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ABSTRACT: 

 

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer. 

ccRCCs exhibit considerable genetic intratumour heterogeneity, and current therapies lack long-

term efficacy due to drug resistance. Novel therapeutic targets are thus required to combat this 

disease. 

The most effective targets are likely to be factors essential for maintaining ccRCC cell 

phenotypes and survival across all tumour subclones. Transcription factors (TFs) are appealing 

candidates as they are key determinants of cellular phenotypes, including in cancer. There is 

growing evidence to suggest that lineage-specific TFs often play important roles in 

tumourigenesis and tumour progression. ccRCC phenotypes may also be fundamentally defined 

by tissue-specific core transcriptional networks. Thus, the aim of my PhD thesis was to identify 

novel TF dependencies in ccRCC, and characterise the mechanisms by which these essential TFs 

support these tumours. 

I performed a CRISPR/Cas9-based genetic depletion screen in vitro with an sgRNA 

library targeting 50 TFs that are highly expressed in RCC. This highlighted HNF1B as a 

potential tumour dependency in ccRCC. I demonstrated that both HNF1B CRISPR knockout and 

CRISPRi knockdown conferred a strong selective disadvantage in vitro that was rescued by 

HNF1B restoration, suggesting that it was a specific effect of HNF1B loss. I also showed that 

HNF1B knockout impaired tumour initiation and growth in vivo. 

I showed that HNF1B knockout led to a downregulation of MYC expression, along with 

a cell cycle defect in G1/S progression and an increase in cell death. HNF1B ChIP-seq in ccRCC 

cell lines revealed HNF1B binding peaks near the MYC gene, suggesting that HNF1B might 

directly regulate MYC in ccRCC. I subsequently found that MYC CRISPRi knockdown 

phenocopied the striking selective disadvantage associated with HNF1B depletion. Taken 

together, my data suggests that HNF1B-mediated regulation of MYC might be a key mechanism 

underlying the importance of HNF1B in ccRCC. 
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ABSTRACT:	
 
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer. 

ccRCCs exhibit considerable genetic intratumour heterogeneity, and current therapies lack long-

term efficacy due to drug resistance. Novel therapeutic targets are thus required to combat this 

disease. 

The most effective targets are likely to be factors essential for maintaining ccRCC cell 

phenotypes and survival across all tumour subclones. Transcription factors (TFs) are appealing 

candidates as they are key determinants of cellular phenotypes, including in cancer. There is 

growing evidence to suggest that lineage-specific TFs often play important roles in 

tumourigenesis and tumour progression. ccRCC phenotypes may also be fundamentally defined 

by tissue-specific core transcriptional networks. Thus, the aim of my PhD thesis was to identify 

novel TF dependencies in ccRCC, and characterise the mechanisms by which these essential TFs 

support these tumours. 

I performed a CRISPR/Cas9-based genetic depletion screen in vitro with an sgRNA 

library targeting 50 TFs that are highly expressed in RCC. This highlighted HNF1B as a 

potential tumour dependency in ccRCC. I demonstrated that both HNF1B CRISPR knockout and 

CRISPRi knockdown conferred a strong selective disadvantage in vitro that was rescued by 

HNF1B restoration, suggesting that it was a specific effect of HNF1B loss. I also showed that 

HNF1B knockout impaired tumour initiation and growth in vivo. 

I showed that HNF1B knockout led to a downregulation of MYC expression, along with 

a cell cycle defect in G1/S progression and an increase in cell death. HNF1B ChIP-seq in ccRCC 

cell lines revealed HNF1B binding peaks near the MYC gene, suggesting that HNF1B might 

directly regulate MYC in ccRCC. I subsequently found that MYC CRISPRi knockdown 

phenocopied the striking selective disadvantage associated with HNF1B depletion. Taken 

together, my data suggests that HNF1B-mediated regulation of MYC might be a key mechanism 

underlying the importance of HNF1B in ccRCC. 
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ABBREVIATIONS:	
 

Abbreviation Description 
(e)GFP (enhanced) green fluorescent protein 
APC Allophycocyanin 
ARNT Aryl Hydrocarbon Receptor Nuclear Translocator (gene name for HIF1β) 
B-actin Beta-actin, used as a protein loading control for Western blots 
BCL2 B-Cell CLL/Lymphoma 2; BCL2 apoptosis regulator 
BFP blue fluorescent protein 
bp basepair(s) 
BSA bovine serum albumin 
Cas CRISPR-associated proteins 
Cas9 CRISPRassociated protein 9 
ccRCC clear cell renal cell carcinoma 
CDH16 Cadherin 16 
Cdk cyclin-dependent kinase 
cDNA complementary DNA 
ChIP chromatin immunoprecipitation 
ChRCC chromophobe renal cell carcinoma 
CRISPR Clustered Regularly Interspaced Short Palindromic Repeats 
CRISPRi CRISPR interference 
Ctrl Control 
dCas9 nuclease-deactivated Cas9 (i.e. a catalytically dead Cas9 protein) 
DNA deoxyribonucleic acid 
DOX / Dox / dox doxycycline 
DSB double-stranded break 
EMT epithelial-to-mesenchymal transition 

EPAS1 Endothelial PAS Domain Protein 1 or Endothelial PAS Domain-Containing 
Protein 1 (gene name for HIF2A) 

EtOH ethanol 
EV or (-) empty vector 
FACs (sorting) fluorescence-activated cell sorting 
FACs analysis i.e. flow cytometry analysis 
FCS foetal calf serum 
FDR false discovery rate 
gDNA genomic DNA 
GSEA gene set enrichment analysis 
HIF1α Hypoxia-Inducible Factor 1-Alpha 
HIF1β Hypoxia-Inducible Factor 1-Beta 
HIF2α (or HIF2A) Hypoxia-Inducible Factor 2-Alpha 
HNF1A Hepatocyte Nuclear Factor 1-Alpha, a.k.a HNF1 homeobox A 
Hnf1b mouse homologue of HNF1B 
HNF1B or HNF1B Hepatocyte Nuclear Factor 1-Beta, a.k.a HNF1 homeobox B 
HPA Human Protein Atlas 
HR homologous recombination 
IHC immunohistochemistry 



 8 

indels insertions/deletions 
IP immunoprecipitation 
kDa kilodalton(s) 
KRAB / KRAB domain Krüppel-associated box domain 
lncRNA long non-coding RNA 
MODY5 maturity-onset diabetes of the young, type 5 
MOI multiplicity of infection 
mRNA messenger RNA 
MYC V-Myc Avian Myelocytomatosis Viral Oncogene Homolog; proto-

oncogene, bHLH transcription factor 
NGS Next Generation Sequencing 
NHEJ non-homologous end joining 
NSG Nod-Scid-γ 
NTC non-targeting control 
NTC18 non-targeting control 18, used as the control sgRNA for experiments 
P/S pen-strep 
padj adjusted p-value 
PBS phosphate-buffered saline 
PCR polymerase chain reaction 
PI Propidium iodide 
PRCC papillary renal cell carcinoma 
PS phosphatidylserine 
PVT1 plasmacytoma variant translocation 1 
qPCR quantitative (real-time) PCR 
qRT-PCR quantitative reverse-transcriptase polymerase chain reaction 
RCAD (syndrome) renal cysts and diabetes (syndrome) 
RCC renal cell carcinoma 
RNA ribonucleic acid 
RNAi RNA interference 
RT-PCR reverse transcriptase PCR 
sg2 sgRNA 2, targeting HNF1B 
sg8 sgRNA 8, targeting HNF1B 
sgRNA single-guide RNA 
shRNA short hairpin RNA 
SPRI beads Solid Phase Reversible Immobilization beads 
TCGA The Cancer Genome Atlas 
TF transcription factor 
TUNEL assay terminal deoxynucleotidyl transferase dUTP nick end labeling assay 
U/T untransduced, or untreated (as indicated in the text) 
Vhl mouse homologue of VHL 

VHL or VHL von-Hippel Lindau (a tumour suppressor gene); von Hippel-Lindau tumor 
suppressor 

vhnf1 zebrafish homologue of HNF1B  
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INTRODUCTION:	
 

Renal	cell	carcinoma	
 
Renal cell carcinoma (RCC) is the most common malignant tumour type of the kidney, 

accounting for 2% of all cancers and 80-85% of renal cancers. RCC originates in the renal 

coritcal epithelium, and is a heterogeneous disease classifiable into several subtypes. My project 

focuses on the most common subtype, clear cell renal cell carcinoma (ccRCC), which comprises 

75-85% of RCC tumours and arises from cells in the proximal tubule of the nephron.1,2 

ccRCC can be highly aggressive; roughly one-third of patients suffer from metastatic 

ccRCC. Metastases can form at a wide range of secondary sites in the body, most frequently in 

the lungs, bone and brain, and the formation of secondary lesions can occur years after initial 

diagnosis and treatment of the disease. The highly metastatic nature of ccRCC is compounded by 

the difficulty of early diagnosis, as early stage tumours generally exhibit a lack of symptoms and 

are non-palpable until the disease progresses. While surgery can be curative in the case of 

localised ccRCC, metastatic disease at the time of diagnosis or disease recurrence after surgery 

ultimately result in fatality.2–7 

 Furthermore, ccRCC is resistant to both radiation therapy and standard cytotoxic 

chemotherapy1,2,5,8–11. Various other treatment strategies have been attempted1,2,10–13, including 

cytokine-based immunotherapies using interleukin-2 (IL-2) and interferon-α (IFNα); however, 

these have shown limited efficacy in patients with metastatic disease9,14–20. Nivolumab, a 

recently developed fully human immunoglobulin G4 antibody targeting programmed death-1 

(PD-1), has shown more promising results in clinical trials21–23.  

Kinase inhibitors, anti-angiogenic drugs and mTOR inhibitors have also proven to be 

effective1,2,32–41,24,42–46,25–31, and the use of these agents has become the current standard of care 

to treat advanced ccRCC. However, these targeted systemic therapies also do not elicit complete 

responses and have still failed to provide long-term treatment strategies capable of reliably 

circumventing the problem of tumour drug resistance47. As a result, there is frequent tumour 

relapse, eventual ccRCC disease progression and patient fatality. Thus, there is a need for novel 

therapeutic strategies and targets in order to combat ccRCC, particularly in its advanced 

metastatic stages. 
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(cc)RCC	genetics	
 

Most cases of RCC are nonhereditary, although a small proportion of tumours develop as 

a result of familial RCC syndromes. In the case of ccRCC, tumours can either occur sporadically 

or in a hereditary manner in association with von-Hippel Lindau (VHL) disease, a cancer 

syndrome that follows an autosomal dominant pattern of inheritance. VHL disease predisposes 

the individual to the development of multiple tumours or cysts in various tissues, including 

hemangioblastomas (blood vessel tumours of the retina and central nervous system), 

pheochromocytomas (tumours of the medulla in the adrenal gland), tumours in the islet cells of 

the pancreas, renal cysts and clear cell renal carcinomas in the kidneys. RCC develops in almost 

40% of VHL disease patients, and is a major cause of death in these individuals.1,2,24,25 

VHL disease results from heterozygous loss of the VHL tumour suppressor gene (TSG), 

located on chromosome 3p251,2,24,48. Individuals possess only one wild-type VHL allele, and 

carry inherited germ-line inactivating mutations in the other allele. Subsequent tumour 

development (including RCC) then arises from loss or somatic inactivation of the remaining 

wild-type allele, resulting in loss of function of the VHL protein. VHL is thus a classic tumour 

suppressor gene, and conforms to Knudson’s two-hit hypothesis2,24,25. 

Similarly, consistent with the Knudson two-hit model, sporadic ccRCC tumours also 

typically undergo biallelic inactivation of VHL, either via somatic mutation or epigenetic 

silencing (DNA methylation) of both alleles, or via the loss of one allele through loss of 

heterozygosity at chromosome 3p with concomitant loss of the other allele by inactivating 

mutation. Germline mutations are rare in sporadic ccRCC; both “hits” to inactivate each VHL 

allele occur somatically.1,2,24,25,48–50 

Indeed, inactivation of VHL is the most frequent genetic lesion associated with the 

development of sporadic ccRCC1,2,24,25,48. TCGA projects and various other sequencing efforts49–

54 have identified the critical underlying mutations in ccRCC tumours. Multi-region sequencing 

of spatially separated ccRCC samples from both primary tumours and associated metastases 

revealed that only about a third of mutations detected were ubiquitously present across all 

tumour regions50,51. Most prominent among these were VHL mutations and aberrations in 

chromosome 3p.  

Meanwhile, the majority of somatic driver mutations in ccRCC were found to be 

heterogeneously distributed between different tumour regions or unique to single regions. These 
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studies by Gerlinger et al. have also revealed a branched (as opposed to linear) evolutionary 

pattern of ccRCC tumour growth, and highlighted VHL mutations as critical driver, or “truncal”, 

events in ccRCC evolution.50,51 

 

VHL	function	and	the	VHL-HIF	pathway	
 

VHL binds via its C-terminal α-domain to elongin B and elongin C, and subsequently 

forms a complex with cullin-2 (Cul2) and RING-box protein 1 (Rbx1, also known as ROC1 or 

Hrt1). This complex acts as an E3 ubiquitin-ligase with VHL mediating substrate recognition via 

its N-terminal β-domain, and catalyses the polyubiquitylation of specific proteins, targeting them 

for degradation by the proteasome.1,2,24,25,48 

 It is by this mechanism that VHL targets two hypoxia-inducible factor (HIF) subunits 

involved in ccRCC, HIF1α and HIF2α, for proteasomal degradation. HIF is a heterodimeric 

transcription factor, comprising an α-subunit (HIF1α or HIF2α) and a β-subunit (HIF1β / 

ARNT). VHL binds and targets HIFα subunits for degradation only under normoxic conditions, 

via an oxygen-dependent mechanism during which the HIFα subunits must first undergo prolyl 

hydroxylation to facilitate recognition by the VHL β-domain. HIFα proteins are thus highly 

unstable in the presence of oxygen, as they are rapidly polyubiquitylated and degraded. Under 

hypoxic conditions however, HIFα subunits are not prolyl hydroxylated; HIFα is therefore 

stabilised and can dimerise with HIF1β to form an active HIF heterodimer, which then activates 

the transcription of various hypoxia-inducible genes.2,24,25,48 

ccRCC-associated VHL mutations tend to affect the function of the VHL α-domain 

and/or β-domain, thus impairing formation of the E3 ubiquitin ligase complex or compromising 

HIFα binding24,55–62. Consequently, VHL inactivation in ccRCC results in HIF1α / HIF2α 

stabilisation and accumulation. This results in the overexpression of downstream HIF 

transcriptional target genes, many of which may have roles in promoting tumour survival, 

including growth factors such as TGF-α (transforming growth-factor-α) and its receptor EGFR 

(epidermal growth factor receptor), and angiogenic factors such as VEGF (vascular endothelial 

growth factor) and PDGF-β (platelet-derived growth-factor B chain). Indeed, ccRCC tumours 

are typically highly vascular, most likely due to the overproduction of angiogenic factors like 
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VEGF. Furthermore, inhibition of VEGF signalling can suppress RCC tumour growth, and 

disruption of TGFα/EGFR signalling inhibits RCC cell proliferation both in vitro and in vivo. 

This therefore implicates deregulated HIF transcriptional activity and VHL-HIF signalling in 

ccRCC tumour initiation and maintenance.1,2,24,25,48,55,63,64 

 

VHL	and	HIF	in	ccRCC	
 
There is considerable evidence in the literature highlighting the VHL-HIF pathway as a 

critical driver pathway for tumour formation in RCC. Constitutive restoration of wild-type VHL 

in VHL-/- ccRCC cells is sufficient to suppress tumour growth in vivo65, in a scenario 

representative of VHL reintroduction at the point of tumour initiation. VHL restoration has also 

been shown to reduce cell proliferation and promote cell cycle exit and differentiation in vitro, in 

certain contexts66–70. This indicates that ccRCC tumours remain dependent on the absence of 

functional VHL, at least in the early stages during tumour initiation. 

Meanwhile, studies using HIF2α mutants defective for VHL binding have demonstrated 

that downregulation of HIF2α is necessary and sufficient to facilitate pVHL-mediated tumour 

suppression. HIF2α stabilisation and consequent target gene activation was sufficient to override 

VHL tumour suppression and promote tumour growth in VHL-restored ccRCC cells in vivo. 

These effects were abrogated if the DNA-binding capacity of HIF2α was impaired, and were 

thus linked to the ability of HIF2α to activate transcription. Moreover, shRNA knockdown of 

HIF2α in VHL-/- ccRCC cells has been shown to be sufficient to suppress tumour growth in 

vivo. Collectively, this evidence suggests that HIF2α plays a critical role in ccRCC 

tumourigenesis. This is further underscored by immunostaining analysis of kidneys from VHL 

disease patients.55,63,64,71 

Similar studies have been conducted in the same ccRCC cell lines (which express HIF2α 

but not HIF1α) using a HIF1α mutant defective for VHL recognition. However, despite this 

HIF1α mutant being transcriptionally active, it was not sufficient to overcome VHL-mediated 

tumour suppression in VHL-restored ccRCC cells and thus did not produce the same 

tumourigenic phenotype in vivo. Instead, presence of the non-degradable HIF1α mutant tended 

to reduce the tumourigenic potential of the cells even further than the presence of wild-type 
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VHL. This suggests that HIF1α is not as critical for ccRCC tumourigenesis as HIF2α, and does 

not exhibit oncogenic behaviour (or is simply less oncogenic) in this context.72 

However, despite the apparent importance of the VHL-HIF pathway in ccRCC tumour 

initiation and maintenance, VHL and HIF do not seem to be the only factors contributing to 

ccRCC survival. Although VHL restoration suppresses ccRCC cell proliferation, it does not 

abrogate it entirely, suggesting that there may be other pathways supporting tumour survival.  

Additionally, although VHL is expressed in a wide variety of foetal and adult tissues, 

VHL inactivation only promotes tumourigenesis in a limited range of tissue types, namely the 

kidney and other organs affected in VHL disease. Other types of sporadic tumours, such as those 

of the breast, colon, lung and prostate, rarely exhibit somatic mutations in VHL. Furthermore, 

different VHL mutations give rise to different tumour types in VHL disease, and different levels 

of ccRCC risk. The reasons for these trends are unclear, but these observations continue to 

suggest that perturbations in other genes or pathways apart from VHL-HIF may play a role in 

ccRCC development.24,25,55,64 

Indeed, there have been no reports to suggest that VHL inactivation alone initiates ccRCC 

development. Loss of VHL occurs as an early event in RCC development and biallelic VHL 

inactivation has been detected in ccRCC tumours, but it has also been linked to the development 

of premalignant renal cysts that still overexpress HIF and HIF targets like VEGF. This suggests 

that the VHL tumour suppressor gene may simply act as a “gatekeeper”, and that additional 

mutations in other genes are required for progression to outright ccRCC disease.24,25,55,63,64 

In keeping with this idea, although homozygous Vhl knockout (Vhl-/-) has been found to 

be embryonic lethal in mice, there have been mixed results in the literature in studies of 

heterozygous Vhl knockout mice (Vhl+/-): Gnarra et al. showed that the mice developed 

normally with an absence of tumours73, while a subsequent study by Haase et al. using an 

independent Vhl+/- mouse strain only showed the formation of multiple hepatic lesions that 

exhibited deregulated expression of HIF transcriptional targets74. Haase et al. also reported the 

development of similar lesions in the liver upon conditional Vhl inactivation. 

However, VHL loss seems to be the only obligatory genetic event in ccRCC, and no other 

ubiquitous “truncal” mutations have been identified so far. This might suggest that progression to 

ccRCC after VHL inactivation requires, for example, epigenetic alterations or changes in the 

output of transcriptional programmes, rather than additional genetic mutations. 
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 In the case of HIF2α, recent studies75,76 suggest that ccRCC cell lines and tumours 

exhibit differential HIF2α dependence. Only a subset of ccRCC cell lines is sensitive to genetic 

disruption or drug-mediated inhibition of HIF2α in vitro and in vivo. HIF2α dependence 

correlates loosely with the levels of endogenous HIF2α and the dependency of HIF target genes 

on HIF2α in a given cell line. ccRCC tumours that are sensitive to small molecule inhibition of 

HIF2α have a distinctive gene expression signature and higher basal HIF2α levels, and 

prolonged drug treatment resulted in the development of resistance. In some cases, resistance to 

HIF2α inhibition appeared to be related to the acquisition of mutations in p53 or the p53 

pathway. This further underscores the concept that pathways other than the VHL-HIF pathway 

may play an important role in ccRCC. 

 

Using	CRISPR/Cas9	to	screen	for	additional	supporting	factors	in	ccRCC	
 

With the limited efficacy of current therapies in the clinic, there is a need to identify 

novel drug targets in ccRCC. To that end, I have adopted a negative genetic screening approach 

using the CRISPR/Cas9-sgRNA system77–79.  

The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas 

(CRISPR-associated proteins) system essentially constitutes the adaptive immune system in 

bacteria and archaea, protecting against invasion by viruses and foreign plasmids80. There are 

three types of CRISPR-Cas system; Type II is the simplest, and involves the cleavage activity of 

the Cas9 protein. The components of this prokaryotic defence mechanism have subsequently 

been adapted for applications in genetic engineering.81–83 

Two components are required: the Cas9 protein and a 20bp targeting sequence 

incorporated within a chimeric guide RNA structure (called a single-guide RNA, sgRNA). These 

are typically expressed under the control of a U6 promoter in the same or separate expression 

plasmids, which can be stably or transiently introduced into mammalian cells. The sgRNA 

directs Cas9 to a specific site in the genome that matches the target sequence, whereupon it 

cleaves the DNA, creating a double-stranded break (DSB). This can be repaired by non-

homologous end joining, NHEJ (often introducing indels that can result in frameshift and gene 

knockout), or by homologous recombination, HR (which allows the integration of additional 
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sequences or basepair changes at that site if a homologous repair template / donor sequence is 

also introduced).81–85 

 This CRISPR/Cas9 system can be adapted for use in loss-of-function genetic screens with 

both positive and negative selection approaches. Instead of using individual sgRNAs against 

specific genes of interest, a genome-wide or targeted sgRNA library is used, introduced into cells 

as a lentiviral pool expressing thousands of sgRNAs (with multiple sgRNAs per target gene, plus 

a number of non-targeting control sgRNAs)77–79.  The Cas9 protein can be expressed in the same 

constructs as the sgRNAs in the library77; alternatively, cell lines can be generated that stably 

express Cas9 in a conditional or constitutive manner78,79, and these target cells can then be 

lentivirally transduced with the sgRNA pool.  The lentiviral infection step is done at a low 

multiplicity of infection to ensure only single-copy integration of the sgRNA constructs into 

target cells (in contrast to the sgRNA overexpression involved in smaller scale gene editing). 

Once stably integrated into the genome, individual sgRNA sequences can be detected, and the 

number of cells carrying each sgRNA counted, by high-throughput sequencing.77–79 

Therefore, “hit” genes can be identified at the end of a genetic screen by comparing the 

difference in sgRNA abundance between treated and untreated samples, or between final 

samples and initial day 0 samples. This reveals sgRNAs that are depleted or enriched (for 

negative or positive selection screens respectively) relative to non-targeting control sgRNAs in 

the library. This information can then be used to calculate a score for each gene in the library, 

highlighting important “hit” genes for which most of the sgRNAs have shown a change in 

abundance. In a negative selection screen, an sgRNA will be depleted if cleavage and subsequent 

knockout of its target gene confers a selective disadvantage in the majority of cells expressing 

that construct. Meanwhile in a positive selection screen, an sgRNA will be enriched if cleavage 

and knockout of its target gene confers a selective advantage.77–79 

 

Transcription	factors	as	therapeutic	targets	in	ccRCC	
 
 The genetic intratumour heterogeneity in ccRCC50,51 may contribute to the development 

of drug resistance, a recurring problem in ccRCC treatment. Targeting driver mutations that are 

ubiquitously present across ccRCC primary tumours and metastases may thus provide a 

therapeutic advantage50,51. 
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Targeting VHL inactivation is an attractive therapeutic option – a method of restoring 

VHL therapeutically, for instance via some form of “VHL-mimetic”, could be beneficial25. 

However it is difficult to directly target the inactivation of tumour suppressor genes50,86.  

Alternatively, recent work has demonstrated the efficacy of a small molecule inhibitor of the 

HIF2α transcription factor75,76; unfortunately, ccRCC cell lines exhibit variable sensitivity to this 

HIF2α antagonist, and can develop drug resistance after prolonged treatment75,76. 

In an attempt to identify therapeutic targets, various genetic screens have been carried out 

in VHL-deficient ccRCC cells, with a focus on identifying potential kinase, phosphatase, and 

metabolic targets87–90. However, I hypothesised that the phenotypes of renal cancer cells are 

fundamentally defined by core transcriptional networks, and our aim is to identify these key 

transcriptional programmes in ccRCC. 

Cellular identity, behaviour, and responses to stimuli are all outcomes of carefully 

regulated gene expression programmes. This is exemplified by the key factors that define stem 

cell properties91, and also in the context of cancer where studies have shown that several key 

developmental transcription factors determine glioblastoma cancer stem cell phenotypes92–94. 

Transcription factors act as effectors for the outputs of multiple signalling pathways, 

including those implicated in tumourigenesis and tumour progression86,95; thus, altered 

transcription factor function has the potential to drive cancer development. In the context of 

ccRCC transcriptional networks, deregulated HIF-driven transcription plays a critical role; but it 

is unknown as to whether this pathway single-handedly drives ccRCC development or whether it 

is just one part of a more complex network that defines ccRCC phenotypes. Indeed, the 

observation in the literature that ccRCC cell lines can become resistant to the recently developed 

HIF2α antagonist75,76 could suggest that pathways other than VHL-HIF are involved. 

 Although transcription factors have generally been considered undruggable, there is 

evidence to support the potential efficacy of targeting transcription factors in cancer86,95. Notable 

examples include targeting nuclear steroid receptors in breast and prostate cancer, suppressing 

the expression of the transcription factor MITF in drug-resistant BRAF-mutant melanoma96, and, 

in the context of ccRCC, the recently developed HIF2α antagonist that has shown efficacy in 

vitro and in vivo, despite previous conviction that this RCC-associated transcription factor was 

undruggable75,76. 
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I have thus conducted an in vitro CRISPR/Cas9-based genetic depletion screen in VHL-/- 

ccRCC cell lines using a targeted single-guide RNA (sgRNA) library targeting 50 RCC-

associated transcription factors. With this approach I hope to identify transcription factors that 

are essential in ccRCC, and to further characterise their roles in these tumours. Ultimately, this 

work will have implications for the potential value of these transcription factors as therapeutic 

targets. 

 

HNF1B	and	HNF1B-associated	disease	
 

Hepatocyte nuclear factor 1-beta (HNF1B) is a homeodomain-containing transcription 

factor encoded by the HNF1B gene on chromosome 17q1297–102. It is a member of the hepatocyte 

nuclear factor-1 (HNF1) family, along with hepatocyte nuclear factor 1-alpha (HNF1A)101,103,104. 

HNF1B can act as a transcriptional activator or repressor, and binds to DNA as either a 

homodimer or a heterodimer with HNF1A; both recognise the same consensus sequence, 5’-

GTTAATNATTAAC-3’ 97,100–104. HNF1B is expressed in a number of epithelial organs, 

particularly in the kidney but also in the liver, pancreas, urogenital tract, intestine, lung and 

thymus97–101,103,104. HNF1B regulates tissue-specific gene expression in the epithelia of these 

different organs, and plays a role in epithelial organ development and maintenance97–101,103,104. In 

the kidney, HNF1B is expressed in tubular epithelial cells in all segments of the nephron, 

including the proximal and distal tubules, loops of Henle, and renal collecting ducts101,103. 

Various mutations in HNF1B have been identified. The most common mutation is 

complete deletion of the HNF1B gene, which occurs due to a chromosomal microdeletion at 

17q12 that results in the loss of HNF1B and 14 other genes97,98. HNF1B deletion accounts for 

roughly half of all cases of HNF1B-related disease97,98. The 17q12 region is prone to genomic 

rearrangements, and partial deletions of HNF1B have also been detected97. The other half of 

cases involve heterozygous mutations in the HNF1B gene, in the form of base substitutions and 

small insertions or deletions that occur in the coding region or splice sites97. These mutations 

tend to occur within the first four of HNF1B’s nine exons, with mutational hotspots in exon 2, 

exon 4, and the splice site in intron 2.97 So far there has been no evidence for any genotype-

phenotype correlation, suggesting that HNF1B-related disease arises due to 

haploinsufficiency97,99. When inherited, HNF1B mutations (both deletions and mutations in the 
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coding region or splice sites) follow an autosomal dominant pattern of inheritance; however, in 

up to 50% of cases these various HNF1B mutations arise spontaneously97–99. 

Based on observations from individuals and families with inherited HNF1B mutations, 

the phenotypes that develop can be highly variable between different patients, even within the 

same family or between families that carry the same mutation97,99. Additional genetic events, 

environmental influences, and possibly also random variation in HNF1B expression during 

development may thus play a role in determining the precise effects of HNF1B mutation97,99. 

In humans, heterozygous mutations in HNF1B result in a variety of renal and extra-renal 

phenotypes97–100. Perhaps due to the fact that HNF1B is expressed in multiple epithelial organs, 

the phenotypes produced by HNF1B mutations can manifest in a number of different organs 

including the kidney, pancreas, genital tract, liver and intestine97–99. Abnormalities can occur in a 

single organ in isolation, or can develop in multiple organs97,98. In general, the effects of HNF1B 

mutations first develop in the kidneys, and indeed congenital renal abnormalities are often 

attributed to HNF1B mutations97,98. 

HNF1B mutations can give rise to a type of early-onset diabetes mellitus known as 

maturity-onset diabetes of the young, type 5 (MODY5), which is “an autosomal dominant form 

of noninsulin diabetes mellitus”98 caused by pancreatic β-cell dysfunction and subsequent 

impaired insulin secretion97–101,103,104. In addition to pancreatic endocrine dysfunction 

(manifesting as diabetes), HNF1B mutations can occasionally lead to pancreatic exocrine 

dysfunction and pancreatic malformations (such as pancreatic hypoplasia, atrophy, or 

agenesis)97–99. 

MODY5 is typically associated with renal malformations and/or abnormalities in other 

organs (such as those of the urogenital tract)97–101,103,104. The most commonly associated renal 

malformation is the development of kidney cysts, a combination referred to as renal cysts and 

diabetes (RCAD) syndrome97–101,103,104. A range of renal cystic abnormalities may occur, 

including “simple cysts, multicystic renal dysplasia, and hypoplastic glomerulocystic kidney 

disease”101, 97–100,103,104. 

HNF1B mutations in humans can also result in a number of other renal malformations, 

such as: renal agenesis, aplasia, or hypoplasia; oligomeganephronia; familial juvenile 

hyperuricaemic nephropathy; single, horseshoe, or duplex kidneys; hydronephrosis and 
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hydroureter, and tubular dysfunction (the latter suggesting that HNF1B also plays a role in the 

maintenance of functional tubules, in addition to renal development).97–101,103,104 

The process of organ development is conserved between mammals and several other 

species, such as zebrafish and Xenopus laevis. Different animal models have therefore been used 

to study the effects of HNF1B deficiency on organ development.97 

In mice, homozygous deletion of Hnf1b is embryonic lethal98, while heterozygous 

deletion of Hnf1b does not produce a phenotype (in contrast to humans)97,98,101,105,106. Murine 

studies of HNF1B-related disease therefore require the use of transgenic mouse models that 

involve, for instance, conditional Hnf1b knockout in specific tissues or at specific stages of organ 

development98. Studies in such models have shown that Hnf1b plays an essential role in pancreas 

development, consistent with the pancreatic dysfunction and diabetes seen in humans with 

HNF1B mutations97,98. 

Transgenic mouse studies have also shown that deletion of Hnf1b leads to various defects 

in renal development, depending on the developmental time point or renal tissue type in which 

Hnf1b is deleted, indicating that HNF1B is also critical for several stages of renal 

development97,98. For example, inactivation of Hnf1b in the metanephric mesenchyme (which 

develops into the nephron) impairs the expansion and differentiation of the renal tubules, 

resulting in the formation of aberrant nephrons lacking the proximal and distal tubules and the 

loop of Henle. This suggests that HNF1B is important for tubule development in the nephron.97–

99 

Moreover, Hnf1b inactivation or deletion or the expression of a dominant-negative Hnf1b 

mutant, specifically in the mouse kidney, results in the formation of renal cysts, as well as 

increased cell proliferation and dilatation of the ureter and renal tubules97–101,103,107,108. This is 

consistent with the human data on the renal malformations that develop in patients with HNF1B 

mutations. 

Similarly, zebrafish expressing different mutant alleles of vhnf1 (the HNF1B homologue 

in zebrafish) exhibit the formation of renal cysts, as well as underdevelopment of the pancreas 

and liver97. Meanwhile, in X. laevis, different HNF1B mutations were found to impair the 

development of the pronephros (the embryonic kidney), to varying extents97. Hnf1b is also one of 

4 transcription factors shown to be capable of reprogramming mouse and human fibroblasts into 

cells that resemble renal tubular epithelial cells109. 
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HNF1B mutations in humans can also lead to the development of chromophobe renal cell 

carcinoma (ChRCC), a rare subtype of RCC that accounts for 4-5% of RCC tumours (in contrast 

to ccRCC, which accounts for 75-85% of RCC tumours)1,2,97–100,104. Studies have identified 

biallelic inactivation of HNF1B in several ChRCC cases with associated MODY5: patients 

exhibited germline mutation of one HNF1B allele, with somatic deletion of the other allele in the 

ChRCC tumours themselves, suggesting that HNF1B was inactivated via the classic Knudson 

two-hit mechanism in these ChRCC cases97,98,100,104. 

An immunohistochemical (IHC) study performed with samples of different renal tumour 

types also revealed a lack of HNF1B expression in the majority of ChRCC samples, suggesting 

that the absence of HNF1B might contribute to ChRCC tumourigenesis and that HNF1B may 

function as a tumour suppressor in this subtype of RCC. While HNF1B mutations were not 

detected in sporadic ChRCC tumours, these lesions still exhibited a lack of HNF1B protein 

expression. By contrast, HNF1B expression was still found in the majority of samples for other 

renal tumour types analysed in this IHC study, namely renal oncocytoma (which is benign), 

papillary renal cell carcinoma (PRCC), and ccRCC. The underexpression of HNF1B thus seems 

to be a particular feature of ChRCC tumours.104 

Consistent with this, another study investigating HNF1B inactivation in ovarian 

carcinoma and three different RCC subtypes (renal oncocytoma, ChRCC and ccRCC) found that 

ChRCC tumours could exhibit bilalleic inactivation of HNF1B and also concluded that HNF1B 

might act as a tumour suppressor in ChRCC. Similarly, this study did not find evidence of 

HNF1B inactivation in ccRCC and ovarian tumours.100 

Other studies have implicated HNF1B overexpression in ovarian clear cell 

carcinoma97,99,102,110–112. HNF1B genetic variants have also been proposed to influence the risk of 

prostate cancer, (albeit with contrasting results in the literature113–115), as well as the risk of 

endometrial cancer116.97,99,117–121 

Overall, there is substantial evidence in the literature demonstrating the importance of 

HNF1B in organ development, particularly that of the kidney. There is also ample human data 

and data from animal models implicating HNF1B mutations or deletions in a variety of renal and 

extra-renal diseases, which manifest in the various epithelial organs in which HNF1B is normally 

expressed. Furthermore, HNF1B has been implicated in a variety of different epithelial tumours, 

with different potential roles depending on tumour type: HNF1B may act as either a tumour 



 21 

suppressor that is inactivated, or as a highly expressed driver of tumourigenesis. Thus, the role of 

HNF1B in cancer may be context-dependent, and is perhaps influenced by other genetic or 

epigenetic events specific to the tumour type in question. These observations in the context of 

cancer, along with the evidence demonstrating the variety of organs affected and phenotypes 

produced by HNF1B mutations, could suggest that HNF1B typically functions as part of lineage-

specific transcriptional networks that influence its role in different tissues. 

 

Approach	&	Rationale		
 

ccRCCs have a tendency to develop drug resistance, rendering current treatment 

strategies (such as kinase inhibitors, anti-angiogenic drugs, and even the recently developed 

HIF2A inhibitor) ineffective in the long-term. Effective treatment of ccRCC thus requires new 

therapeutic targets, ideally targets that are ubiquitously essential across all tumour subclones and 

represent truncal tumour dependencies.  

The first part of the overall hypothesis behind my PhD research is that transcription 

factors may represent ideal therapeutic targets, as they are critical regulators of cell survival and 

cell phenotypes, including in the context of cancer. They might thus be more likely to be 

essential for tumour cell survival across all tumour subclones. Moreover, transcription factors are 

often at the endpoints of signalling pathways, in some cases with multiple signalling pathways 

converging on the same transcription factors. Therapeutically targeting a transcription factor thus 

has the potential to inhibit multiple driver pathways in tumour cells simultaneously. This 

approach might also be less likely to be circumvented by the redundant functions of other 

pathway components or transcription factors, potentially hindering the development of drug 

resistance. 

The second part of the overall hypothesis behind my PhD research is that ccRCC 

phenotypes may be fundamentally defined by tissue-specific core transcriptional networks. As 

detailed in the sub-sections above, there is evidence in the literature suggesting that lineage-

specific transcription factors can play important roles in tumourigenesis and tumour progression. 

Similarly, ccRCCs may also depend on lineage transcription factors that are not necessarily 

mutated, but which may drive transcriptional programmes that are critical to support tumour 

growth and survival. 
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The two aims of my PhD are thus as follows: 

• Aim 1: to identify additional and potentially novel transcription factor dependencies in 

ccRCC. 

• Aim 2: to characterise the mechanisms by which these essential transcription factors 

support ccRCC. 

 

To achieve Aim 1, I conducted a CRISPR/Cas9-based genetic depletion screen in vitro, 

with an sgRNA library targeting 50 transcription factor genes that are particularly highly 

expressed in RCC. This screen highlighted HNF1B as a candidate transcription factor that played 

an essential role in ccRCC. 

To achieve Aim 2, I carried out in vitro proliferation assays and in vivo tumour growth 

assays to determine the phenotype associated with HNF1B depletion in ccRCC. I subsequently 

performed assays to characterise the nature of this phenotype, as well as RNA-seq and ChIP-seq 

experiments to identify transcriptional targets of HNF1B that might be involved in its critical 

function in ccRCC. Finally, I investigated the potential contributions of MYC and BCL2 (which 

turned out to be HNF1B target genes in ccRCC) to HNF1B’s importance in ccRCC cells. 

Ultimately, the overall aim of my PhD project was to try to reach a comprehensive 

understanding of the mechanisms by which HNF1B supports ccRCC. 

 

 

  



 23 

RESULTS	
 

CHAPTER	1:	In	vitro	CRISPR-Cas9	genetic	depletion	screen	for	ccRCC	cell	dependencies	
 

1.1)	CRISPR-Cas9	genetic	depletion	screen	workflow	

To identify additional and potentially novel ccRCC cell dependencies, I conducted a 

CRISPR/Cas9-based genetic depletion screen in vitro77–79. 

For the purposes of the screen I used a conditional Cas9 expression system (specifically a 

doxycycline (dox)-inducible system), as this allowed more precise temporal control over gene 

knockout. Therefore, this enabled me to avoid early knockout while expanding the cells for the 

screen after sgRNA library transduction, and to then induce gene knockout only at the very start 

of the screen with the addition of dox. 

With a constitutive system however, the Cas9 would be constantly active and thus gene 

knockout would already be underway prior to the start of the screen. The cells would therefore 

experience a negative selection pressure prematurely. This would risk selecting for: cells that 

have lost or silenced Cas9 or sgRNA expression, cells that have not formed knockout mutations 

(i.e. cells that did not form insertions/deletions (indels) at all, or only formed in-frame mutations 

that did not result in protein knockout), or resistant cells (i.e. cells that have compensated for the 

effects of gene knockout). If such cell populations are generated before or during the early stages 

of the screen, they would continue to survive and proliferate, and this could introduce false 

negatives in the screen results. 

I thus used 786-M1A-TGL ccRCC cells that had previously been transduced in the lab 

with a dox-inducible Cas9 expression construct (pCW-Cas9), and sorted into single cell clones. I 

used a clone that had one of the highest levels of Cas9 expression upon dox treatment (Fig 2). 

The ccRCC cell line 786-M1A-TGL is a derivative of the 786-O primary ccRCC cell line used in 

other RCC studies, but with a higher metastatic propensity4. The cells also contain a TGL 

transgene, which comprises the cDNA sequences of herpes simplex virus type 1 thymidine 

kinase (HSV1-tk), eGFP and firefly luciferase122. Cells can thus be distinguished in vitro by 

eGFP expression, and can be detected in vivo upon administration of luciferin (tumour growth 

can thus be quantified via bioluminescence measurements in live mice). 
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Fig 1: Screen library target gene selection. The 50 transcription factor target genes were 
chosen based on TCGA data for transcription factor mRNA expression in multiple tumour
types. This dataset was first analysed to identify those transcription factors that were both 
highly expressed in ccRCC relative to other tumour types, and highly expressed within ccRCC
relative to other transcription factors. These transcription factors were then ranked based on 
their expression levels, and the top 50 most highly expressed transcription factor genes were 
selected as targets for the screen sgRNA library.
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Infection of dox-inducible 
Cas9-expressing ccRCC
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Fig 2: CRISPR/Cas9 genetic depletion screen workflow. Schematic illustrating the workflow 
for the CRISPR/Cas9 genetic depletion screen. I infected 786-M1A-TG-tet-on-Cas9 cells with 
the lentiviral sgRNA library targeting 50 transcription factor genes. The library contained a 
total of 420 sgRNAs, each in a BFP fluorescent backbone. I transduced the cells at a low 
multiplicity of infection (MOI) to ensure that each cell received only one sgRNA construct. I 
then sorted for BFP-positive (transduced) cells, retained a portion of these cells for my 
Baseline Day 0 sample, and divided the remainder into 2 samples: one +doxycycline (dox) and 
one –dox. I cultured the cells +/-dox for 26 days. At the end of the dox treatment period, I 
pelleted the cells and extracted genomic DNA from the Baseline Day 0, Day 26 +dox, and Day 
26-dox cell samples. I then PCR amplified the sgRNA constructs from each genomic DNA 
pool, adding Illumina sequencing barcodes in the process. The final sgRNA representation in 
each sample was then assessed via high throughput Next Generation Sequencing (Illumina Hi-
seq). I compared the sgRNA abundance between the Day 26 +dox and Day 0 samples to 
determine which sgRNAs had been depleted at the end of the screen. sgRNAs targeting 
“important” genes (and the cells expressing them) would be relatively less abundant in the 
final population at the end of the screen compared to Day 0 (such sgRNAs would appear to 
have “dropped out”).

FACS sort for
transduced 
(i.e. BFP+) 

cells

sgRNAs targeting genes 
important in ccRCC are 
less represented (they 
have “dropped out”)
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I transduced the clonal 786-M1A-TGL-tet-on-Cas9 cells with a lentiviral library 

comprising 420 CRISPR single guide RNAs (sgRNAs), targeting 50 RCC-associated 

transcription factors (8 sgRNAs per target, with 20 non-targeting control sgRNAs) (Fig 1, Fig 

2). The sgRNA sequences were taken from the whole-genome sgRNA library designed by Wang 

et al.78. 

The 50 transcription factor target genes were identified using TCGA data for 

transcription factor mRNA expression in multiple tumour types53,54. This dataset was first 

analysed to identify the subset of transcription factors that were both highly expressed in ccRCC 

relative to other tumour types, and highly expressed within ccRCC relative to other transcription 

factors. These transcription factors were then ranked based on their expression levels, and the top 

50 most highly expressed transcription factor genes were selected as targets for the screen 

sgRNA library (Fig 1). 

I transduced the 786-M1A-TGL-tet-on-Cas9 cells at a low multiplicity of infection 

(MOI) so that the majority of cells only received a single sgRNA (Fig 2, Fig 3B), thus avoiding 

multiple gene knockouts (Fig 2). Each sgRNA construct within the library also contained a BFP 

fluorescent marker79, allowing me to sort for successfully transduced cells based on BFP 

expression (Fig 2, Fig 3A). 26% of the population was BFP-positive after transduction; I isolated 

these cells by FACs sorting, and retained and expanded them for the screen (Fig 3A). 

The MOI can be calculated based on a Poisson distribution for the probability of a target 

cell to absorb a given number of virus particles when infected at a given MOI. This has been 

adapted in the graph in Figure 3B, which plots the fraction of cells with a single virus integration 

against the total percentage of positive cells obtained. Thus, for 26% BFP-positive cells, roughly 

86% of the transduced cells received only a single sgRNA construct (Fig 3B). 

 I divided the sorted BFP-positive 786-M1A-TGL-tet-on-Cas9 cells into a baseline day 0 

sample, one dox-treated sample, and one untreated control sample (Fig 2). I froze down multiple 

cell pellets from the Baseline Day 0 cells for later analysis. I then cultured the dox-treated and 

untreated samples in vitro for 26 days, with and without 1ug/ml dox respectively. 

 During this 26-day culture period, dox treatment would induce Cas9 expression, 

facilitating gene knockout in the 786-M1A-TGL-tet-on-Cas9 cells (Fig 2). Cells with sgRNAs 

targeting important genes in ccRCC would be selected against, whereas cells with sgRNAs 

targeting “unimportant” genes would survive and proliferate. Thus, within the dox-treated 
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sample, there would be a reduced proportion of cells that had been expressing sgRNAs targeting 

important genes, and a higher proportion of cells that had been expressing sgRNAs targeting 

“unimportant” genes. As a result, there would be a decreased representation of sgRNAs targeting 

important genes within the final cell population (compared to both the original sgRNA 

representation in the Day 0 population, and the sgRNA representation in the untreated Day 26 –

dox sample). 

I expanded the cells for each sample over the 26-day treatment period, ensuring that the 

total number of transduced cells per sample in the screen was at least 1000 times the total 

number of constructs (i.e. 420 sgRNAs) in the screen library, in order to avoid loss of library 

representation over the course of the screen. This minimum ratio of cell number to library size 

was based on a paper by Zuber et al.123, in which the authors conducted RNAi screens using 

more than 1000 cells per shRNA, and maintained this minimum cell number throughout their 

experiment to avoid losing library representation. Indeed, Zuber et al. found an approximately 3 

Log difference between the most and least abundant shRNAs in their library123. The dox medium 

was refreshed and the cells were passaged every 3 days, at a low splitting ratio of either 1:3 (for 

the dox-treated sample) or 1:4 (for the untreated sample). 

FACs analysis at the end of the 26-day period confirmed that the BFP-positive (i.e. 

sgRNA-expressing) population remained stable in both the dox-treated and untreated samples, 

with over 90% of the cells expressing BFP (Fig 4A-B). 

At the endpoint of the screen, I froze down multiple cell pellets from the Day 26 dox-

treated and untreated samples for analysis. I then extracted genomic DNA from duplicate pellets 

for each of the three screen samples (Day 26 dox-treated (“Day 26 +dox”), Day 26 untreated 

(“Day 26 –dox”), and Baseline day 0). Each of these genomic DNA pools would contain the 

sgRNA constructs for that sample, which would then have to be isolated for sequencing. I thus 

PCR amplified the sgRNA constructs in each of the six genomic DNA samples (Fig 2). This 

PCR step served to add sample-specific barcodes to allow the different samples to be 

distinguished, as well as Illumina sequencing adapters required for next generation sequencing 

(NGS, specifically Illumina Hi-seq) of the sgRNA construct amplicons (Fig 2). 

 



A B

Fig 3: The 50 transcription factor sgRNA library was lentivirally transduced at a low MOI.
(A) FACs plot showing the BFP+ fraction of lentivirally transduced cells after infection with 
the CRISPR/Cas9 sgRNA library. This 26% BFP+ population was isolated by cell sorting. A 
portion was retained as the Day 0 baseline sample, and the remainder was cultured +/-dox for 
26 days for the screen, to induce Cas9 expression and thus gene knockout.

(B) Graph showing the relationship between the fraction of positive (i.e. successfully 
transduced) cells and the fraction of cells with a single integration in the population during a 
viral infection. This relationship gives an approximation of the MOI and thus the number of 
viral integrations per cell in a lentiviral transduction. Thus, having 26% positive cells (in this 
case BFP-positive) meant that roughly 86% of the transduced cells had a single integration, 
and thus contained only one sgRNA construct.
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Fig 4: Library sgRNA expression was not lost by the end of the screen. FACs plots showing 
the percentage of BFP+ cells at the end of the screen in (A) the Day 26 –dox sample and (B) 
the Day 26 +dox sample, after being cultured for 26 days either without dox or with 1ug/ml 
dox respectively.
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1.2)	Preparing	screen	samples	for	Illumina	sequencing	

 The original protocol and conditions for these screen PCRs had been developed 

previously in the lab. I helped to further optimise this original screen PCR protocol from a two-

step PCR to a single-step PCR, in order to minimise the chances of PCR contamination. 

The single-step PCRs were carried out with forward and reverse primers that comprised: 

(1) regions complementary to the vector sequences flanking each sgRNA in the library 

constructs (a.k.a the “constant regions”); (2) the sample-specific barcode sequence to 

differentiate between each of the Day 26 +dox, Day 26 –dox, and D0 baseline duplicate samples; 

and (3) the P5 or P7 (for forward and reverse primers respectively) Illumina sequencing adapters 

required for Illumina Hi-seq.  

Because each sample had to be tagged with a unique barcode, each of my six DNA 

samples was amplified with a different pair of primers (see Materials and Methods). To generate 

sufficient quantities of each PCR product, multiple PCR reactions were performed for each 

sample (and thus with each primer pair). The replicate PCR reactions for each sample were then 

pooled at the end of the PCR step, prior to phenol-purification and SPRI-bead size exclusion. 

Only one water (H2O) control reaction was performed for each primer pair used. 

To prepare the PCR amplified DNA samples for Illumina Hi-seq, I first checked the PCR 

products and PCR H2O controls for any contamination by running a small (2ul) aliquot of each 

pooled PCR, as well as the entire H2O-only PCR reactions, on agarose gels (Fig 5A). Note that 

the gels in Figure 5A show both the PCR reactions for my duplicate samples (6 in total), as well 

as two samples belonging to another postdoc in the lab who was also performing screens at that 

time.  

The DNA agarose gels confirmed that there was no PCR contamination in the H2O 

control reactions (the first four lanes in each gel), and that each of the single-step PCR reactions 

(the last four lanes in each gel) generated a specific product of the correct size (274bp), in 

sufficient quantities for further purification (Fig 5A; arrows). 

 The pooled PCR products were then purified by phenol-purification, and size-selected by 

SPRI-bead size exclusion. We originally attempted to size-select the PCR products with gel 

extraction; however, we consistently lost too much yield. I thus helped to optimise the protocol 

to incorporate SPRI-bead size-exclusion instead. 



A

B

Fig 5: Quality control checks for screen sample PCR products before and after purification 
and size-selection. 
(A) DNA agarose gels showing the PCR H2O controls and the PCR products generated from 
each screen sample (Baseline Day 0, Day 26 +dox and Day 26 –dox, in duplicate), prior to 
phenol-purification and SPRI-bead size exclusion. No PCR contamination can be seen in the 
H2O control lanes, and the PCR step generated a specific product of the correct size (274bp).

(B) DNA agarose gel showing the final PCR products for each duplicate sample, after phenol 
purification and SPRI-bead size exclusion. There is still sufficient product remaining, and the 
size exclusion step successfully isolated the product of the correct size (274bp).
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Fig 6: Sanger sequencing of the final PCR products for each screen sample, after 
amplification, purification and size-selection.
Sanger sequencing data for the final DNA samples obtained after PCR amplifying and 
purifying the sgRNA constructs from the genomic DNA pools of each screen sample. 
Representative sequencing data is shown for only one duplicate per screen sample. The Sanger 
sequencing traces showed no sign of contamination, and the sequencing results showed 
constant regions upstream and downstream that matched the vector backbone sequences that 
flank each sgRNA, with a variable 20bp region in between that corresponded to the position of 
the sgRNA sequences in each library construct.

Baseline Day 0

Day 26 -dox

Day 26 +dox

constant region (vector)20bp sgRNA sequenceconstant region (vector)
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I carried out the phenol-purification and SPRI-bead size-exclusion for each of my 6 

screen samples. I then made 1:10 dilutions of each of my samples, and ran an aliquot of each 

diluted sample on an agarose gel (Fig 5B) to confirm that the purification and size-selection 

steps had successfully isolated product of the correct size, and in sufficient quantities (i.e. 

without losing too much DNA yield) for subsequent sequencing library preparation and NGS. 

The DNA agarose gel showed that all 6 of my samples contained PCR product of the 

correct size (274bp), with no additional or contaminating products of different sizes (Fig 5B; 

arrow; lanes 2-7). Moreover, the fact that bands were clearly visible for each sample, despite 

running an aliquot of a 1:10 dilution, indicated that I had retained sufficient quantities of DNA 

product after purification and size-selection for sequencing library preparation (Fig 5B; lanes 2-

7). 

Finally, I quantified my final screen samples by Qubit quantification, with the Qubit 

dsDNA HS (High Sensitivity) Assay Kit (Invitrogen / Life Technologies). I then sent aliquots of 

my final screen samples (post-PCR amplification, purification, and size-selection) for Sanger 

sequencing (Fig 6) to confirm that I had successfully isolated the sgRNA constructs from the 

genomic DNA pools for each screen sample. 

The Sanger sequencing results for each sample showed sequences upstream and 

downstream that matched the sequences of the vector backbone that flank the sgRNAs in each 

library construct. These vector sequences were identical between the Baseline Day 0, Day 26 –

dox and Day 26 +dox DNA samples, and were the only non-variable, constant regions in the 

sequence traces across all the duplicates (as expected, since the vector backbone is the same for 

all the sgRNA constructs in the library).  

The sequencing results for each screen sample also showed a 20bp region that was highly 

variable in sequence, lying in between the constant regions. This corresponded to the position of 

the 20bp sgRNA sequences in each library construct, and thus indicated the presence of multiple 

20bp sgRNA sequences in each screen DNA sample. Indeed, it is this variable 20bp region that 

was subsequently de-convoluted via Illumina sequencing to reveal individual sgRNAs. 

Importantly, the Sanger sequencing traces also showed no sign of contamination in the 

final screen samples. Note that Figure 6 shows only one representative sequence trace per screen 

sample, but that this sequencing data is representative of both duplicates for each of the Baseline 

Day 0, Day 26 –dox and Day 26 +dox DNA screen samples. 
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Therefore, the Sanger sequencing data confirmed that my final screen samples did indeed 

contain sgRNA constructs. Having verified this, the sequencing libraries were subsequently 

prepared with my screen samples by another member of the lab, and sent for Illumina Hi-seq to 

determine the sgRNA representation in each sample. 

 

1.3)	Analysis	and	interpretation	of	the	Illumina	sequencing	data:	a	potential	role	for	HNF1B	

The Illumina sequencing data was analysed in-house as described in the Materials and 

Methods. To align and quantify the sgRNA sequences in each of the 6 screen samples, a custom 

bowtie index was created using the sequences of all 420 sgRNA constructs in the screen library. 

The raw Illumina sequencing data was then aligned to this index of library sgRNA sequences 

using bowtie1124, and the number of reads per sgRNA were counted. This gave the raw counts 

for each sgRNA, which were then normalised to the total number of reads per sample. These 

normalised counts were then taken as a measure of sgRNA abundance. 

The normalised counts per sgRNA were calculated in this way for each duplicate sample 

separately. I then compared these normalised counts between duplicates of the same screen 

sample to determine the consistency of the Illumina sequencing data between sample replicates. 

In other words, I compared duplicate 1 versus duplicate 2 of the Baseline Day 0 sample (Fig 

7A), duplicate 1 versus duplicate 2 of the Day 26 +dox sample (Fig 7B), and duplicate 1 versus 

duplicate 2 of the Day 26 –dox sample (Fig 7C). 

 These comparisons are illustrated in the scatter plots in Figure 7. In each scatter plot, 

each data point represents one of the 420 sgRNAs in the screen, with non-targeting controls 

highlighted in black, sgRNAs for the transcription factor HNF1B highlighted in red, and all other 

sgRNAs in grey. The axes represent the normalised counts per sgRNA (as an indicator of sgRNA 

abundance) for the duplicate sample indicated. The sgRNA normalised counts were highly 

consistent between duplicate samples, with most if not all of the data points lying along the XY 

diagonal between the axes (Fig 7A-C). The R coefficients were also close to 1 for each 

comparison: R = 0.9872 for the Baseline Day 0 duplicates (Fig 7A), R = 0.9867 for the Day 26 

+dox duplicates (Fig 7B), and R = 0.9881 for the Day 26 –dox duplicates (Fig 7C). Thus, there 

was minimal variation in sgRNA abundance between the duplicates of each screen sample, 

indicating that the screen data was robust and reproducible. 



A B

Fig 7: Comparisons of the sgRNA abundance between sample duplicates to determine the 
consistency of the Illumina sequencing data. Scatter plots showing the comparisons of the 
sgRNA abundance between the duplicates for (A) Baseline Day 0, (B) Day 26 +dox and (C) 
Day 26 –dox. In each dot plot, the data points represent the 420 individual sgRNAs in the 
screen, with non-targeting controls in black, HNF1B sgRNAs in red, and all other sgRNAs in 
grey. The axes represent the normalised counts per sgRNA (as an indicator of sgRNA
abundance) for the duplicate sample indicated. 
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After comparing the sgRNA distributions between the screen sample duplicates, I 

compared the sgRNA distributions between the screen samples themselves. Comparing the 

sgRNA representations between the Day 26 +dox and the Baseline Day 0 samples identified 

sgRNAs that were under-represented (i.e. which had been depleted, or “dropped out”) in the final 

sgRNA pool of the Day 26 +dox sample, relative to the original sgRNA pool in the Baseline Day 

0 sample.  

I also compared the final sgRNA representations between the Day 26 +dox and Day 26 –

dox samples, and the final sgRNA representation in the Day 26 –dox sample against the initial 

representation in the Baseline Day 0 sample. 

Comparing the final sgRNA representations between the Day 26 +dox and Day 26 –dox 

samples would also highlight sgRNAs that had been depleted in the treated versus untreated 

samples. The sgRNA constructs depleted, and the extent to which these constructs dropped out at 

the end of the screen, should be similar between the Day 26 +dox versus Day 26 –dox 

comparison and the Day 26 +dox versus Baseline D0 comparison, provided that there was no 

leakiness of Cas9 expression, and thus no background sgRNA loss, in the untreated cells that 

were not exposed to dox. 

Meanwhile, comparing the sgRNA distributions between the Day 26 –dox and the 

Baseline Day 0 samples would reveal more definitively whether the dox-inducible Cas9 

transgene was leaky or not. If there was little to no leakiness in transgene expression, then there 

would be minimal to no loss of sgRNA representation seen in the Day 26 –dox sample relative to 

the Baseline Day 0 sample. However, if there was a background level of leaky Cas9 expression 

without dox treatment, then one would expect to observe some sgRNA depletion in the Day 26 –

dox sample relative to the Baseline Day 0 sample. 

To facilitate these comparisons, I first averaged the normalised counts between the 

duplicates of each sample for each of the 420 sgRNAs, and compared these average normalised 

counts between (i) Day 26 +dox and Baseline Day 0 (Fig 8A), (ii) Day 26 +dox and Day 26 –

dox (Fig 8B), and (iii) Day 26 –dox and Baseline Day 0 (Fig 8C). 

In each scatter plot in Figure 8A-C, the data points represent the 420 individual sgRNAs 

in the screen, with non-targeting controls highlighted in black, HNF1B sgRNAs highlighted in 

red, and all other sgRNAs in grey. The axes represent the average normalised counts for each 

sgRNA, for the indicated screen sample. 
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Fig 8: Comparisons of the sgRNA representation of all 420 sgRNAs between the original 
Plasmid pool, Baseline Day 0, Day 26 +dox, and Day 26 –dox screen samples. Scatter plots 
comparing the sgRNA representation in (A) Baseline Day 0 versus Day 26 +dox, (B) Day 26 –
dox versus Day 26 +dox, (C) Baseline Day 0 versus Day 26 –dox, and (D) Baseline Day 0 
versus the original plasmid pool. In each scatter plot, the data points represent the 420 
individual sgRNAs in the screen, with non-targeting controls highlighted in black, HNF1B 
sgRNAs highlighted in red, and all other sgRNAs in grey. The axes represent the sgRNA 
abundance, given as average normalised counts (the raw counts per sgRNA normalised to the 
number of reads and averaged between duplicates) for the screen sample indicated, or given as 
normalised counts in the case of the plasmid pool in (D) (which was only sequenced as a single 
replicate).
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In all three plots, the non-targeting control sgRNAs (black) seem to lie along the XY 

diagonal, suggesting that they were not substantially depleted or enriched between samples over 

the course of the screen. Thus, they are unlikely to have off-target effects.  

Meanwhile, there is a clear downwards shift in multiple targeting sgRNAs (grey and red) 

when comparing Day 26 +dox with Baseline Day 0 (Fig 8A), and also when comparing Day 26 

+dox with Day 26 –dox (Fig 8B). This downwards shift indicates that these sgRNAs are less 

represented with dox treatment (and thus with Cas9 expression and gene knockout), and suggests 

that these constructs most likely target transcription factor genes that are important in ccRCC. 

Some of the most substantially depleted sgRNAs are those targeting the renal developmental 

transcription factor HNF1B (highlighted in red).  

Comparing the sgRNA representation in the Day 26 –dox sample against that of the 

Baseline Day 0 sample revealed minimal sgRNA dropout in the absence of dox: fewer sgRNAs 

were depleted, and to a much lesser extent, compared to the frequency and extent of sgRNA 

depletion observed in Day 26 +dox versus Baseline Day 0 (Fig 8C).  

Additionally, there is still a clear difference between the sgRNA representations in the 

Day 26 +dox sample versus the Day 26 –dox sample (Fig 8B), emphasizing that the loss of 

sgRNA representation in the Day 26 +dox sample exceeded that in the Day 26 –dox sample. 

Both comparisons thus suggest that the Cas9 expression in the 786-M1A-TGL-tet-on-

Cas9 cells was only slightly leaky. Therefore, minimal gene knockout would have occurred prior 

to the start of dox treatment (i.e. prior to the start of the screen), and there would have been 

limited loss of sgRNA representation resulting from background Cas9 expression to obscure the 

biological effects of target gene knockout. 

Finally, I compared the sgRNA distribution of the Baseline Day 0 screen sample (i.e. the 

sgRNA representation at the start of the screen) against the original sgRNA distribution of the 

lentiviral plasmid library itself (i.e. the sgRNA representation of the library plasmid pool before 

the start of the screen) (Fig 8D). 

The lentiviral sgRNA library was sequenced post-synthesis (as a single replicate), prior to 

producing virus and infecting the 786-M1A-TGL-tet-on-Cas9 cells with the 420 library 

constructs. This sequencing data (and thus the normalised counts calculated) for each of the 420 

sgRNAs in the library plasmid pool therefore provided a reference point for the earliest, original 

distribution of sgRNA constructs, prior to cell transduction and thus before the start of the 



 39 

screen. In other words, the sgRNA distribution in the plasmid pool indicated the most complete 

representation of each sgRNA in the newly synthesised library, before any sgRNA depletion 

could have occurred. Meanwhile, the sequencing data from the Baseline Day 0 screen sample 

(and thus the average normalised counts calculated across the sample duplicates) represented the 

sgRNA distribution at the start of the screen, after virus generation and cell transduction with the 

lentiviral library. Comparing the sgRNA distributions between the Baseline Day 0 screen sample 

and the original plasmid pool would thus reveal whether there was any loss of sgRNA 

representation between the point of library synthesis and the generation of the Baseline Day 0 

sgRNA pool. 

The scatter plot in Figure 8D compares the average normalised counts of the Baseline 

Day 0 sample against the normalised counts of the original library plasmid pool, for each of the 

420 sgRNAs. As with Figs 8A-C, the data points in Fig 8D represent the 420 individual sgRNAs 

in the screen, with non-targeting controls highlighted in black, HNF1B sgRNAs highlighted in 

red, and all other sgRNAs in grey. The x-axis represents the average normalised counts per 

sgRNA for the Baseline Day 0 sample, while the y-axis represents the normalised counts per 

sgRNA for the original library plasmid pool.  

The majority of the sgRNAs seem to lie along the XY diagonal, with only a few 

constructs appearing to be enriched in the Baseline Day 0 sgRNA pool relative to the library 

plasmid sgRNA pool. This suggests that there was minimal loss of sgRNA representation from 

that of the original plasmid pool post-synthesis, in the process of lentivirus production and cell 

transduction. Therefore, the screen started with an sgRNA representation that corresponded well 

to the original representation of each sgRNA construct in the lentiviral plasmid library. 

I next calculated the fold changes in the average normalised counts per sgRNA for each 

sample comparison, by normalising: (i) the Baseline Day 0 averages to the plasmid pool 

normalised counts (as no replicate samples were available to take an average in the case of the 

latter) (Fig 9A), (ii) the Day 26 +dox averages to the Baseline Day 0 averages (Fig 9B), (iii) the 

Day 26 +dox averages to the Day 26 –dox averages (Fig 9C), and (iv) the Day 26 –dox averages 

to the Baseline Day 0 averages (Fig 9D). These calculations were once again performed for each 

of the 420 sgRNAs individually. Calculating the fold changes in this way gave a “depletion 

score” for each sgRNA construct. This allowed me to better determine the extent to which 

sgRNAs dropped out, and thus the relative differences in sgRNA representation between the start 
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of the screen (Baseline Day 0) and the library plasmid pool (Fig 9A), and also between the 

screen samples (Baseline Day 0, Day 26 +dox and Day 26 –dox; Fig 9B-D) in each comparison. 

Each waterfall plot in Figure 9A-D shows the extent of sgRNA depletion (represented as 

log2 fold change in average normalised counts on the y axis) of all 420 sgRNAs in the screen, for 

the indicated sample comparisons. The individual sgRNAs are arranged along the x axis in order 

of the most depleted to the least depleted (i.e. the most relatively enriched), with each bar 

representing a different sgRNA. Non-targeting controls are highlighted in black and sgRNAs for 

the transcription factor HNF1B are highlighted in red, with all other sgRNAs shown in grey.  

Most, if not all, of the 20 non-targeting control sgRNAs (highlighted in black) appeared 

relatively enriched in each of the three waterfall plots comparing the screen samples (Fig 9B-D), 

but to varying extents. In the waterfall plot comparing Baseline Day 0 with the original plasmid 

pool, meanwhile, the non-targeting controls were more evenly distributed in terms of relative 

depletion or enrichment, with some appearing slightly enriched and the remainder appearing 

slightly depleted in the Baseline Day 0 sample relative to the plasmid pool (Fig 9A). 

Indeed, when comparing the extent of sgRNA depletion between Baseline Day 0 and the 

plasmid pool, there was minimal sgRNA depletion or enrichment at the start of the screen 

relative to the original library post-synthesis (Fig 9A). This further indicates that there were 

minimal changes in sgRNA representation after the library was transduced into cells for the 

screen, thus suggesting that the screen began with an sgRNA representation similar to that of the 

original sgRNA plasmid library. 

When comparing the extent of sgRNA depletion between the Day 26 +dox and Baseline 

Day 0 samples, sgRNAs targeting the transcription factor HNF1B (highlighted in red) were 

among the most substantially depleted sgRNAs in the screen, with all 8 HNF1B sgRNAs 

appearing within the 50 most depleted sgRNAs out of the 420 total constructs (Fig 9B). 

 Similarly, 6 out of 8 HNF1B sgRNAs were also within the 50 most depleted sgRNAs 

when comparing Day 26 +dox against Day 26 –dox (Fig 9C). Indeed, the extent of sgRNA 

dropout seen in the Day 26 +dox sample relative to the Day 26 –dox sample was similar to the 

extent of sgRNA dropout seen in the previous comparison of the Day 26 +dox sample versus the 

Baseline Day 0 sample (Fig 9B-C). A similar proportion of sgRNAs were depleted in the Day 26 

+dox sample relative to both Day 26 –dox and Baseline Day 0. Moreover, the depletion scores 

for these under-represented sgRNAs in the Day 26 +dox sample were also similar relative to 
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both Day 26 –dox and Baseline Day 0. However, the maximum extent of depletion observed was 

slightly less when comparing Day 26 +dox against Day 26 –dox; the most depleted sgRNAs 

dropped out with a much lower depletion score when comparing Day 26 +dox against Baseline 

Day 0 (Fig 9B-C). 

 Comparing the extent of sgRNA depletion between the Day 26 –dox sample and the 

Baseline Day 0 sample revealed a low level of sgRNA depletion in the absence of dox (Fig 9D). 

However (as observed previously in Fig 8C), fewer sgRNAs were depleted, and to a much lesser 

extent, compared to the frequency and extent of sgRNA depletion observed in Day 26 +dox 

versus Baseline Day 0. This suggests that there was some leakiness in expression of the dox-

inducible Cas9 transgene that would trigger gene knockout in the untreated cells (Fig 9B-D).  

Despite this, the loss of sgRNA representation in the Day 26 +dox sample still exceeded 

that in the Day 26 –dox sample (Fig 9C). Furthermore, the extent of sgRNA depletion seen in 

the Day 26 –dox sample relative to the Baseline Day 0 sample (Fig 9D) was considerably less 

than that seen when comparing both Day 26 +dox versus Baseline Day 0 (Fig 9B) and Day 26 

+dox versus Day 26 –dox (Fig 9C). Therefore, although this slight leakiness would have resulted 

in a background level of Cas9 expression and gene knockout in the untreated cells, the low level 

of sgRNA dropout resulting from this background Cas9 activity was insufficient to detract from 

the sgRNA dropout resulting from the biological effects of these sgRNAs. 

Thus, the observation that HNF1B sgRNAs were among the most substantially depleted 

sgRNAs in the screen is still valid, and is most likely due to perturbations in cell fitness caused 

by the HNF1B knockout mediated by these HNF1B sgRNAs. 

The graph in Fig 9E is an excerpt of the data from Fig 9B for the extent of sgRNA 

depletion in Day 26 +dox versus Baseline Day 0, showing the depletion scores for the 8 HNF1B 

sgRNAs in isolation, along with the (relatively enriched) non-targeting control sgRNA #18 

(CTRL0018, a.k.a NTC18) for comparison (Fig 9E). 

 In addition to examining the depletion scores per sgRNA, the median depletion score per 

gene (i.e. across all 8 sgRNAs per transcription factor gene) was also calculated, and the genes 

were then ranked from most to least depleted using a rank sum test (Fig 9F). This revealed 

transcription factors whose sgRNAs had dropped out significantly overall, relative to the non-

targeting controls and other sgRNA constructs in the screen library, which would further suggest 

that those transcription factors might be important in ccRCC. 



Fig 9: sgRNAs targeting HNF1B were among the most prominently depleted at the end of 
the screen. P.T.O for figure legend.
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Fig 9: sgRNAs targeting HNF1B were among the most prominently depleted at the end of 
the screen.
(A) Waterfall plot showing the log2 fold changes between the average normalised counts per 
sgRNA in the Baseline Day 0 screen sample and the normalised counts per sgRNA in the 
original plasmid pool, for all 420 sgRNAs in the screen. The individual sgRNAs are arranged 
along the x axis in order of the most depleted to the least depleted (i.e. the most relatively 
enriched), with each bar representing a different sgRNA. Non-targeting controls are 
highlighted in black and sgRNAs for the transcription factor HNF1B are highlighted in red, 
with all other sgRNAs shown in grey.

(B)-(D) Waterfall plots showing the extent of sgRNA depletion of all 420 sgRNAs in the 
screen, represented as log2 fold change in average normalised counts in (B) Day 26 +dox 
versus Baseline Day 0, (C) Day 26 +dox versus Day 26 –dox, and (D) Day 26 –dox versus 
Baseline Day 0. The individual sgRNAs are arranged along the x axis in order of the most 
depleted to the least depleted (i.e. the most relatively enriched), with each bar representing a 
different sgRNA. Non-targeting controls are highlighted in black and sgRNAs for the 
transcription factor HNF1B are highlighted in red, with all other sgRNAs shown in grey.

(E) Bar graph showing the extent of depletion (represented as log2 fold change in average 
normalised counts) of all 8 sgRNAs targeting HNF1B, along with the non-targeting control 
sgRNA #18 (CTRL0018) for comparison.

(F) Scatter plot showing the median depletion score per gene (represented as log2 median 
depletion), plotted against p-value (calculated by rank sum test, and represented as –log10 of 
the p-value). Each data point represents one of the 50 genes targeted in the screen library, with 
non-targeting controls highlighted in black and transcription factor genes in grey. The two 
highest ranking (i.e. most depleted) transcription factors, HIF2A (EPAS1) and HNF1B, are 
highlighted in blue, with their respective p-values indicated (EPAS1 p=2.9426e-06; HNF1B 
p=9.4917e-06).
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The scatter plot in Figure 9F shows the median depletion score per gene (represented as 

log2 median depletion) along the x axis, and the p-value from the rank sum test (represented as –

log10 of the p-value) along the y axis. Each data point represents one of the 50 genes targeted in 

the screen library, with the non-targeting controls highlighted in black and the transcription 

factor genes in grey.  

Transcription factor genes with lower median depletion scores (i.e. with sgRNAs that 

were more strongly depleted overall) and small p-values (i.e. whose sgRNAs dropped out with 

greater statistical significance) would appear closer to the upper left of the graph. Meanwhile, 

those genes with higher median depletion scores (i.e. whose sgRNAs were relatively enriched or 

less strongly depleted), and larger p-values (i.e. whose sgRNAs dropped out with less statistical 

significance), would appear closer to the bottom right of the graph. 

Once again, the non-targeting controls (black) appeared to be relatively enriched, with a 

high median depletion score. The transcription factor HIF2A (EPAS1) was one of the two most 

significantly depleted transcription factors out of the 50 transcription factor genes (EPAS1 

p=2.9426 x10-6). As the importance of HIF2A in ccRCC tumourigenesis has already been 

established55,64,71, this result was expected and acted as a positive control for the screen (Fig 9F). 

The other most significantly depleted transcription factor was HNF1B (HNF1B p=9.4917 x10-6) 

(Fig 9F), which is consistent with the observation that all 8 HNF1B sgRNAs were strongly 

depleted in the screen in the Day 26 +dox sample relative to Baseline Day 0. 

Taking this data together, the renal developmental transcription factor HNF1B was one of 

the strongest hits from the screen. The 8 sgRNAs targeting HNF1B were among the most 

depleted sgRNAs when comparing the representation of individual sgRNAs in the Day 26 +dox 

sample versus the Day 26 –dox and Baseline Day 0 samples. HNF1B also ranked as one of the 

top two most significantly depleted transcription factor genes in the screen based on its median 

depletion score. The fact that HNF1B dropped out in the screen so significantly suggests that this 

transcription factor plays an important role in supporting ccRCC. I thus selected HNF1B as the 

best hit for further characterisation and validation. 

 I first determined the HNF1B sgRNA knockout efficiency to identify the best constructs 

to use for further experiments. I transduced fresh 786-M1A-TGL-tet-on-Cas9 cells 

independently with either NTC18 or one of the 8 HNF1B sgRNAs from the screen. I then treated 

the transduced cells with 1ug/ml dox for 8 days to induce Cas9 expression and gene knockout, 
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and extracted whole cell protein lysates from each cell line to blot for HNF1B and check the 

knockout efficiency of each HNF1B sgRNA.  

Western blots for HNF1B (from 2 independent lysates) showed that most of the 8 

sgRNAs knockdown HNF1B with high efficiency, with half of the constructs mediating almost 

complete HNF1B knockout relative to the NTC18 control (Fig 10A). However, the extent of 

protein knockout mediated by each sgRNA (Fig 10A) did not necessarily correspond to the 

extent to which that sgRNA dropped out in the screen (Fig 9E, 10B). 

For instance, HNF1B sgRNA #8 dropped out the most in the screen and also mediated the 

most efficient protein knockout. HNF1B sgRNAs #6 and #3, which were the third and seventh 

most depleted out of the eight constructs respectively, also gave the third and seventh highest 

efficiencies of protein knockout respectively. The other constructs, however, showed depletion 

scores that did not correspond to their knockout efficiency. For example, HNF1B sgRNA #2 

ranked sixth out of the eight constructs in terms of depletion score, but ranked second in terms of 

protein knockout efficiency. Similarly, HNF1B sgRNA #5 ranked last in terms of depletion score 

in the screen, but still managed to confer an intermediate level of HNF1B protein knockout, 

ranking fourth out of the eight constructs for knockout efficiency. Meanwhile, HNF1B sgRNA 

#4 was the second most depleted in the screen but only ranked fifth in terms of protein knockout 

efficiency. (Fig 9E, 10A-B) 

Based on a combination of protein knockout efficiency (Fig 10A) and sgRNA depletion 

score in the screen sequencing data (Fig 9E), I chose HNF1B sgRNAs #2 and #8 for further 

experiments and validation. 

Both HNF1B sgRNAs #2 and #8 were highly efficient at knocking out HNF1B protein 

(Fig 10A). However, sgRNA #8 was strongly depleted in the screen and might thus incur 

additional off-target effects, whereas sgRNA #2 was much less strongly depleted in the screen 

and is thus less likely to have off-target effects (Fig 9E). Therefore, selecting these two HNF1B 

sgRNA constructs allowed me to validate HNF1B as a hit from the screen with two independent 

and effective sgRNAs, and also to compare the results seen with both constructs to determine 

whether any off-target effects could be observed in my validation experiments. If both sgRNAs 

produced consistent phenotypes, then this would strengthen the conclusions from my data. 

However, if the effects seen with sg8 differed and/or were stronger, this might suggest an off-

target effect associated with the sg8 construct.  



A

Fig 10: HNF1B sgRNA knockdown / knockout efficiency.
(A) HNF1B Western blots from 2 independent whole cell protein lysates, extracted from 786-
M1A-TGL-tet-on-Cas9 cells transduced independently with NTC18 or one of the 8 HNF1B 
sgRNAs from the screen, and then treated with 1ug/ml dox for 8 days to induce Cas9 
expression and gene knockout. Most of the 8 sgRNAs knockdown HNF1B with high 
efficiency, with half of the constructs mediating almost complete HNF1B knockout relative to 
the NTC18 control. 

(B) Table showing the rankings of each of the 8 HNF1B sgRNAs from most to least depleted 
in the screen (second column) and from highest to lowest protein knockout efficiency (third 
column). Comparing these rankings revealed that the extent of protein knockout mediated by 
each sgRNA did not necessarily correspond to the extent to which that sgRNA dropped out in 
the screen (see also Fig 10A versus Fig 9D).
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Code Tumour type

ccrcc Clear cell renal cell carcinoma

papillary Papillary renal cell carcinoma

chromo Chromophobe renal cell 
carcinoma

blca Bladder urothelial carcinoma

acc Adrenocortical carcinoma

pcpg Pheochromocytoma and 
Paraganglioma

liver Liver hepatocellular carcinoma

pdac Pancreatic ductal 
adenocarcinoma

colon Colon adenocarcinoma

read Rectum adenocarcinoma

hnsc Head and Neck squamous cell 
carcinoma

thca Thyroid carcinoma

luad Lung adenocarcinoma

Code Tumour type

lusc Lung squamous cell carcinoma

meso Mesothelioma

prostate Prostate adenocarcinoma

breast Breast invasive carcinoma

ov Ovarian serous 
cystadenocarcinoma

cesc Cervical squamous cell carcinoma 
and endocervical adenocarcinoma

ucec Uterine corpus endometrial 
carcinoma

ucs Uterine carcinosarcoma

skcm Skin cutaneous melanoma

sarc Sarcoma

gbm Glioblastoma multiforme

dlbc Lymphoid Neoplasm Diffuse Large 
B-cell Lymphoma

laml Acute Myeloid Leukemia

Fig 11: TCGA data for HNF1B mRNA expression in different tumour types. Dot plot 
showing TCGA data for HNF1B mRNA expression in multiple tumour types, including 
ccRCC (top). HNF1B mRNA expression levels are shown on the y-axis. The different tumour 
types are indicated along the x-axis. The TCGA tumour codes are explained in the table 
(bottom). Based on TCGA mRNA expression data, HNF1B is highly expressed at the mRNA 
level in ccRCC compared to other tumour types.
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Fig 12: HNF1B protein expression in ccRCC cell lines versus other tumour cell types.
HNF1B Western blots with whole cell protein lysates from 17 ccRCC cell lines (including 3 
pairs of parental lines and their more metastatic derivatives: 786-O & 786-M1A, OS-RC2 & 
OS-LM1B, and RCC-MF & RCC-MF-LM1C, respectively), as well as HeLas and 2 breast 
cancer cell lines (MDA-MB-231 and HCC-1419). HNF1B was expressed in all 17 ccRCC cell 
lines, but was absent in HeLas and breast cancer cells.
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CHAPTER	2:	Establishing	a	phenotype	for	HNF1B	knockout	in	ccRCC	cells	in	vitro	and	in	
vivo	
 

2.1)	HNF1B	is	highly	expressed	in	ccRCC	tumours	and	cell	lines	

The next step was to confirm the phenotype for HNF1B knockout and thus validate the 

screen data placing HNF1B as one of the top “hits” out of the 50 transcription factors targeted, as 

well as verify whether HNF1B does indeed play an important role in ccRCC. 

Based on TCGA mRNA expression data, HNF1B is particularly highly expressed at the 

mRNA level in ccRCC relative to other tumour types (Fig 11). Indeed, this is in keeping with 

how we selected the 50 transcription factor target genes for the sgRNA library. The high HNF1B 

expression levels in ccRCC may suggest that this transcription factor has a relatively tissue-

specific role in these tumours. 

To further verify the specificity and relative levels of HNF1B expression in ccRCC 

versus other tumour types, I blotted for HNF1B with whole cell protein lysates from 17 ccRCC 

cell lines (including 3 pairs of parental lines and their more metastatic derivatives: 786-O & 786-

M1A, OS-RC2 & OS-LM1B, and RCC-MF & RCC-MF-LM1C, respectively)4, versus 3 non-

ccRCC cell lines (HeLas and 2 breast cancer cell lines, MDA-MB-231 and HCC-1419) (Fig 12).  

Consistent with the TCGA mRNA expression data, HNF1B protein is expressed at high levels 

specifically in ccRCC cell lines compared to non-ccRCC cancer cell lines (at the very least, 

based on the cell line panel used here). This further underscores the possibility that high HNF1B 

expression is specific to ccRCC (or at the very least found in only a limited range of tumour 

tissues including ccRCC), and that this may reflect a relatively tissue-specific importance for 

HNF1B in these tumours. 

 

2.2)	Investigating	the	phenotype	for	HNF1B	CRISPR/Cas9	knockout	in	vitro	

 In light of the slight leakiness of the 786-M1A-TGL-tet-on-Cas9 clone used in the screen, 

and due to previous data in the lab (data not shown) demonstrating that clonal cell lines can 

exhibit impaired growth and aberrant behaviour in vivo that is inconsistent with that of parental 

cell lines or pooled cell populations, I decided to use a constitutive Cas9 expression system 

instead of the dox-inducible one to investigate the role of HNF1B in ccRCC. 



A

Control-mCherry
(NTC18)

Control-BFP 
sg2-BFP or
sg8-BFP

Culture cells for 12-28 days
FACs every 4 days

Transduce Cas9-expressing cells with HNF1B 
sgRNAs (sg2 or sg8) in a BFP backbone, or a 

non-targeting control (NTC18, denoted here as 
“Control”) in either an mCherry or BFP backbone

Seed 1:1 mixtures

Control-mCherry
Control-BFP

Control-mCherry
sg2-BFP

Control-mCherry
sg8-BFP

Control-mCherry
Control-BFP

Control-mCherry
sg2-BFP

Control-mCherry
sg8-BFP

At endpoint:
control cells have “outcompeted” knockout 

cells (indicated by a decrease in 
BFP:mCherry ratio)

Fig 13: Competition proliferation assay workflow. Schematic illustrating the workflow of the 
competition proliferation assays used to validate the phenotype of HNF1B knockout in vitro.
ccRCC cells expressing a constitutive Cas9 expression construct (lenti-Cas9-blast) were 
transduced with either NTC18 (a.k.a Control), HNF1B sgRNA #2 (sg2) or HNF1B sgRNA #8 
(sg8), in either an mCherry or BFP fluorescent backbone. 
Control-mCherry cells were mixed in a 50:50 ratio with either Control-BFP (as the control 
group), sg2-BFP or sg8-BFP cells. These cell mixtures were cultured for several weeks. The 
percentages of BFP and mCherry positive cells were measured every 4 days by FACs, and 
used to calculate the BFP:mCherry ratio over time. If HNF1B knockout resulted in a selective 
disadvantage, the sgRNA-expressing cells would either die or proliferate less than the controls, 
and would be outcompeted by the control cells in the assay mixture. Thus, by the endpoint of 
the assay, the percentage of sg2-BFP or sg8-BFP cells would be greatly reduced relative to the 
percentage of Control-mCherry cells (and the BFP:mCherry ratio would have decreased). By 
contrast, the proportion of BFP versus mCherry cells in the control group should remain 
constant over time.
I also carried out a “colour swap” version of this assay (not illustrated above), with the 
opposite combinations of fluorescent markers linked to sgRNA expression, to confirm that the 
fluorescent markers themselves did not affect cell fitness.
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However, as previously discussed, having constitutive Cas9/sgRNA activity might select 

for cells that escaped or adapted to HNF1B knockout, prior to the start of each experiment. 

Therefore, cells expressing constitutive Cas9 were freshly transduced with sgRNAs and 

expanded for a minimal time period immediately prior to the start of each in vitro or in vivo 

experiment, to avoid selecting for cells that lack HNF1B knockout mutations or that have already 

adapted to HNF1B knockout before the experimental start point. 

 To investigate the phenotype for HNF1B knockout in vitro, I performed competition 

proliferation assays with a number of ccRCC cell lines, namely: 786-M1A, OS-LM1B, RFX631, 

RCC-MF, UOK101, and A498 cells (Fig 14). I first transduced each cell line with a constitutive 

Cas9 expression construct (lenti-Cas9-blast). I then lentivirally transduced each of these 

constitutive Cas9 cell lines with one of the following sgRNAs: the non-targeting control sgRNA 

#18 (NTC18, a.k.a Control), HNF1B sgRNA #2 (sg2), or HNF1B sgRNA #8 (sg8), in either an 

mCherry or BFP fluorescent backbone. I used the resultant cell lines (i.e. cell lines expressing 

Control-mCherry, Control-BFP, sg2-mCherry, sg2-BFP, sg8-mCherry, or sg8-BFP) for the 

subsequent proliferation assays.  

The workflow for the competition assay is illustrated in Fig 13. Cells expressing Control-

mCherry were mixed in a 50:50 ratio with cells expressing either Control-BFP (this combination 

served as the control group), sg2-BFP, or sg8-BFP. To exclude the possibility that the fluorescent 

markers themselves could affect cell fitness, a “colour swap” version of the assay was also 

carried out by mixing cells expressing Control-BFP in a 50:50 ratio with cells expressing either 

Control-mCherry (again as the control group), sg2-mCherry, or sg8-mCherry. 

These cell combinations were then cultured for several weeks, initially for 28 days (to 

match the time scale of the 26-day screen), and then over shorter 12 or 16 day periods as the 

prevailing phenotypes became apparent. The percentages of BFP and mCherry positive cells in 

each mixture were measured every 4 days by FACs, and used to calculate the ratio of BFP versus 

mCherry cells (or mCherry versus BFP cells in the case of the colour swap) over time. 

If HNF1B knockout did indeed confer a selective disadvantage in ccRCC, one would 

expect that the sgRNA-expressing cells would either die or proliferate less than the controls, and 

would thus be outcompeted by the control cells in the assay mixture. Thus, over the course of the 

assay one would expect the percentage of sgRNA-BFP cells to decrease relative to the 

percentage of Control-mCherry cells (i.e. the BFP:mCherry ratio would decrease over time). 
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Fig 14: HNF1B knockout results in a striking selective disadvantage in multiple ccRCC cell 
lines. (A)-(F) Competition proliferation assay data showing the selective disadvantage 
conferred by HNF1B knockout in the indicated Cas9-expressing ccRCC cell lines. Control-
mCherry cells were mixed in a 50:50 ratio with either Control-BFP, sg2-BFP or sg8-BFP cells. 
The percentages of BFP and mCherry positive cells were measured every 4 days by FACs, and 
used to calculate the BFP:mCherry ratio over time.
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Fig 15: Representative FACs data from the competition assays illustrating the decrease in 
proportion of sgRNA-expressing cells relative to controls. Representative FACs data from the 
start (D0) and end (D28) of the competition assays performed in (A) 786-M1A-Cas9 and (B) 
OS-LM1B-Cas9 cells. Both sets of FACs plots show a dramatic reduction in the percentage of 
sgRNA-BFP cells (in this case using sg8-BFP cells as an example) relative to Control-mCherry
cells in the assay mixture by the endpoint of each experiment (hence the observed decrease in 
the BFP:mCherry ratios over time), thus suggesting a strong selective disadvantage associated 
with HNF1B knockout. This data is representative of both HNF1B sgRNAs (sg2 and sg8) and 
all 6 cell lines used for the competition assays.
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Fig 16: The selective disadvantage seen with HNF1B knockout is not an artefact of the 
combination of fluorescent markers used in the competition assay. (A)-(E) Proliferation data 
from the “colour swap” competition assays, in the indicated Cas9-expressing ccRCC cell lines. 
Control-BFP cells were mixed in a 50:50 ratio with either Control-mCherry, sg2-mCherry or 
sg8-mCherry cells. The percentages of BFP and mCherry positive cells were measured every 4 
days by FACs, and used to calculate the mCherry:BFP ratio over time.
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Fig 17: Representative FACs data from the “colour swap” competition assays illustrating the 
decrease in proportion of sgRNA-expressing cells relative to controls. Representative FACs 
data from the start (D0) and end (D28) of the “colour swap” competition assays performed in 
(A) 786-M1A-Cas9 and (B) OS-LM1B-Cas9 cells. Both sets of FACs plots show a dramatic 
reduction in the percentage of sgRNA-mCherry cells (in this case using sg8-mCherry cells as 
an example) relative to Control-BFP cells in the assay mixture by the endpoint of each 
experiment (hence the observed decrease in the mCherry:BFP ratios over time). Therefore, the 
strong selective disadvantage seen with HNF1B knockout is consistent and is not associated 
with a loss of cell fitness conferred by either the BFP or mCherry fluorescent markers. This 
data is representative of both HNF1B sgRNAs (sg2 and sg8) and all 5 cell lines used for the 
“colour swap” competition assays.
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Similarly, in the case of the colour swap, one would expect the percentage of sgRNA-

mCherry cells to decrease relative to the percentage of Control-BFP cells (i.e. the mCherry:BFP 

ratio would decrease over time). By contrast, the proportion of BFP versus mCherry cells in the 

control group (Control-mCherry cells mixed with Control-BFP cells) should remain constant 

over time, due to the absence of any selective pressure incurred by the non-targeting control 

sgRNAs. Thus, one would expect the BFP:mCherry ratio (or mCherry:BFP ratio) in the control 

combination to remain at approximately 1:1 over the course of the assay. 

If HNF1B loss has no effect on ccRCC cells in vitro, then the results for the sgRNA / 

Control mixtures (for both the original assay and the colour swap) would be expected to 

resemble those of the “Control-mCherry / Control-BFP” mixture: the proportions of mCherry-

positive and BFP-positive cells should remain stable over time (at approximately 1:1 ratios), as 

there would be no difference in selection pressure between cells expressing the non-targeting 

control and cells expressing HNF1B sgRNAs. 

 In all the cell lines tested, the BFP:mCherry ratio in the “Control-BFP / Control-

mCherry” group remained constant at approximately 1:1 over time, as expected (Fig 14A-F). By 

contrast, the BFP:mCherry ratio in both the “sg2-BFP / Control-mCherry” group and the “sg8-

BFP / Control-mCherry” group decreased rapidly over the course of the assay, indicating a strong 

selective disadvantage in the HNF1B knockout cells (as they are outcompeted by the controls). 

Therefore, this data demonstrates a striking phenotype for HNF1B loss in vitro, consistent with 

the strong depletion of HNF1B sgRNA abundance in the CRISPR/Cas9 screen. 

 This phenotype is also evident in the raw FACs data itself for all 6 ccRCC cell lines. 

Taking the 786-M1A-Cas9 and OS-LM1B-Cas9 Control and sg8 cell lines as representative 

examples (Fig 15A-B), if we compare the FACs plots of BFP against mCherry fluorescence on 

Day 0 with those on Day 28 for each competition assay we can see a dramatic reduction in the 

percentage of sgRNA-BFP cells relative to Control-mCherry cells in the assay mixture by the 

endpoint of each experiment (hence the observed decrease in the BFP:mCherry ratio over time), 

thus suggesting a strong selective disadvantage associated with HNF1B knockout. The data 

shown in Fig 15A-B is representative of both sg2 and sg8, across all 6 cell lines. 

 Similarly, in the “colour swap” competition assays, the mCherry:BFP ratio in the 

“Control-mCherry / Control-BFP” group remained at approximately 1:1, while the mCherry:BFP 

ratio in both “sgRNA-mCherry / Control-BFP” groups decreased rapidly over time, in all the cell 
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lines tested (Fig 16A-E). Thus, the same strong selective disadvantage is observed with HNF1B 

knockout, irrespective of the different fluorescent marker linked to HNF1B sgRNA expression. 

This verifies that the phenotype seen with HNF1B depletion is unlikely to be the result of a loss 

of cell fitness associated with either the BFP or mCherry fluorescent markers. 

Using the 786-M1A-Cas9 and OS-LM1B-Cas9 Control and sg8 cells as representative 

examples once again, FACs plots from the start (Day 0) and end (Day 28) of the “colour swap” 

competition assays also show a dramatic reduction in the percentage of sgRNA-mCherry cells 

relative to Control-BFP cells in the assay mixture by the endpoint of each experiment (hence the 

observed decrease in the mCherry:BFP ratio over time) (Fig 17A-B). This further emphasises 

that the strong selective disadvantage seen with HNF1B knockout is reproducible, and is not 

associated with a loss of cell fitness conferred by either the BFP or mCherry fluorescent markers. 

The data shown in Fig 17A-B is representative of both sg2 and sg8, across all 5 cell lines. 

To ensure that the selective disadvantage seen with HNF1B knockout in the competition 

assays was not an artefact resulting from mixing HNF1B wild-type and deficient cells, I also 

investigated the phenotype using more conventional in vitro proliferation assays. Specifically, I 

performed trypan blue cell counting and CellTitre Glo proliferation assays with 786-M1A-Cas9 

and OS-LM1B-Cas9 cells expressing either Control-BFP, sg2-BFP, or sg8-BFP. I used the same 

batch of transduced cell lines as those used for the competition assays (Figs 14A-B, 15A-B), and 

seeded the cell counting and CellTitre Glo experiments at roughly the same time as the 

competition assays so that the cells in all three experiments would have experienced HNF1B 

depletion for the same number of days. Otherwise, some experiments may have contained 

knockout cell lines that had progressed further towards selecting for subclones that had escaped 

or become resistant to HNF1B depletion. 

In both ccRCC cell line systems, and for both the cell counting (Fig 18A-B) and CellTitre 

Glo (Fig 18C-D) assays, there is a clear selective disadvantage seen in the cells expressing 

HNF1B sg2 and sg8, relative to the control cells. This is consistent with, and therefore validates, 

the phenotype seen in the competition assays (where HNF1B knockout cells were outcompeted 

by the controls). 

I also carried out cell counting and CellTitre Glo proliferation assays with 786-M1A-

Cas9 and OS-LM1B-Cas9 cells expressing either Control-mCherry, sg2-mCherry, or sg8-

mCherry. Once again, I used the same batch of transduced cell lines as those used for the 
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competition assays (Figs 16A-B, 17A-B), and seeded all three proliferation experiments (the cell 

counting, CellTitre Glo and competition assays) at the same time to avoid using cells at different 

stages of knockout selection pressure. 

As seen previously, cells expressing HNF1B sg2 and sg8 proliferate at a markedly 

reduced rate compared to the control cells (Fig 19A-D). This phenotype was seen in both ccRCC 

cell line systems and for both the cell counting (Fig 19A-B) and CellTitre Glo (Fig 19C-D) 

assays. Moreover, this data is consistent with the data obtained from the BFP cell lines, and from 

the competition assays. Thus, this further establishes that the selective disadvantage observed 

following HNF1B loss is reproducible across multiple assay types, and is independent of the 

fluorescent marker linked to sgRNA expression. 

Futhermore, both the cell counting and CellTitre Glo assays do not involve mixing 

control and knockout cells, thus avoiding the potential effects of cell signalling between cell lines 

that could influence cell proliferation. Therefore, the phenotype seen with HNF1B knockout is 

not a function of mixing cell lines, as the same phenotype is observed in more conventional 

proliferation assays. 

To confirm that HNF1B was successfully depleted in the competition, cell counting, and 

CellTitre Glo proliferation assays, I cultured the individual BFP and mCherry cell lines 

independently (in parallel with the cell line combinations in each competition assay), and used 

these “solo” cell line cultures to obtain cell pellets for protein and/or RNA samples on Day 0 and 

at each subsequent 4-day assay time point. I then extracted whole cell protein lysates from the 

Day 0 pellets and blotted for HNF1B in the BFP versions (Fig 20A) and mCherry versions (Fig 

20B) of each cell line, to confirm that cells expressing sg2 or sg8 were HNF1B-deficient, and 

cells expressing the non-targeting control sgRNA were still HNF1B wild-type, at the start of 

each assay. 

Indeed, in all the ccRCC cell line systems tested, HNF1B was strongly expressed in cells 

transduced with the non-targeting control sgRNA. By contrast, cells transduced with HNF1B sg2 

or sg8 showed a highly efficient knockout with an almost complete depletion of HNF1B protein 

(Fig 20A-B). 

 

 



Fig 18: The selective disadvantage associated with HNF1B knockout is also observed in 
more conventional in vitro proliferation assays. (A)-(B) Trypan blue cell counting 
proliferation assays and (C)-(D) CellTitre Glo proliferation assays, performed with 786-M1A-
Cas9 and OS-LM1B-Cas9 cells transduced with Control-BFP, sg2-BFP, or sg8-BFP. 
Consistent with the data from the competition assays, the HNF1B knockout (sg2 and sg8) cells 
exhibited a proliferative disadvantage relative to the Control cells. This reduced proliferation 
was observed in both ccRCC cell line systems, and in both types of in vitro proliferation assay 
(neither of which involve mixing control and knockout cells), thus validating the data obtained 
from the competition assays.
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Fig 19: The selective disadvantage seen with HNF1B knockout in conventional in vitro 
proliferation assays is consistent and reproducible between BFP and mCherry cell lines.
(A)-(B) Trypan blue cell counting proliferation assays and (C)-(D) CellTitre Glo proliferation 
assays performed with 786-M1A-Cas9 and OS-LM1B-Cas9 cells, this time transduced with 
Control-mCherry, sg2-mCherry, or sg8-mCherry. Once again, consistent with the data from 
the competition assays, the HNF1B knockout (sg2 and sg8) cells exhibited a proliferative 
disadvantage relative to the Control cells. This was observed in both ccRCC cell line systems 
and in both types of in vitro proliferation assay (neither of which involve mixing control and 
knockout cells). This validates the data from the competition assays and the data from the 
Trypan blue cell counting CellTitre Glo proliferation assays performed with the Control-, sg2-, 
and sg8-BFP cell lines.
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Fig 20: Western blotting for HNF1B in the cell lines used for the proliferation and 
competition assays. Western blots for HNF1B in whole cell protein lysates extracted on Day 0 
from (A) the BFP versions and (B) the mCherry versions of the indicated ccRCC cell lines, 
which were used for the competition, cell counting and CellTitre Glo proliferation assays.
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2.3)	The	selective	disadvantage	with	HNF1B	knockout	does	not	seem	to	be	an	off-target	effect	

To confirm that the selective disadvantage seen with HNF1B loss was not the result of an 

off-target effect of the HNF1B sgRNAs, I also performed the same competition proliferation 

assays (including the “colour swap”) in HeLa cells, which do not express HNF1B. One would 

expect that HNF1B knockout would have no effect in a cell line that does not express HNF1B, 

unless the HNF1B sgRNAs induced an off-target effect that adversely affected cell survival or 

proliferation. 

I first transduced parental, unmodified HeLa cells with the same constitutive Cas9 

expression construct (lenti-Cas9-blast) used in the ccRCC cells. I then lentivirally transduced the 

HeLa-Cas9 cells with the same sgRNA constructs used for the ccRCC competition assays (i.e. 

Control, HNF1B sg2, or HNF1B sg8, each in either an mCherry or BFP backbone). 

 As before, I mixed Control-mCherry cells in a 50:50 ratio with cells containing either 

Control-BFP (the control group), sg2-BFP, or sg8-BFP. Meanwhile, for the “colour swap”, I 

mixed Control-BFP cells in a 50:50 ratio with cells containing either Control-mCherry (again as 

the control group), sg2-mCherry, or sg8-mCherry. As with the ccRCC Cas9 competition assays, I 

cultured these cell combinations for 28 days while measuring the percentages of BFP and 

mCherry positive cells in each mixture every 4 days by FACs, and calculated the ratio of BFP 

versus mCherry cells (or mCherry versus BFP cells for the “colour swap”) over time. 

The BFP:mCherry ratio in the “Control-BFP / Control-mCherry” group (Fig 21A), and 

the mCherry:BFP ratio in the “Control-mCherry / Control-BFP” group for the “colour swap” 

(Fig 21B), both remained at approximately 1:1 as expected. However, in contrast to the ccRCC 

competition assays, the BFP:mCherry ratio in the “sg2-BFP / Control-mCherry” and “sg8-BFP / 

Control-mCherry” groups stayed relatively constant, at a roughly 1:1 ratio over time (Fig 21A). 

Similarly, in the “colour swap” assay, the mCherry:BFP ratio in both “sgRNA-mCherry / 

Control-BFP” groups also remained at approximately 1:1, again phenocopying the control group 

(and again indicating that there is no loss of cell fitness associated with either the BFP or 

mCherry fluorescent markers) (Fig 21B). In other words, HeLa-Cas9 cells expressing sg2 or sg8 

seemed to proliferate at the same rate as cells expressing the non-targeting control, and did not 

exhibit the selective disadvantage seen in ccRCC cells expressing HNF1B sgRNAs. 
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Fig 21: HNF1B knockout has no effect in non-ccRCC cell lines that do not express HNF1B.
Proliferation data from the competition assays performed in HeLa-Cas9 cells, for both (A) the 
original fluorescent marker combination and (B) the “colour swap” combination. (C) Western 
blots for HNF1B in whole cell protein lysates extracted on Day 0 from the BFP versions (left) 
and the mCherry versions (right) of the HeLa-Cas9 cell lines used for the competition 
proliferation assays.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 4 8 12 16 20 24 28

R
at

io
 (m

C
he

rry
vs

 B
FP

)

Day

HeLa

C

Control mCherry / Control BFP
sg2 mCherry / Control BFP
sg8 mCherry / Control BFP

HNF1B

B-actin

C
on

tro
l

sg
2

sg
8

HeLa 
(BFP)

C
on

tro
l

sg
2

sg
8

HeLa 
(mCherry)

63



HeLa D0

100

105

102

103

104

100 105102 103 104

sg8 BFP

C
trl

 m
C

he
rry

HeLa D28

100

105

102

103

104

100 105102 103 104

sg8 BFP

C
trl

 m
C

he
rry

HeLa D0

100

105

102

103

104

100 105102 103 104

Ctrl BFP

sg
8 

m
C

he
rry

HeLa D28

100

105

102

103

104

100 105102 103 104

Ctrl BFP

sg
8 

m
C

he
rry

A

B

Fig 22: Representative FACs data from the competition assays in HeLa-Cas9 cells, 
illustrating the lack of a phenotype for HNF1B knockout in these cells.
Representative FACs data from the start (D0) and end (D28) of the competition assays 
performed in HeLa-Cas9 cells, for both (A) the original fluorescent marker combination and 
(B) the “colour swap” combination. Both sets of FACs plots show no observable change in the 
percentage of sgRNA-expressing cells (in this case using sg8-BFP/mCherry cells as an 
example) relative to Control cells in the assay mixture by the endpoint of each experiment, 
regardless of the fluorescent marker associated (hence the stable 1:1 BFP:mCherry and 
mCherry:BFP ratios over time). This data is representative of both HNF1B sgRNAs (sg2 and 
sg8).
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This lack of a phenotype in a cell line that does not express HNF1B suggests that the 

selective disadvantage observed with HNF1B knockout is not the result of an off-target effect of 

the HNF1B sgRNAs, but is instead associated with the loss of HNF1B protein. 

To verify that the HeLa-Cas9 Control- and sgRNA-expressing cell lines were indeed 

HNF1B-deficient, I performed Western blots for HNF1B in whole cell protein lysates from the 

cells used in the competition assay. As with the ccRCC cell lines, I cultured the individual HeLa-

Cas9 Control, sg2, and sg8 BFP and mCherry cell lines in parallel with the competition assay 

cell mixtures, and took cell pellets for protein and/or RNA on Day 0 and at each time point. I 

then extracted whole cell protein lysates from the Day 0 pellets and blotted for HNF1B in all 6 

cell lines. The subsequent Western blot data confirmed that the HeLa cell lines used in the 

competition assays were all HNF1B-deficient (Fig 21C). 

As before, the lack of a phenotype in HeLa-Cas9 cells is also evident in the raw FACs 

data from the start (D0) and end (D28) of the competition assays performed, for both the original 

fluorescent marker combination (Fig 22A) and the “colour swap” combination (Fig 22B). Taking 

the HeLa-Cas9 Control and sg8 cells as examples, both sets of FACs plots show no observable 

change in the percentage of sgRNA-expressing cells relative to Control cells in the assay mixture 

by the endpoint of each experiment, regardless of the fluorescent marker associated (hence the 

stable 1:1 BFP:mCherry and mCherry:BFP ratios over time). Note that the data shown in Fig 

22A-B is representative of both sg2 and sg8. 

This further demonstrates that there is no phenotype associated with HNF1B sgRNA 

expression in HeLa cells (which do not express HNF1B), and thus supports the conclusion that 

the selective disadvantage observed with HNF1B knockout in ccRCC cell lines is most likely the 

result of HNF1B depletion rather than an off-target effect of the sgRNAs used. 

 

2.4)	The	selective	disadvantage	with	HNF1B	knockout	seems	to	be	specific	to	HNF1B	loss	

To confirm that the phenotype seen with HNF1B knockout was indeed specific to the loss 

of HNF1B protein, I performed competition proliferation assays comparing control cells 

(transduced with the Control sgRNA NTC18, and empty vector), HNF1B knockout cells without 

rescue (transduced with HNF1B sg8, and empty vector), and HNF1B knockout cells with rescue 

(transduced with HNF1B sg8, and an exogenous HNF1B rescue construct comprising an 

exogenous HNF1B transgene under the control of a constitutive promoter, with the HNF1B 
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cDNA sequence modified by site-directed mutagenesis to mutate the sg8 target site and make it 

untargetable, thus preventing Cas9 cleavage of the transgene cDNA). 

786-M1A-Cas9 and OS-LM1B-Cas9 ccRCC cells were first transduced with either empty 

vector or the exogenous HNF1B rescue construct (constitutively expressed), and then transduced 

with either Control-BFP, Control-mCherry, sg8-BFP or sg8-mCherry. The resultant cell lines 

were subsequently used for the competition assay mixtures. Note that cell lines containing the 

rescue construct are denoted “(+ rescue)” in Figure 23; all other cell lines contain only the empty 

vector. 

For the first three experimental groups, Control-mCherry (+ empty vector) cells were 

mixed in a 50:50 ratio with either Control-BFP (+ empty vector), sg8-BFP (+ empty vector) or 

sg8-BFP (+ rescue) cells. In a fourth experimental group, sg8-mCherry (+ rescue) cells were 

mixed in a 50:50 ratio with sg8-BFP (+ empty vector) cells. The percentages of BFP and 

mCherry positive cells were measured every 4 days by FACs, and used to calculate the 

BFP:mCherry ratio over time.  

Consistent with previous results, the BFP:mCherry ratio remained at approximately 1:1 in 

the “Control-BFP / Control-mCherry” group, but decreased rapidly in the “sg8 BFP / Control 

mCherry” group, in both the 786-M1A-Cas9 and OS-LM1B-Cas9 cell lines (Fig 23A-B).  

The “sg8 (+ rescue) BFP / Control mCherry” group, however, exhibited a phenotype 

more similar to the Control group, with the BFP:mCherry ratio staying relatively high and closer 

to 1:1 over time (Fig 23A-B). This suggests that knockout cells expressing the exogenous 

HNF1B rescue construct experience a recovery of cell fitness, enabling them to survive and 

proliferate just as well as HNF1B wild-type control cells. Thus, reintroducing HNF1B expression 

in cells that have lost the endogenous protein seems to rescue the selective disadvantage seen 

with HNF1B knockout.  

Consistent with this, the “sg8 BFP / sg8 (+ rescue) mCherry” group phenocopied the “sg8 

BFP / Control mCherry” group, with the BFP:mCherry ratio also falling dramatically over time 

(Fig 23A-B). In other words, knockout cells expressing the exogenous HNF1B transgene are 

able to outcompete knockout cells without rescue, with a similar efficiency to control cells. This 

further suggests that HNF1B restoration serves to rescue the loss of cell fitness in knockout cells, 

allowing them to survive and proliferate just as well as cell lines expressing a non-targeting 

sgRNA. 
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Fig 23: The selective disadvantage associated with HNF1B knockout is rescued by 
exogenous HNF1B restoration. P.T.O for figure legend
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Fig 23: The selective disadvantage associated with HNF1B knockout is rescued by 
exogenous HNF1B restoration.
(A)-(B) Proliferation data from the rescue competition assays performed with 786-M1A-Cas9 
(A) and OS-LM1B-Cas9 (B) cells. In the first three experimental groups, Control-mCherry (+ 
empty vector) cells were mixed in a 50:50 ratio with either Control-BFP (+ empty vector), sg8-
BFP (+ empty vector) or sg8-BFP (+ rescue) cells. In a fourth experimental group, sg8-
mCherry (+ rescue) cells were mixed in a 50:50 ratio with sg8-BFP (+ empty vector) cells. The 
percentages of BFP and mCherry positive cells were measured every 4 days by FACs, and 
used to calculate the BFP:mCherry ratio over time.

(C)-(D) Proliferation data from the “colour swap” rescue competition assays performed with 
786-M1A-Cas9 (C) and OS-LM1B-Cas9 (D) cells. In the first three experimental groups, 
Control-BFP (+ empty vector) cells were mixed in a 50:50 ratio with either Control-mCherry
(+ empty vector), sg8-mCherry (+ empty vector) or sg8-mCherry (+ rescue) cells. In the fourth 
experimental group, sg8-BFP (+ rescue) cells were mixed in a 50:50 ratio with sg8-mCherry (+ 
empty vector) cells. The percentages of BFP and mCherry positive cells were measured every 
4 days by FACs, and used to calculate the mCherry:BFP ratio over time.

(E)-(F) Western blots for HNF1B in whole cell protein lysates extracted on Day 0 from the (E) 
BFP versions and the (F) mCherry versions of the indicated 786-M1A-Cas9 and OS-LM1B-
Cas9 cell lines, which were used for the rescue competition proliferation assays. Endogenous 
HNF1B appears at approximately 61kDa, while exogenous HNF1B appears at 72kDa (owing 
to the presence of a 6xMyc tag at the N-terminus of the protein).
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Taken together, this data suggests that the phenotype observed with HNF1B knockout is 

most likely specifically associated with HNF1B depletion, rather than being the result of an off-

target effect. 

The “colour swap” versions of the rescue competition assays showed similar results. In 

the first three experimental groups, Control-BFP (+ empty vector) cells were mixed in a 50:50 

ratio with either Control-mCherry (+ empty vector), sg8-mCherry (+ empty vector) or sg8-

mCherry (+ rescue) cells. In the fourth experimental group, sg8-BFP (+ rescue) cells were mixed 

in a 50:50 ratio with sg8-mCherry (+ empty vector) cells. The percentages of BFP and mCherry 

positive cells were measured every 4 days by FACs, and used to calculate the mCherry:BFP ratio 

over time. 

 As seen in previous experiments, the mCherry:BFP ratio remained at approximately 1:1 

in the “Control mCherry / Control BFP” group, but decreased rapidly in the “sg8 mCherry / 

Control BFP” group, in both the 786-M1A-Cas9 and OS-LM1B-Cas9 cell lines (Fig 23C-D).  

The “sg8 (+ rescue) mCherry / Control BFP” group again exhibited a phenotype more 

similar to the Control group, with the mCherry:BFP ratio staying relatively high and closer to 1:1 

over time (Fig 23C-D). Meanwhile, as seen before, the “sg8 mCherry / sg8 (+ rescue) BFP” 

group phenocopied the “sg8 mCherry / Control BFP” group, with the mCherry:BFP ratio 

decreasing similarly over time (Fig 23C-D).  

Therefore, this data supports the idea that HNF1B rescue serves to restore cell fitness in 

knockout cells, enabling them to survive and proliferate to a similar extent as HNF1B wild-type 

controls. Additionally, as with the other “colour swap” competition assays, this set of 

experiments also establishes that the selective disadvantage seen with HNF1B knockout, and the 

phenotypic rescue seen with HNF1B restoration, are observable regardless of the fluorescent 

marker being expressed in the cells, and thus that these phenomena are not artefacts of the assay 

itself. 

During each rescue competition assay, I also cultured the individual BFP and mCherry 

cell lines independently, in parallel with the cell line combinations in each experiment. As with 

the previous competition assays, I used these “solo” cell line cultures to obtain cell pellets for 

protein and/or RNA samples on Day 0, and at each subsequent 4-day assay time point. I then 

extracted whole cell protein lysates from the Day 0 pellets for each cell line (both BFP and 

mCherry versions), and blotted for HNF1B. 
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The Western blot data confirmed that, at the start of each assay, the Control (+ empty 

vector) cells still expressed endogenous wild-type HNF1B, while the HNF1B knockout cells 

without rescue (transduced with sg8 + empty vector) were HNF1B-deficient. Meanwhile, the 

HNF1B knockout cells with rescue (transduced with sg8 + the rescue construct) expressed 

considerably less endogenous HNF1B, while simultaneously expressing high levels of 

exogenous HNF1B protein (Fig 23E-F). Note that endogenous HNF1B appears at approximately 

61kDa, while exogenous HNF1B appears at 72kDa owing to the presence of a 6xMyc tag at the 

N-terminus of the protein. 

Therefore, this data verifies that in both rescue competition assays, the non-targeting 

control sgRNA had no effect on HNF1B expression, sg8 had successfully mediated efficient 

constitutive knockout of only endogenous HNF1B protein, and the exogenous HNF1B transgene 

was successfully expressed at levels that are similar to, or higher than, the levels of endogenous 

HNF1B protein.  

Even if the expression levels of exogenous HNF1B exceeded those of endogenous 

HNF1B, the extent of rescue was similar at the Day 12 time point between both sets of 786-

M1A-Cas9 and OS-LM1B-Cas9 rescue competition assays (Fig 23A-D), thus suggesting that the 

exogenous HNF1B transgene was expressed without reaching levels of overexpression that 

would introduce artifacts in the data. 

 

2.5)	Investigating	the	phenotype	for	HNF1B	CRISPRi	knockdown	in	vitro	

To confirm that the selective disadvantage seen with HNF1B CRISPR/Cas9 knockout 

was not an effect of double-stranded break formation by Cas9, I also performed competition 

proliferation assays involving HNF1B knockdown, using the CRISPRi system. 

The CRISPRi system employs the use of a catalytically dead Cas9 protein (dCas9) fused 

to a KRAB domain. The dCas9 protein is targeted to specific genomic DNA sites by sgRNAs in 

the same manner as wild-type Cas9. However, instead of creating a double-stranded break 

(DSB), the dCas9 protein binds to the DNA and the attached KRAB domain mediates 

transcriptional repression at that site125,126. 

I used 786-M1A and OS-LM1B ccRCC cell lines in the lab that stably expressed a 

dCas9-KRAB-mCherry transgene. I designed a number of tandem HNF1B sgRNA constructs to 

mediate protein knockdown with the CRISPRi system. Each tandem construct comprised two 
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HNF1B sgRNAs (specifically designed for CRISPRi), each flanked by its own U6 promoter and 

sgRNA scaffold. In other words, the tandem construct structure (devised by a postdoc in the lab), 

was as follows: U6 promoter—HNF1B CRISPRi sgRNA—sgRNA scaffold—U6 promoter—

HNF1B CRISPRi sgRNA—sgRNA scaffold. The rationale behind using two sgRNAs instead of 

one was that this approach reportedly promotes better targeting efficiency and specificity127 for 

the dCas9 enzyme. The CRISPRi sgRNA sequences were obtained from either the genome-scale 

CRISPRi sgRNA library designed by Gilbert et al.126, or from the Broad Institute online sgRNA 

design tool (https://portals.broadinstitute.org/gpp/public/). 

I selected 3 tandem HNF1B sgRNA constructs for use: two constructs that were designed 

to target HNF1B but ultimately did not alter HNF1B levels (“HNF1B CRISPRi #1” and 

“HNF1B CRISPRi #3”, both of which acted as controls), and a third tandem construct that 

successfully mediated HNF1B knockdown (“HNF1B CRISPRi #2”). As a control, I used a 

tandem construct comprised of two non-targeting “scramble” CRISPRi sgRNAs (the “Scramble 

Control”) already available in the lab.  

All four tandem constructs were cloned into a BFP fluorescent backbone. I transduced 

them into 786-M1A-dCas9-KRAB-mCherry and OS-LM1B-dCas9-KRAB-mCherry cells, and 

sorted for the brightest mCherry+/BFP+ population to isolate successfully transduced cells 

expressing high levels of the dCas9-KRAB and tandem sgRNA constructs. However, with 

mCherry already expressed in the cell lines (originally designed as a transduction selection 

marker and to provide a readout of dCas9-KRAB expression), I had to modify the competition 

assay set-up.  

Thus, instead of comparing the proportions of BFP-expressing vs mCherry-expressing 

cells in my assay mixtures, I mixed untransduced parental BFP– cells (not transduced with 

sgRNAs) in a 50:50 ratio with BFP+ cells transduced with either the Scramble Control, HNF1B 

CRISPRi #1, HNF1B CRISPRi #2 or HNF1B CRISPRi #3 constructs. I then measured the 

percentages of BFP positive versus BFP negative cells every 4 days by FACs, and calculated the 

BFP+/BFP– ratio over time.  

The BFP+/BFP– ratio in the “HNF1B CRISPRi #1 vs untransduced” and “HNF1B 

CRISPRi #3 vs untransduced” experimental groups remained relatively high (closer to a 1:1 

ratio) and stable over the course of the assay in both cell lines (Fig 24A-B). This is consistent 

with the fact that neither of these constructs successfully facilitate HNF1B knockdown (Fig 24C-
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D). By contrast, the BFP+/BFP– ratio in the “HNF1B CRISPRi #2 vs untransduced” groups 

decreased rapidly over time in both cell lines (Fig 24A-B), similar to the striking phenotype seen 

with HNF1B knockout versus control cells in the competition assays performed with the 

CRISPR/Cas9 system (Fig 14A-B, Fig 16A-B). Indeed, the HNF1B CRISPRi #2 tandem sgRNA 

construct is the only one that successfully knocks down HNF1B (Fig 24C-D). This indicates that 

cells experiencing HNF1B knockdown are rapidly outcompeted by untransduced HNF1B wild-

type cells in the mixture, and are thus under a strong selective disadvantage. 

Therefore, this data reaffirms the striking phenotype for HNF1B loss in vitro. 

Furthermore, the consistent phenotypes observed with HNF1B CRISPRi knockdown (which is 

based on transcriptional repression and does not involve the formation of DSBs) and HNF1B 

CRISPR/Cas9 knockout (which does involve the formation of DSBs) suggest that the selective 

disadvantage associated with HNF1B depletion is indeed related to the loss of HNF1B and its 

functions, rather than a loss of cell fitness resulting from double-stranded break formation by 

Cas9. 

To determine whether each HNF1B tandem sgRNA construct was capable of knocking 

down HNF1B, I extracted whole cell protein lysates and total RNA from the cell lines used in 

each CRISPRi competition assay, and performed qPCRs (Fig 24C) and Western blots (Fig 24D) 

for HNF1B. 

For the qPCR data in the 786-M1A-dCas9-KRAB-mCherry and OS-LM1B-dCas9-

KRAB-mCherry sets of cell lines, I normalised the HNF1B mRNA levels in each HNF1B 

tandem sgRNA sample to the HNF1B mRNA levels in the corresponding Scramble Control 

sample for each set of cell lines, to check for any relative decreases in HNF1B expression. The 

HNF1B CRISPRi #2 construct mediated an 88.9% decrease (a fold change of 0.111) in HNF1B 

mRNA levels in 786-M1A-dCas9-KRAB-mCherry cells, and a 52% decrease (a fold change of 

0.480) in OS-LM1B-dCas9-KRAB-mCherry cells (Fig 24C). By contrast, the HNF1B CRISPRi 

#1 and HNF1B CRISPRi #3 constructs failed to knock down HNF1B in both cell line systems 

(Fig 24C). 

This is also reflected in the Western blot data, where HNF1B protein levels are reduced in 

cells expressing HNF1B CRISPRi #2 compared to cells expressing the Scramble Control (Fig 

24D). However, cells expressing HNF1B CRISPRi #1 and HNF1B CRISPRi #3 show HNF1B 
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Fig 24: CRISPRi-mediated knockdown of HNF1B confers the same selective disadvantage, 
suggesting it is not due to /double-stranded break formation by Cas9.
(A)-(B) Competition proliferation assay data showing the selective disadvantage conferred by 

HNF1B CRISPRi knockdown in (A) 786-M1A-dCas9-KRAB-mCherry cells and (B) OS-
LM1B-dCas9-KRAB-mCherry cells. Untransduced parental BFP– cells (not transduced with 
sgRNAs) were mixed in a 50:50 ratio with BFP+ cells transduced with either the Scramble 
Control, HNF1B CRISPRi #1, HNF1B CRISPRi#2 or HNF1B CRISPRi #3 constructs. The 
percentages of BFP positive versus BFP negative cells were measured every 4 days by FACs, 
and used to calculate the BFP+/BFP– ratio over time.

(C) HNF1B qPCR data for the indicated 786-M1A-dCas9-KRAB-mCherry cell lines (red) and 
OS-LM1B-dCas9-KRAB-mCherry cell lines (black) used in the CRISPRi competition assays.
HNF1B mRNA levels in each sample were normalised to the Scramble Control sample for 
each set of cell lines. The HNF1B CRISPRi #2 tandem sgRNA construct is the only one that 
successfully mediates HNF1B knockdown.

(D) Western blots for HNF1B in whole cell protein lysates from the indicated 786-M1A-
dCas9-KRAB-mCherry cell lines (left) and OS-LM1B-dCas9-KRAB-mCherry cell lines 
(right) used in the CRISPRi competition assays. HNF1B is only knocked down in cells 
containing the HNF1B CRISPRi #2 construct.
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protein levels similar to those seen in the Scramble Control cells (Fig 24D). This is seen for both 

the 786-M1A-dCas9-KRAB-mCherry and OS-LM1B-dCas9-KRAB-mCherry sets of cell lines. 

 

2.6)	Investigating	the	phenotype	for	HNF1B	CRISPR/Cas9	knockout	in	vivo	

Taken together, the in vitro assays I performed established a clear phenotype for HNF1B 

loss. The next step was to conduct in vivo experiments to determine whether HNF1B is as 

important for tumour survival and tumour growth as it is for the survival and proliferation of 

ccRCC cell lines in vitro. 

The parental 786-M1A and OS-LM1B cells, and thus each control or knockout cell line 

derived from them, contain a thymidine kinase-GFP-luciferase (TGL) transgene122. The 

luciferase allowed me to image tumour cells, and thus monitor tumour growth, in vivo by 

injecting luciferin and measuring the bioluminescent signal emitted. 

 To investigate whether HNF1B loss also produced a phenotype in vivo, I carried out fresh 

transductions of 786-M1A-Cas9 and OS-LM1B-Cas9 ccRCC cells with the Control-BFP, sg2-

BFP and sg8-BFP constructs. I then used these cell lines to carry out a subcutaneous tumour 

xenograft assay in immunocompromised nude/athymic mice. This mouse strain lacks fur, which 

allows better subcutaneous tumour visibility and palpability. I prepared the 786-M1A-Cas9 and 

OS-LM1B-Cas9 control and knockout cells for injection by making up each cell line as a cell 

suspension in a mixture of sterile PBS and matrigel (50:50), at a concentration of 1x106 cells/ml. 

 We had a total of 6 experimental groups (i.e. one group per cell line: 786-M1A-Cas9 

Control, HNF1B sg2 and HNF1B sg8, and OS-LM1B-Cas9 Control, HNF1B sg2 and HNF1B 

sg8), with 5 mice per group. For each cell line, 100ul of cell suspension (a total of 100,000 cells) 

was injected subcutaneously into both the left and right flanks of each mouse, for a total of 10 

injections per cell line. 

Tumour growth was measured weekly by intravital bioluminescence imaging4: I 

administered D-luciferin by intraperitoneal injection (injecting a total of 100ul of 15mg/ml D-

luciferin dissolved in 1X sterile PBS), and measured the resultant bioluminescent signal with the 

Xenogen IVIS. These bioluminescence measurements were then normalised to day 0 values and 

taken as a quantitative measure of tumour growth. Additionally, once the subcutaneous tumours 

became visible and palpable (in week 4 after injection), the bioluminescence measurements were 

supplemented with calliper measurements of tumour size (performed blind and by the same 



 75 

individual on a weekly basis). These calliper measurements were used to calculate approximate 

tumour volume over time as an additional measure of tumour growth. 

The experiment was allowed to continue until the largest Control tumours reached a mean 

diameter of 12mm. This was after 7 weeks of tumour growth. At this experimental endpoint, the 

animals were euthanized and I excised the subcutaneous tumours, excluding as much normal 

murine tissue as possible. I weighed the tumours to determine final tumour mass, and then fixed 

several tumours per experimental group in 10% formalin for immunohistochemistry.  

 The bioluminescence imaging data for both the 786-M1A-Cas9 (Fig 25A) and OS-

LM1B-Cas9 (Fig 25B) subcutaneous tumour xenograft assays was consistent with the in vitro 

proliferation and competition assay data: control tumours grew rapidly, whereas HNF1B 

knockout tumours (with either sg2 or sg8) exhibited markedly impaired growth (Fig 25A-B). 

This difference between the control and knockout was especially striking in the OS-LM1B 

tumours, and indeed the in vitro phenotype was also more pronounced in OS-LM1B cells. 

Similarly, the calliper measurements of tumour volume for both the 786-M1A-Cas9 (Fig 

25C) and OS-LM1B-Cas9 (Fig 25D) subcutaneous tumour xenograft assays also showed a rapid 

increase in tumour size in the control tumours, but greatly reduced growth in the HNF1B 

knockout tumours, especially in the OS-LM1B system (Fig 25C-D). 

Correspondingly, if we look at the final tumour weights, the knockout tumours were 

significantly smaller compared to control tumours at the end of the experiment, in both the 786-

M1A-Cas9 (Fig 25E) and OS-LM1B-Cas9 (Fig 25F) subcutaneous tumour xenograft assays. 

Collectively, these three sets of in vivo tumour growth data establish that the selective 

disadvantage conferred by HNF1B knockout in vitro is also observed in vivo, further 

underscoring the importance of HNF1B in ccRCC. 

To confirm that the control and knockout cell lines injected for each in vivo experiment 

were indeed HNF1B wild-type and HNF1B-deficient respectively, I performed HNF1B Western 

blots with whole cell protein lysates from the cells used for the subcutaneous tumour xenograft 

assays. I took cell pellets for protein extraction from the freshly transduced 786-M1A-Cas9 and 

OS-LM1B-Cas9 Control-BFP, sg2-BFP and sg8-BFP cells, 4 days prior to subcutaneous 

injection, to determine the levels of HNF1B expression (or lack thereof) at a time point as close 

as possible to the point of tumour implantation. 
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Fig 25: HNF1B knockout also impairs tumour initiation and growth in vivo.
(A)-(B) Bioluminescence measurements of 786-M1A-Cas9 and OS-LM1B-Cas9 Control and 
HNF1B knockout (sg2 and sg8) tumour growth in each subcutaneous tumour xenograft assay.
(C)-(D) Calliper measurements of tumour volume for 786-M1A-Cas9 and OS-LM1B-Cas9 
Control and HNF1B knockout (sg2 and sg8) tumours, once they became palpable on Day 24 of 
each subcutaneous tumour xenograft assay.
(E)-(F) Final tumour weights for the 786-M1A-Cas9 and OS-LM1B-Cas9 Control and HNF1B 
knockout (sg2 and sg8) tumours at the endpoint of each subcutaneous tumour xenograft assay.
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Fig 26: Characterisation of HNF1B expression in ccRCC cell lines prior to injection, and in 
the resultant tumours.
(A) Western blots for HNF1B in whole cell protein lysates extracted 4 days prior to injection 
from the 786-M1A-Cas9 and OS-LM1B-Cas9 Control-BFP, sg2-BFP and sg8-BFP cell lines 
used for the subcutaneous tumour xenograft assay. 

(B) HNF1B immunohistochemistry in tissue sections from 786-M1A-Cas9 Control (left), sg2 
(middle), and sg8 (right) subcutaneous tumours from the xenograft assay.
(C) Vimentin immunohistochemistry in tissue sections from the same 786-M1A-Cas9 Control 
(left), sg2 (middle), and sg8 (right) subcutaneous tumours that were stained for HNF1B.

(D) HNF1B immunohistochemistry in tissue sections from OS-LM1B-Cas9 Control (left), sg2 
(middle), and sg8 (right) subcutaneous tumours from the xenograft assay.  
(E) Vimentin immunohistochemistry in tissue sections from the same OS-LM1B-Cas9 Control 
(left), sg2 (middle), and sg8 (right) subcutaneous tumours that were stained for HNF1B.
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The HNF1B Western blot data verified that, in both sets of injected cell lines, HNF1B 

was strongly expressed in cells transduced with the non-targeting control sgRNA, and almost 

completely depleted in cells transduced with HNF1B sg2 or sg8, prior to the start of each in vivo 

experiment (Fig 26A). 

Finally, I wanted to determine the levels of HNF1B expression in the control and 

knockout tumours at the end of each experiment. Firstly, I wanted to confirm whether the 

endpoint control tumours were still HNF1B-positive. Secondly, I wanted to ascertain whether the 

small tumours formed from knockout cells were entirely HNF1B-negative (and had thus become 

HNF1B-independent, and somehow circumvented the effects of HNF1B loss), or whether they 

were in fact entirely HNF1B-positive (and thus consisted of cells that had not undergone gene 

knockout), or whether these “knockout” tumours were comprised of both HNF1B-positive and 

HNF1B-negative escapers. 

To address these questions, I used the excised 786-M1A-Cas9 and OS-LM1B-Cas9 

control and HNF1B knockout (sg2 and sg8) tumours that I had fixed in 10% formalin at the end 

of each subcutaneous tumour xenograft assay. Each tumour was fixed in 10% formalin 

overnight, then washed with 1X PBS and transferred to 70% Ethanol (EtOH; see also Materials 

and Methods). The fixed tumours were then used to make paraffin-embedded tissue blocks, 

which were cut into sections and placed on slides for immunohistochemistry (IHC; all courtesy 

of the Addenbrooke’s Hospital Tissue Bank service). 

 I then performed HNF1B IHC with tumour sections from 786-M1A-Cas9 and OS-

LM1B-Cas9 Control and knockout (sg2 and sg8) tumours (Fig 26B, D). I used the Leica Bond 

machine to carry out all my IHC stainings, and used the Zeiss Axioscan to scan and image the 

slides afterwards. I used the HNF1B antibody from the Human Protein Atlas (HPA, supplied by 

Sigma) at an antibody concentration of 1:200, diluted in Bond buffer solution (see also Materials 

and Methods). Since HNF1B is a transcription factor, one would expect to see nuclear staining 

for HNF1B. 

Control tumours exhibited stronger staining for HNF1B, with a greater frequency of 

HNF1B-positive nuclei that also stained more intensely (Fig 26B, D; left image in each panel), 

compared to the sg2 and sg8 knockout tumours (Fig 26B, D; middle & right images in each 

panel). Therefore, the endpoint control tumours were indeed still HNF1B-positive. However, the 

control tumours also contained some HNF1B-negative nuclei (Fig 26B, D; left image in each 
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panel), with varying proportions of these HNF1B-negative cells between different control 

tumours (data not shown), but always a minority of HNF1B-negative cells relative to the 

HNF1B-positive cells. 

The sg2 and sg8 tumours also showed a mixture of HNF1B-positive and HNF1B-

negative nuclei (Fig 26B, D; middle & right images in each panel). However, relative to the 

Control tumours, the HNF1B knockout tumours exhibited a greater frequency of HNF1B-

negative nuclei, and correspondingly a lower frequency of HNF1B-positive nuclei that also 

stained less intensely with HNF1B antibody (Fig 26B, D; middle & right images in each panel). 

 The presence of both HNF1B-positive and HNF1B-negative nuclei in the endpoint sg2 

and sg8 tumours could suggest that these tumours were comprised of both kinds of escapers 

outlined above. In other words, it is possible that the sg2 and sg8 tumours consisted of a mixture 

of HNF1B-negative ccRCC cells that had escaped the effects of the sgRNAs by becoming 

resistant to HNF1B depletion, and HNF1B-positive ccRCC cells that had avoided HNF1B 

knockout altogether (for instance by silencing Cas9 or sgRNA expression, or not forming 

frameshift-inducing indel mutations). However, it is also possible that the tumours comprised a 

mixture of ccRCC cells and murine cells from the surrounding mouse tissue, and that the 

HNF1B-negative nuclei thus corresponded to non-ccRCC murine cells instead. Indeed, this 

possibility might also explain the presence of HNF1B-negative nuclei in the Control tumours. 

Therefore, I also stained tumour sections from the same tumours for human vimentin 

(Fig 26C, E). The cell lines I used for my experiments (and thus the cells in the subcutaneous 

tumours) are human ccRCC cell lines that have partially undergone the process of epithelial-to-

mesenchymal transition (EMT), and thus all of them express vimentin. Staining for vimentin 

thus enabled me to confirm whether the tumours I excised were comprised of human ccRCC 

cells or murine cells (for instance, from the surrounding mouse stromal tissue). 

Once again I used the Leica Bond machine to carry out the IHC stainings, and used the 

Zeiss Axioscan to scan and image the stained slides. I used the Vimentin antibody from Cell 

Signaling (supplied by NEB) at a 1:100 antibody dilution in Bond buffer (see also Materials and 

Methods). Since vimentin is a component of the cytoskeleton, one would expect to see 

cytoplasmic staining for vimentin. 

The Control, sg2, and sg8 tumours all showed a mixture of vimentin-positive and 

vimentin-negative cells (Fig 26C, E). The presence of vimentin-negative cells suggests that the 
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subcutaneous tumours may have incorporated murine stromal cells into the tumour mass through 

various mechanisms as they grew. For example, the vimentin-negative cells may have belonged 

to blood vessels (since ccRCC tumours are usually highly vascular), lymphatics, fibroblasts, or 

even immune cells. Although nude athymic mice lack mature T cells, they still contain mature B 

cells, dendritic cells, macrophages and natural killer cells, and therefore might still have mounted 

some form of an immune response against the human cell line-derived subcutaneous tumours. 

These potential identities of the vimentin-negative cells are certainly applicable to the 

Control tumours, which exhibited rapid growth in vivo. These possibilities are also applicable to 

the sg2 and sg8 tumours if they were indeed comprised of cells that had adapted to HNF1B loss 

or escaped HNF1B knockout. Such escapers would no longer experience a selective 

disadvantage from sgRNA expression and would thus have been able to grow, incorporating 

murine stromal cells to establish a murine-derived tumour microenvironment, to form the small 

tumours obtained at the end of the experiment. 

In summary, it is likely that the HNF1B-negative cells in the Control tumours 

corresponded to non-ccRCC murine cells within the tumour mass. It is also possible that the 

HNF1B-negative cells in the sg2 and sg8 tumours comprised of both HNF1B knockout ccRCC 

cells that became HNF1B-independent and overcame the effects of HNF1B loss, and non-ccRCC 

murine cells that were incorporated into the tumours as escaper cell populations emerged and 

began to grow. 

  



A
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Fig 27: RNA-seq in HNF1B knockout versus control cells shows a downregulation of MYC 
and BCL2 upon HNF1B loss.
(A)-(B) RNA-seq data showing gene expression changes in (A) 786-M1A-Cas9 knockout (sg2-
BFP and sg8-BFP) cells relative to control (NTC18-BFP) cells, and (B) OS-LM1B-Cas9 
knockout (sg2-BFP and sg8-BFP) cells relative to control (NTC18-BFP) cells. In both cell line 
systems, there was an upregulation of genes associated with epithelial-to-mesenchymal 
transition (EMT), a concomitant downregulation of the kidney epithelial marker CDH16, and a 
downregulation of MYC and BCL2 in HNF1B knockout cells relative to control cells.

(continued on next page)
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Fig 27 (continued): RNA-seq in HNF1B knockout versus control cells shows a 
downregulation of MYC and BCL2 upon HNF1B loss.
(C)-(D) Venn diagrams showing the number of (C) downregulated genes and (D) upregulated 
genes that are shared between the 786-M1A-Cas9 and OS-LM1B-Cas9 sets of RNA-seq data. 
These comparisons are based on those genes with an adjusted p-value (padj) ≤ 0.05, and a 
minimum 1.5 times fold change (i.e. log2 Fold Change ≥ 0.5849625 for upregulated genes, and 
log2 Fold Change ≤ –0.5849625 for downregulated genes). In total, there are 507 shared up-
/down-regulated genes between 786-M1A-Cas9 and OS-LM1B-Cas9.
(E) Heatmap showing the 507 shared up-/down-regulated genes, and the magnitude of their 
expression changes (i.e. log2 Fold Change) in the 786-M1A-Cas9 and OS-LM1B-Cas9 RNA-
seq datasets. The positions of MYC and BCL2 in the heatmap are indicated.
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Fig 28: Gene set enrichment analysis (GSEA) of the RNA-seq data from the 786-M1A-Cas9
Control and HNF1B knockout (sg2 and sg8) cells.
Representative gene set enrichment plots indicating significant signatures in the RNA-seq data 
for (A) an enrichment of HNF1B target genes in control versus knockout cells (indeed, one 
would expect HNF1B knockout cells to be relatively less enriched in HNF1B target gene 
expression), (B) an enrichment of MYC target genes in control versus knockout cells 
(consistent with the downregulation of MYC observed in the RNA-seq data in HNF1B 
knockout cells relative to controls), and (C) an enrichment of EMT-related genes in knockout 
versus control cells (as seen in the RNA-seq data). This gene set enrichment data is from the 
786-M1A-Cas9 RNA-seq, but is representative of both the 786-M1A-Cas9 and OS-LM1B-
Cas9 RNA-seq data.
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CHAPTER	3:	Characterising	the	phenotype	of	HNF1B	loss	and	investigating	the	
potential	role	of	HNF1B	in	ccRCC	
 

3.1)	Identifying	HNF1B	target	genes	that	may	be	involved	in	its	role	in	ccRCC	

After establishing the phenotype for HNF1B knockout in vitro and in vivo, the next step 

was to try to elucidate the mechanisms by which HNF1B supports ccRCC. I thus performed 

RNA-seq with 786-M1A-Cas9 and OS-LM1B-Cas9 knockout (sg2-BFP and sg8-BFP) and 

control (NTC18-BFP) cell lines to identify downstream transcriptional targets of HNF1B that 

may contribute to its critical role in ccRCC (Fig 27A-B).  

I used the same batch of transduced cells as those used for the subcutaneous tumour 

xenograft assay. Therefore, these cell lines were already confirmed by Western blot to be HNF1B 

wild-type for the controls, and HNF1B-deficient for the knockouts (Fig 26A). I first expanded 

the 786-M1A-Cas9 and OS-LM1B-Cas9 Control, sg2, and sg8 cells to obtain four 10cm dishes 

each (in order to have 4 independent samples per cell line for RNA-seq) and extracted the RNA 

from each sample (see Materials and Methods). The RNA-seq libraries were then prepared in the 

lab with my RNA samples, and submitted for RNA-seq. 

The sequencing reads from the RNA-seq were aligned to hg38 using RSEM128 and 

bowtie2129 with default settings. The alignment of the RNA-seq sequencing reads to hg38, as 

well as the differential expression (DEseq2) analysis and gene set enrichment analysis (GSEA) 

of the RNA-seq sequencing data, were all performed in the lab in collaboration with 

bioinformaticians from the Samarjiwa lab. For both the 786-M1A-Cas9 and OS-LM1B-Cas9 sets 

of cell lines, the data for sg2 and sg8 was combined and then compared to the control using 

DEseq2, to identify changes that were significant and consistent between both sgRNAs (Fig 

27A-B). The gene expression changes were then compared between the 786-M1A-Cas9 and OS-

LM1B-Cas9 datasets to discern which upregulated or downregulated genes were common to 

both cell lines (Fig 27C-E). 

Since the OS-LM1B-Cas9 knockout cells experience a more extreme proliferative 

disadvantage relative to 786-M1A-Cas9 knockout cells (see Fig 14A-B and Fig 16A-B), these 

cell lines took longer to expand to sufficient numbers. Consequently, the RNA-seq samples for 

the OS-LM1B-Cas9 cell lines were prepared 8 days after the RNA-seq samples for the 786-

M1A-Cas9 cell lines (Fig 30G), and might thus reflect slightly later stage transcriptional changes 



 86 

following HNF1B knockout. Nevertheless, the changes in expression of certain genes of interest 

were similar between both cell line systems (Fig 27).  

In both cell line systems, there was an upregulation of genes associated with epithelial-to-

mesenchymal transition (EMT) (Fig 27A-B). Consistent with this, there was also a 

downregulation of the kidney epithelial marker CDH16 (Fig 27A-B). HNF1B is a transcription 

factor that regulates and maintains an epithelial cell state in renal epithelial cells during kidney 

development97–101,103,104. Thus, one would expect to see the concomitant loss of epithelial cell 

markers upon knocking out HNF1B. 

Interestingly, there was also a downregulation of MYC and BCL2 (Fig 27A-B), both or 

either of which may contribute to the selective disadvantage associated with HNF1B depletion. 

MYC promotes progression through the cell cycle, and is a key oncogene in a variety of different 

cancer types, where MYC overexpression enhances cell proliferation and tumour growth130–132. 

Thus, reduced MYC expression following HNF1B loss might contribute to the proliferative 

disadvantage seen in knockout ccRCC cell lines and tumours. Meanwhile, BCL2 is an anti-

apoptotic protein. Thus, a decrease in BCL2 expression upon HNF1B loss could result in 

increased cell death, which might also contribute to the selective disadvantage observed with 

HNF1B knockout. 

 If we only consider those genes that are differentially expressed with an adjusted p-value 

(padj) ≤ 0.05 and a minimum 1.5 times fold change (i.e. a log2 Fold Change ≥ 0.5849625 for 

upregulated genes, and a log2 Fold Change ≤ –0.5849625 for downregulated genes), then we are 

left with a list of 4197 genes for OS-LM1B-Cas9, and 1196 genes for 786-M1A-Cas9. 

If we look at the downregulated genes (1776 genes in OS-LM1B-Cas9; 516 genes in 786-

M1A-Cas9) and upregulated genes (2421 genes in OS-LM1B-Cas9; 680 genes in 786-M1A-

Cas9) separately, then we see that there is an overlap of 180 shared downregulated genes (Fig 

27C) and 327 shared upregulated genes (Fig 27D) between the two cell line systems. If we 

calculate the total number of genes between the downregulated and upregulated overlaps, there is 

a total of 507 commonly and significantly differentially expressed genes, which all change in the 

“same direction” (i.e. upregulated or downregulated in both the 786-M1A-Cas9 and OS-LM1B-

Cas9 RNA-seq datasets).  

The heatmap in Figure 27E shows the 507 shared up-/down-regulated genes (represented 

as rows in the heatmap), and the magnitude of their expression changes (i.e. the log2 Fold 
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Change) in the 786-M1A-Cas9 and OS-LM1B-Cas9 RNA-seq datasets (represented as columns 

in the heatmap). MYC and BCL2, the two key genes of interest in the RNA-seq data, are 

indicated by arrows. 

Gene set enrichment analysis (GSEA) of the RNA-seq data revealed a significant 

signature for an enrichment of HNF1B target genes in control versus knockout cells (Fig 28A). 

Indeed, one would expect HNF1B knockout cells to be relatively less enriched in HNF1B target 

gene expression. This analysis also revealed an enrichment of MYC target genes in control 

versus knockout cells (Fig 28B), which is consistent with the downregulation of MYC observed 

in the RNA-seq data in HNF1B knockout cells relative to controls. There was also a significant 

signature for an enrichment of EMT-related genes in knockout versus control cells (as seen in the 

RNA-seq data) (Fig 28C). These results were consistent between both the 786-M1A-Cas9 and 

OS-LM1B-Cas9 cell line systems. Note that the GSEA plots shown in Figure 28 are from the 

786-M1A-Cas9 RNA-seq data, but are representative of both the 786-M1A-Cas9 and OS-LM1B-

Cas9 cell line systems. 

To further investigate HNF1B transcriptional targets that may be involved in HNF1B’s 

function in ccRCC, and in particular to identify genes that are direct targets of HNF1B, the lab 

performed HNF1B transcription factor ChIP-seq in the parental ccRCC cell lines 786-O and OS-

RC2, and their more metastatic derivatives, 786-M1A and OS-LM1B respectively4. The HNF1B 

ChIP-seq experiments were performed by another member of the lab, as previously published133 

(see also Materials and Methods), using one replicate for each of these four cell lines. HNF1B 

ChIP-seq would reveal the genomic loci where HNF1B binds in ccRCC, which could identify 

genes that may be direct transcriptional targets of HNF1B. 

The HNF1B ChIP-seq sequencing data was analysed in the lab as follows (see also 

Materials & Methods): the raw ChIP-seq sequencing reads were aligned to hg38 using 

bowtie2129, producing sam files, which were converted into sorted bam files using samtools134. 

HNF1B peaks were then called using MACS2135 with the option -q 5e-2. The corresponding 

input samples from the ChIP experiment for each cell line were used as controls.  

Any overlap between the peaks called for each cell line was then determined by taking 

the peak summits +/-50bp (bedops --range 50 --merge), and identifying regions that had a peak 

in at least two samples (i.e. in at least two out of the four cell lines); this was done using the 

multiIntersectBed function in bedtools. Thus, the final list of called peaks for HNF1B contained 
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peaks that were shared between at least two of the four samples. The gene annotation for the 

peaks was carried out using Homer136. The sequencing reads were first extended to the modal 

length of 250bp, and duplicates were removed; genome coverage was then calculated for each 

region of interest. The total peak numbers for each cell line were as follows: 7132 peaks for 786-

O, 15641 peaks for OS-RC2, 4022 peaks for 786-M1A, and 28551 peaks for OS-LM1B. 

Once HNF1B peaks had been identified based on the Illumina ChIP-seq sequencing data, 

transcription factor motif analysis was also carried out in the lab to determine which, if any, of 

the genomic regions containing HNF1B binding peaks were also enriched for HNF1B binding 

motifs. First, the MEME suite module Meme137 was used to carry out de novo motif discovery in 

the genomic sequences for the subset of HNF1B peaks that were shared by all four cell line 

samples. To perform this analysis, the summits +/- 50bp, from all the regions that had a peak in 

all four samples, were used to look for de novo motifs. The MEME suite module Tomtom138 was 

then used to compare the motifs identified by the Meme analysis against known motifs. This 

analysis revealed a motif, 5’-GTTAAWYATTAAC-3’, which was (i) most likely to be 

overrepresented within the sequences of interest, and (ii) very similar to the known HNF1B 

transcription factor motif published in the literature (5’-GTTAATNATTAAC-3’)103. 

Therefore, the combination of the HNF1B ChIP-seq data analysis and the subsequent 

HNF1B transcription factor motif analysis identified genomic regions that seemed to be bound 

by HNF1B protein in multiple ccRCC cell lines based on the ChIP-seq data, and that were also 

enriched in HNF1B transcription factor motifs. 

No HNF1B binding peaks were identified near any of the EMT genes that were 

upregulated in HNF1B knockout cells (data not shown). However, HNF1B motif-enriched 

HNF1B binding peaks were identified around MYC (Fig 29A), BCL2 (Fig 29B), and CDH16 

(Fig 29C), three of the genes that were downregulated upon HNF1B loss (Fig 27A-B). 

The MYC locus contained the highest number of HNF1B motif-enriched binding peaks 

(Fig 29A). HNF1B peaks were called both upstream and downstream of MYC, and these peaks 

were distanced much farther from the MYC gene itself compared to the peaks found in the other 

two loci (Fig 29A). The HNF1B motif-enriched binding peaks identified around BCL2 were 

much closer to the gene sequence, and were found upstream, downstream, and within the BCL2 

sequence itself (Fig 29B). Meanwhile, in the case of CDH16, only one HNF1B motif-enriched 

binding peak was detected, adjacent to the CDH16 sequence (Fig 29C).  



AB

Fig 29: HNF1B transcription factor ChIP-seq in multiple ccRCC cell lines revealed HNF1B 
binding near the MYC, BCL2, and CDH16 loci. P.T.O for figure legend
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Taking the data from the RNA-seq, HNF1B ChIP-seq, and HNF1B motif analysis 

together, MYC, BCL2 and CDH16 are likely to be direct transcriptional targets of HNF1B. 

Therefore, I focused on these 3 genes in subsequent experiments. 

 

3.2)	Validating	the	RNA-seq	data	by	qPCR	

To validate the results of the RNA-seq data, I used qPCR to confirm the downregulation 

of MYC, BCL2 and CDH16 in HNF1B knockout cells. For this qPCR validation, I used RNA 

samples that were extracted from cell pellets taken during the competition proliferation assays 

for the 786-M1A-Cas9 and OS-LM1B-Cas9 Control-BFP, sg2-BFP, and sg8-BFP cell lines. 

I selected pellets from competition assay time points that roughly corresponded to cells 

that were in culture (and thus experiencing HNF1B knockout) for the same number of days post-

infection (i.e. post-addition of virus) as the number of days post-infection for which the 786-

M1A-Cas9 and OS-LM1B-Cas9 control and knockout cells were expanded before being 

harvested for RNA-seq (Fig 30G). 

The 786-M1A-Cas9 control and knockout (control, sg2, and sg8) cells were prepared for 

RNA-seq at 10 days post-infection, whereas the OS-LM1B-Cas9 control and knockout cells 

were prepared for RNA-seq at 18 days post-infection. Thus, for the qPCR validation, I chose 

control, sg2, and sg8 RNA samples from competition assay Days 2 and 8 for the 786-M1A-Cas9 

cell lines (corresponding to 12 and 18 days post-infection respectively), and Days 4 and 8 for the 

OS-LM1B-Cas9 cell lines (13 and 17 days post-infection) (Fig 30G).  

For the purposes of describing the qPCR validation data, I shall hereafter refer to the Day 

2 and Day 4 time points (for the 786-M1A-Cas9 and OS-LM1B-Cas9 sets of cell lines 

respectively) as “early time points” and the Day 8 time points (for both sets of cell lines) as “late 

time points”. Hence, the qPCR data for the early time points temporally matches the 786-M1A-

Cas9 RNA-seq data, whereas the qPCR data for the late time points temporally matches the OS-

LM1B-Cas9 RNA-seq data. However, as noted before, the gene expression changes observed by 

RNA-seq for genes of interest (in this case MYC, BCL2 and CDH16) were similar between the 

786-M1A-Cas9 and OS-LM1B-Cas9 systems. Thus, a priori, one would expect to see similar 

trends in gene expression between the early and late time points in the results of the qPCR 

validation. 

The average fold change in MYC expression in knockout versus control cells in the 
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RNA-seq data was 0.614 in the 786-M1A-Cas9 cells (a 38.6% decrease), and 0.662 (a 33.8% 

decrease) in the OS-LM1B-Cas9 Cells (Fig 30G). This is recapitulated in the MYC qPCR data 

for the early time points in both cell line systems (Fig 30A): 786-M1A-Cas9 knockout cells 

show an average fold change in MYC expression of 0.506 (i.e. a 49.4% decrease) relative to 

control cells, and OS-LM1B-Cas9 knockout cells show a similar average fold change of 0.540 

(i.e. a 46% decrease) relative to controls. Meanwhile, in the late time points (Fig 30B), the 786-

M1A-Cas9 and OS-LM1B-Cas9 knockout cells exhibit average MYC fold changes of 0.402 and 

0.401 (i.e. 59.8% and 59.9% decreases in MYC mRNA levels) respectively, relative to controls. 

These values slightly exceed the changes seen in the RNA-seq data, but are still reasonably 

consistent. 

In the case of BCL2, the RNA-seq data showed average fold changes of 0.414 (a 58.6% 

decrease) in 786-M1A-Cas9 knockout cells, and 0.456 (a 54.4% decrease) in OS-LM1B-Cas9 

knockout cells (Fig 30G). The qPCR data for both early and late time points shows an even more 

dramatic downregulation for BCL2 in knockout cells, with average BCL2 fold changes of 0.357 

(early) and 0.270 (late) in 786-M1A-Cas9 knockout cells (decreases of 64.3% and 73% 

respectively), and average fold changes of 0.142 (early) and 0.092 (late) in OS-LM1B-Cas9 

knockout cells (decreases of 85.8% and 90.8% respectively) (Fig 30C-D). Despite the 

differences in the magnitude of downregulation observed, this data still validates that BCL2 is 

downregulated following HNF1B loss. 

The expression data for CDH16 is consistent between both time points and both cell line 

systems in the qPCR, and is also consistent with (although somewhat exceeds) the fold changes 

seen in the RNA-seq data. The RNA-seq data indicated average fold decreases in CDH16 levels 

of 0.155 (an 84.5% reduction) in the 786-M1A-Cas9 knockout cells, and 0.451 (a 54.9% 

reduction) in the OS-LM1B-Cas9 knockout cells, relative to controls (Fig 30G). Meanwhile, the 

qPCR data showed average CDH16 fold changes of 0.054 (early) and 0.050 (late) in 786-M1A-

Cas9 knockout cells (decreases of 94.6% and 95% respectively), and average fold changes of 

0.071 (early) and 0.025 (late) in OS-LM1B-Cas9 knockout cells (decreases of 92.9% and 97.5% 

respectively) (Fig 30E-F). Thus, despite the different extents of downregulation observed 

between qPCR and RNA-seq, this data validates that there is a downregulation of CDH16 upon 

HNF1B loss. 

 



Fig 30: qPCR validation of the downregulation of MYC, BCL2, and CDH16 observed in the 
RNA-seq data. P.T.O for figure legend
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Fig 30: qPCR validation of the downregulation of MYC, BCL2, and CDH16 observed in the 
RNA-seq data.
(N.B. in the graphs above: M1A = 786-M1A-Cas9; LM1B = OS-LM1B-Cas9)

(A)-(B) MYC mRNA expression levels at the (A) early and (B) late time points, in 786-M1A-
Cas9 and OS-LM1B-Cas9 control, sg2, and sg8 cell lines. 

(C)-(D) BCL2 mRNA expression levels at the (C) early and (D) late time points, in 786-M1A-
Cas9 and OS-LM1B-Cas9 control, sg2, and sg8 cell lines.

(E)-(F) CDH16 mRNA expression levels at the (E) early and (F) late time points, in 786-M1A-
Cas9 and OS-LM1B-Cas9 control, sg2, and sg8 cell lines.

(G) Combined fold changes in gene expression (average of HNF1B sg2 and sg8 knockout cells 
compared to Control cells) for MYC, BCL2, and CDH16 from the RNA-seq data, in both the 
786-M1A-Cas9 and OS-LM1B-Cas9 cell lines. The number of days post-infection for which 
the cells were expanded before being harvested for RNA-seq are also indicated for each set of 
RNA-seq cell lines (see the tables on the left and right), and also for the cell lines used in the 
qPCR validation of the RNA-seq data (see text in the middle).
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3.3)	Investigating	the	mechanisms	underlying	the	phenotype	seen	with	HNF1B	loss	

In vitro, the selective disadvantage conferred by HNF1B depletion may be due to 

impaired progression through the cell cycle (and thus decreased cell proliferation), or increased 

cell death, or possibly a combination of both mechanisms. Therefore, the next step was to 

characterise the nature of the phenotype associated with HNF1B knockout. I thus carried out 

assays to check for increased apoptosis and defects in cell cycle progression in HNF1B knockout 

cells. 

To measure apoptosis in each cell line, I stained control, knockout and rescue cells with 

Annexin V and Propidium Iodide, and analysed the cells by FACs to determine whether there 

was increased cell death in HNF1B knockout cells compared to controls, and if HNF1B 

restoration reversed this phenotype (see also Materials and Methods). 

I also carried out cell cycle analysis experiments with Propidium Iodide staining to check 

for defects in cell cycle progression. I first treated control, knockout and rescue cells with 

50ng/ml nocodazole for 24 hours to arrest the cells in the G2/M phase of the cell cycle, and 

thereby synchronise the cell cycles of the different cell lines. At the end of the 24hr treatment 

period, I took the cells off nocodazole to release the synchronised cells from mitotic arrest. I took 

samples (cell pellets) for each cell line every 2 hours for 16 hours, plus an eleventh sample at 24 

hours post-release. Samples were also taken for untreated / unsynchronised (UT unsync) cells, 

and for the arrested / synchronised cells at the end of the nocodazole treatment period (time point 

t0), for each cell line. To achieve this time course, I seeded separate dishes per time point for 

each cell line. I fixed each of these cell pellet samples in 70% EtOH and froze them at -20’C. I 

then stained these fixed and frozen time course samples with Propidium Iodide, and analysed the 

cell cycle distribution at each time point by FACs to see (i) if I could observe any defects in cell 

cycle progression during the release period in HNF1B knockout cells relative to control cells, 

and (ii) if any such defect(s) were rescued in cells expressing the exogenous HNF1B transgene 

(see also Materials and Methods). 

For the purposes of these apoptosis and cell cycle experiments, I thawed frozen stocks of 

the same 786-M1A-Cas9 control, knockout, and rescue cell lines that I characterised in the in 

vitro proliferation and competition assays (Figs 14A, 18A, 18C, and 23A-B), namely the 786-

M1A-Cas9 Control-BFP, sg2-BFP, and sg8-BFP cells (see Figs 14A, 18A, and 18C), and the 
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786-M1A-Cas9 Control-BFP (+ empty vector), sg8-BFP (+ empty vector) and sg8-BFP (+ 

rescue) cells (see Fig 23A-B). 

For the Annexin V/Propidium Iodide (PI) staining, I used the eBioscience Annexin V 

Apoptosis Detection Kit APC from Thermo Fisher Scientific, with APC-conjugated Annexin V, 

which thus has an emission maximum of 660nm. Meanwhile, PI has an emission maximum of 

617nm (once bound to DNA), and thus also emits in the red/infra-red region of the spectrum. 

However, the mCherry fluorescent protein has an emission maximum of 610nm. Therefore, there 

is considerable spectral overlap between PI and mCherry, as their emission maxima are very 

similar. In light of this, I had to use the BFP versions of each cell line (as listed above) for both 

the apoptosis and cell cycle experiments. For similar reasons, I was unable to perform these 

assays with any of the 786-M1A-dCas9-KRAB-mCherry CRISPRi cell lines used for the 

HNF1B CRISPRi competition assay (Fig 24A). 

 

3.4)	Potential	mechanisms	underlying	the	phenotype	seen	with	HNF1B	loss:	cell	cycle	defects	

The cell cycle assays with the 786-M1A-Cas9 Control-BFP, sg2-BFP, and sg8-BFP cell 

lines did not show much difference between the cell cycle distributions of untreated, 

unsynchronised Control, sg2 and sg8 cells (Fig 31, UT unsync). The control and knockout cell 

lines all showed normal cell cycle distributions: a prominent G0/G1 peak (the first peak, at 

approximately 50K fluorescence intensity) and a distinct, albeit smaller, G2/M peak (the second 

peak, at approximately 100K fluorescence intensity), with the cells in S phase lying between the 

two peaks. 

At time point t0, immediately after 24 hours of nocodazole treatment, all three cell lines 

were arrested in the G2/M phase of the cell cycle (and were thus synchronised in their cell 

cycles), evident from the disappearance of the first (G0/G1) peak and the prominence of the 

second (G2/M) peak in the cell cycle distributions of the Control, sg2, and sg8 cells (Fig 31, t0). 

Two hours after nocodazole release (time point t2), all three cell lines exited G2/M and 

progressed through the cell cycle into G0/G1, indicated by the decrease in size of the G2/M peak, 

and concomitant appearance of a prominent G0/G1 peak (Fig 31, t2). From time points t2 

through to t8 (i.e. between 2 and 8 hours after release from mitotic arrest), the three cell lines 

exhibited relatively similar double-peaked cell cycle distributions, with no notable differences 

between knockout and control cells (Fig 31, t2-t8). 
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However, by time point t12 (i.e. at 12 hours after release), the sg2 and sg8 knockout cells 

seemed to be delayed in their cell cycle progression relative to the Control cells. At t12, while 

the majority of the Control cells appeared to be in S phase, both knockout cell lines still seemed 

to be mainly in G1, with a noticeable shoulder on the right hand slope of their G0/G1 peaks (Fig 

31, t12). This could indicate a defect in cell cycle progression in HNF1B knockout cells relative 

to HNF1B wild-type controls, at the point of transitioning from G1 to S phase. 

This impaired cell cycle progression in the knockout cells became even more obvious at 

t14, when the Control cells appeared to be entirely in S phase (Fig 31, t14). By contrast, in both 

the sg2 and sg8 cell lines there was still a portion of the cell population that seemed to be in G1, 

and the shoulder on the right hand side of the G0/G1 peak was even more pronounced, 

suggesting that the knockout cells were slower to enter S phase (Fig 31, t14). These differences 

in cell cycle distribution thus further indicated an impaired G1/S phase transition in HNF1B 

knockout cells relative to HNF1B wild-type controls. 

This marked difference in cell cycle between control and knockout cells was also visible 

at the t16 time point. At t16, the majority of the sg2 and sg8 cells seemed to have progressed to S 

phase (Fig 31, t16). However, the Control cells were still ahead in their cell cycle progression at 

this time point, as the majority appeared to be entering the G2/M phase of the cell cycle (Fig 31, 

t16). 

By time point t24 (24 hours after nocodazole release), the cell cycle distributions of all 

three cell lines returned to normal, with no obvious differences between control and HNF1B 

knockout cells (Fig 31, t24). 

The cell cycle assays with the 786-M1A-Cas9 Control-BFP (+ empty vector), sg8-BFP (+ 

empty vector) and sg8-BFP (+ rescue) cells supported similar conclusions regarding a potential 

cell cycle defect at the G1/S transition in HNF1B knockout cells (Fig 32). Note that in Figure 

32, cells containing empty vector are labelled “+EV”, while those containing the HNF1B rescue 

construct are labelled “+rescue”. 

The cell cycle distributions of the three cell lines were again fairly similar when 

unsynchronised (Fig 32, UT unsync). After 24 hours of nocodazole treatment (t0), the majority 

of each cell population was in the G2/M phase of the cell cycle, indicating that all three cell lines 

underwent mitotic arrest (Fig 32, t0). However, the mitotic arrest was not as complete in this 

assay, as all three cell lines still retained a small G0/G1 peak.  
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Fig 31: HNF1B knockout cells seem to exhibit delayed cell cycle progression relative to 
HNF1B wild-type controls, at the transition from G1 to S phase. FACs data for the cell cycle 
analysis of 786-M1A-Cas9 Control-BFP, sg2-BFP, and sg8-BFP cell lines, obtained via 
propidium iodide staining at the indicated time points after releasing the cells from mitotic 
arrest.
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Fig 32: The delayed transition from G1 to S phase in HNF1B knockout cells is reversed by 
HNF1B restoration, via the expression of exogenous HNF1B. FACs data for the cell cycle 
analysis of 786-M1A-Cas9 Control-BFP (+ empty vector), sg8-BFP (+ empty vector) and sg8-
BFP (+ rescue) cell lines, obtained via propidium iodide staining at the indicated time points 
after releasing the cells from mitotic arrest. “EV” indicates “empty vector”
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Two hours after the removal of nocodazole (t2), all three cell lines were successfully 

released from G2/M and regained a prominent G0/G1 peak (Fig 32, t2). Subsequently, from time 

points t2 to t8, there were no striking differences between control, knockout, and rescue cells 

(Fig 32, t2-8). 

However, similar to the other cell cycle assay comparing Control, sg2 and sg8 cells, 

differences in the cell cycle distributions of the HNF1B-depleted versus HNF1B wild-type cells 

started to emerge at t12. From t12 to t14, there appeared to be an increasing proportion of Ctrl 

(+EV) and sg8 (+rescue) cells exiting G1 and entering S phase (Fig 32, t12-14). This was 

suggested by the appearance and expansion of a shoulder on the right hand side of the G0/G1 

peaks for both the control and rescue cell lines, and the concomitant expansion of the S phase 

region (lying between the G0/G1 and G2/M peaks) in the cell cycle distribution of each cell line 

(Fig 32, t12-14). By contrast, the sg8 (+EV) cells showed barely any transition out of G1 into S 

phase during this time period: the majority of knockout cells seemed to remain in G1, indicated 

by the prominent, undistorted G0/G1 peak across both time points (Fig 32, t12-14). Altogether, 

the cell cycle data from the t12 to t14 time points suggested that HNF1B knockout cells were 

experiencing a defect in exiting G1 and entering S phase relative to Control cells, and that this 

defect was reversed in the rescue cells. 

 The apparent cell cycle defect in HNF1B-depleted cells at the G1/S phase transition was 

also obvious at the t16 time point, when even more control and rescue cells appeared to have 

progressed into S phase (Fig 32, t16). Indeed, the region of the cell cycle distribution between 

the G0/G1 and G2/M peaks in both cell lines was distinctly raised and larger in size, which 

indicated an increase in the number of events detected at that intensity of PI fluorescence (Fig 

32, t16). By contrast, the knockout cells seemed to be just starting to enter S phase at this late 

time point: the cell cycle distribution for the knockout cells had only just started to exhibit a 

discernible shoulder on the right hand slope of the G0/G1 peak (Fig 32, t16). This suggested that 

the knockout cells had only progressed to a stage in the cell cycle that was similar to the control 

and rescue cell cycles at t12 and t14 (Fig 32, t12-16). This data further supports the conclusion 

that HNF1B knockout cells have an impaired ability to exit G1 and enter S phase, which is 

recovered in the presence of exogenous HNF1B. 
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 Finally, at t24 (24 hours after nocodazole release), all three cell lines seemed to have 

progressed through S phase into G2/M, and showed a more normal double-peaked cell cycle 

distribution (Fig 32, t24). 

In summary, the data from both cell cycle assays suggested that HNF1B knockout cells 

exhibit delayed cell cycle progression relative to HNF1B wild-type cells, at the transition from 

G1 to S phase. Furthermore, as seen in the second cell cycle experiment, this delay in cell cycle 

progression is reversed by HNF1B restoration, via the expression of exogenous HNF1B. 

 

3.5)	Potential	mechanisms	underlying	the	phenotype	seen	with	HNF1B	loss:	cell	death	

 In the apoptosis experiments, Annexin V and Propidium Iodide staining distinguishes 3 

cell populations: live cells, early apoptotic cells, and late apoptotic / necrotic (or already dead) 

cells. 

Annexin V binds to phosphatidylserine (PS). PS is mainly located in the inner leaflet of 

the cell membrane (and is therefore inaccessible) in healthy viable cells, but becomes exposed on 

the outer leaflet of the cell membrane during the initial stages of apoptosis. Annexin V thus 

distinguishes between non-apoptotic and early apoptotic cells. Propidium Iodide (PI) meanwhile 

is a viability dye that binds to DNA, but is excluded from cells with an intact cell membrane, and 

is used to detect dead cells. PI staining thus helps to distinguish between live (i.e. viable, PI-

negative) and dead (i.e. non-viable, PI-positive) cells, and also to differentiate between early- 

and late-stage apoptosis (and/or necrosis). 

Live, healthy cells therefore stain as Annexin V-negative / PI-negative (Annexin V–/PI–). 

Cells undergoing early apoptosis still have an intact plasma membrane, and thus stain as 

Annexin V-positive / PI-negative (Annexin V+/PI–). However, cells undergoing late apoptosis or 

necrosis, or cells that are already dead, lose their plasma membrane integrity and therefore stain 

as Annexin V-positive / PI-positive (Annexin V+/PI+). 

In the Annexin V / PI stainings performed with 786-M1A-Cas9 Control-BFP, sg2-BFP, 

and sg8-BFP cells (Fig 33A-C), the majority (69.5%) of the Control cells were Annexin V–/PI– 

(i.e. viable and non-apoptotic), with 16.8% Annexin V+/PI+ (i.e. late apoptotic / necrotic / dead) 

cells (Fig 33A). By contrast, the cells expressing sg2 (Fig 33B) and sg8 (Fig 33C) had much 

smaller live cell populations (with 39.3% and 44.1% Annexin V–/PI– cells respectively) and 

showed increased percentages of late apoptotic / necrotic / dead cells (with 41.8% and 40.3% 
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Annexin V+/PI+ cells respectively), more than double the percentage seen in the Control. Thus, 

HNF1B loss does seem to result in increased levels of cell death relative to HNF1B wild-type 

controls. 

The percentages of Annexin V+/PI– (i.e. early apoptotic) cells remained similar between 

the three cell lines, with 6.34%, 6.36% and 5.48% in the Control, sg2, and sg8 cells respectively. 

Thus, the main difference in the extent of cell death between control and HNF1B knockout cells 

appears to be in the proportion of late apoptotic / necrotic / dead cells. 

Similar trends were observed in the Annexin V / PI stainings performed with 786-M1A-

Cas9 Control-BFP (+ empty vector), sg8-BFP (+ empty vector) and sg8-BFP (+ rescue) cells 

(Fig 33D-F). The majority (83.6%) of the Control (+ EV) cells were Annexin V–/PI– (i.e. viable 

and non-apoptotic), with only a small percentage (8.48%) of Annexin V+/PI+ (i.e. late apoptotic 

/ necrotic / dead) cells (Fig 33D). By contrast, and consistent with the previous apoptosis 

experiment, the sg8 (+ EV) cell line exhibited a smaller live cell population (with 69.4% 

Annexin V–/PI– cells) and an increased percentage of late apoptotic / necrotic / dead cells (with 

17.9% Annexin V+/PI+ cells), again more than double the percentage seen in the Control (Fig 

33E). However, the sg8 (+ rescue) cells closely resembled the Control (+ EV) cells, with most of 

the cells (86.8%) staining as Annexin V–/PI– (i.e. viable and non-apoptotic), and a similarly 

small percentage (7.15%) of cells staining as Annexin V+/PI+ (i.e. late apoptotic / necrotic / 

dead) (Fig 33F). Once again, there was minimal change in the percentages of Annexin V+/PI– 

(i.e. early apoptotic) cells between the three cell lines, with 4.97%, 4.96% and 3.71% in the 

Control (+ EV), sg8 (+ EV), and sg8 (+ rescue) cells respectively. 

Therefore, this data also suggests that HNF1B loss results in increased levels of cell death 

relative to HNF1B wild-type controls, and that this difference is mainly in the proportion of late 

apoptotic / necrotic / dead cells. Moreover, the increased level of cell death seen in HNF1B 

knockout cells appears to be rescued by HNF1B restoration, suggesting that the increased cell 

death is linked to HNF1B loss. 
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Fig 33: HNF1B knockout seems to be associated with increased cell death, and this 
phenotype is reversed by HNF1B restoration
(A)-(C) FACs data from Annexin V / Propidium Iodide staining performed with 786-M1A-
Cas9 Control-BFP, sg2-BFP, and sg8-BFP cells to measure apoptosis levels.
(D)-(F) FACs data from Annexin V / Propidium Iodide staining performed with 786-M1A-
Cas9 Control-BFP (+ empty vector), sg8-BFP (+ empty vector) and sg8-BFP (+ rescue) cells 
to measure apoptosis levels.
Q2: Late apoptotic, necrotic, or already dead cells. Q3: Early apoptotic cells. Q4: Live, viable 
cells.
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3.6)	Investigating	the	contribution	of	MYC	and	BCL2	to	the	phenotype	seen	with	HNF1B	loss	

Altogether, my cell cycle and apoptosis assays suggested that the selective disadvantage 

associated with HNF1B loss may be partly due to increased cell death, in addition to impaired 

cell cycle progression and decreased ccRCC cell proliferation. Therefore, HNF1B seems to play 

a role in promoting cell cycle progression and in preventing cell death in ccRCC. 

Combining the cell cycle and apoptosis data with the RNA-seq in HNF1B knockout 

versus control cells, the HNF1B ChIP-seq and the HNF1B transcription factor motif analysis, my 

results highlighted the possibility that the decreased expression of the cell cycle protein MYC, 

and/or the decreased expression of the anti-apoptotic protein BCL2, contributed to the selective 

disadvantage associated with HNF1B depletion. 

Indeed, MYC and BCL2 are both downregulated in HNF1B knockout cells based on my 

RNA-seq data. They also appear to be direct transcriptional targets of HNF1B, based on the 

HNF1B ChIP-seq and transcription factor motif analysis data. Moreover, MYC and BCL2 are 

involved in the cell cycle and apoptosis. Therefore, the importance of HNF1B in ccRCC may 

ultimately be linked to its ability to regulate MYC and BCL2 expression. Therefore, I decided to 

investigate MYC and BCL2 in subsequent experiments. 

To investigate the relative contributions of MYC and BCL2 to the selective disadvantage 

associated with HNF1B depletion, I decided to test whether knockdown of MYC and BCL2 

individually (or in combination) would phenocopy the effects of HNF1B knockdown. 

It is possible that the depletion of either target gene alone would produce an equally 

strong phenotype as that conferred by HNF1B loss. Alternatively, each gene may only partially 

contribute to the selective disadvantage imposed by HNF1B depletion. HNF1B likely performs 

multiple functions in ccRCC, and indeed multiple genes are up- or down-regulated in response to 

HNF1B knockout, any or all of which may provide some contribution to the role of HNF1B and 

thus to the loss of cell fitness in its absence. If this is the case, individual knockdown of MYC or 

BCL2 would result in only a partial phenotype compared to that seen with HNF1B knockdown. 

Therefore, I tested the effects of knocking down MYC and BCL2 in combination as well as 

individually. 

I designed tandem CRISPRi sgRNA constructs targeting MYC and BCL2 (two constructs 

each). As with the constructs used for the HNF1B CRISPRi (HNF1Bi) experiments (Fig 24), 

each of the MYC CRISPRi (MYCi) and BCL2 CRISPRi (BCL2i) tandem constructs comprised 
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two different sgRNAs targeting the gene in question (again specifically designed for CRISPRi 

applications), with each sgRNA flanked by its own U6 promoter and sgRNA scaffold, in a BFP 

fluorescent backbone. Thus, as before, the structure of each tandem construct was as follows: U6 

promoter—CRISPRi sgRNA—sgRNA scaffold—U6 promoter—CRISPRi sgRNA—sgRNA 

scaffold. The CRISPRi sgRNA sequences were obtained from the Broad Institute online sgRNA 

design tool (https://portals.broadinstitute.org/gpp/public/). 

In total, I designed two MYC-targeting constructs, MYCi(1) and MYCi(2) (containing 

different pairs of sgRNAs), and two BCL2-targeting constructs, BCL2i(3) and BCL2i(4) (also 

containing independent pairs of sgRNAs). As a control, I used the same “Scramble Control” 

tandem construct (containing two non-targeting “scramble” CRISPRi sgRNAs, also with a BFP 

fluorescent marker). 

As with the HNF1Bi experiment, I used 786-M1A and OS-LM1B ccRCC cell lines stably 

expressing the dCas9-KRAB-mCherry transgene, which inhibits target gene transcription and 

thereby mediates CRISPRi knockdown. The BFP served as a marker of tandem sgRNA 

expression, while the mCherry served as a marker of dCas9-KRAB expression. 

First, I tested the knockdown efficiency of each of the MYC and BCL2 CRISPRi tandem 

sgRNA constructs in order to identify functional constructs for subsequent experiments. I 

transduced the Scramble Control, MYCi and BCL2i constructs into 786-M1A-dCas9-KRAB-

mCherry and OS-LM1B-dCas9-KRAB-mCherry cells, and sorted for the brightest 

mCherry+/BFP+ population (to obtain successfully transduced cells with the highest dCas9-

KRAB and tandem sgRNA expression levels). I then extracted RNA samples from 786-M1A-

dCas9-KRAB-mCherry and OS-LM1B-dCas9-KRAB-mCherry cells that were either 

untransduced (U/T), or transduced with one of the five CRISPRi constructs (Scramble Ctrl, 

MYCi(1), MYCi(2), BCL2i(3) or BCL2i(4)). I performed reverse transcriptase PCRs on each 

sample, and carried out MYC and BCL2 qPCRs to check for successful MYC and BCL2 

knockdown. For each cell line system (786-M1A and OS-LM1B), I normalised the MYC and 

BCL2 mRNA levels in each of the transduced CRISPRi samples to the corresponding mRNA 

levels in the untransduced sample to determine any relative decreases in MYC or BCL2 

expression. 

No significant MYC knockdown was seen in cells expressing the Scramble Control or 

either of the BCL2-targeting constructs, BCL2i(3) and BCL2i(4), as expected (Fig 34A). By 



Fig 34: Testing of MYC and BCL2 CRISPRi tandem sgRNA constructs for optimal 
knockdown efficiency.
qPCRs performed with RNA samples extracted from 786-M1A-dCas9-KRAB-mCherry and 
OS-LM1B-dCas9-KRAB-mCherry cells that were either untransduced (U/T), or transduced 
with one of the following CRISPRi tandem sgRNA constructs: Scramble Ctrl, MYCi(1), 
MYCi(2), BCL2i(3) or BCL2i(4). The Scramble Ctrl comprises two non-targeting control 
sgRNAs. MYCi(1) and MYCi(2) are two independent MYC-targeting constructs, each 
comprising a different pair of tandem MYC CRISPRi sgRNAs. BCL2i(3) or BCL2i(4) are two 
independent BCL2-targeting constructs, each comprising a different pair of tandem BCL2 
CRISPRi sgRNAs.

Tandem sgRNA constructs that successfully mediated target gene knockdown and were 
chosen for further experiments are highlighted in red. Tandem sgRNA constructs that failed to 
mediate target gene knockdown and were not chosen for further experiments are highlighted in 
black.

(A) MYC qPCR to check for MYC knockdown in the indicated cell lines. For each set of cell 
lines, the MYC mRNA levels in each sample were normalised to the Scramble Control sample. 
MYC knockdown was not seen in cells expressing the Scramble Control, BCL2i(3) or 
BCL2i(4). Both MYCi(1) and MYCi(2) mediated highly efficient knockdown of MYC.

(B) BCL2 qPCR to check for BCL2 knockdown in the same set of cell lines as (A). For each 
set of cell lines, the BCL2 mRNA levels in each sample were normalised to the Scramble 
Control sample. BCL2 knockdown was not seen in cells expressing the Scramble Control, 
MYCi(1) or MYCi(2). The BCL2i(3) construct failed to knock down BCL2, while the 
BCL2i(4) construct mediated highly efficient knockdown of BCL2.
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contrast, both MYC-targeting constructs, MYCi(1) and MYCi(2), mediated highly efficient 

knockdown of MYC. Specifically, MYCi(1) and MYCi(2) reduced MYC mRNA levels by 79% 

and 83.2% respectively in 786-M1A-dCas9-KRAB-mCherry CRISPRi cells, and by 70.2% and 

72% respectively in OS-LM1B-dCas9-KRAB-mCherry CRISPRi cells. Thus, both these MYC 

CRISPRi constructs (highlighted in red in Fig 34A) were selected for further experiments. 

Meanwhile, BCL2 knockdown was not observed in cells expressing the Scramble Control 

or either of the MYC-targeting constructs, MYCi(1) and MYCi(2), again as expected (Fig 34B). 

The BCL2i(3) construct (highlighted in black in Fig 34B) failed to knock down BCL2, and was 

thus not chosen for further experiments. However, the BCL2i(4) construct mediated highly 

efficient knockdown of BCL2, reducing BCL2 mRNA levels by 93.3% in 786-M1A-dCas9-

KRAB-mCherry CRISPRi cells, and by 87.8% in OS-LM1B-dCas9-KRAB-mCherry CRISPRi 

cells. Thus, the BCL2i(4) construct (highlighted in red in Fig 34B) was selected for further 

experiments (and shall hereafter be referred to simply as BCL2i). 

To determine whether MYC and BCL2 knockdown individually (or in combination) 

phenocopies the selective disadvantage observed with HNF1B knockdown, I carried out 

CRISPRi competition proliferation assays with the functional MYCi and BCL2i constructs in 

both 786-M1A-dCas9-KRAB-mCherry (Fig 35A) and OS-LM1B-dCas9-KRAB-mCherry (Fig 

35B) cells (hereafter referred to as 786-M1A CRISPRi and OS-LM1B CRISPRi cells 

respectively), using a similar protocol to that used in the HNF1Bi CRISPRi competition assay 

(Fig 24A-B). 

I thus mixed untransduced parental mCherry+/BFP– cells (not transduced with sgRNAs) 

in a 50:50 ratio with transduced mCherry+/BFP+ cells, expressing either: Scramble Control, 

HNF1Bi (the HNF1B CRISPRi #2 tandem sgRNA construct that successfully knocks down 

HNF1B), MYCi(1) alone, MYCi(2) alone, BCL2i alone, both MYCi(1) and BCL2i, or both 

MYCi(2) and BCL2i. I then measured the percentages of BFP positive versus BFP negative cells 

every 4 days by FACs, and calculated the BFP+/BFP– ratio over time. 

Consistent with the previous HNF1B CRISPRi competition assay data (Fig 24A-B), the 

BFP+/BFP– ratio in the “HNF1Bi vs untransduced” groups decreased rapidly over time in both 

cell lines (Fig 35A-B), again demonstrating the strong phenotype associated with HNF1B 

depletion. Meanwhile, as expected and seen before, the BFP+/BFP– ratio in the “Scramble 
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Control vs untransduced” groups in both cell lines remained relatively stable at approximately 

1:1 (Fig 35A-B). 

Interestingly, MYC knockdown alone, with either MYCi(1) or MYCi(2), closely 

phenocopied the effects of HNF1B loss. The BFP+/BFP– ratios in the “MYCi(1) vs 

untransduced” and “MYCi(2) vs untransduced” experimental groups also decreased rapidly over 

time (Fig 35A-B). This indicates that the untransduced MYC wild-type cells outcompeted the 

MYC knockdown cells in the assay mixture, suggesting that MYC loss conferred a selective 

disadvantage. In fact, the strength of the phenotype for MYC depletion even exceeded that seen 

with HNF1B knockdown. This was the case for both MYC-targeting constructs and in both cell 

lines, particularly the 786-M1A CRISPRi cells (Fig 35A-B). 

Unexpectedly, however, the BFP+/BFP– ratio in the “BCL2i vs untransduced” groups 

phenocopied the trend in the “Scramble Control vs untransduced” groups, remaining at a ratio of 

approximately 1:1 over the course of each assay in both cell lines (Fig 35A-B). Therefore, 

BCL2-depleted cells grew at the same rate as the untransduced BCL2 wild-type cells in the assay 

mixture, and were not outcompeted. This suggests that BCL2 knockdown did not confer any 

selective disadvantage. 

Meanwhile, the BFP+/BFP– ratios in the combination knockdown groups (“MYCi(1) + 

BCL2i vs untransduced”, and “MYCi(2) + BCL2i vs untransduced”) also declined sharply over 

time in both cell lines, again phenocopying the effects of HNF1B knockdown to either a similar 

or greater extent (Fig 35A-B). This indicates that cells expressing these CRISPRi constructs 

were also outcompeted by the untransduced cells in the assay mixture, and were thus presumably 

at a selective disadvantage. The magnitude of the phenotypes seen with the combination 

knockdowns closely resembled those seen with the individual MYC knockdowns, and did not 

exceed them (Fig 35A-B). Hence, given the lack of a phenotype with BCL2 knockdown alone, 

the phenotypes seen with the combination knockdowns are likely to have been entirely due to 

MYC loss, with little or no contribution from BCL2 depletion. 

To confirm that each tandem sgRNA construct was still mediating efficient target gene 

knockdown in each CRISPRi competition assay, I extracted whole cell protein lysates and total 

RNA from each cell line, and performed qPCRs for MYC, BCL2 and HNF1B (Fig 35C-H). 

For both the 786-M1A CRISPRi and OS-LM1B CRISPRi cell lines, I normalised the 

MYC, BCL2 and HNF1B mRNA levels in each transduced CRISPRi sample to the 



Fig 35: CRISPRi competition assays investigating the contributions of MYC and BCL2 to 
the selective disadvantage observed with HNF1B knockdown.
(A)-(B) CRISPRi competition proliferation assays performed with the functional MYCi and 
BCL2i constructs, showing the effects of MYC and BCL2 knockdown (individually and in 
combination) relative to the effects of HNF1B knockdown in (A) 786-M1A-dCas9-KRAB-
mCherry and (B) OS-LM1B-dCas9-KRAB-mCherry cells. In each assay, untransduced BFP–
cells (not containing sgRNAs) were mixed in 50:50 ratios with transduced BFP+ cells 
expressing one of the indicated CRISPRi tandem sgRNA constructs (see Legend). The 
percentages of BFP positive versus BFP negative cells in each cell mixture were measured 
every 4 days by FACs, and used to calculate the BFP+/BFP– ratio over time. Each graph 
shows the changes in this BFP+/BFP– ratio over the course of each assay, for each cell mixture 
(i.e. each experimental group). 

(C)-(H) qPCRs for (C-D) MYC, (E-F) BCL2 and (G-H) HNF1B in the (C, E, G) 786-M1A-
dCas9-KRAB-mCherry cell lines and (D, F, H) OS-LM1B-dCas9-KRAB-mCherry cell lines 
used in the MYCi / BCL2i competition assays. The MYC, BCL2 and HNF1B mRNA levels in 
each transduced CRISPRi sample were normalised to the corresponding mRNA levels in the 
untransduced cell samples for each cell line system to check for successful target gene 
knockdown. The HNF1Bi, MYCi and BCL2i constructs all successfully mediated HNF1B, 
MYC and BCL2 knockdown respectively in both competition assays.
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Fig 35 (continued): CRISPRi competition assays investigating the contributions of MYC and 
BCL2 to the selective disadvantage observed with HNF1B knockdown.
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corresponding mRNA levels in the untransduced sample to check for successful target gene 

knockdown. 

In the MYC qPCR data (Fig 35C-D), MYC levels did not decrease in 786-M1A 

CRISPRi or OS-LM1B CRISPRi cells transduced with the Scramble Control, as expected. MYC 

expression was reduced in cells expressing the HNF1Bi construct, with a fold change of 0.840 

(i.e. a 16% decrease) in the 786-M1A CRISPRi cells (Fig 35C) and a fold change of 0.742 (i.e. a 

25.8% decrease) in the OS-LM1B CRISPRi cells (Fig 35D). 

MYC was successfully knocked down by the MYCi(1) and MYCi(2) constructs, both in 

cells expressing those constructs alone, and in cells that also expressed BCL2i. In the 786-M1A 

CRISPRi cells, the MYCi(1) construct alone gave the most efficient MYC knockdown, reducing 

MYC levels by 82.9% (a fold change of 0.171) (Fig 35C). Meanwhile MYCi(2) alone, MYCi(1) 

in combination with BCL2i, and MYCi(2) in combination with BCL2i all mediated efficient 

MYC knockdown to a roughly equal extent, inducing 42.8%, 34.3% and 41.2% decreases in 

MYC expression respectively (i.e. fold changes of 0.572, 0.657 and 0.588 respectively) (Fig 

35C). In the OS-LM1B CRISPRi cells, MYCi(1) and MYCi(2), either alone or with the 

additional presence of BCL2i, gave similarly efficient MYC knockdowns (Fig 35D). Cells 

expressing only MYCi(1) or MYCi(2) showed MYC fold changes of 0.351 or 0.410 (i.e. 64.9% 

or 59% decreases) respectively (Fig 35D). Meanwhile, cells expressing “MYCi(1) + BCL2i” or 

“MYCi(2) + BCL2i” showed MYC fold changes of 0.419 or 0.341 (i.e. 58.1% or 65.9% 

decreases) respectively (Fig 35D). Therefore, these results confirmed that the MYC tandem 

sgRNA constructs were functional in the cell lines used in both CRISPRi competition assays. 

Meanwhile, in the BCL2 qPCR data (Fig 35E-F), BCL2 levels did not decrease in cells 

expressing the Scramble Control, but they did fall in cells expressing HNF1Bi, with a fold 

decrease of 0.705 (a 29.5% reduction) in 786-M1A CRISPRi cells (Fig 35E), and a fold decrease 

of 0.220 (a 78% reduction) in OS-LM1B CRISPRi cells (Fig 35F). 

The BCL2i construct mediated highly efficient BCL2 knockdown in each cell line, both 

when expressed alone and when expressed in cells that also contained either of the MYC-

targeting constructs (Fig 35E-F). In the 786-M1A CRISPRi cells, BCL2 mRNA levels 

decreased by 94.9% (a fold change of 0.051) in cells expressing the BCL2i construct alone, by 

80.9% (a fold change of 0.191) in cells expressing “MYCi(1) + BCL2i”, and by 75.4% (a fold 

change of 0.246) in cells expressing “MYCi(2) + BCL2i” (Fig 35E). In the OS-LM1B CRISPRi 
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cells, the extent of BCL2 knockdown was also fairly similar between the three BCL2i construct 

combinations, and also similar to the fall in BCL2 levels in HNF1Bi-expressing cells (Fig 35F). 

BCL2 mRNA levels were reduced by 76.9% (a fold change of 0.231) in cells expressing BCL2i 

alone, by 67.5% (a fold change of 0.325) in cells expressing “MYCi(1) + BCL2i”, and by 74.4% 

(a fold change of 0.256) in cells expressing “MYCi(2) + BCL2i” (Fig 35F).  

These results verify that the BCL2i tandem sgRNA construct was indeed functional in the 

cell lines used in both CRISPRi competition assays. Therefore, the absence of an observable 

phenotype with individual BCL2 knockdown was not because the BCL2i tandem sgRNA 

construct failed to knock down BCL2. 

Finally, in the HNF1B qPCR data (Fig 35G-H), HNF1B levels were considerably 

depleted in cells expressing the HNF1Bi construct (a.k.a HNF1B CRISPRi #2) (Fig 35G-H), as 

expected based on its previous use in the HNF1B CRISPRi competition assay (Fig 24). In the 

786-M1A CRISPRi cells transduced with HNF1Bi, there was a fold decrease in HNF1B 

expression of 0.029 (i.e. a 97.1% reduction) (Fig 35G). In the OS-LM1B CRISPRi cells 

transduced with HNF1Bi, there was a fold decrease in HNF1B expression of 0.276 (i.e. a 72.4% 

reduction) (Fig 35H). These values are consistent with the extent of HNF1B knockdown seen in 

the cell lines used for the HNF1B CRISPRi competition assay (Fig 24C). 

In summary, MYC knockdown phenocopies the selective disadvantage observed with 

HNF1B depletion, producing a similarly strong (or even stronger) phenotype, whereas BCL2 

knockdown has no apparent effect. This was observed in competition assays in both 786-M1A-

dCas9-KRAB-mCherry and OS-LM1B-dCas9-KRAB-mCherry cells, thus indicating that the 

equally striking phenotype conferred by MYC depletion is a reproducible result, as it was seen in 

multiple ccRCC cell line systems. The HNF1Bi, MYCi and BCL2i constructs all successfully 

mediated HNF1B, MYC and BCL2 knockdown respectively in these MYCi / BCL2i competition 

assays. Therefore, the phenotypes observed in these experiments are likely to be the results of 

target gene knockdown. 

 

3.7)	MYC,	and	possibly	BCL2,	may	be	involved	in	the	phenotype	seen	with	HNF1B	loss	

The absence of a phenotype with BCL2 knockdown alone was a somewhat unexpected 

result. The data from the Annexin V/PI stainings had clearly demonstrated a marked increase in 

apoptosis (specifically late-stage apoptosis and/or necrosis) in HNF1B knockout cells, which was 
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rescued by HNF1B restoration, thus suggesting that the increased cell death was linked to 

HNF1B loss. This apparent increase in apoptosis highlighted the possibility that loss of the anti-

apoptotic protein BCL2 contributed to the selective disadvantage associated with HNF1B 

depletion. 

One possibility is that apoptosis may not be a contributing factor to the selective 

disadvantage following HNF1B loss, and instead impaired cell cycle progression (and thus 

inhibited ccRCC cell proliferation) plays more of a role. However, it is also possible that HNF1B 

depletion might induce an alternative cell death pathway, one that might not involve BCL2 (such 

as necrosis). Alternatively, HNF1B depletion might induce increased apoptosis via a different 

mechanism (and not via the downregulation of BCL2) or with the involvement of additional 

factors rather than just BCL2 alone. If any of these possibilities are true, then this might explain 

the inability of BCL2 knockdown alone to even partially phenocopy the effects of HNF1B loss. 

Another explanation might be that the increased cell death observed in HNF1B knockout 

cells is related to the downregulation of MYC, with the downregulation of BCL2 serving to 

render the knockout cells more susceptible to apoptosis. This explanation would be consistent 

with the data from the Annexin V/PI apoptosis assays suggesting that enhanced cell death 

contributes to the selective disadvantage associated with HNF1B depletion, and also consistent 

with the lack of a phenotype seen with individual BCL2 knockdown. Additionally, this 

explanation is supported by the data showing the existence of a cell cycle defect in HNF1B 

knockout cells, and the data demonstrating the ability of MYC knockdown alone to phenocopy 

the selective disadvantage seen with HNF1B loss. 

 These ideas are developed further in the Discussion section of this thesis. Altogether, my 

data suggests the possibility that MYC might be primarily involved in the mechanisms by which 

HNF1B supports ccRCC, with secondary involvement of BCL2. Ultimately, HNF1B’s ability to 

regulate MYC might at least partially explain the importance of HNF1B in ccRCC. 
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DISCUSSION	
 

1)	Screening	for	transcription	factor	dependencies	in	ccRCC	
 

ccRCC is often highly aggressive and prone to metastasis, and exhibits substantial 

genetic intratumour heterogeneity that may contribute to the frequent development of drug 

resistance in these tumours in response to the current standard-of-care targeted systemic 

therapies (such as kinase inhibitors, anti-angiogenic drugs and mTOR inhibitors1,2,32–41,24,42–46,25–

31. To effectively combat ccRCC, novel therapeutic targets are required, ideally those that would 

be essential to ccRCC cell survival and growth across all tumour subclones.  

We reasoned that transcription factors are likely to be ubiquitously essential, given their 

important roles in determining and regulating cell phenotypes. Moreover, transcription factors 

function as effectors of multiple signalling pathways. Hence, therapeutic perturbation of a single 

transcription factor could have wide-ranging effects on ccRCC cell fitness and survival, 

compared to targeting signalling components further upstream in a given pathway. Additionally, 

there are limited opportunities for tumours to rely on redundancy to circumvent transcription 

factor targeting. There is substantial evidence in the literature demonstrating that various 

transcription factors play important roles in many different tumour types (often in cases where 

lineage-specific transcription factors seem to be essential in tumours derived from the tissue type 

in question), and that some of these key transcription factors are in fact druggable and thus have 

considerable potential as therapeutic targets. 

The focus of my PhD was thus to identify additional and potentially novel ccRCC cell 

dependencies, and characterise their importance in these tumours. To that end, I conducted a 

CRISPR/Cas9-based genetic depletion screen in vitro, using ccRCC cells expressing a dox-

inducible Cas9 transgene (786-M1A-TGL-tet-on-Cas9 cells), with a lentiviral sgRNA library 

targeting 50 RCC-associated transcription factors that were particularly highly expressed in 

ccRCC (Fig 1 to Fig 7). 

This screen revealed a potential role for the renal developmental transcription factor 

HNF1B in supporting ccRCC. Apart from HIF2A (which is already known to be important in 

ccRCC), HNF1B was the strongest hit, dropping out the most significantly out of the remaining 

49 transcription factor genes: all 8 individual HNF1B sgRNAs from the screen were 
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substantially depleted by the end of the experiment (all falling within the top 50 most depleted 

sgRNAs out of the 420 constructs in the library), and HNF1B showed the strongest median 

depletion score with the second smallest p-value (Fig 8, Fig 9). 

 Interestingly, the 20 non-targeting control sgRNAs in the screen often appeared relatively 

enriched when comparing the sgRNA representations between screen samples (Fig 9B-D), but to 

varying extents. The “enrichment score” observed varied between the 20 non-targeting control 

sgRNAs in each sample comparison, and the number of non-targeting controls that appear 

relatively enriched also varied between sample comparisons (Fig 9B-D). 

In the comparison of Day 26 +dox to Baseline Day 0, all 20 non-targeting controls are 

enriched (Fig 9B). In the comparison of Day 26 +dox to Day 26 –dox, 19 non-targeting controls 

appear enriched, with one appearing to be neither depleted nor enriched (showing only a very 

high depletion score of 0.974), (Fig 9C). Meanwhile, in the comparison of Day 26 –dox to 

Baseline Day 0, 5 control sgRNAs appear to be similarly barely depleted, with only 15 out of 20 

non-targeting constructs appearing relatively enriched (Fig 9D). 

This could be due to a number of possible reasons. Perhaps the most likely reason is that 

cells containing non-targeting control sgRNAs would not have experienced double-stranded 

break (DSB) formation, due to the lack of Cas9 targeting. Without this source of cellular stress 

from DNA cleavage and repair, these cells may have been at a slight selective advantage 

compared to cells expressing targeting sgRNAs, even if those sgRNAs targeted genes that did 

not influence ccRCC cell fitness. Thus, cells expressing non-targeting control sgRNAs may have 

proliferated better and outcompeted other transduced cells, resulting in the non-targeting control 

sgRNAs appearing relatively enriched. 

Indeed, consistent with this, the non-targeting controls appear more enriched (both in 

terms of their “enrichment score” and the number of enriched versus unchanged / mildly 

depleted control sgRNAs) when comparing Day 26 +dox to Baseline Day 0 (Fig 9B) and Day 26 

+dox to Day 26 –dox (Fig 9C), than they do when comparing Day 26 –dox to Baseline Day 0 

(Fig 9D).  

In the dox-treated sample, cells expressing control sgRNAs would be directly competing 

against cells expressing targeting sgRNAs (i.e. cells experiencing DSB formation). Thus, the 

selective advantage for cells not experiencing Cas9 activity and cleavage would be more 

pronounced, allowing them to better outcompete the other sgRNA-transduced cells in the dox-
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treated population, and resulting in the non-targeting control sgRNAs becoming relatively 

overrepresented (i.e. relatively enriched) in the final sgRNA pool for the Day 26 +dox sample. In 

the untreated sample, however, cells containing targeting sgRNAs should also not be 

experiencing Cas9 activity and DSB formation in the absence of dox. Thus, barring any leakiness 

of Cas9 activity, cells expressing control sgRNAs and cells expressing targeting sgRNAs should 

proliferate equally, as the former would have relatively less selective advantage. Hence, the 

representation of the non-targeting controls would be more equal to that of the targeting sgRNAs 

in the final genomic DNA pool of the Day 26 –dox sample, and the non-targeting controls would 

appear less relatively enriched. In this way, the varying enrichment of non-targeting controls 

could have occurred in the absence of any off-target effects by the non-targeting sgRNAs 

themselves.  

Of course, it is entirely possible that at least some of the control sgRNAs may have had 

off-target effects that led to increased cell proliferation in cells that expressed them. 

Alternatively, control sgRNA constructs may have become integrated into the genome during 

lentiviral transduction at sites which enhanced the effects of genes that promote proliferation, or 

dampened the effects of genes that limit proliferation.  

It is also possible that the apparent enrichment of the non-targeting control sgRNAs was 

simply due to the fact that there were a lot of real “hits” in the target gene set whose sgRNAs 

appeared depleted at the end of the screen. As a result, the sgRNAs targeting genes that were not 

“hits”, including the non-targeting control sgRNAs, would appear enriched by comparison. 

Indeed, the 50 transcription factor target genes in the screen library were a very highly selected 

group of genes, all chosen because they were more likely to be important in ccRCC based on 

their high expression in this tumour type. 

I next confirmed the knockout efficiency of each of the 8 HNF1B sgRNAs (relative to the 

NTC18 non-targeting control sgRNA) by transducing each construct individually into fresh 786-

M1A-TGL-tet-on-Cas9 cells, treating the cells with dox for 8 days, and blotting for HNF1B in 

whole cell protein lysates extracted from these nine cell lines. Most of the constructs were highly 

effective at knocking out or knocking down HNF1B (Fig 10A); however, there were 

discrepancies between the extent of HNF1B protein loss achieved versus the depletion score 

observed in the screen for each HNF1B sgRNA (Fig 9E, Fig 10A-B). 
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These discrepancies between depletion score and knockout efficiency may be due to off-

target effects of the sgRNAs, in cases where the construct dropped out to a greater extent than its 

ability to mediate HNF1B protein loss. 

Alternatively, experimental differences may be responsible: sgRNA knockout efficiency 

was tested after only 8 days of dox treatment, whereas sgRNA depletion was assessed after 26 

days on dox. Thus, an sgRNA that dropped out considerably in the screen might in fact mediate 

more complete protein knockout over the course of 26 days compared to what I saw after only a 

week of dox treatment. On the other hand, 26 days of dox treatment may provide more 

opportunity to select for resistant or non-knockout cells expressing a particularly effective 

sgRNA. Such escapers might survive and proliferate, misleadingly increasing the representation 

of that sgRNA in the final genomic DNA pool. That sgRNA may thus seem less depleted in the 

screen, while still exhibiting a high knockout efficiency in the Western blot data after a week of 

dox treatment.  

Of course, technical error (such as HNF1B protein degradation while extracting the 

protein lysates, or inefficient PCR amplification of certain sgRNA constructs from the screen 

genomic DNA samples) could have affected the data for sgRNA knockout efficiency or for 

relative sgRNA abundance (and thus sgRNA depletion score), thus explaining the inconsistent 

results. Another explanation for the discrepancies between depletion score and knockout 

efficiency is that they could simply be due to random noise in the screen data that affected the 

sgRNA depletion scores obtained. 

I selected HNF1B sgRNAs #2 and #8 (sg2 and sg8 respectively) for further experiments, 

as both mediated highly efficient HNF1B protein knockout, but sg2 dropped out to a lesser 

extent in the screen relative to sg8. I was thus able to compare the results observed between the 

two sgRNAs in my validation experiments to determine if any off-target effects (indicated by 

different or stronger phenotypes) were associated with the more depleted sgRNA, sg8. However, 

both constructs ultimately exhibited highly consistent phenotypes, thus strengthening the 

conclusions from my data (as they were validated with two independent HNF1B sgRNAs). 
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2)	Establishing	a	phenotype	for	HNF1B	CRISPR/Cas9	knockout	in	vitro	
 

I demonstrated a reproducible phenotype for HNF1B knockout in vitro with both sg2 and 

sg8, via CellTitre Glo, cell counting and competition proliferation assays, in multiple ccRCC cell 

lines (each expressing a constitutive Cas9 transgene; Fig 13 to Fig 19). The data from these 

assays clearly established that there was a striking selective disadvantage associated with 

HNF1B knockout with either sg2 or sg8, relative to control cells expressing NTC18. Western 

blotting for HNF1B in the ccRCC-Cas9 cell lines used for these proliferation assays confirmed 

that HNF1B protein was successfully knocked out by each sgRNA in each experiment (Fig 20). 

I did not observe this selective disadvantage in HeLa-Cas9 cells that were transduced 

with sg2 or sg8. Since HeLas do not express HNF1B, the absence of a phenotype suggested that 

the phenotype seen with HNF1B knockout in ccRCC cells was not the result of off-target effects 

caused by the sgRNAs (Fig 21, Fig 22). 

Moreover, I showed that the selective disadvantage observed in ccRCC cells was rescued 

by the expression of an exogenous HNF1B transgene (modified to be untargetable by sg8), 

suggesting that the phenotype observed was indeed a consequence of HNF1B loss (Fig 23A-D). 

Western blotting for HNF1B in the cell lines used for these rescue competition assays confirmed 

that the exogenous HNF1B construct was successfully expressed (Fig 23E-F). In retrospect, it 

would also have been good to blot for the 6xMyc tag as well (attached to the N-terminus of the 

exogenous HNF1B protein), to further confirm transgene expression. 

In the 786-M1A-Cas9 BFP and mCherry cell lines, the levels of exogenous HNF1B 

expressed in the sg8 (+ rescue) cells were similar to the levels of endogenous HNF1B expressed 

in the Control (+ empty vector) cells (Fig 23E-F, lanes 1-3 in each). In the OS-LM1B-Cas9 BFP 

and mCherry cell lines, the levels of exogenous HNF1B expressed in the sg8 (+ rescue) cells 

were higher than the levels of endogenous HNF1B expressed in the Control (+ empty vector) 

cells (Fig 23E-F, lanes 4-6 in each), but potentially without reaching levels of overexpression 

that would introduce artifacts in the data. This is suggested by the fact that the extent of rescue 

was similar at the Day 12 time point between both sets of 786-M1A-Cas9 and OS-LM1B-Cas9 

rescue competition assays (Fig 23A-D). 

It is difficult to predict whether the extent of rescue in the OS-LM1B-Cas9 rescue 

competition assays would have become less complete over time, to match the extent of rescue 

seen in the 786-M1A-Cas9 rescue competition assays. The OS-LM1B-Cas9 rescue competition 
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assays were carried out for a shorter time period (12 days, versus 28 days for the 786-M1A-Cas9 

assays) due to the increased sickliness of the OS-LM1B-Cas9 sg8 (+ empty vector) cell lines. As 

mentioned previously in the Results section, the selective disadvantage associated with HNF1B 

loss was more pronounced in OS-LM1B-Cas9 knockout cells relative to 786-M1A-Cas9 

knockout cells (evident from the competition assay data in Figures 14A-B, 15A-B, 16A-B, 17A-

B, and 23A-D). If I had had more time on this project, I would have repeated these rescue 

competition assays to confirm how well the rescue phenotype was maintained over time in both 

the 786-M1A-Cas9 and OS-LM1B-Cas9 sets of cell lines. 

One possible explanation for the somewhat incomplete rescue seen in the 786-M1A-Cas9 

rescue competition assays is that not all cells within the population might express exogenous 

HNF1B at the levels observed by Western blot. The protein expression detected by Western blot 

only represents the population-level expression of HNF1B; however, in reality there would be 

more of a distribution in the levels of exogenous HNF1B expression, from cells that express very 

low levels to cells that express very high levels of the HNF1B rescue construct. Thus, if too few 

cells in the population express close to endogenous levels of exogenous HNF1B, the extent of 

rescue seen might be lower than expected. 

The slight overexpression of exogenous HNF1B in the OS-LM1B-Cas9 sg8 (+ rescue) 

cell lines was unexpected, as I did initially perform virus titration experiments (data not shown) 

to optimise the amount of HNF1B rescue construct virus to use to transduce parental 786-M1A-

Cas9 and OS-LM1B-Cas9 ccRCC cells for these rescue competition assays. Specifically, I 

titrated the virus by infecting parental 786-M1A-Cas9 cells with different amounts of virus for 

the HNF1B rescue construct, extracted whole cell protein lysates from these transduced cells, 

and blotted for HNF1B to see which virus quantity produced exogenous HNF1B expression 

levels similar to the expression levels of endogenous HNF1B. I then used this volume of virus to 

transduce fresh 786-M1A-Cas9 and OS-LM1B-Cas9 ccRCC cells with either empty vector or the 

exogenous HNF1B rescue construct, and then transduced these cell lines with the Control and 

sg8 constructs and carrying out the rescue competition assays.  

Based on my virus titration experiments, I expected the sg8 (+ rescue) cell lines used in 

the competition assays to exhibit exogenous HNF1B levels that were similar to the levels of 

endogenous HNF1B, and this was indeed the case for the 786-M1A-Cas9 sg8 (+ rescue) cells, 

but not for the OS-LM1B-Cas9 sg8 (+ rescue) cells. The reasons for this difference are unknown, 
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but could be related to the different transduction efficiencies of different cell lines: the OS-

LM1B-Cas9 cells may simply have been better at taking up virus for the HNF1B rescue 

construct, and this expressed higher levels of exogenous HNF1B. 

If I had had more time on this project, I would have tried to employ strategies to 

modulate the expression levels of the exogenous HNF1B transgene. For instance, I could have 

tried to modify the promoter of the construct, perhaps by testing different promoter truncations, 

to try to reduce transgene expression to match endogenous levels. I could then have transduced 

this modified construct into 786-M1A-Cas9 and OS-LM1B-Cas9 parental cells, and then 

transduced these new cell lines with sgRNAs and repeated the rescue competition assays. 

Alternatively, I could have transduced the 786-M1A-Cas9 and OS-LM1B-Cas9 parental 

cells with the exogenous HNF1B rescue construct, and then sorted for single cell clones. I could 

then have screened for HNF1B-restored single cell clones that expressed levels of exogenous 

HNF1B similar to the levels of endogenous HNF1B expressed in wild-type control cells. I could 

either select a number of individual clones to use as biological replicates, or pool several clones 

together, to try to account for potential issues arising from clonal differences. 

 

3)	Establishing	a	phenotype	for	HNF1B	CRISPRi	knockdown	in	vitro	
 

I next tested the effects of CRISPRi-mediated HNF1B knockdown in ccRCC cell lines, 

and observed a similarly strong selective disadvantage to that seen with CRISPR/Cas9-mediated 

HNF1B knockout (Fig 24A-B), thus suggesting that the phenotype seen with CRISPR/Cas9 

HNF1B knockout was not due to a loss of cell fitness associated with double-stranded break 

formation by Cas9. 

However, the extent of HNF1B knockdown was considerably less in OS-LM1B-dCas9-

KRAB-mCherry cells expressing the HNF1B CRISPRi #2 construct, compared to that achieved 

in 786-M1A-dCas9-KRAB-mCherry cells expressing HNF1B CRISPRi #2. This was evident by 

both HNF1B qPCR (Fig 24C) and HNF1B Western blot (Fig 24D).  

This could be due to the fact that expression of the dCas9-KRAB-mCherry transgene was 

less stable over time in OS-LM1B cells relative to 786-M1A cells (data not shown). The OS-

LM1B-dCas9-KRAB-mCherry cells gradually lost mCherry expression over time, even in the 

absence of tandem sgRNA constructs, and separated out into an mCherry+ or mCherryhigh 
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population (expressing high levels of mCherry) and a considerably downwards shifted 

mCherrylow, or more often an mCherry–, population (expressing very low levels of mCherry at 

best, or none at all) (data not shown). Since mCherry is a marker of dCas9-KRAB expression, 

this gradual and spontaneous loss of mCherry fluorescence suggested a loss of dCas9-KRAB 

expression over time in the OS-LM1B transduced population. Consequently, the efficiency of 

target gene knockdown would be greatly reduced, leading to higher residual levels of target gene 

expression. (Fig 24C-D).  

While this phenomenon was also observed in 786-M1A-dCas9-KRAB-mCherry cells, it 

was to a much lesser extent. At worst, the whole population only separated into an mCherryhigh 

and a slightly downwards shifted mCherrylow population (data not shown). Thus, the CRISPRi 

knockdown efficiency achieved in these cells was much higher (Fig 24C-D). 

Notably, even the partial decrease in HNF1B expression seen in the OS-LM1B-dCas9-

KRAB-mCherry cells (Fig 24C-D) was sufficient to induce a striking selective disadvantage 

(Fig 24B), similar in strength to the selective disadvantage seen with more complete HNF1B 

knockdown in 786-M1A-dCas9-KRAB-mCherry cells (Fig 24A), and with efficient HNF1B 

knockout in the 786-M1A-Cas9 and OS-LM1B-Cas9 cells with CRISPR/Cas9 (Figs 14A-B, 

15A-B, 16A-B, 17A-B, and 23A-D). This further underscores the importance of HNF1B in 

ccRCC. 

 

4)	Establishing	a	phenotype	for	HNF1B	CRISPR/Cas9	knockout	in	vivo	
 

I then conducted subcutaneous tumour xenograft assays to determine whether HNF1B 

loss would have an impact on ccRCC cells in vivo, and indeed HNF1B knockout also seemed to 

impair tumour growth. Tumour growth was substantially reduced in 786-M1A-Cas9 and OS-

LM1B-Cas9 sg2 and sg8 knockout tumours relative to Control tumours, based on 

bioluminescence imaging (Fig 25A-B), calliper measurements of tumour volume (Fig 25C-D), 

and comparisons of the final tumour weights between control and knockout tumours at the end of 

each experiment (Fig 25E-F). 

Prior to subcutaneous injection, I confirmed that the Control cell lines used were HNF1B 

wild-type, and that the sg2 and sg8 cell lines were HNF1B knockout, by HNF1B Western blot 

(Fig 26A). At the end of each experiment, I performed HNF1B immunohistochemistry (Fig 26B, 
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D) to determine whether the knockout tumours were comprised of HNF1B-positive or HNF1B-

negative cells (with the control tumours as a comparison point), in order to deduce whether the 

small sg2 and sg8 tumours that formed were comprised of cells that had escaped knockout and 

still expressed HNF1B, or cells that were HNF1B knockout but subsequently adapted to HNF1B 

loss. I also performed vimentin immunohistochemistry (Fig 26C, E) with sections from the same 

tumour samples to confirm that the control and knockout tumours were comprised of human 

ccRCC cells (vimentin-positive), and determine whether they contained murine cells (vimentin-

negative) from the surrounding mouse stromal tissue. The HNF1B and vimentin IHC revealed 

that both the control and knockout tumours contained a mixture of HNF1B-positive and HNF1B-

negative cells, and a mixture of vimentin-positive and vimentin-negative cells (Fig 26B-E). 

The Control tumours contained a higher proportion of more intensely staining HNF1B-

positive nuclei and a minority of HNF1B-negative nuclei, as well as exhibiting both vimentin-

positive and vimentin-negative cells (Fig 26B-E; left image in each panel). Since these tumours 

still expressed wild-type HNF1B and exhibit rapid growth in vivo, these IHC results could 

indicate that the Control tumours incorporated murine stromal cells as they grew, for instance 

through the recruitment of blood vessels and lymphatic vessels. Other stromal components may 

also have been present, such as fibroblasts and immune cells, which would be derived from the 

surrounding mouse tissue. Thus, the small proportion of HNF1B-negative nuclei in the Control 

tumours may have corresponded to vimentin-negative non-ccRCC cells in the tumour mass. 

Meanwhile, the sg2 and sg8 tumours contained a greater proportion of HNF1B-negative 

nuclei, and a smaller proportion of HNF1B-positive nuclei that stained less intensely, initially 

suggesting that these tumours simply consisted of a mixture of both non-knockout and HNF1B-

independent ccRCC cells (Fig 26B, D; middle & right images in each panel). However, the 

presence of both vimentin-positive and vimentin-negative cells in the knockout tumours 

suggested that they had also incorporated murine, non-ccRCC cells into the tumour mass (Fig 

26C, E; middle & right images in each panel), despite supposedly being at a selective 

disadvantage and exhibiting substantially reduced growth in vivo.  

One possibility is that the knockout tumours were derived from sg2- and sg8-expressing 

cells that had escaped HNF1B knockout or become resistant to HNF1B loss, and that these 

escaper cells may have still been able to grow after overcoming the effects of the sgRNAs. These 

escaper cells might thus have been in the early stages of forming tumours by the endpoint of 



 123 

each subcutaneous tumour xenograft assay, when the small “knockout” tumours were harvested. 

This could explain why each of the small sgRNA-expressing tumours comprised both vimentin-

positive ccRCC cells and vimentin-negative murine cells, and suggests that the HNF1B-negative 

nuclei may have corresponded to both vimentin-positive, HNF1B-depleted ccRCC cells that had 

adapted to HNF1B loss, and vimentin-negative non-ccRCC cells derived from mouse stromal 

tissue that was incorporated as the tumours began to grow. 

 However, this is all speculation, as I was not able to identify matched regions between the 

HNF1B-stained and vimentin-stained tumour sections for each of the Control, sg2, and sg8 

tumours analysed. I was thus unable to directly compare the same tumour regions for the HNF1B 

and vimentin IHC to determine whether HNF1B +/- cells exactly corresponded to vimentin +/- 

cells. Ideally, I would have used a programme, such as the Halo software (Indica Labs), to 

analyse the scanned images of my HNF1B and vimentin stained tumour sections. I would have 

then been able to compare the same fields of view for each tumour in order to match HNF1B +/- 

cells to the vimentin +/- cells in the same region. 

 In addition, different tumour samples stained for HNF1B and vimentin with different 

intensities, despite using the same antibody concentration; thus, if I had had more time, I would 

have further optimised the HNF1B and vimentin staining protocols to try to achieve more 

uniform staining intensities and avoid overstaining of any tumour samples or regions within 

samples. 

Moreover, if I had had more time, I would also have carried out additional IHC stainings 

to further confirm the phenotypes associated with HNF1B loss in vivo. I would have stained for 

Ki67, a marker for proliferation, in order to confirm that ccRCC cells in the control tumours 

were indeed proliferating more than ccRCC cells in the sg2 and sg8 tumours. I would also have 

stained for MYC and BCL2 expression, as these two key genes were downregulated upon 

HNF1B knockout in vitro based on RNA-seq data (see Discussion Section 6 below). It would 

thus have been useful to confirm whether MYC and BCL2 expression also decreased in HNF1B 

knockout tumours. 
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5)	Future	work:	additional	experiments	to	investigate	the	effects	of	HNF1B	loss	in	vivo	
 

Due to limited time, I was only able to conduct one in vivo experiment (but with two cell 

line systems) testing the effects of constitutive HNF1B knockout on tumour growth (Fig 25). 

This in vivo data thus complemented the in vitro competition and proliferation assay data 

obtained with the constitutive Cas9 cell lines, in which HNF1B was also constitutively knocked 

out, and the proliferation phenotype of constitutive knockout cells was compared against that of 

control cell lines (Figs 14 to 19). 

If I had had more time, I would also have carried out a subcutaneous tumour xenograft 

assay with constitutive HNF1B rescue, to complement the in vitro data obtained from the rescue 

competition assay experiments (Fig 23). I would have injected freshly transduced 786-M1A-

Cas9 and OS-LM1B-Cas9 Control (+ empty vector), sg8 (+ empty vector), and sg8 (+ rescue) 

cell lines, in order to compare the growth of control tumours (comprised of cells transduced with 

NTC18 and empty vector, which thus express wild-type endogenous HNF1B), HNF1B knockout 

tumours without rescue (comprised of cells transduced with HNF1B sg8 and empty vector, 

which thus lack HNF1B expression entirely), and HNF1B knockout tumours with rescue 

(comprised of cells transduced with HNF1B sg8 and the constitutive HNF1B rescue construct, 

which thus lack endogenous HNF1B but express exogenous HNF1B). 

This constitutive HNF1B rescue experiment would then have enabled me to determine 

whether the selective disadvantage seen with constitutive HNF1B knockout could also be 

rescued by HNF1B restoration in vivo. If so, this would indicate that the reduced growth of 

knockout tumours is linked to HNF1B loss in the tumour cells, and would further demonstrate 

the importance of HNF1B in vivo as well as in vitro.  

It should also be noted that, based solely on the constitutive HNF1B knockout experiment 

that I carried out (Fig 25), the exact stage of tumourigenesis in which HNF1B is important is 

currently uncertain. HNF1B might be essential for tumour initiation, and thus HNF1B loss from 

the point of tumourigenesis would ultimately result in smaller endpoint tumours. Alternatively, 

HNF1B might be critical for tumour maintenance in established tumours (i.e. in the later stages 

of ccRCC development). The selective disadvantage that resulted from constitutive HNF1B 

knockout, with an absence of HNF1B from the very beginning of the experiment, does not 

exclude either possibility: the reduced tumour growth observed could indicate a dependence on 

HNF1B for tumour initiation or a dependence on HNF1B for tumour maintenance. 
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To try to discern which stage of tumour development HNF1B is required for, it would 

have been informative to also conduct in vivo experiments testing the effects of HNF1B 

depletion in established tumours. 

One option would have been to carry out subcutaneous tumour xenograft assays with 

conditional HNF1B knockout instead of constitutive, in order to induce HNF1B loss at a later 

point, once tumours had already formed. This could have been done using the 786-M1A-TGL-

tet-on-Cas9 clonal cell line originally used for the in vitro CRISPR/Cas9 genetic depletion screen 

(data not shown). These cells express Cas9 under the control of a dox-inducible promoter. Once 

transduced with constitutively expressed HNF1B sgRNAs and injected subcutaneously, these 

cells could be used to achieve conditional HNF1B knockout in vivo at different time points, with 

the administration of doxycycline via the mouse food pellets.   

I could thus have used 786-M1A-TGL-tet-on-Cas9 clonal cells transduced with the 

Control (NTC18), HNF1B sg2 or HNF1B sg8 constructs, and carried out a subcutaneous tumour 

xenograft assay with the following experimental groups for each cell line: no dox from Day 0, 

+dox from Day 0, and +dox at a later time point once subcutaneous tumours had been 

established. This would have allowed me to compare the effects of knocking out HNF1B at the 

point of tumour cell seeding (i.e. +dox from Day 0) versus knocking out HNF1B in established 

tumours (i.e. +dox at a later time point, once tumours had already formed).  

Control tumours (i.e. no dox from Day 0, expressing wild-type HNF1B) would be 

expected to grow rapidly, whereas tumours with HNF1B knockout from Day 0 would be 

expected to exhibit greatly reduced growth as seen previously. Meanwhile, knocking out HNF1B 

in established tumours might lead to tumour regression or simply a stagnation of tumour growth, 

or might have no effect at that late stage of tumour development. I might thus have been able to 

determine whether HNF1B was only important for tumour initiation, or whether it was also 

important for tumour maintenance. 

Alternatively, for a more elegant and flexible in vivo experiment to test the importance of 

HNF1B in established tumours, I could have used HNF1B knockout clonal cell lines that lacked 

endogenous HNF1B but expressed the aforementioned untargetable HNF1B rescue construct, 

this time under the control of a dox-inducible promoter. This would essentially provide a 

conditional HNF1B knockout/restoration system, facilitated by dox withdrawal and dox 
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treatment respectively, to investigate the stage(s) of tumour development in which HNF1B plays 

a role. 

To avoid having to transduce 786-M1A-TGL and OS-LM1B-TGL parental ccRCC cells 

with three different transgenes (i.e. Cas9 and HNF1B sg8, in addition to the dox-inducible 

HNF1B rescue construct) and their various antibiotic / fluorescent selection markers, I would 

generate the endogenous HNF1B knockout clones by transiently transfecting the cells (via 

electroporation) with a single plasmid, pX330127, expressing both Cas9 and either the control 

sgRNA NTC18 or HNF1B sg8 (hereafter referred to as pX330-Cas9-NTC18 and pX330-Cas9-

sg8 respectively). I would then sort for single cell clones 48hrs after electroporation, expand the 

clonal cell lines, and then screen them by HNF1B Western blot to identify endogenous HNF1B 

knockout clones.  

One approach would be to first transduce 786-M1A-TGL and OS-LM1B-TGL parental 

cells with either the dox-inducible exogenous HNF1B construct or empty vector, and then 

electroporate those 786-M1A-TGL-tet-on-HNF1B and OS-LM1B-TGL-tet-on-HNF1B cells and 

select for single cell clones, all while maintaining the cells in +dox media. Alternatively, to avoid 

comparing two different clones in subsequent in vivo experiments, I could electroporate 786-

M1A-TGL and OS-LM1B-TGL parental cells, select for single cell clones, and then transduce 

those clonal cell lines with either the dox-inducible exogenous HNF1B construct or empty 

vector. However, due to the strong selective disadvantage imposed by HNF1B knockout in vitro 

(Figs 14 to 19), the latter approach could have a higher risk of failing to yield HNF1B knockout 

clones and instead selecting for single cell clones that had either escaped knockout or adapted to 

HNF1B loss and become HNF1B-independent, prior to transducing the cells with dox-inducible 

exogenous HNF1B. 

Ultimately, if I did manage to obtain clones that were endogenous HNF1B knockout but 

remained dependent on HNF1B (and which reliably expressed sufficient levels of exogenous 

HNF1B in a dox-inducible manner), along with suitable control clonal cell lines, I could have 

proceeded to carry out in vivo subcutaneous tumour xenograft assays to investigate whether 

HNF1B is important for tumour maintenance in established tumours, or whether it is only 

essential at the point of tumour initiation. 

I would first have performed a pilot experiment in vitro, and carried out a proliferation 

assay with the following experimental groups: (i) +dox from Day 0, for the duration of the assay 
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(i.e. HNF1B restored from the point of cell seeding); (ii) no dox from Day 0, for the duration of 

the assay (i.e. HNF1B knockout from the point of cell seeding); (iii) +dox from Day 0 initially, 

followed by dox withdrawal at a later time point partway through the assay (i.e. simulating 

HNF1B knockout in established tumours). 

Dox treatment would induce exogenous HNF1B expression, whereas dox withdrawal 

would remove exogenous HNF1B, effectively rendering the cells HNF1B knockout (as they 

already lack endogenous HNF1B protein). I would thus be able to observe whether dox 

withdrawal (and concomitant HNF1B depletion) at a later time point in the proliferation assay 

would result in decreased cell proliferation. 

If the in vitro pilot experiment yielded positive results, I would then have used the clonal 

cell lines for subcutaneous tumour xenograft assays to investigate the effects of HNF1B 

depletion in established tumours, with 3 experimental groups: (i) +dox from Day 0 (i.e. HNF1B 

restored from the point of tumour initiation, with dox food pellets); (ii) no dox from Day 0 (i.e. 

HNF1B knockout from the point of tumour initiation, with normal food); (iii) +dox from Day 0 

until tumours formed, at which point I would withdraw dox (by switching to normal food 

pellets). I would thus be able to observe whether depleting HNF1B in established tumours would 

lead to tumour regression (or perhaps simply a deceleration or cessation of tumour growth), or 

whether HNF1B loss has no effect at this later stage of ccRCC development. As additional 

controls, I would also incorporate additional dox treated and untreated experimental groups with 

the clonal cell lines that expressed the empty vector and were electroporated with pX330-Cas9-

NTC18.  

Finally, if I had had more time, it would also have been interesting to investigate whether 

HNF1B loss affected ccRCC metastasis. I chose to perform subcutaneous tumour xenograft 

assays for my project in order to investigate the importance of HNF1B for primary tumour 

initiation and growth, as opposed to secondary tumour initiation and growth. The process of 

metastasis involves additional “bottlenecks” to select for those tumour sub-clones capable of 

invading into the surrounding stroma, disseminating from the primary tumour mass to spread to 

distant sites (which requires intravasation, survival in the circulation, and then extravasation), 

and then surviving in and colonising the new tissue environments at these distant sites to form 

metastases139. Therefore, for my initial in vivo characterisation of HNF1B’s role in ccRCC, it 

seemed logical to first focus on primary tumour initiation and growth, and the associated 
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bottlenecks at that earlier stage of tumour development, as opposed to the later stages of tumour 

progression when tumours become capable of forming metastases. 

However, ccRCC can be highly aggressive: metastasis occurs in roughly a third of 

ccRCC cases, typically resulting in fatality2–7. Hence, when assessing HNF1B as a potentially 

targetable tumour dependency, its value as a therapeutic target would certainly increase if it was 

a critical transcription factor in both the primary tumour and secondary lesions, as this would 

suggest that targeting HNF1B could also help treat advanced metastatic disease. 

One approach to study the importance of HNF1B for ccRCC metastasis would have been 

to inject 786-M1A-Cas9 and OS-LM1B-Cas9 Control and HNF1B knockout ccRCC cell lines 

intravenously (via the tail vein) into Nod-Scid-γ (NSG) immunocompromised mice. Owing to 

the high metastatic propensity of the 786-M1A-TGL and OS-LM1B-TGL parental cell lines4, the 

cells should then disseminate to the lungs and seed lung metastases. 

Subsequent metastatic tumour growth would then be measured weekly by 

bioluminescence imaging after intraperitoneal injection of D-luciferin4. I would thus be able to 

determine whether the metastatic potential of HNF1B knockout cells was reduced relative to 

wild-type Control cells, which would be indicated by the formation of fewer or smaller 

metastatic nodules in the lung. 

I could also have performed additional experiments to study the importance of HNF1B in 

established metastases. For this, I could use the conditional HNF1B on/off system described 

above (i.e. endogenous HNF1B knockout clones expressing a dox-inducible exogenous HNF1B 

rescue transgene). I could then perform an experiment analogous to the aforementioned 

subcutaneous tumour xenograft assay designed to investigate the importance of HNF1B in 

established subcutaneous tumours, but with intravenous injection of the clonal cell lines. I would 

thus be able to observe whether dox withdrawal and concomitant HNF1B loss, occurring after 

metastases were established, would eliminate, shrink, or halt the growth of secondary lesions. 

 

6)	Identifying	HNF1B	transcriptional	targets	that	might	play	a	role	in	its	function	in	
ccRCC	
 

After establishing the phenotype for HNF1B loss in vitro and in vivo, I started to explore 

the mechanisms underlying the selective disadvantage associated with HNF1B depletion in order 
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to elucidate the critical functions that HNF1B may perform in ccRCC. To that end, I carried out 

RNA-seq experiments with 786-M1A-Cas9 and OS-LM1B-Cas9 knockout (sg2 and sg8) and 

control (NTC18) cell lines. Meanwhile, a postdoc in the lab helped to carry out HNF1B ChIP-

seq in several ccRCC cell lines, specifically two parental ccRCC cell lines, 786-O and OS-RC2, 

and their more metastatic derivatives (786-M1A and OS-LM1B respectively). These experiments 

helped to identify downstream transcriptional targets of HNF1B that may be directly regulated 

by this transcription factor, and which may contribute to its critical role in ccRCC. 

The RNA-seq data revealed, among other transcriptional changes, that MYC and BCL2 

were downregulated in HNF1B knockout cells relative to control cells (Fig 27A-B, E). 

Consistent with this, gene set enrichment analysis (GSEA) of the RNA-seq data revealed an 

enrichment of MYC target genes in control versus knockout cells (Fig 28B). These results were 

consistent between both the 786-M1A-Cas9 and OS-LM1B-Cas9 cell line systems. 

Meanwhile, the HNF1B ChIP-seq revealed multiple HNF1B binding peaks in the MYC 

and BCL2 loci (Fig 29A-B). These HNF1B binding peaks were shared between all four ccRCC 

cell lines (i.e. both parental ccRCC cell lines, 786-O and OS-RC2, and both of their metastatic 

derivatives, 786-M1A and OS-LM1B). Moreover, the HNF1B binding peaks near the MYC and 

BCL2 genes contained transcription factor motifs that bore a striking resemblance to the known 

HNF1B transcription factor motif. 

Altogether, the data from the RNA-seq and HNF1B ChIP-seq (plus HNF1B transcription 

factor motif analysis) experiments indicated that MYC and BCL2 are downregulated upon 

HNF1B loss, and could possibly be direct transcriptional targets of HNF1B. In light of these 

results, it would also have been interesting to check whether there are similar changes in MYC 

and BCL2 expression in patient tumour cohorts. 

Furthermore, it would have been interesting to combine the RNA-seq and HNF1B ChIP-

seq data and perform a more comprehensive analysis to determine whether the other genes that 

are differentially expressed in the RNA-seq data (apart from the aforementioned EMT genes that 

were upregulated, and the MYC, BCL2, and CDH16 genes that were downregulated, in HNF1B 

knockout cells) are also bound by HNF1B according to the HNF1B ChIP-seq data. 

In addition, some of the HNF1B binding peaks near the MYC locus also spanned the 

genomic region around PVT1 (plasmacytoma variant translocation 1; Fig 29A), which produces 

a long non-coding RNA (lncRNA), PVT1. Increased expression of PVT1 and the PVT1 lncRNA 
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has been implicated in tumourigenesis, tumour progression, and poor prognosis in multiple 

cancer types140–148. Moreover, the PVT1 lncRNA reportedly promotes MYC expression by 

protecting MYC protein from degradation140–148. Increased PVT1 expression and concomitant 

MYC upregulation have apparently been observed and implicated in several human cancers, 

including in ccRCC140–148. One study analysing TCGA data suggested that ccRCC (denoted 

“KIRC”, i.e. kidney renal clear cell carcinoma, in the TCGA database) showed particularly 

upregulated PVT1 expression compared to other tumour types, and that this was associated with 

high MYC protein levels and subsequent deregulation of MYC target genes, all of which 

correlated with poorer prognosis144.  

On the other hand, there is another study which suggests that the PVT1 promoter 

regulates MYC independently of the PVT1 lncRNA and actually inhibits MYC transcription140,143. 

This study concluded that PVT1-mediated regulation of MYC ultimately maintains MYC levels 

within a limited range, with the PVT1 promoter exerting a more dominant regulatory effect and 

inhibiting MYC transcription, while the PVT1 lncRNA stabilizes MYC protein and thus 

promotes MYC expression at the protein level 140,143. Therefore, there is disparate evidence in the 

literature regarding the precise regulatory effects of PVT1 on MYC expression. There are also 

studies suggesting that MYC, in turn, regulates the expression of PVT1141,142,145,147,148. 

It might thus have been interesting to investigate the potential involvement of PVT1 (its 

promoter and/or the PVT1 lncRNA) in HNF1B regulation of MYC, and in the phenotypes 

associated with HNF1B loss and subsequent MYC downregulation (such as the reduced 

proliferation and tumour growth, defect in cell cycle progression, and increased apoptosis 

observed upon HNF1B knockout). 

I next validated the results of the RNA-seq with qPCR to confirm the downregulation of 

these genes following HNF1B knockout. I used independent RNA samples taken from 786-

M1A-Cas and OS-LM1B-Cas9 Control, sg2, and sg8 cell lines. These RNA samples were 

extracted from cell pellets taken during the competition proliferation assays performed with these 

two sets of cell lines (Fig 14A-B). 

The MYC and BCL2 qPCRs performed with the 786-M1A-Cas9 and OS-LM1B-Cas9 

RNA samples also indicated a decrease in MYC and BCL2 expression in sg2- and sg8-

expressing cell lines relative to the Control cell lines, and were thus consistent with the RNA-seq 

data showing a downregulation of MYC and BCL2 in knockout cells relative to controls for the 
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same sets of cell lines (Fig 30A-D, G). However, the magnitude of the decreases in MYC and 

BCL2 expression observed by qPCR exceeded the downregulation observed in the RNA-seq data 

(Fig 30A-D, G). 

The sets of 786-M1A-Cas9 and OS-LM1B-Cas9 Control, sg2 and sg8 cell lines used for 

the RNA-seq were generated from an independent lentiviral transduction, separate from the one 

used to generate the 786-M1A-Cas9 and OS-LM1B-Cas9 Control, sg2 and sg8 cell lines for the 

competition assays. Therefore, there may have been differences in the transduction efficiency of 

the sg2 and sg8 constructs that could explain the different magnitudes of gene expression 

changes between the two experiments. Alternatively, there may have been technical differences 

in the RNA extraction or reverse transcription of the RNA samples used for the qPCR validation, 

and/or variation in the amounts of cDNA used in the qPCR for these samples, which could have 

led to discrepancies in the observed changes in MYC and BCL2 mRNA levels. 

Nevertheless, despite the different magnitudes of reduction in MYC and BCL2 

expression, the qPCR data confirmed the conclusion from the RNA-seq data that MYC and 

BCL2 are both downregulated following HNF1B loss. 

 

7)	The	phenotype	for	HNF1B	loss	may	be	due	to	defective	cell	cycling	and	increased	
cell	death	
 

To continue characterising the mechanisms underlying the selective disadvantage 

associated with HNF1B depletion (and thus the mechanisms by which HNF1B might support 

ccRCC), I next performed experiments to investigate the nature of the phenotype associated with 

HNF1B knockout, in order to determine which cellular processes were responsible for the 

selective disadvantage observed. 

I hypothesised that the selective disadvantage conferred by HNF1B depletion could be 

due to increased cell death, or impaired progression through the cell cycle and consequently 

decreased cell proliferation, or possibly a combination of both mechanisms. I thus carried out 

assays to check for increased apoptosis and defects in cell cycle progression in HNF1B knockout 

cells.  

Unfortunately, I did not have time to optimise and carry out experiments to investigate 

the possible contributions of other phenotypes (such as cellular senescence or differentiation) to 
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the selective disadvantage associated with HNF1B knockout. If I had had more time on this 

project, I would also test whether other mechanisms, such as increased senescence, also played a 

role in the loss of ccRCC cell fitness after HNF1B depletion. 

The cell cycle assay data indicated a defect in the G1/S transition in HNF1B knockout 

cells, resulting in delayed progression through the cell cycle relative to Controls (Fig 31, Fig 

32). This defect was rescued by the expression of exogenous HNF1B (Fig 32). Meanwhile, the 

Annexin V / Propidium iodide staining for apoptosis revealed a substantial increase in cell death 

(specifically in the percentage of late apoptotic / necrotic / dead cells) in HNF1B knockout cells 

relative to Controls, which was also rescued by exogenous HNF1B expression (Fig 33). 

I carried out the cell cycle assays and Annexin V / Propidium Iodide staining on 786-

M1A-Cas9 Control-BFP, sg2-BFP, and sg8-BFP cells, as well as 786-M1A-Cas9 Control-BFP (+ 

empty vector), sg8-BFP (+ empty vector) and sg8-BFP (+ rescue) cells. 

Ideally, I would have tested for increased apoptosis and cell cycle defects in CRISPRi 

cells expressing HNF1B CRISPRi #2 compared to the Scramble Control, to see if the results 

obtained with the CRISPR/Cas9 cell lines were still the same with CRISPRi cell lines, in which 

HNF1B is depleted without the formation of double-stranded breaks (DSBs) in the DNA. This 

could have been informative, as DSB formation might affect apoptosis and cell cycling. 

However, these CRISPRi cell lines are mCherry positive, and were therefore not suitable for use 

in Annexin V and/or PI staining experiments, due to the incompatibility with PI. 

If I had had more time I would have cloned BFP versions of the CRISPRi cell lines in 

order to carry out cell cycle assays and Annexin V / PI staining with this gene knockdown 

system as well. In addition, I would also have repeated the cell cycle and Annexin V / PI 

experiments, both with freshly transduced versions of the same 786-M1A-Cas9 and OS-LM1B-

Cas9 Control-BFP, sg2-BFP, sg8-BFP, Control-BFP (+ empty vector), sg8-BFP (+ empty vector) 

and sg8-BFP (+ rescue) cell lines, and also with other ccRCC cell line systems. 

The cell cycle defect in HNF1B knockout cells at the G1/S transition was perhaps most 

clearly evident in the cell cycle assay performed with the 786-M1A-Cas9 Control-BFP, sg2-BFP, 

and sg8-BFP cell lines (Fig 31). The cell cycle assay with the 786-M1A-Cas9 Control-BFP (+ 

empty vector), sg8-BFP (+ empty vector) and sg8-BFP (+ rescue) cells also strongly supported 

the conclusion that HNF1B knockout cells experience a defect in transitioning from G1 to S 

phase (Fig 32). However, as these cell lines were transduced independently and differently (i.e. 
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they also contain either empty vector or the HNF1B rescue construct, in addition to the 

sgRNAs), their cell cycle distributions varied somewhat compared to their 786-M1A-Cas9 

Control-BFP and sg8-BFP counterparts. 

Despite this, the defect was still noticeable in both experiments. Moreover, evidence of 

the defect emerged at the same time point (t12) and became increasingly apparent over the same 

time period (t12-t16), in each time course (Fig 31, Fig 32). If I had had more time, I would have 

carried out additional experiments to dissect the possible mechanisms by which HNF1B 

knockout might cause this impairment in cell cycle progression, at a genetic and molecular level. 

In both Annexin V / PI staining experiments (the first performed with 786-M1A-Cas9 

Control-BFP, sg2-BFP, and sg8-BFP cells (Fig 33A-C), and the second performed with 786-

M1A-Cas9 Control-BFP (+ empty vector), sg8-BFP (+ empty vector) and sg8-BFP (+ rescue) 

cells (Fig 33D-F)), there was a small amount of cell death detected in the control cell lines (Fig 

33A, D). The presence of late apoptotic / necrotic / dead cells in the control cell lines in each 

experiment could be the result of technical issues with sample processing, which can lead to cell 

damage and thus a positive Annexin V and PI signal (for instance, the use of Trypsin to detach 

apoptotic cells, rather than a gentler agent such as Accutase). Therefore, if I had had more time 

on this project, I would optimize and repeat the Annexin V / PI staining experiments to see if I 

could remove or at least reduce this background level of cell death. 

Moreover, in both Annexin V / PI staining experiments, the percentages of Annexin 

V+/PI– (i.e. early apoptotic) cells remained similar between the different cell lines (Fig 33). 

Hence, both experiments suggested that HNF1B loss does result in increased levels of cell death 

compared to both HNF1B wild-type control cells and HNF1B-restored cells, and that this 

difference mainly lies in the proportion of late apoptotic / necrotic / dead cells. 

 One possible explanation as to why I only observed differences in the percentage of late 

apoptotic / necrotic / dead cells is that cells in early apoptosis may have been further damaged 

and thus progressed to late stage apoptosis during the processing and staining of the cell samples, 

thus resulting in the low percentages of early apoptotic cells detected in each assay and the lack 

of changes in early apoptosis between cell lines.  

Alternatively, the predominance of late apoptotic / necrotic / dead cells and the relative 

lack of early apoptotic cells could be due to the fact that the cell lines used were not freshly 

transduced; they were thawed from cell stocks and then expanded in culture for some time before 
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use. It is possible that the cells may have progressed from early apoptosis to late stage apoptosis, 

necrosis, or outright cell death during this time period in culture. This may be especially likely 

for the sg2, sg8, and sg8(+EV) knockout cell lines, where even a limited time expanding in 

culture would mean a prolonged length of time experiencing the effects of HNF1B loss. 

Consequently, the apoptotic phenotype may have increased in severity over time in culture 

before I stained the cells with Annexin V and PI. Thus, although a higher percentage of early 

apoptotic cells may have been present at some stage after sgRNA transduction in the control, 

knockout, and rescue cell lines, I might have missed the appropriate time window in which to 

observe these early apoptotic cells. Using freshly transduced cells might have prevented this 

issue. 

On the other hand, each cell line originally underwent antibiotic selection after viral 

infection to select for successfully transduced cells. The cell death during antibiotic selection 

would have obscured any cell death resulting from HNF1B loss, and I was thus unable to 

measure apoptosis from the onset of HNF1B depletion after infection with sgRNA virus. 

Therefore, if HNF1B knockout did induce apoptosis, the early stages of apoptosis may have 

already elapsed by the time I froze down cell stocks, and I might already have missed the optimal 

time window to detect early apoptotic cells. 

However, further repeats of these Annexin V / PI experiments may have revealed 

whether the differences in cell death between control / rescue and knockout cells consistently 

appeared in the percentages of late apoptotic / necrotic / dead cells, with no changes in early 

apoptosis. If so, this might suggest that this was in fact a real biological result. For instance, this 

could indicate that the intensity of the cell death stimulus triggered by HNF1B loss in ccRCC 

cells is so strong that HNF1B knockout cells either progress very rapidly through early apoptosis 

into late apoptosis, or undergo necrotic cell death instead. Consequently, I was mainly able to 

detect late apoptotic or necrotic cells with my Annexin V/PI staining, rather than early apoptotic 

cells. 

Cells undergoing late apoptosis and cells undergoing necrosis both stain as Annexin 

V+/PI+, and thus cannot be distinguished by Annexin V / PI staining; rather, cells undergoing 

both types of cell death would appear in the same population. Necrosis can occur after apoptosis, 

or happen in parallel. Moreover, cells may enter necrosis instead of apoptosis in response to the 

same stimulus, if they experience that stimulus at a higher intensity or for a longer duration. 
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Ongoing apoptosis may even be converted to necrosis, for instance due to reduced availability of 

ATP or caspases inside the dying cell149. Therefore, while it is possible that the HNF1B 

knockout cells stained in the Annexin V / PI experiments were in late apoptosis, it is also 

possible that they had instead undergone necrotic cell death. 

If I had had more time to further investigate this, I would have performed additional 

experiments to confirm whether HNF1B knockout cells were undergoing apoptosis, and if so, to 

determine the stage of apoptosis that HNF1B knockout cells progressed to. For example, I would 

have carried out caspase activity assays (such as the Promega Caspase-Glo 3/7 Assay) and 

Western blots for caspase-3 / cleaved caspase-3 in vitro, or TUNEL assays and caspase-3 IHC 

with tumour sections to check for apoptosis in vivo. In addition, I would have carried out 

experiments to test for necrosis, and distinguish it from apoptosis. 

Based on the results of experiments such as these experiments, and on the results from 

repeats of the Annexin V / PI staining, I could then have carried out further experiments to 

charactserise the possible mechanisms by which HNF1B knockout might trigger the type of cell 

death in question at a genetic and molecular level. 

 Ultimately, despite the possible influence of technical issues while performing these 

Annexin V / PI staining assays, and despite the unknown reasons as to why differences in cell 

death seem to only only appear in the percentages of late apoptotic / necrotic / dead cells, the 

data still clearly showed a substantial increase in cell death in HNF1B knockout cells relative to 

control cells, which was completely reversed by HNF1B restoration (Fig 33). The technical and 

biological explanations speculated on above would be unlikely to detract from this conclusion, 

especially since the increase in cell death between knockout and control cells was consistent 

between both Annexin V / PI experiments (i.e. between both sets of HNF1B knockout versus 

isogenic control cell lines (Fig 33A, C-E)), suggesting that this is a real biological result. 

 Therefore, taken together, the data from the cell cycle PI and Annexin V / PI experiments 

suggested that the selective disadvantage observed with HNF1B loss in vitro and in vivo 

stemmed from a combination of decreased cell proliferation due to impaired cell cycle 

progression, and increased cell death. Thus, HNF1B’s role in ccRCC might be to promote cell 

proliferation and cell survival. 
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8)	Potential	roles	of	MYC	and	BCL2	in	HNF1B’s	function	in	ccRCC:	BCL2	involvement		
 

Combining this data with the RNA-seq, HNF1B ChIP-seq and HNF1B transcription 

factor motif analysis, I hypothesised that the decreased expression of the directly regulated 

HNF1B target genes MYC and BCL2 might be responsible for the selective disadvantage 

associated with HNF1B loss, and thus that MYC and BCL2 might be involved in HNF1B’s role 

in ccRCC. 

I thus decided to investigate the relative contributions of MYC and BCL2 to the selective 

disadvantage conferred by HNF1B depletion. I carried out CRISPRi competition proliferation 

assays, comparing the effects of knocking down MYC and BCL2 (individually or in 

combination) against the selective disadvantage conferred by HNF1B knockdown (Fig 35A-B).  

I chose to use the CRISPRi system for these experiments instead of the CRISPR/Cas9 

system in order to more accurately recapitulate the downregulation of MYC and BCL2 observed 

by RNA-seq in HNF1B knockout cells. I reasoned that CRISPRi knockdown would more closely 

recapitulate a downregulation of these genes, whereas the CRISPR/Cas9 system would be more 

likely to mediate a complete knockout of MYC and BCL2. A complete loss of MYC and BCL2 

expression might induce too strong a phenotype that would not be physiologically relevant, since 

the expression of these genes is not completely lost upon HNF1B depletion. 

I designed functional MYC and BCL2 CRISPRi tandem sgRNA constructs that mediated 

efficient knockdown of their target genes, as verified by qPCR (Fig 34). The HNF1B, MYC and 

BCL2 CRISPRi tandem sgRNA constructs used also mediated successful target gene knockdown 

during the competition assays, again verified by qPCR (Fig 35C-H).  

Based on the data from these MYC/BCL2 CRISPRi competition proliferation assays, 

MYC knockdown phenocopied the selective disadvantage observed with HNF1B depletion, 

producing a similarly strong (or even stronger) phenotype, whereas BCL2 knockdown had no 

apparent effect (Fig 35A-B). 

The lack of a phenotype with BCL2 knockdown was an unexpected result. One 

possibility is that BCL2 loss might not be the main or sole instigator of the enhanced cell death 

seen in HNF1B knockout cells. It is likely that other factors (which may or may not be regulated 

by HNF1B) are required to mediate cell death. Thus, BCL2 knockdown alone would be unable 

to recapitulate the phenotype seen with HNF1B knockdown. 
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Alternatively, since the increased cell death observed in knockout cells in the Annexin V 

/ PI staining was in the late apoptotic / necrotic / dead cell population, it is possible that HNF1B 

knockout induces necrosis instead of apoptosis, which might not involve BCL2. Hence, BCL2 

knockdown would not phenocopy the effects of HNF1B knockdown, although this does raise the 

question as to what impact BCL2 downregulation has in HNF1B-depleted ccRCC cells. 

Another possibility is that the increased cell death seen in the HNF1B knockout cell lines 

could be an indirect effect of HNF1B depletion. I will proceed to describe this hypothesis only 

with reference to apoptotic cell death, although it may also be applicable to other types of cell 

death (such as necrosis), should those pathways be involved. 

Instead of HNF1B loss directly affecting the expression of genes involved in apoptosis to 

trigger pro-apoptotic signals and cause increased cell death, HNF1B loss might only render 

ccRCC cells more sensitive to apoptotic stimuli. HNF1B knockout cells may subsequently 

undergo apoptosis in response to an additional event (such as MYC downregulation) caused by 

HNF1B depletion, resulting in the increased cell death detected by Annexin V/ PI staining. 

The downregulation of BCL2 following HNF1B knockout may even play a role in 

facilitating this increased sensitivity to apoptotic signals, rather than directly inducing cell death 

by itself. BCL2 is an anti-apoptotic protein, and may thus serve to protect ccRCC cells from cell 

death when its expression is upregulated by wild-type HNF1B. When BCL2 is downregulated 

upon HNF1B knockout, this suppression of apoptosis would be removed, thus leaving the cells 

more sensitive to pro-apoptotic signals. Apoptosis might then be induced in response to an 

additional event directly precipitated by HNF1B knockout that generated a pro-apoptotic signal. 

For instance, the downregulation of MYC (and the consequent withdrawal of oncogenic 

signalling and impaired cell cycle progression) might generate apoptotic signals and thus lead to 

increased cell death in this context. 

It is also possible that HNF1B loss renders ccRCC cells more susceptible to cell death 

through a mechanism independent of BCL2 downregulation, and that BCL2 downregulation 

could be the additional event that induced apoptotic signals and caused increased cell death (but 

only in the context of HNF1B depletion). 

If this hypothesis is true, then perhaps BCL2 knockdown alone did not phenocopy the 

effects of HNF1B knockdown because BCL2 loss in itself is not sufficient to induce apoptosis 

and instead only renders ccRCC cells more sensitive to apoptotic signals. However, there was no 
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subsequent genetic event to induce cell death in these BCL2 knockdown cells, especially since 

BCL2 was knocked down in otherwise HNF1B wild-type, MYC wild-type ccRCC cells. 

Therefore, if BCL2 knockdown does confer increased cell sensitivity to apoptosis and MYC 

withdrawal is the key death-triggering stimulus required, the cells would become vulnerable to 

apoptosis but would not exhibit a phenotype due to the presence of wild-type MYC. If instead 

the sensitivity to apoptosis is conferred by a BCL2-independent mechanism stemming from 

HNF1B depletion, then these cells would lack an increased sensitivity to apoptosis due to the 

presence of wild-type HNF1B, and thus might not readily respond to any pro-apoptotic signals 

induced by BCL2 loss. 

Ultimately, this hypothesis might reconcile the observations of increased cell death in 

HNF1B knockout cells, and yet the lack of a phenotype with BCL2 knockdown alone in cells 

that were otherwise HNF1B wild-type and MYC wild-type. It would also suggest that perhaps 

the knockdown of another HNF1B target gene in those BCL2-depleted cells (like MYC, for 

instance) may have triggered apoptosis and caused the same striking phenotype seen with 

HNF1B knockdown and MYC knockdown alone. In support of this hypothesis, there is some 

evidence in the literature suggesting that the downregulation or inhibition of BCL2 can cooperate 

to enhance apoptosis induced by drug treatment150,151. 

If I had had more time on this project, I would have performed cell cycle and apoptosis 

assays with freshly transduced versions of the cell lines used for the MYC/BCL2 CRISPRi 

competition proliferation assays (Fig 35A-B), in order to determine whether MYC and BCL2 

knockdown (individually and in combination) also resulted in a cell cycle defect in G1/S 

progression and increased cell death, similar to that observed in HNF1B knockout cells. 

Ultimately, increased cell death might still contribute to the selective disadvantage seen 

with HNF1B knockout, along with impaired cell cycling and reduced cell proliferation. 

However, this increased cell death may not be triggered directly by BCL2 downregulation, but 

might instead be induced by the downregulation of MYC following HNF1B loss. 

 

9)	Potential	roles	of	MYC	and	BCL2	in	HNF1B’s	function	in	ccRCC:	MYC	involvement		
 

Deregulated MYC expression and/or activation is implicated in a variety of different 

cancer types130–132. Among its myriad of functions, MYC regulates progression through various 
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stages of the cell cycle by regulating the expression of key cell cycle proteins. Intriguingly, there 

is considerable evidence suggesting that MYC promotes progression from G1 to S phase. 

For example, MYC upregulates various cyclin and cyclin-dependent kinase (Cdk) genes 

involved in G1 phase; regulates E2F transcription factors (which are essential for G1/S 

progression, as they in turn regulate the expression of cell cycle proteins required for S phase), 

and represses the expression and activity of CIP/KIP proteins (cyclin-dependent kinase (Cdk) 

inhibitors that can inhibit G1/S progression).132 

Moreover, various studies have demonstrated that modulating MYC expression and 

activity has effects on the G1/S transition in different cell line and tumour systems. For example, 

MYC overexpression can stimulate quiescent cells to enter the cell cycle132 and drive cells to 

enter S phase130,132.  

By contrast, depletion or inactivation of MYC, or inhibition of MYC function, has been 

shown to prevent quiescent cells from re-entering the cell cycle, hinder cell cycle progression, 

prevent entry into S phase, and cause cell cycle arrest at G0/G1132,152. Expression of a dominant 

negative mutant of MYC, for instance, causes cell cycle arrest at G1, which can be rescued by 

wild-type MYC expression132. Similarly, MYC-deficient cells exhibit delayed exit from the G1 

phase of the cell cycle, and also exhibit slower growth that can be rescued by MYC 

expression132. 

Unsurprisingly, evidence in the literature indicates that high levels of MYC expression 

and activity enhances cell proliferation and tumour growth130–132, whereas MYC downregulation 

or functional antagonism incurs reduced proliferation and tumour regression (typically due to the 

onset of proliferative arrest, apoptosis, senescence, and/or cancer cell differentiation). 

It is therefore encouraging to note that many of the phenotypes identified upon MYC 

withdrawal in the literature were also reflected in my own data in HNF1B knockout cells in vitro 

and in vivo, and in MYC knockdown cells in vitro. Following HNF1B knockout and concomitant 

downregulation of MYC in vitro, I also observed decreased cell proliferation, increased cell 

death, and impaired cell cycle progression, specifically a defect at the G1/S transition (which 

resulted in a delay in exiting G1 and entering S phase, and thus a prolonged G1 phase), in 

HNF1B knockout cells compared to HNF1B wild-type controls. These phenotypes were all 

reversed by HNF1B restoration, and presumably associated MYC restoration, in vitro. Moreover, 
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I observed reduced tumour growth with HNF1B knockout in vivo, and a similarly striking 

reduction in cell proliferation with direct MYC knockdown by CRISPRi in vitro. 

If I had had more time, I would also have explored other phenotypes in the aftermath of 

HNF1B knockout and MYC downregulation (such as senescence or tumour cell differentiation), 

and investigated the contributions from other MYC functions (such as its ability to promote 

ribosome biogenesis and alter cell metabolism, which would help fuel cell growth to accompany 

the increased proliferation driven by MYC). 

There is substantial evidence in the literature indicating that MYC activation by itself is 

insufficient to promote tumourigenesis, as it is countered by mechanisms such as proliferative 

arrest, senescence, and/or apoptosis130–132. Hence, MYC requires a permissive genetic and/or 

epigenetic context, and the cooperation of other oncogenes or genetic alterations that impede 

these cellular counter-measures, in order to facilitate tumourigenesis130–132. MYC expression or 

activity in tumours is thus frequently combined with the acquisition of additional oncogenic 

mutations, the loss of tumour suppressor genes, the loss of senescence regulators, and/or the 

increased or decreased expression of anti-apoptotic or pro-apoptotic regulators respectively.  

In the case of ccRCC, tumour cells have already undergone the loss of a tumour 

suppressor, VHL, resulting in the accumulation and deregulated transcriptional activity of 

HIF2A. Against this background of reduced tumour suppression and aberrant HIF signalling, 

HNF1B upregulates the anti-apoptotic protein BCL2. This increased BCL2 expression might 

thus protect ccRCC cells against apoptosis triggered by elevated MYC expression, which is also 

induced by HNF1B. 

Of course, there may also be additional gene regulatory events either downstream of the 

VHL-HIF pathway (as a result of VHL loss and/or HIF2A transcriptional activity) or 

downstream of HNF1B (due to its own transcriptional activity), as well as other 

genetic/epigenetic alterations and their consequences in ccRCC, that may cooperate with MYC 

to overcome cellular checkpoint mechanisms and drive tumourigenesis and tumour progression. 

However, HNF1B’s upregulation of both MYC and BCL2 (thereby mediating both enhanced cell 

proliferation and increased resistance to apoptosis) on a background of deregulated VHL-HIF 

signalling (which is already known to be an important driver event in ccRCC tumourigenesis) is 

one possible mechanism underlying tumour formation and progression. 
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Several studies suggest that there is a threshold level of MYC expression that must be 

maintained in order to support tumourigenesis130,131. Evidence in the literature also suggests that 

MYC depletion can lead to apoptosis in tumour-derived cell lines in vitro or in established 

tumours in vivo130–132. Moreover, various studies in different tumour types have also shown that 

MYC depletion or inhibition in established tumours leads to tumour regression, suggesting that 

many tumours become addicted to MYC and are thus dependent on continuous MYC expression 

and activity for tumour maintenance130,131. 

In line with this, it is possible that the increased cell death observed in HNF1B knockout 

cells in the Annexin V / PI assays could in fact be caused by the MYC downregulation 

associated with HNF1B loss. If so, this might suggest that ccRCC cells are addicted to MYC, 

and might also reconcile the data showing enhanced cell death in HNF1B knockout cells, and yet 

the absence of a phenotype with BCL2 knockdown by CRISPRi.  

If the upregulation of BCL2 in HNF1B wild-type cells does help to prevent apoptosis in 

response to MYC overexpression, then the downregulation of BCL2 upon HNF1B knockout 

might leave ccRCC cells more sensitive to apoptotic signals. The concurrent downregulation of 

MYC following HNF1B loss might then induce apoptosis. Of course, other gene expression 

changes downstream of HNF1B loss could also be involved, apart from the downregulation of 

these two genes. However, the increased cell death seen in HNF1B knockout cells could be due, 

at least in part, to the combined loss of MYC and BCL2, with reduced BCL2 expression 

sensitizing the cells to pro-apoptotic signals (but not eliciting a phenotype on its own) and MYC 

withdrawal triggering cell death. 

 

10)	HNF1B	may	be	important	in	ccRCC	due	to	its	ability	to	regulate	MYC	
 

Ultimately, it is possible that ccRCC cells are dependent on HNF1B due to its ability to 

regulate MYC and facilitate MYC-driven tumourigenesis. HNF1B may drive MYC 

overexpression and maintain high levels of MYC, above the threshold required to promote 

ccRCC cell proliferation, tumour formation and tumour growth. Additionally, HNF1B 

transcriptional activity may help provide a permissive genetic and/or epigenetic context, on a 

background of VHL tumour suppressor loss and high HIF2A activity, for MYC to promote 



 142 

ccRCC tumourigenesis (for example, HNF1B upregulates the anti-apoptotic protein BCL2, 

which might prevent apoptosis in response to high MYC expression and activity). 

However, the hypothesis that HNF1B is important in ccRCC in vitro and in vivo 

primarily due to its ability to upregulate MYC still needs to be confirmed definitively. For 

example, if I had had more time, I would have performed competition assays with MYC 

restoration in HNF1B knockout cells to determine whether exogenous MYC expression could 

rescue the selective disadvantage, defective G1/S progression, and increased cell death 

associated with HNF1B loss, to a similar extent as the rescue conferred by exogenous HNF1B 

expression (Fig 23A-D). I would also have investigated whether MYC CRISPRi knockdown 

cells, which exhibited a similar selective disadvantage to HNF1B CRISPRi knockdown cells 

(Fig 35A-B), also showed increased cell death and a similar cell cycle defect at the G1/S 

transition. 

Evidence in the literature suggests that MYC is important for both tumour initiation and 

tumour maintenance130,131. However, in the context of my project, is uncertain as to whether or 

not HNF1B (and MYC) are important for both tumour initiation and maintenance in ccRCC. It is 

thus also uncertain whether ccRCC cells are addicted to HNF1B and/or MYC. Further study 

would be required to address these questions, including carrying out in vivo experiments to 

investigate whether HNF1B (and MYC) are essential for tumour maintenance, as described 

earlier in this section. 

Altogether, the reduced proliferation and tumour growth associated with HNF1B 

knockout in vitro and in vivo, along with the enhanced cell death observed in HNF1B knockout 

cells in vitro and the possibility that this increased apoptosis may be linked to MYC 

downregulation, do seem to suggest that ccRCC cells may be addicted to HNF1B and possibly 

also to MYC. It would thus be important to investigate whether HNF1B depletion or direct MYC 

depletion in established tumours would lead to tumour regression. If so, this would support the 

hypothesis that ccRCC cells are addicted to HNF1B and/or MYC. 

Further study would also be required to investigate the relationship between the HNF1B-

MYC axis and the well-characterised VHL-HIF2A axis (already known to be essential driver 

pathway in ccRCC). There is evidence in the literature to suggest that HIF2A enhances MYC 

activity in VHL-deficient ccRCC, and that the two transcription factors may cooperate to 

mediate tumour progression153,154. 
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11)	Conclusions	and	implications	
 

Characterising the mechanisms by which HNF1B supports ccRCC, and the role of MYC 

in these mechanisms, could have implications for both the study of transcription factors in 

cancer, and ccRCC therapy.  

My data indicates the possibility that ccRCC cells depend on HNF1B due to its regulation 

of MYC. MYC is a commonly deregulated oncogenic driver in a diverse range of tumour 

types130–132. By contrast, HNF1B seems to be important in only a limited range of tumour types, 

including ccRCC155,156, and is a renal developmental transcription factor that is highly expressed 

in ccRCC compared to other tumour types, but is not subject to genetic alterations in ccRCC. 

There is a possibility that HNF1B may belong to a renal-specific core transcriptional network, 

along with other essential ccRCC transcription factors like HIF2A, which converges on the 

regulation of common oncogenes (such as MYC) or oncogenic pathways in order to support 

malignant phenotypes and thereby promote ccRCC tumourigenesis and tumour progression. 

This is a potentially interesting notion if it turns out to be generally applicable to other 

lineage transcription factors that also play essential roles in cancer, since lineage transcription 

factors often exhibit relatively tumour-type specific importance155,156. Perhaps lineage 

transcription factors so often represent tumour dependencies because they also belong to tissue-

specific core transcriptional networks that drive common oncogenic events, and thus the same 

oncogenes are regulated by different transcriptional pathways in different tumours derived from 

different tissue types. 

My data also highlights the potential of HNF1B, and/or its transcriptional target MYC, as 

therapeutic targets in ccRCC treatment. Although both HNF1B and MYC are transcription 

factors and may thus be considered “undruggable”, there is already considerable evidence in the 

literature for the utility and feasibility of targeting transcription factors in cancer therapy86,95. As 

detailed above and in the Introduction section, examples of such transcription factor targets 

include: nuclear steroid receptors in breast and prostate cancer, the transcription factor MITF in 

drug-resistant BRAF-mutant melanoma96, the oncogenic transcription factor MYC in multiple 

tumour types, and HIF2α in ccRCC75,76.  
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Promising steps have already been made towards targeting MYC in other tumour 

types130–132, and this might be an effective means of both inhibiting MYC function in ccRCC and 

also targeting HNF1B through one of its target genes. Alternatively, similar strategies to those 

used to target MYC and HIF2A may be applied to target HNF1B. Indeed, HNF1B may be the 

more attractive target as it lies upstream of, and regulates, MYC.  

Ultimately, both HNF1B and MYC seem to be essential ccRCC tumour dependencies, 

and may thus be useful therapeutic targets in ccRCC, either individually or in combination with 

other therapeutic strategies to try to prevent potential issues with the development of tumour 

drug resistance. 

 

12)	Summary	
 

In summary, I performed an in vitro CRISPR/Cas9-based genetic depletion screen with 

an sgRNA library targeting 50 transcription factors that are highly expressed in ccRCC. This 

screen highlighted the renal developmental transcription factor HNF1B as a potential ccRCC cell 

dependency. I thus proceeded to validate the importance of HNF1B in ccRCC, and to investigate 

the mechanisms underlying its role in ccRCC cells.  

My data demonstrated a striking selective disadvantage with HNF1B loss in vitro and in 

vivo, which was consistent with the significant depletion of HNF1B sgRNAs in the screen, and 

suggested that this highly expressed transcription factor plays an important role in ccRCC. My 

data also indicated that HNF1B knockout resulted in a defect in cell cycle progression at the 

G1/S transition, as well as increased cell death (two mechanisms that might contribute to the 

selective disadvantage associated with HNF1B loss). Additionally, my data highlighted the 

HNF1B transcriptional targets MYC (which regulates cell cycle progression) and BCL2 (which 

functions as an anti-apoptotic protein) as target genes that might be directly regulated by 

HNF1B, and which might be at least partly responsible for these phenotypes (since both seemed 

to be downregulated upon HNF1B knockout). I subsequently showed that individual knockdown 

of MYC phenocopied HNF1B loss, conferring a striking selective disadvantage in ccRCC cells 

similar to that seen with HNF1B depletion. By contrast, individual knockdown of BCL2 had no 

observable effect. 



 145 

Taken together, my data suggested that HNF1B-mediated regulation of MYC expression 

might be a key mechanism underlying the importance of HNF1B in ccRCC. HNF1B’s ability to 

upregulate MYC might help activate MYC-driven transcriptional programmes that promote and 

support ccRCC cell proliferation and tumour growth. When HNF1B is depleted, MYC 

downregulation might result in impaired G1/S progression, and this cell cycle defect might 

subsequently inhibit proliferation. Moreover, MYC withdrawal might trigger increased cell 

death.  

These possibilities seem to be consistent with evidence in the literature from other 

tumour types with high MYC expression: such tumours become dependent on MYC-driven 

growth programmes, and thus become addicted to MYC; upon MYC withdrawal, these MYC-

addicted tumours often exhibit cell death and regress, at least temporarily. 

Although BCL2 knockdown alone did not show a phenotype, HNF1B-mediated 

regulation of BCL2 might still contribute by conferring increased resistance to apoptosis in 

HNF1B wild-type cells (since apoptosis is one of several cellular responses to counter MYC 

activation). BCL2 downregulation in HNF1B-depleted cells might thus confer increased 

susceptibility to apoptosis triggered by MYC withdrawal. 

To conclude, based on my data I would tentatively propose that one possible mechanism 

by which HNF1B supports ccRCC is through upregulating MYC, and that ccRCC tumours may 

in fact be addicted to MYC and therefore to HNF1B, explaining their dependency on this highly 

expressed, non-mutated renal developmental transcription factor.  

My data adds to the growing body of evidence in the literature implicating other lineage 

transcription factors in different tumours types. My results would also encourage further study 

and characterisation of the “HNF1B-MYC axis” in these tumours, as well as any relationship 

between HNF1B-MYC and the VHL-HIF2A pathway already known to drive tumourigenesis in 

ccRCC. Finally, my results also highlight HNF1B and MYC as potentially useful therapeutic 

targets in ccRCC, perhaps in combination with other therapeutic strategies. 
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MATERIALS	&	METHODS	
 

In vitro cell culture 

293T cells (used for lentivirus production), HeLas, and MDA-MB-231 breast cancer cells were 

cultured in high glucose DMEM 1X (Dulbecco’s Modified Eagle Medium, containing 4.5g/L D-

glucose, L-glutamine and pyruvate; Life Technologies Gibco, cat. no. 41966-029 and 41966-

052), supplemented with 10% foetal calf serum (FCS) & 1% pen-strep (P/S). HCC-1419 breast 

cancer cells, ccRCC cell lines and their derivatives were cultured in RPMI-1640 medium (Sigma, 

cat. no. R8758) supplemented with 10% FCS and 1% P/S. For dox treatment, doxycycline 

(Sigma, cat. no. D9891) was diluted in cell culture media from a stock concentration of 1mg/ml 

to the working concentration of 1µg/ml. The dox was initially added to the cells during cell 

seeding, and subsequently replenished with media changes and the accompanying addition of 

fresh dox every 2-3 days. 

 

Lentiviral transduction 

293T cells were used for lentivirus production. psPAX2 (Addgene plasmid #12260) and pMD2.G 

(Addgene plasmid #12259) were used for viral packaging plasmids. 293Ts were seeded at a 

density of 1x106 cells per well in 6-well plates, with a total volume of 2ml media per well, and 

allowed to adhere overnight. 293Ts were then transfected with either FuGENE (FuGENE 6 

Transfection Reagent, Promega, cat. no. E2693) or Lipofectamine 2000 (Lipofectamine 2000 

Transfection Reagent, Thermo Fisher Scientific, cat. no. 11668019) according to the following 

protocol: 

 FuGENE / Lipofectamine 2000 protocol (PER WELL) 

1) Tube A: 10µl Fugene  + 160µl Optimem medium 

2) Tube B: 

 

Test DNA 1.5µg 

 

psPAX2 1.3µg 

 

pMD2.G 0.5µg 

 

+ 160µl Optimem 

 3) Incubate DNA + Optimem for 5 mins at room temperature 
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4) Using a P1000, gently add contents of tube A to tube B and mix 

5) Incubate DNA/Fugene mixture for 30 mins at room temperature 

6) Add all 320µl DNA/Fugene mixture to cells gently, & tilt plate to mix 

7) Incubate cells for 48-72hrs before harvesting viral supernatant 

 

Viral supernatants were harvested 48-72hrs after 293T cell transfection and filtered through a 

0.2µm syringe filter (Minisart Syringe Filter, Sartorius, cat. no. 16534-K) to remove cell debris. 

Harvested virus was either used immediately for infection of target cells, or frozen in single-use 

aliquots at -80°C for later use.  

Target cells were seeded for infection at a cell density of 200,000 cells per well in 6-well 

plates and allowed to adhere overnight. Viral supernatant was then added to the cells directly 

(100µl virus in 2ml of cell media per well of a 6-well plate), along with Polybrene Transfection 

Reagent (Millipore, cat. no. TR-1003-G) at a concentration of 8µg/ml to enhance the infection 

efficiency.  

The amount of virus used for target cell infection was scaled up for larger cell culture 

formats as follows, based on a compromise between dish area and media volume (which would 

affect virus dilution): 

Dish Virus (µl) Dish area (mm2) Media volume Cells per well 

6-well 100 962 2ml 200,000 

10cm 350 7,854 7ml 1x106 

15cm 1000 17,671 20ml 2x106 

 

Subsequent antibiotic selection of infected cells was achieved with either puromycin, 

hygromycin, or blasticidin treatment (depending on the transduced construct in question). 

Puromycin (InvivoGen, cat. no. ant-pr) was diluted in cell culture media from a stock 

concentration of 10mg/ml to working concentrations of 3-4µg/ml. Hygromycin (InvivoGen, cat. 

no. ant-hg) was diluted in cell culture media from a stock concentration of 100mg/ml to working 

concentrations of 800-1000µg/ml. Blasticidin (InvivoGen, cat. no. ant-bl) was diluted in cell 

culture media from a stock concentration of 10mg/ml to working concentrations of 25µg/ml. 
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Virally infected target cells were treated with antibiotic alongside untransduced controls, 

and antibiotic treatment was stopped once all untransduced control cells were dead. This 

generally took 2-4 days in the case of puromycin, 5-7 days in the case of hygromycin, or 9 days 

on average in the case of blasticidin. During antibiotic selection, the antibiotic-supplemented 

medium was refreshed every 2-3 days and target cells were trypsinised and passaged or 

expanded as required. After antibiotic selection was complete, cells were cultured in fresh media 

(without antibiotics) for subsequent use. 

 

FACs analysis and Cell sorting 

FACs analysis was carried out using a BD LSRFortessa flow cytometer, and FACs data was 

analysed with FlowJo software v10. FACS sorting was carried out by the Flow Cytometry Core 

Facility at the Cambridge Institute for Medical Research. 

 

Protein extraction & quantification 

Adherent cells were typically cultured in 10cm dishes to obtain sufficient cells for protein 

extraction. Cells were first detached with 1X trypsin, washed off the plates with two media 

washes and collected in 15ml falcons. The cells were then pelleted by centrifugation (1200rpm, 

5mins, 4°C) and either lysed to extract protein immediately or, in the case of time courses, frozen 

at -80°C for later extraction (so that all samples could be extracted at once, under the same 

conditions). 

 Cell pellets were then washed (i.e. resuspended) twice with ice cold PBS (and transferred 

to 1.5ml eppendorfs in the process), with a centrifugation step (1500rpm, 10mins, 4°C) to pellet 

the cells again after each wash. Pellets were then resuspended in ice cold RIPA lysis buffer 

(Sigma, cat. no. R0278-50ML), supplemented with Protease Inhibitor Cocktail (Sigma, cat. no. 

P8340-1mL) in a 1:100 dilution, and incubated on ice for 30mins. Protein lysates were then 

centrifuged at 14,000 rpm for 15mins at 4°C to remove any remaining cell debris, and the 

supernatant was transferred to a fresh, ice cold 1.5ml eppendorf for quantification and storage. 

Protein concentrations were measured via BCA assay with the Pierce BCA Protein Assay Kit 

(Thermo Fisher Scientific, cat. no. 23227) as per the kit instructions, and using the TECAN 

instrument to make absorbance measurements at a wavelength of 562nm. Protein lysate samples 

were then stored at -80°C for analysis by Western blot. 

148
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Genomic DNA extraction & quantification 

Adherent cells were first detached with 1X trypsin, and pelleted by centrifugation at 1200rpm for 

5mins at 4°C. Genomic DNA was then extracted from cell pellets with the QIAamp DNA Mini 

Kit (Qiagen, cat. no. 51304) as per the kit protocol. DNA concentrations were then measured 

using a Nanodrop. In the case of the screen samples, genomic DNA was extracted under 

bleached clean conditions in a separate room, and the DNA concentration was measured from a 

2µl aliquot of the extracted sample, in order to prevent contamination from high copy DNA 

remaining from sgRNA plasmids or sgRNA cloning experiments. All genomic DNA samples 

were stored at -20°C. 

 

RNA extraction & quantification 

For qPCR, adherent cells were first detached with 1X trypsin, and pelleted by centrifugation 

(1200rpm, 5mins, 4°C). Total RNA was then extracted with RNAzol RT (Sigma-Aldrich, cat. no. 

R4533) according to the protocol recommended by the supplier. 

For RNA-seq, adherent cells were detached with a cell scraper on ice, and pelleted by 

centrifugation (1200rpm, 5mins, 4°C). RNA-seq was performed with 786-M1A-Cas9 and OS-

LM1B-Cas9 Control, sg2, and sg8 cells, with quadruplicate samples for each cell line. Thus, in 

order to minimise the influence of batch effects on the differences in mRNA levels between 

control and HNF1B knockout samples, the cells were scraped and pelleted in four batches, with 

each batch comprising a Control, sg2, and sg8 sample for either the 786-M1A-Cas9 cells or the 

OS-LM1B-Cas9 cells. Total RNA was then extracted using the Qiagen RNeasy Mini Kit 

(Qiagen, cat. no. 74104) according to the kit protocol. RNA concentrations were measured using 

a Nanodrop for all RNA samples (i.e. for both qPCR and RNA-seq samples). All RNA samples 

were then stored at -80°C. 

 

Pelleting cells for RNA-seq: 

1. Scrape the cells on ice as you would for protein pelleting/extraction 

a. Aspirate cell media, leaving 1-2ml of media behind 

b. Scrape the cells in media and transfer to 15ml falcon  
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c. Add another 1ml ice cold media and scrape a second time to recover more cells 

d. Spin down (1000rpm, 5mins, 4°C) 

e. Aspirate supernatant 

f. Freeze pellet @ -80’C (snap-freeze on dry ice first, see below) 

2. Be sure to scrape 1 plate at a time: 

a. Do one Control, one sg2, and one sg8 sample per batch  

b. Process one plate at a time: scrape and do steps 1a-1f, then move on to the next 

batch and repeat steps 1a-1f 

This will prevent a time delay between pelleting all four Control plates and all 

four sg2 or sg8 plates, which would minimise the risk of introducing differences 

in the RNA content of the cells between control and knockout samples groups. 

Instead, there will only be a time delay between the 1st batch of 

Control/sg2/sg8 and the 4th batch of Control/sg2/sg8 samples, so the 

experimental groups would be kept internally consistent within each batch. 

c. For step 1f, use a bucket with dry ice: transfer put pellets directly onto dry ice 

first, then transfer all falcons of pellets to -80°C. 

3. Then extract RNA for all samples at once with RNeasy kit, as per kit protocol 

 

Western blotting and antibodies 

Western blots were performed using the Bio-Rad system with manually poured 10-well or 15-

well SDS-PAGE gels (either 8% or 10% poly-acrylamide). In general, 10µg of protein sample 

was loaded per well, alongside a molecular weight marker (Precision Plus Protein Kaleidoscope 

Standards, Bio-Rad, 1610375). Gels were run at 80V, and transferred onto PVDF membranes 

(Immobilon-P PVDF 0.45µm Membrane, Millipore, cat. no. IPVH00010) for 2-3 hours at 110V. 

Membranes were blocked in a solution of 5% milk in 0.1% PBST. Primary and secondary 

antibody solutions were also made up in 5% milk in 0.1% PBST. The following primary 

antibodies were used: 

Antibody Supplier & Catalog Number 
Antibody dilution and 

blotting conditions 

mouse anti-β-actin Sigma, cat. no. A1978 1:20,000, 4°C overnight  
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rabbit anti-HNF1β Human Protein Atlas, cat. no. HPA002083 1:5000, 4°C overnight 

mouse anti-Flag Sigma, cat. no. F1804 1:500, 4°C overnight 

 

The Flag antibody was used to blot for Cas9, which was linked to either a 1xFlag tag (in the 

constitutive lenti-Cas9-blast transgene) or a 3xFlag tag (in the conditional pCW-Cas9 transgene).  

The following HRP-conjugated secondary antibodies were used:  

 

Antibody Supplier & Catalog Number 
Antibody dilution and blotting 

conditions 

Polyclonal Goat Anti-Rabbit 

Immunoglobulins/HRP 

DAKO, cat. no. P0448 1:5,000, 1hr at room temperature 

Polyclonal Goat Anti-Mouse 

Immunoglobulins/HRP 

DAKO, cat. no. P0447 1:10,000 

30mins at room temperature for 

B-actin blots 

1hr at room temperature for Flag 

blots 

Rabbit Anti-Mouse IgG H&L 

(HRP) 

Abcam, cat. no. ab6728  

Anti-rabbit IgG, HRP-linked 

Antibody 

Cell Signaling Technology, 

cat. no. 7074 

1:2,000, 1hr at room temperature 

 

After each antibody incubation, membranes were washed with 0.1% PBST (1X PBS with 0.1% 

Tween-20, Sigma, cat. no. T2700-100ML) 3 times, for 5-10 mins per wash. For HNF1B, B-actin 

and Flag (specifically 3xFlag-Cas9), blots were developed with Luminata Classico Western HRP 

Substrate (Millipore, cat. no. WBLUC0500). For 1xFlag-Cas9, blots were developed with a high-

sensitivity substrate, the Luminata Forte Western HRP Substrate (Millipore, cat. no. 

WBLUF0100). All blots were then imaged in a darkroom using X-Ray film (X Ray Film 

18x24cm Double Sided; Scientific Laboratory Supplies, cat. no. MOL7016) and a film processor. 
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Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) 

Reverse transcriptase PCR (RT-PCR) was performed using the High-Capacity cDNA Reverse 

Transcription Kit (Thermo Fisher Scientific, cat. no. 4368814), with a modification of the 

recommended protocol: 

 

2X RT Master Mix, w/out RNase inhibitor µl 

10X RT Buffer 2.00 

25X dNTP Mix (100mM) 0.80 

10X RT Random Primers 2.00 

MultiScribe Reverse Transcriptase 0.25 

Nuclease-free H2O 4.95 

Total volume per reaction: 10.00 

 

500ng of RNA sample was used per reaction, in a total volume of 10µl. For each RT-PCR 

reaction, 10µl of RNA sample (a total of 500ng RNA) was added to the 10µl of 2X RT Master 

Mix, to give a total volume of 20µl (with all reagents at a 1X concentration). The following 

thermocycler programme was used (recommended by the kit protocol): 

 

RT-PCR Programme: 

25°C     10 min 

37°C     120 min 

85°C     5 min 

4°C     pause 

 

The resultant cDNA (20µl total) was then diluted 1:10 with nuclease-free H2O (by adding 180µl 

of nuclease-free H2O), to give a final cDNA concentration of approximately 2.5ng/µl (assuming 

that all 500ng of RNA was reverse transcribed to give 500ng of cDNA). Quantitative (real-time) 

PCR (qPCR) was then performed by TaqMan Assay, using the TaqMan Fast Advanced Master 

Mix (Thermo Fisher Scientific, cat. no. 4444557) and the following TaqMan probes (also from 

Thermo Fisher Scientific): 
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Gene Probe Name Catalog Number 

TBP (housekeeping gene) 
TBP TaqMan probe, 

Hs00427620_m1 (size S: 250 rxns) 
4331182 

HNF1B 
HNF1B TaqMan probe, 

Hs01001602_m1 (size S: 250 rxns) 
4331182 

MYC 
MYC TaqMan probe, 

Hs00153408_m1, (size S: 250 rxns) 
4331182 

BCL2 
BCL2 TaqMan probe, 

Hs00608023_m1, (size S: 250 rxns) 
4331182 

CDH16 
CDH16 TaqMan probe, 

Hs00187880_m1, (size S: 250 rxns) 
4331182 

 

qPCR reactions were set up in 96-well qPCR plates (96 Well Fast Plate, Sarstedt Ltd, cat. no. 

72.1981.202) as follows: 

 

qPCR reaction: µl 

cDNA (1pg-100ng) 2.5 

TaqMan Fast Advanced Master Mix (2X) 5.0 

TaqMan probe (20X) 0.5 

Nuclease-free H2O 2.0 

Total volume per reaction: 10 

 

The qPCR plates were then sealed with optical adhesive film (Adhesive Clear Foil for 96 Well 

Plate, Sarstedt Ltd, cat. no. 95.1994) and run on a machine with the 7500 Fast Real-Time PCR 

System (Applied Biosystems / Thermo Fisher Scientific), using the following (machine default) 

qPCR programme: 

 

1. 50°C 2 mins   

2. 95°C 20 secs   

3. 95°C 3 secs | 
x40 cycles 

4. 60°C 30 secs | 
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The qPCR data was then analysed using the delta-delta-Ct (ΔΔCt) method to determine gene 

expression changes (specifically changes in mRNA levels in test samples relative to control 

samples). 

 

RNA-seq 

RNA-seq was performed with 786-M1A-Cas9 and OS-LM1B-Cas9 Control, sg2, and sg8 cells, 

with quadruplicate samples for each cell line. RNA was extracted from cell pellets using the 

Qiagen RNeasy Mini Kit (Qiagen, cat. no. 74104) according to the kit protocol, including the 

DNase I digestion step with the RNase-Free DNase Set (Qiagen, cat. no. 79254) to remove 

genomic DNA from the samples. 

To avoid sample contamination with traces of RNA from other experiments, benches and 

equipment were first cleaned with RNase-Zap (Ambion, Inc., cat. no. 9780) before RNA 

extractions were carried out, fresh DNase/RNase-free distilled water (Thermo Fisher Scientific, 

cat. no. 10977-035) was used, and RNA samples were eluted into sterile, individually packaged 

polypropylene eppendorfs (Microcentrifuge tube Biopur Safe-Lock individually sealed sterile 1.5 

mL, Fisher Scientific, cat. no. 1051-8721).  

RNA concentrations were first measured using a Nanodrop. One aliquot was made for 

each sample for later use, containing 1000ng of RNA plus an extra 2µl of sample for Bioanalyzer 

analysis. This was in order to prevent multiple freeze-thaw cycles of the main sample stock. The 

aliquots and main sample stock were then stored at -80°C. 

Quantification and quality checks for all of the RNA samples were then performed with a 

Bioanalyzer, using 2µl from the aliquot of each sample. Bioanalyzer analysis and quantification 

of the RNA samples was carried out using the Agilent RNA 6000 Nano Kit (Agilent 

Technologies LDA UK Limited, cat. no. 5067-1511), according to the kit instructions. Based on 

the Bioanalyzer concentrations for the RNA samples, a dilution was made for each sample to 

give a working concentration of 50ng/µl (i.e. an aliquot of each sample containing 500ng of 

RNA was diluted in RNase-free water up to a total volume of 10µl). These RNA sample 

dilutions were then used to prepare the RNA-seq libraries. 

RNA-seq libraries were prepared by another member of the lab using the Lexogen 

SENSE mRNA-Seq Library Prep Kit V2 for Illumina, 96 preps (Lexogen, cat. no. 001.96), 
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according to the kit protocol. The final cDNA samples generated were then analysed and 

quantified with a Bioanalyzer using the Agilent High Sensitivity DNA Kit (Agilent Technologies 

LDA UK Limited, cat. no. 5067-4626). The RNA-seq libraries were then quantified by another 

member of the lab using the KAPA Library Quantification Kit (KAPA Biosystems Ltd, cat. no. 

KK4835). The RNA-seq libraries were then pooled and sent for Illumina sequencing. 

The sequencing reads from the RNA-seq were aligned to hg38 using RSEM128 and 

bowtie2129 with default settings. The alignment of the RNA-seq sequencing reads to hg38, as 

well as the differential expression (DEseq2) analysis and gene set enrichment analysis (GSEA) 

of the RNA-seq sequencing data, were all performed in the lab in collaboration with 

bioinformaticians from the Samarjiwa lab. For both the 786-M1A-Cas9 and OS-LM1B-Cas9 sets 

of cell lines, the data for sg2 and sg8 was combined and then compared to the control using 

DEseq2, to identify changes that were significant and consistent between both sgRNAs. The 

gene expression changes were then compared between the 786-M1A-Cas9 and OS-LM1B-Cas9 

datasets to discern which upregulated or downregulated genes were common to both cell lines. 

 

ChIP-seq 

HNF1B ChIP-seq was performed by another member of the lab, as previously published133. 

HNF1B ChIP was performed with the rabbit anti-HNF1B antibody from the Human Protein 

Atlas (supplied by Sigma, cat. no. HPA002083), with rabbit polyclonal IgG (Abcam, ab27478) 

used as a control. The ChIP protocol is briefly outlined below: 

 

 Chromatin immunoprecipitation (ChIP) 

 Obtaining cell pellet samples 

1) Grow parental ccRCC cell lines to roughly 80% confluency in 15cm dishes. 

2) Aspirate media from 15cm dishes and wash with PBS (7ml per dish). 

3) Aspirate PBS and add trypsin (4ml per dish). Incubate cells at 37°C for 5mins or until 

cells detach. 

4) Deactivate trypsin with media (10ml per dish). Transfer all cells +media +trypsin to 

50ml falcon. Pool multiple 15cm dishes per cell line together in one falcon. 

5) Spin down (1000rpm, 5mins, room temperature). Aspirate supernatant. 

 Pellet cross-linking 
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6) Cross-link cell pellets in 1% formaldehyde in RPMI media (10mins, room temperature) 

7) Quench with 0.125 mol/L glycine (5mins, room temperature). 

8) Spin down (1000rpm, 5mins, 4°C). Discard supernatant. 

9) Wash pellets twice with ice cold 1X PBS. After each wash, remove supernatant and 

spin down (1000rpm, 5mins, 4°C). 

10) Freeze cross-linked pellets at -80°C. 

 Immunoprecipitation (IP) 

11) Vortex magnetic beads (Pierce ChIP-grade Protein A/G Magnetic Beads, Thermo 

Fisher Scientific, cat. no. 26162) to prevent precipitation.  

12) Prepare one eppendorf per sample for each antibody. 

13) Aliquot 100µl of beads per sample / IP into eppendorfs and put eppendorfs on ice. 
 IN COLD ROOM AT 4°C 

14) Block magnetic beads by washing three times with 1ml 0.5% BSA in PBS. 

15) Incubate magnetic beads with antibody in 0.5% BSA at 4°C for 4hrs minimum. 

16) AT ROOM TEMPERATURE 

17) Make up lysis buffer (20 mmol/L Tris–HCl pH 8.0, 150 mmol/L NaCl, 2 mmol/L 

EDTA pH 8.0, 0.1% SDS, and 1% Triton X-100) 

18) Resuspend cross-linked cell pellets in lysis buffer and transfer cell suspension to a 

douncer. 

19) Grind cells + lysis buffer in douncer to optimise cell lysis, and transfer lysate to 

eppendorfs on ice. 

20) Incubate lysates on ice for 10mins. 

21) Sonicate lysates with a Bioruptor machine (Diagenode) at high setting, 30s ON/OFF, 

for 14 cycles, in order to obtain fragments of 100-500bp in size. 

22) Spin down sonicated samples (14000rpm, 20mins, 4°C). Retain supernatant and keep 

on ice. 

 IN COLD ROOM AT 4°C 

23) Wash magnetic beads three times with 1ml 0.5% BSA, then resuspend beads in 100µl 

0.5% BSA. 

24) Add sonicated sample to antibody-coated beads and incubate at 4°C overnight (12-



 157 

16hrs). 

25) Wash beads three times with low-salt buffer (50 mmol/L HEPES pH7.5, 140 mmol/L 

NaCl, 1% Triton) 

26) Wash beads once with high-salt buffer (50 mmol/L HEPES pH7.5, 500 mmol/L NaCl, 

1% Triton) 

 AT ROOM TEMPERATURE 

27) Resuspend beads in elution buffer (50 mmol/L NaHCO3, 1% SDS). 

28) Incubate at 65°C for 3hrs, shaking at 1000rpm, to de-crosslink samples. 

29) Briefly spin down samples and place tubes in magnetic rack at room temperature. 

Allow solution to clear, and transfer supernatant to fresh eppendorf tube. 

30) Purify DNA samples with the QuickClean II PCR Extraction Kit (GenScript, cat. no. 

L00419-100), according to the kit protocol. Elute twice with 50µl DNase/RNase-free 

distilled water, for a final eluate volume of 100µl. 

31) Store DNA samples at -20°C. 

32) Quantify samples with Qubit (as per Qubit quantification kit protocol). 

 

The final DNA samples were analysed and quantified with a Bioanalyzer using the Agilent High 

Sensitivity DNA Kit (Agilent Technologies LDA UK Limited, cat. no. 5067-4626). ChIP-seq 

libraries were prepared by another member of the lab using the KAPA Hyper Prep Kit (KAPA 

Biosystems Ltd, cat. no. KK8502), according to the kit protocol. The ChIP-seq libraries were then 

quantified by another member of the lab using the KAPA Library Quantification Kit (KAPA 

Biosystems Ltd, cat. no. KK4835), and then pooled and sent for Illumina sequencing. 

The HNF1B ChIP-seq sequencing data was analysed in the lab as follows: the raw ChIP-

seq sequencing reads were aligned to hg38 using bowtie2129, producing sam files, which were 

converted into sorted bam files using samtools134. HNF1B peaks were then called using 

MACS2135 with the option -q 5e-2. The corresponding input samples from the ChIP experiment 

for each cell line were used as controls.  

Any overlap between the peaks called for each cell line was then determined by taking 

the peak summits +/-50bp (bedops --range 50 --merge), and identifying regions that had a peak 

in at least two samples (i.e. in at least two out of the four cell lines); this was done using the 

multiIntersectBed function in bedtools. Thus, the final list of called peaks for HNF1B contained 
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peaks that were shared between at least two of the four samples. The gene annotation for the 

peaks was carried out using Homer136. The sequencing reads were first extended to the modal 

length of 250bp, and duplicates were removed; genome coverage was then calculated for each 

region of interest. 

Transcription factor motif analysis was then carried out on the HNF1B peaks identified in 

the Illumina ChIP-seq sequencing data. First, the MEME suite module Meme137 was used to 

carry out de novo motif discovery in the genomic sequences for the subset of HNF1B peaks that 

were shared by all four cell line samples. To perform this analysis, the summits +/- 50bp, from 

all the regions that had a peak in all four samples, were used to look for de novo motifs. The 

MEME suite module Tomtom138 was then used to compare the motifs identified by the Meme 

analysis against known motifs. 

 

CRISPR/Cas9 engineering (gene knockout) 

sgRNA sequences were taken from the whole genome sgRNA library designed by Wang et al.78. 

The lentiviral sgRNA expression vector pKLV-U6-sgRNA(BbsI)-PGK-hygro-2A-BFP was 

cloned previously in the lab from the original pKLV-U6gRNA(BbsI)-PGKpuro2ABFP 

developed by Koike-Yusa et al.79 (Addgene plasmid ID: 50946), by replacing the puromycin 

resistance gene with a hygromycin resistance gene. sgRNAs were cloned into pKLV-U6-

sgRNA(BbsI)-PGK-hygro-2A-BFP as per the protocols outlined by Koike-Yusa et al.79 and Ran 

et al.127.  

To generate stable conditional and constitutive knockout cell lines (used in the screen and 

for in vitro and in vivo assays), pKLV-U6-sgRNA(BbsI)-PGK-hygro-2A-BFP plasmids 

containing the desired sgRNAs were lentivirally transduced into ccRCC cell lines that expressed 

Cas9 under the control of either a dox-inducible or a constitutive promoter. Constitutive Cas9 

cell lines were generated by transducing parental ccRCC cells with a constitutive Cas9 

expression construct, lenti-Cas9-blast. Conditional (dox-inducible) Cas9 cell lines were 

generated by transducing parental ccRCC cells with a conditional Cas9 expression construct, 

pCW-Cas9. 

 

Competition proliferation assays (with CRISPR/Cas9 cells) 
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For the original competition proliferation assays (see Results section 2.2 and 2.3), ccRCC cell 

lines (786-M1A, OS-LM1B, RFX631, RCC-MF, UOK101, and A498) and HeLa cells were 

transduced with the constitutive Cas9 expression construct (lenti-Cas9-blast), followed by one of 

the following sgRNAs: non-targeting control sgRNA #18 (NTC18, a.k.a Control), HNF1B 

sgRNA #2 (sg2), or HNF1B sgRNA #8 (sg8), in either an mCherry or BFP fluorescent backbone. 

The resultant cell lines (expressing Control-mCherry, Control-BFP, sg2-mCherry, sg2-BFP, sg8-

mCherry, or sg8-BFP) were then used for the competition assays. 

Cells expressing Control-mCherry were mixed in a 50:50 ratio with cells expressing 

either Control-BFP, sg2-BFP, or sg8-BFP. For the “colour swap” version of the competition 

assays, cells expressing Control-BFP were mixed in a 50:50 ratio with cells expressing either 

Control-mCherry, sg2-mCherry, or sg8-mCherry. 

For the rescue competition assays (see Results section 2.4), 786-M1A-Cas9 and OS-

LM1B-Cas9 ccRCC cell lines (already expressing the constitutive Cas9 expression construct 

lenti-Cas9-blast) were first transduced with either pLVX-puro(-) empty vector or pLVX-puro-

HNF1B-rescue (i.e. the constitutive exogenous HNF1B rescue construct), and then transduced 

with either Control-BFP, Control-mCherry, sg8-BFP or sg8-mCherry. The resultant cell lines 

were then used for the rescue competition assays. For the first three experimental groups, 

Control-mCherry (+ empty vector) cells were mixed in a 50:50 ratio with either Control-BFP (+ 

empty vector), sg8-BFP (+ empty vector) or sg8-BFP (+ rescue) cells. In a fourth experimental 

group, sg8-mCherry (+ rescue) cells were mixed in a 50:50 ratio with sg8-BFP (+ empty vector) 

cells. 

For the “colour swap” versions of the rescue competition assays, in the first three 

experimental groups, Control-BFP (+ empty vector) cells were mixed in a 50:50 ratio with either 

Control-mCherry (+ empty vector), sg8-mCherry (+ empty vector) or sg8-mCherry (+ rescue) 

cells. In the fourth experimental group, sg8-BFP (+ rescue) cells were mixed in a 50:50 ratio 

with sg8-mCherry (+ empty vector) cells.  

For all of these CRISPR/Cas9 competition proliferation assays, the cell mixtures were 

cultured for 12-28 days. The percentages of BFP and mCherry positive cells were measured 

every 4 days by FACs, and the BFP:mCherry ratio (or the mCherry:BFP ratio in the case of the 

colour swap assays) was calculated for each time point (from Day 0 onwards). Thus, over the 

course of each assay, the cell mixtures were trypsinised every 4 days to take a sample for FACs 
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analysis, and passaged at a suitable ratio to be roughly 80% confluent in 4 days’ time for the next 

time point.  

During each CRISPR/Cas9 competition proliferation assay, the individual cell lines used 

in the assay were also cultured independently, to take samples for protein and/or RNA on Day 0 

and at each subsequent 4-day assay time point. The individual cell lines were thus also 

trypsinised every 4 days and passaged at a suitable ratio to be roughly 80% confluent in 4 days’ 

time for the next time point. 

 

Competition proliferation assays (with CRISPRi cells) 

All CRISPRi competition proliferation assays were performed in 786-M1A-dCas9-KRAB-

mCherry and OS-LM1B-dCas9-KRAB-mCherry cells transduced with the relevant tandem 

sgRNA constructs (cloned as described above). 

For the HNF1B CRISPRi (HNF1Bi) competition proliferation assays, untransduced 

parental BFP– cells (not transduced with sgRNAs) were mixed in a 50:50 ratio with BFP+ cells 

transduced with either the Scramble Control, HNF1B CRISPRi #1, HNF1B CRISPRi #2 or 

HNF1B CRISPRi #3 tandem sgRNA constructs. 

For the MYC and BCL2 CRISPRi (MYCi/BCL2i) competition proliferation assays, 

untransduced parental BFP– cells (not transduced with sgRNAs) were mixed in a 50:50 ratio 

with transduced BFP+ cells, expressing either: Scramble Control, HNF1Bi (i.e. the HNF1B 

CRISPRi #2 tandem sgRNA construct), MYCi(1) alone, MYCi(2) alone, BCL2i alone, both 

MYCi(1) and BCL2i, or both MYCi(2) and BCL2i tandem sgRNA constructs.  

For all of these CRISPRi competition proliferation assays, the cell mixtures were cultured 

for 16 days. The percentages of BFP positive versus BFP negative cells were measured every 4 

days by FACs, and the BFP+/BFP– ratio was calculated for each time point (from Day 0 

onwards). Thus, over the course of each assay, the cell mixtures were trypsinised every 4 days to 

take a sample for FACs analysis, and passaged at a suitable ratio to be roughly 80% confluent in 

4 days’ time for the next time point. 

 

In vitro proliferation assays 

Cell counting and CellTiter-Glo proliferation assays were performed with 786-M1A-

Cas9 and OS-LM1B-Cas9 Control-, sg2-, and sg8-BFP/mCherry cell lines. 
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For the cell counting assays, cells were seeded in triplicate in 6-well plates at a cell 

density of 10,000 cells per well. At each time point, cells were trypsinised and counted with 

Trypan Blue (Life Technologies, cat. no. 15250061) using Countess cell counting chamber slides 

(Life Technologies, cat. no. C10228) and the Countess Automated Cell Counter from Life 

Technologies.  

For the CellTiter-Glo proliferation assays, cells were seeded in triplicate in 96-well plates 

at a cell density of 400 cells per well, alongside triplicate “blank” wells of media only (without 

cells) to provide values for background luminescence. The CellTiter-Glo proliferation assays 

were performed using the CellTiter-Glo Luminescent Cell Viability Assay kit (Promega, cat. no. 

G7572), with a modification of the protocol recommended by the supplier.  

Both assays were carried out for 7 days; thus, for each cell line, separate sets of 6-well or 

96-well wells were seeded for each day of measurements. The protocols for these two assays are 

shown below: 

Day 0 + Day 1-7 measurements: (N.B. D0 measurements taken 5hrs after cell seeding) 

 

CellTiter-Glo: 

1. Equilibrate plates at room temperature for 30mins 

2. Mix 50µl CellTiter-Glo reagent + 50µl DNase/RNase-free distilled water to 100µl of 

medium per well  

3. Add 100µl reagent mix to 100µl medium in plate wells with a multichannel pipette 

4. Pipette up and down to mix 

5. Leave plates at room temp for 5mins (protected from light with foil) 

6. Pipette up and down to mix again 

7. Transfer entire 200µl from each well to an opaque-walled, clear-bottomed 96-well 

white plate (Scientific Laboratory Supplies, cat. no. 3610) 

8. Incubate at room temp for 10mins (protected from light with foil) 

9. Record luminescence signal with Tecan plate reader 

 

Cell counting: 

1. Trypsinise cells in 6-well plate (200µl trypsin) 
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2. Deactivate trypsin with 500µl medium per well  

a. pipette up and down to detach & mix cells  

b. transfer to falcon (use one falcon per well) 

3. Add another 500µl medium to each well  

a. pipette up and down to wash off remaining cells  

b. add to same falcon for that well 

4. Spin down (1200rpm, 5mins) and remove 1ml supernatant 

5. Resuspend pellet in remaining 200µl 

a. take 50µl aliquot for Countess  

b. mix with 50µl trypan blue on parafilm 

c. pipette 12µl into Countess chamber slide 

d. count cells (cells/ml) with Countess Automated Cell Counter 

 

In vivo tumour growth assays 

For subcutaneous tumour growth assays, control and HNF1B knockout (sg2 and sg8) 786-M1A-

Cas9 and OS-LM1B-Cas9 ccRCC cell lines were resuspended in a 50/50 mixture of 

PBS/Matrigel (Corning / Scientific Laboratory Supplies, cat. no. 356231), at a concentration of 

1x106 cells/ml. Cells were injected subcutaneously into nude/athymic mice, into both the left and 

right flank of each mouse, with a total of 1x105 cells in 100µl of cell suspension per injection 

site. 5 mice were used per cell line (i.e. per experimental group), with a total of 30 mice and 6 

experimental groups (i.e. one group per cell line). 

Weekly bioluminescence (luciferase-based) imaging of tumours was carried out using the 

IVIS Spectrum Xenogen machine (Caliper Life Sciences). D-luciferin solution was made up by 

dissolving 1g of D-luciferin powder (D-Luciferin - K+ Salt; Perkin Elmer LAS (UK), cat. no. 

122796) in 66.667ml of sterile 1X PBS, to give a final concentration of 15mg/ml. For 

bioluminescence imaging, mice were injected intraperitoneally with 100µl D-luciferin (15mg/ml 

in 1X PBS), anaesthetized with isofluorane, and imaged with the Xenogen IVIS machine with 

different exposure times (10 secs, 20 secs, and auto-exposure). Bioluminescence measurements 

were quantified with the Living Image software (Caliper Life Sciences) to obtain the total photon 

flux per second (p/s) for the tumours in each mouse, at each weekly time point. The values for 

the total photon flux per second at each time point were then normalised to the corresponding 
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Day 0 values for each mouse. The normalised total photon flux per second served as an indicator 

of both the presence of tumour cells and a measure of tumour size in vivo. Changes in the 

normalised total photon flux per second over time were thus taken as a quantitative measure of 

tumour growth. 

Weekly calliper measurements of tumour size were made once tumours became visible 

and palpable (which occurred in week 4 after injection). Calliper measurements were performed 

blind by the same individual every week to remove bias and minimise the effects of human error. 

Subcutaneous tumours were measured in two dimensions (width and length) in millimetres with 

callipers, and these measurements were used to calculate an approximation of tumour volume 

with the formula “V = (L x W2) x 0.5” (where L is the length and W is the width of the tumour).  

Experiments were terminated when the largest Control tumours reached a mean diameter 

of 12mm (which occurred after 7 weeks of tumour growth). Mice were then sacrificed by 

approved Schedule 1 methods (cervical dislocation), and subcutaneous tumours excised. All 

tumours were then weighed to determine the final mass of each tumour, and several tumours per 

experimental group were then fixed in 10% formalin for immunohistochemistry (IHC). 

 

Immunohistochemistry 

Excised subcutaneous tumours were fixed in 10% formalin for 24hrs. The formalin was then 

removed, and tumours were washed once with 1X PBS and transferred to 70% Ethanol. The 

fixed tumours were then used to make paraffin-embedded tissue blocks, which were cut into 

sections and placed on slides for immunohistochemistry (IHC; all courtesy of the Addenbrooke’s 

Hospital Tissue Bank service). IHC stainings were carried out with the Leica Bond machine with 

the default protocol available in the Leica Bond software. 

 HNF1B IHC was performed with the rabbit anti-HNF1B antibody from the Human 

Protein Atlas (supplied by Sigma, cat. no. HPA002083) at an antibody concentration of 1:200. 

Vimentin IHC was performed with the rabbit anti-Vimentin antibody from Cell Signaling 

(supplied by NEB, cat. no. 5741S) at a 1:100 antibody dilution in Bond buffer 

All antibodies were diluted in Bond buffer solution. Stained slides were then scanned and 

imaged at 10X zoom with the Zeiss Axioscan machine. 

 

Propidium Iodide cell cycle assays 
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Cell cycle assays were performed with the 786-M1A-Cas9 Control-BFP, sg2-BFP, and sg8-BFP 

cell lines, and with the 786-M1A-Cas9 Control-BFP (+ empty vector), sg8-BFP (+ empty vector) 

and sg8-BFP (+ rescue) cell lines. Each cell line was seeded into eleven 6cm dishes: one dish per 

assay time point (every 2 hours from t0-t16, and a tenth time point at t24), plus one dish for 

unsynchronised cells (i.e. untreated, U/T). Cells were seeded at a suitable cell density such that 

they would be 70-80% confluent the following day, and allowed to adhere overnight.  

The following morning, cells in the t0-t24 time point dishes were treated with 50ng/ml 

nocodazole for 24 hours, while the cells in the U/T dishes were left to grow untreated as a 

control. Nocodazole treatment served to arrest the cells in the G2/M phase of the cell cycle, thus 

synchronising the cell cycles of the different cell lines.  

At the end of the 24 hour treatment period, treated cells were taken off nocodazole to 

release the synchronised cells from mitotic arrest. This was done by media changing to fresh 

media without nocodazole. Cells were released from nocodazole (i.e. grown in fresh media) for 

another 24 hours. During this period, samples (cell pellets) were taken for the U/T 

unsynchronised cells and for each cell line immediately after release (i.e. the t0 time point), and 

then for each cell line every 2 hours for 16 hours (the t2-t16 time points) and at 24 hours post-

release (the t24 time point).  

To take samples at each of these time points, cells were pelleted entirely from the dish 

corresponding to the appropriate time point. Immediately after pelleting the cells, each cell pellet 

sample was fixed in 500µl 70% EtOH and frozen at -20°C. The samples were then stained with 

Propidium Iodide (PI), and the cell cycle distribution at each time point was analysed by FACs. 

The protocol for pelleting the cells and fixing and staining the samples with PI was as follows: 

 

 Propidium Iodide Cell Cycle Staining 
  

 Obtaining cell pellet samples 

1) Pipette cell media up and down in dish to wash off cells in mitotic arrest. Transfer 

media to 15ml falcon. 

2) Add PBS to wash the cells. Pipette up and down and transfer PBS to same falcon. 

3) Add trypsin to detach remaining cells. Incubate at 37°C until cells detached. 

4) Deactivate trypsin with media and transfer all cells +media +trypsin to same falcon. 
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5) Wash dish with media to remove any remaining trypsinised cells. Transfer cells 

+media to same falcon. 

6) Spin down (1000rpm, 5mins, room temperature). 

7) Remove supernatant. 
   Sample fixation (N.B. fix samples one by one) 

8) Resuspend cell pellets in 150µl 1X PBS 

9) Add 350µl ice-cold 100% EtOH, vortex to mix, and put falcons with cell pellets on ice. 

10) Store falcons (i.e. fixed cell pellets) at -20°C overnight (or until required for PI 

staining). 
   Propidium Iodide staining 

11) Make up blocking solution: 1% BSA in PBS (1g BSA powder in 100ml 1X PBS). 

12) Make up PI in blocking solution to a final concentration of 40µg/ml Propidium Iodide 

(Sigma, cat. no. P4864-10ML). 

13) Add RNase A to PI + blocking solution, to a final concentration of 200µg/ml RNase A 

(Sigma, cat. no. 10109169001). 

14) Keep PI/RNase A solution (i.e. 40µg/ml PI + 200µg/ml RNase A in blocking solution) 

wrapped in foil, protected from light. 

15) Add 5ml blocking solution (1% BSA in PBS) to each sample / falcon of fixed cells. 

16) Spin down (1000rpm, 5mins, room temperature).  

17) Aspirate supernatant. 

18) Resuspend cell pellets in 750µl PI/RNase A solution. 

19) Transfer cells to polystyrene FACs tubes (Scientific Laboratory Supplies, cat. no. 

352054) wrapped in foil. 

20) Incubate samples in the dark for 30mins at room temperature. 

21) Analyse samples by FACs. 

 

Annexin V / PI apoptosis assays 

Annexin V / PI assays were performed with the 786-M1A-Cas9 Control-BFP, sg2-BFP, and sg8-

BFP cell lines, and with the 786-M1A-Cas9 Control-BFP (+ empty vector), sg8-BFP (+ empty 

vector) and sg8-BFP (+ rescue) cell lines. Annexin V / PI staining was carried out using the 
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eBioscience Annexin V Apoptosis Detection Kit APC (Thermo Fisher Scientific, cat. no. 88-

8007), with APC-conjugated Annexin V. 

Cells were seeded into 6cm dishes in normal media (RPMI +10% FCS +1% P/S) and 

allowed to adhere. Annexin V / PI staining was then carried out with a modification of the kit 

protocol, as follows: 

 

 Annexin V / PI apoptosis staining 

1) Pre-cool a 15ml falcon on ice. 

2) Pipette off cell media and transfer to falcon. 

3) Add 2ml PBS to wash the cells. Pipette off PBS and transfer to same falcon. 

4) Add 1ml trypsin to detach cells. Incubate at 37°C until cells detached. 

5) Deactivate trypsin with media and transfer all cells +media +trypsin to same falcon. 

6) Wash dish with media to remove any remaining trypsinised cells. Transfer cells 

+media to same falcon. 

7) Spin down (2000rpm, 5mins, 4°C). 

8) Remove supernatant. Gently resuspend cell pellet in 1ml cold PBS. 

9) Add another 4ml cold PBS to this cell suspension. Spin down again (2000rpm, 5mins, 

4°C). Repeat this wash step 2-3 times to remove all trypsin. 

10) Dilute 10X Binding Buffer to 1X using distilled water (1ml 10X Binding Buffer + 9ml 

dH2O). 

11) Remove supernatant and gently resuspend cell pellet in 100µl 1X Binding Buffer (i.e. 

for final cell concentration between 1x106 to 5x106 cells/ml). Transfer cells to fresh 

1.5ml eppendorf. 

12) Add 5µl of Annexin V stain to each sample (i.e. add 5µl of fluorochrome-conjugated 

Annexin V to 100µl of the cell suspension). 

13) Then add 5µl of propidium iodide stain to each sample. 

14) Incubate samples on ice in the dark for 15mins. 

15) After incubation with both stains, add 320µl 1X Binding Buffer to each sample. 

16) Analyse on FACs immediately (within 4hrs; if storing samples, store @ 4’C in the 

dark). 
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