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Abstract

Where non-linearities are not too strong, linearised frequency-domain approaches offer
fast calculations, which can be valuable for preliminary design of wind turbine blades,
foundations and floating platforms. But the aerodynamic and control system behaviour
of a wind turbine is noticeably non-linear. Here we show for the first time that the tech-
nique of harmonic linearisation can reduce error in the approximation of aerodynamic and
control system non-linearities, compared to the more common tangent linearisation. After
deriving the linearised models, comparing linearised results to non-linear simulations for
the NREL 5MW turbine shows that: (1) harmonic linearisation captures aero-elastic ef-
fects and non-linearity in aerodynamic forces, giving a 2–4x reduction in error compared
to the tangent linearisation; (2) harmonic linearisation can capture non-linear wake dy-
namics; and (3) the torque and pitch controller behaviour can be approximated with good
results away from the rated wind speed but with some challenges when the two controllers
interact. Further improvements in the linearised model of the control system have been
identified. By improving the accuracy of linearised models, harmonic linearisation is a
promising means to extend the applicability of frequency-domain approaches for initial
design and optimisation of wind turbines.

Keywords: wind energy, aerodynamic loads, frequency-domain modelling, harmonic
linearisation, equivalent linearisation, non-linearity

1. Introduction

There are many sources of non-linearity in wind turbines. Some non-linearities can
reasonably be neglected for some purposes, such as structural non-linearity [1] and second-
order hydrodynamic forces [2]. But some are more significant, in particular the aerody-
namic loads and the control system dynamics. For example, Figure 1 shows the thrust
curve of part of a wind turbine rotor, which is clearly non-linear when moderately large
variations in wind speed are considered, and Figure 2 shows examples of non-linearity in
the torque controller response.

Non-linearities are important because they determine the choice of modelling meth-
ods. When non-linearities are not too dominant, linearised frequency-domain approaches
give fast calculation of loading and response spectra and statistics. Although generally use-
ful, this is particularly valuable for analysing floating wind turbines, where the frequency-
domain approach is well established for analysis of other floating structures, and a large
number of load cases arise from the possible combinations of sea and wind states. Lin-
earised methods have been used for modelling stall-regulated turbines [3, 4], offshore
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Figure 1: Non-linearity is significant in the aerodynamic loading on a wind turbine. This example shows the
thrust on one rotor annulus, calculated from a Blade Element Momentum (BEM) model. The tangent and
harmonic linearisations of the thrust are shown, with all inputs held constant apart from a sinusoidal variation
in wind speed. Left: as a function of wind speed. Right: as a function of time.
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Figure 2: Examples of the response of the torque controller to harmonic variations in generator speed. The
example at the left is mildly non-linear at the corners of the torque curve. For the example in the middle the
underlying behaviour is quadratic, but over the range shown it is well approximated by the linear solution. The
example at the right is highly non-linear.
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turbines [5], and initial design of foundations [6] and blades [7]. For floating turbines,
they have been used to study a wide space of possible concepts [8] and to test the effect
of wave energy converters on spar platforms [9]. More generally, linearised models are
frequently used as a starting point for controller design [10].

However, the behaviour shown in Figure 1 is significantly non-linear, which calls into
question whether linearised methods provide sufficient accuracy for modelling wind tur-
bines. Halfpenny [3] found that non-linear aerodynamic forces were the main source
of errors in his frequency-domain analysis of a stall-regulated turbine. Sabale and Gopal
[11] highlight further non-linear effects using a geometrically-exact beam model account-
ing for aero-elasticity. Kvittem and Moan [12] compared frequency- and time-domain
models of tower-bending moments in a floating wind turbine, finding that wind-induced
low-frequency bendingmoments were not captured well, attributing this to lost non-linear
thrust and the use of an aerodynamic damping model for a fixed turbine. Philippe et al.
[13] compared frequency-domain and time-domain simulations of a floating wind turbine,
but focused on the hydrodynamic loads. Generally, non-linear time-domain simulations
are used for modelling wind turbines, which gives greater accuracy than linearised meth-
ods at the expense of greater simulation time. In this paper we ask if there is another
way: can we better capture the aerodynamic and control system non-linearity of a wind
turbine, to improve accuracy of loads and deflections while retaining the benefits of the
frequency-domain approach?

Previous linearised models are mostly derived by perturbing a numerical non-linear
model, for example using the codes FAST [14] or Bladed [15], or by analytical lineari-
sation of the aerodynamic forces [16], giving a “tangent linearisation”. Olondriz et al.
[17] presents an alternative linearisation method using a “chirp” signal in FAST. Merz
et al. [4] showed that, with ingenuity, linearised models can do better than this, con-
cluding that while the results of their linearised aerodynamic model of a stall-regulated
turbine were not good enough for certification, they were ideal for preliminary design
and optimisation. In this paper we propose to use equivalent linearisation, also called
harmonic linearisation and stochastic linearisation when used with harmonic and random
inputs respectively. This aims to find an equivalent linear system which is in some sense
the optimum approximation to the real function, given the inputs which actually occur.
Specifically, the mean-squared error between the non-linear and linear functions is min-
imised [18]. For example, Figure 1 shows the harmonic linearisation of the thrust force for
a sinusoidal variation in wind speed. There is a limit to how well a single sinusoid can be
made to fit the output of the original non-linear function, but the harmonic linearisation
gives the best possible sinusoid. This method is used to linearise the non-linear drag forces
on submerged structures [19] but to our knowledge, this is the first time that harmonic
linearisation has been demonstrated to improve the linearisation of aerodynamic loads
and control system behaviour in modelling the loads and deflections of wind turbines.

Specifically, the contributions of this paper are as follows. The harmonic linearisation
of the aerodynamic forces on a wind turbine rotor is derived, accounting for structural
dynamics and aero-elasticity, wake dynamics and active control of the rotor speed and
blade pitch angle (Sections 2–3). The results of the harmonic and tangent linearisations
are then compared to non-linear reference results for the NREL 5MW turbine [20], for a
range of wind conditions, focusing on three sources of non-linearity in turn:

1. aero-elastic effects and non-linearity in aerodynamic forces (Section 4);
2. non-linear wake dynamics (Section 5); and
3. the torque and pitch controller behaviour (Section 6).

The focus is on harmonic linearisation, but Section 7 discusses how a similar approach
applies to stochastic inputs, and concludes by discussing the relevance of these results for
the linearised modelling of the dynamic response of wind turbines.
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2. Model setup and linearisation

First the non-linear equations are set up, which govern the response of a wind turbine
to aerodynamic loads, with a dynamic wake, and variable rotor speed and blade pitch
angle. The tangent and harmonic linearisations which are used in the rest of the paper
are then introduced.

In this model, the dynamic response of the wind turbine to aerodynamic loads can be
described by the system equations:

Structural response: Mq̈ +Cq̇ +Kq = F aero (1a)

Rotor dynamics: J Ω̇ = Qaero −GQд(Ωд) (1b)

Dynamic wake: u̇ = д(U∞,u) (1c)

Control system states: Ω̇д = ωc
(
GΩ − Ωд

)
(1d)

˙Iϵ = Ωд − Ωrated (1e)

The first equation describes the structural dynamic response to loading in terms of the
modal amplitudes q, including the floating platform motion if relevant. The structural
mass matrix M , damping matrix C and stiffness matrix K can be obtained from a finite-
element beam model. The second equation describes the dynamics of the rotor speed
Ω. The aerodynamic forces F aero and overall rotor torque Qaero consist of the distributed
lift and drag forces along the blades, Qд is the generator torque controlled to regulate
the rotor speed and power output of the turbine, and G is the gearbox ratio. The third
equation describes the dynamic wake response, in which the flow around the rotor takes
some time to react to changes in loading. The fourth and fifth equations describe control
system states, the filtered generator speed Ωд (with filter corner frequency ωc) and the
pitch controller integral Iϵ . Each of these are described in the rest of this section.

2.1. Aerodynamic loads

In Equations (1a) and (1b), the aerodynamic forces F aero and Qaero consist of the dis-
tributed lift and drag forces along the blades, which are assumed to be divided into N
independent annuli with the forces calculated from a Blade Element Momentum (BEM)
model:

F aero =

N∑
k=1

f k (U∞,Ω,θ ,u
k ,u ′k ,vkx ,v

k
y ) (2a)

Qaero =

N∑
k=1

Qk (U∞,Ω,θ ,u
k ,u ′k ,vkx ,v

k
y ) (2b)

The annuli forces can be considered in isolation and then later superimposed because
they are coupled only through the linear structural dynamics on the left of Equations (1a)
and (1b). The forces depend non-linearly on three global variables – the wind speed U∞,
the rotor speed Ω and the blade pitch angle θ – and four variables relating to an individual
annulus k – the induced velocities uk and u ′k , and the in-plane and out-of-plane blade
velocities vkx and vky .

There are two main types of unsteady aerodynamics relevant to floating wind tur-
bines: unsteady aerofoil aerodynamics, and the wake dynamics. The unsteady aerofoil
behaviour is relatively high frequency, typically with periods of less than one second [21],
and describes the delay between the flow conditions changing and a change in the lift and
drag forces. The wake dynamics take place over longer periods related to the wind speed
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Figure 3: Wake derivative function u̇ for the NREL blade. Rotor speed 9.45 rpm, pitch angle 0°, blade station at
43.7m.

and rotor dimensions, typically 5 s to 20 s, and relate to the delay between a change in
rotor loading and the change in flow speed seen at the rotor (the induced velocities u
and u ′). Here the focus is on the wake dynamics, using the dynamic wake model used by
Bladed (Pitt and Peters 1981, reported by [15]), which defines the function д(U∞,u) in
Equation (1c), illustrated in Figure 3. The induced tangential velocity u ′ is neglected for
simplicity, but could be included in an analogous manner.

Details of the aerodynamic model and verification are given in Lupton [22].

2.2. Control system

The aim of the torque controller is to maintain the optimum rotor speed which leads to
the correct air flow for maximum aerodynamic efficiency, which is achieved by a quadratic
relationship between rotor speed and generator torque [10, chapter 8]:

Qд = koptΩ
2
д (3)

The torque demand is based on the the filtered generator speed Ωд , governed by Equa-
tion (1d). In practice the optimum quadratic control can only be achieved over a limited
range of generator speeds, and at the minimum and maximum generator speeds, the
torque transitions linearly to zero and the rated generator torque respectively (Figure 2).

Once the rated power is being produced, the torque controller switches to constant
powermode, as shown in Figure 2, and the pitch controller becomes active. To prevent the
controllers conflicting, the torque controller is forced into constant power mode whenever
the pitch angle is greater than some minimum value θCP:

Qд =
 f (Ωд) when θ ≤ θCP

Prated/Ωд otherwise
(4)

where f (Ωд) is the function shown in Figure 2.
The pitch controller is based on a PID controller acting on the error between the filtered

generator speed Ωд and the nominal rated generator speed Ωrated. The demanded pitch
angle is

θ = GK
[
KP
(
Ωд − Ωrated

)
+ KI Iϵ

]
(5)

KP and KI are the proportional and integral gains respectively. The factor GK represents
a ‘gain schedule’, which compensates for the variable sensitivity of the blade loads to
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changes in pitch angle at different wind speeds, determined by the pitch angle:

GK =
1

1 + θ/θ2

(6)

where θ2 is the pitch angle at which the gain should be halved. The pitch controller is
automatically deactivated when Ωд < Ωrated because then the error is negative, forcing
the pitch angle to zero and preventing conflict with the torque controller.

3. Tangent and harmonic linearisation

This model of a wind turbine includes four non-linear functions that must be linearised
to use a frequency-domain approach: the aerodynamic loads F aero (Equation 1a) andQaero

(Equation 1b), the wake dynamics u̇ (Equation 1c), and the generator torque functionQд
(Equation 1b). The tangent and harmonic linearisation approaches are now introduced
for a general non-linear function f (x, ẋ), before applying them to the non-linear wind
turbine model in the following sections.

In both cases harmonic variations in inputs at frequency ω are considered, which can
be conveniently written in terms of complex exponentials as:

x(t) = x0 +
1

2

(
x̄eiωt + x̄∗e−iωt

)
(7)

where x0 is the mean value of x , x̄ is a complex vector representing the magnitude and
phase of x , and x̄∗ is its complex conjugate. The non-linear response is not necessarily
harmonic, but can be written similarly as:

f (t) = f 0 +
1

2

(
f̄ eiωt + f̄

∗
e−iωt

)
+ ϵ(t) (8)

where ϵ(t) represents higher harmonics in f (t) at frequency nω, n > 1, which are ne-
glected in the linearised model. The difference between the tangent and harmonic lin-
earisations lies in how the f 0 and f̄ terms are calculated.

3.1. Tangent linearisation

The tangent linearisation is found by applying small perturbations h about an operat-
ing point x0, ẋ0 as inputs to the non-linear function. The perturbed results are used to
calculate the tangent stiffness and damping matrices:[

Kf
]
i j
=

fi (x0 + hj , ẋ0) − fi (x0 − hj , ẋ0)

2h
(9a)[

Cf
]
i j
=

fi (x0 , ẋ0 + hj ) − fi (x0 , ẋ0 − hj )

2h
(9b)

where
[
hj
]
k
= h when j = k, 0 otherwise. The linearised approximation to f (x , ẋ) is

then

f (x , ẋ) ≈ f (x0, ẋ0) +K f (x − x0) +C f (ẋ − ẋ0) (10)

Substituting in the harmonic input from Equation (7) gives:

f tan
0 = f (x0, ẋ0) (11a)

f̄
tan

=
(
K f + iωC f

)
x̄ (11b)
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3.2. Harmonic linearisation

In the harmonic linearisation, the mean and first harmonic of f give the linearised
coefficients [23]:

f har
0 =

1

T

∫ T

0

f [x(t), ẋ(t)] dt (12a)

f̄
har

=
2

T

∫ T

0

f [x(t), ẋ(t)] e−iωt dt (12b)

where T = 2π/ω. In practice, these can be evaluated efficiently from the first two coef-
ficients of the Fast Fourier Transform of f [x(t), ẋ(t)]. Figure 1 shows an example of the
two linearisation approaches.

4. Linearised aerodynamic forces with aero-elasticity

The linearisation is now tested by applying it to each of the non-linear functions in
the model (Equation 1) in turn, starting with the aerodynamic loads. To begin, the rotor
speed, blade pitch angle and induced velocities are all assumed to be known and constant
(the “frozenwake” assumption), to focus on solving Equation (1a) for the blade deflections
q. The harmonic inputs in this case are:

x =

[
U∞
q

]
(13)

and the function to be linearised is fkaero(x, ẋ), the aerodynamic forces on an annulus k
(similar to Figure 1). Using Equation (8), Equation (1a) can be written as two linear
equations for the constant and harmonic parts:

Kq0 =
∑
k

f k0 (14a)[
−ω2M + iωC +K

]
q̄ =
∑
k

f̄
k

(14b)

In the tangent linearisation, f 0 and f̄ are given by Equation (11) as:

Kq0 =
∑
k

f k (x0, 0) (15a)

−ω2M + iωC +K −
∑
k

(
Kk
q + iωCk

q

) q̄ =
∑
k

Kk
U Ū (15b)

The forces are evaluated at xT
0 =

[
U0 0T

]
, and the tangent matrices from Equation (9)

are partitioned as K f =
[
KU Kq

]
and C f =

[
CU Cq

]
to match the partition of x

in Equation (13). This allows the q terms in the tangent matrices to be brought to the
left-hand side, accounting for linear aero-elasticity.

In the harmonic linearisation, Equations (14) must be solved together with Equa-
tions (12) using an iterative procedure.

4.1. Method: harmonic, tangent and non-linear calculations

Results were calculated for a grid of mean wind speeds, harmonic amplitudes and
frequencies (Table 1), comparing the harmonic and tangent linearisations to reference
non-linear numeric simulations using Bladed [15]. More details are given in Appendix
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Table 1: Mean wind speeds, harmonic amplitudes and frequencies for testing linearisation accuracy. The fre-
quencies were chosen to span roughly the range from floating platform natural frequencies to the ‘extreme
operating gust’ used in wind turbine design [24].

Mean wind speeds 8 and 16m s−1

Harmonic amplitudes 1m s−1 to 5m s−1

Harmonic frequencies 0.03, 0.10, 0.32, 1.00 and 3.16 rad s−1

A of the procedure for solving the harmonic linearisation and the numeric simulations,
and the full dataset is available in [25]. The turbine parameters are taken from the NREL
5MW turbine [20].

The results are compared using the peak-peak error, which is a simple measure which
is relevant whether fatigue or extreme loads are of interest.

4.2. Results

One set of solutions, for an amplitude of 5m s−1 about the mean 8m s−1, is shown in
Figure 4; further results are given in Appendix B.

Figure 5 show the distributed blade loads at several points along the blade, which
together make up the rotor thrust and torque shown in Figure 4. Most of the non-linear
behaviour due to stalling can be seen in themidspan of the blade. The larger loops towards
the tip are due to the greater blade deflections there.

Figures 6–7 show the error between the linearised results and the non-linear simula-
tions (numeric data given in Appendix B), shown as the peak-peak error normalised by
the Bladed peak-peak value. For small wind speed perturbations, both harmonic and tan-
gent linearisations give small errors. The errors of both increase as the size of the wind
speed perturbations increases, but the increase is greater for the tangent linearisation. At
a mean wind speed of 8m s−1, which is the case shown in Figures 4–5, the harmonic lin-
earisation is up to 4 times better than the tangent linearisation. At the higher mean wind
speed of 16m s−1, the behaviour is more linear. The improvements are less significant,
but the error in the rotor torque is still reduced by a factor of 2.

Overall, the maximum error in the harmonic linearisation results is 8.4% of the peak-
peak range, and occurs in the rotor torque. If the wind speed variations are below 3ms−1,
the maximum error is 3.4%. The maximum error in the rotor thrust is 5.7% in the har-
monic linearisation and 24.1% in the tangent linearisation.

5. Harmonic linearisation of wake dynamics

In the previous section the wake dynamics were neglected and the aero-elastic re-
sponse to wind speed variations was examined; now the wake dynamics are linearised
while neglecting the blade dynamics. Because the aerodynamic calculations in each an-
nulus are independent, only one annulus need be considered at a time. Again, the rotor
speed and blade pitch angle are assumed constant, giving a vector of harmonic inputs

x =

[
U∞
u

]
(16)

where u is the induced axial velocity in the annulus. The function to be linearised is
u̇ = д(x) from Equation (1c). In this case, a harmonic steady-state solution is sought for
the induced velocity u, which must have a constant mean value. These requirements are
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satisfied by solving the non-linear equations

д0 = 0 (17a)

д̄ = iωū (17b)

with д0 and д̄ being calculated numerically according to Equations (12).
As an example, Figure 8 shows results for harmonic wind speed inputs at low, medium

and high frequencies. At low frequencies the response is quasi-static, following the con-
tour line for u̇ = 0. Since the quasi-static response is non-linear in wind speed, the lineari-
sation deviates from the non-linear solution. At higher frequencies, the wake dynamics
cause a lag between the change in wind speed and the change in induced velocity, and
the non-linearity in the quasi-static solution is less important.

6. Harmonic linearisation of torque and pitch control

The results in the previous sections were calculated for constant rotational speed of
the rotor, and a constant blade pitch angle. In reality, both of these are actively controlled
by the wind turbine controller, so the control system is now reintroduced into the model
in two steps: firstly the generator torque function Qд is linearised in isolation, assuming
the rotor speed is known (involving Equation 1d). Secondly, the linearised aerodynamic
and generator torques are used to solve for the rotor speed response using Equations (1b),
(1d) and (1e).

6.1. Harmonic linearisation of generator torque
The function to be linearised is now the generator torque Qд(Ωд), shown in Figure 2.

The controller acts on the low-pass filtered generator speed (Equation 1d), so first the
harmonic filtered generator speed response must be found, then the function Qд must be
linearised.

Putting a harmonic rotor speed, as described by Equation (7), into Equation (1d) gives
the mean value and complex amplitude of the filtered speed as(

Ωд
)
0
= GΩ0 (18a)

Ωд =
GΩ

1 + iω/ωc
(18b)

where ω is the frequency of the harmonic signals, and ωc is the filter corner frequency.
The harmonic linearisation of Qд is found numerically by applying Equation (12) to

the simulated response of the torque controller over a cycle.
The accuracy of the linearisation depends on the mean value and the amplitude of the

rotor speed, and hence which region of the torque curve is involved. Figure 9 compares
the non-linear and linearised generator torques corresponding to various choices of the
harmonic wind speed. Results are shown for harmonic variations in rotor speed at three
frequencies. Because of the filtering of the generator speed signal, at high frequencies
the torque variations are relatively small and the linearisation performs well. At lower
frequencies the non-linearity is more pronounced, especially around the rated generator
speed, but the linearisation still gives a fairly good representation of the generator torque.

6.2. Harmonic solution for rotor speed
Since in a variable-speed turbine the rotor speed is not known in advance, the torque

controller linearisation from the previous section is now combined with the rotor rota-
tional dynamics (Equation 1b) using the linearised aerodynamic loads derived in Section 4
to solve for the rotor speed.
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Table 2: Mean wind speeds, harmonic amplitudes and frequencies for testing linearisation accuracy of the
control system and rotor response. The frequencies are the same as in Table 1, but a finer grid of mean wind
speeds has been tested.

Mean wind speeds 6m s−1 to 15m s−1

Harmonic amplitudes 1m s−1 to 3m s−1

Harmonic frequencies 0.03, 0.10, 0.32, 1.00 and 3.16 rad s−1

The harmonic linearisation of Equation (1b) give two linear equations governing the
harmonic rotor response:

(Qa)0 −G
(
Qд
)
0
= 0 (19a)

Qa −GQд = iωJΩ (19b)

The aerodynamic torque and generator torque are both non-linear functions of the rotor
speed, as defined by Equation (2) and Equation (4) respectively, so Equations (19) must
be solved numerically.

Below the rated wind speed of the turbine, this is enough, but at higher wind speeds
the torque controller switches to constant-power mode and the pitch controller becomes
active. This adds an additional state, the pitch controller integral error Iϵ (Equation 1e).
The harmonic solution for Iϵ is:

0 =
(
Ωд
)
0
− Ωrated (20a)

Iϵ =
Ωд

iω
(20b)

where
(
Ωд
)
0
and Ωд are the filtered generator speed given by Equation (18).

The non-zero pitch angle must now be taken into account when calculating the aero-
dynamic torque Qa . The pitch angle is calculated from the speed error and integral error
as shown by Equation (5), which in the harmonic case becomes

θ0 = GKKI (Iϵ )0 (21a)

θ = GK

[
KP +

KI

iω

]
Ωд (21b)

The gain schedule factorGK is calculated at the mean pitch angle, on the assumption that
it varies slowly relative to the amplitude of the pitch variations. By substituting Equa-
tion (21a) into (6), GK may be found as a function of Iϵ as

GK =
−1 +

√
1 + 4a

2a
where a = KI Iϵ/θ2 (22)

Given a known harmonic wind speed input, the harmonic rotor speed and pitch angle
are found as before using a root-finding algorithm to solve Equations (19) and (20) for(
Ωд
)
0
, Ωд ,

(
Iϵ
)
0
and Iϵ .

This linearisation does not account for the limits on pitch angle and rate which are
implemented in the non-linear controller. In normal operation the pitch rate limits should
not be reached, so this should be acceptable for a first approach to linearising the controller
behaviour. The lack of pitch angle end-stops does lead to errors in the following results.

6.3. Method: comparison of harmonic and non-linear solutions
The wind turbine response has been solved for harmonic wind speed input over a grid

of conditions (Table 2), and the harmonic linearisation compared to reference non-linear
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Figure 10: Error in peak-peak value of linearised results compared to non-linear simulations. In some areas it
was not possible to find a harmonic solution; these are shown by the red dots. The colour scale for each column
is different, as shown by the scales at the top. In each column the error is normalised by a representative value:
the rated rotor torque (4.18MNm), the rated rotor thrust (721 kN), the rated rotor speed (12.1 rpm) and the
maximum operation blade pitch angle (23.2°).

simulations. These reference results were simulated in the time domain using a non-
linear implementation of the controller as described and verified in Lupton [22], and the
full results dataset is available in [25].

In the harmonic solution, since the number of equations to be solved depends on
whether the pitch controller is active, for simplicity the pitch controller is assumed to
be active only when the mean wind speed is above the nominal rated wind speed of
11.4m s−1. This will cause inaccuracies when the mean wind speed is below rated but
part of the harmonic variation rises above rated; this is visible in the following results.

6.4. Results

Figure 10 shows the error in the peak-peak value of the linearised results compared
to the non-linear simulations. The error has been normalised by a representative value of
each variable: respectively, the rated rotor torque, rated rotor thrust, rated rotor speed
and blade pitch angle at cutout. Generally, the errors are fairly small for small variations
in wind speed, but increase for larger variations in wind speed.
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In some cases it has not been possible to find a correct harmonic steady-state solution
for the rotor speed and pitch angle. These cases are shown by red dots in Figure 10.
This occurs when the wind speed crosses the rated wind speed of the turbine, meaning
that the pitch controller should be active for part of the cycle, but in these results the pitch
controller is included only for mean wind speeds above the rated wind speed (11.4m s−1).
Therefore the correct solution for cases just below the rated wind speed has not been
found.

Figure 11 gives more detail by plotting the variation with time of the non-linear and
linearised responses at a frequency of 0.32 rad s−1. Additional results at different frequen-
cies are in Appendix C.

The linearised results show the best agreement with the non-linear simulations at mean
wind speeds far from the turbine’s rated wind speed (left and right columns). When the
mean wind speed is close to rated (middle columns), the generator torque behaviour is
much more non-linear, as shown on the right-hand side of Figure 2. The pitch angle limits
also take effect close to rated, but are not captured by the present linearisation: just below
rated, the blades begin to pitch for part of the cycle, and just above rated, the blades may
hit the minimum-pitch limit for part of the cycle.

7. Implications for linearised modelling of wind turbines

While the details of the results are specific to the particular NREL 5MW blade used in
these calculations, we expect the overall performance of the linearisation methods should
be similar in most comparable large, variable speed, variable pitch wind turbines. In fact
there are two reasons why real-world performance of the linearisation might be expected
to be better than shown here.

We have assumed a uniform wind speed applied across the whole rotor, but this is
the worst case for rotor loading. Wind speed variations due to rigid body motion of a
floating platform may come close to this worst case, but variations in wind speed due to
turbulence have less spatial correlation, which would reduce the level of non-linearity in
the overall rotor loading and improve the accuracy of the linearisations.

While the controller used here is representative, it is unlikely to be as well designed
as a real wind turbine controller. The same discontinuities in the control system which
cause difficulties for the linearisation are also demanding for the wind turbine drive train,
pitch system and blade loading. A real controller design will consider these issues, so if
anything smoother behaviour more amenable to linearisation should be expected.

There are two main limitations to the linearised control system model implemented in
this paper, which could be addressed to improve the accuracy of the linearisation:

1. The pitch controller is only active when the mean wind speed is above the rated
wind speed of the turbine. This means the behaviour is poor when the wind speed
passes from below to above rated transiently, since the non-linear controller starts to
pitch the blades but the linearised controller cannot. Improving this should address
the issues visible in Figure 10 where solutions could not be found for wind speeds
below rated.

2. The non-linearities in the pitch control system were not fully captured, because the
harmonic pitch angle was solved based on the theoretical PID controller equation
rather than the actual non-linear control output. Calculating the pitch angle numer-
ically in a similar way to the calculation of the linearised generator torque may give
better results around rated when pitch angle limits are reached.
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Figure 11: Comparison of linearised and non-linear results for harmonic wind speed input varying at
0.32 rad s−1. Dotted lines show mean values.
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This paper focused on harmonic inputs, but in some cases stochastic turbulence inputs
are more appropriate. The extension of this method to ‘stochastic linearisation’ should
be straightforward: instead of minimising the mean squared error over one cycle of the
harmonic input, instead the expectation of the squared error is minimised [see for example
26, chapter 6]. Allowing for simultaneous random and deterministic inputs is possible
although more complicated [26, chapter 7].

8. Conclusions

This paper has demonstrated how harmonic linearisation can be used to improve ap-
proximations of the non-linear aerodynamic loads, wake dynamics, and control system
behaviour of a wind turbine, by comparing the results to tangent linearisation and non-
linear reference simulations of the NREL 5MW turbine. This is the first time harmonic lin-
earisation has been applied to wind turbine aerodynamics and control system behaviour.
In summary the results are:

• Harmonic linearisation reduced the error in approximating the aerodynamic loads
by 2–4 times compared to tangent linearisation, with a maximum absolute error of
8.4% over the range of conditions tested.

• The method can be extended to include a linearisation of the wake dynamics, avoid-
ing the need for a “frozen wake” assumption.

• The control system presents a bigger challenge, especially in the area around rated
wind speed when the controller behaviour is less linear and the two controllers in-
teract. Poor results are obtained under these conditions (rotor torque and thrust
peak-peak errors of up to 40% or rated torque and thrust), but elsewhere non-linear
behaviour is well approximated (errors below 10%).

These results show that harmonic linearisation is a promising approach to improve the
accuracy of linearised models of wind turbine response, enabling the use of fast frequency-
domain modelling methods for initial design and optimisation of wind turbines. Further
work has been identified to improve the linearisation of the control system behaviour and
to extend the approach to stochastic inputs.

In this paper, the structural dynamics, wake dynamics and control system dynamics
have been considered separately. In a forthcoming paper we will present a more complete
example of a linearised frequency-domain model of a floating wind turbine, in which the
platform and structural dynamic response to non-linear aerodynamic forces are solved
together, both with and without the control system behaviour.
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Appendix A. Harmonic linearisation method and non-linear simulations

Appendix A.1. Harmonic linearisation

The solution procedure for the harmonic linearisation is broadly as follows:

Start

Assume
q0 = q̄ = 0

Calculate
force f0, f̄
Eq. (12)

Calculate
response

q0new, q̄new

Eq. (14)

Converged? Done

Root-finding algorithm:
Solve 0 =[
q0 − q0new

q̄ − q̄new

] no

yes

where the iteration is controlled by a numerical multi-dimensional root-finding algorithm.
In the first case, finding the structural response, there is little difficulty in finding the
solution since the structural response is linear, but in the later cases and in general an
iterative numerical solution is needed. The ‘hybr’ method implemented in SciPy [27] was
used.

Appendix A.2. Non-linear reference results

The non-linear reference results were found from numerical simulation of a Blade
Element Momentum (BEM) aerodynamic model combined with a flexible multi-body dy-
namics code described and validated in Lupton [22].

Simulations were run for the conditions listed in Table 1 for the minimum of 60 s or
5 cycles, leading to the following parameters:

0.03 rad s−1 tmax = 1987 s ∆t = 1 s
0.10 rad s−1 tmax = 628 s ∆t = 1 s
0.32 rad s−1 tmax = 199 s ∆t = 0.1 s
1.00 rad s−1 tmax = 63 s ∆t = 0.1 s
3.16 rad s−1 tmax = 60 s ∆t = 0.01 s

The first parts of the simulations are discarded, removing initial transients, and only
the final cycle is used.

Appendix B. Additional aerodynamic force results

Figure B.12 shows a different view of the results in Figure 4 by plotting against time.
Table B.3 gives numeric data shown in Figures 6–7.

Appendix C. Additional control linearisation results

Figures C.13–C.14 show similar results to those shown in Figure 11, for a lower and a
higher frequency respectively.
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Figure B.12: Example linearisation results for rotor loads and blade tip in-plane (IP) and out-of-plane (OOP)
deflections, plotted over one cycle of harmonic wind speed input (8 ± 5 ms−1). The columns correspond to
wind speed variations of different frequencies.
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Table B.3: Error of linearisations, as shown in Figures 6–7. The maximum error for various amplitudes of wind
speed variation A is shown.

Out-of-plane In-plane Rotor Rotor
defl. defl. thrust torque

Mean wind speed 8m s−1

Harmonic:
A < 1m s−1 0.5% 2.0% 0.5% 2.2%
A < 2m s−1 1.0% 2.1% 1.0% 2.6%
A < 3m s−1 1.1% 2.1% 1.5% 3.0%
A < 4m s−1 1.6% 2.1% 3.5% 4.8%
A < 5m s−1 2.8% 2.6% 5.7% 8.4%
Tangent:
A < 1m s−1 1.6% 2.3% 1.4% 2.1%
A < 2m s−1 4.8% 3.0% 4.5% 5.2%
A < 3m s−1 7.4% 5.7% 8.0% 10.1%
A < 4m s−1 10.1% 9.7% 14.4% 19.3%
A < 5m s−1 14.5% 16.7% 24.1% 34.1%

Mean wind speed 16m s−1

Harmonic:
A < 1m s−1 0.5% 3.4% 0.5% 2.6%
A < 2m s−1 0.5% 3.4% 0.5% 2.7%
A < 3m s−1 0.7% 3.4% 0.6% 2.8%
A < 4m s−1 0.7% 3.4% 0.7% 3.0%
A < 5m s−1 0.7% 3.4% 0.8% 3.3%

Tangent:
A < 1m s−1 0.5% 3.4% 0.5% 2.5%
A < 2m s−1 0.5% 3.4% 0.9% 2.5%
A < 3m s−1 1.3% 3.6% 1.4% 2.5%
A < 4m s−1 1.3% 3.6% 2.5% 3.9%
A < 5m s−1 1.3% 3.6% 3.5% 6.0%
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Figure C.13: Comparison of linearised and non-linear results for harmonic wind speed input varying at
0.10 rad s−1. Dotted lines show mean values. It was not possible to find a solution with a mean wind speed of
10m s−1; see text for discussion.
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Figure C.14: Comparison of linearised and non-linear results for harmonic wind speed input varying at
1.00 rad s−1. Dotted lines show mean values.
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