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Abstract
Acute kidney injury (AKI) remains a major problem in critically unwell children and young adults. Ischaemia reperfusion (IR)
injury is a major contributor to the development of AKI in a significant proportion of these cases and mitochondria are
increasingly recognised as being central to this process through generation of a burst of reactive oxygen species early in
reperfusion. Mitochondria have additionally been shown to have key roles in downstream processes including activation of
the immune response, immunomodulation, and apoptosis and necrosis. The recognition of the central role of mitochondria in IR
injury and an increased understanding of the pathophysiology that undermines these processes has resulted in identification of
novel therapeutic targets and potential biomarkers. This review summarises a variety of therapeutic approaches that are currently
under exploration and may have potential in ameliorating AKI in children in the future.
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Acute kidney injury in paediatric nephrology

Acute kidney injury (AKI) remains a major problem in criti-
cally unwell children and young adults and is recognised as a
major risk factor for the development of chronic kidney dis-
ease [1, 2]. The reported incidence of AKI varies between
studies; a consequence in part of different case mix of institu-
tions and variable definitions of AKI. In a multinational study,
26.9% of patients admitted to paediatric intensive care units
were observed to have AKI. Importantly, in these children,
AKI was an independent risk factor for morbidity and mortal-
ity, highlighting the urgent need for the development of effec-
tive therapies to prevent and treat AKI [3, 4]. Ischaemia reper-
fusion (IR) injury is a major contributor to the development of
AKI in a significant proportion of children. Mitochondria are
increasingly recognised to have a fundamental role in the
pathogenesis of IR injury, and with the development of novel

mitochondria-targeted therapies, there is increasing interest in
the application of such therapies to the management of AKI
[5].

Ischaemia reperfusion injury and reactive
oxygen species

Reperfusion injury is the paradoxical, pathological exacerba-
tion of tissue injury that occurs on re-oxygenation of an organ
that has previously been subjected to a period of ischaemia
[6]. While early research into this process focused on the heart
[7–10], it is now increasingly recognised that the underlying
pathophysiological process is common to a wide range of
disorders, including AKI, stroke, intestinal ischaemia, multi-
organ failure, hypovolaemic shock and organ dysfunction af-
ter transplantation [6].

It is well recognised that the dominant injurious effector
upon reperfusion is an early burst of reactive oxygen species
(ROS). Mitochondria are increasingly recognised as the key
source of these ROS, through the generation of a burst of
superoxide upon reperfusion, and these findings have been
corroborated across a range of tissue types, including renal
tissue [11, 12]. Whilst there are a number of alternative
sources of superoxide, including the xanthine oxidase path-
way and NADPH oxidases that are thought to be important in

* Kourosh Saeb-Parsy
ks10014@cam.ac.uk

1 Department of Surgery and Cambridge NIHR Biomedical Research
Centre, Biomedical Campus, University of Cambridge,
Cambridge CB2 2QQ, UK

2 MRC Mitochondrial Biology Unit, Biomedical Campus, University
of Cambridge, Cambridge CB2 0XY, UK

Pediatric Nephrology
https://doi.org/10.1007/s00467-018-3984-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s00467-018-3984-5&domain=pdf
mailto:ks10014@cam.ac.uk


renal IR injury [13], activation of these pathways seems to
occur after, and be secondary to, the initial mitochondrial burst
of superoxide formation [11, 14].

Mitochondrial generation of reactive oxygen
species

Reactive oxygen species generation by mitochondria has long
been known to occur during both physiological and patho-
physiological conditions. However, until recently, superoxide
production during reperfusion was presumed to be the result
of generalised dysregulation of the electron transport chain,
with electrons leaking at multiple non-specific sites when ox-
ygen was re-introduced to a system in biochemical disarray
following a period of ischaemia [11].

Contrary to this view, Chouchani et al. recently identified a
specific metabolic pathway in which superoxide was generat-
ed through reverse electron transport at complex I of the elec-
tron transport chain. Moreover, this process was shown to be
driven by the pool of the citric acid cycle metabolite, succi-
nate, that accumulates during ischaemia (Fig. 1) [15].

This burst of mitochondrial superoxide leads to the activation
of a plethora of pathways that cause tissue injury. Direct cellular
or mitochondrial damage through lipid peroxidation or protein
carbonylation results in disruption of adenosine triphospate
(ATP) generation, dysregulation of calcium levels and induction
of the mitochondrial permeability transition pore (MPTP) with
subsequent activation of necrosis and apoptosis. Tissue damage
can also occur indirectly through activation of the innate and
adaptive immune response by damage-associated molecular pat-
terns (DAMPs). These DAMPs can be cellular (e.g. high mobil-
ity group box 1 (HMGB1), hyaluronan [16]) or directly mito-
chondrial in origin. Mitochondrial ROS, generated by IR injury,
have been shown to act directly as a DAMP. Furthermore, open-
ing of the MPTP in response to mitochondrial dysfunction re-
leases other mitochondrial DAMPs [17, 18] such as mtDNA,
cytochrome c, succinate and N-formyl peptides [19, 20]. These
processes provide a putative mechanism for the impact of mito-
chondrial dysfunction on longer-term renal function after an ep-
isode of AKI. The identification of a unifying, specific pathway
also provides a potential explanation for the vast array of inter-
ventions and therapies that have previously been shown to ame-
liorate IR injury [11].

Mitochondrial therapeutic strategies in IR
injury

The recent progress in our understanding of the pathophysio-
logical mitochondrial mechanisms that underpin IR injury has
led to an array of potential applications of mitochondria as
both targets for therapeutic strategies and as biomarkers of

disease severity. The therapeutic strategies can be grouped
into the following areas and are discussed in more detail be-
low: limiting oxidative stress and mitochondrial ROS genera-
tion, reducing tubular cell death through necrosis and apopto-
sis, moderating mitochondrial dynamics and mitochondrial
immunomodulation.

Mitochondria oxidative stress

The fundamental role of mitochondrial oxidative stress in a
wide range of pathologies including IR injury has been exten-
sively reported in the literature and has provided a strong
rationale for the use of antioxidants as a therapeutic interven-
tion. Unfortunately, the clinical translation of non-specific an-
tioxidants has been almost universally disappointing. This
paradox can be interpreted in one of two ways. Either reactive
oxygen species do not have a role in the pathophysiology of
these diseases or the antioxidants are not adequately delivered
to the appropriate region of the cell to prevent oxidative dam-
age. This second argument is supported by the increasing
recognition of the important physiological roles of ROS with-
in the cell and the recognition of the integral role of the burst
of mitochondrial ROS in mediating IR injury. Targeting anti-
oxidants to mitochondria, therefore, provides an approach that
could both explain this paradox and provide a novel therapeu-
tic strategy in IR injury [5, 21].

Bioactive molecules and drugs, including antioxidants,
have been targeted to mitochondria in vivo using both lipo-
philic cations and mitochondrial targeted peptides (reviewed
in detail elsewhere [21]). Both these approaches lead to a rapid
and significant accumulation of the targeted compound within
the mitochondria. This approach increases potency whilst en-
abling a lower dose to be administered, minimising off-target
effects and toxicity. Triphenylphosphonium (TPP) is a lipo-
philic cation that is rapidly taken up into mitochondria and
concentrated several hundred-fold due to the large mitochon-
drial membrane potential in vivo. Covalent linkage of bioac-
tive molecules or drugs to TPP has been used for a wide range
of compounds [21–24]. The most extensively investigated of
these is MitoQ. The bioactive molecule of MitoQ is
ubiqinone. This is rapidly reduced in mitochondria to the
chain-breaking antioxidant ubiquinol, which directly scav-
enges mitochondrial ROS, inhibiting downstream lipid perox-
idation and mitochondrial damage. MitoQ has been shown to
protect against oxidative injury in a variety of animal models
and has been used in phase II human trials [25, 26]. In models
of renal IR injury, MitoQ has recently been demonstrated to
reduce markers of oxidative injury, renal function and tissue
injury following IR injury [27–29].

Another approach is through the use of peptide delivery
systems including the Szeto-Schiller (SS) peptides and the
mitochondrial penetrating peptides. The precise mechanism
of action of these molecules is not understood, but they have
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been proposed to protect mitochondria by interacting with
cardiolipin [30]. SS peptides have also been shown to amelio-
rate renal IR injury in rodents and have been studied in other
models of IR pathologies [31]. The lead compound in this
group, SS-31, has been investigated in larger animal models
and is currently the subject of a human clinical trial investi-
gating its efficacy in ameliorating IR injury post-angioplasty
for renal artery stenosis [32].

The recognition of a specific metabolic pathway that drives
mitochondrial ROS production during IR injury opens up the
possibility of a novel therapeutic strategy that acts upstream of
ROS generation [15], namely competitive inhibition of succi-
nate dehydrogenase, which has been shown to ameliorate IR
injury in a variety of in vivo models [15, 33]. The metabolic
signature of ischaemic succinate accumulation has been dem-
onstrated in a wide range of tissues including human myocar-
dial [34] and renal tissue [35]. Contrary to these findings,
some authors have questioned the translation of these findings
in small animals to human tissues [36]. An inter-species

difference in mechanisms of mitochondrial ROS generation
is unlikely, given the very early evolutionary origin of mito-
chondria, and it is essential to rule out differences in experi-
mental methodology as a source of conflicting data.
Therefore, preventing succinate accumulation by inhibiting
succinate dehydrogenase activity remains a potentially impor-
tant, but as yet unexplored, area of therapy in renal IR injury.
Furthermore, the demonstrated therapeutic potential in other
models of IR injury make it an appealing mechanism that
warrants future investigation (Fig. 2).

Tubular death through apoptosis and necrosis

Mitochondria are recognised to be integral to the processes of
necrosis and apoptosis which underlie tubular injury and cell
death following IR injury [12]. In mammalian cells, apoptosis
is initiated through two major but interconnected pathways:
death receptors and mitochondria. Themitochondrial pathway
is characterised by an increase in the permeability of the outer
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Fig. 1 Mitochondrial generation
of reactive oxygen species (ROS)
during ischaemia reperfusion in-
jury. Under normoxic conditions,
the electron transport chain (ETC)
transfers electrons from NADH
and FADH2 to oxygen via a series
of redox reactions. In this process,
H+ is pumped out of the mito-
chondria generating a proton mo-
tive force. It is this proton motive
that drives the production of en-
ergy, in the form of adenosine tri-
phosphate (ATP), by ATP syn-
thase. During ischaemia, without
oxygen to accept electrons, the
ETC rapidly ceases and the elec-
tron donors and carrier pools such
as NADH and coenzyme Q
(CoQ) become maximally re-
duced. Mitochondria briefly
compensate for this by the oxida-
tion of fumarate to succinate
thereby replenishing the reduced
carrier pools but generating a pool
of succinate in the process. On
reperfusion, the succinate that ac-
cumulates during ischaemia is
rapidly oxidised maintaining a
reduced CoQ pool and an envi-
ronment that favours reverse
electron transport (RET) and the
generation of reactive oxygen
species (superoxide)
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mitochondrial membrane (MOMP) with the release of pro-
apoptotic factors such as cytochrome c. The B-cell lymphoma
2 (Bcl-2) family proteins are important regulators of MOMP,
both in a positive and negative capacity [37]. The release of
cytochrome c, and other proteins, from the intermembrane
space triggers the formation of the apoptosome which consists
of cytochrome c, apaf-1 and caspase-9. This then activates
downstream caspase-activation pathways resulting in apopto-
sis. However, despite the potential promise of therapies de-
signed to inhibit apoptosis in AKI, it has yet to be realised in
routine clinical practice [38]. A promising approach that is
currently in phase II human clinical trials to treat AKI is the
use of a small interfering RNA (siRNA) that temporarily in-
hibits expression of the stress response gene p53 [39, 40].
Other approaches that target the same pathway include
disrupting steps in the apoptotic pathway using small mole-
cules, caspase inhibitors and recombinant proteins [12].

Mitochondrial biogenesis, mitophagy and dynamics

Mitochondria are highly dynamic organelles existing not as
solitary, isolated entities but as a complex, interconnected net-
work that undergoes continuous biogenesis, fusion, fission
and the selective removal by autophagy, termed mitophagy.

These processes are all essential for normal mitochondrial and
cellular function [41, 42] and have been shown to be impli-
cated in AKI.

Altered mitochondrial dynamics contributes to changes in
mitochondrial energetics, cellular injury and repair following
AKI [42]. A variety of mammalian proteins have been identi-
fied as regulators of mitochondrial fission and fusion includ-
ing the pro-fusion proteins, mitofusin 1 and 2, and OPA1, and
the pro-fission protein dynamin-related protein1 (DRP1) [5,
43, 44]. The activation of DRP1 results in the translocation of
DRP1 to the outer mitochondrial membrane promoting mito-
chondrial fission and exacerbating AKI. Pharmacological in-
hibition of DRP1 in a mouse model of AKI reduces mitochon-
drial fission and ameliorates AKI in vivo [45]. Sirtuin 3
(SIRT3) has also been shown to have a functional role in
mitochondrial dynamics, preserving mitochondrial integrity
by preventing DRP1 translocation. SIRT3 upregulation was
shown to be protective in vitro in human proximal tubular
epithelial cells damaged by cisplatin. Furthermore, in a murine
model of AKI, upregulation of SIRT3 resulted in a decrease in
mitochondrial fission whilst SIRT3 deficiency in the Sirt3−/−

mice exacerbated cisplatin-induced AKI [46].
In the murine kidney, mitophagy has been shown to be

highly active [47, 48], with an integral role in moderating
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Fig. 2 Mitochondrial agents targeting reactive oxygen species in
ischaemia reperfusion. A number of approaches have been investigated
in vivo to target mitochondrial reactive oxygen species (ROS) during
ischaemia reperfusion (IR) injury. 1. Triphenylphosponium (TPP) is rap-
idly taken up into mitochondria and concentrated several hundred-fold.
Bioactive molecules can be covalently linked to TPP thus enabling the
selective, rapid uptake of these molecules into mitochondria. MitoQ is an
example of this approach. The bioactive molecule of MitoQ is ubiqui-
none. This is a chain breaking antioxidant that directly scavenges mtROS
thereby preventing downstream tissue damage. 2. The precise mechanism

of Szeto-Schiller (SS) peptides is less well characterised but it is thought
to interact with cardiolipin. They have demonstrated efficacy in a range of
models in reducing IR injury. 3. The small molecule competitive inhibitor
of succinate dehydrogenase, malonate, has been shown to reduce
IR injury in a range of in vivo models. Dimethyl malonate can be
administered intravenously and is rapidly hydrolysed to malonate.
Malonate rapidly diffuses across the cellular and mitochondrial
membranes where it can then competitively inhibit succinate de-
hydrogenase and reduce the accumulation of succinate during is-
chaemia and IR injury
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tissue injury in the kidney. Ablation of key genes that regulate
autophagy, such as autophagy-related protein 7 (ATG7) and
ATG5, has been shown to exacerbate AKI in vivo [48, 49].
There is also evidence that there is crosstalk between the cell
death machinery and mitophagy. Deletion of the pro-apoptotic
protein BAK has been shown to be reno-protective in models
of IR injury. This reno-protective effect was associated with a
decrease in the release of cytochrome c and mitochondrial
fragmentation [37].

Following AKI, the resolution of kidney injury and return
of function is primarily through restoration of cellular function
rather than regeneration and cell proliferation. Therefore,
moderating mitochondrial biogenesis may provide another
therapeutic avenue in AKI [42, 50]. Peroxisome proliferator-
activated receptor-γ coactivator-1α (PGC-1α) has been iden-
tified as a key regulator of mitochondrial biogenesis and PGC-
1α knock-out mice have been shown to bemore susceptible to

kidney injury [51]. More recently, sirtuins have also been
shown to have regulatory roles in mitochondria biogenesis,
and the SIRT1 activator SRT1720 has been shown to augment
mitochondrial recovery and tubular function in the rat in vivo
following IR injury [52]. There is also emerging evidence that
the β2-antagonist formoterol has effects as an activator of
mitochondrial biogenesis and can enhance recovery of mito-
chondria and kidney function following IR injury [5, 53].

Mitochondrial immunomodulation

Mitochondria are increasingly being recognised as having
critical roles in activating and moderating the immune system
though a range of pathways [17, 54, 55]. In adult kidney
transplantation, there is evidence to suggest that prolonged
cold ischaemia impacts on long-term graft survival. Despite
significant improvements in short-term outcomes, the
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bacterial DNA, can activate the
TLR9 dependent immune re-
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leased from the cell and functions
as a stimulus for immune cells. In
addition, mtDNA is involved in
the activation of the NLRP3
inflammasome that senses cyto-
solic DNA and stimulates the
caspase-1-dependent release of
IL-1β and IL-18. Furthermore,
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prevalence of chronic allograft dysfunction remains largely
unchanged [56]. The emerging evidence that mitochondria
are not only integral to IR injury but also have fundamental
roles in the immune response suggests there may be new av-
enues to improve long-term graft outcomes. Mitochondria, for
example, are thought to be involved in regulation of conver-
sion of M1 inflammatory macrophages to M2 anti-
inflammatory cells. Both metformin and rotenone have been
shown to facilitate this switch, possibly mediated through ac-
tions on complex I by reducing reverse electron transport and
ROS [17, 57, 58]. Furthermore, the inhibition of ROS gener-
ation by inhibiting SDH has also been shown to limit pro-
inflammatory responses and boost anti-inflammatory re-
sponses [58, 59].

Recently, it has also been suggested that maladaptive
repair following AKI may be responsible for the pro-
gression of renal disease and development of chronic
kidney disease in affected individuals [60]. Interestingly,
the cellular changes underlying maladaptive repair, most
notably cellular senescence in tubular epithelial cells
and adoption of a pro-fibrotic phenotype, mimic those
of kidney ageing [60, 61].

Mitochondrial DNA release as a biomarker
of kidney injury

The damage to mitochondria associated with IR injury results
in the opening of the MPTP with the consequent release of a
number of mitochondrial components into the cytosol. These
function as DAMPs, activating an innate immune response
and driving the systemic inflammatory response associated
with IR injury. mtDNA is an example of such a DAMP
(Fig. 3). A number of studies have examined the role of cir-
culating mtDNA in the blood of patients. The levels of
mtDNA have been shown to increase in the circulation fol-
lowing trauma [18] and more recently have been shown to
correlate with mortality in intensive care unit patients [62]. It
has also been investigated in the clinical context of severe lung
injury and AKI, and shows promise as a potential plasma
biomarker [27, 62–67]. Increased plasma mtDNA levels can
be found in murine models of AKI and have been shown to be
linked to an elevated innate immune response via activation of
the TLR9 pathway [68]. In addition to its detection in the
circulation, mtDNA can also be detected in the urine
and levels have been shown to be significantly in-
creased in the urine of patients after AKI [69–72]. The
recognition that the kidney has a role in the clearance
of DAMPs from plasma and the efficacy of dialysis in
decreasing the amount of circulating mtDNA in patients
may have future implications for our understanding of
the pathogenesis of IR injury in AKI and the role of
dialysis in managing IR injury [73–75].

Summary

AKI remains a major problem in children and IR injury is either
the primary aetiology or is implicated in a significant proportion
of cases. Mitochondrial dysfunction or damage are increasingly
recognised as fundamental to IR injury, generating the burst of
ROS that initiates downstream tissue injury. They also have key
roles in a variety of downstream processes, including the direct
activation of the innate immune response, immunomodulation,
and apoptosis and necrosis. Plasma and urinary mtDNA may
have roles as biomarkers of IR injury in the future and there are
a number of therapeutic strategies that are being explored to
ameliorate mitochondrial dysfunction. We look forward with in-
terest to the translation of these promising strategies to the man-
agement of AKI in children in the future.
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