rheological data
analysis with an emphasis on increasing the usability of fractional viscoelastic models.

5.2 Future Work

The work presented in this thesis generates a number of scientific questions and pathways
for further development. Regarding the experimental work in pectin, the AFM viscoelastic
protocol will enable fine spatial resolution mechanical studies which may provide valuable
insight into the relationship between pectin fine structure and observed mechanical properties.
This could be combined with a larger variety of pectin formulations, perhaps including
constituents which are relevant to industrial application such as sucrose. For developmen-
tal considerations, further work could be done to investigate the conditions required for
linearity, particularly closer to syneresis. Further testing should be done to develop the
plastic deformation assessment protocol suggested at the end of Chapter 3. Preliminary tests
indicate that there may be plastic deformation occurring; this should be further investigated
and, if confirmed, should inform an updated choice of model that incorporates a dashpot
in series. Chemical perturbations may be useful in determining the physical mechanisms
which underpin the elastic, viscous and plastic modes of deformation. More work should
be done to identify limitations of the proposed fractional model for different formulations
of pectin in vitro, for example at the extremes of low/high concentration, DB, DM or cal-
cium concentration. Given the difficulty of disentangling the mechanical contribution of
the various components of the plant cell wall, it would be fascinating to bring together the
remarkable array of in vitro cellulose/pectin/hemicelluloses composites generated by authors
in recent years with the generic modelling power of the fractional viscoelastic framework.
With this combination, the interplay between model parameters, composite components and
physical modes of deformation could be thoroughly investigated. In practice, having an
effective modelling framework with which to predict the mechanical properties of pectin
and pectin composites will be useful in food and biotechnology fields as it will allow pectin
formulations to be reverse engineered based on their desired rheological properties, thereby
significantly reducing product development time.

In Arabidopsis, there are several ways in which the work presented here could be de-
veloped further. In the first instance, viscoelastic tests could be carried out at a higher
spatial resolution, and topographic rheological maps could be generated for the various
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model parameters. (RHEOS would facilitate analysis by virtue of its fast computational
speed.) This would help disentangle the various cell wall components which contribute to
the observed mechanical properties. Most particularly with regard to the potential coupling
of rheology observed at longer time-scales, and potential geometric effects. Further, it would
be interesting to test the methodology used here in other Arabidopsis tissue at different
developmental stages. The data from these tests could also be fitted to the SLS2 model and
combined with existing knowledge of the cell wall architecture to develop a clearer picture of
the contribution of specific cell wall components to the magnitude of the model parameters.
It would also provide a good test of whether or not the SLS2 model itself can successfully be
applied to Arabidopsis tissue beyond the hypocotyl. With the methodology and model further
validated in other tissues, more complex studies could be undertaken. Of particular interest
to the author is the mechanical contribution to morphogenesis. To investigate this, genetic
alterations could be made to various cell-wall related genes via agrobacteria, but only to
individual cells. The viscoelastic properties of the infected cell and surrounding cells could
then be tested to investigate how adjacent cells compensate for stronger/weaker cells. More
generally, the data presented here, and future data generated using the presented methodology
could be used to inform the computational and mathematical models of Arabidopsis mor-
phogenesis, many of which previously relied on elastic stiffness as a proxy material parameter.

Regarding fractional viscoelasticity more generally, there is plenty of work to be done
in simply spreading word of its utility. RHEOS will hopefully help with this process by
lowering barriers to entry. Regarding RHEOS itself, there are many options for expanding
its functionality. These improvements, which are detailed in Chapter 4, can be summarised
as improved data processing convenience functions, and improvements to the efficiency
and accuracy of the fitting/predicting process. The planned extension for contact model
compatible data types should widen the appeal of RHEOS, particularly as indentation
methods are popular for biomaterials which, as demonstrated in Chapter 4, are often well
suited to fractional viscoelastic models. The contact model extension will also aid the
suggested future work in pectin and Arabidopsis on fine spatial resolution as it will enable
large indented rheological mapping data to be processed with RHEOS, which provides
excellent computational efficiency.
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[6] Linardić M. The Role of Brown Algal Cell Walls in Morphogenesis and Development.
University of Cambridge. Cambridge; 2018.

[7] Bonfanti A, Fouchard J, Khalilgharibi N, Charras G, Kabla A. A Unified Rheological
Model for Cells and Cellularised Materials. bioRxiv. 2019 Feb;p. 543330. Available
from: https://www.biorxiv.org/content/10.1101/543330v1.

[8] Oyen ML. Spherical Indentation Creep Following Ramp Loading. Journal of Mate-
rials Research. 2005 Aug;20(08):2094–2100. Available from: http://www.journals.
cambridge.org/abstract_S0884291400089536.

[9] Thompson DW. On Growth and Form. 2nd ed. Cambridge University Press; 1945.

[10] Scott Blair GW. Rheology in Food Research. In: Mrak EM, Stewart GF, editors.
Advances in Food Research. vol. 8. Academic Press; 1958. p. 1–61. Available from:
http://www.sciencedirect.com/science/article/pii/S0065262808600178.

[11] Scott Blair GW. A SURVEY OF GENERAL AND APPLIED RHEOLOGY. 2nd ed.
London: Sir Isaac Pitman & Sons, LTD; 1949.

https://doi.org/10.1017/S0022029900002090
https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.1967.tb33997.x
https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.1967.tb33997.x
http://www.plantcell.org/content/29/12/2959
http://doi.wiley.com/10.1002/jctb.5000660901
http://www.sciencedirect.com/science/article/pii/S0021929097000237
http://www.sciencedirect.com/science/article/pii/S0021929097000237
https://www.biorxiv.org/content/10.1101/543330v1
http://www.journals.cambridge.org/abstract_S0884291400089536
http://www.journals.cambridge.org/abstract_S0884291400089536
http://www.sciencedirect.com/science/article/pii/S0065262808600178


140 References

[12] Scott Blair GW. AN INTRODUCTION TO BIORHEOLOGY. Amsterdam: Elsevier
Scientific Publishing Company; 1974.

[13] Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix Elasticity Directs Stem Cell
Lineage Specification. Cell. 2006 Aug;126(4):677–689. Available from: http://
linkinghub.elsevier.com/retrieve/pii/S0092867406009615.

[14] Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, Weaver JC, et al. Hydro-
gels with Tunable Stress Relaxation Regulate Stem Cell Fate and Activity. Nature
Materials. 2016 Mar;15(3):326–334. Available from: http://www.nature.com/articles/
nmat4489.

[15] Charrier EE, Pogoda K, Wells RG, Janmey PA. Control of Cell Morphology and
Differentiation by Substrates with Independently Tunable Elasticity and Viscous
Dissipation. Nature Communications. 2018 Jan;9(1):449. Available from: https:
//www.nature.com/articles/s41467-018-02906-9.

[16] Laronda MM, Rutz AL, Xiao S, Whelan KA, Duncan FE, Roth EW, et al. A Bio-
prosthetic Ovary Created Using 3D Printed Microporous Scaffolds Restores Ovarian
Function in Sterilized Mice. Nature Communications. 2017 May;8:15261. Available
from: https://www.nature.com/articles/ncomms15261.

[17] Mohnen D. Pectin Structure and Biosynthesis. Current Opinion in Plant Biology.
2008;11:266–277. Available from: https://doi.org/10.1016/j.pbi.2008.03.006.

[18] Tieman DM, Handa AK. Reduction in Pectin Methylesterase Activity Modifies
Tissue Integrity and Cation Levels in Ripening Tomato (Lycopersicon Esculentum
Mill.) Fruits. Plant Physiology. 1994 Oct;106(2):429–436. Available from: http:
//www.plantphysiol.org/lookup/doi/10.1104/pp.106.2.429.

[19] Ali ZM, Chin LH, Lazan H. A Comparative Study on Wall Degrading Enzymes,
Pectin Modifications and Softening during Ripening of Selected Tropical Fruits. Plant
Science. 2004 Aug;167(2):317–327. Available from: http://www.sciencedirect.com/
science/article/pii/S0168945204001530.

[20] Barnes HA, Hutton JF, Walters K. An Introduction to Rheology. Amsterdam, The
Netherlands: Elsevier; 1989.

[21] Gutierrez-Lemini D. In: Constitutive Equations in Hereditary Integral Form. Boston,
MA: Springer US; 2014. p. 23–52. Available from: http://link.springer.com/10.1007/
978-1-4614-8139-3_2.

[22] Lakes R. Viscoelastic Materials. Cambridge: Cambridge University Press; 2009.
Available from: http://ebooks.cambridge.org/ref/id/CBO9780511626722.

[23] Heyn ANJ. Der Mechanismus Der Zellstreckung. Amsterdam: De Bussy; 1931.

[24] Khalilgharibi N, Fouchard J, Asadipour N, Yonis A, Harris A, Mosaffa P, et al. Stress
Relaxation in Epithelial Monolayers Is Controlled by Actomyosin. bioRxiv. 2018
Apr;p. 302158. Available from: https://www.biorxiv.org/content/10.1101/302158v1.

http://linkinghub.elsevier.com/retrieve/pii/S0092867406009615
http://linkinghub.elsevier.com/retrieve/pii/S0092867406009615
http://www.nature.com/articles/nmat4489
http://www.nature.com/articles/nmat4489
https://www.nature.com/articles/s41467-018-02906-9
https://www.nature.com/articles/s41467-018-02906-9
https://www.nature.com/articles/ncomms15261
https://doi.org/10.1016/j.pbi.2008.03.006
http://www.plantphysiol.org/lookup/doi/10.1104/pp.106.2.429
http://www.plantphysiol.org/lookup/doi/10.1104/pp.106.2.429
http://www.sciencedirect.com/science/article/pii/S0168945204001530
http://www.sciencedirect.com/science/article/pii/S0168945204001530
http://link.springer.com/10.1007/978-1-4614-8139-3_2
http://link.springer.com/10.1007/978-1-4614-8139-3_2
http://ebooks.cambridge.org/ref/id/CBO9780511626722
https://www.biorxiv.org/content/10.1101/302158v1


References 141

[25] Li Z, Zhang Z, Thomas C. Viscoelastic-Plastic Behavior of Single Tomato Mesocarp
Cells in High Speed Compression-Holding Tests. Innovative Food Science & Emerg-
ing Technologies. 2016 Apr;34:44–50. Available from: http://linkinghub.elsevier.com/
retrieve/pii/S1466856416000175.

[26] Zhao X, Huebsch N, Mooney DJ, Suo Z. Stress-Relaxation Behavior in Gels with
Ionic and Covalent Crosslinks. Journal of Applied Physics. 2010 Mar;107(6):063509.
Available from: http://aip.scitation.org/doi/10.1063/1.3343265.

[27] Gibbs DA, Merrill EW, Smith KA, Balazs EA. Rheology of Hyaluronic Acid. Biopoly-
mers. 1968 Jun;6(6):777–791. Available from: http://doi.wiley.com/10.1002/bip.1968.
360060603.

[28] Basoli F, Giannitelli SM, Gori M, Mozetic P, Bonfanti A, Trombetta M, et al. Biome-
chanical Characterization at the Cell Scale: Present and Prospects. Frontiers in
Physiology. 2018 Nov;9. Available from: https://www.frontiersin.org/article/10.3389/
fphys.2018.01449/full.

[29] Colin-York H, Fritzsche M. The Future of Traction Force Microscopy. Current
Opinion in Biomedical Engineering. 2018 Mar;5:1–5. Available from: http://www.
sciencedirect.com/science/article/pii/S2468451117300727.

[30] Schächtele M, Hänel E, Schäffer TE. Resonance Compensating Chirp Mode for
Mapping the Rheology of Live Cells by High-Speed Atomic Force Microscopy.
Applied Physics Letters. 2018 Aug;113(9):093701. Available from: http://aip.scitation.
org/doi/10.1063/1.5039911.

[31] Solares SD, An S, Long CJ. Multi-Frequency Tapping-Mode Atomic Force Mi-
croscopy beyond Three Eigenmodes in Ambient Air. Beilstein Journal of Nanotech-
nology. 2014 Sep;5(1):1637–1648. Available from: https://www.beilstein-journals.
org/bjnano/articles/5/175.

[32] Niedermayer T, Eckhardt B, Lenz P. Synchronization, Phase Locking, and Metachronal
Wave Formation in Ciliary Chains. Chaos. 2008;18.

[33] Alcaraz J, Buscemi L, Pui-de-Morales M, Colchero J, Baró A, Navajas D. Correction
of Microrheological Measurements of Soft Samples with Atomic Force Microscopy
for the Hydrodynamic Drag on the Cantilever. Langmuir. 2002;18:716–721. Available
from: http://dx.doi.org/10.1021/la0110850.

[34] Milani P, Braybrook SA, Boudaoud A. Shrinking the Hammer: Micromechanical
Approaches to Morphogenesis. Journal of Experimental Botany. 2013;64(15):4651–62.
Available from: https://doi.org/10.1093/jxb/ert169.

[35] Majda M, Grones P, Sintorn IM, Vain T, Milani P, Krupinski P, et al. Mechanochemical
Polarization of Contiguous Cell Walls Shapes Plant Pavement Cells. Developmental
Cell. 2017 Nov;43(3):290–304.e4. Available from: https://linkinghub.elsevier.com/
retrieve/pii/S1534580717308304.

[36] Braybrook SA. Measuring the Elasticity of Plant Cells with Atomic Force Microscopy.
In: Paluch E, editor. Biophysical Methods in Cell Biology. vol. 125. Cambridge,
Massachusetts: Academic Press; 2015. p. 237–254.

http://linkinghub.elsevier.com/retrieve/pii/S1466856416000175
http://linkinghub.elsevier.com/retrieve/pii/S1466856416000175
http://aip.scitation.org/doi/10.1063/1.3343265
http://doi.wiley.com/10.1002/bip.1968.360060603
http://doi.wiley.com/10.1002/bip.1968.360060603
https://www.frontiersin.org/article/10.3389/fphys.2018.01449/full
https://www.frontiersin.org/article/10.3389/fphys.2018.01449/full
http://www.sciencedirect.com/science/article/pii/S2468451117300727
http://www.sciencedirect.com/science/article/pii/S2468451117300727
http://aip.scitation.org/doi/10.1063/1.5039911
http://aip.scitation.org/doi/10.1063/1.5039911
https://www.beilstein-journals.org/bjnano/articles/5/175
https://www.beilstein-journals.org/bjnano/articles/5/175
http://dx.doi.org/10.1021/la0110850
https://doi.org/10.1093/jxb/ert169
https://linkinghub.elsevier.com/retrieve/pii/S1534580717308304
https://linkinghub.elsevier.com/retrieve/pii/S1534580717308304


142 References

[37] Alcaraz J, Buscemi L, Grabulosa M, Trepat X, Fabry B, Farré R, et al. Microrheol-
ogy of Human Lung Epithelial Cells Measured by Atomic Force Microscopy. Bio-
physical Journal. 2003;84:2071–2079. Available from: http://dx.doi.org/10.1016/
S0006-3495(03)75014-0.

[38] Ketene AN, Schmelz EM, Roberts PC, Agah M. The Effects of Cancer Progres-
sion on the Viscoelasticity of Ovarian Cell Cytoskeleton Structures. Nanomedicine:
Nanotechnology, Biology and Medicine. 2012 Jan;8(1):93–102. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S1549963411001845.

[39] Moreno-Flores S, Benitez R, dM Vivanco M, Toca-Herrera JL. Stress Relaxation
and Creep on Living Cells with the Atomic Force Microscope: A Means to Cal-
culate Elastic Moduli and Viscosities of Cell Components. Nanotechnology. 2010
Nov;21(44):445101. Available from: http://stacks.iop.org/0957-4484/21/i=44/a=
445101?key=crossref.d2cf510398a1237607dc9356a038e678.

[40] Efremov YM, Wang WH, Hardy SD, Geahlen RL, Raman A. Measuring Nanoscale
Viscoelastic Parameters of Cells Directly from AFM Force-Displacement Curves.
Scientific Reports. 2017 May;7(1):1541. Available from: https://doi.org/10.1038/
s41598-017-01784-3.

[41] Wang B, Wang W, Wang Y, Liu B, Liu L. Dynamical Modeling and Analysis of
Viscoelastic Properties of Single Cells. Micromachines. 2017 Jun;8(6):171. Available
from: http://www.mdpi.com/2072-666X/8/6/171.

[42] Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C, Höfte H. Pectin-
Induced Changes in Cell Wall Mechanics Underlie Organ Initiation in Arabidopsis.
Current Biology. 2011;21:1720–1726. Available from: https://doi.org/10.1016/j.cub.
2011.08.057.

[43] Fernandes AN, Chen X, Scotchford CA, Walker J, Wells DM, Roberts CJ, et al.
Mechanical Properties of Epidermal Cells of Whole Living Roots of Arabidopsis
Thaliana: An Atomic Force Microscopy Study. Physical Review E. 2012 Feb;85(2).
Available from: https://link.aps.org/doi/10.1103/PhysRevE.85.021916.

[44] Seifert J. In Vivo Dynamic AFM Mapping of Viscoelastic Properties of the Primary
Plant Cell Wall. University of Oxford; 2018.

[45] Johnson KL. Contact Mechanics. Cambridge University Press; 1987.

[46] Popov VL. Contact Mechanics and Friction: Physical Principles and Applications.
Springer Science & Business Media; 2010.

[47] Lin YY, Hui CY, Baney JM. Viscoelastic Contract, Work of Adhesion and the
JKR Technique. Journal of Physics D: Applied Physics. 1999 Sep;32(17):2250–
2260. Available from: http://stacks.iop.org/0022-3727/32/i=17/a=316?key=crossref.
a88aa43b095013f179a4c565b50910e8.

[48] Barthel E. Adhesive Elastic Contacts: JKR and More. Journal of Physics D: Applied
Physics. 2008 Aug;41(16):163001. Available from: http://stacks.iop.org/0022-3727/
41/i=16/a=163001?key=crossref.29f23ff178c2c68a59f2067d84f6dd5d.

http://dx.doi.org/10.1016/S0006-3495(03)75014-0
http://dx.doi.org/10.1016/S0006-3495(03)75014-0
http://linkinghub.elsevier.com/retrieve/pii/S1549963411001845
http://stacks.iop.org/0957-4484/21/i=44/a=445101?key=crossref.d2cf510398a1237607dc9356a038e678
http://stacks.iop.org/0957-4484/21/i=44/a=445101?key=crossref.d2cf510398a1237607dc9356a038e678
https://doi.org/10.1038/s41598-017-01784-3
https://doi.org/10.1038/s41598-017-01784-3
http://www.mdpi.com/2072-666X/8/6/171
https://doi.org/10.1016/j.cub.2011.08.057
https://doi.org/10.1016/j.cub.2011.08.057
https://link.aps.org/doi/10.1103/PhysRevE.85.021916
http://stacks.iop.org/0022-3727/32/i=17/a=316?key=crossref.a88aa43b095013f179a4c565b50910e8
http://stacks.iop.org/0022-3727/32/i=17/a=316?key=crossref.a88aa43b095013f179a4c565b50910e8
http://stacks.iop.org/0022-3727/41/i=16/a=163001?key=crossref.29f23ff178c2c68a59f2067d84f6dd5d
http://stacks.iop.org/0022-3727/41/i=16/a=163001?key=crossref.29f23ff178c2c68a59f2067d84f6dd5d


References 143

[49] Lee EH, Radok JRM. The Contact Problem for Viscoelastic Bodies. Journal of
Applied Mechanics. 1960 Sep;27(3):438–444. Available from: http://dx.doi.org/10.
1115/1.3644020.

[50] Mattice JM, Lau AG, Oyen ML, Kent RW. Spherical Indentation Load-Relaxation of
Soft Biological Tissues. Journal of Materials Research. 2006 Aug;21(08):2003–2010.
Available from: http://www.journals.cambridge.org/abstract_S0884291400083771.

[51] Hunter SC. THE HERTZ PROBLEM FOR A RIGID SPHERICAL INDENTER AND
A VISCOELASTIC HALF-SPACE. Journal of the Mechanics and Physics of Solids.
1960;p. 16. Available from: https://doi.org/10.1016/0022-5096(60)90028-4.

[52] Ting TCT. The Contact Stresses Between a Rigid Indenter and a Viscoelastic Half-
Space. Journal of Applied Mechanics. 1966;33(4):845. Available from: http://
AppliedMechanics.asmedigitalcollection.asme.org/article.aspx?articleid=1397955.

[53] Culpeper N. The Complete Herbal. London: Thomas Kelly; 1653.

[54] Spanner DC. In: Botanical Aspects of Biorheology. Amsterdam: Elsevier Scientific
Publishing Company; 1974. .

[55] Green P. Mechanism for Plant Cellular Morphogenesis. Science.
1962;138(3548):1404–1405. Available from: https://doi.org/10.1126/science.
138.3548.1404.

[56] Braybrook SA, Jönsson H. Shifting Foundations: The Mechanical Cell Wall and
Development. Current Opinion in Plant Biology. 2016;29:115–120. Available from:
https://doi.org/10.1016/j.pbi.2015.12.009.

[57] Levesque-Tremblay G, Pelloux J, Braybrook SA, Müller K. Tuning of Pectin
Methylesterification: Consequences for Cell Wall Biomechanics and Develop-
ment. Planta. 2015;242:791–811. Available from: https://dx.doi.org/10.1007/
s00425-015-2358-5.

[58] Kerstens S, Decraemer WF, Verbelen JP. Cell Walls at the Plant Surface Be-
have Mechanically Like Fiber-Reinforced Composite Materials. Plant Physiology.
2001;127(2):381–385.

[59] Pauly M, Gille S, Liu L, Mansoori N, de Souza A, Schultink A, et al. Hemicellulose
Biosynthesis. Planta. 2013 Oct;238(4):627–642. Available from: http://link.springer.
com/10.1007/s00425-013-1921-1.

[60] Roelofsen PA. Ultrastructure of the Wall in Growing Cells and Its Relation to the Direc-
tion of the Growth. In: Advances in Botanical Research. vol. 2. Elsevier; 1966. p. 69–
149. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0065229608602505.

[61] Heyn ANJ. The Physiology of Cell Elongation. The Botanical Review. 1940
Oct;6(10):515–574. Available from: http://link.springer.com/10.1007/BF02879296.

[62] Cleland R. A Separation of Auxin-Induced Cell Wall Loosening into Its Plastie and
Elastic Components. Physiologia Plantarum. 1958 Jul;11(3):599–609. Available from:
http://doi.wiley.com/10.1111/j.1399-3054.1958.tb08255.x.

http://dx.doi.org/10.1115/1.3644020
http://dx.doi.org/10.1115/1.3644020
http://www.journals.cambridge.org/abstract_S0884291400083771
https://doi.org/10.1016/0022-5096(60)90028-4
http://AppliedMechanics.asmedigitalcollection.asme.org/article.aspx?articleid=1397955
http://AppliedMechanics.asmedigitalcollection.asme.org/article.aspx?articleid=1397955
https://doi.org/10.1126/science.138.3548.1404
https://doi.org/10.1126/science.138.3548.1404
https://doi.org/10.1016/j.pbi.2015.12.009
https://dx.doi.org/10.1007/s00425-015-2358-5
https://dx.doi.org/10.1007/s00425-015-2358-5
http://link.springer.com/10.1007/s00425-013-1921-1
http://link.springer.com/10.1007/s00425-013-1921-1
http://linkinghub.elsevier.com/retrieve/pii/S0065229608602505
http://link.springer.com/10.1007/BF02879296
http://doi.wiley.com/10.1111/j.1399-3054.1958.tb08255.x


144 References

[63] Yamamoto R, Shinozaki K, Masuda Y. Stress-Relaxation Properties of Plant Cell
Walls with Special Reference to Auxin Action. Plant and Cell Physiology. 1970
Dec;11(6):947–956. Available from: https://academic.oup.com/pcp/article/1819261/
Stress-relaxation.

[64] Hengartner H. Die Fluoreszenppolarisation der verholzten zellwand. Holz als Roh-
und Werkstoff. 1961 Aug;19(8):303–309. Available from: http://link.springer.com/10.
1007/BF02609689.

[65] Probine MC, Preston RD. Cell Growth and the Structure and Mechanical Properties of
the Wall in Internodal Cells of Nitella Opaca: II. MECHANICAL PROPERTIES OF
THE WALLS. Journal of Experimental Botany. 1962 Feb;13(1):111–127. Available
from: https://academic.oup.com/jxb/article/13/1/111/463989.
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A.1 Fitting Rheological Models to Data and Making Pre-
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Fig. A.1 A) Imposed strain of the test data used for fitting. B) Resultant stress relaxation curves from
the test data. Loading data generated by RHEOS.

This appendix provides an overview of the process of fitting rheological models using
RHEOS, and then using those fitted models to test the fit quality and make predictions based
on other loading patterns. Firstly, RHEOS has a convenience function for importing data
from CSV files. The default column delimiter is a single comma, but an alternative can
be specified as a keyword argument. The row delimiter is a newline character (‘\n’). For
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standard viscoelastic testing data RHEOS expects either stress, strain and time data, just
stress and time, or just strain and time. All three are required for fitting, whilst at least two
are required for prediction. The order of the columns is specified as the first argument in the
function importdata. The second argument is the directory of the file, as shown below, in
which the data file “DataRelaxation.csv” exists in the same directory as the working Julia
directory.

using RHEOS

data = importdata(["stress","strain", "time"], "DataRelaxation.csv")

Now we have all our data stored in the variable data which is of type RheoTimeData, an SLS
model can be fitted to the data. As the data is known to be strain-controlled relaxation data,
we can perform the fitting via the relaxation modulus. (Note that RHEOS uses the convention
of G for the relaxation modulus whereas this thesis uses E for the relaxation modulus and
reserves G for the shear relaxation modulus.)

fitted_SLS_model = modelfit(data, SLS(), :G)

The first argument passes the data, the second argument tells RHEOS which model to fit with
empty brackets implying that the default parameters will be used as initial guesses, and the
final argument tells RHEOS whether to fit the model using a relaxation modulus or creep
modulus. The result of this fit is now stored in a RheoModel data type. At this stage the best
model may not be known, so let us also fit a second model, the fractional SLS model. This
time we’ll also add upper and lower bounds on the model parameters. This is recommended
for fractional models in particular as values less than 0 or greater than 1 for the spring-pot
parameter are unphysical and can lead to numerical issues in the gamma function, or the
Mittag-Leffler function for more complicated models.

lb = [0.1, 0.01, 0.1, 0.1]

ub = [Inf, 0.99, Inf, Inf]

fractsls_fit = modelfit(data, FractionalSLS(), :G; lo=lb, hi=ub)

Note the two keyword arguments used – lo and hi for the lower and upper parameter
boundaries respectively. The special argument Inf for the three of the parameters’ upper
bounds represent a type of infinity such that the parameters can be as large as required by
the optimisation algorithm. For a full list of keyword arguments and features of the modelfit
function, see the relevant part of the API section [302]. Now we have two models fitted, we
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Fig. A.2 Test data fitted to an SLS model and an FSLS model.

can qualitatively assess their goodness of fit. First, the fitted models are combined with the
original loading data to generate predicted responses.

sls_predicted = modelpredict(data, sls_fit, :G)

fractsls_predicted = modelpredict(data, fractsls_fit, :G)

Then all that’s left to do is plot, which is shown in Figure A.2, where it can be seen that the
fit of the fractional model is slightly better. Now, if we have another dataset from the same
material but a different loading pattern, we can further test the fitted models by seeing how
well they predict the response of this new loading. This is the fit/predict paradigm in action,
and our new loading data is analogous to a ‘validation‘ or ‘test’ set in the language used
by machine learning engineers. For the purposes of this example, new data was generated
whose loading consisted of a ramp up from t = 0 to t = 40 seconds, followed by a small
step up at t = 50 seconds, and a step down t = 75 seconds. The code to find the response
predicted by both previously fitted models with the new data is the following.

sls_predicted2 = modelpredict(newdata, sls_fit, :G)
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fractsls_predicted2 = modelpredict(newdata, fractsls_fit, :G)

This result, with comparison to the actual response from the new data, is shown in Figure A.3
in which it can be seen that the FSLS model clearly provides the more accurate prediction.
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Fig. A.3 Stress relaxation response of the validation compared with that predicted by the two models
fitted to the previous data from the same material.

DMA studies do not yield time-series data, but frequency data. This frequency data
is either in separate parts of real (storage) modulus and imaginary (loss) modulus, or the
absolute value of the complex modulus and the dissipation angle in the complex plane.
RHEOS accepts data in the former format – three columns of data, one for frequency, one for
the storage modulus and one for the loss modulus. As the two representations of DMA data
are easily interchangeable this should not prevent anyone from being able to fit their data,
however this is discussed again briefly in the future work section of Chapter 4. Below is a
short example demonstrating how models can be fitted to DMA data, and then the response
predicted as before but this time using the dynamicmodelpredict function.
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frequency_data = importdata(["Gp", "Gpp", "frequency"], "FrequencyData.csv")

lb = [0.0, 0.01, 0.0, 0.0]

ub = [Inf, 0.99, Inf, Inf]

fitted_fractSLS_model = dynamicmodelfit(frequency_data, FractionalSLS();

lo=lb, hi=ub, weights="log")

freq_fractSLS_predicted = dynamicmodelpredict(frequency_data,

fitted_fractSLS_model)

The result of this is plotted in Figure A.4.
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Fig. A.4 Stress relaxation response of the validation compared with that predicted by the two models
fitted to the previous data from the same material.
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A.2 Arbitrary Loading Generation

It has been mentioned in Chapter 4 that, at the outset, it is not immediately clear how to
develop intuition for fractional viscoelastic models. Although Figures 4.5 and 4.7A go a
long way in providing model selection heuristics, there are times when more information
is required about the models behaviour. Sometimes it is sufficient to just plot the creep/re-
laxation modulus itself, which is equivalent to a Dirac delta step loading applied. However,
many other times it is useful to understand the behaviour of the model under more complex
loading. For this reason, RHEOS provides a number of functions for generating step, ramp,
oscillatory and noise behaviours which can be added and multiplied to each other. These are
demonstrated in this section.
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Fig. A.5 A) Two step signals and their additively combined signal, generated using RHEOS con-
venience functions. B) An oscillatory signal, a ramp signal, and their multiplicative combination,
generated using RHEOS convenience functions.

It should be noted that the way these functions are currently implemented, they generate
the same loading in both stress and strain with the expectation that users will then use one
or other to make predictions, depending on whether they are interested in relaxation or
creep behaviour. As all the structs generated are of RheoTimeData type, the same addition,
subtraction and multiplication overloaded methods can be used for real data. When adding
two RheoTimeData structs and one is longer than the other (in time), the shorter one will
be extended by keeping the last values of that shorter struct’s data constant for the rest of
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time. Adding, subtracting and multiplying will raise an error if the data do not have the same
sample rate.

First, we can try adding and subtracting two step functions to generate a rectangular
loading signal. The code below uses stepgen to create one step starting at 100 seconds (with
total duration of 1000 seconds) and another step starting at 500 seconds lasting the same total
duration. The first argument of stepgen determines the total length in seconds. The second
step is then subtracted from the first to create a new combined loading pattern.

foo = stepgen(1000.0, 100.0)

bar = stepgen(1000.0, 500.0)

baz = foo - bar

The output of which is plotted in Figure A.5A. The above example uses an instantaneous step.
However, a logistic functional transition can be used by adding a non-zero t_trans keyword
argument. Next we’ll generate ramp loading using rampgen. The arguments in order are the
total time length (as before), the time to start the ramp and the time to stop the ramp. We
will also generate oscillatory loading which will be multiplied by the ramp loading. The
first argument of singen is the total time length, the second is the frequency in hertz, and the
keyword argument is phase in radians.

foo = singen(1000.0, 1/70; phase = -pi/2)

bar = rampgen(1000.0, 10.0, 400.0) - rampgen(1000.0, 400.0, 800.0)

baz = foo*bar

The result of this is plotted in Figure A.5B. Signals can also be repeated. RHEOS provides
a convenience function that can loop loading patterns a specified number of times. Similar
to the step function, repeatdata also offers a t_trans keyword argument which determines
the transition between the end of one loop and the start of the next. If t_trans=0 then the
transition is instantaneous, if not the transition occurs by logistic function with approximate
transition time t_trans. The repeatdata function currently only works if the stress and strain
arrays contain the same data (as is produced by all the data generation functions). Below
we use our most recently defined baz variable (the oscillatory loading multiplied by the two
ramps) to demonstrate.

repeatedbaz = repeatdata(baz, 3)

The output of this is plotted in Figure A.6A.
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Fig. A.6 A) Previously generated ramp and oscillation multiplicative combination, repeated three
times. B) A step signal, a pure noise signal, and their additive combination.

Lastly, RHEOS also features uniform white noise generation function called noisegen.The
below example demonstrates this on a simple step, and its output is plotted in Figure A.6B.

foo = stepgen(100, 50)

bar = 0.01*noisegen(100)

baz = foo + bar

A.3 Resampling and Filtering

Preprocessing of experimental data is often important, yet it can be an obstacle for those
with less programming experience. For this reason, RHEOS includes a number of commonly
used preprocessing functions. This section details their use. Note that the examples use
data generated by the data generation functions shown in the previous section. To simply
downsample data by taking every nth sample, the downsample function can be used. In the
below example, every 2nd element is taken.

foo = stepgen(10, 5)

bar = downsample(foo, [0.0, 10.0], [2])
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The result of this is shown in Figure A.7A. More than one section of downsampling can
be defined. For example, the below code takes every 2nd element from time=0.0 seconds
to time=5.0 seconds and after that it takes every element. Note that as there are now two
different sample rates, the data set is considered as having ‘variable’ sampling by RHEOS
which adds a computational cost to fitting operations.

foo = stepgen(10, 5)

bar = downsample(foo, [0.0, 5.0, 10.0], [2, 1])
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Fig. A.7 A) Step data that has been downsampled over the entire signal by taking every other element.
B) Step data that has been downsampled as before but only over the first half of the signal, the second
half remains unchanged.

The result of this is plotted in Figure A.7B. The fixedresample function is similar to the
downsample function but also allows for upsampling. The syntax is almost the same but it
requires an addition argument to tell RHEOS whether it should upsample or downsample for
that section. Below is an example with three distinct sampling regions, the first two regions
are downsampled and the third region is upsampled.

foo = stepgen(10, 5)

bar = fixedresample(foo, [0.0, 5.0, 8.0, 10.0], [2, 1, 4], ["down", "down",

"up"])
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The result of this is plotted in Figure A.8A. Lastly, RHEOS provides a smoothing function,
smooth. The first argument is the data to smooth and the second argument is the approximate
time scale of smoothing. (It uses Gaussian smoothing and can be thought of as a low pass
filter for information occurring on time scales shorter than the second argument). The
padding can be changed using a keyword argument if desired, see API and ImageFiltering.jl
documentation for more details. The example below smooths out some noisy data and the
before/after data is plotted in Figure A.8.
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Fig. A.8 A) Step data that has been downsampled and upsampled at different signal times using
RHEOS. B) Noisy ramp data that has been smoothed using RHEOS.



Appendix B

Summary of Fractional Viscoelastic
Models

B.1 Spring-pot

Constitutive equation
σ(t) = cβ

dβ ε(t)
dtβ

for 0 ≤ β ≤ 1

Relaxation modulus
G(t) =

cβ

Γ(1−β )t
−β

Creep modulus
J(t) = 1

cβ Γ(1+β )t
β

Complex modulus
G∗(ω) = cβ (iω)β

Storage modulus
G′(ω) = cβ ωβ cos(π

2 β )

Loss modulus
G′′(ω) = cβ ωβ sin(π

2 β )
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Special cases

• Spring: β = 0

• Dashpot: β = 1
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Fig. B.1 Springpot behaviour for varying β in increments of 0.1. Color reference β values are red
(0.0), orange (0.3), yellow (0.5), green (0.7) and blue (1.0). (a) Relaxation response to step loading.
(b) Creep response to step loading and unloading. (c) and (d) Storage (solid line) and loss (dashed
line) moduli for the main values of β with colors ascribed above.



B.2 Fractional Maxwell model 181

B.2 Fractional Maxwell model

Constitutive equation
σ(t)+ cα

cβ

dα−β σ(t)
dtα−β

= cα
dα ε(t)

dtα

Assuming 0 ≤ β ≤ α ≤ 1

Relaxation modulus
G(t) = cβ t−β Eα−β ,1−β

(−cβ

cα
tα−β

)
Creep modulus
J(t) = 1

cα Γ(1+α)t
α + 1

cβ Γ(1+β )t
β

Complex modulus
G∗(ω) =

cα (iω)α ·cβ (iω)β

cα (iω)α+cβ (iω)β

Storage modulus
G′(ω) =

(cβ ωβ)
2·cα ωα cos(α π

2 )+(cα ωα )2·cβ ωβ cos(β π

2 )

(cα ωα )2+(cβ ωβ)
2
+2cα ωα ·cβ ωβ cos((α−β ) π

2 )

Loss modulus
G′′(ω) =

(cβ ωβ)
2·cα ωα sin(α π

2 )+(cα ωα )2·cβ ωβ sin(β π

2 )

(cα ωα )2+(cβ ωβ)
2
+2cα ωα ·cβ ωβ cos((α−β ) π

2 )
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Special cases

• Maxwell model: β = 0 and α = 1 • β = 0
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Fig. B.2 Fractional Maxwell behaviour with β = 0 for varying α in increments of 0.1. Color reference
α values are red (0.0), orange (0.3), yellow (0.5), green (0.7) and blue (1.0). (a) Relaxation response
to step loading. (b) Creep response to step loading and unloading. (c) and (d) Storage (solid line) and
loss (dashed line) moduli for the main values of α with colors ascribed above.
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• α = 1
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Fig. B.3 Fractional Maxwell behaviour with α = 1 for varying β in increments of 0.1. Color reference
β values are red (0.0), orange (0.3), yellow (0.5), green (0.7) and blue (1.0). (a) Relaxation response
to step loading. (b) Creep response to step loading and unloading. (c) and (d) Storage (solid line) and
loss (dashed line) moduli for the main values of β with colors ascribed above.
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B.3 Fractional Kelvin-Voigt model

Constitutive equation
σ(t) = cα

dα ε(t)
dtα + cβ

dβ ε(t)
dtβ

Assuming 0 ≤ β ≤ α ≤ 1

Relaxation modulus
G(t) = cα

Γ(1−α)t
−α +

cβ

Γ(1−β )t
−β

Creep modulus
J(t) = tα

cα
Eα−β ,1+α

(
− cβ

cα
tα−β

)
Complex modulus
G∗(ω) = cα(iω)α + cβ (iω)β

Storage modulus
G′(ω) = cαωα cos

(
α

π

2

)
+ cβ ωβ cos

(
β

π

2

)
Loss modulus
G′′(ω) = cαωα sin

(
α

π

2

)
+ cβ ωβ sin

(
β

π

2

)
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Special cases

• Kelvin-Voigt model: β = 0 and α = 1 • β = 0
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Fig. B.4 Fractional Kelvin-Voigt behaviour with β = 0 for varying α in increments of 0.1. Color
reference α values are red (0.0), orange (0.3), yellow (0.5), green (0.7) and blue (1.0). (a) Relaxation
response to step loading. (b) Creep response to step loading and unloading. (c) and (d) Storage (solid
line) and loss (dashed line) moduli for the main values of α with colors ascribed above.
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• α = 1
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Fig. B.5 Fractional Kelvin-Voigt behaviour with α = 1 for varying β in increments of 0.1. Color
reference β values are red (0.0), orange (0.3), yellow (0.5), green (0.7) and blue (1.0). (a) Relaxation
response to step loading. (b) Creep response to step loading and unloading. (c) and (d) Storage (solid
line) and loss (dashed line) moduli for the main values of β with colors ascribed above.
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B.4 Fractional Zener model

Constitutive equation
σ(t)+ cα

cβ

dα−β σ(t)
dtα−β

= cα
dα ε(t)

dtα + cγ
dγ ε(t)

dtγ +
cα cγ

cβ

dα+γ−β ε(t)
dtα+γ−β

Assuming 0 ≤ β ≤ α ≤ 1

Relaxation modulus
G(t) = cβ t−β Eα−β ,1−β

(
− cβ

cα
tα−β

)
+

cγ

Γ(1−γ)t
−γ

Creep modulus
J̃(s) = 1

s
cα sα+cβ sβ

cα sα cβ sβ+cγ sγ (cα sα+cβ sβ )

Complex modulus
G∗(ω) =

cα (iω)α ·cβ (iω)β

cβ (iω)β+cα (iω)α
+ cγ(iω)γ

Storage modulus

G′(ω) =
(cβ ωβ)

2·cα ωα cos(α π

2 )+(cα ωα )2·cβ ωβ cos(β π

2 )

(cα ωα )2+(cβ ωβ)
2
+2cα ωα ·cβ ωβ cos((α−β ) π

2 )
+ cγωγ cos

(
γ

π

2

)

Loss modulus
G′′(ω) =

(cβ ωβ)
2·cα ωα sin(α π

2 )+(cα ωα )2·cβ ωβ sin(β π

2 )

(cα ωα )2+(cβ ωβ)
2
+2cα ωα ·cβ ωβ cos((α−β ) π

2 )
+ cγωγ sin

(
γ

π

2
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Special cases

• Standard Linear Solid model: α = 1 and β = γ = 0

• β = γ = 0

0.0 0.2 0.4 0.6 0.8 1.0
Time, t (s)

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 S
tr

es
s,

 
(t

)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Time, t (s)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 S
tr

ai
n,

 
(t

)

(b)

10
1

10
0

10
1

10
2

10
3

Frequency,  (Hz)

10
1

10
0

10
1

St
or

ag
e 

an
d 

Lo
ss

 m
od

ul
i, 

G
 &

 G
 (P

a)

(c)

10
1

10
0

10
1

10
2

10
3

Frequency,  (Hz)

10
1

10
0

10
1

St
or

ag
e 

an
d 

Lo
ss

 m
od

ul
i, 

G
 &

 G
 (P

a)

(d)

Fig. B.6 Fractional Zener behaviour with β = 0, γ = 0 for varying α in increments of 0.1. Color
reference α values are red (0.0), orange (0.3), yellow (0.5), green (0.7) and blue (1.0). (a) Relaxation
response to step loading. (b) Creep response to step loading and unloading. (c) and (d) Storage (solid
line) and loss (dashed line) moduli for the main values of α with colors ascribed above.
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• Jeffrey’s model: α = γ = 1 and β = 0

• α = γ = 1

0.0 0.2 0.4 0.6 0.8 1.0
Time, t (s)

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 S
tr

es
s,

 
(t

)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Time, t (s)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 S
tr

ai
n,

 
(t

)

(b)

10
1

10
0

10
1

10
2

10
3

Frequency,  (Hz)

10
1

10
0

10
1

St
or

ag
e 

an
d 

Lo
ss

 m
od

ul
i, 

G
 &

 G
 (P

a)

(c)

10
1

10
0

10
1

10
2

10
3

Frequency,  (Hz)

10
1

10
0

10
1

St
or

ag
e 

an
d 

Lo
ss

 m
od

ul
i, 

G
 &

 G
 (P

a)

(d)

Fig. B.7 Fractional Zener behaviour with α = 1, γ = 1 for varying β in increments of 0.1. Color
reference β values are red (0.0), orange (0.3), yellow (0.5), green (0.7) and blue (1.0). (a) Relaxation
response to step loading. (b) Creep response to step loading and unloading. (c) and (d) Storage (solid
line) and loss (dashed line) moduli for the main values of β with colors ascribed above.
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• Fractional BK model: α = 1 and γ = 0
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Fig. B.8 Fractional Zener behaviour with α = 1, γ = 0 for varying β in increments of 0.1. Color
reference β values are red (0.0), orange (0.3), yellow (0.5), green (0.7) and blue (1.0). (a) Relaxation
response to step loading. (b) Creep response to step loading and unloading. (c) and (d) Storage (solid
line) and loss (dashed line) moduli for the main values of β with colors ascribed above.
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Notes

If we restrict ourself to the cases γ = α or γ = β , it is possible to demonstrate that the
constitutive equation of the Zener and that of the Poynting-Thomson model presented in the
next section are equivalent.

For γ = α the constitutive equation of the Zener model is

σ(t)+
cZ

α

cZ
β

dα−β σ(t)
dtα−β

= (cZ
α + cZ

γ )
dαε(t)

dtα
+

cZ
αcZ

γ

cZ
β

d2α−β ε(t)
dt2α−β

, (B.1)

whereas the constitutive equation of the Poynting-Thomson is

σ(t)+
cPT

α + cPT
γ

cPT
β

dα−β σ(t)
dtα−β

= cPT
β

dαε(t)
dtα

+
cPT

α cPT
γ

cPT
β

d2α−β ε(t)
dt2α−β

. (B.2)

Note that the superscript Z refers to the parameters of the Zener model while PT to those
of the Poynting-Thomson model. By equating the coefficients of the terms in equation B.1
and B.2 we can relate the parameters of the Zener model to those of the Poynting-Thomson
model

cPT
α =

cZ
γ (c

Z
α+cZ

γ )

cZ
α

cPT
β

=
cZ

β

cZ
α

cPT
γ = cZ

α + cZ
γ

(B.3)

Therefore, we can calculate the creep modulus from the equivalent Poynting-Thomson model.

For γ = β we simply need to exchange α and β in equation B.3 for both PT and Z
parameters.
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B.5 Fractional Poynting-Thomson model

Constitutive equation
σ(t)+ cα

cγ

dα−γ σ(t)
dtα−γ +

cβ

cγ

dβ−γ σ(t)
dtβ−γ

= cα
dα ε(t)

dtα + cβ

dβ ε(t)
dtβ

Assuming 0 ≤ β ≤ α ≤ 1

Relaxation modulus
G̃(s) = 1

s
cγ sγ ·[cα sα+cβ sβ ]
cγ sγ+cα sα+cβ sβ

Creep modulus
J(t) = tα

cα
Eα−β ,1+α

(
− cβ

cα
tα−β

)
+ 1

cγ Γ(1+γ)t
γ

Complex modulus
G∗(ω) =

cγ (iω)γ ·[cα (iω)α+cβ (iω)β ]
cγ (iω)γ+cα (iω)α+cβ (iω)β

Storage modulus
G′(ω) =

cγ ωγ cos(γ
π
2 )
[
(cα ωα )2+(cβ ωβ )

2]
+(cγ ωγ)

2
[cα ωα cos(α

π
2 )+cβ ωβ cos(β

π
2 )]+cα ωα ·cβ ωβ ·cγ ωγ [cos((α−β−γ) π

2 )+cos((β−α−γ) π
2 )]

(cα ωα )2+(cβ ωβ )
2
+(cγ ωγ)

2
+2cα ωα ·cβ ωβ cos((α−β ) π

2 )+2cα ωα ·cγ ωγ cos((α−γ) π
2 )+2cβ ωβ ·cγ ωγ cos((β−γ) π

2 )

Loss modulus
G′′(ω) =

cγ ωγ sin(γ
π
2 )
[
(cα ωα )2+(cβ ωβ )

2]
+(cγ ωγ)

2
[cα ωα sin(α

π
2 )+cβ ωβ sin(β

π
2 )]+cα ωα ·cβ ωβ ·cγ ωγ [sin((α−β−γ) π

2 )+sin((β−α−γ) π
2 )]

(cα ωα )2+(cβ ωβ )
2
+(cγ ωγ)

2
+2cα ωα ·cβ ωβ cos((α−β ) π

2 )+2cα ωα ·cγ ωγ cos((α−γ) π
2 )+2cβ ωβ ·cγ ωγ cos((β−γ) π

2 )
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Special cases

• Standard Linear Solid model: α = 1 and β = γ = 0

• Jeffrey’s model: α = γ = 1 and β = 0

• β = γ = 0

• α = γ = 1
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Notes

If we restrict ourself to the cases γ = α or γ = β , it is possible to demonstrate that the
constitutive equation of the Poynting-Thomson and that of the Zener model are equivalent.

For γ = α the constitutive equation of the Poynting-Thomson model is

σ(t)+
cPT

α

cPT
γ

dα−γσ(t)
dtα−γ

+
cPT

β

cγ

PT
dβ−γσ(t)

dtβ−γ
= cPT

α

dαε(t)
dtα

+ cPT
β

dβ ε(t)
dtβ

. (B.4)

By taking the (α −β )th derivative of the equation and multiplying both sides by cPT
α /cPT

β
we

obtain

σ(t)+
cPT

α + cPT
γ

cPT
β

dα−β σ(t)
dtα−β

= cPT
β

dαε(t)
dtα

+
cPT

α cPT
γ

cPT
β

d2α−β ε(t)
dt2α−β

; (B.5)

whereas the constitutive equation of the Zener model becomes

σ(t)+
cZ

α

cZ
β

dα−β σ(t)
dtα−β

= (cZ
α + cZ

γ )
dαε(t)

dtα
+

cZ
αcZ

γ

cZ
β

d2α−β ε(t)
dt2α−β

. (B.6)

Note that the superscript PT refers to the parameters of the Poynting-Thomson model
whilst the superscript Z to those of the Zener model. By equating the coefficients of the terms
in equation B.5 and B.6 we can relate the parameters of the Poynting-Thomson model to
those of the Zener

cZ
α =

(cPT
γ )2

cPT
α +cPT

γ

cZ
β
=

cPT
β
(cPT

γ )2

(cPT
α +cPT

γ )2

cZ
γ =

cPT
α cPT

γ

cPT
α +cPT

γ

(B.7)

Therefore, we can calculate the relaxation modulus from the equivalent Zener model.

For γ = β we simply need to exchange α and β in equation B.7 for both PT and Z
parameters.



Appendix C

Model Fits and Error Analysis

C.1 Overview and Methodology

In this Appendix section, fits for all the data analysed via viscoelastic models are shown in
regular and logarithmic scales. The bulk (all group samples) mean and standard deviation
of mean-squared-error for each model and dataset is shown in the figure captions. The
mean-squared-error for an individual data file is calculated by taking the difference between
the predicted and real response at each data point and squaring it, then summing all the
squared differences together; the sum is then divided by the number of elements to yield an
average mean-squared-error for that data file. The formula is written

1
N

N

∑
i
(predicted(i)− real(i))2, (C.1)

where N is the number of time samples in a particular data file, predicted(i) real(i) are the
ith samples of the predicted and real response respectively. Note that N varies only slightly
between individual data files due to slightly different ramp and hold times during the AFM
run. Bulk means and standard deviations reported in the figure captions (e.g. all SLS2 fits to
DM33 gels) use these individual data file mean-squared-errors as their input.

C.2 Fits and Errors
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SLS2: DM33 and DM41
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Fig. C.1 Real and predicted response of DM33 pectin gels fitted to the SLS2 viscoelastic model. Bulk
mean-squared-error: 5.4070e-16 (5 s.f.). Bulk standard deviation: 2.4567e-16 (5 s.f.). Real response
(blue line) has 40% opacity so a stronger blue color indicates greater line density. A) Responses
plotted against time in normal scale. B) Same as A but in logarithmic scale.
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Fig. C.2 Real and predicted response of DM41 pectin gels fitted to the SLS2 viscoelastic model. Bulk
mean-squared-error: 3.0784e-16 (5 s.f.). Bulk standard deviation: 1.2506e-16 (5 s.f.). Real response
(blue line) has 40% opacity so a stronger blue color indicates greater line density. A) Responses
plotted against time in normal scale. B) Same as A but in logarithmic scale.
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SLS2: DM50 and DM41 (33/50)
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Fig. C.3 Real and predicted response of DM50 pectin gels fitted to the SLS2 viscoelastic model. Bulk
mean-squared-error: 3.9352e-18 (5 s.f.). Bulk standard deviation: 1.0329e-18 (5 s.f.). Real response
(blue line) has 40% opacity so a stronger blue color indicates greater line density. A) Responses
plotted against time in normal scale. B) Same as A but in logarithmic scale.
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Fig. C.4 Real and predicted response of DM41(33/50) pectin gels fitted to the SLS2 viscoelastic
model. Bulk mean-squared-error: 1.1569e-16 (5 s.f.). Bulk standard deviation: 4.9029e-17 (5 s.f.).
Real response (blue line) has 40% opacity so a stronger blue color indicates greater line density. A)
Responses plotted against time in normal scale. B) Same as A but in logarithmic scale.



198 Model Fits and Error Analysis

SLS2: DM50 (41/60) and DM50 (33/70)
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Fig. C.5 Real and predicted response of DM50(41/60) pectin gels fitted to the SLS2 viscoelastic
model. Bulk mean-squared-error: 2.6620e-17 (5 s.f.). Bulk standard deviation: 1.0463e-17 (5 s.f.).
Real response (blue line) has 40% opacity so a stronger blue color indicates greater line density. A)
Responses plotted against time in normal scale. B) Same as A but in logarithmic scale.
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Fig. C.6 Real and predicted response of DM50(33/70) pectin gels fitted to the SLS2 viscoelastic
model. Bulk mean-squared-error: 4.2302e-17 (5 s.f.). Bulk standard deviation: 1.6586e-17 (5 s.f.).
Real response (blue line) has 40% opacity so a stronger blue color indicates greater line density. A)
Responses plotted against time in normal scale. B) Same as A but in logarithmic scale.
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SLS2: DM40 Block and DM40 Random
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Fig. C.7 Real and predicted response of DM40 (block) pectin gels fitted to the SLS2 viscoelastic
model. Bulk mean-squared-error: 2.5406e-16 (5 s.f.). Bulk standard deviation: 1.0165e-16 (5 s.f.).
Real response (blue line) has 40% opacity so a stronger blue color indicates greater line density. A)
Responses plotted against time in normal scale. B) Same as A but in logarithmic scale.
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Fig. C.8 Real and predicted response of DM40 (random) pectin gels fitted to the SLS2 viscoelastic
model. Bulk mean-squared-error: 5.2624e-17 (5 s.f.). Bulk standard deviation: 1.4564e-17 (5 s.f.).
Real response (blue line) has 40% opacity so a stronger blue color indicates greater line density. A)
Responses plotted against time in normal scale. B) Same as A but in logarithmic scale.
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SLS2: Arabidopsis Hypocotyl Transverse and Axial Walls
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Fig. C.9 Real and predicted response of Arabidopsis transverse walls fitted to the SLS2 viscoelastic
model. Bulk mean-squared-error: 2.0674e-14 (5 s.f.). Bulk standard deviation: 1.2653e-14 (5 s.f.).
Real response (blue line) has 40% opacity so a stronger blue color indicates greater line density. A)
Responses plotted against time in normal scale. B) Same as A but in logarithmic scale.
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Fig. C.10 Real and predicted response of Arabidopsis axial walls fitted to the SLS2 viscoelastic
model. Bulk mean-squared-error: 1.7174e-14 (5 s.f.). Bulk standard deviation: 1.3187e-14 (5 s.f.).
Real response (blue line) has 40% opacity so a stronger blue color indicates greater line density. A)
Responses plotted against time in normal scale. B) Same as A but in logarithmic scale.
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FSLS: DM33 and DM41
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Fig. C.11 Real and predicted response of DM33 pectin gels fitted to the FSLS viscoelastic model.
Bulk mean-squared-error: 8.4606e-16 (5 s.f.). Bulk standard deviation: 4.0028e-16 (5 s.f.). Real
response (blue line) has 40% opacity so a stronger blue color indicates greater line density. A)
Responses plotted against time in normal scale. B) Same as A but in logarithmic scale.
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Fig. C.12 Real and predicted response of DM41 pectin gels fitted to the FSLS viscoelastic model.
Bulk mean-squared-error: 3.5289e-16 (5 s.f.). Bulk standard deviation: 2.0109e-16 (5 s.f.). Real
response (blue line) has 40% opacity so a stronger blue color indicates greater line density. A)
Responses plotted against time in normal scale. B) Same as A but in logarithmic scale.
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FSLS: DM50 and DM41 (33/50)
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Fig. C.13 Real and predicted response of DM50 pectin gels fitted to the FSLS viscoelastic model.
Bulk mean-squared-error: 7.8350e-18 (5 s.f.). Bulk standard deviation: 4.7708e-18 (5 s.f.). Real
response (blue line) has 40% opacity so a stronger blue color indicates greater line density. A)
Responses plotted against time in normal scale. B) Same as A but in logarithmic scale.

0 5 10 15
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fo
rc

e 
(

N)

(A)

Real Response
Predicted Response

10
1

10
0

10
1

Time (s)

10
0

Fo
rc

e 
(

N)

(B)

Real Response
Predicted Response

Fig. C.14 Real and predicted response of DM41(33/50) pectin gels fitted to the FSLS viscoelastic
model. Bulk mean-squared-error: 1.9054e-16 (5 s.f.). Bulk standard deviation: 5.9022e-17 (5 s.f.).
Real response (blue line) has 40% opacity so a stronger blue color indicates greater line density. A)
Responses plotted against time in normal scale. B) Same as A but in logarithmic scale.
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FSLS: DM50 (41/60) and DM50 (33/70)
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Fig. C.15 Real and predicted response of DM50(41/60) pectin gels fitted to the FSLS viscoelastic
model. Bulk mean-squared-error: 4.1975e-17 (5 s.f.). Bulk standard deviation: 3.4932e-17 (5 s.f.).
Real response (blue line) has 40% opacity so a stronger blue color indicates greater line density. A)
Responses plotted against time in normal scale. B) Same as A but in logarithmic scale.
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Fig. C.16 Real and predicted response of DM50(33/70) pectin gels fitted to the FSLS viscoelastic
model. Bulk mean-squared-error: 6.1739e-17 (5 s.f.). Bulk standard deviation: 2.8291e-17 (5 s.f.).
Real response (blue line) has 40% opacity so a stronger blue color indicates greater line density. A)
Responses plotted against time in normal scale. B) Same as A but in logarithmic scale.
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FSLS: DM40 Block and DM40 Random
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Fig. C.17 Real and predicted response of DM40 (Block) pectin gels fitted to the FSLS viscoelastic
model. Bulk mean-squared-error: 3.5677e-16 (5 s.f.). Bulk standard deviation: 1.5222e-16 (5 s.f.).
Real response (blue line) has 40% opacity so a stronger blue color indicates greater line density. A)
Responses plotted against time in normal scale. B) Same as A but in logarithmic scale.
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Fig. C.18 Real and predicted response of DM40 (Random) pectin gels fitted to the FSLS viscoelastic
model. Bulk mean-squared-error: 6.5486e-17 (5 s.f.). Bulk standard deviation: 4.9781e-17 (5 s.f.).
Real response (blue line) has 40% opacity so a stronger blue color indicates greater line density. A)
Responses plotted against time in normal scale. B) Same as A but in logarithmic scale.
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FSLS: Arabidopsis Hypocotyl Transverse and Axial Walls
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Fig. C.19 Real and predicted response of Arabidopsis transverse walls fitted to the FSLS viscoelastic
model. Bulk mean-squared-error: 2.2844e-14 (5 s.f.). Bulk standard deviation: 1.1972e-14 (5 s.f.).
Real response (blue line) has 40% opacity so a stronger blue color indicates greater line density. A)
Responses plotted against time in normal scale. B) Same as A but in logarithmic scale.
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Fig. C.20 Real and predicted response of Arabidopsis axial walls fitted to the FSLS viscoelastic
model. Bulk mean-squared-error: 1.9197e-14 (5 s.f.). Bulk standard deviation: 1.3413e-14 (5 s.f.).
Real response (blue line) has 40% opacity so a stronger blue color indicates greater line density. A)
Responses plotted against time in normal scale. B) Same as A but in logarithmic scale.
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C.3 Tabulated Error Data

SLS2 FSLS
DM33 5.4070e-16 8.4606e-16
DM41 3.0784e-16 3.5289e-16
DM50 3.9352e-18 7.8350e-18
DM41 (33/50) 1.1569e-16 1.9054e-16
DM50 (41/60) 2.6620e-17 4.1975e-17
DM50 (33/70) 4.2302e-17 6.1739e-17
DM40 (Block) 2.5406e-16 3.5677e-16
DM40 (Random) 5.2624e-17 6.5486e-17
Arabidopsis Trans. 2.0674e-14 2.2844e-14
Arabidopsis Axial 1.7174e-14 1.9197e-14

Table C.1 Summary of bulk mean squared errors for the SLS2 and FSLS models fitted to the gels and
plants data.



Appendix D

Summary of Statistics

D.1 Overview and Methodology

In this Appendix section, the pair-wise and group-wise p-values of the experimental data
presented in Chapters 3 and 4 are summarised. The pair-wise p-values were calculated using
the non-parametric Kolmogorov-Smirnov test in SciPy (scipy.stats.mstats.ks_twosamp). The
group-wise P-values were calculated using a one-way ANOVA in SciPy (scipy.stats.f_oneway).

D.2 SLS2 Parameters

D.2.1 DM33, DM41, DM50 and Mixtures

Instantaneous Shear Stiffness (ISS)

ANOVA P-value: 1.09e-54

DM 33 41 50 33/50 41/60 33/70
33 - 6.54e-07 1.44e-08 9.09e-07 3.58e-08 1.01e-07
41 6.54e-07 - 4.47e-10 4.05e-05 1.02e-08 9.62e-09
50 1.44e-08 4.47e-10 - 8.40e-10 1.37e-10 1.06e-11
33/50 9.09e-07 4.05e-05 8.40e-10 - 1.71e-08 4.44e-08
41/60 3.58e-08 1.02e-08 1.37e-10 1.71e-08 - 1.29e-03
33/70 1.01e-07 9.62e-09 1.06e-11 4.44e-08 1.29e-03 -

Table D.1 Pairwise P-values of the SLS2 ISS parameters as fitted to DM33, 41, 50 and gel mixtures.
Note that the values are symmetric about the diagonal.
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Elastic/Viscous (E/V) Ratios

ANOVA P-value: 1.10e-04

DM 33 41 50 33/50 41/60 33/70
33 - 3.56e-01 4.81e-04 1.80e-01 3.70e-03 1.42e-01
41 3.56e-01 - 7.73e-03 6.73e-01 4.36e-02 5.18e-01
50 4.81e-04 7.73e-03 - 5.87e-02 2.49e-01 2.65e-05
33/50 1.80e-01 6.73e-01 5.87e-02 - 2.95e-01 3.56e-02
41/60 3.70e-03 4.36e-02 2.49e-01 2.95e-01 - 5.88e-04
33/70 1.42e-01 5.18e-01 2.65e-05 3.56e-02 5.88e-04 -

Table D.2 Pairwise P-values of the SLS2 E/V parameters as fitted to DM33, 41, 50 and gel mixtures.
Note that the values are symmetric about the diagonal.

Dashpot 1, η1

ANOVA P-value: 1.07e-27

DM 33 41 50 33/50 41/60 33/70
33 - 2.06e-02 1.44e-08 6.80e-06 3.04e-06 1.32e-07
41 2.06e-02 - 4.47e-10 1.68e-06 4.53e-07 1.65e-08
50 1.44e-08 4.47e-10 - 8.40e-10 8.58e-10 1.06e-11
33/50 6.80e-06 1.68e-06 8.40e-10 - 8.99e-04 2.21e-05
41/60 3.04e-06 4.53e-07 8.58e-10 8.99e-04 - 1.05e-01
33/70 1.32e-07 1.65e-08 1.06e-11 2.21e-05 1.05e-01 -

Table D.3 Pairwise P-values of the SLS2 Dashpot 1 parameters as fitted to DM33, 41, 50 and gel
mixtures. Note that the values are symmetric about the diagonal.
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Dashpot 2, η2

ANOVA P-value: 1.30e-16

DM 33 41 50 33/50 41/60 33/70
33 - 5.76e-01 1.44e-08 5.80e-05 3.33e-06 1.32e-07
41 5.76e-01 - 4.47e-10 6.89e-03 1.62e-06 1.90e-07
50 1.44e-08 4.47e-10 - 8.40e-10 1.53e-04 3.41e-07
33/50 5.80e-05 6.89e-03 8.40e-10 - 1.53e-04 8.32e-05
41/60 3.33e-06 1.62e-06 1.53e-04 1.53e-04 - 5.49e-01
33/70 1.32e-07 1.90e-07 3.41e-07 8.32e-05 5.49e-01 -

Table D.4 Pairwise P-values of the SLS2 Dashpot 2 parameters as fitted to DM33, 41, 50 and gel
mixtures. Note that the values are symmetric about the diagonal.

Time-scale 1, τ1

ANOVA P-value: 7.61e-02

DM 33 41 50 33/50 41/60 33/70
33 - 4.78e-02 5.77e-05 9.24e-01 2.19e-02 1.93e-01
41 4.78e-02 - 5.71e-02 2.29e-03 7.01e-01 1.74e-01
50 5.77e-05 5.71e-02 - 4.71e-06 2.28e-03 8.92e-06
33/50 9.24e-01 2.29e-03 4.71e-06 - 5.16e-03 3.98e-02
41/60 2.19e-02 7.01e-01 2.28e-03 5.16e-03 - 4.74e-01
33/70 1.93e-01 1.74e-01 8.92e-06 3.98e-02 4.74e-01 -

Table D.5 Pairwise P-values of the SLS2 Time-scale 1 parameters as fitted to DM33, 41, 50 and gel
mixtures. Note that the values are symmetric about the diagonal.
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Time-scale 2, τ2

ANOVA P-value: 2.42e-02

DM 33 41 50 33/50 41/60 33/70
33 - 5.76e-01 3.41e-01 3.47e-01 7.90e-01 3.08e-01
41 5.76e-01 - 7.11e-01 4.64e-02 1.99e-01 2.98e-02
50 3.41e-01 7.11e-01 - 3.73e-02 1.34e-01 1.55e-02
33/50 3.47e-01 4.64e-02 3.73e-02 - 5.41e-01 4.91e-01
41/60 7.90e-01 1.99e-01 1.34e-01 5.41e-01 - 8.89e-01
33/70 3.08e-01 2.98e-02 1.55e-02 4.91e-01 8.89e-01 -

Table D.6 Pairwise P-values of the SLS2 Time-scale 2 parameters as fitted to DM33, 41, 50 and gel
mixtures. Note that the values are symmetric about the diagonal.
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D.2.2 DM40 Block and Random

Instantaneous Shear Stiffness (ISS)

ANOVA P-value: 1.42e-04
Non-parametric KS P-value: 6.94e-03

Elastic/Viscous (E/V) Ratios

ANOVA P-value: 1.28e-04
Non-parametric KS P-value: 5.04e-05

Dashpot 1, η1

ANOVA P-value: 6.56e-01
Non-parametric KS P-value: 2.07e-01

Dashpot 2, η2

ANOVA P-value: 7.55e-01
Non-parametric KS P-value: 3.67e-01

Time-scale 1, τ1

ANOVA P-value: 1.12e-02
Non-parametric KS P-value: 1.07e-03

Time-scale 2, τ2

ANOVA P-value: 6.75e-02
Non-parametric KS P-value: 9.01e-02
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D.2.3 Arabidopsis Hypocotyl

Instantaneous Shear Stiffness (ISS)

ANOVA P-value: 1.59e-01
Non-parametric KS P-value: 3.87e-02

Elastic/Viscous (E/V) Ratios

ANOVA P-value: 2.16e-04
Non-parametric KS P-value: 1.19e-02

Time-scale 1, τ1

ANOVA P-value: 6.31e-03
Non-parametric KS P-value: 4.91e-03

Time-scale 2, τ2

ANOVA P-value: 2.24e-01
Non-parametric KS P-value: 3.83e-01

Plateau Shear Stiffness (PSS)

ANOVA P-value: 4.18e-01
Non-parametric KS P-value: 2.05e-01
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D.3 Fractional SLS Parameters

D.3.1 DM33, DM41, DM50 and Mixtures

Instantaneous Shear Stiffness (ISS)

ANOVA P-value: 1.74e-09

DM 33 41 50 33/50 41/60 33/70
33 - 2.78e-01 3.80e-08 3.86e-03 6.99e-07 8.22e-06
41 2.78e-01 - 3.24e-06 9.22e-02 3.05e-05 5.44e-04
50 3.80e-08 3.24e-06 - 3.80e-08 2.53e-09 1.59e-09
33/50 3.86e-03 9.22e-02 3.80e-08 - 1.77e-03 2.49e-01
41/60 6.99e-07 3.05e-05 2.53e-09 1.77e-03 - 6.14e-02
33/70 8.22e-06 5.44e-04 1.59e-09 2.49e-01 6.14e-02 -

Table D.7 Pairwise P-values of the FSLS ISS parameters as fitted to DM33, 41, 50 and gel mixtures.
Note that the values are symmetric about the diagonal.

Springpot Parameter α

ANOVA P-value: 9.35e-02
ANOVA P-value (without DM33): 3.46e-01

DM 33 41 50 33/50 41/60 33/70
33 - 3.42e-02 4.00e-01 3.66e-02 6.18e-02 4.43e-01
41 3.42e-02 - 2.36e-01 7.90e-01 3.22e-01 1.62e-01
50 4.00e-01 2.36e-01 - 2.63e-01 3.15e-01 9.97e-01
33/50 3.66e-02 7.90e-01 2.63e-01 - 9.07e-01 2.16e-01
41/60 6.18e-02 3.22e-01 3.15e-01 9.07e-01 - 2.27e-01
33/70 4.43e-01 1.62e-01 9.97e-01 2.16e-01 2.27e-01 -

Table D.8 Pairwise P-values of the FSLS ISS parameters as fitted to DM33, 41, 50 and gel mixtures.
Note that the values are symmetric about the diagonal.
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D.3.2 DM40 Block and Random

Instantaneous Shear Stiffness (ISS)

ANOVA P-value: 4.51e-01
Non-parametric KS P-value: 9.21e-01

Springpot Parameter α

ANOVA P-value: 4.24e-01
Non-parametric KS P-value: 3.08e-01



Appendix E

Singularity Error Analysis

As mentioned in the text, the error introduced by avoiding the singularity is small but hard
to quantify in a general way as it is dependent on the loading applied. In the following
a representative, but analytically tractable example is briefly analysed to demonstrate that
the error is small. The loading considered is ε(t) = 0.5t2 and the modulus used is the
relaxation modulus of the springpot with cβ = 1 and β = 0.2. The exact response can be
found to be σ(t) = t1.8/Γ(2.8). Figure E.1 shows the exact response when compared to
two approximations of the singular 0 point, ∆ t/10 and ∆ t/100, where in the simulation
∆ t = 1×10−2. As can be seen from Figure E.1, there is error at the beginning that rapidly
decays. Although the error at the beginning is large in relative terms it is very small in
absolute terms.
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Fig. E.1 A) Exact solution of springpot response with loading ε(t) = 0.5t2, compared with two
different singularity approximations. B) Relative error of the two singularity approximations.
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