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Abstract

Background: Some dinoflagellates cause harmful algal blooms, releasing toxic secondary metabolites, to the
detriment of marine ecosystems and human health. Our understanding of dinoflagellate toxin biosynthesis has
been hampered by their unusually large genomes. To overcome this challenge, for the first time, we sequenced the
genome, microRNAs, and mRNA isoforms of a basal dinoflagellate, Amphidinium gibbosum, and employed an
integrated omics approach to understand its secondary metabolite biosynthesis.

Results: We assembled the ~ 6.4-Gb A. gibbosum genome, and by probing decoded dinoflagellate genomes and
transcriptomes, we identified the non-ribosomal peptide synthetase adenylation domain as essential for generation of
specialized metabolites. Upon starving the cells of phosphate and nitrogen, we observed pronounced shifts in
metabolite biosynthesis, suggestive of post-transcriptional regulation by microRNAs. Using Iso-Seq and RNA-seq data,
we found that alternative splicing and polycistronic expression generate different transcripts for secondary metabolism.

Conclusions: Our genomic findings suggest intricate integration of various metabolic enzymes that function iteratively
to synthesize metabolites, providing mechanistic insights into how dinoflagellates synthesize secondary metabolites,
depending upon nutrient availability. This study provides insights into toxin production associated with dinoflagellate
blooms. The genome of this basal dinoflagellate provides important clues about dinoflagellate evolution and
overcomes the large genome size, which has been a challenge previously.
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Background

Phytoplankton communities are essential components of
marine ecosystems, and dinoflagellates are of special
interest because they exhibit morphological diversity,
high species richness, and the capacity to survive in
different ecological niches [1]. They are also infamous
contributors to harmful algal blooms (HABs), often
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producing toxins that are deadly to aquatic organisms
and humans [2]. Dinoflagellates exhibit many genetic
and cellular features that are highly unusual for eukary-
otes. The persistent condensed state of dinoflagellate
chromosomes and their liquid crystalline organization,
loss of nucleosomal chromatin packaging, use of 5-
hydroxymethyluracil in nuclear genomic DNA, and huge
genomes of some dinoflagellates (= 100 Gbp) are anom-
alous for eukaryotes [3-5]. Recently, the critical role of
tandem-duplicated, unidirectional, single-exon genes to
survive in cold, low-light environments was reported in
two draft genomes (~ 2.8 Gb and ~ 3.0 Gb) of the free-
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living dinoflagellate, Polarella glacialis [6]. Even with on-
going genomic efforts, understanding of dinoflagellate
toxin biosynthesis remains elusive due to their unusually
large genomes and limited biosynthetic surveys [4—10].

Toxic compounds associated with HABs have a poly-
ketide backbone, are synthesized by polyketide synthases
(PKSs), and can be linked to non-ribosomal peptide
synthases (NRPSs), resulting in hybrid molecules [11].
Several evolutionary events have enabled production of
novel polyketides and non-ribosomal peptides [12]. To
explore molecular mechanisms involved in secondary
metabolite biosynthesis, we sequenced the genome of a
basal dinoflagellate, Amphidinium gibbosum, belonging
to a genus associated with HABs [3, 13-16]. Amphidi-
nium species (Gymnodiniales: Gymnodiniaceae) possess
intricate secondary metabolic pathways that synthesize
unique macrolides with unusual, odd-numbered lactone
rings, but their biosynthesis has remained unresolved
[17-19]. Changes in environmental levels of nitrogen
and phosphorus heavily influence the production of
toxic metabolites during HABs [20-22], and an under-
standing of nutrient dynamics is critical to any attempt
to understand molecular mechanisms associated with
toxin production.

Biosynthesis of secondary metabolites having diverse
structures and biological activities depends on environ-
mental stresses and is sometimes restricted to specialized
structures. Regulation of toxin biosynthesis tends to be co-
ordinated principally at the transcriptional level [23].
Transcriptome analysis of toxic dinoflagellates has been
performed [24], but the regulatory mechanisms involved
in secondary metabolism during nutrient stress have not
been fully explored. While individual omics datasets offer
overviews of static states of dinoflagellate systems, inte-
grating several kinds of datasets can strengthen inferences
and preclude false assumptions. By sequencing the A. gib-
bosum genome, transcriptome, and microRNAome, we in-
vestigated genomic features and post-transcriptional
regulation during nutrient stress, to globally comprehend
its secondary metabolism. We identified several miRNAs
from the assembled genome and their targets in the tran-
scriptome under phosphate and nitrate starvation. Our in-
tegrated omics approach reveals the contributions of
repetitive elements and introns in this dinoflagellate gen-
ome. It also illustrates the effects of alternative splicing
and polycistronic expression and suggests possible impli-
cations of miRNA-mediated post-transcriptional regula-
tion of secondary metabolism.

Results and discussion

What accounts for the large genome size and genomic
features of the basal dinoflagellate, A. gibbosum?

We estimated that the 6.4-Gb A. gibbosum genome
(~6.4 Gb by flow cytometry and ~6.3 Gb by k-mer
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analysis) encodes 85,139 genes, of which ~48% had
matches in available databases (Fig. 1a, b; Table 1; and
Additional file 1: Supplementary Fig. la-e, Add-
itional file 2: Supplementary Table 1). The size differ-
ence between the estimated and assembled genomes
may be due to the liquid crystalline structures of dinofla-
gellate chromosomes [3-5]. Genomic data showed the
utilization of GC and GA (5 donor splice sites) in
addition to GT and clustering of unidirectional genes,
consistent with other dinoflagellate genomes [4, 5, 25]
(Fig. 1c, d). This genome included ~ 30% repetitive ele-
ments composed of simple repeats (1.97%), low complex-
ity repeats (0.39%), satellite repeats (0.02%), LINEs
(0.02%), LTR elements (0.03%), DNA elements (0.1%), and
unclassified repeats (27.4%) (Additional file 2: Supplemen-
tary Tables 3 and 4). The abundance of repetitive elements
may drive genome evolution in dinoflagellates, as reported
in Symbiodiniaceae and Polarella glacialis genomes (16—
68%) [6, 7]. Comparative analysis of intron and exon fea-
tures of A. gibbosum provides additional insights into ex-
pansion of dinoflagellate genomes (Table 1). Intronic
length in A. gibbosum genome is ~ 1.7 Gb, so the intronic
region accounts for ~27% of the genome, whereas in the
Symbiodiniaceae and Polarella glacialis genomes, the
average total intronic lengths are 411.5kb and 737.1 kb,
respectively. Despite average exon lengths ranging from
99 to 185bp, A. gibbosum has the lowest dinoflagellate
exon density, with 8.1 exons per gene, compared with
11.3-19.6 exons per gene for other species (Table 1).
Large introns have several biological implications, includ-
ing high energy requirements during transcription, delays
in protein production, and greater potential for errors in
intron splicing [26, 27]. It follows that some advantage
must compensate for such long introns.

To understand whether A. gibbosum gene models are
conserved at the pathway level, predicted genes were
mapped to KEGG reference pathways and compared
with those of other dinoflagellates and eukaryotes. This
resulted in the recovery of 388 KEGG pathways, indicat-
ing that the A. gibbosum genome has most of the path-
ways present in other eukaryotes (Fig. 1e). Pfam analysis
showed Leucine-rich repeat (LRR), Ankyrin, Tetratrico-
peptide (TPR), and Pentatricopeptide repeat (PPR) do-
mains as the most abundant domains in A. gibbosum
(Additional file 2: Supplementary Table 2). Compared
with eukaryotes, these repeat domain families, which
often contribute to duplication events and to protein-
protein interactions, are more abundant in dinoflagel-
lates [9, 28].

Diversified roles of NRPS adenylation domains in
dinoflagellates

In order to understand evolution and functions of sec-
ondary metabolite genes in A. gibbosum, we conducted
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Fig. 1 Genomic features of the basal dinoflagellate, Amphidinium gibbosum. a Phylogenetic analysis of dinoflagellates using partial LSU rDNA
sequences by maximum likelihood, with red dots at nodes indicating bootstrap support = 80%. b Transmission electron microscopy of A.
gibbosum with a lower insert showing a detailed region of condensed chromosomes (lower left: ~ 11 chromosomes in nuclei; lower right: a
chromosome). ¢ Non-canonical splice sites show the use of GC and GA, in addition to GT, at the 5’ donor splice site in A. gibbosum, a unique
feature of dinoflagellates. d Gene orientation changes using a 9-gene sliding window and 9-gene steps confirm the unidirectional alignment of
genes in dinoflagellates. e KEGG pathways recovered from A. gibbosum in comparison with other eukaryotes show biosynthesis of secondary
metabolites among top 10 hits. Numbers in brackets indicate the number of enzymes recovered from each pathway category
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molecular phylogenetic analyses of the PKS and NRPS
gene families. This confirmed the extensive diversifica-
tion of these enzyme genes, as previously reported (Fig. 2
and Additional file 1: Supplementary Fig. 2) [10]. De-
tailed analysis of the adenylation (A) domain of NRPS
revealed how specialized metabolites arise in dinoflagel-
lates. The NRPS adenylation domain is the first enzyme
in the NRPS complex that selectively incorporates amino
acids into NRPSs for biosynthesis of peptide-based nat-
ural products, as well as hybrid PKS/NRPS metabolites
[11]. The adenylation (A) domain can function as a free-
standing protein (Additional file 1: Supplementary Fig. 3),
a clear deviation from the usual assembly-line enzym-
ology, known in bacterial genomes [29]. We found that
freestanding A domains in A. gibbosum utilize cysteine,
valine, and phenylalanine as substrates (Fig. 2), instead

of glycine, tryptophan, and phenylalanine, the main sub-
strates utilized by the Symbiodiniaceae [10].

Glycine is incorporated into complex metabolites in the
Symbiodiniaceae by bridging and forming hybrid mole-
cules, such as zooxanthellatoxin B (ZT-B) and zooxanthel-
lamide D (ZAD-D) [30, 31]; however, none of the
amphidinolides and related polyketides [17, 32] isolated
from A. gibbosum (amphidinin A and amphidinolide P)
contains glycine, resulting in smaller, simpler molecules.
Marine dinoflagellates synthesize polyketides that are usu-
ally polyol in nature [33]. The carbon skeleton of these
polyketides is commonly assembled from acetate, with the
rare addition of glycine to form hybrid polyketides [34].
Glycine remains the only amino acid substrate reported in
metabolites isolated from dinoflagellates [35, 36], and our
analysis suggests that the unique substrate affinities of the
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Table 1 Statistics of the A. gibbosum genome assembly and those of some available dinoflagellate genome assemblies

Amphidinium Breviolum

Symbiodinium Cladocopium P. glacialis P. glacialis

gibbosum minutum (B1) [4] tridacnidorum sp. (C) [9] CCMP1383 [6] CCMP2088 [6]

(A3) [9]
Total assembly length (bp) 7034147423 615520517 766,659,703 704,779,698 2,984,680,192  2,756,104,381
N50 of scaffold (bp) 166.4k 126.2k 1334k 2489k 170.3k 129.2k
G+C content (%) 47.1 436 499 430 459 46.2
Genes No. of genes 85,139 41,925 69,018 65,832 58,232 51,713
Average length of genes (bp) 26,201 11,959 8834 8192 16,206 13,931
Average length of transcripts (nt) 1423 2067 1423 1479 1230 1178
Gene models supported by EST (%)  85.2 772 67.5 62.5 94.0 943
Exons  No. of exons per gene 8.1 19.6 1338 1.3 1.6 10.8
Average length (bp) 185 99.8 105 130 105.7 108.7
Total length (Mb) 126 82.1 98.2 97.3 716 60.9
Introns No. of genes with introns (%) 937 953 834 80.3 738 756
Average length (bp) 3468 499 561 622 1408.0 1296.0
First two nucleotides at 5' splice sites  GT/GC/GA GT/GC/GA GT/GC/GA GT/GC/GA GT/GC/GA GT/GC/GA
Total length (Mb) 1715 3315 481.8 4212 838.0 636.2

NRPS adenylation domain contribute to metabolite com-
plexity in dinoflagellates.

Secondary metabolite biosynthesis responses depend on
nutrient starvation regimes

Several studies have demonstrated that nitrogen and
phosphorus sources and their availabilities impact both
biomass and secondary metabolite production in marine
organisms [20-22]. It remains unclear which nutrient
combinations or limitations drive toxin formation, and
this motivated us to investigate whether nutrient starva-
tion affects secondary metabolism in A. gibbosum. We
performed deep transcriptome sequencing, recovering
422 pathways, with “metabolic pathways” and “biosyn-
thesis of secondary metabolites” accounting for 1187
proteins (Additional file 1: Supplementary Fig. 1f and
Additional file 2: Supplementary Table 5). Under nitro-
gen starvation, only 16 secondary metabolism genes (PKS
and NRPS) were differentially expressed (|log2(FC)|>2,
q <0.05) (Fig. 3a, b). Gene ontology (GO) enrichment
showed that nitrogen starvation has significant effects on
nitrogen transport and metabolism (AMT, NRT, NIA, and
NRT genes were upregulated) and on anion export (Band 3
gene was downregulated) (|log2(FC)| > 1, p <0.001) (Fig. 3a
and Additional file 1: Supplementary Fig. 4a, b). KEGG
pathway enrichment confirmed nitrogen metabolism as the
most enriched pathway among upregulated genes, while
pathways related to bicarbonate release were the most
downregulated genes (p <0.001) (Additional file 2: Supple-
mentary Table 6). Our analysis revealed novel details about
gene expression changes under nitrogen starvation [37]. A.
gibbosum apparently tunes its carbon level and nitrogen in-
take during starvation by downregulating the bicarbonate

export system (Band 3 gene) (Fig. 3a). Overall, our data in-
dicate that A. gibbosum modulates incorporation and
utilization of several forms of dissolved organic and inor-
ganic nitrogen to respond to nitrogen availability.

Under phosphate starvation, however, 108 PKS and NRPS
unigenes were differentially expressed at |log2(FC)| > 2 and
q <005 (Fig. 3b and Additional file 1: Supplementary
Fig. 5a). Gene ontology (GO) enrichment showed that
phosphate starvation upregulates small molecule biosyn-
thesis and downregulates anion release (|log2(FC)|>2, p
value < 0.001) (Fig. 3a and Additional file 2: Supplementary
Table 6b). KEGG pathway enrichment confirmed that ribo-
some, metabolic pathways, and biosynthesis of secondary
metabolite pathways are the most enriched pathways
among upregulated genes (p <0.001) (Additional file 2:
Supplementary Table 6). During phosphate starvation,
membrane transporters (STP, ZIP, AMT, NRT, and AAT)
involved in uptake of amino acids, ammonium, dissolved
organic phosphate (DOP), metal ions, and nitrate were sig-
nificantly upregulated. Insufficient dissolved inorganic
phosphate can be overcome by utilizing DOPs, which are
hydrolysed to release phosphate [38]. This suggests that A.
gibbosum can utilize various sources of phosphorus while
downregulating genes involved in bicarbonate export, simi-
lar to the response observed during nitrogen starvation.
Key components of the ATP-consuming glycolytic pathway
(e.g., glucokinase, glyceraldehyde-3-phosphate dehydrogen-
ase, and pyruvate kinase) and several ribosomal proteins
were significantly upregulated since they are involved in
ATP-driven protein synthesis to meet cellular demand for
metabolism and phosphate uptake. In both starvation treat-
ments, hierarchical clustering of NRPS and PKS gene ex-
pression values revealed two main clusters (Fig. 3b),
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(See figure on previous page.)

Fig. 2 Affinities of adenylation domains from dinoflagellates show the importance of glycine as a substrate for biosynthesis of specialized toxin
secondary metabolites. A molecular phylogenetic tree of adenylation domains indicates protein diversification in Symbiodiniaceae and A. gibbosum.
Green- and orange-shaded regions indicate adenylation-domain affinities in Symbiodiniaceae and A. gibbosum, respectively. The Symbiodiniaceae can
incorporate glycine (green box) during specialized toxin secondary metabolite biosynthesis such zooxanthellatoxin B (ZT-B) and zooxanthellamide D
(ZAD-D), whereas A. gibbosum does not utilize glycine, yielding the simple nitrogen-lacking polyketides, amphidinin A and amphidinolide P. A.
gibbosum adenylation sequences are denoted in blue. Red dots indicate a posterior probability = 0.75 using Bayesian inference

indicative of a set of co-expressed genes needed for second-
ary metabolite biosynthesis.

Dinoflagellate carbon-fixing potential increased during
phosphate starvation, with several key plastid compo-
nents (Fig. 3a) being upregulated, including phosphate
transporters. This increase may be necessary to fuel aug-
mented cellular processes, as observed in the alga, Prym-
nesium parvum [39]. Dinoflagellate toxin production
changes when environmental parameters such as light,
temperature, salinity, and nutrient levels shift [40]. The
present analysis shows that the PKS and NRPS genes are
upregulated when dinoflagellates are subjected to phos-
phorus starvation (Fig. 3b) and this can be explained
evolutionarily, where microalgal growth slows under
nutrient limitation, as cells divert carbon resources for
defense [41] (Fig. 3a). Consistent with this theory,
increased photosynthetic activity observed during phos-
phorus starvation in A. gibbosum would be a coordi-
nated physiological response to provide energy necessary
for secondary metabolite biosynthesis.

Possible regulation of toxin biosynthesis by microRNAs
during nutrient starvation

Based on the low expression of PKS and NRPS unigenes
under nitrogen starvation (Fig. 3b), we questioned
whether post-transcriptional regulation by microRNAs
could be involved. We found expected components of
RNAIi machinery in A. gibbosum consistent with previ-
ous reports [7, 42-45] (Fig. 3c and Additional file 1:
Supplementary Fig. 6). Using the sequenced genome and
expressed small RNA data, under phosphate starvation,
we found that two miRNAs (agi-miR-6874-5p-2 and a
new miRNA denoted, aginovel-mir-0021) were differen-
tially expressed (g value < 0.05, log2(FC) > 2). Upregula-
tion of the two miRNAs was > 18x compared to the
control, suggesting that they could have significant ef-
fects during phosphate starvation. Indeed, under phos-
phate starvation, the two upregulated miRNAs targeted
pathways involved in fructose-mannose metabolism,
proteoglycan synthesis and N-glycan biosynthesis (en-
richment >4x, p <0.01, Fisher’s exact test) (Additional
file 2: Supplementary Table 7). Under nitrogen starva-
tion, we found one miRNA (agi-miR7721-5p) that was
differentially expressed (g value <0.05, log2(FC)>2).
Amphidinium gibbosum had 303 potential target genes,
and KEGG pathway target enrichment identified pyruvate-

lactate metabolism as a major target (38.4x enrichment,
p <0.001, Fisher’s exact test) (Fig. 3d, e, Additional file 1:
Supplementary Fig. 7, and Additional file 2: Supplementary
Table 7). This would directly affect production of acetyl-
CoA, which is synthesized from pyruvate, a key substrate
for polyketide biosynthesis [46], thereby regulating second-
ary metabolism. No significant PKS and NRPS gene upreg-
ulation was observed under nitrogen starvation, in which
miRNA-mediated post-transcriptional regulation might
affect secondary metabolism by targeting pyruvate biosyn-
thesis. miRNA effects on secondary metabolite biosynthesis
have been reported in plants [47, 48].

Transcriptome sequencing reveals diversity of PKS
transcripts

Alternative splicing (AS) is an important post-
transcriptional regulatory mechanism, whereby a single
gene can generate multiple mRNAs, increasing their di-
versity and complexity [49]. We surveyed five major AS
types using rMATS [50] and identified 6970 AS events
across 5417 genes, with skipped exons (SE) being the
most common AS event (77.2%) (Fig. 4a), followed by
alternative 3’splice sites (A3SS) and alternative 5'splice
sites (A5SS) (6.8% and 11.3%, respectively). In order to
determine biological processes of genes associated with
alternative splicing, identified by rMATS [50], GO en-
richment was performed. This revealed that ion trans-
port, nucleic acid metabolism, and RNA metabolic
process are the most enriched terms (Fig. 4b). Subse-
quently, we assessed whether AS events were associated
with PKS genes. AS landscape analysis at the genome-
wide level revealed one PKS gene (g70808) that under-
went two AS events, A3SS and SE (Fig. 4c, Additional
file 1: Supplementary Fig. 8a). With differential exon
usage (DEU) analysis, we found 1 exon (E026) that was
differentially expressed (g value < 0.05) during nitrogen
starvation (Additional file 1: Supplementary Fig. 8b).
AS events function in plant growth and stress responses
[51]. Proteins resulting from differently spliced isoforms
of the same gene can have different subcellular
localization and can inhibit formation of alternative
homo- and hetero-dimers [52, 53].

To understand how splice junctions contribute to
multifunctional polyketide synthase (PKS) isoforms, we
conducted Pacbio Isoform sequencing and recovered
several transcripts that contained all PKS domains
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Fig. 3 Differentially expressed genes (mRNAs and microRNAs) during nitrogen and phosphate starvation in Amphidinium gibbosum. a Schematic
cellular overview of the main differentially expressed genes during nitrogen and phosphate starvation. Orange and blue coloring indicate up- and
downregulation, respectively. Green ovals represent plastids, and red boxes indicate mitochondria. A detailed description of proteins is given in
Additional file 2: Supplementary Table 9. b Expression profile of PKS and NRPS genes (g < 0.05 and [log2(FC)| > 2) under nitrogen and phosphate
starvation. Values show fold changes while N1, N2, and N3; P1, P2, and P3; and NC1, NC2, and NC3 denote triplicate nitrogen, phosphate, and
control samples, respectively. Details of the genes are provided in Additional file 2: Supplementary Table 10. NRPS and PKS genes are denoted in
red and black, respectively, along the y-axis. ¢ The presence of Dicer (DCL), HEN1, and AGO proteins indicates functional RNAi machinery in A.
gibbosum, supported by genomic and transcriptomic data. Whether mature miRNAs in A. gibbosum are methylated is unknown (shaded gray). d
Enrichment of miRNA targets during nitrogen starvation shows lactate metabolism as an enriched target process. @ The miRNA, agi-miR7721-5p,

targets pyruvate metabolism under nitrogen starvation, affecting secondary metabolite biosynthesis. Orange coloring indicates upregulation

except the acyltransferase (AT) domain, suggesting the
trans-acting nature of these enzymes (Additional file
1: Supplementary Fig. 8c). AT genes were indeed
trans-acting and belong mainly to the family of
malonyl-CoA ACP transferase, contributing malonyl-
CoA for chain elongation (Additional file 1: Supple-
mentary Fig. 2b). By mapping these isoforms on the
Amphidinium genome, we identified PKS polycistronic
transcripts span multiple genes (Fig. 4d). Based on the
presence of multiple PKS genes in the genome and
their predicted signal peptides (Additional file 1: Sup-
plementary Fig. 2), we asked whether these proteins
are localized within the cell. Immunolocalization of
ketosynthase and ketoreductase proteins showed that
they are localized in mitochondria, chloroplasts, and
secretory bodies, as previously reported (Additional
file 1: Supplementary Fig. 9) [54]. Additionally, we de-
tected PKS proteins in membrane vesicles, suggesting
possible new functions, as demonstrated by their fa-
cilitation of nucleation in otolith mineralization [55].
Further functional studies of these proteins will be re-
vealing. By combining different sequencing technologies,
we detected polycistronic PKS transcripts, as well as AS
events in PKS genes, deepening our understanding of
dinoflagellate secondary metabolism. Based on long Iso-
Seq reads, we investigated whether secondary metabolite
biosynthetic genes contain spliced leader (SL) sequences
at their 5" ends. In dinoflagellates, mRNA maturation is
thought to require trans-splicing of the SL sequence [56].
We recovered 548 sequences containing the SL and the
relict SL signature, but no PKS transcripts contained it.
This could be due to transcript degradation or to a lack of
SL sequences at 5’ ends of these transcripts.

Iterative secondary metabolite biosynthesis in dinoflagellates

Polyketide biosynthesis resembles that of fatty acids. The
chain is initiated with acetyl-CoA, extended in a series
of Claisen ester condensation reactions with malonyl-
CoA, and terminated when the required length is
reached [10]. While amphidinolides are unique in struc-
ture and bioactivity, some similarities exist among them
[17], suggesting a common biogenic origin. Complete
biosynthesis of an amphidinolide would require all genes

present in a cluster, representing up to 500 kb of gen-
omic DNA [11, 18]. Our genomic survey of A. gibbosum
confirmed that such long clusters of PKS genes are not
present. Each ketosynthase enzyme contributes two car-
bons to a growing polyketide chain, so a 26-membered
polyketide would require at least twelve rounds of car-
bon addition, implying that such a long cluster is not
present in A. gibbosum. Thus, secondary metabolite bio-
synthesis in dinoflagellates can occur in two ways: (1)
monofunctional, separate PKS proteins form an enzyme
complex and iteratively catalyze addition of substrate, or
(2) multifunctional small PKS proteins utilize substrate in
many cycles, to yield a product stabilized by repeat do-
mains that assist such protein-protein interactions (Fig. 5)
[57-59]. Both these strategies resemble the iterative
mono- and multifunctional PKSs of bacterial and fungal
systems [60, 61], acquired by horizontal gene transfer [10].
Cross talk between these two co-occurring strategies in di-
noflagellates could be mediated by the trans-acting acyl-
transferase (AT) and NRPS domains, considering that sets
of secondary metabolic genes tend to be co-expressed
during metabolite biosynthesis (Fig. 3b).

Conclusions

In this study, we applied an integrated omics approach
to understand dinoflagellate secondary metabolite bio-
synthesis. To this end, we sequenced the genome of A.
gibbosum and identified key features that regulate sec-
ondary metabolite levels and structural diversity. We
hypothesize that miRNA-mediated, post-transcriptional
regulation in A. gibbosum, which targets primary pyruvate
metabolism, subsequently affects secondary metabolism.
This study represents a first step to illuminate key molecu-
lar events involved in dinoflagellate secondary metabolism,
and it should facilitate studies of HAB formation and asso-
ciated toxin production. Ongoing high-throughput sequen-
cing of dinoflagellate genomes promises to be informative,
not only for understanding toxin secondary metabolism
genes, but also for better insights into their genome
organization. The availability of this first basal dinoflagellate
genome provides important clues about dinoflagellate evo-
lution and extends the genome size limit that has been a
challenge for several years.
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Fig. 4 Alternatively spliced isoforms and polycistronic PKS gene expression in Amphidinium gibbosum. a AS events and their frequencies. SE
“skipped exon,” Rl “retained intron,” MXE “mutually exclusive exon,” and A3SS and A5SS “alternative 3" and 5’ splice events”. Black boxes indicate
constitutively spliced exons while blue boxes represent alternatively spliced exons. b Gene ontology (GO) biological processes showing significant
enrichment of all genes undergoing alternative splicing. ¢ Alternative 3’ splice sites (i) and skipped exons (i) were identified on a ketosynthase
gene (g70808) on scaffold 13486. Phosphate and nitrate experiments are shown in red while controls are in orange. Expression is plotted on the
y-axis, genomic coordinates on the x-axis, and isoforms are at bottom in black, with exons depicted in black boxes. Read coverage is represented
with numbers. d Sashimi plot showing three uni-directionally aligned PKS genes on scaffold1342 (colored in blue) with multiple polycistronic
transcripts (red lines) spanning these genes. PKS module organization within genes is based on PFAM annotation. Iso-Seq read coverage is
represented by red vertical blocks, and splicing junction support is shown with numbers. Exons are shown in blue blocks, and lines between blue
blocks represent introns. KS "ketosynthase," DH "dehydratase," ER "enoylreductase," KR "ketoreductase"
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Methods

Biological sample

Amphidinium gibbosum was isolated from inner cells of
a marine acoelomorph, Amphiscolops sp., collected near
Ishigaki Island, Japan. The culture was maintained in
artificial seawater (ASW) containing 1X Guillard’s (F/2)
marine-water enrichment solution and an antibiotic-
antimycotic mix in a 25 °C incubator under a 12:12 light
and dark cycle. Subculture was performed with fresh
medium approximately every 4 weeks and was handled
aseptically. For transmission electron microscopy
(TEM), cells were fixed in 2.5% glutaraldehyde for 1h,
washed 3x with 0.1 M cacodylate buffer, and incubated
in 1% osmium tetroxide for 30 min. Cells were then
washed and dehydrated in an ethanol series (70%, 80%,
90%, 95%, 100%, 100%, 100%), at 5-min intervals. Sam-
ples were infiltrated with ethanol-Epon resin for 30 min
and steeped in 100% resin overnight. The resin was poly-
merized at 60°C for 2 days. Sections were cut using a
diamond knife and viewed under a JEM-1230R JEOL
microscope. The phylogenetic position of A. gibbosum
was confirmed by aligning and trimming partial LSU
rDNA sequences of several dinoflagellates and perform-
ing maximum likelihood analysis using RaxML [62].
Phylogenetic assignment was consistent with the taxo-
nomic description [63].

Genome size estimation

For A. gibbosum genome size estimation, nuclear DNA from
three replicates was measured using fluorescence-activated
cell sorting (FACS) with Xenopus laevis (n = 3) as an internal
control of known genome size. Nuclear extraction and stain-
ing were performed using a Partec CyStainPI absolute T kit
(Partec #05-5023), following the manufacturer’s protocol,
and fluorescence signals were measured with a BD Accuri
C6 cell analyzer (BD Bioscience). The reported measurement
for A. gibbosum reflects the 1C genome content, as Amphidi-
nium is reportedly haploid in culture. K-mer analysis was
performed using Jellyfish (v2.1.3) [64], and resulting histo-
grams were visualized using GenomeScope [65] to survey
the genome size and repeat content.

DNA sample preparation and sequencing

Cells were centrifuged at 3000g for 10 min and washed
using TEN buffer (100 mM Tris-Cl pH 8, 100 mM EDTA
pH 8, 1.5 M NaCl, 0.5 mg/mL proteinase K, and 7% SDS)
for 2h at 65°C so as to lyse bacterial contaminants.
DNA was extracted using a modified protocol [66] of
gentle rotation for 1h after addition of chloroform-
isoamyl alcohol (24:1) before ethanol precipitation [4].
Isolated DNA was further cleaned using ethanol precipi-
tation. DNA was fragmented and paired-end libraries
with an insert size of 620-820bp were prepared.
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Libraries were quantified by qPCR and sequenced using
an Illumina Miseq, according to the manufacturer’s pro-
tocols. This generated ~ 10 Gb of 2 x 300 bp paired-end
data. The same library was further sequenced using a
Hiseq 2500, generating ~ 586 Gb of 2 x 125bp of data.
Reads were merged and trimmed using Trimmomatic
(v0.35) [67] and were quality-checked using FastQC
(v0.11.4) [68]. Additionally, 12 mate-pair libraries were
constructed using Nextera technology with 2—18-kb in-
serts selected using the Bluepippin and SageELF systems.
Mate-pair libraries were sequenced with a Hiseq 4000,
generating ~200 Gb of data. Raw mate-paired reads
were filtered using NextClip (v1.31) [69]. Genome as-
sembly employed Platanus (v2.1.4) [70], and the assem-
bled genome was subjected to two rounds of scaffolding
with SSPACE (V3.0) [71]. Gaps in scaffolds were filled
using GapCloser (v1.12) [72] (Additional file 1: Supple-
mentary Fig. 10A).

Evaluation of genome assembly completeness and
removal of contaminating sequences

The scaffolded Amphidinium genome was checked for
genome completeness using BUSCO 303 highly con-
served eukaryotic genes (CEGs) [73]. Additionally, the
BLAST suite was used to recover 458 CEGs from
CEGMA [74] against the Amphidinium genome to iden-
tify potential homologs at a cutoff value of le™. To
identify bacterial and viral contaminants, we conducted
a BLASTN search against several databases that we built
by retrieving draft and complete bacterial genomes and
viral genomes from NCBI and PhanToME. A combin-
ation of cutoffs (total bit score> 1000, E<1072%) was
used to identify scaffolds with similarities to bacterial
and viral sequences.

c¢DNA construction, Iso-Seq sequencing, and data
processing

RNA was extracted from cells growing under standard
conditions (12:12 light and dark cycle), and a cDNA
library was constructed using a TruSeq Stranded RNA
Sample Prep Kit (Illumina). Libraries were quantified
and validated by qPCR and with a 2100 Agilent Bioana-
lyzer, respectively. The validated library was subse-
quently sequenced using two lanes of Hiseq 2500
(Ilumina). Reads were trimmed using Trimmomatic
(v0.35) [67], quality-checked using FastQC (v0.11.4) [68],
and assembled de novo using Trinity (v2.3.2) [75]. For
Iso-Seq sequencing, RNA was extracted from several
culture treatments and pooled. High-quality RNAs
(RIN > 7.0) were used for cDNA synthesis using a Clon-
tech SMARTer PCR cDNA kit. Size fractionation (0.7—
2.5, 2.5-7, and > 7 kb) was conducted using the SageELF
system (Sage Science, Beverly, MA, USA). Libraries were
sequenced with the Pacific Biosciences RS II platform
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(P6-P4 chemistry) and a 360-min movie length. In total,
16 SMRT cells were sequenced. Raw sequencing data
were processed using the RS_Iso-Seq protocol. HQ and
LQ reads were error-corrected by employing proovread
(v2.14) [76] using Illumina RNA-seq data. Reads were
then merged, and “cd-hit-est” from CD-HIT (v4.6) [77]
was used to remove redundancy with parameters: -c
0.99 -G 0 -aL 0.00 -aS 0.99 -AS30-M 0-d 0 -p1-T 24.
Non-redundant transcripts were further processed with
Cogent (https://github.com/Magdoll/Cogent). Polished
Iso-Seq sequences were surveyed for the dinoflagellate
spliced leader (CCGTAGCCATTTTGGCTCAAG) and
the relict dinoSL (CCGTAGCCATTTTGGCTCAAGC
CATTTTGGCTCAAG) [78] sequences using BLAST
with no gaps and up to 1 mismatch permitted.

Repetitive element annotation and gene model

prediction

In order to confirm splice sites, the assembled transcrip-
tome was mapped to the assembled genome using
GMAP [79]. For annotating transposable elements
(TEs), de novo repeats within the genome were identi-
fied using an l-mer size of 17 bp with RepeatScout [80].
A combined library was made, consisting of de novo re-
peats and eukaryotic TEs from RepBase. This library was
then used to locate and annotate repetitive elements in
the assembled genome using RepeatMasker [81]. RNA-
seq reads were mapped to a soft-masked genome using
STAR [82] and the BRAKER2 pipeline [83]. UTR and
gene model prediction were performed with Augustus
(v3.2.3) [84]. To improve gene prediction accuracy,
intron and exon hints were generated as additional evi-
dence of gene structure and location by mapping Illu-
mina and Iso-Seq transcripts to the genome with GMAP
[79] and STAR [82]. Hints were then used to perform
final gene prediction using a modified version of Augus-
tus (v3.2.3) [84], in which the source code was changed
in consideration of non-canonical exon-intron boundar-
ies. The final set of predicted proteins was annotated
against UniProt [85] and PFAM ([86]. Briefly, BLASTP
searches for all protein models were performed with the
SwissProt and TrEMBL databases (October 2018 re-
lease). Amino acid sequences were subjected to PFAM
[86] domain searches using HMMER (v3.1b2) [87], and
hits larger than 1°> were discarded. For KEGG pathway
analysis, the online service on the KEGG Automatic Ser-
ver (KAAS) was used to assign predicted genes to KEGG
orthologs (bi-directional best hit method) and mapped
orthologs to KEGG pathways.

Phylogenetic analysis of PKS and NRPS proteins and
prediction of substrate specificities

The dataset used previously [10] was repopulated with
ketosynthase,  acyltransferase,  adenylation,  and


https://github.com/Magdoll/Cogent

Beedessee et al. BMC Biology (2020) 18:139

condensation protein sequences from the A. gibbosum
genome. Briefly, four datasets were created, consisting of
244 KS sequences (225 aa), 104 AT sequences (208 aa),
121 A-sequences (272 aa), and 111 C-sequences (253
aa). Mono- and multifunctional domain-containing se-
quences were aligned using MUSCLE [88], and domain
areas with best alignment were retained while regions
with ambiguity were removed. Two methods for phylo-
genetic reconstruction were used, maximum likelihood
using RaxML [62] (1000 bootstraps and LG + G model)
and Bayesian inference (run to a maximum of 6 million
generations plus 4 chains, or until probability approached
0.01), using MrBayes (v3.2) [89]. Substrate specificity of A.
gibbosum AT sequences was generated using I-TASSER
[90]. In order to determine the A-domain specificity and C-
domain types, the LSI-based A-domain predictor and NaP-
Dos were used, respectively [91, 92]. The phylogenetic ana-
lysis of A-domain and a part of its substrate specificity are
depicted in Fig. 2. Sequence alignment of the A-domain is
provided as Additional File 3. PKS protein subcellular
localization was detected using ChloroP 1.1 and TargetP
1.1 and was further confirmed with DeepLoc [93-95].

Nutrient starvation experiment

For a nitrate-starved culture, the culture medium was pre-
pared by supplementing artificial seawater (ASW) with F/2
medium containing a reduced nitrate concentration
(150 uM). For a phosphate-starved culture, the phosphate
level was 22 pM. A phosphate and nitrate-replete treatment
was set up as the control, in which nitrate and phosphate
concentrations were 880 and 36 puM, respectively. Both star-
vation (depleted) and control treatments were conducted in
triplicate (n = 3). First, measurements were started after 24
h of stabilization, and this was counted as day 1. Nitrate
and phosphate levels were monitored using the Griess and
phosphomolybdenum blue spectrophotometric methods,
respectively [96, 97], until their concentrations were un-
detectable. Other physiological parameters, such as cell
concentration, chlorophyll 4, and photochemical efficiency
(Fv/Fm ratio), were also monitored (Additional File 1:
Supplementary Fig. 10B). Cell counts were obtained by
fixing cells in formalin and using a hemocytometer for
visualization. 1-mL samples were centrifuged, and cell pel-
lets were immersed in N,N-dimethylformamide (DMF) and
kept at —20°C for at least 12 h in order to extract chloro-
phyll a, which was measured using a Turner Trilogy
(Turner Designs fluorometer, USA) and then averaged to
content per cell. Photochemical efficiency was monitored
with a Xe-PAM (Walz, Germany).

Gene expression analysis during nutrient starvation

When dissolved nitrate and phosphate reached an un-
detectable level, ~ 107 cells were collected, snap frozen in
liquid nitrogen, and ground using a cryopress. RNA was
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extracted from 3 control, 3 nitrate-starved, and 3
phosphate-starved samples using PureLink reagent. Four
micrograms of RNA was used for cDNA library construc-
tion with a TruSeq Stranded RNA Sample Prep Kit (Illu-
mina). Libraries were quantified and validated by qPCR
and with a 2100 Agilent Bioanalyzer, respectively, and se-
quenced in two lanes of a Hiseq 4000 (Illumina). Reads
were trimmed using Trimmomatic (v0.35) [67], quality-
checked using FastQC (v0.11.4) [68], and assembled using
Trinity (v2.3.2) [75]. The assembly was processed with
CD-HIT-EST (v4.6.7) [77] using a clustering threshold of
0.95. Functional annotation of non-redundant contigs was
performed using BLAST with several databases: UniProt,
GeneBank non-redundant (nr), Kyoto Encyclopedia of
Genes and Genomes (KEGG), and eggNOG (E value cut-
off of 107°) [85, 98]. Transcriptomic gene completeness
was evaluated using BUSCO (v3.0.2) [73]. For identifica-
tion of differentially expressed transcripts, expression
abundance was quantified using RSEM [99]. The R pack-
age, EdgeR [100], was used to identify differentially
expressed genes with adjusted p values (q value) deter-
mined with the Benjamini, Krieger, and Yekutieli correc-
tion of the PRISM package. Figure 3a, b depicts the results
of this analysis. Gene ontology term functional enrich-
ment was performed using Fisher’s exact test in topGo
with the parent-child analysis to categorize whether differ-
entially expressed genes were enriched in molecular func-
tion, cellular components, and biological processes [101].
KEGG pathway enrichment was performed using DAVID
[102] by applying Fisher’s exact test.

Small RNA sequencing for the nutrient starvation
experiment

Small RNAs were isolated from the same RNA pellet
(n =3) collected from the depleted-replete experiments
using the NEXTflexTM Small RNA-seq Kit V3 (Bioo
Scientific). Single-end reads (1 x 50 bp) were generated
on a Hiseq 2500 platform. Reads were cleaned by re-
moving adapter and polyA/N sequences using Cutadapt-
1.4.1 [103], and reads within the range of 17-25 were
retained. Reads were further collapsed using the col-
lapse_reads.pl script of the MiRDeep2 package [104]. Se-
quences having hits to various non-coding RNAs
(rRNAs, tRNAs, snRNAs, snoRNAs, and scRNAs) of the
RNAcentral database (The RNAcentral Consortium,
2015) were discarded. Bowtie (v1.1.12) [105] was used to
map clean, small RNA reads to the Amphidinium gibbo-
sum genome with no mismatches and 1 alignment.
Mapped reads were further queried against known miR-
NAs in miRBase 22.0 (http://www.mirbase.org). miRNAs
were annotated using the miRdeep2 package. Previous
miRNA criteria [42] were applied to the list of annotated
miRNAs. miRNA expression level profiling was con-
ducted and normalized using the quantifier.pl script of
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the miRdeep2 package where processed reads were
mapped to identified miRNA precursors. EdgeR [100]
was then used to identify differentially expressed miR-
NAs at FDR < 0.05 (adjusted p value), as determined by
Benjamini, Krieger, and Yekutieli of the PRISM package
and |log2(FC)| > 1. Only miRNAs present in at least 2
replicates were considered further. For predicting mRNA
targets of the miRNAs, 3'UTR sequences of unigenes
were used by miRanda [106] under strict criteria. GO
and KEGG pathway enrichment was performed for pre-
dicted target unigenes of differentially expressed miR-
NAs using topGO and DAVID, respectively [101, 102].
Figure 3c—e depicts the results of this analysis.

Identification of key proteins in microRNA biogenesis
pathways

In order to confirm the presence of a miRNA biogenesis
pathway, sequences of three core protein families involved
in RNA interference (i.e., Argonaute, Dicer, and HENI)
were retrieved for model organisms (H. sapiens, C. ele-
gans, S. pombe, D. melanogaster, and A. thaliana) from
UniProtKB [85]. Sequences were then queried against pre-
dicted proteins from the A. gibbosum transcriptome using
BLASTP (E value cutoff of 107'%). Hits were then searched
for specific domains (a PAZ domain and a pair of RNase
III domains for Dicer, Piwi and Dicer domains for Argo-
naute, and a methyltransferase domain for HEN1) needed
for functional activity using InterProScan [107]. Align-
ment of homologs against retrieved RNAi proteins from
model organisms was conducted using Clustal Omega
[108] and visualized using Jalview [109].

Alternative splicing (AS) and enrichment analyses

In order to identify alternative splicing events (Skipped
exon [SE], alternative 5" splice site [A5SS], alternative 3’
splice site [A3SS], mutually exclusive exons [MXE],
retained intron [RI]), rTMATS [50] was used. Briefly,
processed RNA-seq reads from nutrient stress experi-
ments were mapped to the genome using STAR [82]
and MISO [110] was employed to verify AS events. Iso-
Seq reads were also mapped to the genome using STAR
[82] to confirm the presence of exons. To evaluate dif-
ferential exon usage, DEXSeq (version 1.28.3) [111] was
used. Exon expression counts for each replicate in nutri-
ent stress experiments were quantified using the Amphi-
dinijum genome annotation and BAM files generated
from STAR [81] mapping. Default normalization of li-
braries was performed, and p values were corrected
using FDR with a p-adjust cutoff of <0.05. Gene ontol-
ogy term functional enrichment of all genes showing al-
ternative splicing was performed using the GOstats R
package [112] and visualized using REVIGO [113]. Fig-
ure 4 depicts the results of these analyses.
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PKS protein immunolocalization

Cells grown in normal ASW were first fixed in 2% para-
formaldehyde in seawater, washed three times with PBS,
and incubated in 50% methanol:PBS (5 min). Cells were
then deposited on poly-L-lysine-coated coverslips,
blocked with 5% normal goat serum for 1h, and incu-
bated with primary anti-PKS antibodies (KS and KR) at
1:100 dilution overnight at 4°C. Cells were then incu-
bated with Alexa Fluor-488-conjugated secondary anti-
bodies for 1h at room temperature. Coverslips were
then mounted with Vectashield on glass slides and ob-
served under a Zeiss Axio-Observer Z1 LSM 780 micro-
scope. Data were collected using ZEN software (version
14.0.8.201). For negative controls, cells were treated with
PBS instead of primary antibodies. Stacks were analyzed
using Image]J [114].
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