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Abstract

Precession-forced change in insolation has driven de-intensification of the Asian Monsoon systems during
the Holocene. Set against this backdrop of a weakening monsoon, Indus Civilisation populations occupied a
number of urban settlements on the Ghaggar-Hakra plains during the mid-Holocene from 4.5 ka until they
were abandoned by around 3.9 ka. Regional climatic variability has long been cited as a potential factor in
the transformation of Indus society, however there remain substantial gaps in the chronological framework
for regional climatic and environmental change at the northern margin of the Thar Desert. This makes
establishing a link between climate, environment and society challenging. This paper presents 24 optically
stimulated luminescence ages from a mixture of 11 fluvial and aeolian sedimentological sites on the
Ghaggar-Hakra floodplain/interfluve, an area which was apparently densely populated during the Indus
urban phase and subsequently. These ages identify fluvial deposition which mostly pre-dates 5 ka, although
fluvial deposits are detected in the Ghaggar palaeochannel at 3.8 ka and 3.0 ka, post-dating the decline of
urbanism. Aeolian accumulation phases occur around 9 ka, 6.5 ka, 2.8 ka and 1.7 ka. There is no clear link to
a 4.2 ka abrupt climate event, nor is there a simple switch between dominant fluvial deposition and aeolian
accumulation, and instead the OSL ages reported present a view of a highly dynamic geomorphic system
during the Holocene. The decline of Indus urbanism was not spatially or temporally instantaneous, and this
paper suggests that the same can be said for the geomorphic response of the northern Thar to regional
climate change.

Keywords Indus Civilisation, fluvial, aeolian, OSL dating, palaeoenvironment, drylands, northern Thar
Desert

1. Introduction

A range of evidence suggests that the Holocene in the South Asian sub-continent experienced a series of
arid-humid alterations on centennial and millennial scales (e.g. Gupta et al., 2003; Morrill et al., 2003;
Berkelhammer et al. 2013; Dixit et al., 2014a), along with shorter, more abrupt events (e.g. Bond et al.,
1997; Cullen et al., 2000). These fluctuations are set against a backdrop of an insolation-driven weakening
of the Asian Monsoon (e.g. Berger and Loutre, 1999; Wang et al., 2005), which would have resulted in
periods of variable precipitation and the onset of enhanced regional aridity. Holocene palaeohydrological
records indicate how the Thar Desert landscape responded to variable climatic conditions, with data
derived from southern Thar fluvial (Jain and Tandon, 2003; Jain et al., 2004; Thomas et al., 2007) and
lacustrine systems (Singh, 1971; Singh et al., 1972, 1973, 1974, 1990; Bryson and Swain, 1981; Wasson et
1
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al., 1984; Prasad et al., 1997; Enzel et al., 1999; Dixit et al., 2014a, 2014b). Regionally, these terrestrial
palaeohydrological records suggest a period of greater water availability in the landscape during the early
to mid-Holocene (~8 - 5 ka), leading to higher freshwater lake levels in Rajasthan and enhanced fluvial
activity in the southern Thar (Jain and Tandon, 2003; Jain et al., 2004; Thomas et al., 2007). The period after
~5 ka appears to become increasingly arid, with falling lake levels and subsequent desiccation and a
reduction and cessation of fluvial activity (e.g. Madella and Fuller 2006). There are now a number of high-
resolution palaeoclimate proxy records that show variability in climatic conditions in the early to mid-
Holocene, culminating in a period of drought around ~4 ka. Staubwasser et al. (2003) reconstructed Indus
River discharge using the 680 signal from foraminifera found within delta sediments and observe variable
output throughout the Holocene, with a significant drought phase centred around 4.2 kyr BP, which is
followed by the establishment of a period of drought phases. Berkelhammer et al. (2012) analysed the 320
signal from a calcitic stalagmite found in Mawmulah Cave (northwest India) and identify a drought event,
extreme in amplitude and duration, at 4.0 ka, with peak isotopic enrichment between 4.07 £ 0.02 and 3.89
+ 0.02 ka. This event also appears to be recorded in lacustrine deposits in Kotla Dahar lake, which
document a sharp decline in lake level and hence monsoon intensity at a similar time (Dixit et al., 2014a).
This widespread, regional mid-Holocene climatic deterioration would certainly have affected fluvial regimes
on the plains of northwest India that were occupied during this period, and it is this that provides a testable
hypothesis for establishing the relationship between climate, environment and society.

The Indus and Punjab alluvial plains that stretch across much of Pakistan and northwest India were first
occupied during the mid-Holocene (e.g. Kenoyer, 1998; Possehl, 2002; Wright, 2010, Petrie et al. 2010) and
the urban phase of the Bronze Age Indus Civilisation flourished across much of this area between 4.5 and
3.9 ka. The Indus was one of the most extensive complex societies in the pre-industrial world (e.g. Possehl,
2002; Wright, 2010), which was contemporaneous with the Akkadian, Egyptian and Chinese Neolithic, and
is associated with the building of large cities such as Mohenjo-Daro, Harappa and Rakhigarhi, which housed
tens of thousands of residents (Kenoyer, 1998), as well substantial numbers of smaller sites (Figure 1). After
~4 ka, all but one of the large Indus urban centres appear to have reduced in size and/or been abandoned,
and there appears to have been a displacement of settlement towards the east, along the precipitation
gradient towards the headwaters of the Yamuna and Sutlej River systems and towards Gujarat in northwest
India (e.g. Petrie et al., 2017). The cause(s) influencing the demise or transformation of the urban centres
has been the subject of discussion since Marshall’s announcement of the discovery of the Indus Civilisation
in the Illustrated London News in 1924. Socio-economic factors including economic depression, societal
breakdown and invasion have all been proposed, along with environmental factors such as degradation,
tectonic activity and climatic variability. These arguments have recently been summarised by Wright (2010)
and Petrie et al. (2017).

In addition to the Indus River and its major tributaries, the Indus region is traversed by a palaeochannel
known as the Hakra in Pakistan and the Ghaggar in India (hereon referred to as the Ghaggar-Hakra). This
palaeochannel, the subject of investigation since the late nineteenth century (Mughal, 1997), has been
described as a key river system for the Indus Civilisation (Kenoyer, 1998; Wright, 2010), and is associated
with apparently one of the densest concentrations of related settlements in the Cholistan region (Mughal,
1997; Wright et al., 2008). That this now-ephemeral river channel was a focus of Indus settlement has
meant that the link between fluvial activity in this system and urban collapse/demise has been discussed
intensively (e.g. Stein, 1942; Wilhelmy, 1969; Gupta, 1996; Mughal, 1997; Chakrabarti and Saini, 2009;
Gangal et al., 2010; Giosan et al., 2012). However, Wright (2010) and Petrie (2013) have emphasised that
there are substantial gaps in geochronological evidence, both climatic and environmental, which hinders
identification of a clear link between changes in climate, environment and society.
2
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This study provides new chronological data relating to sedimentary units within this landscape system. We
present new optically stimulated luminescence (OSL) ages for both fluvial and aeolian deposits spatially
related with the Ghaggar-Hakra palaeochannel in northwest India and use these ages to infer landscape
change during the Holocene. These ages are then linked to investigations from both northwest India and
eastern Pakistan to provide a picture of changing Indus landscapes at the northern margin of the Thar
Desert during the Holocene.

2. Regional setting and study framework

The Ghaggar-Hakra palaeochannel, traversing the northern margin of the Thar Desert in north-west India
and eastern Pakistan, is part of a complex channel system on the Indo-Gangetic plains in NW India and
Pakistan. Much of this forms a buried fluvial system and appears to pre-date the Indus Civilisation (e.g.
Sinha et al., 2013; Mehdi et al., 2016; Singh et al., 2016). Its precise source is debated. In contrast to the
other larger, higher energy Punjabi tributaries of the Indus (e.g. the Chenab, Ravi, Beas and Sutlej Rivers),
the present day Ghaggar-Hakra river is relatively a much smaller fluvial system, which experiences
ephemeral flow in response to monsoonal precipitation.

The region typically receives 80% of its annual precipitation from the Indian summer monsoon, with a steep
NE-SW rainfall gradient across northwest India (Prasad and Enzel, 2006; Dixit et al. 2014a). The mean
annual precipitation of ~690 mm in the northern Indo-Gangetic plains contrasts with ~100 mm in the
Cholistan Desert in Pakistan (Sinha et al., 2013; Petrie et al., 2017). Studies of the Ghaggar-Hakra system
have tended to focus on mapping from remotely sensed imagery (e.g. Ghose et al., 1979; Yash Pal et al.,
1980; Sood and Sahai, 1983; Sahai, 1999; Radhakrishna and Merh, 1999; Gupta et al., 2004). Corroboration
of these interpretations thorough field-based sedimentological and geomorphological investigation has
only rarely been undertaken (e.g. Mehdi et al. 2016), yet this is important given the low gradients of the
plain and temporal changes in channel behaviour and flow that could affect interpretations of past channel
configurations and linkages.

More crucially, there are relatively few detailed sedimentological and geochronological analyses of the
Ghaggar-Hakra palaeochannel and surrounding geomorphology. Singh et al. (2016) noted that
palaeoenvironmental reconstructions using fluvial archives in this region have been limited, possibly due to
the relative incompleteness of fluvial stratigraphic records (e.g. Jain et al., 2004). Only Giosan et al. (2012)
have examined Ghaggar-Hakra sediments where it extends into Pakistan, focusing on a 200 km transect
between Fort Abbas and Fort Derawar in the state of Punjab. There are more studies from the Indian
sector, with Saini et al (2009) and Saini and Mutjaba (2010) providing mid-Holocene OSL ages for a tributary
of the Ghaggar-Hakra in Haryana. Shitaoka et al. (2012; also Maemoku et al., 2012) focused primarily on
aeolian dunes adjacent to the palaeochannel, reporting late Pleistocene/early Holocene aeolian
accumulation in Rajasthan, which they conclude was subdued by insolation driven intensification of the
monsoon system after ~9 ka.

3. Materials and Methods

We focus on a ~125 km west to east transect following the Ghaggar-Hakra between Suratgarh and Sirsa in

an area where a large number of Indus Civilisation settlement sites have been found, including the large

town site of Kalibangan in Rajastan. The area adjacent to the palaeochannel was targeted and after analysis

of satellite imagery, eleven sites (Figure 2) with exposures of aeolian and fluvial sedimentary units (Figure
3
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3) were identified and sampled for OSL dating. Units interpreted as fluvial in origin were sampled from five
of the eleven sites. Sediments at these sites were typically fine sands and contained features such as rip up
clasts or horizontal bedding structures, which confirmed them as low-energy fluvial deposits. The other six
sites were dune sites closely associated with the palaeochannel, and these were sampled to ascertain the
timing of aeolian phases. These dune sands tended to be slightly coarser in nature, and were deposited as
massive units or had cross bedding structures preserved. Grain size analysis was undertaken using a
Malvern Mastersizer Hydro 2000MU, and particle size ranges were determined from samples which had
been oven dried. Data are summarised in Table 1.

Samples for OSL dating were collected by hammering opaque tubes into the sediment stratigraphy, which
were subsequently removed, packed, and transported to the Oxford Luminescence Dating Laboratory.
Samples were opened and prepared in subdued orange light conditions and the light-exposed sample ends
were removed and sediments were treated with hydrochloric acid and hydrogen peroxide to remove
carbonates and organic matter respectively, before sediment sieving and heavy liquid density separation to
isolate the quartz mineral component. The resulting material was etched using hydrofluoric acid to remove
the alpha-irradiated outer surface of the quartz grains and remove any non-quartz minerals still present.
OSL measurements were made using a Risg TL/OSL luminescence reader fitted with a 10 mW green (532
nm, Nd:YVO4) focussed laser for stimulation and samples were irradiated with a ?°Sr/°Y beta source with a
dose rate of approximately 4 Gy/min. Ultraviolet luminescence signals were detected through a bialkali
photo multiplier tube fitted with 7.5 mm U340 filters. Equivalent dose (D) values were calculated from
single-grains of quartz using the single-aliquot regenerative dose (SAR) protocol (Murray and Wintle, 2000;
Wintle and Murray, 2006) and following combined pre-heat and dose recovery tests, a pre-heat of 220°C
for 10 s and cut-heat of 160°C were selected for use in the SAR protocol. Luminescence was measured at
125°C for 1 s at 90% laser power and D.s were calculated from the signal measured during the first 0.05 s of
stimulation, with the mean background over the last 0.2 s subtracted. Luminescence signals were screened
using a standard suite of rejection criteria, and only grains which satisfied the following were accepted for
age calculation: i) recuperation of less than 5%; ii) recycling ratio within 10% of unity; iii) OSL IR depletion
ratio (Duller, 2003) within 10% of unity; iv) test dose signal should be at least 3o greater than background
levels. Sample D, determinations were made using the central age model (CAM) of Galbraith et al. (1999).
Environmental dose rates were calculated from radionuclide concentrations measured using inductively
coupled plasma mass spectrometry, which were converted to dose rates using the attenuation factors of
Guerin et al. (2011). The infinite-matrix dose rates were adjusted for attenuation by grain size, chemical
etching and a moisture content of 5 £ 2 %. All dose rates were calculated using the DRAC (v1.2) software of
Durcan et al. (2015), available at ww.aber.ac.uk/alrl/drac and are summarised in Table 2.

Table 1: Particle size data according to grain-size class.

Sample | % Very coarse | % Fine % Very % Very % Medium | % Very | % Clay % % %
(IND-) to medium sand finesand | coarseto | tofinesilt | finesilt |(<2pum)| Total | Total | Total

sand (2000- | (250-125| (125- | coarsesilt | (16-4 um) | (4-2 um) sand | silt | clay
250 pm) um) 63um) | (63-16 um)

Fluvial sediments
14-4-1 2.14 28.12 19.35 31.90 11.58 3.71 3.20 |49.61|47.19| 3.20
14-4-2 3.70 24.78 18.84 33.87 16.81 1.28 0.72 |47.32|51.96| 0.72
14-6-1 0.48 0.68 5.20 52.71 33.51 4.71 2.71 6.36 | 90.93 | 2.71
14-6-2 0.03 0.64 3.15 45.07 38.31 6.16 6.63 3.82 | 89.55| 6.63
14-7-1 11.81 39.92 21.05 10.98 10.40 2.54 3.30 |72.77|23.93| 3.30
14-7-2 14.01 47.75 21.83 12.47 2.97 0.77 0.20 |83.59|16.21| 0.20
14-7-3 5.80 21.12 20.27 38.08 9.80 3.68 1.25 |47.19 | 51.56 | 1.25




14-8-1 4.15 26.87 21.47 24.89 15.17 3.34 4.11 |52.49|43.40| 4.11
14-8-2 3.94 33.48 21.26 18.72 16.97 3.17 2.46 | 58.68 | 38.86 | 2.46
14-9-1 4.60 35.81 26.58 16.23 11.02 2.34 3.42 | 66.99 | 29.59 | 3.42
14-9-2 3.59 29.06 24.29 23.64 13.37 2.40 3.63 | 56.95|39.42 | 3.63
Aeolian sediments
14-1-1 12.66 41.15 22.73 9.95 8.11 2.37 3.04 |76.54|20.43| 3.04
14-1-2 17.81 46.12 29.26 2.17 3.98 0.52 0.14 | 93.19| 6.67 | 0.14
14-1-3 14.67 52.89 27.12 2.13 1.98 0.52 0.69 | 94.68 | 4.63 | 0.69
14-2-1 24.81 56.09 18.38 0.72 0.00 0.00 0.00 |99.28| 0.72 | 0.00
15-7-1 1.86 49.09 39.62 3.96 3.48 0.84 1.15 | 90.57 | 8.28 | 1.15
15-7-4 3.80 53.31 39.80 3.08 0.00 0.00 0.00 | 96.92| 3.08 | 0.00
15-8-1 12.92 42.31 36.74 3.92 3.57 0.54 0.00 |91.97| 8.03 | 0.00
15-8-4 9.73 38.78 45.37 2.26 2.02 1.31 0.53 | 93.88| 5.59 | 0.53
15-9-1 10.27 46.45 37.64 2.08 1.96 1.00 0.60 |94.36| 5.04 | 0.60
15-9-2 13.07 42.12 38.21 2.43 2.16 1.23 0.78 | 93.40| 5.82 | 0.78
15-10-1 12.22 53.69 28.58 3.79 0.99 0.30 0.43 |94.49| 5.08 | 0.43
15-10-2 10.27 52.29 31.29 3.60 2.10 0.40 0.05 |93.85| 6.10 | 0.05
15-10-3 11.36 48.55 34.50 2.84 1.87 0.86 0.02 |94.41| 5.57 | 0.02
178
179 Table 2: Equivalent dose (D,), dose rate (D) and OSL age summary. Equivalent doses, dose rates, and ages are shown
180 to two decimal places, with all calculations made prior to rounding.
Sample |Depth | Grain size | # Grains Over- CAM D, (Gy) Beta D Gamma D CosmicD |Environmental | Age (ka)
(IND-) (m) (um) measured | dispersion (Gy.ka?) (Gy.ka?) (Gy.ka?) D (Gy.ka!)
(accepted) (%)
Fluvial samples
14-4-1 0.8 150-210 | 1600 (45) | 33.5+1.7 | 8.61+1.26 | 1.54+0.12 | 1.10+0.07 | 0.18 £0.02 2.82+0.14 3.05+0.47
14-4-2 1.5 150-210 | 1900 (46) | 33.5+2.5 | 10.67+1.19 | 1.54+0.12 | 1.09+0.07 | 0.17 +£0.02 2.80+0.13 3.81+0.46
14-6-1 0.5 90-250 900 (24) 29.1+24| 2.61+0.32 | 1.96+0.16 | 1.32+0.08 | 0.20+0.02 3.48+0.18 0.75+0.10
14-6-2 1.5 90-250 700 (23) | 47.7+3.5| 13.03+2.90 | 2.55+0.21 | 1.79+0.12 | 0.17+0.02 451+0.24 2.89 £0.66
14-7-1 0.5 150-210 | 2200 (64) | 41.1+3.2 | 16.38+2.16 | 1.81+0.15 | 1.19+0.08 | 0.20+0.02 3.20+£0.17 5.12+0.73
14-7-2 1.5 150-210 | 2600 (60) | 38.6+2.6 | 17.54+2.10 | 1.44+0.12 | 0.97+£0.06 | 0.17 £0.02 2.58+0.13 6.79 £0.89
14-7-3 3.5 150-210 | 2600 (68) | 35.6+2.9 | 19.70+2.08 | 1.28+0.10 | 0.89+0.06 | 0.13+0.01 2.30+0.12 8.57+1.01
14-8-1 1.8 150-210 | 1900(47) | 35.5+4.1| 14.21+1.89 | 1.97+0.15 | 1.48+0.10 | 0.16+0.02 3.62+0.18 3.93+0.56
14-8-2 2.8 150-210 | 2000 (52) |32.7+2.8|20.99+2.11 | 1.81+0.14 | 1.35+0.09 | 0.15+0.01 3.30£0.17 6.36 £0.72
14-9-1 0.6 150-210 | 2000 (53) |29.1+25| 7.18+0.97 | 1.95+0.16 | 1.29+0.08 | 0.20+0.02 3.44+0.18 2.09+0.30
14-9-2 | 1.25 | 150-210 | 1800 (49) |42.7+4.7 | 23.02+3.01 | 2.02+0.16 | 1.32+0.09 | 0.18+0.02 3.52+0.19 6.54+£0.93
Aeolian samples
14-1-1 0.5 180-210 | 1700 (67) | 39.3+2.9 | 537+0.86 | 1.65+0.12 | 1.32+0.09 | 0.20+0.02 3.17+£0.15 1.69+0.28
14-1-2 1.0 180-210 | 1900(58) | 48.6+2.3 | 8.01+0.61 | 1.62+0.12 | 1.23+0.08 | 0.18 £0.02 3.02+0.15 2.65+£0.24
14-1-3 2.2 180-210 | 2600 (49) | 38.4+2.2 | 8.53+0.96 | 1.63+0.13 | 1.17+0.08 | 0.16 +0.02 2.95+0.15 2.89+0.36
14-2-1 1.0 180-210 | 2200 (48) | 51.2+4.0| 0.61+0.10 | 1.43+0.11 | 0.98+0.06 | 0.18 +£0.02 2.60+£0.13 0.23+0.04
15-7-1 0.5 180-210 | 1700(47) | 29.5+2.0 | 24.70£2.94 | 1.40+0.10 | 1.17+0.08 | 0.21+0.02 2.77+0.13 8.93+1.14
15-7-4 3.3 180-210 | 2100(53) | 31.4+2.7 | 20.58+1.75 | 1.27+0.10 | 0.91+0.06 | 0.14+0.01 2.32+£0.12 8.89£0.88
15-8-1 0.5 180-210 | 2600 (61) | 41.6+3.6| 0.31+0.10 | 1.27+0.10 | 0.99+0.07 | 0.20+0.02 2.46+0.12 0.12+0.04
15-8-4 2.0 180-210 | 2500 (68) | 48.9+3.4 | 17.33+1.90 | 1.34+0.11 | 0.95+0.06 | 0.16 £0.02 2.46 £0.13 7.06 £0.85
15-9-1 3.0 180-210 | 2300(62) |38.0+2.9 | 15.82+1.39 | 1.35+0.11 | 0.97+0.06 | 0.11+0.01 2.44+0.13 6.49 +0.66
15-9-2 4.9 180-210 | 2200 (55) | 36.3+2.4 | 16.06+1.13 | 1.19+0.09 | 0.92+0.06 | 0.14+0.01 2.25+0.11 7.13+£0.61
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15-10-1 | 0.6 | 180-210 | 2000 (49) | 44.3+4.0| 5.46+0.38 | 1.32+0.10 | 0.97+0.07 | 0.20+0.02 | 2.49+0.12 | 2.20%0.19

15-10-2 | 1.4 | 180-210 | 2400 (51) | 31.6+2.4 | 12.38+0.99 | 1.43+0.11 | 1.12+0.08 | 0.17+0.02 | 2.73+0.13 | 4.54+0.43

15-10-3 | 2.4 | 180-210 | 2500(63) | 35.3+3.1| 14.28+0.49 | 1.34+0.11 | 0.99+0.07 | 0.15+0.02 | 2.48+0.12 | 576+0.35
4. Results

Particle size data are presented in Table 1 and Figure 4. With the exception of sample IND-14-1-1, which
has a slightly larger silt component, the aeolian samples comprise at least 90% sand sized particles (<63
um) (Table 1), highlighted in the grain size profiles of selected samples in Figure 4a. The suite of fluvial
samples are more variable in composition, on average comprising 49% sand but with individual values
ranging between ~4 and 84 % (Table 1). The grain size profiles in Figure 5b illustrate the increased clay and
silt components, particularly for sample IND-14-6-2, where 96% of grains are smaller than 63 um, hence the
difficulty extracting adequate sediment mass for OSL dating (below). Volumetric proportions of clay, silt
and sand sized particles aside, the majority of samples have dominant peaks in sand at around 100 to 120
um and silt between 15 and 30 um (Figure 5), and this may suggest an element of reworking of sediments
on the floodplain.

Single grain OSL ages are shown in Table 2 and Figure 2. For the majority of samples between 1700 and
2600 grains were measured for D, determination, however the fine nature of sediments from site IND-14-6
only provided enough sand sized sediment for 700 - 900 grains to be measured. The number of grains
providing a luminescence signal discernible from background levels (e.g. Figure 5a) and satisfying the
rejection criteria varied between 1.8% and 3.9%. At least 45 accepted luminescence signals were used for
sample D. determination for all samples, apart from samples IND-14-6-1 and IND-14-6-2, where a lack of
sand sized material meant fewer grains could be measured and screened. Dose recovery tests on samples
IND-14-1-1, IND-14-7-2 and IND-15-9-1 provided recovery ratios of 0.93 + 0.06, 0.97 + 0.09, and 0.94 + 0.09
respectively, indicating that the SAR protocol and selected measurement and analysis parameters used for
D. determination can successfully recover an applied laboratory dose. Analyses of luminescence signals
from small aliquots of sample suggest signals are dominated by the fast component in the initial part of the
OSL signal (e.g. Durcan and Duller, 2011).

Overdispersion (ag), or the heterogeneity in D, distributions beyond that which would be expected from
uncertainties arising from intrinsic luminescence properties alone, is moderately high for this suite of
samples, ranging between 29.1 and 51.2 %, although there is no systematic difference between sediments
which were deposited by aeolian and fluvial depositional processes. a4 in dose distributions may originate
from a multitude of factors, either in isolation or combination, including heterogeneous bleaching (e.g. Jain
et al., 2004; Olley et al., 2004), environmental dose rate heterogeneity (e.g. Nathan et al., 2003) and post-
depositional sediment mixing (e.g. Bateman et al., 2007; Kristensen et al., 2015). None of the analysed
samples display characteristics of incomplete bleaching, e.g. a sharp leading edge of lower D, values, with a
scatter of higher Dgs (Jain et al., 2004; Lyons et al., 2014). Instead, whilst dispersed, values tend to cluster
around a central value, and factors other than incomplete bleaching are hypothesised to drive variability in
D, distributions. Therefore, CAM has been used for D, calculation (Galbraith et al., 1999), following the
rationale of other studies including Rowan et al. (2012), Parton et al. (2015) and Duller et al. (2015), where
observed dose distributions in a range of geomorphic settings are simultaneously highly overdispersed but
display symmetricity around a central D, value (e.g. Figure 5b).

Of the five fluvial sites dated, sites IND-14-4 and IND-14-6 are located in the main Ghaggar-Hakra

palaeochannel identified in satellite imagery (Figure 2). Two samples for OSL dating were taken from site
6
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IND-14-4 near Suratgarh, and at this site the silty-sands sampled (Table 1) for OSL dating dates fluvial
deposition to the mid-Holocene at this site, at 3.05 + 0.47 ka and 3.81 + 0.46 ka. The 0.75 m of sediments
above sample IND-14-4-1 were not sampled because in-field assessment suggested a high proportion of silt
and clay sized particles with little sand, which would not have yielded sufficient sand for coarse grain OSL
dating. These sediments were finely horizontally laminated and contained small carbonate nodules. Further
west, fluvial sediments from the channel adjacent to the Indus settlement of Kalibangan were sampled (site
IND-14-6). Again sediments are extremely fine-grained, predominantly clays and silts (Table 1). Even when
using an extended grain size range for OSL dating (90 - 250 um), very few sand grains were extracted for
coarse grain dating and these OSL ages should be considered as very small aliquot rather than single grain
ages. Nonetheless, 1.5 m below the surface of the current channel, fluvial deposition is recorded at 2.89 +
0.66 ka, correlating well with the upper age of 3.05 + 0.47 ka at IND-14-4. Deposits from the upper part of
site IND-14-6, from a section of the Ghaggar-Hakra adjacent to Kalibangan, demonstrate more recent fluvial
deposition, with an OSL age of 0.75 + 0.10 ka, although the extremely fine-grained nature of sediments
recorded (Table 1, Figure 5b) does not suggest deposition under intensive fluvial conditions, but rather low
energy, possibly ephemeral flooding or ponding.

Three sites, IND-14-7, IND-14-8 and IND-14-9, were sampled along the tributary to the south of the main
Ghaggar-Hakra palaeochannel and to the east of Kalibangan,. Early to mid-Holocene ages are recorded at
the base of the three sequences: 8.57 + 1.01 ka, 6.36 + 0.77 ka and 6.54 + 0.93 ka respectively (Table 2,
Figure 2). Deposition of fluvial sands continued until ~5 ka at IND-14-7 and ~3.9 ka at IND-14-8. This
represents the uppermost part of the sequence at IND-14-7, although there is approximately 1.5 m of fine
clayey-silts preserved at IND-14-8. These ages correspond with OSL dates presented by Saini and Mutjaba
(2010) who sampled two sites from the same channel approximately 100 km further to the east. They
reported OSL ages of 5.9 £ 0.3, 5.6 £ 0.2, 4.3 + 0.2 ka, 3.4 + 0.2 ka, 3.0 £ 0.2 ka and 2.9 = 0.2 ka for what
they describe as silty fluvial sands, which are capped with laminated clays post 3 ka. OSL ages calculated in
this study for this southern tributary are in line with the older ages published by Saini and Mutjaba (2010),
although the fluvial deposits dated in this study tend to be older. This may be due to differences in
sampling strategy or sediment preservation, but may also reflect system avulsion and spatially
discontinuous channel abandonment across the Ghaggar-Hakra plain. Investigating the stratigraphy of
fluvial deposition from deep cores across a transect of the Ghaggar-Hakra plain at Kalibangan, Sinha et al.
(2013) find evidence for an earlier braided fluvial system, which subsequently evolves into a channelised
system, many channels of which are now buried. Detailed sedimentological analysis of these cores shows
medium to coarse sand units deposited under high energy fluvial conditions overlain by finer fluvial sands
deposited under a lower energy regime (Singh et al., 2016).

OSL dating of the aeolian deposits suggests aeolian accumulation throughout the Holocene. Ages at sites
IND-14-1 and IND-14-2 indicate aeolian deposition from 2.89 + 0.36 ka, post-dating fluvial activity at ~3.0 ka
in the Ghaggar-Hakra palaeochannel at site IND-14-4 (OSL age 3.05 + 0.47 for sample IND-14-4-1), 1 km to
the east. Aeolian accumulation appears to have been preserved in two phases; one at ~1.7 ka (IND-14-1-1)
and the other between 2.65 and 2.9 ka (IND-14-1-2 and -14-1-3). Late Holocene aeolian accumulation is
also seen in the upper part of site IND-15-10, with an OSL age of 2.20 + 0.19 ka. At sites slightly to the west
(IND-15-8, -15-9 and -15-10), older aeolian sediments have been preserved, with OSL ages ranging between
4.54 +0.43 ka (sample IND-15-10-2) and 7.13 £ 0.61 ka (IND-15-9-2). At the eastern extent of the study area
at site IND-15-7, close to the town of Sirsa, the oldest OSL ages in this study are recorded. At this site, two
OSL ages of 8.93 + 1.14 ka (from 0.5 m below the current land surface) and 8.89 + 0.88 ka (3.3 m) suggest
accumulation within the same aeolian phase (within the level of uncertainty associated with the OSL
dating). These ages are more or less in line with those presented by Shitaoka et al. (2012) and Maemoku et
7
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al. (2012) who dated aeolian deposits bordering the Ghaggar-Hakra palaeochannel. In their studies, dune
deposits pre-date 4.9 £ 0.3 ka at all of their sites, and they report accumulation at around 5 ka and between
10 - 15 ka.

5. Discussion

5.1 Holocene landscape dynamics on the Ghaggar-Hakra interfluve

This suite of OSL ages presents a view into a dynamic Holocene environment at the northern margin of the
Thar Desert. The chronology of Holocene fluvial and aeolian sedimentation presented here complements
other records of regional geomorphological and environmental change in northwest India. Further
upstream in the Ghaggar-Hakra, Saini et al. (2009) and Saini and Mutjaba (2010) reported fine-grained
fluvial deposition between 6 and 4.3 ka, after which an upward fining of sediments is interpreted as
representing a decline in fluvial competence (Saini et al., 2009), culminating in channel abandonment at 3.4
ka (Saini and Mutjaba, 2010). Particle size analysis of the sediments dated in this study does not show a
significant change in particle size with age, although the majority of fluvial samples have a greater relative
proportion of silt and clay sized material. At sites such as IND-14-4 and IND-14-8 (Figure 1), upper sediment
units were not sampled as field assessment pointed towards insufficient sand for OSL dating, and this,
along with the measured fine-grained nature of the fluvial samples taken from across the Ghaggar-Hakra
interfluve is consistent with Saini and Mutjaba’s (2010) study. In the main Ghaggar-Hakra palaeochannel at
site 14-6, sample IND-14-6-2 indicates a phase of fluvial deposition at at ¢.2.9 ka. This sample consisted of
at least 93% silt and clay (Table 1, Figure 4b), and he extremely fine-grained nature of these sediments
suggests extremely low-energy fluvial conditions for the deposition of these sediments. At around the same
time, dune accumulation on the interfluve is recorded at site IND-14-1.

Few Holocene fluvial records from the Thar have been published, and regional studies have tended to focus
on either broader late Quaternary reconstructions (e.g. Srivastava et al., 2001; Juyal et al., 2006; Juyal et al.,
2009; Singhvi et al., 2010) or the historical period (e.g. Thomas et al., 2007; Kunz et al., 2010;
Jayangondaperumal et al., 2012). That said, early to mid-Holocene fluvial activity (12 - 5 ka) has been noted
in the now ephemeral Luni River system, south Rajasthan (Jain et al., 2004), and strengthened flow in the
perennial Mahi and Sabarmati systems in Gujurat is also reported for this period (Jain and Tandon, 2003;
Tandon et al.,1997). These broad trends for enhanced early Holocene fluvial activity, as well as increased
aeolian accumulation after ~5 ka in the semi-arid Thar are also seen in the area around Ghaggar-Hakra
palaeochannel in both India and Pakistan (e.g. Giosan et al., 2012).

Aeolian accumulation is recorded across the study area. Within the past 100 - 200 years, there a phase of
accumulation/reactivation has been sampled. Accumulation is also recorded at a number of sites between
~7.1 - 5.7 ka and ~ 2.9 - 1.7 ka. In addition, one age of 4.54 + 0.43 ka (IND-15-10) to the west and the
accumulation of ~2.5 m of sands at IND-15-7 at ~8.9 ka (8.93 = 1.14 and 8.89 + 0.88 ka) to the east have
been identified. Records of aeolian accumulation in the Thar tend to be spatially and temporally
discontinuous. Singhvi and Kar (2004) suggest a Holocene aeolian history which sees Monsoon winds drive
aeolian activity until ~7 ka, followed by a phase of subdued accumulation between 7 and 6 ka, due to more
intense precipitation. Aeolian aggradation between ~5 ka - 3.5 ka, based on records from the Jaisalmer
region (Kar et al., 1998) and in Rajasthan (Thomas et al., 1999) is inferred, although Singhvi and Kar (2004)
comment that there is little regional trace of this aridity phase. They suggest that there is a lull in activity
between ~3.7 - 2.0 ka, which is followed by a period of more intensive aeolian activity. The geochronology
presented in this study suggests aeolian accumulation continues for longer during the mid- Holocene until
8
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5.7 ka and is recorded again from ~2.9 ka. On the margin of the Thar and in association with the interfluve,
dune activity in this area is likely sensitive to hydrological conditions (e.g. Thomas and Burrough, 2016),
where the gradual drying of the fluvial system will increase sediment availability for deflation, alongside the
preservation potential of aeolian sediments on the interfluve.

It is clear from our OSL ages (Table 1; Figure 6) that fluvial deposition and aeolian accumulation occur
concurrently. Dune accumulation on and adjacent to the Ghaggar-Hakra interfluve occurs during phases of
low energy fluvial deposition within the palaeochannel, particularly around ~6.5 ka and ~2.8 ka. From the
grain size profiles in figure 4, whilst the relative abundance of sand and silt differs between the fluvial and
aeolian samples, peaks in fine sand of ~100 um and silt at ~20 um occur in both sets of samples. It is
therefore hypothesised that interfluve sediments are reworked into dune deposits during periods of
relatively increased aridity, when more limited moisture levels provide increased sediment for
entrainment. The interaction of aeolian and hydrological activity suggests a climatic oscillation between
periods of enhanced and subdued humidity.

5.2 The Ghaggar-Hakra within a regional context of environmental change

Dry and ephemeral lake systems are important sources of environmental change data in the region. Since
the studies of Singh (1971) and Singh et al. (1972, 1973, 1974) investigations of lake deposits at
Lunkaransar (Bryson and Swain, 1981; Enzel et al., 1999), Didwana (Bryson and Swain, 1981; Wasson et al.,
1984), Nal Sarovar (Prasad et al., 1997) and more recently Riwasa (Dixit et al., 2014b) and Kotla Dahar (Dixit
et al., 2014a) have added to the reconstruction of palaeoenvironment and climate in the northwest of
India. At palaeolake Kotla Dahar, Haryana, Dixit et al. (2014a) document a relatively deep fresh water lake
between 6.5 and 5.8 ka, with progressive lowering of the lake (and increased salinity) after 5.8 ka. The
disappearance of ostracods and a rapid increase in the 880 of gastropods at ~4.1 ka is interpreted as the
onset of an intense arid event with a duration of up to 200 years before a return to more ‘normal’
conditions. Dixit et al. (2014a) draw parallels with a similar drying event recorded in the Mawmulah Cave
speleothem in northeast India (Berkelhammer et al., 2012). In contrast, at Lake Riwasa, the 50 signal from
lake ostracods suggests a drying trend between 6.8 - 6.5 ka. At Lake Didwana, Singh et al. (1990) reported
falling lake levels between ~6 - 4.5 ka, with Enzel et al. (1999) proposing a drying phase from approximately
5 ka, with a switch from a perennial water body to a playa/episodic lake at ~4.7 ka. Whilst these
reconstructions may reflect local conditions, with climate being only one driving factor, higher lake levels
and palaeo-precipitation is inferred during the early and mid-Holocene at Lakes Didwana, Lunkaransar and
Kotla Dahar. These periods of more intensive fluvial deposition correspond well with the OSL ages in the
Ghaggar-Hakra palaeochannel presented in this study. Fluvial deposition in the Ghaggar-Hakra channel
extends beyond the arid events seen in the high resolution records of Berkelhammer et al. (2012) and Dixit
et al. (2014a, 2014b), and this presents a number of hypotheses. It is possible that this deposition indicates
continued fluvial activity during the arid events observed in the Mawmulah and Kotla Dahar records, or
perhaps a return to more normal conditions after the intense aridity event (e.g. Figure 6b). The 1 sigma
uncertainties associated with the OSL ages do not provide the resolution to allow this to be investigated
fully at this stage. That dune building occurs at the same time as fluvial deposition during the Holocene
reflects a not uncommon landscape state in drylands (e.g. Thomas, 2013), where changing hydrological
conditions can provide increased sediment availability and the potential for aeolian accumulation. It could
be suggested that the early to mid-Holocene ages for aeolian accumulation with the Mawmulah
speleothem coincided with higher 880 values (lower precipitation) (Figure 6). These phases of reduced
precipitation may have provided enhanced landscape stability on the interfluve, thus allowing the deflation,

deposition and preservation of floodplain sediments as aeolian geoproxies. However, the uncertainties
9
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associated with the OSL ages exceed the duration of the oscillations observed in the Mawmulah record, and
a firm conclusion cannot be made at present. However, in terms of the geomorphic behaviour of dryland
environments, sediment availability and the coincidence of aeolian accumulation and fluvial activity
provides a testable hypothesis to explain aeolian accumulation on the Ghaggar-Hakra interfluve during a
period of relatively more intense Monsoon activity.

5.3 Changing landscapes and the Indus Civilisation

Hydrological changes in the Ghaggar-Hakra system and mid-Holocene climatic variability more generally
have long been suggested as important for the decline of Indus urbanism by 3.9 ka (e.g. Singh, 1971; Singh
et al., 1974; Mughal, 1997; Enzel et al., 1999; Prasad and Enzel, 2006; Staubwasser and Weiss, 2006;
MacDonald, 2011; Giosan et al., 2012; Petrie et al., 2017). A gradual aridification of the Thar after 5.0 ka
appears to have provided a window of opportunity where the fertile floodplains adjacent to the Ghaggar-
Hakra palaeochannel were used for inundation agriculture (Singh et al., 2010; Singh et al., 2012; Petrie et
al., 2017). Giosan et al. (2012, p. E1690) suggested that monsoon-driven channel flow in the Ghaggar-Hakra
was perennial prior to 4.5ka, becoming ephemeral thereafter. The possibility that monsoon-driven
precipitation was sufficient for perennial flow has, however, been questioned (Petrie, 2017). During the
urban Indus phase, it has been speculated that Indus populations were utilising a system where flooding
was regular and manageable, which Petrie et al. (2017) describe this as a system which would have been
‘predictably unpredictable’. Regional archaeological records indicate that Indus populations occupied much
of the Ghaggar-Hakra floodplain until ~3.9 ka (e.g. Joshi et al. 1984; Mughal 1997; Kumar 2009; Singh et al.,
2010, 2011), after which settlement appears to have moved east towards areas which may have
experienced more reliable rainfall (Madella and Fuller, 2006; Petrie et al., 2017).

Whilst regional climatic deterioration driven by the weakening of the Monsoon system would have seen
increasing aridification of this area, our analysis demonstrates that at least part of the Ghaggar-Hakra was
still flooding after the demise of the Indus urban centres. The dating results presented in this study focused
on fluvial deposits preserved close to the modern surface, and it has been shown that the palaeochannel
visible today is only one of a complex, multi-channel system (e.g. Sinha et al., 2013; Mehdi et al., 2016;
Singh et al., 2016; Orengo and Petrie, 2017). Fluvial reorganisation and avulsion would have been likely as
monsoon-derived precipitation became more variable throughout the Holocene. An assessment of the
response of this fluvial system on a broader scale is required to understand how the Indus landscape would
have changed during the urban phase. Indus populations occupied a diverse range of environmental and
ecological zones (Possehl, 2002; Singh and Petrie, 2009; Weber et al., 2010; Wright, 2010; Petrie, 2013;
Dixit et al., 2014a; Petrie et al., 2017, Petrie and Bates, 2017) and the decline of the Indus Civilisation did
not occur instantaneously, temporally or spatially (Wright, 2010). As such, the proposition of climate
change as the sole reason for urban collapse and/or transformation is clearly an oversimplification of a
complex process that occurred over a prolonged period (Wright, 2010; Petrie 2017).

6. Conclusion

This study presents OSL ages for Holocene fluvial and aeolian activity in the Ghaggar-Hakra interfluve on

the northern margin of the Thar Desert. This chronology shows fluvial deposition in the currently visible

palaeochannel during the early Holocene from 8.5 ka until ~3 ka. More intensive fluvial processes are

inferred prior to 5 ka, when thicker fluvial units are deposited. After 3 ka, sediments in the Ghaggar-Hakra

channel at Kalibangan fine significantly, and slightly further to the west, sediment dated to 3 ka are capped

by a silty unit of 0.75 m. This may suggest a weakening of fluvial activity post 3 ka and possibly ephemeral
10
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overbank flooding in this area at least. These findings complement other studies in the Ghaggar-Hakra
system (e.g. Saini et al., 2009, Saini and Mutjaba, 2010) and are consistent with regional palaeohydrological
records (e.g. Dixit et al., 2014a, 2014b). Like the fluvial sedimentation, aeolian accumulation is recorded
across the Holocene, with a period of enhanced accumulation at around 9 ka identified, as well as two
ranges of ages at around ~7.1 - 5.7 ka and later between ~2 - 1.7 ka. These ages are consistent with
regional records of aeolian accumulation in Ghaggar-Hakra region (e.g. Shitaoka et al., 2012) and more
broadly in the Thar Desert (e.g. Kar et al., 1998; Thomas et al., 1999; Singhvi and Kar, 2004). In this study we
demonstrate phases of fluvial activity and aeolian accumulation coincide, which should be considered as
normal behaviour in a dryland context (Thomas, 2013).

This evidence adds to the emerging picture of the Holocene Ghaggar-Hakra as a low energy fluvial system
broadly driven by regional changes in the monsoon, however, this response appears to be neither simple
nor linear. Thicker units of fluvial sediment are deposited in the early Holocene, although in the sediments
sampled, there is no statistically significant change in particle size which can be used to infer a weakening
of fluvial transport energies with time. Thinner fluvial units accumulated during the mid-Holocene and the
presence of fine sediments, predominantly silts, in the channel close to the Indus Civilisation urban site
Kalibangan after 3 ka may represent a phase of weakened fluvial activity. Coeval fluvial and aeolian
accumulation provides a view of oscillating phases of relative humidity and aridity throughout the
Holocene, resulting in the accumulation of dune sediments on the Ghaggar-Hakra interfluve. Further
research considering the geomorphic and environmental response to climatic fluctuation across the full
extent of the Ghaggar-Hakra interfluve, which will further improve our understanding of changing
environmental conditions under fluctuating monsoon regimes, as well as inform the response of past
civilisations to climatic and environmental variability.
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Figure Captions

Figure 1: Study and sample location, position of major regional fluvial systems and Indus Civilisation sites
(white, closed symbols). Major Indus urban centres are highlighted, the sites sampled in this study are
indicated by the triangle symbols. The area shown in figure 2 is also highlighted.

Figure 2: Satellite image of the study area and sampled sites. OSL ages (ka) are shown, as well as a
schematic view of the site stratigraphic logs. Sample depths are in metres. Local settlements mentioned in
the main text are shown.

Figure 3: Examples of a) an aeolian site (IND-14-1) and b) a fluvial site (IND-14-9). At site IND-14-1, fine silty
sands were found which fine slightly towards the base of the unit. Some small, sporadic calcrete nodules
were observed, but avoided for OSL sampling. At site IND-14-9, silty sands have accumulated in a
homogenous unit with some very fine laminations observable in the upper part of the sequence.

Figure 4: Sediment grain size distribution data by volume for selected aeolian samples (a) and fluvial
samples (b). The median grain size for each sample is shown by the opaque symbol.

Figure 5: a) Typical OSL signal and dose response curve (inset) from a single grain of quartz from sample
IND-14-1-1 with an equivalent dose of approximately 12 Gy. b) Radial plot of D, distribution of IND-14-1-1.
The sample D, of 5.37 Gy is shown by the solid line and +2c by the grey shaded area.

Figure 6: a) Summer insolation (W/m2) at 30°N (from Berger and Loutre, 1999). b) 21180 record (%0 VPDB
(Vienna Peedee belemnite)) from Mawmulah Cave, northeast India (from Berkelhammer et al., 2012). c)
Foraminiferal @180 record (%0 VPDB) from the Indus Delta (Staubwasser et al., 2003). d) Gastropod @180
record (%o VPDB) from Kotla Dahar lake (black; Dixit et al., 2014a) and Riwasa lake (grey; Dixit et al., 2014b).
e) The OSL ages and uncertainties calculated in this study. Black symbols are from aeolian sediments and
grey symbols from fluvial.
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