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Abstract

For over a century, neuroscientists have been working toward parcellating the human

cortex into distinct neurobiological regions. Modern technologies offer many

parcellation methods for healthy cortices acquired through magnetic resonance imag-

ing. However, these methods are suboptimal for personalized neurosurgical applica-

tion given that pathology and resection distort the cerebrum. We sought to

overcome this problem by developing a novel connectivity-based parcellation

approach that can be applied at the single-subject level. Utilizing normative diffusion

data, we first developed a machine-learning (ML) classifier to learn the typical struc-

tural connectivity patterns of healthy subjects. Specifically, the Glasser HCP atlas

was utilized as a prior to calculate the streamline connectivity between each voxel

and each parcel of the atlas. Using the resultant feature vector, we determined the

parcel identity of each voxel in neurosurgical patients (n = 40) and thereby iteratively

adjusted the prior. This approach enabled us to create patient-specific maps indepen-

dent of brain shape and pathological distortion. The supervised ML classifier re-

parcellated an average of 2.65% of cortical voxels across a healthy dataset (n = 178)

and an average of 5.5% in neurosurgical patients. Our patient dataset consisted of

subjects with supratentorial infiltrating gliomas operated on by the senior author

who then assessed the validity and practical utility of the re-parcellated diffusion

data. We demonstrate a rapid and effective ML parcellation approach to parcellation

of the human cortex during anatomical distortion. Our approach overcomes limita-

tions of indiscriminately applying atlas-based registration from healthy subjects by

employing a voxel-wise connectivity approach based on individual data.
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1 | INTRODUCTION

Informative and individual parcellation of the human brain remains an

elusive goal in the context of brain deforming pathologies. For over a

century, cerebral cartographers have aimed to parcellate the human

brain into distinct neurobiologically defined areas (Becker

et al., 2020). Early approaches to this problem were dominated by

histology-based cytoarchitectonics popularized by Brodmann (2005)

and von Economo and Koskinas (1925). In recent decades, rapid

advancements in technology and engineering have helped evolve

approaches to this age-old problem in neuroscience (Burks

et al., 2017). Today, with access to high-resolution multimodal mag-

netic resonance imaging (MRI) sequences, we can effectively

parcellate the healthy cerebral cortex by integrating local properties

of brain tissue with long-range connectivity patterns (Dell'acqua &

Tournier, 2019). However, the application of these advanced tech-

niques to the deformed brain has been limited.

Recently, Glasser et al. in the Human Connectome Project (HCP)

developed a multimodal cortical parcellation scheme by integrating

local myelin and cortical thickness features with global task-based and

resting-state functional MRI features (Glasser et al., 2016). Moreover,

despite the existence of variability between individuals, careful map-

ping efforts by the HCP revealed remarkable functional and topologi-

cal similarities between neurologically healthy-normal individuals. The

use of big data for parcellating the cerebral cortex has become a

defining hallmark of modern brain mapping. Specifically, boundary

mapping and clustering/factorization methods to parcellate the

healthy human brain have become a gold-standard in the field

(Bijsterbosch et al., 2020; Glasser et al., 2016; Glenn et al., 2017).

These techniques exploit the intrinsic structure of MRI data to

develop data-driven solutions to parcellate the healthy cortex.

Despite this, modern data-driven approaches (i.e., Glasser

et al., 2016; Yeo et al., 2011) fail to perform accurately in heavily ana-

tomically distorted clinical cases with small sample sizes, such as brain

tumors or strokes (Poologaindran, Lowe, & Sughrue, 2020; Smitha

et al., 2017). In these clinical contexts, not only is the underlying anat-

omy distorted, leading to difficulties in image alignment, processing,

and registration methods used in healthy brains (Fan et al., 2016), but

the underlying pathology may perturb the MRI signal itself (Glasser

et al., 2016). To circumvent this problem, existing methods generally

adopt atlas-driven approaches from healthy subjects to parcellate ana-

tomically distorted brains. While such an approach provides a reason-

able interim solution to probe the connectome at the group-level, it is

not sufficiently accurate for surgical planning at the single-subject level

(Burks et al., 2017; Romero-Garcia et al., 2020). Specifically, registration

errors, distortion issues, and resolution differences could lead to several

millimeters of inaccuracy, limiting the utilization of any template-driven

approaches for neurosurgery (Dell'acqua & Tournier, 2019).

To address these limitations, other techniques have been devel-

oped including cost-function masking (Brett et al., 2001) and virtual

brain-grafting (Radwan et al., 2021). Relative to template-driven

approaches, these techniques offer advantages to parcellating ana-

tomically distorted brains; however, they do not ultimately integrate

information about the underlying structural connectivity of the indi-

vidual patient.

A unifying principle of brain network organization is that the

functional relevance of a brain area is dependent on its connectivity

with surrounding brain areas (Fischl, 2012; McIntosh, 2004;

Pessoa, 2014). None of the parcellation techniques developed thus

far take advantage of, and rely on, this unifying principle of structural

connectivity and anatomical organization.

Leveraging this principle of anatomical connectivity, we sought to

develop a structural connectivity-based “re-parcellation” scheme to

the anatomically distorted cerebral cortex. We develop and train a

machine learning (ML) classifier that can identify Glasser HCP parcels

using easy-to-acquire clinical-grade MRI data, with the aim of produc-

ing idiographic parcellations in both healthy and anatomically dis-

torted brains.

2 | METHODS

2.1 | Normative and patient datasets

2.1.1 | Normal diffusion tractography datasets

The T1-anatomical and diffusion weighted images (DWI) for

178 healthy control subjects were obtained from the Schizconnect

(http://schizconnect.org) database. The inclusion criteria image collation

included subjects with “No Known Disorder” and T1 Magnetization

Prepared Rapid Acquisition Gradient Echo (MPRAGE) and Structural

Diffusion MRI scans acquired on a 3 T scanner. This query yielded

178 unique subjects with the requisite data. Ninety-four subjects were

from the MIND Clinical Imaging Consortium (MCICShare) and 84 sub-

jects were from the Centre for Biological Research Excellence (COBRE).

For the T1 MPRAGE in the MCICShare dataset, the voxel size was

0.703 � 1.5 � 0.703 mm, and the image dimensions were

256 � 144 � 256 mm. For the DWI in the MCICShare dataset, the

voxel size was 2 � 2 � 2 mm, the image dimensions were

128 � 128 � 60 mm and the DWI sequence consisted of 60 non-

collinear diffusion weighted gradient directions (b = 700 s/mm) and

10 additional images without diffusion weighting (b = 0 s/mm). For the

T1 MPRAGE in the COBRE dataset, the voxel size was 1 � 1 � 1 mm,

and the image dimensions were 192 � 256 � 256 mm. For the DWI in

the COBRE dataset, the voxel size was 2 � 2 � 2 mm, the image

dimensions were 128 � 128 � 72 mm and the DWI sequence con-

sisted of 34 noncollinear diffusion weighted gradient directions

(b = 800 s/mm) and one additional image without diffusion weighting

(b = 0 s/mm). A complete list of acquisition parameters can be found

“Imaging Data Information” at: http://schizconnect.org/documentation.

As a result, the heterogeneity of voxel resolution and size constituted

an excellent test of generalizability of our algorithm.
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2.1.2 | Hold out sample

To confirm that our approach would generalize well to other scan data

acquisition protocols (e.g., different scanner), we tested our structural

connectivity-based brain atlas (SCA) on an out-of-cohort dataset of

52 healthy control brains from the University of California Los

Angeles (UCLA) Consortium for Neuropsychiatric Phenomics LA5c

Study Dataset provided by OpenNeuro (https://openfmri.org/

dataset/ds000030/; accession number ds000030). The dataset con-

sisted of 52 subjects with a T1 MPRAGE and Diffusion Data MRI Pro-

tocols on 3 T scanners. The T1 MPRAGE data had voxel size

1 � 1 � 1 mm with image dimensions of 176 � 256 � 256 mm. The

DWI data has voxel size of 1.979 � 1.979 � 2 mm, image dimensions

of 96 � 96 � 60 mm and the DWI Sequence consisted of 64 non-

collinear diffusion weighted gradient directions (b = 1,000 s/mm) and

one additional image without diffusion weighting (b = 0 s/mm).

2.1.3 | Brain tumor patient sample

To study the performance of our model in brain tumor patients, we

randomly selected 40 cases of patients with World Health Organiza-

tion (WHO) grade 2–4 supratentorial infiltrating gliomas from a surgi-

cal imaging dataset operated on by the senior author between 2012

and 2018. These images were collected for purposes of surgical plan-

ning and studied with approval of the patient and the institutional

review board (IRB #3199). The collected scans included an anatomical

T1-weighted image and DWI series. Diffusion imaging was performed

on a 1.5 T GE Optima with the follow settings: Spin-echo echo-planar

imaging (EPI) DWI, with 24 diffusion weighted directions

(b = 1,000 s/mm) and one additional image without diffusion

weighting (b = 0 s/mm), field of view (FOV) = 25.6 cm, slice thickness

2.5 mm, 0 mm gap between slices with no overlap, full brain coverage,

voxel size 1.016 � 1.016 � 2.5 mm, square 256 � 256 matrix, 1 aver-

age/number of averages (NEX), and axial foot to head slice

prescription.

2.1.4 | HCP test–retest data

The T1-anatomical and diffusion weighted images for 44 healthy con-

trol subjects were obtained from the Human Connectome Project.

The HCP test–retest dataset is a subset of the overall 1,200 MRIs.

Forty-five subjects received a secondary scan between 1 and

11 months after their initial scan. One subject did not have diffusion

data available for tractography and so was excluded from the study.

The anatomical images are T1 axial images with a FOV of

224 � 224 mm, voxel size 0.7 mm isotropic. The DWI images con-

sisted of five images without diffusion weighting (b = 0 s/mm) and

90 gradient directions with 30 noncollinear directions each at

b = 1,000, b = 2000, and b = 3,000 s/mm. The DWI image dimen-

sions were 144 � 168 � 111. The test–retest data was used to con-

firm the stability and consistency of the SCA on a single subject at

different time points. The degree of biological change over this period

is expected to be small.

2.2 | Diffusion weighted images pre-processing

DWI images were processed using the prescribed processing steps

from the diffusion imaging in Python (DIPY) package available in the

Python language including correcting for motion, extraction of the

brain, and correction for gradient distortion (Garyfallidis et al., 2014).

Specifically, DWI images were motion corrected by aligning each time

frame to the initial b0 image using translation and rigid body registra-

tion (Leemans & Jones, 2009). Brain extraction on the DWI was per-

formed using the Otsu thresholding technique. The anatomical image

was skull stripped using the HD-BET (Division of Medical Image Com-

puting at the German Cancer Research Center (DKFZ) (https://github.

com/MIC-DKFZ/HD-BET; Isensee et al., 2019). The skull stripped

anatomical image was registered against the DWI image via a succes-

sive translation registration and rigid body registration. Correction for

gradient distortion was achieved by allowing the DWI to

diffeomorphically warp against the registered anatomical image.

The resulting images were then resliced into 2 � 2 � 2 mm iso-

tropic voxels. The fiber orientation distribution function was calcu-

lated using the constrained spherical deconvolution (CSD) (Tournier,

Calamante, Gadian, & Connelly, 2004) tool provided in DIPY

(Garyfallidis et al., 2014). The fiber orientation distribution function

(fODF) was calculated with CSD with a spherical harmonic order of

6. CSD peaks were extracted from the model using a relative peak

threshold of 0.5 and a minimum separation angle of 20�. Using the

EuDX algorithm which uses Eueler integration and trilinear interpola-

tion in conjunction with a set of stopping criteria (Garyfallidis, Brett,

Correia, Williams, & Nimmo-Smith, 2012). Deterministic tractography

was then performed with four fibers per voxel seeded evenly through-

out white matter voxels as determined by a fractional anisotropy

(FA) value of above 0.3 (Auriat, Borich, Snow, Wadden, & Boyd, 2015;

Cheng et al., 2012).

2.3 | Model and performance metrics

2.3.1 | Generation of a cortical and subcortical atlas

We began with the Human Connectome Project Multi-Modal

Parcellation version 1.0 (HCP_MMP1) with 180 cortical areas in each

hemisphere. We added 19 subcortical areas from the FreeSurfer aver-

age atlas “RB_all_2008-03-26.gca” (Fischl, 2012). These subcortical

areas were the left and right cerebellum, thalamus, caudate, putamen,

pallidum, hippocampus, amygdala, accumbens, ventralDC, and

brainstem as defined in the atlas. These two atlases were combined

by acquiring the files in MNI standard space and taking the union of

the two atlas schemes. Given that there is no overlap across the two

atlases, the end result is a combined cortical and subcortical atlas,

hereby referred to as the augmented HCP (A-HCP) atlas.
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2.3.2 | Creation of a structural connectivity-based
brain atlas

We next trained a ML model to recreate the A-HCP atlas based on

diffusion weighted structural connectivity (Glasser et al., 2016).

Figure 1 provides a schematic of the conceptual basis behind this

step, which we call “re-parcellation.” This novel method was created

by training the model using the data from healthy subjects in the

datasets described previously.

The tractography data was used in conjunction with the initial

parcellation fit to create a structural connectivity representation of

the data. The A-HCP atlas in MNI space was then warped onto each

brain. Tract endpoints from the CSD tractography were then used to

generate a voxel to parcel structural connectivity vector. For each

voxel, we parsed the CSD tractography and identified streamlines that

started or terminated in that voxel. Then the endpoints of these

streamlines were used to build a feature vector on the number of

streamline connections between that voxel and each of the 379 par-

cels in the A-HCP atlas. Calculating this over all voxels generated a

voxel to parcel structural connectivity matrix.

The voxel-to-parcel feature vector (structural connectivity) matrix

had 379 dimensions corresponding to the 379 parcels included in the

A-HCP atlas. All dimensions were used in classification; and no fea-

ture selection was used before classification. This feature vector could

then be used for training and classification. Figure 2 provides a sche-

matic description of the process used to generate voxel-to-parcel fea-

ture vectors.

The voxel-to-parcel feature vectors for each parcel in the struc-

tural connectivity matrix were then used as a training set to fit a gradi-

ent boosted tree-based model (XGBoost). To ensure clinical relevance

of the model we optimized the algorithm on precision. This leads to a

supervised learning paradigm in which voxel to parcel structural con-

nections are used to train and predict each parcels category. This

trained model can then be applied to classify voxels in subsequent

subjects' brains. In application, the voxel-wise structural connectivity

feature vector is constructed as before and used to determine the

parcel identity of each voxel. This creates a voxel-wise recreation of

the A-HCP atlas with subcortical components, which is independent

to brain shape and pathologic distortion while being subject-specific

yet comparable between subjects. Additionally, classification is con-

strained around the centroid of the target parcel, which is utilized to

constrain the voxels studied for assignment of a given parcel to a

plausible area in the vicinity of its typical position. Only voxels with

streamline fibers starting or terminating in them are classified. In cases

of a structural lesion, white matter no longer exists. Accordingly, no

tractography is traced to these voxels and the model does not classify

any parcels. Given the dependence on white matter endpoints to

reach a classification for that voxel, we acknowledge that structural

connectivity-based classification we have proposed will not be able to

fully recreate the voxel coverage of the warped A-HCP. However, by

providing an accurate prediction over a subset of the gray matter

voxels, this model can still be useful for clinical purposes where

clinicians only need to see a sparse amount of voxel predictions to

have an informed insight into that region of the brain.

2.3.3 | Machine learning model framework

The statistical model used is a gradient-boosted decision tree model

(XGBoost) (Chen & Guestrin, 2016). This classifier uses ensembles of

decision trees to build a statistical map between the voxel level fea-

ture vector and the most probable parcellation class, where

F IGURE 1 Schematic description of the structural connectivity
atlas (SCA) re-parcellation pipeline. (a) The SCA machine-learning
model is first trained by entering preprocessed tractography data
from healthy subjects to learn the structural connectivity patterns
between voxels included within the 379 parcels identified by our
augmented version of the HCP_MMP1 (A-HCP) atlas (Schizconnect
data set, n = 178). (b) Physically distorted tractography data is then
preprocessed identically to the healthy cohort, and structural
connectivity patterns are calculated for each cortical voxel (Tumor
patient data set, n = 40). (c) The machine-learning model is then
applied to each individual in the patient data set, and voxels located at
tract endpoints are appointed their most likely A-HCP parcellation
based on their structural connectivity feature vectors, resulting in the
re-parcellation of voxels where physical distortion has shifted the
mapping of the A-HCP atlas
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“parcellation class” refers to any single brain region included in the A-

HCP atlas. Gradient boosted decision-trees have several advantages

over generic decision trees in flexibility and the ability to incorporate

varied feature sets. XGBoost in particular has several performance

enhancements over other implementations of gradient-boosted deci-

sion trees, namely in the speed and memory improvements that para-

llelization and memory management bring, as well as the dropout

regularization for regression trees (DART) to reduce the potential of

overfitting. In the case of the SCA, maximizing precision is favorable

as it reflects the ability to recreate the A-HCP atlas from the structural

connectivity data.

2.3.4 | Model similarity assessment

To determine the ability of our model to appropriately identify the

379 cortical and subcortical areas in normal brains, we utilized the

registered A-HCP atlas as a “ground truth.” We tested the proportion

of concordance between voxels from the co-registered A-HCP and

the SCA for held out, out of sample subjects. Because of the depen-

dence on white matter endpoints to reach a voxel prediction, we do

not expect the model to completely regenerate the registered A-HCP

atlas. However, for the subset of voxels that receive a classification

by the SCA, they should largely be consistent with the registered A-

HCP Additionally, the stability of the model was assessed by repeating

the generation of the SCA twice across 30 normal brains from the

held out, out of sample subjects. Differences between successive runs

were analyzed to determine how much, if any, deviation occurred

between runs on each subject.

2.3.5 | Assessment of our pipeline steps and
machine learning parcellation in tumor patients

To determine if the ML generated re-parcellation scheme was plausi-

ble, we validated our model using the following criteria: (a) parcels

involved no assigned voxels in a resected cavity or region of necrotic

tumor, (b) parcels reassigned due to tumor presence are pushed in a

direction concordant with the tumor mass effect, (c) parcels are on

the correct side of subarachnoid landmarks, such as the Sylvian fis-

sure, and (d) white matter structures appear to support the parcels

identified as noted in tractographic descriptions of the Cerebrum

(Briggs et al., 2018; Briggs et al., 2018a, 2018b; Sali et al., 2018; von

Economo & Koskinas, 1925).

In addition, we sought to statistically evaluate the difference

between the template-based registration of A-HCP-MMP1.0

F IGURE 2 Generation of voxel-to-
parcel feature vectors. (a) The augmented
HCP_MMP1 atlas is fitted to a functional
image series, defining the boundaries and
voxels included in each of the 379 A-HCP
parcels. (b) Diffusion weighted image
(DWI) series undergo constrained
spherical deconvolution (CSD) to map the
course of white matter tracts within the

cortex. (c) Individual streamlines
originating within each voxel are derived,
and their endpoints mapped to all other
cortical parcels. (d) The number of
streamlines ending in each parcel are
counted and entered as a structural
connectivity feature vector for each
individual voxel of each parcel. In this
example, a voxel in parcel A (V1; white)
has three streamline endpoints
terminating within parcel E (P5; dark
green), which is entered as the feature
vector for this voxel
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(volumetric) Glasser atlas and our subject-specific SCA methodology.

Specifically, we calculated the overall accuracy between the SCA and

the registered atlas over a dataset of tumored/resected brains under

two conditions. First, we calculated the accuracy between the two

atlases over voxels that both systems assigned to a parcel. Second, we

calculated the accuracy between the two atlases over all voxels that

the template atlas assigned to a parcel. We would expect the differ-

ence between these two measures of accuracy to be much larger than

in the hold out sample. This is because the SCA only predicts voxels

with white matter endpoints and because these endpoints would not

exist in areas of tumor or resection. Conversely the registration

approach (standard application of the A-HCP atlas) would falsely

assign parcels to these areas.

3 | RESULTS

Overall, the SCA generated plausible imaging results for all 40 tumor

subjects we investigated in accordance with our set of visual assess-

ment criteria. We then further investigated the integrity of the

machine-learning model by calculating model metrics against the

fitted A-HCP atlas as a “ground truth” to quantitatively assess its

performance.

3.1 | Precision performance of the SCA

We tested the overall performance of the model by calculating the

recall and precision of the SCA versus the co-registered A-HCP atlas-

based approach. Importantly, as the SCA model necessitates tract ter-

minations in the voxel of interest to build the required feature vector,

thereby only mapping voxels which contain the required streamline

endpoints. Thus, the overall cortical coverage of the SCA is much

lower than the A-HCP. This property supports the clinical value of the

SCA as it aims not to fully classify every gray matter voxel but rather

provide classification over a subset of voxels that are precise in cases

of resection and tumor. In a clinical setting, providing accurate classifi-

cation over a sparse subset of voxels is sufficient in giving clinicians

an informed view of where key parcels are located within the brain.

Precision is a measure of the number of predictions of the posi-

tive class that actually belong to the positive class. It is calculated as

the number of true positives as a proportion of the sum of true posi-

tives and false positives. Recall is a measure of the number of positive

class predictions out of all positive classes. It is calculated as the num-

ber of true positives as a proportion of the sum of true positives and

false negatives. F1 score (or F score) is the weighted average of preci-

sion and recall and takes into account both false positives and false

negatives. As Table 1 shows, the average classifier recall was 97.1%

and the average precision was 98.0% when compared with the A-

HCP atlas as ground truth. The average classifier accuracy was 96.2%

and the average F1 score was 97.6% when compared with the A-HCP

atlas as ground truth.

Further, to test for parcel-specific performance we tested each of

the 379 parcels separately using a bounding box extending �2 cm

beyond the boundaries of the parcels as provided by the registered

A-HCP atlas. Overall, and in keeping with the clinical preference for

an optimization towards precision, most parcels showed a high degree

of precision and comparatively lower recall. The distribution of preci-

sion, recall, accuracy, and F1 scores are displayed in Figure 3.

3.2 | SCA run time

The run time of the SCA from initial brain scans to parcellation was

calculated across the hold-out dataset. The run times varied from

37 to 45 min with a mean of 41 min and a SD of 2.5 min. Run times

were measured on a 4 CPU, 16 GB RAM m5.xlarge cloud computing

instance provided by Amazon EC2. Variation here is primarily due to

the number of streamlines generated at the tractography stage. In

cases where more streamlines were generated the voxel to streamline

connectivity feature vectors took longer to generate and the overall

SCA took longer to complete.

Overall, the SCA run time includes image preprocessing and

tractography generation. If more streamlines are used, then this

increases the amount of time it takes to iterate through all streamlines

and create a structural connectivity feature vector. However, the time

it takes to use this vector for prediction is constant, as is the time it

takes to recreate the atlas.

3.3 | The SCA produces plausible re-parcellation
results

Re-parcellation is defined as those voxels which are classified by the

SCA approach as having a different parcel than that which was assigned

by the fitted A-HCP atlas. In the healthy hold out sample, an average of

2.65% of the classified voxels were identified as being re-parcellated, or

on average 662 voxels per subject. In order to increase the understand-

ing of this result, we sought to investigate whether these were clear

errors in classification or whether they are plausible instances.

TABLE 1 Recall and precision results of the SCA when compared
with either co-registered A-HCP as ground truth or a one versus all
bounding box around each voxel

Metric
Recall/precision
value (%)

Average recall (nonoverlapping bounding box) 96.8

Average precision (nonoverlapping bounding box) 96.9

Average recall (vs. A-HCP ground truth) 97.1

Average precision (vs. A-HCP ground truth) 98.0

Average accuracy (vs. A-HCP ground truth) 96.2

Average F1 (vs. A-HCP ground truth) 97.6
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3.3.1 | Re-parcellation primarily occurs to adjacent
neighbor parcels

For each of the re-parcellated voxels, we assessed whether or not that

voxel was changed to a parcel that was an adjacent neighbor from the

fitted atlas designated parcel. Adjacent neighbor parcels are defined

as those that are spatially connected by a voxel surface in 3D space.

In this approach, we can view voxel identity re-attribution to adjacent

parcels as plausible, while re-attribution to distant or nonadjacent par-

cels as implausible. Seventy-six percent of the re-parcellated voxels

were found to have been changed to a parcel that was an adjacent

neighbor to the fitted atlas designated parcel. This indicates that while

the SCA is only slightly different from the fitted atlas in healthy sub-

jects, the deviations themselves are highly biologically plausible.

Moreover, the consistency of the SCA or the stability of results

between successive runs, was measured by generating the SCA for

the 44 test–retest subjects from the HCP dataset. Across each of

these subjects, the SCA generated across successive runs was largely

consistent. The accuracy between the test and retest generated SCAs

was 79%. By accuracy we refer to the number of voxels that are given

the same parcel classification between test and retest, as a proportion

of the number of voxels that receive a classification in both test and

F IGURE 3 SCA precision and recall performance on out-of-cohort data set. (a) Distribution of precision scores for each parcellation included
in the SCA—higher precision scores indicate a greater confidence of predicting parcel identity when anomalous brain scans are entered into the
machine learning model. (b) Distribution of recall scores for each parcellation included in the SCA—a higher recall score indicates that for a given
parcel, a larger number of potential voxel predictions were accurately made. Thus recall provides insight into the ability of the model to find
parcel voxels. (c) Accuracy scores for each parcellation in the SCA atlas—accuracy is the proportion of correct predictions to total predictions.
(d) F1 score (or F score) for each parcellation in the SCA atlas—F1 score represents weighted average of precision and recall and takes into
account both false positives and false negatives
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retest data. This was expected given the stability in tractography

seeding and the deterministic quality of the ML algorithm. Notably,

some degree of variation is expected given the variances inherent in

CSD tractography.

3.3.2 | The SCA demonstrates plausible re-
parcellation in abnormal brains

To test the clinical relevance of the approach, the SCA was applied to

40 patients with known brain abnormalities such as tumors. Results

were visually inspected to ensure that no voxels were assigned in a

cavity or necrotic tumor and that re-parcellations pushed the atlas

towards a structure that was plausible given the mass effect for the

tumor. Figure 4 demonstrates example cases of re-parcellation within

abnormal brains by utilizing the SCA.

We next compared model metrics of the template-based registra-

tion of the A-HCP to the SCA in abnormal brains. The accuracy

between these two parcellations schemes was 94% in voxels covered

by both approaches. This is slightly less than the accuracy of �97%

that was achieved on normal brains from the out-of-cohort dataset,

and shows that the incidence of re-parcellation increases from 2.65%

on healthy brains to approximately 5.5% on abnormal brains. Taken

together, these scores suggest that the SCA suitably recreated the

parcellation schema of the A-HCP in a subject specific manner. We

hypothesized greater re-parcellation would occur in physically abnor-

mal brains generally, and an accuracy score of 100% in healthy con-

trols would reflect a complete overlap between the two approaches,

that no re-parcellation had occurred, and null the need for the SCA

approach. A further corollary is that the registration approach effec-

tively leads to cortical voxels being assigned to areas of resection or

tumor. This demonstrates the limitations of the registration approach

and elucidates the needs for taking into consideration structural

connectivity.

4 | DISCUSSION

Parcellation of the anatomically distorted cerebral cortex is of core

importance to neurosurgery and the better translation of connectomic

techniques into surgical care. For the first time, this study provides a

connectivity-based supervised ML approach to parcellate anatomically

distorted cerebral cortices. While previous methodologies typically

require structurally intact brains to parcellate the brain (Becker

et al., 2020; Bonney et al., 2017; Panesar et al., 2019), we demon-

strate that a voxel-wise ML classifier is able to distinctly parcellate the

cortices of patients with brain tumors and previous cortical surgeries.

Importantly, advancing on existing clinical and scientific approaches,

the present work enables improved within-patient and cross-patient

comparisons despite altered anatomy.

Structural connectivity based parcellations have shown remark-

able success in generating robust and anatomically consistent

parcellations of the human brain. These methodologies are generally

built around constructing a voxel-wise connectivity profile of the brain

with diffusion data. Notably, the Brainnetome project leverages local

structural connectivity to parcellate the brain into subregions that are

different from each other but internally homogeneous (Fan

et al., 2016). The automatic tractography-based parcellation pipeline

(ATPP) provides an open-source workflow for tractography-based

F IGURE 4 Exemplar pathological tumor sites re-parcellated
through the SCA. Color images demonstrating examples of re-
parcellation in subjects with tumors following resection. Left column:
standard T1-weighted image showing tumor site. Middle column:
T1-weighted image overlayed with the augmented HCP (A-HCP)
atlas. Right column: T1-weighted image overlayed with the SCA. Top
row: right-sided tumor resected from the junction of the parietal and
temporal lobes. Bottom row: right-sided parietal lobe tumor resection.
In line with our visual validation metrics, these three examples
demonstrate that: (1) parcels involved no assigned voxels in resected
cavities (however, due to the slice angle displayed, voxels on the
tumor boundaries may appear to overlie resected cavities),
(2) reassigned parcels were pushed in directions concordant with the
mass effect of the tumor site, (3) parcels were assigned on the correct
side of anatomical landmarks—such as the falx cerebri in the middle
rows, and finally, (4) that parcel structures support those identified in
previously published descriptions of the human cerebrum
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parcellation to cluster and label voxels with similar connectivity pro-

files based on streamline connections to the rest of the brain (Li

et al., 2017). Wang et al. (2016) identified that using voxel-wise struc-

tural connectivity profiles to generate a connectivity-based atlas pro-

duced consistent patterns across subjects and led to a re-

configuration from the AAL-90 atlas used as a comparison. Addition-

ally, Honnorat, Parker, Tunç, Davatzikos, and Verma (2017) tested a

framework for using structural connectivity to adjust and re-parcellate

an anatomical atlas prior demonstrating that it could be used to

improve coherence within a parcel. While the SCA is distinct in its

focus on accurate re-parcellation of anatomically distorted human cor-

tices, existing methodologies in healthy individuals have demonstrated

the advantageous use of structural connectivity for brain parcellation.

While the structural connectome constrains functional communica-

tion dynamics, additional studies incorporating multimodal data

(i.e., resting-state and/or task-based fMRI) are needed to determine if

further re-parcellation improvements are possible.

4.1 | Clinical advantages of re-parcellating scheme

A central goal in neurosurgery is to have a firm set of guidelines on

brain regions to avoid resecting to prevent neurological decline

(Becker et al., 2020; Glenn et al., 2017; Panesar et al., 2019). While

some structure–function relationships are firmly established, for

example that damage to the corticospinal tract causes long-term con-

tralateral motor deficits, in most cases it is difficult to avoid postoper-

ative cognitive deficits. Thus, with improved brain mapping strategies

for the distorted connectome, we are poised to re-formulate the

tenets of cortical neurosurgery with additional connectomic data

(Rijnen et al., 2019). We believe this process of determining what not

to do in surgery is hindered by the difficulty of being certain about

what regions were truly removed during surgery.

Structural connectivity provides a topologically invariant method

to describe network dynamics (Jin, Zheng, Liu, Guo, & Sun, 2018);

thus, we sought to use this as a basis for assigning a voxel to a parcel.

Simply put, even when the brain's gross anatomy is altered after sur-

gery, a brain region should not change what it is connected to. Some

limitations on this statement need to be made, namely, that it is

unlikely that the same image processed using diffusion tractography

would produce exactly the same set of connections, so we would not

expect preoperative and postoperative imaging to be directly compa-

rable. However, it is likely that the inability to identify a parcel in this

method, which would be caused by a significant reduction in the num-

ber of voxels in a parcel, implies that all or some of this parcel was

resected. Verifying this hypothesis and determining its clinical and

neuropsychological ramifications is an area that is being actively

studied.

In research and unconstrained scientific environments, MRI acqui-

sition protocols and sequences can provide unprecedented detail into

the living human brain. However, in fast-paced clinical environments,

technical expertise and scan time make it impractical to routinely use

research-grade scan protocols. With regards to our proposed work,

while CSD-based diffusion reconstruction is optimized for higher b-

values, we must balance the demands of a busy clinical workflow and

reasonable acquisition parameters. Recently, Toselli et al. (2017) dem-

onstrated that CSD-based estimation of the ODF is possible with clin-

ically achievable lower b-values with satisfactory performance.

Moreover, Calamuneri et al. (2018) also demonstrate that CSD out-

performs DTI even in low-hardware settings to investigate white mat-

ter integrity. Thus, deploying the proposed re-parcellation scheme

with a clinical MRI scan further improves the likelihood of clinical

adoption of this technology.

4.2 | Atlas-based parcellation versus connectivity-
based re-parcellation

The more traditional methods of matching cortical anatomy to parcel

identity include matching to a volume-based atlas, which is well

known to have inaccuracies given the differences in folding patterns,

and surface based parcellation-schema, such as performed by the

widely used software package Freesurfer (Fischl, 2012). While it is an

elegant solution to the problem of parcellating the cortical surface

despite variable folding patterns, Freesurfer is critically challenged

when trying to apply it to the patients with abnormal brains. Further-

more, Freesurfer utilizes a set of surface polygons to tessellate the

cortical surface to define anatomic vertices. During the “fix topology”
stage of this pipeline, these polygons are adjusted to create a surface

with the Euler number of a sphere. However, patients who have had

intra-axial surgery have a cortical disruption and thus do not always

have a cortex with spherical topology. Moreover, Freesurfer struggles

significantly trying to parcellate the brains of tumor patients, even

assuming that there has been no cortical reorganization. Our

connectivity-based re-parcellation method makes no such assump-

tions about shape or cortical topology and uses connectivity data to

define gray matter structures and parcel location. Thus, its unique ver-

satility enables it to be more clinically realistic and robust to complex

patients.

Image pre-processing for diffusion weighted images with some of

the most popular platforms, such as Freesurfer, often take several hours.

While this has quickened recently by FastSurfer, it remains unclear

whether it could handle abnormally shaped brains as the convolutional

neural net is trained on the aparc model created by the FreeSurfer pipe-

line (Henschel et al., 2020). Our model has obvious advantages for clini-

cal neuro-oncology practice, where the data is required quickly, due to

some patients needing immediate surgery. FastSurfer still utilizes many

of the FreeSurfer pipelines, and despite being faster, given the numerous

other steps other than their convolutional neural net, is still time-

consuming (Henschel et al., 2020). The SCA processing pipeline takes

less than 1 hr to run to completion, benefitting both clinical settings

where patients require fast and accurate imaging analysis, particularly in

cases of brain tumors, and in research settings, such that data could be

collected and analyzed more efficiently.

Notably, atlas-based approaches fail when applied to patients

with structurally abnormal brains such as stroke, hydrocephalus,
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traumatic brain injury, and atrophy. This is typically due to displace-

ment of the gyri and sulci that these methods attempt to structurally

map (Desikan et al., 2006). It is common in these cases for parcels,

specific functional areas, and their connections, to be missing due to

the tumor or surgical intervention. Additionally, the possibility that

functional areas have been reorganized due to the disease process

cannot be investigated by these atlas-driven approaches.

4.3 | Practical advantages of this approach

To impact and improve clinical care, neuroimaging processing and

analysis requires a fast and automated approach that is able to handle

pathologic brain anatomy in a robust and biologically accurate way

(Briggs et al., 2021). The key benefit of this approach is that it is fast,

does not require human input, and in our experience does not crash

or struggle with abnormal brains. Methods which cannot accomplish

processing in a clinically realistic timeline and without expert input,

will not scale to the greater clinical neuroscience community, and in

our opinion, does not seem to be a direction worth building towards,

if the goal of our research is to provide better diagnostic methods for

patients.

4.4 | Study limitations

Despite the methodological advances of re-parcellating the cortex

using voxel-wise structural connectivity, it is crucial to note that func-

tion cannot be attributed to these new parcels in anatomically dis-

torted brains. For example, while area L_44 (a portion of the canonical

Broca's area) is re-parcellated based on connectivity, it is unclear

whether it is performing the exact same function as the parcel in ana-

tomically intact brains. This neuroscientific question deserves further

attention and is of broad clinical significance. Furthermore, given the

inherent limitations of DWI, ground-truth is difficult to discern, not

only in healthy subjects, but especially in glioma patients (Ille

et al., 2019). For example, the function and purpose of remnant white

matter in some developing tumors requires further analyses. How-

ever, future studies can harness unique strategies from neurosurgery

(i.e., direct intraoperative stimulation) to validate such limitations.

Finally, little is known about how cortical reorganization occurs in

these patients and what intraoperative and/or clinical phenotypes

result from manipulation or loss of a region. Consequently, certainty

over the accuracy of a remapped parcel can only be achieved by

within-subject and between-subject comparisons.

4.5 | Future directions

Ultimately, our study represents a first step toward parcellating ana-

tomically distorted brains in neurosurgical patients. Future directions

should involve: (a) testing the utility of multimodal imaging data,

(b) increasing the normative and patient sample sizes in which the

model is developed and tested on, and (c) validating the tractography

with intraoperative direct electrical stimulation (DES) and behavioral

testing. First, the Glasser HCP atlas was derived from high-resolution

multimodal anatomical and functional imaging data, which could be

acquired in neurosurgical patients. While attractive and possible in

research settings, the cost–benefit ratio would need to be evaluated if

an improved model (due to multimodal data and increased scan time)

is practical in low-resource and fast-paced clinical environments. Sec-

ond, the use of increased healthy subject data from large imaging con-

sortia may aid in the initial training stage of our model. Moreover,

multicentric and open-source international imaging collaborations will

enable the improvement of the presented model through harnessing

more patients and subsequent imaging data. Finally, prospectively

evaluating the ground truth of the re-parcellation scheme with

intraoperative DES and behavioral testing would provide additional

data to evaluate the performance of our model. This could be readily

tested in patients who have already undergone surgery with existing

diffusion data and intraoperative testing performed.

5 | CONCLUSION

We demonstrate a rapid and efficient method for generating a ML

approach to utilize structural connectivity to create a parcellation,

allowing us to define anatomy in structurally abnormal brains.

While further work will be needed to validate the accuracy of these

mapped regions, this proof of concept raises the exciting idea that

structurally complex brains, such as those seen in brain tumor

patients, can be studied in a clinically applicable setting and

workflow, meaning that clinical translation of connectomics is pos-

sible in a much broader and pathological patient population than

previously studied in the field.
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