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Recently, it has been possible to design independently contacted electron-hole bilayers (EHBLs) with carrier densities< 5×1010 cm2

in each layer and a separation of 10–20 nm in a GaAs/AlGaAs system. In these EHBLs, the interlayer interaction can be stronger
than the intralayer interactions. Theoretical works have indicated the possibility of a very rich phase diagram in EHBLs consisting
of excitonic superfluid phases, charge density waves, and Wigner crystals. Experiments have revealed that the Coulomb drag on
the hole layer shows strong nonmonotonic deviations from a ∼T2 behaviour expected for Fermi-liquids at low temperatures.
Simultaneously, an unexpected insulating behaviour in the single-layer resistances (at a highly “metallic” regime with kF l > 500)
also appears in both layers despite electron mobilities of above ∼106cm2V−1s−1 and hole mobilities over ∼105cm2V−1s−1.
Experimental data also indicates that the point of equal densities (n = p) is not special.

1. Introduction

Bringing two layers of 2-dimensional electron gases (2DEG)
or a 2-dimensional hole gases (2DHG) in close proximity
opens up possibilities that do not exist when the layers
are very far apart. We give a simple example to show why
interaction-driven phases can arise more readily in bilayers.
Let us recall that the ratio of the kinetic energy of a system
of electrons and their potential energies due to mutual
Coulomb interaction is measured by the parameter rs =
Eee/E f (where Eee = e2

√
(πN)/4πε0εr and Ef = π�2N/m∗

in 2-dimensions, with N electrons per unit area). The ratio
is not material independent; it depends on parameters like
the relative dielectric constant εr and the band effective mass
m∗ of the material. Confining a large number of particles
in a small area makes the interparticle spacing small and
hence the Coulomb repulsion large, but the kinetic energy
of the particles increases even faster—making rs smaller.
This somewhat counterintuitive fact is a straightforward
consequence of Fermi statistics and is true in all dimensions.
Consider now two parallel layers of electrons or holes with

1011 cm−2 electrons in each—which is a typical density in
many experiments based on GaAs-AlGaAs heterostructures.
If they are now brought closer to each other, the particles
in one layer not only interact with others in the same layer
but also with those in the other layer. The interparticle
spacing in the same layer stays fixed and is about 30 nm. It
is now possible to make the distance between the two layers
about 10 nm with negligible tunneling taking place. 10 nm is
approximately the excitonic Bohr radius in gallium arsenide
(GaAs) and is an important length scale. We thus get an
electron to “see” another electron (or hole) only 10 nm away,
without paying the kinetic (Fermi) energy cost, because the
two layers continue to be two separate Fermi systems. To get
the same average interparticle separation (i.e., 10 nm) within
a layer, a 9-fold increase in density (and hence Fermi energy)
would have been necessary. As a consequence interaction-
driven phases may be expected to occur more readily in
bilayers. The case of the electron-hole bilayer may have some
remarkable possibilities—particularly if we can make the
interlayer attractive interaction stronger than the intralayer
repulsive interactions. This will require a bilayer system



2 Advances in Condensed Matter Physics

where the particles have low enough densities, such that the
intralayer separation between the particles is larger (or of
the same order) than the interlayer distance. In practice, this
implies that if the layer densities are about 1011 cm−2, then
the interlayer distance would have to be about 10–20 nm.

First, because of the attractive interaction between the
electrons and holes, bound pairs may form. Indeed, bound
pairs of electrons and holes (excitons) are well known in
bulk semiconductors. However, there is a crucial difference
here. In bulk, the lifetime of the excitons can rarely exceed
a few nanoseconds, because of radiative decay. The idea
that spatially separating electrons and holes could be a
fruitful way of obtaining large exciton lifetimes and possible
“bosonic” phases was first proposed in 1975 [1, 2]. Although
this is a very exciting possibility, there can be many legitimate
questions about how stable such a condensate would be,
whether in 2-dimensions one can get a long-range coherence
at all, and so forth. It is not known how to measure the
momentum distribution (characteristic of a condensate) of
a bunch of particles by transport—but there is another class
of transport-based experiments [3–5] that can turn out to
be very useful; these are measurements of the transresistivity
of the bilayer, which can be directly related to the interlayer
scattering rate and may also provide indications of a
condensate phase [6–8]. Passing current in both layers in an
opposite sense (counterflow) is predicted to couple to the
excitons and is expected to be dissipationless for a superfluid
[9]. A large increase in the drag resistivity is also expected
[6, 10]. Noise measurements, response to parallel magnetic
field, and Josephson junction-like behaviour across a weak
link are also anticipated [9, 10].

The first proposals [1, 2] relied on n-semiconductor-
insulator-p-semiconductor structures to achieve this. How-
ever, only with the rapid improvements in GaAs/AlGaAs,
heterostructure technology in the 1980s and subsequent
development of closely spaced double quantum-well struc-
tures in the 1990s led to the first realistic possibilities of
making such a system. In 2D, the relationship between the
critical density and the superfluid transition temperature
(TKT) is expected to be given by the Kosterlitz-Thouless
condition

nex ∼ 1
�2
m∗

exkBTKT, (1)

where nex is the exciton density and m∗
ex is the effective mass

of the exciton [2]. In semiconductors, the small effective
mass of an exciton (∼ 0.2me) means that the transition
temperature is anticipated to be much higher than that
required for atomic BEC. The possibility of excitonic BEC
in EHBLs has been reviewed by Littlewood and Zhu [11].

The second possibility is somewhat less intuitive. It
involves the densities of the two layers developing a spon-
taneous periodic modulation. Loosely speaking, it would
remind one of a homogeneous liquid freezing to a solid
which has a crystal structure. Such spontaneous ordering
may be characterized by the divergence of the relevant
susceptibility function at a particular wavevector. Simple
theories describing the susceptibility of a 2DEG (Lindhard
response function) would predict that the susceptibility

remains nearly constant till q = 2kF (where kF is the Fermi
wavevector) and drops rapidly to zero after that. This indeed
is the correct behaviour at long wavelengths, but it leads to
certain unphysical results at short-length scales. A theory of
susceptibility also leads to predictions for the two particle
probability distribution g(r). This is not hard to see. Suscep-
tibility is the density-density response function of a system,
which by the fluctuation-dissipation theorem is directly
related to the density-density fluctuation or the structure
factor. The structure factor, in turn is the Fourier transform
of the two particle probability distribution. Among the well-
known attempts [12–14] to get the physically reasonable
(nonnegative) values of g(r) at small distances is a self-
consistent local-field theory of Singwi et al. This approach
connects the charge susceptibility, structure factor, and the
local-field corrections for the screened Coulomb potential.
With the advent of double quantum well structures in the
early 1990s, this was extended successfully to the bilayer [15–
17]. A striking prediction of [17, 18] is that the electron-hole
bilayer would be more susceptible to a charge density wave
(CDW) formation at wavevectors much smaller than kF than
the electron-electron bilayer. The density-modulated phases
are indicated by the divergence of one of the eigenvalues of
the bilayer susceptibility matrix, but this does not require the
divergence of the single-layer susceptibilities—which may
still occur at much higher rs. An excitonic state may be
indicated by a divergence in the interlayer pair-correlation
function g12(r) at r = 0; Liu et al. [18] had proposed that
such a divergence would be preceded by a CDW.

How close do we want the two layers to be? If we want to
make the interlayer interaction stronger than the intralayer
interaction, then we need the interlayer distance (d) to be
smaller than the intralayer separation (l) of the particles.
Thus, for example, forN = 1011 cm−2 in each layer, we would
want d ≈ 10–20 nm. It is easy to see that the d/l ratio would
be indicative of the relative strength of the interlayer and
intralayer interactions. At the same time, it is important to
ensure that the electron and mobilities are sufficiently high
such that their behaviour is not predominantly dictated by
localisation and inhomogeneity.

2. Making Real Bilayers

While remarkable possibilities were predicted for EHBLs,
making them experimentally turned out to be difficult and
challenging. In this section, we will try to see why the
basic requirements for making transport measurements in
EHBLs turned out to be difficult. Since the first attempt
by Sivan et al. [19], there was a continued interest in these
devices marked by the work of Kane et al. (1994) [20],
Rubel et al. (1998) [21], Pohlt et al. (2002) [22], Keogh et al.
(2005) [23], and Seamons et al. (2007) [24]. There are a few
key requirements for working with bilayers:

(i) independent ohmic contacts to each layer,

(ii) gate voltage control of the densities of each layer,

(iii) very low leakage through the barrier separating the
two layers.
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2.1. Making Independent Ohmic Contacts. Achieving inde-
pendent ohmic contact to each layer in an EHBL is con-
siderably more difficult than in electron-electron or hole-
hole bilayers. Let us first look at the basic idea behind
independently contacting a 2x2DEG. Figure 1 shows how the
ohmic contact, usually indium or a gold-germanium-nickel
alloy, is deposited at selected places using standard pho-
tolithographic techniques. The subsequent annealing process
causes the metal to diffuse into the semiconductor and pass
through both wells. The contacts are not independent at this
stage, since they pass through and contact both layers. To
achieve independent contact to the bottom layer, the front
gate (on the surface side) is biased negatively with respect to
the ohmics such that only the upper electron gas is depleted.
The gate raises the conduction band, creating a potential hill
just below it. So, the left contact (as in Figure 1) contacts only
the bottom 2DEG. If we now have a similar gate at the bottom
of the sample, then a negative voltage on that gate would
locally deplete the lower 2DEG, allowing us to contact only
the top 2DEG (as shown on the right). The gates below the
2x2DEG must be aligned to the topside features of the device,
correct to a few microns, to ensure that the lower 2DEG is
selectively depleted.

There is also another practical point. The topgate is
typically only a few hundred nanometers above the upper
2DEG, so a small voltage on that gate will have sufficient
effect on the 2DEG. But the substrate (gallium arsenide)
is itself about half a millimeter (500 microns) thick. So,
a voltage on the backgate (irrespective of whether it is
aligned or not), will have 1000 times less effect on the
2DEG. Therefore, the sample needs to be thinned to lower
the biases required. It is practical to make the samples
about 50 microns in thickness and still handle them. So, the
voltages required would come down to about 50–100 volts,
which is practical. This was done by Eisenstein et al. in
1990 [25]. Aligning the backgate with topside features is
another crucial requirement. This in general requires a
double-sided mask aligner. A process to achieve this with
a single-side mask aligner and thinned substrates (≈50 μm)
was developed by the authors’ group and has been described
in detail in [26].

There are two possible ways of bringing the backgate
almost as close to the quantum wells as the topgate so
that the voltages required are comparable. One of these
is based on the Focussed Ion Beam (FIB) technique. The
second involves making the sample itself 1-2 microns thick
by etching from the back, using an etch stop layer, using
a technique named “Epoxy bond and stop etch” (EBASE)
described by Weckwerth et al. [27].

If a conducting region could be grown (during MBE)
only at places where we want the backgate (as in Figure 1),
then this would be a nice way to selectively deplete the
bottom 2DEG. Doped GaAs conducts because the dopants
(Si) occupy some of the Ga lattice sites and contributes
one electron to the conduction band. If certain regions
are selectively subjected to a beam of heavy ions, then
the regions become nonconducting. Large defect densities
may be created which trap the electrons released by the
donor atoms or the Si atoms may be displaced—in either

Ohmic Depletion gate

Depletion gate

2x2DEG

Figure 1: A schematic representation for independent ohmic
contacts to a 2x2DEG. A similar method will work for a 2x2DHG
as well. Notice that the 2DEG exists due to carriers from ionised
dopants before the contacts are made. The sketch on the right hand
side shows the rough profile of the bottom of the conduction band.

case, electrons from the donor atoms would not be able
to populate the conduction band. Experimentally, this can
be done by using a beam of Ga ions at 30 keV or so
from a focussed ion gun. Ion doses like 1012–1013 cm−2

would disrupt the lattice sufficiently and the n+ layer would
be rendered resistive (say 1014 Ω at 1.5 K). The beam can
be directed with high accuracy and write out a desired a
pattern. The layers which make up the double quantum
well (DQW) structures are grown after this stage. The entire
patterning process and subsequent growth is done without
removing the sample from the ultra high vacuum (UHV)
environment, to prevent contamination. This is the basis
of the focussed-ion-beam (FIB) method and has also been
successfully used for making transport measurements on
independently contacted DQW by Hill et al. [28] and Linfield
et al. [29]. Notice that the area on which the active region of
the sample will be located is actually not the beam damaged
area—this still allows high 2DEG mobilities to be reached.
A pertinent question at this stage is how to align the later
photolithographic stages with the damaged/undamaged area
pattern written out by the beam. Very high ion doses of
1017 cm2 or so can be used to etch alignment marks away
from the central region where the 2DEG forms. This level of
beam damage makes the subsequent growth on those areas
visibly different due to high concentration of defects. The
later stages can thus be aligned with the buried backgates.

3. The Electron-Hole Bilayer

Is it possible to extend a modulation doping-based method
of making 2x2DEGs and 2x2DHGs to make an electron-hole
bilayer (EHBL)? The answer is that it is possible only if we are
satisfied with very large layer separations d > 100 nm [21].
At that distance, the interlayer Coulomb interaction would
not be dominant. Consider a situation where we try to create
two modulation-doped gases, (one 2DEG and one 2DHG)
in close proximity, say 10–20 nm. The Fermi level must come
above the conduction band for a 2DEG to form; similarly,
it must fall slightly below the valence band for a hole gas
to form. Now, the top of the valence band and the bottom
of the conduction band are separated by 1.5 V, which is the
bandgap of GaAs. Thus, if a 2DEG and a 2DHG exist at the
same electrochemical potential, then the bands must have a
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Figure 2: The band bending shown on (a) is not possible to
achieve in GaAs for a closely spaced EHBL. The electric field in the
barrier would be too high to sustain or even obtain self-consistently
by modulation doping alone. One has to resort to making the
electrochemical potential discontinuous (as shown on (b)). This
was already understood in 1992.

very large slope in the region between the two layers. This
implies an electric field of ∼108 V/m, which is too high to
sustain. The structure would simply collapse. See Figure 2.
As an aside, the bandgap of Silicon is about 1.1 V, so the
required field would be slightly less. In fact, recently, two
groups have succeeded in making EHBLs in Si [29, 30], where
the electrons and holes stay at the same chemical potential.
If at some point independent contact to bilayer graphene
is made, then it would be very interesting from the point
of view of an EHBL, because the bandgap of graphene is
zero. However, in the GaAs-AlGaAs system, the only way
around would be to make the electrochemical potential itself
discontinuous. This means that we need to connect a battery
from outside between the two layers which would allow the
two gases to exist without requiring a huge band slope.

Notice that even before we made independent contacts, it
was possible to create a a 2x2DEG. In the case of the EHBL,
the contact must exist before the electron and hole gases can
be formed. This also calls for the barrier between the two
layers to be exceptionally uniform and robust. At the heart of
most bilayer devices (particularly EHBLs) is this barrier that
separates the two layers. For closely spaced (10 nm) bilayers, a
single growth defect in an area∼100 μm × 100 μm will cause
everything to be dominated by catastrophic leakage and
not bilayer physics! This extremely stringent requirement on
the uniformity of the barrier layer is equivalent to placing
two sheets of cloth over an area of a football field while
maintaining a uniform vertical distance of 1 cm between
them throughout (if we scale all the lengths by a factor of a
million). These issues were quite well appreciated, and the
first EHBL device was made in early 1990s by Sivan et al.
But this device had limited range of operation as far as the
density and temperatures (above 9 K only) were concerned
[19]. Only in last 3-4 years, it has been possible to make
EHBLs where transport can be measured down to millikelvin
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Figure 3: The schematic representation of the EHBL developed
in the authors’ group. Note that two voltage biases are in general
needed for operating the device. However, the outer backgate below
the ohmic contacts (Vobg) to the holes is often biased differently
from the backgate in the central region (Vbg).

temperatures, densities can be tuned over a large range, and
the interlayer interaction can be made stronger than the
intralayer interaction due to d/l values reaching below 1.

3.1. Recent Designs Of Electron-Hole Bilayers. The discussion
in the previous section makes it clear that for an EHBL
to exist in a GaAs/AlGaAs structure, the electron and hole
layers must be held at different electrochemical potentials,
and hence each layer must act as a gate for the other. Thus,
a combination of modulation doping and biasing can be
used to achieve a stable electron and hole population. Here,
we describe the device fabricated by the authors’ group
[23, 26, 31]. We begin with an inverted hole gas created
with a very low level of doping so that it can be backgated.
A high level of doping would prevent the backgate from
acting on the 2DHG. Exactly what level of doping would
stop a gate from working is an interesting and somewhat
difficult question [26]. Making contact to this hole layer
is not difficult. This is usually done by depositing some
gold-beryllium alloy and annealing the metal to make it
diffuse into the semiconductor. See Figure 3 for a device
schematic representation and Figure 4 for a self-consistent
band structure.

Now, using the hole layer as a gate, we can induce an
electron layer on the other side of the AlGaAs barrier (see
Figure 4). Electrons start accumulating soon after the bias
reaches the bandgap, provided there is some n-type ohmic
contact to the electron layer, from where carriers can be
pulled into the heterointerface. Fabricating such a device
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Figure 4: Self-consistent band structure calculations (a) of the Hall-
bar region and (b) the n-type contact region of the device developed
in the authors’ group.

requires some new thinking. An usual diffused ohmic would
not work, because it would penetrate the barrier and reach
the hole layer as well. The method would work only if we
can find a “nonspiking” ohmic. Fortunately, there is a way.
A heavily doped capping layer of InAs (8 × 1018 cm−3 Si)
is used to pin the Fermi-level above the conduction band
at the surface of the wafer. A selective etchant (conc. HCl)
is used to remove the InAs from all regions except from
where the n-type contacts are to be formed. Any metal
which adheres well to this surface (e.g., Ti/Au) can be used
to inject electrons into the InAs layer at any infinitesimal
bias. A “Schottky barrier”, normally observed at a metal
semiconductor interface, is not formed in this case. Though
calculations indicate a small barrier at the interface of
the InAs and n-GaAs, unless the composition is smoothly
graded, experimentally, we have not found evidence of such a
barrier. A flatband condition (see Figure 4) is maintained in
the region below the contacts down to the 2DEG, forming a
completely “nonspiking” contact to the electron QW induced
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Figure 5: Composite IR and visible photographs (a) Backgated
sample mounted on host substrate with etched channels indicated
to contact backgate with silver epoxy. (b) Thinned sample with
outer backgates (Vobg) and central backgate (Vbg) visible.
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Figure 6: 2DEG and 2DHG in an EHBL made by the method
described in [23, 26, 31] (Cavendish Laboratory).

above the barrier. However, the 2DEG must not be allowed to
extend out to the spiking p-type contacts, else independent
contact between the two layers would be lost. A carefully
controlled isolation etch is introduced between each pair
of n and p contacts. The etch removes sufficient GaAs to
depopulate the upper electron QW, but does not interrupt
the lower hole QW. Fully independent contacts are thus
achieved without the need of any depletion gates, focussed
ion beam, ion implantation, or shadow masking during
MBE growth. All the necessary processing can be done with
standard photolithographic techniques.

A composite IR and visible photo is shown in Figure 5(b)
of a finished backgated device. The three independently
controllable backgates are shown (2 × Vobg are tied together
and Vbg). Each backgate is contacted at each end so that its
continuity can be verified.

Figure 6 shows that the electron (blue) and hole (red)
layers behave as 2-dimensional layers as expected.

The crucial point is that there must be independent
contacts existing to both the electron and hole layers so that
we can apply a voltage bias between them to get both layers
to form. Another way was shown by Seamons et al. [24].
This design relies on two back-to-back field-effect transistors
(FETs), one of which is an n-channel device, and the other
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is p-channel. Under such circumstances, the gate of the FET
needs a small overlap with the ohmic contact to ensure that
there is continuous path from the contact to the channel
which has the carriers. The device is in reality less than a
micron thick and has to be supported on a substrate using
a method described by Weckwerth et al. [27].

3.2. The ν = 1/2 + 1/2 QHE Bilayer. In closely spaced
2x2DEGs and 2x2DHGs, excitonic BEC is believed to occur
in large magnetic fields in the quantum Hall regime and to
be observable with transport. When both layers are in the
ν = 1/2 state, the half-filled Landau levels may be considered
to be half full of electrons and half full of holes [32].
Striking experiments in bilayer electrons by Kellogg et al.
[33], Tiemann et al. [34] and in bilayer holes by Tutuc et al.
[35] reveal almost dissipationless counterflow transport and
vanishing counterflow Hall resistance. While in some ways
these systems emulate exciton superfluidity in an EHBL (for
zero magnetic field), there does exist a vacuum of Landau
levels and the screening will be very different in magnetic
fields. The relation between the physics in the ν = 1/2 + 1/2
and the EHBL would doubtlessly be a very interesting area
in near future—however, for the purposes of this paper, we
have not addressed this question.

4. The Coulomb Drag Experiment

The ability to make independent contacts to bilayers makes
some new transport measurements possible. These go by
names like Coulomb drag, counterflow, parallel flow trans-
port, and so forth. and can give us some information that
single-layer measurements cannot. The basic importance of
the drag measurement lies in the fact that it probes the
interlayer scattering rate directly. The measurement involves
sending a known current through one layer (Idrive) and
measuring the open circuit voltage developed in the other
layer as a result (Vdrag). In the linear response regime, we can
define a “drag resistance” ρdrag = Vdrag/Idrive, in analogy with
normal resistance. In general, this has a strong temperature
dependence. The electrons in one layer can see the Coulomb
potential due to the electrons (or holes) in the other layer. Of
course, this potential is not the bare Coulomb potential, but
it would be the “screened” potential. The net result of this
scattering is that the electrons in the drive layer try to impart
a little bit of the momentum they have to the electrons in
the other layer. This means that if we closed the circuit in
the “drag” layer, a small current would actually flow, which
has got nothing to do with leakage. This is very much like
viscous drag between layers of a fluid. Usually, we prevent
any current from flowing in the “drag” layer. So, a small pile
up of charge occurs in one end of the layer which results in
a voltage appearing across the “dragged” layer. This is the
voltage we measure. The interesting (and useful) point is that
the magnitude of this voltage is directly proportional to the
scattering rate between the particles in different layers. As in
any quantum mechanical calculation, the scattering rate is a
product of a “matrix element” and another factor that gives
the density of available states or the phase space” factor. The

scattering rate between two electron gases was first measured
by Gramilla et al. in 1991 [36].

In reality, one almost always uses low-frequency (few Hz)
alternating current for these measurements, the measured
voltage thus has an in-phase and an out-of-phase compo-
nent. It can be shown that the out of phase component is
proportional to the single-layer resistance and the measuring
frequency.

4.1. Boltzmann Transport Analysis of the Drag Measurement.
This problem has been quite extensively analysed by several
authors in the context of 2x2DEGs (or 2x2DHGs) [5, 37–
40] and for EHBLs as well [16, 41], using the linearized
Boltzmann transport equation. Linearization is done in the
way the Fermi distribution in the drive layer is assumed to
change due to the current flow. Here, we quote the final result
and point out a few important relevant features. Summing
over all momentum exchange (q) between particles in the
driven layer (layer 2) and dragged layer (layer 1), one gets [5]

ρdrag = �3

8π2e2kTn1n2

∫

dω
∫

dq

(2π)2W(1, 2 −→ 1′, 2′)

× q3

sinh2(�ω/2kT)
Im
(
χ0

1

(
q,ω

))
Im
(
χ0

2

(
q,ω

))
.

(2)

Here, W(1, 2 → 1′, 2′) denotes the probability of the elastic
scattering in which the momentum of a particle changes by
q. χ0

1 and χ0
2 denote the noninteracting susceptibilities of the

layers. n1 and n2 denote the carrier densities. Equation (2)
is applicable to 2x2DEGs, 2x2DHGs, and EHBLs. The ratio
of drag resistivity to single-layer resistivity is usually a small
number, even for high-mobility double quantum well struc-
tures, around T ∼ 1K , ρdrag/ρsinglelayer ∼ 10−2 or so at most.

Note that individual layer mobilities (μ = eτ/m∗, where
τ is the intralayer relaxation time) do not occur in the
expression. This is crucial and stems from the fact that while
ordinary resistance is a measure of momentum lost to to all
possible channels, the drag resistance is actually a direct mea-
sure of the momentum transferred to a single channel only.

Second, at small ω, Im(χ(q,ω)) ∝ ω. This is useful at
low temperatures, because as the frequency increases a little,
the sinh factor in the denominator would start becoming
large. Thus, it is easy to estimate the low T behaviour. We
do not expect W(1, 2 → 1′, 2′) to have a strong temperature
dependence, because the dielectric screening function does
not have strong T dependence at small T . Substituting
�ω/kT = x, then the dominant T dependence is easy to
extract. We make a very robust prediction that measured drag
(interlayer scattering rate) will be approximately ∝ T2, and
go zero as T → 0, due to the nature of the Fermi distribution
function alone, independent of many details. It can be shown
that for “weak coupling” (i.e., high density) at T/TF � 1,
and for a peak-to-peak separation of the two wavefunctions,
d, one gets [5]

ρdrag ∝ T2

d4(n1n2)3/2 . (3)

This prediction is well verified for 2x2DEGs and 2x2DHGs.
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Figure 7: Schematic representation for the Coulomb drag
measurement—notice that the measurement can be made in two
ways. We may not look into the internal details of the sample and
think of it as a “black box”. Then, it just corresponds to changing
the voltage and current probes, as shown on the right.

The coefficient of the T2 term, however, requires a good
model of dynamical screening of the interlayer Coulomb
interaction. For the transition probability, we can use the
Born approximation

W(1, 2 −→ 1′, 2′) = 2π
�

∣
∣M1,2, 1′,2′

(
q
)∣∣2

. (4)

Here, M denotes the matrix element for a transition from
state (1, 2) to a state (1′, 2′) The transitions are caused by the
screened Coulomb potential of a particle in layer 1, as seen
by another particle in layer 2. Thus, the measured drag gives
us a very direct experimental handle on the generic physics
of screening in a many body context. Here, we quote some of
the relevant important results.

The unscreened Fourier component of the interaction
potential due to a point charge in layer 1, as seen in the same
layer (ṽ11), and in the other layer (ṽ12) can be written as

⎛

⎝
ṽ11
(
q
)

ṽ12
(
q
)

⎞

⎠ = e2

2ε0εrq

⎛

⎝
F11
(
q
)

F12
(
q
)

⎞

⎠, (5)

where the form factors Fi j(q) takes into account the averag-
ing of the potential over the subband charge distribution of
each 2D gas. We can define ṽ21 and ṽ22 similarly

Fi j
(
q
) =

∫

dz
∫

dz′
∣
∣ψi(z)

∣
∣2
e−q|z−z

′|
∣∣
∣ψj(z)

∣∣
∣

2
. (6)

For infinitely narrow wells, the charge distributions approach
delta functions. If these are separated by a distance d, then
F11(q) = 1 and F12(q) = e−qd.

The physically important screened components (v11,v12)
are obtained from the unscreened components (ṽ11,ṽ12) by
summing the contributions of the original charge and the
charges induced by the potential of the original charge. The
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Figure 8: Diagram showing that a sign reversal of any error in drag
due to excitation current leaking between layers is expected when
biasing points (named C1, C2, D1, and D2) are altered, as direction
in drag layer changed. A little bit of the drive current may be leaking
into the other layer and flowing through a parallel path that includes
part of the second layer. The resistive drop due to this would appear
between the voltage probes. But it is possible to decide whether the
measured voltage is due to this. If we change the point at which
the second layer is grounded, the path of the leakage current would
then be reversed causing the measured voltage to change. Thus, by
shifting the point at which the “drag layer” is voltage referenced, we
can verify if the measured voltage was due to leakage or not.

connection is provided by the dielectric screening function
ε(q,ω), which is a 2× 2 matrix in this case

⎛

⎝
v11

v12

⎞

⎠ = ε(q,ω
)−1

⎛

⎝
ṽ11

ṽ12

⎞

⎠. (7)

The dielectric function can be written as

ε
(
q,ω

) = εr
⎛

⎝
1− ṽ11χ1 −ṽ12χ2

−ṽ21χ1 1− ṽ22χ2

⎞

⎠. (8)

The individual layer susceptibilities can be determined from
the well known expressions given by Stern [42]. From (7),
we can determine the screened component v12 and hence
determine the matrix elementM1,2,1′,2′ . It is also clear that the
result cannot depend on whether the interaction is attractive
(electron-hole) or repulsive (electron-electron and hole-
hole). We thus see that within Random Phase Approximation
(RPA), the (minor) differences between the EHBL and a
2x2DEG can arise from the difference in their band effective
masses and the shape of the subband wavefunction for
the holes. As far as the authors understand, the only way
to appreciate (theoretically) the crucial difference between
attractive and repulsive interaction within Born approxima-
tion is to take the next step to RPA by introducing the “local-
field corrections”.

RPA is known to fail for rs > 1. By the inclusion of a
local-field correction Gij(q), the short-range potentials can
be improved upon (vi j(q)(1 − Gij(q))). One approach to
solving for Gij(q) is the Hubbard approximation [12] that
includes the effect of exchange. The potentials can also be
calculated self-consistently using Singwi et al. (1968) [13]
(STLS) approach. This was done for the electron-electron
and electron-hole bilayer by Świerkowski et al. [16, 43], who
found that STLS gave a significant drag enhancement over
the RPA, due to the effect of short-range correlations.

The drag resistivity in an EHBL was predicted to be larger
than the electron-electron bilayer for three reasons, with the
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Figure 9: Hole drag resistivity versus temperature shown for n =
p = 9, 10, 14, 17×1010 cm−2, down to 300 mK. Electron drag is only
shown for n = p = 9 × 1010 cm−2 for clarity. (Device: B138/C4-
1-10 nm Barrier). The drag voltage was measured in two ways, by
sending current through the electrons and measuring the open-
circuit voltage across the holes (ρdrag,h = Vh/Ie) or by sending
current through the holes and measuring the voltage across the
electrons (ρdrag,e = Ve/Ih). As long as the current is low enough
so that the system is in the linear response regime, thermodynamic
arguments [54] predict that ρdrag,e = ρdrag,h.

larger hole mass responsible for two. First, the excitations in
the EHBL are lower in energy, as TF is lower for the heavier
hole layer. Second, the intralayer correlations are larger in the
heavier hole layer (greater rs), which reduces the interlayer
screening. The third contribution arises from the attractive
interlayer interaction in the EHBL that enhances the inter-
layer correlations (larger pair-correlation function g(r) for
small r), with the opposite effect in the repulsive electron-
electron bilayer. Subsequently, the interlayer local-field cor-
rection in the EHBL is negative whereas in the electron-
electron case, it is positive. Hence, the modified potential in
the EHBL is larger leading to an increased drag resistivity.

If the determinant of ε(q,ω) vanishes then those regions
can make large contributions to ρdrag. These are the plasmon
modes of the bilayer. The location of the (two) plasmon
branches with respect to the single-particle excitation spec-
trum of the particles in the two layers in the (q,ω) plane, is an
important aspect of the physics of the bilayer. These modes
were studied (within RPA) by Das Sarma and Madhukar
(1981) [44] and Hu and Wilkins (1991)[45]. Later work
of Liu et al. (1996) [17] and Hwang and Das Sarma [41]
that go beyond RPA has also highlighted how the plasmon
contribution can differ in 2x2DEGs and EHBLs. However,
it is not possible to get a finite drag at T = 0 due to
contributions from the plasmon modes.

Yurtsever et al. (2003) [38] compared the 2x2DEG drag
data of Kellogg et al. [46], with RPA, STLS, and their own
method based on the Hubbard approach. The RPA and
TF underestimate the drag whereas the STLS method gives
an overestimate of the drag. Good agreement with their
Hubbard model was found. Similar work was done by Hwang
et al. (2003) [47] looking at data from 2x2DHG of Pillarisetty
et al. [48] that had a drag resistivity 2-3 times larger than
drag in corresponding electron-electron bilayers [46]. They
used the Hubbard approximation and included scattering
with q ∼ 2kF, appropriate for large rs, and phonon-mediated
drag. A deviation from T2 was found (T2.4) as T ≈ TF
for the holes and an enhanced phonon contribution for the
hole-hole bilayer compared to the electron-electron system.
The intralayer correlations are dependent on rs which affects
the screening at low densities. A comprehensive comparison
of the predictions of various local-field theories, and the
Fermi hypernetted chain approximation for Coulomb drag
has been done by Asgari et al. [39], more recently.

For the RPA, STLS, and Hubbard methods, a stronger
dependence on density is predicted, (n1n2)−2 [38] (rather
than (n1n2)−3/2 for the TF model [5]), which has been
observed [46]. The T2 relationship is only exact in 3D. For
2D, there exist corrections from the divergences in phase
space for q ∼ 0 and 2kF , corresponding to forward and
backward transitions on the Fermi surface. A correction
proportional to T2 lnT is expected [49], but should be small.
This correction is believed to have been observed in low-
density electron-electron bilayers [46].

A similar temperature dependence of −T2 ln(T/Tτ)
(Tτ ≡ �/kBτ) is expected [50], when a large amount of
disorder (l < d, where l is the mean free path) is included
at very low temperatures.

Hwang and Das Sarma [41], calculated the drag resistiv-
ity (and single-layer resistances) for EHBLs with parameters
fitted to the devices of Seamons et al. [51, 52], with
20 nm and 30 nm barriers. Using local-field corrections and
dynamical screening, they were able to show that the coupled
bilayer plasmon modes in the EHBL greatly enhance the drag
resistivity with respect to the electron-electron and hole-hole
bilayers.

5. Coulomb Drag in Electron-Hole Bilayer:
Experimental Results

Coulomb drag at T < 1 K in EHBLs in a regime
where d/l ∼ 1, has recently been measured by the authors’
group and an experimental group in Sandia [51, 53]. Our
results show that drag measured in a device with a 10 nm
Al0.9Ga0.1As barrier (device B138/C4-1) is shown in figure
9 for matched electron and hole densities (n = p). For the
two highest densities (n = p = 1.4, 1.7×1011 cm−2), the hole
drag resistivity is monotonic over this temperature range and
appears to go towards zero as the temperature does. However,
for the lower-density traces (n = p = 9, 10 × 1010 cm−2),
an upturn is seen in the hole drag. The lower-density trace
has a larger upturn and the corresponding electron drag
trace (n = p = 9 × 1010 cm−2) is also shown. Only a very
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Figure 10: Drag resistivity measured on electron (a) and hole layer (b) versus temperature for n = p = 4, 5, 6, 7, 8, 9 × 1010 cm−2, down
to 300 mK. (Inset) Expanded low-temperature drag resistivity measured on hole layer. For the lowest density, kFd ≈ 1.25, rs,e = 2.8, and
rs,h ≈ 14.1. (Device: B138/C4-2-10 nm Barrier).

small upturn (if any) is found in the electron drag, with
ρdrag,h /= ρdrag,e below ∼1 K.

In another 10 nm barrier device (B138/C4-2) fabricated
from the same wafer (I.D. A4268), lower-matched densities
could be reached. Electron and hole drag resistivities are
shown in Figure 10 for n = p between 4 and 9 × 1010

cm−2. The high-temperature drag is a good fit to T2 and
ρdrag,h = ρdrag,e. For 9×1010 cm−2, theT2 coefficient is similar
(∼ 0.2Ω/�K−2) to the first device B138/C4-1 (see Figure 9).
At lower densities (Figure 10), the upturn does not increase
(as seen in Figure 9) but becomes smaller, with the lowest two
densities (4, 5× 1010 cm−2) displaying no upturn at all and a
sign-reversal at the lowest temperatures. For an intermediate
density 7 × 1010 cm−2, the upturn is followed by a sharp
negative downturn around 300 mK. In contrast, the electron
drag resistivity remains monotonic and follows the expected
T2 dependence for two Fermi liquids. It is interesting to note
that the departure from the T2 dependence in the hole drag is
relatively insensitive to density and occurs at ∼700 mK. Note
that at n = p = 4× 1010 cm−2, d/l ≈ 0.5 is reached.

Nonreciprocity at low temperatures is an unexpected
and puzzling result, since the drag is clearly in the linear
regime. The drag resistivity was found to be independent of
the excitation current frequency, up to ∼100 Hz. Switching

the grounding point between the layers can detect whether
the measurement circuit is equivalent in the two drag
configurations. Shifting the grounding and bias points was
found not to affect the anomalous low-temperature data.
At higher temperatures, the drag is reciprocal, this too
verifies that the measurement circuit is set up correctly. The
following section reports drag measured in EHBL devices
below 300 mK in a dilution refrigerator.

5.1. Coulomb Drag down to 50 mK. Coulomb drag in sample
B138/C4-1 was measured down to 50 mK. In Figure 11,
drag is shown for n = p = 9, 11 × 1010 cm−2. For the
9 × 1010 cm−2 traces, the high-temperature dependence is
similar to that in Figure 9 measured in a different system.
An upturn in the hole drag is seen, which appears to be
larger for the lower density. Deviation from T2 appears at
a higher temperature for the lower density. However, for this
density, below 250 mK the hole drag peaks and starts falling.
A smaller upturn is seen in the electron layer, despite the I-
V plot (Figure 11(b)), showing that the electron drag is still
linear down to lower excitation currents (0.5 nA).

In a 25 nm barrier, undoped device (B135/C3-4)
with resulting higher hole mobilities, the drag resistiv-
ity measured down to 35 mK is shown in Figure 12 for
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Figure 11: (a) Electron and hole drag resistivities versus temperature for n = p = 9 and 11×1010 cm−2 versus temperature, down to 50 mK.
T2 coefficients are 0.08 and 0.19Ω/�K−2, respectively. (b) I-V trace for drag on electron layer for n = p = 9×1010 cm−2, indicated by arrows
(a). Electron and hole layer mobilities at T = 1.5 K, μe = 1.5 × 106 cm2V−1s−1 and μh = 1.1 × 105 cm2V−1s−1. (Device: B138/C4-1-10 nm
Barrier).

n = p = 7, 11× 1010 cm−2. For the lower-density traces, an
upturn is seen in the hole drag, though it peaks, then falls
and below 200 mK saturates at a small negative value. As
shown in Figure 12(b), even the negative hole drag appears
to be linear down to small currents. But the corresponding
electron drag trace still appears to follow the T2 dependence.
The features in the low-temperature drag are not hysteretic
with temperature. All points were taken as the sample was
cooled, except the I-V traces that were taken as the sample
was warmed. The resistances corresponding to these traces
are shown as black circles in Figure 12 and agree well with
the other data. Figure 12(c) shows the in- and out-of-phase
component of the hole drag signal for n = p = 7 ×
1010 cm−2. This shows no anomalies in the out-of-phase
signal coincident with the anomalous behaviour seen in the
in-phase signal, ruling out artefacts from capacitive effects or
ohmic contact failure. For the higher-density traces (n = p =
1.1 × 1011 cm−2), a small upturn in the electron drag is seen
whereas a small negative downturn is seen in the hole drag
(see inset, Figure 12).

For an excitonic superfluid phase, an upturn in the drag
is predicted that would diverge, approaching the single-
layer resistivities [6], which themselves would diverge as the
number of unpaired electrons and holes that are able to carry
single-layer current fall. But such a strong effect is not seen.
Besides in the excitonic phase, there is no reason to expect
Nonreciprocity. Electrostatic binding within an exciton may
explain the upturn seen in the drag and departure from
the behaviour expected for weak particle-particle scattering.
However, an excitonic phase is unlikely to have a preference
for the lighter or heavier layer and cannot account for the lack

of reciprocity seen at low temperatures. An indicator for the
presence of excitons would be an enhancement of the drag at
n = p, particularly for a BCS-like state where nesting of the
electron and hole Fermi surfaces is required.

5.1.1. High-Temperature T2 Dependence. The magnitude of
drag in the EHBL is expected to be greater than in electron-
electron and hole-hole bilayers, due to the additional
plasmon enhancement [41] and due to larger correlations
between the layers [55], including the high-temperature
(∼T2) regime. The T2 coefficient (ρdrag = AT2) for the data
in Figure 10 (10 nm barrier) can be compared with that for
10 nm barrier electron-electron and hole-hole bilayers. The
electron-electron data of Kellogg [56] for n1 = n2 = 5 ×
1010 cm−2 gives a coefficient of A = 0.3Ω/�K−2, compared
to A ≈ 2.6Ω/�K−2 in the EHBL. This shows an enhance-
ment by a factor of∼9. In the hole-hole bilayer of Pillarisetty
et al. [48], for p1 = p2 = 7 × 1010 cm−2, A ≈ 0.7Ω/�K−2

compared to A ≈ 0.5Ω/�K−2 in the EHBL. These are simi-
lar, despite the hole-hole bilayer having a larger rs in both lay-
ers. However, at these densities, for an accurate comparison,
the correction to account for the different rs must be made.

Comparing the data in Figures 10 and 12 for 10 nm
and 25 nm barrier devices at n = p = 7 × 1010 cm−2,
the dependence on interlayer separation d can be examined.
The respective T2 coefficients are A = 0.5Ω/�K−2 and
A = 0.051Ω/�K−2, a ratio of ∼10. By measuring the
interlayer capacitance, the wavefunction peak to peak d
can be estimated. The 10 nm and 25 nm barriers corre-
spond to d of 25 nm and 40 nm, respectively. From (3),
one expects A ∝ d−4. Hence, an expected ratio of
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Figure 12: (a) Electron and hole drag resistivity versus temperature for n = p = 7 and 11× 1010 cm−2 versus temperature, down to 50 mK.
T2 coefficients are 0.0035 and 0.051Ω/�K−2, respectively. (b) I-V (a.c. f = 7.2 Hz) trace for drag on hole layer for n = p = 9× 1010 cm−2 at
temperatures indicated. The resistances found from these slopes are displayed on (a). (c) In- and out-of-phase components of the drag voltage
(Vdrag) for the n = p = 7×1010 cm−2 trace. Electron and hole layer mobilities for n = p = 7×1010 cm−2 atT = 1.5 K; μe = 6.8×105 cm2V−1s−1

and μh = 3.3× 105 cm2V−1s−1. (Device: B135/C3-4-25 nm Barrier).



12 Advances in Condensed Matter Physics

Barrier thickness = 10 nm

Carrier densities = 9×1010 cm−2

Ferm
i-l

iquid-li
ke

Temperature (K)

0

0.25

0.5

0.5

0.75

1

1

1.5 2

???

Drag on hole layer
Drag on electron layer

D
ra

g
re

si
st

iv
it

y
(Ω

/
)

Figure 13: Electron (blue) and hole (red) drag resistivity versus
temperature for n = p = 9 × 1010 cm−2, down to 50 mK.
The data of Figure 11 is reproduced along with the result of the
calculation (solid line) described in the text. We considered a cosine
wavefunction for the holes and a Fang-Howard type wavefunction
for the electrons.

d4
(25 nm)/d

4
(10 nm) = 404/254 = 6.6, close to the measured

10. An increase in interlayer correlations with reducing
separation may explain the enhancement over the expected
value. The density dependence of the T2 coefficient is
examined next.

We have been able to describe our high-temperature
(above 1 K) drag measurements using the linear Boltzmann
formalism as in (2), provided that the average intralayer
particle spacing is smaller than the average interlayer par-
ticle spacing. We used a simple model with temperature-
dependent Lindhard functions and accounted for the finite-
thickness of the wavefunctions. Intralayer correlations were
taken into account using a Hubbard local-field correction as
described by Yurtsever et al. [38], but interlayer correlations
were neglected. We also neglected phonon effects. This
model works well for 10 nm and 25 nm barrier devices at
high enough densities (see Figure 13). For very low densities,
the model underestimates the drag, suggesting that interlayer
local-field corrections might be large because particles in
different layers are closer together than particles in the
same layer. We have also noticed that the calculated drag
is sensitive to the shape of the wavefunction. However, the
low-temperature drag observations cannot be explained by a
Boltzmann-type even if local-field corrections are taken into
account.

5.2. Drag at Mismatched Densities. Data at constant electron
density (n = 8.6 × 1010 cm−2) with p varied, is shown
for device B138/C4-1 in Figure 14. At higher temperatures
(T = 1.55 K and 3 K), where the anomalous drag is not
seen, agreement is found between the electron and hole
drags, and a good fit to a power-law dependence is found
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Figure 14: Electron and hole drag resistivities with electron density
held constant at n = 8.6 × 1010 cm−2 versus hole density at T =
320 mK, 1.55 K, and 3 K. (Device: B138/C4-1-10 nm Barrier).

(ρdrag ∝ p−3.8). At the lowest temperature, the electron drag
still has the same power-law dependence on p. However, as
p is lowered the hole drag no longer agrees with the electron
drag, and exhibits the upturn found in Figure 9 at n = p =
9 × 1010 cm−2. A maximum is seen in the hole drag close to
n = p, but for n > p a sharp downturn that goes negative is
found. It is unclear from these observations whether n = p
or the value of the hole density (kFd ≈ 2, transition to large-
angle scattering) is important, and more work is required
to analyse this point. However, achieving the upturn is not
dependent on matching the densities exactly. This point was
also investigated by Morath et al. [52]. While a peak is seen in
the hole drag close to matched densities (Figure 14), it cannot
be concluded that this is excitonic (or phonon/plasmon) in
origin.

Considering the data in Figure 10 for n = p, the T2

coefficients are plotted against layer density (ρdrag = AT2) in
Figure 15. A power-law dependence for A ∝ napb, with a +
b = −4.0 is found. This total has been predicted by the RPA,
Hubbard-like and STLS calculations performed by Yurtsever
et al. [38] for the electron-electron bilayer. These go beyond
the (high-density) weak coupling limit (TF) where (np)−3/2

is predicted (3). In Figure 14, a dependence of ρdrag ∝ p−3.8

is found, which together implies a weaker dependence (|a| <
|b|) on n rather than p. For drag taken when the hole density
is held constant at p = 1.5 × 1011 cm−2 and the electron
density is varied (data not shown), the T2 coefficient is
plotted in Figure 15 against n, showing A ∝ n−0.5. Some
inaccuracy will occur as the interlayer separation (d) is to
some extent a function of the interlayer bias that determines
the electron density. This effect was studied by Morath et al.
[57]. Similarly, the position of the hole wavefunction will
be affected by the backgate bias. Depleting holes will push
the wavefunction peak towards the barrier. Nevertheless, it
is expected that the drag will be more sensitive to the layer
with greater rs [47, 48]. Earlier work in the EHBL showed the
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Figure 15: Fit for T2 coefficient A for ρdrag with p constant p =
1.5× 1011 cm−2 and n varied (b) (data not shown). Same for n = p
(data shown Figure in 10) (a). (Device: B138/C4-1 (a), B138/C4-2
(b) −10 nm Barrier).

opposite result that the drag was found to be more sensitive
to the electron density [19], but this work was performed
above T = 9 K, where other processes such as phonon-
mediated drag will be significant.

5.3. Interlayer Leakage. In all biased structures, finite leak-
age currents will exist. In the EHBL, the interlayer bias
(∼1.5 V across ∼10 nm) acts across a small distance and
measurable leakage exists, though it is typically far smaller
than the measurement currents used. In the best devices,
Ileak ≈ 100 pA, while the measurement currents are typically
between 0.5–10 nA. The effect of the leakage current on
transport measurements is important, particularly if it can
influence the drag measurement or the state of the system.
There are several possible mechanisms whereby leakage can
influence measurements directly. Firstly, the electrons/holes
that leak through the barrier will be much hotter than
the 2DHG and 2DEG, which will have reached thermal
equilibrium with the lattice. It must be possible for these
energetic particles to lose this energy on a shorter timescale
(thermalisation time) than the characteristic lifetime of any
coherent phase existing in the bilayer, so that the leakage
event will be forgotten quickly by the system. Likewise, the
leakage events must be infrequent, relative to the phase
lifetime (such as the lifetime of an exciton).

As discussed earlier, the leakage is most likely caused
by barrier defects and carriers will probably lose energy via
transitions through defect states that exist mid-gap. In this
respect, backgate leakage is not likely to be as important.
While much larger biases are used, a charged particle is
unlikely to travel the distance from the backgate to the 2DHG
ballistically, and energy will be dissipated to the lattice. It
is necessary for the particles to be in local equilibrium for
the true ground state to emerge, despite the two layers being
at different electrochemical potentials. It is unknown how
much leakage will affect this condition. For a superfluid-like
state, the lifetime due to leakage between the layers must be
larger than τ ∼ �/Δ, where Δ is the energy gap. For the
effect of the gap to be observed, we need T � Δ/kB, which
assuming a lowest measurable temperature of 50 mK, gives
a bound of τ < 150 ps. A typical interlayer leakage current
in our device is ∼50 pA, over an area (Aoverlap) of 0.14 mm2

(including any leakage due to radiative recombination). The
characteristic timescale between leakage events (how long the
particle remains in one layer) is τleak = enAoverlap/Ileak. Hence,
an approximate leakage lifetime (for n = p = 1× 1011 cm−2)
is τleak ∼ 0.4 s, which is much longer than any typical
transport lifetime (τdrag ∼ 10 ns, τxx ∼ 10 ps) in these devices
and any lifetime corresponding to a gapped phase that could
exist within the measured temperatures.

The drag resistivity at low temperatures is typically
smaller than 1Ω/�, and stray currents can adversely affect
the measurement due to the larger single-layer resistivities.
All measurements were conducted with a.c. phase sensitive
detection. Incoherent d.c. leakage cannot contribute directly
to an error in the measurement. However, a weak point in
the barrier may allow a path for the a.c. excitation current to
cross into the other layer and return via the interlayer bias
supply (battery) (Figure 16), which appears to the a.c. as a
low resistance path. As shown in Figure 16(a), by changing
the interlayer biasing points, the effect can be reversed. For
device B138/C4-2 at n = p = 8 × 1010 cm−2, changing the
bias has little effect on the Nonreciprocity or the upturn in
the hole drag. The electron drag is also unaffected.

6. Discussion

Features are seen in the drag resistivity at low temperatures
that cannot be explained within the framework of Fermi-
liquid theory [41]. For two Fermi gases, the phase space
allowed for interlayer particle-particle scattering must go to
zero as the temperature does.

Qualitatively, similar anomalous behaviour is seen in
two 10 nm barrier devices, with an upturn below 0.5 K that
may be followed by a downturn or sign reversal at the
lowest temperatures, for the lowest densities (Figures 10
and 14). The magnitude of the upturn differs by a factor
of ten between devices (for the n = p = 9 × 1010 cm−2

at 300 mK, Figures 9 and 10), with the high-temperature
drag (∼T2) agreeing well. This would suggest that sample-
dependent factors such as disorder might be important in
the anomalous regime. Anomalous behaviour also occurs at
larger layer separations (25 nm barrier), consistent with the
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Figure 16: (a) Diagram showing that a sign reversal of the error in
drag due to the excitation current leaking between layers is expected
when biasing points (named C1, C2, D1, and D2) are altered, as the
leakage current direction in the drag layer is changed. (b) Electron
and hole drags for the two interlayer biasing configurations, for n =
p = 8× 1010 cm−2. (Device: B138/C4-2-10 nm Barrier).

findings of Seamons et al. (2009) [51], where a small upturn
was found in 20 nm barrier samples but not for 30 nm.

Third-order corrections to the interlayer interaction by
Levchenko and Kamenev [58], showed that nonzero drag at
T = 0 was possible, and so does not necessarily indicate
the presence of strong interlayer correlations. However, the
effect they find is small (∼10−4 Ω/W), particularly for high-
mobility samples, and cannot explain the anomalous drag
seen (∼1Ω/W).

The deviation is too large to be caused by a plasmon
or phonon enhancement [28, 36], which would be peaked
at matched densities and higher temperatures. Plasmon
enhancement is expected at T ∼ 0.2TF (TF,e > 16 K, TF,h �
3 K), while below the Bloch-Grüneisen temperature (∼1 K),
the phonon contribution is heavily suppressed.

6.1. Coulomb Drag Upturn. The upturn in the Coulomb drag
(Figure 9) at the lowest temperature, may be a signature of

an increased interlayer coupling due to the formation of
excitons. This coupling is not suppressed by the falling phase
space with temperature, restricting scattering at the Fermi
surfaces. Within the exciton regime, distinct Fermi surfaces
no longer exist when the binding energy exceeds kBT , lifting
this phase-space restriction.

The transition temperature for an excitonic superfluid
state (assuming a 2D Kosterlitz-Thouless type transition),
is expected to increase with exciton density (in 2D
Tc = nex�

2/0.71m∗
exkB, (1)), where nex is the exciton density.

Seamons et al. [51] attempted to identify the temperature
of the minimum in the drag as the transition temperature,
arguing that this point occurs at higher temperatures for
larger densities. It is possible to see the same trend in Figures
9 and 11, though in the latter the deviation from T2 clearly
occurs at a higher temperature for the lower-density data
(n = p = 9 × 1010 cm−2). This point of deviation may be
more significant than the drag minimum.

However, the upturn is far smaller than that predicted
for an excitonic state [6, 8, 10]. The drag is anticipated to
reach a value approaching the single-layer resistivities, with a
sharp change (discontinuity) signifying the phase transition
(unless only a small fraction of electrons and holes enter
a paired state). Hu [8] predicted an enhancement due to
electron-hole pair fluctuations above the transition rising as
∼ T2/ log(T/Tc). Fitting this to an upturn to obtain Tc is
possible (Morath et al. (2009) [52]), but it cannot explain
the subsequent downturn seen in Figures 11 and 12. The
prefactor to the expression predicted by Hu [8], is larger (by
a factor of ∼1000) than the upturn measured [52]. For the
drag at mismatched densities (Figure 14), the peak expected
at n = p is not seen. The peak in the figure is not sharp
enough and is asymmetric. As discussed earlier, it is unclear
whether n = p or kFd plays a role in the peak. Crucially,
matched densities are not necessary to see the upturn.

Other indicators for an excitonic phase could include a
temperature dependent Hall voltage, since neutral excitons
would not feel the Lorentz force. The authors had looked for
this effect, but not observed it in their experiments.

6.2. Coulomb Drag Sign Reversal. At the lowest temperatures,
in 10 nm and 25 nm barrier samples, a sign reversal of the
drag resistivity has been seen. In this situation, driving the
current in one layer in one direction causes particles in the
other layer to move in the opposite direction. Sign reversal
has been seen for drag between layers at large filling factors
(moderate magnetic fields) in the quantum Hall regime [59–
63]. Partly filled Landau levels, possess electron and hole
character. If the highest Landau levels in the drag and drive
layers have opposite deviation from half filling, then ρdrag is
negative (electron-hole like) at low temperatures. At higher
temperatures when kBT is larger than the disorder broadened
width of the Landau level (�/τ), then the drag returns to
the zero magnetic field (positive) sign. For nonzero drag, the
excitations at the Fermi surface must not have particle-hole
symmetry [60, 63]. At the centre of a disorder broadened
Landau level, this symmetry is acquired and the drag goes to
zero. Varying the magnetic field will change the Landau level
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populations and a complex series of positive and negative
drag oscillations results.

Figure 12 shares many of the features seen in the
temperature dependence of magnetodrag in an electron-
electron bilayer [63] at ν = 7.7, 9.5, where a peak is followed
by a downturn. It is not immediately clear how the banding
(density of states) required for this would occur at zero
magnetic field. For 2DHG and 2DEG, E(k) is expected to be
continuous and the concept of disorder broadening cannot
be applied.

Alkauskas et al. (2002) [64] have proposed that a sign
reversal in the drag resistivity may result from the inclusion
of an in-plane periodic potential, with wavelength much
greater than that of the underlying atomic lattice. This
extra periodicity creates an additional Bragg plane and the
formation of minibands, with a bandgap at much smaller
k, at the Brillouin zone boundary corresponding to the
large wavelength of this additional potential. They found
that as the density was increased, a sign reversal would
occur. Normally, particles exist within the parabolic bottom
of the band and are scattered before they reach the zone
boundary. If the Brillouin zone is smaller, then the point
at which ∂2E/∂k2 (= �2/m∗) changes sign is attainable
at experimental densities, leading to a sign change in the
effective mass and a sign reversal in the drag resistivity. But
for this to be relevant, a periodic solid-like phase must appear
in the EHBL. Candidates for this include the Wigner crystal,
where one or both layers has crystallised into a periodic
array overlaying each other [65] or a spontaneous periodic
modulation in charge density, known as a charge density
wave [55]. These possibilities would be discussed further in
the context of the single-layer resistivity measurements.

6.3. Drag Reciprocity. It is expected that for measurements
in the linear regime, the hole and electron drag resistivities
should be equal [54, 66, 67]. At the lowest temperatures,
where the deviation from T2 is found, a Nonreciprocity
between ρdrag,e and ρdrag,h is observed, despite the measure-
ments appearing to be in the linear regime. The measure-
ment circuit is not the cause of the Nonreciprocity as the drag
is reciprocal at higher temperatures. The effect of interlayer
leakage was discussed before as a possible source of error,
but in our experiments, we have verified that this gives no
noticeable contribution (Figure 16).

Measurements of Coulomb drag down to 300 mK on
EHBLs has been performed by Seamons et al. (2009) [51, 52],
on samples with 20 nm and 30 nm barriers and similar
densities. For the narrower barrier, a small upturn is found
only in the drag measured on the holes (∼ 0.4Ω/W). This
Nonreciprocity was explained as a result of additional Joule
heating caused by passing current through the more resistive
hole layer for the electron drag configuration. They report
saturation in the electron Shubnikov-de Haas oscillations at
about 1 K, when the same current used for drag is passed
through the hole layer. Single-layer measurements reported
by Seamons et al. on the hole layer require a much smaller
current than that used for drag, so heating was avoided.

Joule heating cannot explain the Nonreciprocity found in
this work. Heating will be a nonlinear effect (∼I2R), but no
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Figure 17: Two-probe and four-probe resistance of the electron
(blue squares) and hole (red triangles) layers versus temperature,
at n = p = 9× 1010 cm−2. (Device: B138/C4-1-10 nm Barrier).

nonlinearity is found in the I-V traces of the drag resistivity.
For the data taken in Figure 9 at n = p = 9×1010 cm−2, at the
lowest temperature, the two-probe resistance of the electron
and hole layers differed by a factor of 9 (hole 2-probe 62 kΩ,
electron 2-probe 7.2 kΩ). The two and four-probe (single-
layer) resistances of the hole and electron layers are shown in
Figure 17 as a function of temperature. Reducing the current
by a factor of three will give the same Joule heating for
the electron drag configuration as for the hole drag. But
nonlinearities are not seen in this range (Figure 9). Indeed
the same currents were used for single-layer measurements as
for drag and no saturation of Shubnikov-de Haas amplitude
with temperature was seen.

7. Features in Single-Layer Resistivity:
An Interaction-Driven Insulating State

In our EHBL devices it is possible to perform experiments
with only the 2DHG present. This is achieved by keeping the
interlayer bias below the threshold for electron accumulation
(Veh ≈ 1.55 V) and biasing both backgates negatively to
induce holes in the QW. The hole density can then be
controlled with the central backgate Vbg. The temperature
dependence (0.3 to 1.5 K) of the single-layer resistivity of the
holes is shown in Figure 18(a). As the density is lowered,
there is a transition from metallic to insulating behaviour
between 5 and 6 × 1010 cm−2. These features are consistent
with results from several 2DMIT studies of Silicon MOSFETs
and GaAs/AlGaAs-based devices. The crossover occurs as
expected close to ρxx ≈ h/e2 or equivalently to kF	 = 1,
with dρxx/dT > 0 for ρxx < 25.8 kΩ/� and dρxx/dT < 0
for ρxx > 25.8 kΩ/�. At kF	 = 1, the mean free path (	) is
approximately equal to the interparticle separation (l). Non-
monotonic behaviour is observed for the p = 6 × 1010 cm−2

trace, which is insulating aboveT ∼ 0.8 K and metallic below.
This has been observed before in 2DHGs [68] and in an
EHBL with a 30 nm barrier [57] and can be explained within
Fermi liquid theory [69].

Most striking is the change in behaviour of the hole
layer with the addition of the electron layer (kept in an
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Figure 18: Resistivity of hole layer versus temperature for p = 5, 6, 7, 8, 9 × 1010 cm−2 at B = 0, (a) without electrons (n = 0) and (b) with
electrons (n = p). (c) Magnetoresistance ρxx(B) of hole layer for p = 6, 7, 8, 9 × 1010 cm−2 with no electrons present (n = 0), at T = 0.3 K.
(d) “Metallic” hole layer ρxx(T) for p = 9× 1010 cm−2, n = 0. (e) Arrhenius plot (ln(ρ) against 1/T) for “insulating” hole layer ρxx(T) with
n = p = 9× 1010 cm−2, showing good fit to an exponential rise. (Device: B138/C4-2-10 nm Barrier).

open-circuit configuration), [70, 71] shown in Figure 18(b).
All traces are now clearly insulating by T ∼ 1 K, even
those that had been metallic. This insulating state is
occurring at kF	 > 50, with resistivity at T = 1.5 K far
below the regime where a transition to insulating behaviour

is expected. Localisation due to background disorder
(impurities/dopants/defects) cannot account for this
because the 2DHG sees the same disorder with and without
the 2DEG present. Placing a plane of mobile charge next to
the 2DHG is expected to improve the hole mobility. Adding
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the electrons does result in a significant three-fold increase in
hole mobility at T = 1.5 K; for p = 6×1010 cm−2, ρxx,hole(n =
0) = 3808Ω/� falls to ρxx,hole(n = p) = 1203Ω/�. This
is consistent with the results of Morath et al. [57], from a
30 nm barrier EHBL device, where the dependence of the
hole mobility with electron density was explored. The effect
is much larger here, possibly due to the smaller barrier.

Improvement of the high-temperature mobility is likely
to be the result of several processes. Background impurities
will be screened by the presence of the 2DEG. Inducing the
electrons requires a large electric field across the barrier,
and then to reach matched densities (n = p) a depleting
backgate bias is also required. Both of these cause the
wavefunction to be “squeezed” against the AlGaAs barrier,
improving the screening as the holes become more greatly
confined (though also potentially harming the mobility
due to increased interface roughness scattering and the
higher level of background impurities found in AlGaAs).
In this regime, the hole mobility is limited by remote
ionised impurity scattering caused by the intentional p-
dopants (verified by comparison to undoped structures). The
interlayer bias will pull the holes towards the barrier and
increase the effective spacer thickness (between the 2DHG
and dopants) and accordingly improve the mobility.

Placing a conducting electron layer close to the 2DHG
will also improve the screening, as image charges will form
in this layer. If the interlayer separation is d, then the dipolar
field (charge and its image) will drop faster than ∼ 1/r at
distances greater than ∼ d. This effect has been studied in
gated 2DEGs [72] and in double QW structures (2x2DHG)
with d ∼ 50 nm [73].

While the change at T = 1.5 K can be accounted for
by a combination of effects, the insulating behaviour at
low temperature is unexpected as these arguments always
improve the intralayer screening and lower the effective rs.
Matthiessen’s rule-based addition of scattering rates cannot
explain the increase in mobility [74] at T = 1.5 K. Adding the
contribution of the interlayer scattering rate to the impurity
scattering rate will cause a reduction in mobility. Going from
the situation of a single hole gas (1/μslh ) (where μ = eτ/m∗),
whose mobility is primarily dictated by impurity scattering

(1/μ
imp
h ), to the mobility of the holes with the addition of the

electron layer (bilayer configuration) (1/μblh ) must introduce
a term corresponding to the presence of the electron layer
(1/μCh ) and so

1

μslh
= 1

μ
imp
h

−→ 1

μblh
= 1

μ
imp
h

+
1
μCh
. (9)

This must mean that 1/μ
imp
h is changing in the presence of

the second layer. Note that 1/μCh = enρdrag [74], where n is
the density of the electron layer. The anomalous drag cannot
account for the increase in ρxx(T) at lower temperatures, as
it is too small. This suggests that a new single-layer scattering
mechanism has emerged due to the presence of the electron
layer.

The insulating state is also seen in the electron layer.
Figure 19 shows both electron and hole layer resistivities
down to ∼50 mK. Both layers exhibit a similar behaviour,
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Figure 19: Resistivities of hole and electron layers versus tem-
perature for n = p = 9 × 1010 cm−2, down to ≈ 50 mK in a
dilution refrigerator. At T = 1.5 K, μe = 1.5 × 106 cm2V−1s−1 and
μh = 1.1 × 105 cm2V−1s−1). (Inset) Change in conductivity relative
to σxx (T = 2 K). (Device: B138/C4-1-10 nm Barrier).

though the relative change in resistance appears to be much
larger in the hole layer. However, the loss of conductivity in
both layers between 2 K and 50 mK (inset Figure 19) is sim-
ilar (∼0.2 mS), over which the insulating behaviour is seen.
This is much larger than the change weak localisation (quan-
tum interference) can account for (Δσxx ≈ 40μS) [75]. Weak
localisation predicts that Δσxx(T) = (e2/2π2�) ln(τi/τ0),
where τi and τ0 are the temperature-dependent lifetimes
for eigenstates of energy and momentum, respectively. The
insulating state was also seen in a third device (B141/C5-
2) that had been processed with a shorter hall bar (250 μm
as opposed to 500 μm), and the effect was found to be
independent of the length to width ratio.

Figure 18(e) is an Arrhenius plot (ln ρ versus 1/T) for
n = p = 9 × 1010 cm−2, and the resistivity shows a good
fit to an activated behaviour (It is difficult to distinguish
between a power law and an exponential rise as the insulating
phase occurs over a small temperature range, less than one
order of magnitude.) (ρxx(T) = ρ0eE/kBT), yielding an energy
gap of E/kB = 0.4 K. Similar analysis for the corresponding
electron trace (data not shown) gives a far smaller gap of
E/kB = 0.02 K. As the density is lowered (Figure 18) and
the interaction strength is increased (larger rs), the fit to an
exponential rise becomes poorer. But the traces are expected
to be (weakly) insulating for p < 6 × 1010 cm−2, regardless
of the presence of the electrons. The important result is the
emergence of a strongly insulating state at large kF	 (ρxx �
h/e2). In Figure 19, ρxx(T) for both layers appears to saturate
at the lowest temperatures. This is likely to an artefact
of the electron temperature not reaching the thermometry
temperature (Shubnikov-de Haas oscillation amplitude had
saturated by ∼100 mK, in this measurement run).

7.1. Mismatched Densities. Matching the densities is not
crucial to achieving the insulating state. In Figure 21, the hole
density was held at p = 1.6 × 1011 cm−2 with the electron
density varied (n = 4, 6, 8 × 1010 cm−2). This was chosen
so that for the lowest electron density n = 4 × 1010 cm−2,
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Figure 20: Resistivities of hole and electron layers versus tempera-
ture for n = p = 7, 9× 1010 cm−2, with 25 nm Al0.3Ga0.7 As barrier.
(Device: B135/C3-4-25 nm Barrier).
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Figure 21: Resistivities of the hole (a) and electron layer (b), (c),
and (d), versus temperature for fixed hole density p = 1.6 ×
1011 cm−2, and varied electron density n = 4, 6, 8 × 1010 cm−2.
(Device: B138/C4-1-10 nm Barrier).

both layers have similar resistivities at T = 1.5 K. As the
electron density is increased, both layers undergo a transition
from metallic to insulating behaviour. The transition occurs
between 4 and 6×1010 cm−2 when p ≈ 3n in this instance, far
from matched densities. A transition to insulating behaviour
as the density is raised is very striking and incompatible with
a disorder-driven mechanism; this strengthens the argument
for an interlayer interaction-driven effect.

A similar experiment was performed (down to 50 mK)
where n was fixed at 2 × 1010 cm−2 and p was varied
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Figure 22: Resistivity of electron (a) and hole (b) layers versus
temperature, for constant electron density (n = 2× 1010 cm−2) and
different hole densities (p = 5, 7, 9, 12×1010 cm−2). Arrows indicate
approximate points of transition to insulating behaviour. (Device:
B138/C4-2-10 nm Barrier).

(Figure 22). For the largest hole density (p = 1.2 ×
1011 cm−2), both layers are metallic, and as the hole density
was lowered, both become insulating. Some degree of
matching appears to be required for the insulating state
to occur, though one would expect that in the limit of
p becoming large relative to n (and the hole screening
improving accordingly), they would behave as two isolated
gases. Arrows in Figure 22 indicate the approximate points of
transition to insulating behaviour, suggesting that there may
be no abrupt transition as the density is lowered, but a shift
in transition temperature.

As the hole density is varied with the electron density
held constant (n = 8.6 × 1010 cm−2), ρxx(T) varies mono-
tonically for both layers across n = p (Figure 23) within the
insulating regime at 300 mK. The electron resistance does
increase slightly as the hole density is lowered. Matching the
densities exactly does not appear to play a significant role. In
all the experiments performed, the insulating state appeared
to occur in both layers simultaneously, though at higher
densities ρxx(T) has little temperature dependence over the
range measured.

7.2. Inhomogeneity. It is important to determine whether
the emergent insulating state in the hole layer at large
kF	 can be attributed to (device-driven) density inhomo-
geneity. If the hole gas were highly inhomogeneous, the
average resistance might be determined by high-density
(low-resistance) regions, while the temperature dependence
was dominated by low-density insulating regions. It can be
established that without the electron gas present, the hole
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Figure 23: Resistivity of electron (blue squares) and hole (red
triangles) layers versus hole density, with electron density fixed
(n = 8.6 × 1010 cm−2) at T = 300 mK. (Device: B138/C4-1-10 nm
Barrier).

gas is homogeneous, from the hole layer magnetoresistance
(Figure 18). The Shubnikov-de Haas oscillations are periodic
in 1/B and the reciprocal of the carrier density. A variation
in carrier density over the Hall bar region would smear
the oscillation. In Figure 18, magnetoresistance traces are
shown for four carrier densities, which clearly show well-
pronounced oscillations with minima that go to zero for
the higher densities. At lower densities, the larger sheet
resistance and shorter transport lifetime broaden the Landau
levels, requiring lower temperatures for them to be as clearly
resolved. Considering only the higher two densities (8 and
9× 1010 cm−2), the resolution of the oscillations is consistent
with the densities measured by the Hall probes at each end of
the Hall bar, which record a difference of ∼ 1× 109 cm−2.

With the introduction of the electrons, verifying the
homogeneity of the 2DHG with magnetoresistance is no
longer possible. Indeed, if the insulating state corresponds
to a density-modulated phase, then it might be expected
that the Shubnikov-de Haas oscillations would no longer
be resolved due to the inherent spatial density-variation.
Indeed, there are no strong oscillations at 300 mK in the hole
layer, but normal oscillations persist in the electron layer at
low fields.

If in-built inhomogeneity is the source of the insulating
behaviour, it must only be present when the electrons are
induced across the barrier. Variation in the thickness of a
10 nm barrier will cause spatial density fluctuations due to
a change in interlayer capacitance. MBE growth is capable of
producing interfaces that are smooth to a couple of monolay-
ers (0.3 nm for GaAs), giving a possible variation of ∼1 nm
in the barrier width. This results in a density fluctuation of
�10%. (This is an overestimate as the appropriate distance
corresponding to the interlayer capacitance is ∼25 nm for a
10 nm barrier) and cannot force regions to become insulating
(p < 6 × 1010 cm−2) if the average density is 9 × 1010 cm−2.
Such inhomogeneity would also be mirrored equally in the
electron layer and detectable in the 2DEG magnetoresistance
as described above. However, even in the insulating regime
the Shubnikov-de Haas oscillations are clearly resolved at
50 mK in the electron layer.

To go from p,n = 0 to n = p requires (as well
as an increase in interlayer bias) a depleting backgate
bias as opposed to an inducing one. It is unclear how
backgate action (50 μm away) can produce density variation
on the short-length scale required (<60 μm, width of Hall
bar/probes). The disagreement in density taken from the Hall
slope at each end of the Hall bar is no worse with the electron
layer present, (still about 1× 109 cm−2).

7.3. Two Component Plasma and the Significance of Unequal
Electron and Hole Masses. Most of the early theoretical
(and numerical) work on the EHBL made the simplifying
assumption that the effective masses of the electrons and
holes are equal. qSTLS was used by Moudgil et al. 2002 [76]
to study the ground state of electron-electron and electron-
hole bilayers (m∗

e = m∗
h ). For the EHBL, a divergence for χ+

at small q (CDW) was found for rs < 10 with a crossover
to the WC state above (d ∼ 4a∗B ). Unlike [17], a divergence
in χ−(q) was found for the electron-electron bilayer. They
found that the local fields in the electron-electron bilayer are
weaker than the EHBL, and the density-modulated phases
require larger rs and smaller d. The results were compared
with diffusion Monte Carlo simulations performed on the
EHBL by De Palo et al. [65], who were able to show a
transition to an excitonic condensate state (BCS-like state)
and WC. The WC transition was in good agreement with the
qSTLS data. However the CDW state was not considered by
De Palo et al. [65].

Subsequent qSTLS work by Moudgil [77] studied the
mass-asymmetric EHBL, with m∗

h /m
∗
e = 7 (appropriate to

GaAs) and included the finite widths of the electron and
hole gases. The mass-asymmetry pushes the CDW and WC
transitions to higher density, though the WC is found to
exist only at an intermediate well separation, with the CDW
favoured for smaller separations. The larger rs,h in the hole
layer is found to be significant, with Wigner crystallisation
predicted at rs,e = 2.4. Interestingly, the correlation in the
hole layer (ghh(r)) for the density-modulated phases is found
to be stronger than in the electron layer (gee(r)). Including a
finite QW width was found to lower the critical density for
Wigner crystallisation to rs,e = 3.75.

More recent work implemented Monte Carlo methods
for studying mass-asymmetric EHBLs, with the mass ratio
varied [78] between 1 and 100, with the interlayer separation
(d) fixed. Electron densities studied corresponded to rs ≈
10− 20, but for a large layer separation (d = 20a∗B ≈ 200 nm
in GaAs). They found that by increasing the mass ratio,
the hole layer evolves from a homogeneous to a localised
state (WC), with the electron layer remaining in a relatively
homogeneous state. Periodic structure in ghh(r) exists by
mh = 5me, a ratio appropriate to GaAs. While these particle
densities are considerably lower than those achieved in these
experiments, the d/l ratios are similar at ∼1.

These results provide a large contrast to the low densities
predicted to be required for a WC to occur in a single 2D
gas, rs = 37 ± 5 by Tanatar and Ceperley (1989) [79]. This
corresponds to an electron density of ∼2 × 108 cm−2; this is
difficult to achieve experimentally in GaAs while maintaining
a high mobility such that localisation due to Coulomb
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repulsion can be distinguished from that driven by disorder.
Hole densities as low as 6 × 108 cm−2 (in GaAs/AlGaAs)
have been reported [80], where a much larger rs is reached
(relative to electrons), but at these densities, the 2DHG is
in the insulating regime. But in the EHBL, the density-
modulated phases are predicted at experimentally accessible
rs that lie within the “metallic” regime.

8. Conclusion

The idea of an excitonic condensate was put forward nearly
forty years ago by Blatt et al. [81] and Moskalenko and
Snoke [82]. But excitonic phases were initially thought to
be necessarily insulating and not accessible by transport
because they consisted of charge neutral particles. However,
the key experimental development that has radically changed
this perspective is the ability to make independent ohmic
contacts to the electron-like and the hole-like parts of
a system. Experimentally, 2x2DEGs, and 2x2DHGs in a
magnetic field have shown striking evidence of transport
by neutral objects driven by counterflow currents [33–35].
More recently, electron-hole bilayers in zero magnetic field
have shown evidence of an emerging non-Fermi liquid
phase [51–53, 70]. In these systems, excitonic phases and
collective modes, characteristic of a 2-component plasma,
may be competing in determining the ground state. It is very
likely that this field will lead to exciting experimental and
theoretical results in near future.
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