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‘In this thesis c;lculations of the vibrational spectra
appropiate to s?ructural models of the elemental smorphous semiconductcors
a-Ge, a-As and a-Se are presented. Simple dynamical models, invo@ving
rectoring forces for bond length and angle variations only, provide
information on the structure-dependance of the vibrational soectra and
hence on the tyvpical structures of the real materials. Calculations
are presented for four-fold coordinated continuous randem network (CRN;
mocels of a-Ge, for a three-fold coordinated CRN model of a-As and for
isclated- and interacting-chain models of a-Se.

In order to cbtain a more realisticrdescription of the structure
anrd vibrational and electronic behavicur of a-Ge, cialculations of the

vibrational and electronic specira of a series of scecven CRN models are

The results show thnat the form of the vibrational specirun
is deternmined by the angular distortions whereas-the form of the
electronic spectrum is determined by the topoleogy of the corresponding
network. The vibrational spectra calculated using the more realistic
gyramical model for a-Ge are also significantly different to thosec
obtained previously using simplé bond stretching and bending forces
only. The results are discussed in relation to the structure of a-Ge
and smorphous I1T-V compounds such 23 a-Gahks, the existence of an
'excess specific heat' at low temperatures in amorphous semiconductors,

toe epplicability of such calculations to cther systems and the

mediiications of the method for the calculation of infra-red and Rzman




zrorphous semiconduciors, are also used to identify the forces chiefly

responsible for the okserved ontical phonon anisoiropies in the fin

and SnSe

Gichalcopgenide layer eompounds Sn52 nse -
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HAPTER ONE INTRODUCTION

T4 AMORPHOUS SEMICONbUCTORS

Amorphous semiconductors are a subset of those materials which are
distinguished from their crystalline counterparts by structural disorder.
Our particular interest in the vibrational, structural and electronic
properties of elemental amorphous semiconductors is stimulated by their
reolative structural and compositional simplicity. They provide a
convenient starting point for a detailed study of disordered solids in
general. Amorphous germanium (a-Ge) is the prototype amorphous semi-
conductor and, along with a-As and a-Se, forms the main subject matter
of this thesis. An excell%nt review of the tetrahedrally bonded amorphous
semiconductors, describing the understanding at the time our work began,
has been given by Connell (1975). We begin this thesis with an intro-
duction to the properties of a-Ge and our methods of calculating
vibrational and electronic spectra approéﬁate to such disordered solids.

The structural information obtained from X-ray scattering data on
¢lemental disordered solids is the radial distribution function (RDF),
the probability of finding an atom at a given distance from any other.
Tre RDF's of sputtered and electrodeposited a-Ge obtained by Shevchik
ard Paul (1972) are shown in Figure 1.7 . The differences between the
curves arise from the different concentrations of voids in samples
prevared by different techniques. For computational purposes, we
consider an idealised fully-annealed amorphous phase in the same way
that we consider perfect crystals without defects or impurities in
calculations for the crystalline phase.

The structure of crystalline Ge (c-Ge) is diamond-cubic, as

shown in Figure 7.2 « Each atom is covalently bonded to four first

neighbours with all bond angles at 109° 28. Analysis of the RDF's of




—-——  SPUTTERED Ge /
--=- ELECTROLYTIC Ge

n o
o c
I ]

=
—

Grweplr) (ATOMS /ANGSTROM)

0 YT 2 5 ) 7 )
r (ANGSTROMS)

Firure 1.1 RDF's of sputtered and electrodeposited a-Ge (after

Shevchik and Paul 1972).
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Fipure 1.2 The diamond-cubic structure of c¢-Gej; open and filled

circles denote atoms on different sublattices.
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Pigure 1.3 Stagpgered and eclipsed configurations of second neighbour

bonds in four-fold coordinated systems.




Fipure 1.1 shows that four-fold coordination is preserved in a~Ge

(from the area under the first peak) with a negligéble distribution

of bond lengths but an rms bond angle distortion of about 10°. There

is no peak at the crystalline third neighbour distance. Thus the

atomic tetrahedra are preserved but interconnected such that the
relative rotations about the common bonds vary between the staggered
(dinedral argle @=60°) and eclipsed (#=0°) configurations of Figure 1.3.
Since the RDF is a one-dimensional representation of a three-dimensional
structure, the dihedral angle distribution and ring statistics cannot

be unigquely deduced from it. Temkin (1974a) has shown that the presence
of anywhere between 0.0 and 0.5 five-membered rings per atom (depending
on the dihedral angle distribution) can be consistent with the
exparimental RDF.

In order to establish the typical structure of a-Ge beyond second
neighbours, ball-and-stick models have been constructed based on both
microcrystallites and continuous random networks (CRN's). The debate
over which best mcdels a-Ge has been decided infavour of the CRN
principally by the type of argument presented by Connell (1975). He
compared the experimental X-ray diffraction interference function with
those approéﬁete to both model types, showing the very poor agreement
obtained with microcrystallite models in comparison to that found
with CRN's.

Polk (1971) was the first to construct a CRN model of a-Ge
showing that all bonds can be sgatisfied without incurring a voiume—
dependgnt elastic strain energy due to bond length and angle distortions.
Since then many more have been constructed, by hand and by computer,
incorporating varying numbers of 5-,6-~ and 7-membered rings. One of
the most interesting is that due to Connell and Temkin (1974) which

was constructed to model amorphous III-V and II-VI compounds and




contains only even-membered rings of bonds. 7The presence of odd-

rings would lead to the formation of 'wrong bonds', contrary to the
experimental data of Shevchik,Tejeda and Cardona (1974) - see Chapter 6.
Temkin (1974b) has argued that small differences in the RDF's of a-Ge
and a-GaAs can be interpreted as implying a significant number of
odd-rings in the former and a neglipgable number in the latter. These
ideas will be discussed further in succeeding chapters.

Having discussed the structure of the prototypical amorphous
semiconductor a-Ge; we now go on to describe our methods of calculating
vibrational and electronic spectra in both ordered and disedered systems.
Aﬁthough we can no longer consider phonon freguencies and electron
energies as functions of wave-vector, the densities of vibrational
and electronic states remain well-defined quantities in disordered

systems. The aims of our work are summarised in the final part of this

chapter and a plan of the thesis is outlined.




1.2 VIBRATIONAL CALCULATIONS

To calculate the normal modes of vibration of an infinite crystal

\

of rizid atoms in the harmonic approximation, the interatomic force
coastants are obtained from the second derivative of an approplate
potential. Thus if | Kk and « denote unit cell, basis atom and cartesian

coordinate respectively, the force constants are

. 2rV
e, Ur ) = A
D o b ls) o () 2en o] (1.2.1a)

The 'self!' force constant terms can be calculated from the sum-rule

Z_ Qﬁm' (Lﬂ.l"") =0 (1.2.7p)

which is a consequence of invariance of the forces under a rigid
lattice translation and ensures the existence of three zero-frequency

nodes at zero wave-vector. The equations of motion of the atoms are

D;Lit.ilflf{) 2 E‘ Sﬁxw (lK,[‘K') Wy ! (L'K’) (1.2.2)

f‘(l‘xl

where my denotes atom mass. Considering a solution of wavevector k

and &mplj.tude H(H )E)y ioeo

wy {Ln) = f;,f{ U (k) exp [L (}f.»}(l') = W(’S)C):l (1.2.3)

wieer z(1) denotes cell position, produces the system of equations

) Unlrk)= ) Do o ) U (1) (1.2.8)
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where the Fourier transformed dynamical matrix D is given by

i , . (1.2.5)
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Thus the (squared) atomic vibration frequencies for a chosen

wavevector are the roots of the 3nx?n secular equation

det | | =0 (1.2.6)
where n is the number of basis atoms and 2 is the unit matrix. The
eigenvectors of D are the mass-normalised amplitudes of vibration of
the basis atoms in each cell of the crystal. A comprehensive discussion
of this and many other aspects of the lattice dynamics of crystals has
been given by Maradudin, Montroll, Weiss and Ipatova (1971).

For c-CGe with a basis of two atoms, such a calculation would
involve the diagonalisation of a 6x6 matrix for each k-point to obtain
dispersion curves and, by integration over the IFCC Brillouin zone, a
vibrational spectrum N(w) - see Chapter 2. On the other hand a
coloulation for a CRN with no long-range order would involve a 3nx’n
matrix where n is now the totel number of atoms - typically 200-500.
Clearly the lack of periodicity renders the machinery of the reciprocal
space technigue inapplicable.

In the next section we outline how electronic energy level calculations

reduce to the same problem of solving a secular eguation.




1.5 TIGHT-BINDING ELECTRONIC STRUCTURE CALCULATIONS
Tight-binding calculations of the electronic structure of semiconductors
such as o~-Ge have proved to be both simple and illustrative (see for

example YWeaire, Thorpe and Heine 1972). We solve the Schrodinger equation
A\
HV = BV (1.3.1)

for the one-electronenergy levels I and wavefunctions V’of the solid by
writing the potential part of the one-electron Hamiltonian operator ﬁ
as the sum of atomic potentials at the sites_zi. For electrons localised
near atomic sites, the wavefunction ¥ is well represented by a linear
combination of atomic orbitals ﬁ(ﬁi) (LCAO). For a periodic system

we use Bloch's theorem and write
€5 el ¢
"%’k(c)f e a o (& s {E-Eg) (1.3.2)

where k is the electron wavevector and o distinguishes orbitals at
site 1. We make the following approximations which reasonably follow
for localised orbitals;

The matrix elements
(batemze) | ViEg) | $p(c-x5))

are all zero except when k=i or k=j (the two-centre approximation) and

(SN

ard j are near-neighbours.

~

B. Overlaps between orbitals on different sites are negligéble and

orbitals on the same site are orthogonal i.e.

< b, (c-xc:) ] ¢ﬂ(:-r))>: 61‘,'6 3;‘).

C. The & (r) are approximate eigenfunctions of the atomic-like
a—
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Hamiltonian with eigenvalues E .

Thus the eigenenergies E(E) are the roots of the secular equation

(1.3.2)

ik (oy-r;) - .
HW'JP(‘S} = 2- e / tc(p (f}‘EL) (1.§o4~)
j P

where the hopping integrals are

Eap(f’) = J qjc,{(ﬁ) \/(K-C') gbﬁ(fl) OLE

and the 'diagonal elements' are atomic energy levels, i.e.

The matrix elements are often parameterised but can also be calculated
from first principles - see Chapter 6. Because of the extended nature
of conduction states in semiconductors, the tight-binding method gives
joor resulbs for thems On the ofher hand,y, the more localised valence
'

states are reproduced rather well as shown for a very simple such model

by Weaire et ale.

For c~Ge or ¢-GaAs choosing abasis of bonding orbitals leads to the
consideration of a 4x4 matrix at each k-point, since there are only four
such orbitals per unit cell (see Chapter 6). For a CRN however the
mzirix swells to nxn where n is the number of bonds in the network. The
calculution is therefore parallel to that for the vibrational éxcitations
cof nuch a system. Our method of solving this particular eigenvalue

problem is dealt with in  the following section.
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y THE RECURSION METHOD

In this section we outline how we can calculate the density of
vibrational (or electronic) states appropiate to a bulk amorphous sclid
given only the coordinates of a cluster of a few hundred atoms. Lack
of periodicity means we cannot make use of reciprocal space techniques.
Vor 15 1t satisfactory just to calculate the distribution of states for
the whole cluster; with only 200-500 atoms, most lie on or near the
curface and would therefore give states completely untypical of the
bulk solid.

The philosophy of the solution to this dilemma is that the vibrational
betaviour of an atom in asystem wnere only short-range interactions
are important is determined by the local eanvironment. It is relatively
insensitive to the effects of more distant boundary conditions, as
illustrated by Kelly and Bullett (1976a) for the electronic case. This
phencmenon is apparent in other areas of solid-state physics, perhaps
mont notably the electronic structure of alloys (see Heine and Werire
1970 and refcrences therein). The vibrational behaviour is expressed
in terms of the local density of vibrational states (DOVS) at a chosen
aton i.e. the density of states of the whole cluster weighted by the
amplitude squared of each mode at the atom considered. This quantity
is related to the Green function which by its very nature is more sensitive
to the local environment than distant boundary conditions (see
Inglesfield 1972 and Kittel 1967). The local DOVS for several sites near
the centre of the cluster are averaged to obtain a DOVS characteristic
of the bulk solid. The resuvlts presented in subsequent chapters show
that averages over five and ten central sites are almost identical,
precluding further averaging. This also provides evidence that our

results are wot determined by special local features of the clusters

used,
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The partial local DOVS projected onto the displacement of atom i

in dirvection @ is evaluated from the identity

i 1
- _ L[ - :
N (WI)_———TF me\; Im LGiG,Lq (u;"i-\- S)J (1.4.1)
$20
wnere Gia o denotes the diagonal matrix element of the resolvent
51
L .
operator LQ~LU£] i lee.
- =~
Giw i (w0?) = <Lo&§LQ—wll] Lo<> (1.4.5)

(sce Heine and Weaire 1970). The total local DOVS is obtained from

thie relation
. wl = n; Wl)
e (e Z «{ (1.4.3)

2=d the averaged DOVS as a function of frequency is
S
N (w) = 2“’.,> e (wh) (1.4.4)
5 Lo
L

i S sites.
To evaluate the partial leccal DOVS nia(ug) of equation 1.4.7 we
employ the Recusion method of Haydock, Heine and Kelly (1972, 1975).

i continued fraction expansion is obtajued by the recursive definition

of a new basis of orthogonal vectors inf thus,
¥*
bu#l !n+‘§: (_[‘:)-_avhl) (nj - lg)"L"' \n‘l} (1-4.05)

with the initial conditions

0)=|iay 4 |-13=0, b _,=0 , by=1. Once

- 2 ;
in this tridiagonal form, Gia ia(u}) is expanded analytically to
)
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obtain an infinite continued fraction;
- (wo?) 0
. w?) = e— ;
' wr— a, — | b, | (1.4.6)

2 ) L
wh = ay = | by

The (an,bn) are evaluated from the orthonormality property of the new
basis. Computationally, once the blocked, sparse matrix D is evaluated
and stored, the calculation is very economical since only three vectors
are involved in the éecursion algorithm (equation 1.4.5) at any time.
Eaving calculated a finite number of coefficients, the partial
local DOVS of equation 1.4.1 is evaluated by a numerical method due
o Nex (1975). The (an,bn) of 1.4.6 also define the power moments of
] ﬁ(ug) and the recurrence relation for a set of polynomials orthogonal

5 g , 2 . "
with respect to nia(w ). Hence rigodrous bounds on integrals of the

A

J $FIN) n(N) LN

- 0

can be obtained by the method of Gaussian Quadrature witlh one node
fixed at AN as shown by Akhiezer (1965). If £(X) is a step function,
rigogrous bounds on the integrated DOVS are obtained. Taking the mean
of the bounds and differenkiating analytically or numerically produces
a smnooth DOVS with a minimum ofsspurious oscillations. Nex's work has
aino provided a numerical technigue for performing the sums of 1.4.3
and 1.4.4. Recalling that the set (an,bn) also defines the power
moments of nia(mz), the method canbe viewed as deriving the moments

for each set, summing them and thegﬁonverting back to a set representing

the resultant moments. Note that the final continued fraction has the
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same number of levels as each of the originél sets.

Calculating M levels of the continued fraction corresponds to
evaluating the effect of M successive neighbour environments on the
benaviour of the chosen atom (Haydock et al 1972). Since a finite
cluster defines a limited number of such environments , we might expect
spurious cluster-size effects in our results for large M, depending
on thne size of cluster used. This phenomenon is observed in our results,
so eacn application of the method i1s cosidered on its own merits in the
following chapters. 1In general, results obtained for larger M values
in a given cluster reveal greater resolution of spectral features. TFree-
atom boundary conditions are used in all applications.

Note that the whole of the above argument applies to electronic
structure calculations by virtue of the equivalence of the vibrational
and electronic secular equations 1.2.6 and 1.%.5. The suitability of
the Recursion methed for these two problems hinges on the overriding
importance of short-range interactions in determining the vibrational
and electronic behaviour in crystalline and amorphous semiconductors.

In succeeding chapters the ﬁécursion method is used to calculate
vibhrational and electronic spectra approé&ate to disordered solids. In
111 cases the computation has the same fundamental form, a flow-chart
of which ig presented in Appendik T<4s The computation times involved

are proportional to the size of cluster, the number of partial densities

coleulated and the length of the continued fraction expansions.
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1.5  PLAN OF THESIS

Having presented a background to the subject matter of this thesis,
we now outline the aims of our work.

In general we wanted to evaluate the effects of structural disorder
on the vibrational behaviour of elemental amorphous semiconductors by
the consideration of simple dynamical models. This motivated the work
presented in Chapters 2, 3 and 4, which deal with a-Ge, a-As and a-Se
respectively. More specifically, we worked towards a definitive
description of the behaviour of a-Ge using a very realistic dynamical
model., The results indicate how the structure and vibrational and
electronic properties are linked. Chapters 5 and 6 respectively deal
with the vibrational and electronic properties of a-Ge within very
realistic frameworks.

Throughout our work we have tried to interpret as much experimental
data as possible. Chapter 7 shows how Yy applying a simple dynamical
model of the type used for the amorphous semiconductors to the layer
compounds SnS2 and SnSe2 we can deduce which interatomic forces are
chiefly responsible for the experimentally observed anisotropies in the
optically-active zone-centre modes of these crystals.

Finally, in Chapter 8 we review the successes and fajlures of our

sapproach and suggest areas for further study.
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CHAPTER TWO AMORPHOUS GERMANIUM
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2.1 INTRODUCTION

The aim of this chapter is to present the results of calculations
of the vibrational spectra of three CRN models of a-Ge using the simplest
dynamical model that gives a reasonable description of the phonon
disoersion in c-Ge. The results show how the POVS are modified by both
topological disorder and bond-angle distortions. Interpreting them in
the light of available experimental data provides information on the
structural characteristics of a-Ge and a-GaAs.

Previcus theoretical work by Weaire and Alben (1972) has established
that the experimentally observed similarity of the DOVS for a-Ge and
c-(ie arises from the preservation of short-range order in the amophous
phase. No direct measurement of the full spectrum has yet been reported,
however indirect measurements of the DOVS of both a-Si and a-Ge, such
as Ruman and infra-red (IR) spectroscopy, reveal three features at
frecuencies corresponding to the transverse acoustic (TA); longitudinal
acoustic and optic (LA+LO) and transverse optic (TO) regions of the
crystalline spectra (for a review see Alben,Weaire,Smith and Brodsky
1975)e The Raman and IR data for a-Si and a-Ge are shown.in Figure 2.1
where they are compared with broadened crystalline spectra to illustrate
the similarity. Weaire and Alben considered the DOVS of a tetrahedrally
conrdinated homopolar solid of atom mass m with a nearest neighbour bond
ctretching force o only. They showed that n(w2) consists of &-functions
at veco and (8a/m) and a band betwecn them given by a tight-binding
clveuronic s-state Hamiltonian, as illutrated in Figure 2.2b. Only
the latter part depends on the ring statistics of the system. Each

feature contains one state per atom, the §-functions corresponding to

flat TA and TC bands. Distortions from perfect tetrahedral symmetry
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Fizure 2.7 Experimental TR and Raman spectra of a-3i and a-Ge (after

Alben et al 1975). In each case the cxperimental curves

are compared with broadcned crystalline phonon spectra to

illustrate the similarities.




broaden the uplwr'é—function ornlys including bond-bending forces broadens
hoth, the lower moving to higher frequency, as shown in Figure 2.2c.

To cce now the lower §~function remains in the agsence of perfect
tetrahedral coordination, note that demanding bond lengths to be constant
(giving & zero-frequency mecde) places 2N constraints (there are two

bonds per atom) on 3N degrees of freedom; thus therc are always 3N-2N=N
such modes i.e. one per atom. We would expect the upper &-function to
be broadened by angular distortions since the forces acting on each

atom due to its nearest neighbours will have varying orientations in a
CRN whereas they are always parallel in a perfeet crystal. From Weaire
znd Albens work, therefore, we expect angular distortions to broaden the

TO feature of c-Ge and the effects of topological disorder to be evident

in the LA+LO region, by virtue of its correspondence to the electronic

The CRN models used in the caleculations all give good agreement
with the experimental RDF of a-Ge. Some relevant structural characteristics
are sunmarised in Table 2,713 The models are as follows.

A The 'Steinhardt' model (Steinhardt, Alben and Weaire 1974) contains
boih cdd- and even-membered rings of bonds and has been energy relaxed
te minimise the elastic strain in distorted bond lengths and angles,
uning Keating's (1966) strain encrgy expression.

B The 'Connell-Temkin' model (Connell and Temkin 1974), containing
only even rin;s, was constructed to simulate a plausible structure of
cmerpnous ITI-V and II-VI compounds, as discussed in Section 1.7. This
model is not enerpy relaxed but the bond lengths are all constrained to
lie within limits appropiate to a-Ge.

Ce Trie 'Polk’ model (Duffy, Boudreaux and Polk 1974) has very similar

structural characteristics to the Steinhardt model and has been similarly

laxede.
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i Number of Ary ! Rings per atom
(R ‘ , ry (degrees) - ;
atoms 5 6 \
L
| Steinhardt 201 0.008 | 6.66 0.39 0.89 05
| Connell-Temkin 238 v0.010 ? 10.71 0 2.30
| |
Polk | 519 0.024 ; 6.87 0.38 0.93 .04
| |
| ] |
L ? o | ‘ n.

3
[§Y)
o’
=
¢
n

Relsvant structural charzcteristics of the CRI

s

used 1n our

calculsations.
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Since only these three CRN's were available té us at the time of
this investipgation, we also performed caleculations for clusters of 27
unit cells of the BC-8 and ST-12 high pressure crystalline forms of Si
and Ge. The detailed structures of these phases are discussed by
Kneper and Richards (1964). We note only that they posses long-range
order, containing 16 and 12 atoms per unit cell respectively, yet both
display boad length and angle distortionse. Since the BC-8 structure
conktains only even rings and the ST-12 structure contains both odd and
even riags, they present a convenient 'half-way house' between c-Ge
and a-Ge and therefore aid our understanding of how structural
properties affect the form of the DOVS.

We note at this point the correspendence between this work and
ths~ reported by Kelly and Bullett (1976a) and by Kelly (1975) on the
electronic valence band structure of a-Si (see also Chapter 6). The
natn conclusion of their work is that the form of the electronic
spectrum is determined orincipally by the topological structure. In
contrast, our DOVS results show dcpend%h?c oi both angular distortions
and topological disorder.

In the next section we deriva the phonon dispersion and DOVS for
c-Cc by both tne reciprocal space and Recursion methods. Alter comparing

the recults of the two approaches, we go on to consider the results of

cur CRIN calculations and the structure of a-Ge.
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2.2 CRYSTALLINE GERMANIUM
The simplest rigid-ion force constant model which describes the
‘ principal features of the phonon dispersion in c¢-Ge is that originally
. dus to Born (1914). This model includes central and non-central inter-
actions vetween nearest neighbour atoms only and has been widely used
in the study of vibrations in a-Ge (see for example Thorpe 1973, 1974,
AMben et al 1975, Chen, Vetelino and Mitra 1975 and Beeman and Alben
1977) .

The potential between atoms 1 and j is written as
2
1 - w. = u-
o (x ?) [ = -a] (2.2.1)

where 1. uj are the displacements of i, j and rij is a unit vector
counecting them. Proceeding as described in Sectien 1.2, the force

censtant tensor for two atoms on the x-axis is

—(m+lﬁ) O ()
&, = O ~(«-8) 2 (2.242)
~ O (%P
o0 («-8) |

illustrating that the central force constant is (a+26) and the non-
certral one is (a-B). Following Cochran (1956), we derive the dynamical

matrix for unit mass, D;

A O O | —4aP 4B Q ‘fﬁ R
|
o L o o I 4pQ ~ Lo P 4B S
o = ») O Lot | 4PR LPS -G | (2.2.3)
- ' L O O
Ccnnplex
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LOriJL{gLLtE ‘
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Q= Su 55 Cat i Cxly S, Co+ cos (hua) pbc
R: 6‘)((_.::} Sé*LCXSQCt

(:7 = C-*. 5} 6?__1» L E))‘ Cv) C.z

slving the secular equation for k=(k,0,0) gives the dispersion relations

€
o
W

P o+ B, gEe. 3T70 )
4—-0& 1\: 4—(_ A C.X, *{3 SJ(, ] (2.2.4&1)

“or transverse modes (each doubly-degenerate) and

for longitudinel modes (each singly-degenerate). For zero non-central

forces a=8 and equation 2.2.4a becomes

wh= Lot Lo

l

2y
” - [ . .
i.e0e flat bands at w =0 and 8a, as shown by Weaire and Alben. TFigure
2.2 shows the FCC Brillouin zone and the dispersion curves and DOVS for
the cases of o=f i.e. central forces only and B/a=%/4 which lies in the
/
raage of velues appropiate to c¢-Ge. The DOVS were obtained by integration
over Lhe zone by the method of Gilat and Rsubenheimer (1966). The
dipersion curves and DOVS for B/a=3%/4 reproduce the peneral behaviour
I g
found in experiments on c¢-Ge - seze Chapter 5.
We now consider a comparison of these results with those of the
Recursion methode The input to this calculation is a set of cluster

coordinates from which the dynamical maltrix is derived. The force

constant tensor (¢, . for a given vair of atoms is given by the unitary
P4 5 !




Pigure 2.2 a) The FCC Brillouin zone.
b) Dispersion curves and DOVS for c-Ge with central

forces only.
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¢j Diupersion curves and DOVS for c-Ge with B/a=3%/4.
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transformation

o= = (2.2.5)

x

re @, is given by 2.2.2 and R rotates the vector (1,0,0) to an

orientation parallel to the interatomic unit vector ﬁij of the CRN.

Thus, variations in the force constants due to bond length and angle
variations are omitted but the characteristic connectivitv and imperfect
tetecahedral coordination of the clusier are included. WYe continue to
work within the harmonic approximation.
Tipgnre 2.% shows the results of the calculation for a Z4-atom
cluster of the diamond-cubic =t -ucture with B/a=%/4, for different
lenrths of the continued fraction expansion. As expected, the resolution
increases with the number of levels, until at 20 all important features
e adeguately resolved (see the comparison plot of Figure 2.6). We
henitate to increase the number of levels further since we have already
ircluded environments of the central atoms well outside the %44 -atom
cluster. Furither cdbculation will produce spurious peaks in the spectrum
(N, Private communication). The agreement of Figure 2.6 is very good
'pt. in the region of ecritical points, as exvected from the use of
svch a smell cluster. This result stresses the importance of the local
rivonment in determining the form of the DOVS. The agreement could of

conrse be improved by the use of a larger cluctor, but the present size

(&)

was chosen to facilitate comparison with the CRN results.
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Figure 2.3 Vibrational spectra for a 344-ztom diamond-cubic structure cluster calculated using the

Recursion method; the different plots illustrate the increased resolution obtained with

more levels of the contirnued fraction expansion.
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As a prelude to presenting the results for the case of B/a=3/4,
we consider the DOVS in the limit of central forces only. These are
chown in Figure 2.4 for the three CRN's of Table 2.1, wherc the zero-
frequency §-functions have been omitted. The frequency scale is in
nrits of the maximum crystalline frequency. Each spectrum has been
calculated to 20 levels of the continued fraction, averaged over 10
contral sites of the network. These results illustrate the differences
arising from structural variations in the manner predicted by Weaire and
Albene.

Tho retention (and even widening) of the dip in the LA+LO-like

ion of the Connell-Temkin model result mirrors the effect found by

Kee | Ly (1975) and Alben, von Heimendahl, Galison and Long (1975) in their

¢alculations of the s-band electronic structure for this CRN. The dip

¢~ an even-ringed structure arises from the symmetry of the eigenvalues

of the s-~state Hamiltonian for an isolated ring about a central value
encrgy (or frequency squared), as discussed originally by Joannopoulos

{ Conen {1973). The eigenvalues are

2T
En: -2h cos ("“) n= 04, .., V-1 (2.3.1)
whare h is tne necarest-neighbour s-state hopping integral. Interactions
betwenn such ring states in the bulk produce broadening but the minimum
is relaineds If odd-rings are precent, the eigenvalue distribution is
not split in this way and the dip is siguificantly (but not totally)
fitled in, as seen for the Steinbardd and Polk modelse.

The broadening of the TO-like feature is greater for the Connell-

T

P

mlein model than either the Steinhardt or Polk CRN's by virtue of its

Larger rms bond angle distortion. This is stressed by the bond angle

u

R R R R—————



25

STEINHARDT CRN
(201 atoms)

§
{
I
|
|
|
|
1
|

"
0

CONNELL-TEMKIN CRN

(238 atoms)

|

|

|

|

t

i |

(@] 1
POLK CRN

|

(519 atoms) |

|

|

|

O ke 1

FREQUENCY (WiWmgx)

Fipure 2.4 DOVS for the CRN's of Table 2.1 calculated with central forces
only; the zero-frequency §-functions have been omitted.
A) & 200 ' B) J200
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Fipure 2.5 Boad angle distortion histograms for the Steinhardt and

Connell-~Temkin models.




o

i

distortion histopgrams of Figure 2.5. Note that the differences between

the Steinhardt and Polk model DOVS are undoubtedly due to the different

sizes of the models since they are very similar in other respects (see

Table 2.1). For a given number of levels of the continued fraction

ion, there are bound to be different degrees of convergence for
clusters of very different sizese.

i Consider now the DOVS for the case of B/a=3/4 shown in Figure 2.6.

I The results for c-Ge calculated by both Recursion method and Brillouin

| . . 3

: zonz integration (the broken line) are repeated for comparison with those

| Tor the BC-8 and ST-12 structures and the Steinhardt, Connell Temkin

l and Polk CRN's. The BC-8 and ST-12 results are averages over the unit
cells whereas the CRN spectra are aurages over 10 central sites; averages

over 5 and 10 sites were indistinguishable for each of the CRN's. All
spectra are calculated from 20 levels of the continued fraction expan-
sion.
Iach of the CRN spectra reveal the saime basic distribution of modes
s the ecrystalline spectrum, as a result of the similar short-range
ordere  They do however differ in detail in ways reflectiné their
structural differcnces. The BC-8 and ST-12 results display sharp features

Aaricing {rom long-range order, which are typical of crystalline vibrational

spoclrae  They are however usefnl in interpreting the CRMN results, as

shown belowe

Strictly; the LA+LO-1like regions of the spectra can no longer be
discussed in terms of the Weaire-Alben results The sharp LA and LO
featurcs of the crystalline DOVS are washed out by disorder but a small
\ LA+L0O~1like dip can still be detected in the Steinhardt and Pelk model
1 results,  The TA-like and TO-1like repgions of the spectra are the most
interesting areas of the CRN resultse.

The TA-like peaks of the BC-8 and Connell-Temkin results are

—_—



CTipure 2.6  DOVS for the diamond-cubic, BC-8 and S7T-12 forms of Ge and the
CRN's of Table 2.1 calculated using the Recursion method; the

diamond~cubic result is compared with that from Brillcuin zone

integration (the broken line).
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sticeably symmetric whereas the Steinhardt, Polk and ST-12 spectra

di~play broaderasymmetric such peaks. Thus the TA-like peak shape
/5 a clear distinction between models with only even rings and those

cortaining both odd and even rings. The crystalline TA peak is broad
ard flat due toven Hove singularities arising from the X and L points
of the FCC zone. On introducing disorder but retaining only even rings,
the peak becomes symmetric, whereas also including odd rings ian the
structure restores some asymmetry.

Tne stractures containing odd-rings of bonds display TO-like peaks
with comparatively steep high fﬁﬁuency edges. The TO-like peak of the
Connell-Terkin model result does not reveal this behaviour:; it does
however peak at a lower frequency than in the Steinhardt or Polk results

wnd is broad enough to envelope the crystalline zone-centre mcde

{requency. This observation of a steeper nigh-frequency side to the
T-1ik2 peak of the DOVS for systems with larger concentrations of cdd
rings is corroborated by Thorpe's (1974) results for isolated 5- and
G-membered rings, obtained using a self-consistent cluster calculation.

Our results are also in good agreement with those of Beeman and Alben

(1

)77)
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2.4 STRUCTURAL INTERPRETATIONS
The experimental Raman and IR spectra of a-5i and a-Ge shown in.

Figure 2.1 are now tentatively interpreted in the light of the results

of our DOVS calculations. Our conclusions regarding the typical structures

of a-Ce and a-GalAs are in general agreement with those reached by other

necthods.  The Raman and IR spectra of disordered solids are related to

the DOVS via fruquency-depenﬂﬁnt matrix elements (see Section 5.4 and

Alven et al 1975) and the situation is further complicated by the

inevitable variations in force constants in the real materials. Never-

theless, it appears that mearningful comparisons can still be made. In

cenoral, Raman spectra are less complicated by matrix element effects

thorn. [R spectra but both indicate that the TA-like features are asymmetric
d Lne TO-like features peak at about 90% of the zone-centre frequency

but also envelope that frequency in a-Si and a-Ge.

The results of Figure 2.6 therefore suggest that a-Ge contains
odd-membered rings but fewer in number than the Polk or Steinhardt models,

an rms bond angle distortion of 10° or more. The concentration of
odd-membered rings would have to be reduced not only to ensure a larger
cond angle distortion but also to contribute to the absence of a steep

irch-frequency side to the TO-like peak.

These conclusions are in géuwral agreement with those derived from
both structural and electronic conciderations. Connell and Temkin (1974)
for example, claimed that a linear combination of the RDF's of theirs
ind the Polk model would fit the experimental RDF bétter than either
model alone. Kelly and Bullett (1676a) also claim that the topological
structure of a-Ge is that of the Polk model but with fewer odd rings
(see Chapter 6). The rms bond angle distortion of about 10° is also

consistent with the RDF analysis of Shevchilk and Paul (1972).

Since tibo shape of the TA-like features of the calculated spectra
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clzarly distinguisr structures with and without odd rings, it is
interesting to compare the data for a-Ge with the Raman spectrum of a-GaAs
presented by Lannin (1974). The TA-like feature of the a-GaAs result

is symmetsoic and the TO-like peak appears to be broader than the corres-

ponding festure of the a-Ge Raman spectrum. We therefore tentatively

rsost that a-GaAs contains very few odd-membered rings which is

conrcistent with the valence band photoemission results of Shevchik et al
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2.5 DISCUSSION

The results presented above ill@ﬁrate the usefullnes of our apprcach
for the calculation of vibrational spectra approﬁ&ate to structural
models of disordered solids. The applicability of the method is tested
further in subsequent chapters using different structural and dynamical
modelse As pointed out in Section 2.3, however, there is some danger
in comparing the spectra calculated to the same accuracy using clusters
of very different sizes. 1In all subsequent applications therefore
¢clusters of very similar sizes have been considered.

Since no force constant variations were included in our calculations
and pood general agreement with the available experimental data was
obtained,; it appears that such effects are small in a-Ge. We might
exnect this since the nearest neighbour central force dominates the
dynamics and bond lengths are offectively unchanged in the amorphous
vhese. Angular distortions, however, can be significant so it seems
thot force constants which are not expected to vary greatly in magnitude
must be chosen if we wish to continue with this approach. This is to be
proferred because of the difficulties of developing a simple yet physical
meLhod of estimating force constants as functions of bond lengths etce.

Tt also appears thal anharmonic effects are not of great importance in
a-CGes The validity of our apprdach is tested further in the following

2pters on a-As and a-Se.




CHAPTER THREE AMORPHOUS ARSENIC

3e1 TINTRODUCTION

In this chapter the results of calculations of the vibrational spectra
of a single layer of the rhombohedral crystalline As structure and a
three-fold coordinated CRN model of the structure of a-As are presented.
In this case bond stretching and bending forces as defined by Keating
(1966) are used. Comparing the two spectra stresses that the three-
dimensional CRN is based on the buckling of a single two-dimensional layer
of pyramidally-bonded atoms. Comparing the network result with experimental
data for a-As suggests that it is a good model of the typical structure of
a~-As in all but some topological aspects.

As for a-Ge, the typical structure of a-As beyond second neighbours
is not yet known with certainty. 1In a-Ge this would be specified by the
dihedral angle* distribution, but in a-As ( as in a-Se ) the situation is
further complicated by the existence of two types of near-neighbours in
the corresponding crystalline phase - see Figure 3.7a. The unit cell
of rhombohedral As can be viewed as a distorted cube; in addition to three
first neighbours in the same layer, each atom has three second neighbours
ir. the adjacent layer, as shown in Figure 3.7. The RDF of a-As, as
measured by Krebs and Steffen (1964), reveals a first neighbour distance
and coordination number unchanged from that of the crystal but a drastic
reduction in the number of second ncighbours. The changes are consistent
with o loss of Inter-layer correlations and an rms bond angle deviation
of about 10°. Further evidence in line with this interpretation is

revealed in the optical properties of the two phases. Rhowmbohedral As

i.e. the angle between second neighbour bonds when projected onto a

plane perpendicular to their common first neighbour bond.

_—
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is semi-meétallic whereas a-As is a semiconductor with a gap of about

1.2 eVy indicating a lower coordination in the amorphous form. A
detailed discussion of these and other properties of a-As has been given
by Greaves (1975).

On the basis of the experimental data, Greaves and Davis (1974)
modelled the structure of a-As with a S3%%-atom three-fold coordinated
CRN with an rms bond angle distortion from the crystalline value of 97.20
of about 10°. The model can be viewed as a buckled single layer of
rhombohedral As (see Figure %.7b), the inter-layer bonds being neglected
avart from ensuring that non-bonded neighbours are not unrealisticaily
close. During construction the dihedral angles were allowed to vary
without restriction to achieve complete connectivity. As a result,
although all interior atoms are fully coordinated, the topology of the model
is characterised by cavern-like voids and atoms connected into a large
variety of oda and even membered rings. The experimentally observed
density deficit of about 12% compared to the rhombohedral form is well
reproduced by the model which gives good agreement with the experimental
RDI'. Elliot and Davis (1976) have recently improved the RDF agreement by
energy relaxation of the CRN using the same energy expression used for
the vibrational calculations presented below - see Keating (1966).

We are fortunate in havinglthe experimentally determined one-phonon
density of states for a-As, deduced from their inelastic neutron
scattering data by Leadbetter, Smith and Seyfert (1976). The spectrum
is shown in Figure 3%.2. The Raman and IR spectra of a-As have been measured
by Lannin (1976) and Lucovsky and Knights (1975) respectively. Lucovsky
and Knights showed that the general form of the DOVS can be obtained

by broadening the normal mode spectrum of a pyramidal As, molecule,

4

calculated using bond stretching and bending force constants. Their

argument illustrates the division into regions of bond bending (low
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Fipure 3.2
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a) The near-neighbour environment in rhombohedral As.

b) The structure of a single layer of rhombohedral As.
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frequency) and stretching (high frequency) motions seen in Figure 3.2
and supports the modelling approach of Greaves and Davis. As for a-5i
and a-Ge, the Raman and IR spectra of a-As appear to be related to the
DOVS by smoothly varying matrix elements.

Comparisons of the results of electronic structure calculations
with X-ray and ultraviolet photoelectron spectra (XPS/UPS) have already
provided information on the structure of a-As. Robertson (1975b) has
interpreted the filling of the dip in the valence s-states on going from
rhombohed;al to amorphous As as evidence for odd membered rings in the
latter. Since the bond angles are close to 900 we expect little s-p
hybridisation so the consideration of pure s-states is valid. Thus in the
single-layer approximation we expect the isolated ring states arpument of
Section 2.3 to apply. Kelly and Bullett (1976b) have reproduced the
qualitative differences between the crystalline and amorphous XPS data
using the Greaves-Davis CRN and Slater-Koster (1954) hopping integrals
calculated from first principles. They interpret the differences as
arising from the removal of inter-layer bonding giving a local two-
dimensional character to the a-As electron density of states.

In the next section we describe our calculations and present our

results; which are subsequently discussed in respect of the structure

of a-4s.
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%.2  CALCULATIONS AND RESULTS
Following Keating, the potential energy of the solid under elastic

deformation is written

(3.2.1)

whers X_ . is a unit vector between atoms 1 and i, u

14 is the digplacement

1
of 1 and the summations are over all atoms 1 and their nearest neighbours
i and j. Note that o and B are not the same quantities as defined in
Chapter 71, they are bond stretching and bending force constants defined

in a manner ensuring their translational and rotational invariance.

Proceeding as usual the force constant tensors are

(f‘ (Q} 6) = -8 XHO \/ﬁﬁ

_ﬂ[Z (Xﬂafx,,,,,v)\/,m,\, *Z (yaa'-yeew )Xoa,v

(%3.2.23)

AN BA/

for first neighbours A, B and
¢ @ (A,@NJ = ﬁxm Yoon (3.2.2b)

far second neipghbours AyBN. Here X =(X B) where A and B are

AB “TAB’ YAB' ZA

first neighbours and AN and BN denote their other first neighbours
respectively. Note that this scheme results in each atom interacting

with three first neighbours and six second neighbours in a three-fold

_—
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coordinated systenma
A single layer of the rhombohedral As structure constitutes a planar
hexagonal lattice with two atoms per primitive cell, as shown in Figure

>

%s%a. The translation vectors are

L (mes)  be(mee) oo
where [F:= sin (é @)
B= Fsin(16)

ks E L3 -
( = [1— %FSL“I<%:@>] = Lq?er thickness (3.2.4)
©® is the pyramidal bond angle (97.20 in the crystal layer) and the
bondlength 1s taken as the unit of length. The reciprocal lattice vectors

are
56 J (3.2.5)

These generate the Brillouin zone shown in Figure 3%.3b. The 6x6
dynamical matrix deduced from the structure and equations 3.2.2 as
outlined in Section 1.21s listed in Appendix 3.2.

The DOVS histogram calculated by sampling 2600 uniformly distributed
points in the irreducible zone bounded by the path M-M-K-{'is shown in

‘ Fipure 3.4 (the first frame). The ratio of force constants is B/o=1,

which lies in the range of values appropiate to this simplified model.
The peneral form of the spectrum derives from the two-dimensional
character of the system, the division into equally weighted bands of
acoustic ard optic modes being obvious.

The dynamical matrix used in the Recursion calculation for a given
set of coordinates is constructed using equatias 3.2.2. For a cluster

wvith bond length and angle distortions, unchanging force constants are

S S—
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Figure 3.3 a)

b)

The hexagonal lattice of a single layer of rhombohedral

As; The basis atoms are marked 1 and 2.
The corresponding Brillouin zonej the irreducible 1/12th

of the zone is bounded by the path [-K-M-[".
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asiumed. The result of the.method applied to a 496—atom cluster of the
sirzle layer structure (Figure %.1b) is shown in Figure 3.4 for
comparison with the histogram result. The number of Ilevels of the
continued fraction is 15. This was found to give adequate resolution
of the bending and stretching mode bands and the gap between them.

The DCVS approﬁaate to the Greaves-Davis CRN are also shown in
Figure %.4 for averages over one, five and ten central sites of the network.
The differences between the averages for five and ten sites are small
but still noticeably greater than those obtained for the CRN models
discussed in Chapter 2. We attribute this to the greater variation in
local environment in the more cavernous three-fold coordinated CRN. The
overall distribution of modes in the ten-site average is in good agreement
with the experimental DOVS of Figure 3.2. We note the following points;
15 The lower frequency band has been reshaped towards the twin-peaked
form of Figure 3.2.
2. The band gap has been filled with states mainly derived from the
muich-broadened upper band; the ratio of peak heights is now very similar
to that of the experimental data.

50 The upper band displays a significantly steeper high-frequency edge

than the corresponding feature of the experimental result.
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Ficure 3.4 Vibrational spectra for a single layer of rhombohedral As
and the Greaves-Davis CRN model of a-As calculated using the
Recursion method; the histogram is the reciprocal space result

for the single layer which has a different normalisation for’

clarity.
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.5 DISCUSSION

An important feature of the results of Figure 3.4 is an illustration
of the way in which the space-filling Greaves-Davis CRN has been derived
from the buckling of a single two-dimensional layer. It is often difficult
for anyone who has not seen the model to appreciate this. The spectra
show how the single-layer DOVS has been transformed into a form giving
pood apreement with the data for bulk a-As, without the introduction of
lonpger-range forces. The neglect of inter-layer interactions is consistent
with the original approach of Greaves and Davis and it appears that a
significantly better description of the lattice dynamics of rhombohedral
As is neccessary before a more realistic calculation for a-As becomes either
feasible or worthwhile. Ve are, however, in the frustrating position of
having data on the DOVS of a-As but not on the phonon dispersion in
rhombohedral As.

Consider now the structural implications of a comparison of the
experimentally determined DOVS of a-As with the Recursion result for the
Greaves-Davis CRN. To evaluate within our simple model the influence of
rnetworlk topology on the vibrational spectrum, we can call upon our
cxperience with four-fold coordinated CRN's (see Chapter 2). Since the
nibrer-frequency side of a peak of bond stretching modes appears to be
stecper for models with more odd rings of bonds, the results suggest that
the Greaves-Davis model contains too many odd rings. Apart from this,
the quality of the agreement suggests it to be an accurate representation
of the atomic arrangements in a-As.

A possible cause of this odd ring excess may derive from the free
rotations of the dihedral angles allowed during the construction process.

4 large body of evidence suggests that there is a preferred magnitude of
the dihnedral angle along chain-molecular units in a-Se and a-Te (see

Chapter 4). Such a situatioun is also likely in a-A4s, involving a

_—‘
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proference for the staggered configuration, which is typical of the
rhombohedral structure. Staggered dihedral angles are present in the
chair-like 6-fold rings of Figure 3.1b whereas eclipsed angles are more
typical of 5-fold rings of bonds. Such a preference may well influence
the ring statistics of the real system. The neglected inter-layer bonds

also place constraints on the atomic positions, but it is difficult to

see how this relates directly to the intra-layer topology.




CHAPTER FOUR AMORPHOUS. SELENIUM

4.1 INTRODUCTION

In this chapter the results of calculations of the vibrational spectra
of models approéiate to the structures of a-Se and a-Te are presented. An
explag¢nation for the excess low-temperature specific heat observed in
amorphous Se compared to trigonal Se is also given.

Crytalline Se occurs in a trigonal form, consisting of spiral chains
sce Figure 4.7), and two monoclinic forms, consisting of &-membered rings
packed in different ways. Crystalline Te occurs only in the the trigonal
form. Both chains and rings have bond angles (8) and dihedral angles ()
nf 1050 and 102° respectively (see Figure 4.2); the sign of # is constant
along a chain but alternates around a ring. The RDF of a-Se (Kaplow, Rowe
and Averbach 1968) indicates that the bondlength is as in the more molecular
monoclinic forms and the bond angles have a very small disfribution about
the crystalline value; further information cannot be deduced uniquely.
Long, Galison, Alben and Connell (1976) have modelled the structure of
a-5Se/a-Te with convoluted two-fold coordinated chains of atoms. No rings
or broken chains are present in the body of the model, which was energy-
relaxed with Van der Waals forces acting between the chains. The model
pives reasonable agreement with the RDF, exhibiting a random distribution
in #. On the other hand, Richter (1972) claims good RDF agreement with
flat zig-zag chains, thus advocating a fixed value of 4 at 180° in a-Se.

Structural information on a-Se has also been inferred from experimental
UPS/XPS data. Joannopoulos, Schluter and Cohen (1975) infer an increased
inter-chain distance and the presence of 6-fold rings from théir Empirical
Pseudapotential Method (EPM) calculations of the electronic structure of
triponal Se and Te. Shevchik (1975) claims a decrease in the average

e}
dihedral angle from 1050 to that for 6-fold rings i.e. about 78 from

-* »
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Firure 4.1 The spiral chain structure of trigonal Se and Te.

Figure 4.2  Bond angle 8 (a) and dihedral angle # (b) for a chain

or ring of Se atoms.
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tre rezults of tight-binding calculations. Robertéon (1975a, 1976) has
shown that the reversal in magnitude of two p-bonding peaks in the
electronic spectrum of amorphous compared to trigonal Se/Te is best
explained by the presence of dihedral angles of alternating or random signe.
He rules out large variations in the magnitude of 4 on the basis of a
mirimum in the rotational energy curve E(g) at the crystalline value of
102°. Even in the case of alternating g this does not necessarily produce
closed rings of bonds because of bond angle distortions. The calculations
of Bullett (1976) are in excellent agreement with these conclusions.

Brodsky, Gambino, Smith and Yacoby (1972) measured the Raman spectrum
of a-Te and interpreted their results in terms of disordered chains since
only trigonal Te is stable. They ascribed the differences between the
a-Te and c-Te Raman spectra to increased chain separations in the amorphous
phase, in agreement with the observed density deficit. The same applies to
tha TR and Raman spectra of a-Se presented by Lucovsky (197%) and shown
in Figure 4.%. Beeman and Alben (1977) have used the structural model of
Long et al (1976) to calculate the DOVS and Raman and IR spectra approﬁ&ate
to a-Se. Their IR result does not reproduce the peak at about 1200m“q;
our regsults atfribute this feature to the existence of a constant magnitude
of ¢ in a-Se and a-Te.

The 'excess specific heat' of amorphous compared to trigonal Se at
tcnaeratures of about 10K observed by Berton and Lasjaunais (1973%) is
typical of the effect found in many disordered solids (a fuller discussion
of 'excess specific heat' is given in Chapter 5). - The results of model
ciiculations show qualitatively that this is a result of increased inter-
molecular scparations in the amorphous phase.

In the next section a suitable dynamical model for trigonal Se and

Te is developed. The model is then applied to the DOVS of a-Se and a-Te.

_—
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4.2  DYNAMICAL MODEL

Phonon frequencies in trigonal Se and Te along several high-symmetry
directions of the hexagoral Brillouin zone have been measured by neutron
scattering techniques (Teuchert, Geick, Landwehr, Wendel and Weber 1975
and Powell and Martel 1975), yet no accurate model of the lattice dynamics
has been developed. Valence force field models are as successful as any
i deseribing the general form of the dispersion but not the detailed
dilferences between Se and Te (see Martin, Lucovsky and Helliwell 1976).
We uge Yrore Lthe simplest such model that ensures no zero-frequency modes
awny from the zone-centre; in the notation of Section 3.2, the Keating

stoain ciergy expression is

V-1) 'Y[‘*-“Z Bters)] 6 R tom) e By )]
L

L

S ) ' (4.2.1)
+—[er Ez(_t;"(g_t-o_&l,’)g + 62— %&“'(5‘_5)')+)iL)".(‘;t“‘_“‘)2

where the summations are now over all atoms 1, their two intra-chain
neipghbours i, J and their four inter-chain neighbours 1', j' (see Figure
1.1). «,B and vy, are intra- and inter-chain stretching and bending
force constants respectively. The same force & is used for the three
inter-chain bond angles that are close to 900; the force for the inter-
chalin angle close to 180° is omitted. The corresponding force constant
tercors have the same form as in equation 3.2.2.

The trigonal structure of Se has three atoms per unit cell. The

primitive translation vectors are

#J{o) t,= (0,0, 6) (4.2.2)

where a and ¢ are defined in Figure 4.1. The reciprocal lattice vectors
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o) %L:l—"-[o,;f:_o> 4r7 ER (o,o,;) (4.2.3)

Tnese vectors generate the Brillouin zone shown in Figure 4.4. The 9x9

dynamical matrix for computing the phonon frequencies at any point in this

zoae 1s listed in Appendix 4.2.

O

The force constants obtained by least-squares fitting the experimental
prionon frequericies at the [M,A,H and K points of Se and Te are shown in Table

4.7. Also presented are the atom masses and the cell dimensions (from

(3

Martin et al 1976). The force constants indicate strawer inter-chain
&8

to the dispersion curves is as

&

forces in Te than See Neither fit
accurate as that obtained by Martin et al but our simple model describes

thie pgeneral features well. Figure 4.5 illustrates the dispersion along

[‘-A-I~K~[" for Se; the results for Te differ only in that the bands are
2loser which can be attributed to the stronger inter-chain forces in our

simple model. The vibrational spectra obtained with this model for Se

ard Te are considered in Section 4.4.




43

Mipure 4.4 The hexagonal Brillouin zone of the trigonal Se/Te

structure.
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Ficure 4.5 Phonon dispersion along some symmetry directions of the

trigonal Se Brillouin zone calculated using the force constant

model described in the texte.




constants for trigonal Se and Te.

~
Se Te
a 4.366 x 10710 4457 x 10710
b 0.984 x 10710 1,174 x 10710
¢ 495k x 10710 5.929 x 10710
-10 -10 |
r, 2.373 x 10 2.835 x 10
Fy 3.436 x 10719 3,495 x 10710 |
n 1.31115 x 10722 kg 2.11884 x 10727 kg |
o 0.156 % 10° Nm_ | 066k x 10" ™!
R 0.142 x 10° 0.8k45 x 10h «é
|
y 0.151 x 10" i 0.124 x 10" |
$ 0.159 x 10° . 0.939 x 103 |
|
Table 4.1 Structural parameters and fitted force

£%)

O




4.3 ISOLATED CHATNS
In this section the DOVS of a series of isolated chains of atoms with
constant bond lengths and angles but varying dihedral angles are presented.
These calculations were performed in order to determine whether the
vibrational data for a-Se are consistent with Robertson's model of the
structure, From Table 4.1, the force constant ratio B/u=1 is appropiate
to botnh Se and Te for the purposes of model calculations; y and $ are both
zero. The spectra are calculated by the Recursion method for a series
of S1-atom chains,; accurate to 20 levels of the continued fraction.
To test our methody in Figure 4.6 we compare the Recursion result
for a chain with constant dihedral angle ﬁ=1020 with a histogram obtained
vy sampling 1000 points along the zone corresponding to an infinite chain
of thne trigonal crystal. The agreement is very goods particularly in respect
of the zero-frequency 6-function, the band gap and the characteristic one-
dimensional van Hove sbpgularities at the extrema of the upper band. The
&-Tunction, lower band and upper band correspond to chain twisting,
bending and stretching modes respectively; each feature being of equal
veight.
Results for chains of different dihedrallangle distributions are
shown in Figure 4.7 where the g -independant ¢-functions have been omitted.
Iach spectrum reveals the same Easic form as the 'crystalline result due
to invariant bond lengths and angles, however there is a notable #-
dependance of the peak at the top of the lower-frequency band (w/w

max
=0.5). In (a) the 'crystalline' result is repeatéa; (b) is the DOVS
obtained by averaging over 5 atoms each from the centres of 5 chains with
the random distribution —180%;¢<&1800 (25 atoms in all); (c) and (d)
correspond to chains with @ constant at 180° (Richter 1972) and 78°

(Shevechik 1975) respectively; (e) is the result from averaging over 5

atoms each from 3 chains (15 atoms in all) with g at the crystalline

_—




1
re

Poa)
|
Eﬁa‘i‘wistmg modes Stretching
p} modes |
1R
|
if |
| - |
I Bending g
| |
i ' 2S5
‘i 1 mOd{,‘,)) i
| | |
!
I
e ‘

g
>
S
e —

-
s

™
w
SRR
movtsmammas
-

{ | o
| | | |
| | |

j{ Vi B LW

|

i P,

—_— j ' I

O Q2 04 06 08 1.0
FREQUENCY (W/W gy )

Pipure 4.6 Comparison of the DOVS of an isclated chain of Se calculated

by (a) the Recursion method and (b) sampling along the zone.

D




22

ik

gnitude but random in sign, as suggested by Robe%tson.

These results show a clear correlation between the occurence of a
peale at the upper edge of the lower band and a constant magnitude of the
dihedral angle along the chains. The peak is much less sensitive to
randomisation in the sign of # than the magnitude. It was also found that
resnlt (a) of Figure 4.7 is identical with that obtained for chains with
# normally distributed about 102° with a standsrd deviation of up to about

10°

: significantly larger deviations produce smoothing as in result (b).
The results of Figure 4.7 therefore indicate that the featurces at
L -1, . ; .

about 120cm in the IR and Raman spectra of Figure 4.5 are dus to a

constant magnitude of g in a-Se. In comparing our results with the

cunerimental data, we must remember that the data refer to a real solid
whereas the calculations were performed for isolated chains. The effects

0. inter-chain interactions on the DOVS are two-fold. ¥Firstly, the zero-

quency §-function broadens and moves to higher frequencies; this is

unlikely to produce a peak at the upner limit of the twisting/bending

~de band since the inter-chain forces are weak (as indicated by the density
defieit) and the disorder of the system will tend to produce a broad range
of twisting mode frequencies. The second effect will be a smoothing of

he tyoical one-dimensional features of the spectrum (see Section 4.4).

Nole ©lso that the IR and Raman spectra are related to the DOVS by

frequency dependant matrix elementse Tt might therefore be suggested
. . =

that the orominent peak in the IR spectrum of a-Se at about 120cm is

a motrix element effect. We counter this by arguing that such a large

T activity must be supported by a corresponding increase in the density

of modes. Further evidence has been furnished by Dultz, Hochheimer and

Muller~Lierheim (187%). They measured the Raman spectrum of fibrous
|
|

5

and also found a pezsk at the upper edge of the loger frequency band.

sulphur, a form containing (ideally) disordered chains of sulphur atoms,
l
|
|
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Convaring their result to the DOVS of a flat zig-zag chain (Figure 4.7¢),
they identified this feature as evidence for the flat chain structure.
Tte results of Figure 4.7, however, show that a constant dihedral angle
of any magnitude will produce this result.

Having interpreted the experimental data in terms of a constant
mapnituée of ¢ in a-Se and a-Te, we note that the dynamical model used
too simple to provide information on the magnitude itself. Ve merely
reiberate Robertson's argument that significant deviations from 102°
are unlikely. IFinally, the results suggest that a broader distribution
of 4 about 1020 will be found in a-Te, within the limits of the roughly
10° rms distribution suggested by the calculations. Such a distribution
will occur in a system of interacting chains relaxiag to a structural
rreroy minimum; the broader distribution is expected in a-Te because of

th: relatively stronger inter-chain forces in Te (sece Table 4.7 and

Lucovsky 1972).




4 a4 INTER-CHAIN EFFECTS

Berton and Lasjaunais (1973) have reported an increase ia the low-
teroerature (about 10K) specific heat of a=-Se compared to trigonal Se and
identified the magnitude of the specific heat in the latter as arising
Trom the low frequency acoustic modes of the DOVS. Consider therefore
modellirg a-Se by trigonal Se with reduced inter-chain restoring forces.
The DOVS for trigonal Se and Te with (a) the force constants of Table 4.1
nnd (b)) the inter-chain force constants reduced by half are shown in

Pimre 4.8, The spectra were obtained by sampling 4120 points in the
_ p y p & p

Lrreducible Brillouin zene and smoothing the resultant histogram. As
:tedy, on increasing the inter-chain distancey i.e. decreasing the

inter-chain forces, the chain twisting modass separate out from the lower
Land, moving to lower freguencies to produce an 'excess specific heat'
apout 10K, In the Llimit of y=6=0 they form the zero-frequency %-
fnnction of Figure 4.6. The excess specific heat therefore is consistent
@'th inereascd inter-chain separations in the amorpnous phase, as are the
dersity deficit and the IR and Raman data discussed in Section 4.1. Note
in our simple dynamical model cnalculation the optic mode band decrenses
10 Frequency as the inter-chain forces are reduced; a realistic model
ol the lattice dynamics should produce an increase in these frequencies,
¢ revealed by the IR and Raman data for a-Se and a-Te. Lasjaunais
(Frivate communication) has also found that the magnitude of the excess
spocific heat depends on the details of sample preparation. This lends
er support to our expladnation since details o6f the inter-chsin
correlations are inevitably dependant on the conditions of preparation.
No low temperature specific heat data for trigonal or amorphous Te
have yet been reported, however our argument clearly predicts a similar

“[tect Lo that found with a-Se due to the reduced inter-chain foreces

surpested by the Raman measurements of Brodsky et al (1972).
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Iull calculations of the DOVS appropiate to structural models of
a-Se/a-Te are not yet practical due to the lack of such models and a
realistic description of the lattice dynamics of trigonal Se and Te. The

inter-chain correlations are still rather uncertain, however the intra-

chain structure seems to be well resolvede.
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CHAPTER FIVE AMORFHOUS .GERMANTUM REVISITEL

Dl THE BOND-CHARGE MODEL

In this cnapter we present vibrotional spectra appropiate to a-Ge
caleulated using a short-range version of Weber's (1974, 1977) adiabatic
bond-charge model (SR BCHM) of the lattice dynamics of Group IV semi-
corductors. A further refinement is the use of a seriecs of seven CRN's

)

ith gradually varying structural characteristics. Since Weber's model
deseribes the phonon dispersion in c-Ge very well, we expect it to
provide a realistic description of the DOVS of the amorphous phase. The
cxtenl to which this aim is realised is discussed, as are general
considerations of 'excess specific “:at' ia glassy solids, towards the
end of this chapter.

The Born model of the lattice dynsmics of c¢-Ge presented in Chapter

2, 1like all such simple models, does not adequately describe the transverse
aconstic (TA) branches of the phonon spectrum (see Figure 2.2c). In the
Group IV seniconductors,; as in the zincblende structure crystals,; these
branchzs have very low frequencies and are very f{lat away from the 7zone-
cortree (Nilsson and Nelin 1971). Herman (7959) showed that to reproduce
the pish shear elastic constants and the TA flattening requireszs inter-
actions out to sixth neighboursvin a Born-like scheme. A shell-model
fit to the dispersion corves was made by Cochran (1959), who modelled
Lhe valerce electron response to the atomic motions with interactions
invelving massless shells concentric with the ion cores. Although the
51 interactions are limited to nearest nei;ndbours, the adiabatically
chells transmit effective long-rangs interactions between the
cores, producing flat TA branches. A more fundamental treatment of the

Tatiice dyramics of ¢-G

¢]

is Martin's (1969) dielectric screening model,

boced on the bond-charpge theory of covalent solids developed by Phillips




(185871« The argunent is that since c-Ge can be described as nearly-free-

teelboon-1like, tue bare ion-~-ion interaction is exnccted to ve screened
M . |
by the diagonal elements of the inverse dielectric function € ﬁgrg}gvgq,

an in simple metels. The existence of a band gap reveals incomplete
: ) o 4/ . . ‘i
sereening, there being a net charece of 7¢, at each ion. To achicve

comp! ete screeningy, Phillips located charges of -2/, in the bonds,

reapresanting the effects of off-diagonal elements of €'. Martin showed
that the metal-like screening produces SR ion-ion forces and the BC

intaractions stabilise the diamond structure against shear. Martin's
cimple BCM involves a first neighbour central force and Coulomb interactions
with the BC's fiwed midway between the ionse The flat TA branches are
% reproduced.
Weber's adiabatic BCM successfully incorporates cectain elemeats of
.

theza preceading theories to give the most physical desceiption of thne

phonon dipersion in the Group IV elements and III-V compounds to date.

“hoe metal-like binding is modelled by a central ion-ion forcoe, the covalency
being mircvored in SR and Coulomb interactions involving the BC's, which

e now allowed to move adiabatically. Including an ion-BC central force

1
%
o+
~
-
oy,
[ |
o
]

at the bond-centres) and a BC-ion-BC angle bending

vorce,while allowing the magnitude of the BC to vary, leaves four parameters

)

mined by fitting to experiment. The ion-ion ceatral force
irminates the dicpersion curves except the TA branches, which correspond
i In which the bond length variations are very omall. Thus in TA
vihratlions only very small forces are transmitled between the ions, which
Lherofove vibrate like Einstedin oscillators at frequencies determined
7 by the very weak effective ion-BC coupling. Dispersionless TA
hee are formad, provided the ef

ective 1on-BC coupling is wealc

conparad to the BC-BC coupling. In the long wavelength acoustic modes,

tie BC's move in phase with the ions and the strong BC-BC forces produce
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stahility against shear.

Given that the adiabatic BCM desceibes tho. TA phonoas so well in
c-Gey our chief motivation for applying it to a-Ge is a desire to explain
the obscrved shift of the TA-like modes to lower frequencies in the
rrmorphouns phase. This shift has been detected in low-temperature specific

ot data (Kine, Phillips and deNeufville 1974) and preliminary inelastic
ncubron scattering experimente (Axe, Keating, Cargill and Alben 1974);

et 27 have also shown the shift to be consistent with the Ruaman data.

lotail, the c¢-Ge TA peak is brcadened and uniformly reduced in frequency

factor of about 15%. No such chift was observed in our Born-model

*
Ui
~
C
e
€3
—~
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o]
3

2. Comparisoa of the BCH calculations for a series

of CRIN's with full inelastic neutron scattering data for a-Ge should also

provide an indication of which CRN best models the structure of a-Ge, as

vns attempted in Chapter 2. Finally, we expect the results of such a
ilistic calculation to reveal any important weaknesses in the use of

i, ) g

implified short-range dynamical medels in DOVS calculations for
dinordersd solidse.

The coordiraives of the series of CRN's uscd in the BCM calculations
were sonerated by Beeman and Bobbs (1975) by restructuring the even-
“ired Connell-Temkin (C-T) medel. This efrfectively involves scrambling
e cantre of the model to introduce odd rings and increased angular
distortione. Thus a series of five CRN's; C-T B to C-T F; were generated

inercasing odd-ring concentrations and rms angular distortions.
vlementing the series with the Steinhardt model, yields seven equally-
(VRN =

<4 CON's which are ideal for investigating the correlations between

siructure and vibrationasl (and electronic) properties. The important

characteristics of the models are summarised in Table S.1.
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vle 5.1 Structural characteristics of the seven CRN's used in our SR BCM caleunlaticns for a-Gs.
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CALCULATIONS
Webor's original BCM involves long-range Coulomb interactions which

» included in our Recursion calculatione. Instead we use an

L ¢

ceirvalont SR model, justified by the fact thaf the near-neighbour

cortribution to the Madelung constant coastitutes about 8/9ths of the

o

E

otal (see Weber 1974, 1977). Coulomb interactions extending beyond

reast neighbours are neglected, the rest being absorbed into the SR forces.

e write tue crystal potential as

- i_ Rw ) ;L }—' ( X 3
i R 2
d Z/?? ’|_['-m§: &nmv' (lén_ l":.‘»w) " F)o‘)—n:u( ;911'(L5n- l/—(D/\/)_‘->—<‘/u!/./' (Ljﬂ‘ Li”)/%

‘e Lhe summations are over adjacent atoms and bhonds A, B and their
ke neighbours ANy BN. o and y are atom-atom and atom-BC central force
Lants and B and ¢ resic: charnpges in the BC-atom-[IC and atom- BC-atom
sles respectively, as shown in Fipure 5.7. Since the latter is a 180°

the Keating scheme produces only a central force, so the § contribution

i5 in terms of the half-bond lengcth r and the change in the ani;le from
o :

1807, A0.. The force tensors involving «; B and y are of the same form
YJ 1
before; the terms in £ are

- b | \ \,

P (prn) = 2h ] b= Roes o (5.2.2b)

[N

&
0
0,
@

s the bond between atoms A1 and A2 and b, . is the
)




frure Sal The force constants a, $, y and of our short riange version
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Fipure 5.2 The unit cell of ths dismond-cubic structure illustrating

the basis of two atoms and four bonds.
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Kroneclker delta. ,

‘ For the case of two 'atomic'species, the dyramical matrix equations

can be written

Ba + Cbz Mws
- (5.2.3)
Coa + [}l_o = mw*‘_)

| where A, B, G denote atom-atom, BC-BC, atom-BC dynamical matrices, &, b
denote atom, BC displacements and M, m denote atom, BC masses respectively.
The matrices are derived in the usual manner. In the adiabatic approximation

the BC mass is zero so the dynamical matrix put into the secular equation

1.2.6 is given by

(5 2ad )

i

o
D
{
e
®
(O
.

ince the unit cell of the diamond structure contains two atoms and four
505, as shown in Fipure 5.2, the dimensions of the matrices arc é(6x6),
B(12x12), £(6x12). The values of these matrices at the point E:(kx,ky,kz)
i the FCC zone are given in Appendix 5.2.
The four paramecters of the SR BCM cannot be determined by fitting
e Raman frequency and the three elastic constants since a and y enter
e expressions for these quantities in the same linear comoination
(Weber 1977). They were obtained by least-squares fitting the experimentally
measured phonon frequencies (Nilsson and Nelin 1971) at the following
paintsy

1 {0ay0a040.0)

(0.5,0.0,0.0) (0 340e5,0.0) (0:%50435,063)

K(1.0,0.040.0) (0:6,0.6,0.0) 1.(0.5,0.5,0.5)

in units of 2m/a, where a is lattice constant defined in Figure 1.2,
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~a welght wos placed on thel TA freguencies to cnsure the correct force

stant ratios required to reproduce them well. The parvamcters are

AL B:0, 5441 y=0.0057 $=0.1544 (5e2.5)
; 4 5 e 21 ; . e . N
inunits of 107 Km . The swsllress of y emvhasises the mechanism of
(A flattening in Weber's model. The dispersion curves along the (100),
(110) and {111) directions of the zone obtaircd with these parameters
¢ compared with the experimental points in Fipure 5.3%: the SR BCM
corpires very well with the full model (see Wober 1977).

One further modification is required before the BCM can be used in

cur Recursion calculatione Equation 5.2.4 shows that 3 must be inverted

Lo derive the final dynamical matrix D, a prohibitive step for a calculation

copinte to a CRN because of the size of this matrixe. The irnversion
can be avoided by allowing the BC's to have a small but finite mass. As
I IRE L

Long as m/MLD.1, the lower six phonen branches are uraeffected. In this

cuae the Fourier transformed dynamical matrix is given by

L
7

1=
—
3
xR
—
<
~

o

—— 5e2.6)

X T N

(mtt)'t = ;o =

dyrnamical matrix used in the Recursion calculation is constructed
ir the uonal wanner from the cluster coordinates, assuming 211 bond lengths
fo be unennnped and the equilibrium positions of the BC's to remain
id-wny between the atoms. The modifications to the method involve
treeting the BC's as a second atomic species, more than doubling the original
o of sitese The local DOVS are of course only calculated for atoms.
sare De4 compares the result of our Recursion calculation for a spherical
T Al '

2d0-ntom cluster with the diamond-cubic structure with the result

obtaired by integration over the Brillouin zone. The correct positions,

—
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welplhivs and general shapes of the features in the reciprocal space result

s

ro well reproduced. The continued fraction expansions are calculated

=F

o 100 levels; although this may seem large, note that the cluster
contzins about 600 sites and two-thirds of the spectrum ( the 'bond' bands)
mains uvnused. The inadequacy of calculations to fewer levels is

nasised by the plot to 50 levels shown in Figure 5.5. The ratio

L/ =0.07 was chosen to ensure a wide enough band gav between the 'atom?
O S et

d 'bond' modes to prevent any interference between them, even when

»ondened in the CRN resultses A smaller ratio would increase the number

¢ levels needed for adequate resolution (and hence the computation time)
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Tre results of the first application of ocur SR BCM to the series of

m

5 5 . 7 5 % -
lable 5.1 are shown ia Tipgure 5.0. The diamond-cubic structure

sult in repeated for compariscon with theue for the Steinhardlt model,

iirinal C-T model and the series C-T B to C-T F. There are no

‘Leant differences between the averages over 5 and 10 central sites

the network; these results are all 10 atom averages to 100 lavels.

in order of increasing rms bond angle distortion.

Tre most obvious features of the results aré the broadening of the

and TO-1like peaks with the angular distortions and a smoothing of

~

details of the LA+LO-like regione There is no. LA-LO dip in any of

CRN reculis except that for the Steinhardt model, which has

stically small angular distortions. On the other hand, definite

o

LA=like dip is preserved. The simultaneous broadening of the TO- and
Like pesks can be traced to the eauivalent distortions of the atom-

am-stom and BC-atom-BC angles respectivoly, by the same arpument

& 4 in Conanter 2 for the broadenine of the TO-like peak in the
of contral forces onlye Suvrprisingly; there is no topological

.€ 5 g ; : :
slznce of the specira, a complétely opposite result to tha* obtained

, . . , R - e :
the Born model in Chapter 2o The lack of togological deperdance is

i50d by the position of the Steinhardt GRY result in Figure 5.6;

ontainsg the largest concentration of S-membered rings yet fits into

qieace between the diamond-cubic and oripginal C-T structures. It

s that atomic motions due to forces of shorter range than the

tancns acress the rings ia these structures are sensiltive to the

5 ol those ringse On the other hand, in the BCM the BC-mcdiated

g are of significantly longer range than such distances, thus no

nr-coder depaendance arisess. The wider implications of this result

. - 5 3
discussed in Chapter 8.
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A careful examination of these results reveals that the TA shift
lower frequencies has rot becen reproduced in the CRN spectra. The
BECH does, however, provide a simnle means of reproducing this shift;

ES
reducing the central atom-BC force constant y to 0.0025x10” Nm ! the

ttre of gravity of the TA-like peak is reduced by about 19%, as shown

Figure S5.7. These results are now ready for comparison with experimental

nta. A discussion of the seemingly arbitrary reduction of y to fit the

own data is given subsequentlye.
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5l COMPARISON WITH EXPERTMENT

No direct measurement of the f1l1l vibrational spectrum of a-Ge by
inelastic neutron scattering has yef heen made,; so no structural data
can be deduced from the results of Tigure 5.7. Our apparent 'success'
in compuring in detail the ralculated DOVS of Chapter 2 with the IR and
Haman spectra of a-5i and a-Ge preverts us from repeating the process
hereo A1l that can be caid at this stage is that the RDF compas izons
of Becman =rnd Bobbs (1975) ard the results of electronic structure
caleulations (see Chapter 6) suggest that the structure ¢ a-%c is an

crmediate of the C-T D and C-T E models.

de can, however, learn something of the Raman couplirp to the DOVS
in -Gz without making any assumptions co to the detailed nature of the
dicplacement induced polarisability in the solid (c.f. Alben et al 1975).

| frouming the breakdown of all selection rules so that light is scattered

from all normal modes, Shuker and Gammon (1970) gave the following

evpression for the Stokes intensity for first-order scattering:
X hl

)

\

Tiw) :Z Cp () [‘1— n (w,T)} :L— 4n (@) (5.1.1)
b

nerc Ch is the counling for phonen branch b, n(w,T) is the Einstein-Bose

-

function and g, (w) is the density o
9] N

a0

states for branch b. In Figure 5.8a

present the reduced Raman spectrum

IR (w) % ()JI(LU) //H a(u,T)JZZ Cb?h(w}
b

(5.4.2)

ined by Lanain (1973), which the theory indicates to be simply

vlated te the densities gb(w) by the coupling constants Cb. This

ure is supported by the plot of the coupling

Ciw) = 4lw) [ T, (w) (5.4.3)




e

shown in Figure 5.80. The broken line is g(w) for the C-T D model, from
g) g

which C{w) was deduced. C{w) divides into four regions, each roughly

rtred on the vertical lines indicating the correspondine type of
5 P )

>

vibration in the crystal. The result is therefore consistent with different

2¢s of coupling to modes of different character and indicates that

i crysialline mode character is rather well preserved in the amorphous

mi

“e.  The spile at the upper edge of C(w) arises from the broader
mdwidbh oi the Raman data and is therefore probably due to background
teasity and/er second order scattering. Neither the experimental nor

roretical curves are sufficiently reliable at lower frequencies to

—_ 2 < S ‘
tpport comment on the validity of w™ behaviour of C(w) in the Debye-

ie region (see King et al 1974).
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S BOND-CILARCES IN AMORPHOUS Ge

Consider now the efficacy of reducing the atom-BC force constant to
=enroduce the ewperimentally observed shift of the TA-like peak in a-Ce.
Tn Weber's full BCM the flat TA branches have frequencies which are

efifectively proportional to the magnitude of the bond.cnarge Zb. Pitting

thie experimental data produces values of Zh in reasonable agreement with
Piillins' theory for both Group IV and III-V semiconductors (Weber 1977,

Ructagi and Weber 1976). But why should 2, decrease by about 15% in the

b

cmornhous phase?

It is important to recognrise that Z, is an effective point charge

b
~epreceating the distributiorn of charge built up in the region of lower

potertiel between nearest neislbour atomse. In terms of orbital overlap,

the bord-charge is defined as the charge density in excess of the atomic

3

n3ities.  In c-Gey onirs cf sp” orbitals point towards cach

other as in Figure 5.9a but due to the angular distortions in a-Ge, if
fect sp5 hybridisation is retained,; the overlap will be reduced and the

hornd-charge will be more diffuse,; as illustrated in Figure 5.9b. To

maximise the boading energy, however, the orbitals will tend to point

towards each other, yet exchange repulsion tends to maintain the tetra-

X

hedeal anpless  d-hybridisation is necessary to construct four orbitals
einting Lowards the neighbours of each atom in systems with angular
nsG as large as in a-Goe. We may cxpect the exchanpe repulsion,
howiever, Lo promobe a general aspreading ocut of the bond-charge.

A more dilfuse bond-charge as a result of anpular distortions in the
amorphous phase 1is consistent with a smaller effective charge Zb in the
corrcsponding dynamical modele. We therefore expect the observed weaker
bording in the metastable amorphous phase and the occurence of a semi-
corductor-metal phase transition at a lower preassurc compared to that

of c-Ge (Minomura et al 1974% since a smaller Z. provides less stability

b



7
. X p B D . . .
Fipure 5.9 a) Schematic diagram of sp” orbital overlap in crystalline

permaniume

b) Reduction in overlap caused by angular distortions.
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ainst shear. Tt is not unreasonable that this should be 15% effect

in the bond bending mode frequencies, but there is no obvious calculation
Nt would verify our belief that sangular distortions are the only

cause of the TA shift. In any event, it is very doubtful that the

insigiht pained by reliable charge-density calculations for, say, the

[izimond=cubic and ST-12 Ge structures would merit the effort involvede.

For this reason in particular, no such calculation was parformed.
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546 EXCESS SPECIFIC HEAT IN GLASSY SOLIDS

An excess specific heal relative to their crystalline counterparts
a2t temperatures of about 10K scems to be a vroperty common to a great
many plassy solids. For example, excess specific heats have been
obzerved in each of the elemental amorphous semiconductors Ge (King et al
1974), As (Wu and Luo 1973) and Se (Berton and Lasjaunais 1973%). 1In the
Debye apvroximation of a parabolic DOVS, the specific heat C is proportional
to Tj at low temperatures i.e. the Debye regime. Thus a peak in the
experimental plot of C/T5 against T identifies a vronounced peak in the
vibrational spectrum. For instance the TA peak for c~-Ge at about 22K
reduces to one at about 18K for a-Ge.

Since we have attributed the excess specific heat in a-Ge to angular
distortions and in a-Se to increased inter-molecular separations, these
two mechanisms may form the basis of a qualitative explaination of this
effect as a natural conseguence of structural disorder. The loss of
torg-range order will promote angular distortions in systems of higher
coordination like a-Ge and increased molecular separations in systems of
lower coordination like a-Se. A system such as a-As, however, may be
crpectad to exhibit the effect for both reasons; in Chapter 3 we saw
that a-As exhibits a 10° rms angular distortion ard increased inter-
nyer separations. To determine which has the greater effect on the

Low-tomperature specific heat, we require a more complete description
of the vibrational benaviour of rhombohedral As. In spite of this, our
simple qualitative mechanisms for the excess specific heat in a-~Ge and a-Se

provide a reasonable basis for asserting that whenever this effect occurs,

it is & logical consequence of structural disorder.




CH/PTER SIX ELECTRONS IN AMORPHOUS GERMANTIUM

6o INTRODUCTION

In this chapter we present, by way of completeness, calculations of
the valence band densities of states (VBDOS) appropiate to the scries of
CRN models of a-Si/a-Ge of Table 5.1. Previous calcuvlations by Kelly and
Bullett (1976a) have already shown that network topology is the main
determinant of the shape of the VBDOS and suggested that the typical
structure of a-Si/a-Ge is that of the Polk model with fewer odd-membered
rings. Our results enable us to define better the typical structure of
a-81i/a~Ge and present some interesting implications for the consideration
of topological disorder in other such systems.

Bxperimental data on the VBDOS of crystalline and amorphous Si and
Ge have been provided by XPS (Ley, Kowalcyzk, Pollak ard Shirley 1972,
Lastman, Freeouf and Erbudak 1974) and optical measurements (Pierce and
Spicer 1972). The data of Ley et al are reproduced in Figure 6.7.
Yithin the one-electron approximation, the photo-emission intensity at

ecrnerpy E due to photons of energy fhw may be aoproximated by

m
—
>
™
|
>
SN
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o~
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&
™
~—

L{ (6.7.1)

wleore ni denotes density of initial states, nf denctes density of final
wtes (including that of the photo-electron) and ¢ denotes the emission

sroos-sectione  For large hw the final states are featureless free-electron

-like bands, so I(E) reflects the VBDOS modulated only by the photo-

emission cross-section. Thus the peak heights all differ in Figure 6.7

by virtue of the differing cross-sections for 3s, 3p, 4s and 4p electrons.

Despite this, the results show that the gross features of the VBDOS are the

same for both phases. As in the phonon case, tnis can be attributed to
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the retention of the crystalline short-range order in the amorphous
vhases The VBDOS of crystalline Si and Ge as calculated by Joannopoulos
and Cohen (1973) using the Empirical Pseudopotential Method (IPM) are
also included in Figure 6.1 for reference. In detail, the differences
between the crystalline and amorphous phases are;

Te The p-peak at the top of the VB is preserved but skewed over towards
TF with a perceptibly reduced half-width.

P A detectable minimum between s-like and p-like states 1s retained.
He The low-lying s-states are smoothed considerably, but a small dip

is detectable.

A very fruitful theoretical approach to these phenomena is the simple
tight-binding theory of Weaire et al (Weaire and Thorpe 1971, Thorpe and
Weaire 1971, Weaire, Thorpe and Heine 1972, Thorpe, Veaire and Alben
197%). Their Hamiltonian includes non-zero, structure—independgnt matrix |
elements only between sp3 orbitals associated with the same atom i (Vq)

or the same bond j (VZ) ieee

H=2> v

¥

S ) v K (6.1.2)
d
kL

The energy level spectrum for the diamond-cubic structure calculated
uting this Hamiltonian with )v2|/{v1‘> 2 is presented in Figure 6.2.
This simple model gives a reasonable description of the valence band

of crystallinc Si/Ge (see Figure 6.71) but interactions out to much
furither neighbours would be required for an adequéte description of the

merc ~vtended conduction states. The utility of the approach lies in

[N

ts analytic tractability. For example, Wealre and Thorpe have shown
that the bounds on the valence and conduction bands shown in Figure 6.2

hold for any four-fold coordinated structure, thus explaining the existence

of a band-gap in amorphous Si/Ge. They have also quantitatively related
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thie s=-state parts of the valence and conduction bands to the simple s-band
Hemiltonian discussed in Chapter 2, thereby linking both the vibrational
and electronic properties to the structure of the solid. We therefore
expect a significant filling of the s-state dip in the amorphous phase
VELOS to arise from the presence of odd-membered rings, as discussed in
the DOVS case for a-Ge in Chapter 2. Weaire and Thorpe have also proved
that the p-state §-functions at the tops of the bands in Figure 6.2 depend
only on four-fold coordination, hence explaining the preservation of the
V3 p-veak in the amorphous phase. To see this for the VB case, consider
how many orthogonal pure p-bonding wavefunctions can be constructed;
without matching conditions, there are %N orthogonal p-states in all
(% per atom) but the requirement of perfect bonding everywhere leads to
the 2N constraints that the coefficients of the orbitals along any path
arc equal ia megnitude with the sign sequence eceot¥--tt—-.., i.e. one
mrtching condition per bond and two bonds per atoms Thus there are at
least 3N-20=N pure p-bonding functions. They form a p-state §6-function
contairing one state per atom at the top of the VB. For the cornduction
band case, pure antiboading p-states are considered.

Complementary to the work of Weaire et al are the ©PM calculations
of the electron densities of states of polymorphs of Si and Ge
reported by Joannopoulos and Cohen (1973). Correlating differences in
the electronic properties of the different polymorphs with their structural
characteristics, leads by analogy to interpretation of the electronic
fentures of the amorphous phase. These authors made use of the transferability

ot the pscudopotential form factor to calculate electron densities of

wn

tates for bota Si and Ge atoms on the diamond-cubic, wurtzite, BC-8

and 8T-12 lattices. They found a smoothing of the VB s-states by the

1

Nots that some arbitrariness occurs in the interpolation of form factor
data for an atom in different structures,; as discussed for Ge by Aymerich
and Smith (197%); however this is unlikely to effect the general conclusions
presented nere.
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oid rings present in the ST-12 structure and that the conduction band
DOS is smoothed in the more disordered structures, in agrecment with the
optical data for the amorphous phase. Although the VB p-peak is preserved
in all of the spectra, it is skewed slightly to higher energies for those
structures with eclipsed second neighbour bonds (i.e. wurtzite and ST-12).
Nowy, the broadening of the p-state 6-function in the Weaire-Thorpe model
is produced by second neighbour interactions (see for example Kelly and
Bullett 1976a) and is therefore sensitive to the dihedral angle distribution.
Thus, it appears that a larger concentration of eclipsed bonds, associated
with odd rings in the 5T-12 structure and random networks, leads to an
increszse in the number of p-states at higher energies. No convincing
explagnation of this has yet been given; we may naively expect the meta-
stability of the amorphous phase to be mirrored by an increase in the
averapge energy of the p-states, which localise electrons in the bonds,
sirce 1t i$ the bond-charges which provide the stability of the structure
aprainst shear. There may be some subtle connection between this behaviour
and the TA-shift of a-Ge discussed in Chapter 5 since both phenomena are
intimately connected with the bonding electrons.

In the next section we describe our calculations and how much they
depend on the previous work of Kelly and Bullett. The VBDOS recults for

our series of CRN's using two parameter sets are presented in Section 6.3

ard discussed in Section 6.4.
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6.2  CALCULATIONS

A convenient way of generating the valence bands of a tetrahedrally
coordinated semiconductor is by consideration of a tipght-binding basis
of bonding orvitals along the (11 1), (T 1), (7T 17) and (17T 7)
dircctions. Consider the more general case of the zincblende structure
1.¢e the diamond-cubic structure of Figure 1.2 but with different atomic
species on the two sublattices. The secular equation 1.3.3% is set up as
outlined in Section 1.2 by computing the sums 1.3%.4 for matrix elemcnts
between first neighbour bonds with common A and B atoms (V14, V1B),
second neighbour bonds with dihedral angle 60° (V2) and second neighbour
bonds with dihedral angle 180° (V3)e Setting the energy of the isolated

bond to zero prcduces the Hamiltonian matrix

Hll I-1|L |~I|} }_4;9

o o H ML, H,, H..

el ‘ (6.2.1)
H,, M, H,, H..
Ho HLL H,. Hoo

where H,o= ] i)

Tt 1S,

H,= 2V3 [Las(-‘na) tews(gre) row [z rx)

H,, =2V3 [ s (x-—a)rw\ (‘91‘ 2 fus t—u)

)]
Ho2 103 [ e () rem (5-2) v w2 -0)]
J
)

4 :Q_V"D[M(u- ))ft:s(:)—a a+x>

H.I: (vne#vnﬁ)ws u—)‘rig)fl(w&wﬂ)gﬂn( xr—a) 1~ZVZ[wx(—%xrllgfg)1—m(NJL__VJ‘rb)jI

(6.2.2)




Hu = (\jlgrv[ﬁ)w\(-‘i[f;—.x)fl‘, [Vli:'-*-v’lq)%«'(lzﬂr%-m)f LVl l\.wx(}jxfa'iz)rws (—1‘-)(19'0 ;_—1) J
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where )::akX etce. and.EZ(kx,ky,kZ) denotes a point in the FCC Brillouin

zone shown in Figure 2.2a. This Hamiltonlan is the same as that used by
Shevchik et al (1974). Diagonalising the matrix 6.2.71 analytically at

the [, X and L points of the zone gives useful expressicns for the

valecoce band energy levels and degeneracies in terms of the matrix elements

Vit, VIB, V2 and V3. In the notation of Figure 6.3c,

P\s‘ = - (\‘/IH*VIB*H«-VL)"‘ £V}
m, o= 3(v:r\1v:a~»—u—v1_)+bv3
K. = = Lv:Avvm)—L,\/L~zv5
%
‘(s: - vIiA+3vI8 -y )~2V3
X, = IVIA=VIB — 4v1=-2V3
(6.2.3)
bs gy ™ - {viarvio) +2v3
2 ., % \ 2 lig
L,= (viaxvig)-2v3 - [(v-ﬂfv:awvs) +3 (vin~vie) J
2
] . (7
L, = (vawvic)-2v3+ [("‘ﬂ'rw(&r%v&)’+5(\;|ﬂ~w(’>)‘] "

For Si and Ge the matrix elements V1A and V1B are equal and the energy
level notation goes over to that of Figures 6.%a and 6.3%0.

Figure 6.3a illutrates the valence band structure for Si calculated
with the matrix elements deduced by Bullett (1974) from first principles.

The matrix elements are obtained by integration using bonding orbital

_—
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wavefunctions derived from normalised bvonding combinations of spB orbitals
and the approximation that an elactron feels the free-atom potential of
the rnearest atom with all others fully screened. Although this probably
leads to over-correlation of the clectrons, the validity cof the approach
has been exhaustively tested by Bullett (1974). The simplicity of the
aporoach is invaluable in determining how the matrix elements vary with
tne argular orientations of the orbitals (see below). Bullett's parameters
for S1 are

V1A=V 1B==1.2eV V2=-0.28eV V3=+0,17eV (6.2.4)
The VBDOS of Figure 643a compares well with the EPM result for the
dizmond-cubic structure calculated by Joannopoulos and Cohen and included
in Figure 6.7; except that the Lq peak is rather too close to the top of
the bande This is remedied in the band structure shown in Figure 6.3b where
the matrix elements have been adjusted to ensure a more realistic L1 peak

pocition using the equations 6.2.%. In this case the matrix elements

VIA=V1B=-1.%eV V2=-0.16eV V3=+0.58eV (6.2.5)

Fizure 6.3c shows the VB structure of GaAs fitted, using equations
6.2.3, to the results of an EPM calculation by Cohen and Bergstresser
(1966). The parameters are

V1A=~2.0eV V2=-0.10eV V3=+0,20eY (6.2.6)

V15=-1.0eV

include this result to facilitate later discussion in relation to the

VEDOS of amorphous III-V cempounds, as typified by a-GaAs.

For tne VBDOS Recursion calculations we make use of the matrix
element interpolation formulae derived by Bullett (1974). Assuming
neiligable bond length deviations in a-Si/a-~Ge, the matrix elements

between first and second neighbour bonds were calculated as functions

of hond angles (8) and dihedral angles (&) respectively. The interpolation
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Pigure 6.3 a) Valence band-structure for Si from Bullett's parameters.
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b) Valence band-structure for Si from fitted parameters.

¢) Valence band-structure for GaAs from fitted parameters.




formulae for Si are

V1:-1u2+00012A6 eV
(6.2.7)
V?:-O.1§«0030cos¢ eV
#ith 6 and # measured in degrees. Assuming the same functional dependance
of the matrix elements, we have deduced a second set of formulae which
reproduce equation 6.2.5 in the ¢-Si case; these are

V1:—1.3+O.O13A8 eV

(6.2.8)
v?:+0.02—0.56cos¢ eV

Using these formulae and the angular deviations and dihedral angles

derived from the CRN coordinates, we deduce the corresponding Hamiltonian

atrix from which the VBDOS is generated using the Recursion method in the

15u2] manner. (See Appendix 1.3).
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e RECURSTION RESULTS

The results of the VBDOS calculations using Bullett's interpolation
formulae appropiate to the diamond-cubic structure and the series of
CRN's listed in Table 5.1 are shown in Figure 6.4. The Brillouin zone
inte;sration result is repeated for comparison with the diamond-cubic
Recursion result, iandicating the reliability of the latter and which
Tentures can be attributed to cluster-size and numerical effects. The
DOS was calculated to 15 levels of the continued fraction to obtain
adequate resolution of the L1 pealkks Although the comparison is not as
successful as in some of our previous applications, we feel that useful
information can still be extracted. DEach of the CRN results is an average
over 10 central bonds, there being negligéble differences between averages
over 5 and 10 such bonds.

Unlike the vibrational spectra presented in Chapter 5, the form of
the VBDOS for the CRN's are almost completely determined by their
tanological structures. This is emphasised by the arrangecment of the
models in order of increasing odd-membered ringz concentrations. Consider
the Steinhardi model; although it has by far the smallest rms angular

distortion, i

t fits in at the end of the series due to its high concentration
of odd rings. The fundamental importance of network topology is also
emphacised by the results of soﬁe investigative calculations performed
Ly Kelly and Bullett (1976a). They set all Ae=0°, V2(;5):V2(6OO) for
0 A¢90° and vzcgﬁ):vz(ﬂ%oo) for 90% #<180° and still obtained the same
basic results for the Polk and Connell-Temkin CRN's. The obscrved
topelogical depend%nces of the s- and p-like states are in excellent
agrecment with the arguments and results discussed in Section 6.1.

Tn Figure 6.5 the VBDOS calculated using the modified interpolation

formulae of equation 6.2.8 are presented. The improved description of

the L1 peax position in the crytalline case carries over to modify the
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details of the CRN results. The results of both sets of calculations

are Ciscussed in the following section.
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interpolation scheme; the broken line is the diamond-cubic

result obtained by Brillcuin zone integration.
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6.4  DISCUSSION

In this section the results of the Recursion calculations shown
“n Fipures 6.4 and 6.5 are discussed in terms of the typical topological
structures oi a-Si/a-Ge and amorphous III-V compounds, as typified by
a-Guls.  Some interesting general points also arise out of the discussion.

Considering the XPS data of Figure 6.1 and the results for the
Conr-ll-Temkin and Steinhardt models in Figure 6.4 reveals why Kelly and
Gullett reached the conclusion that the typical structuvre of a-5i/a-Ge
i that of the Steinhardt (or Polk) model but with fewer odd rings.
Comparing the data with the results for the series of CRN's of Table 5.1
erables us to estimate more c¢losely the typical number of odd rings
preserts  Looking through the VEDOS for an almost filled s-ciate dip and
& slightly skewed and narrowed p-peak leads us to conclude that the

.ynical structure of a-Si/a-Ge lies between those of the C-T D and E

L
o
©

Referring to Table 5.7 therefors reveals quantitntive bounds
e L P B - . v,
on the ring statistics of a-Ges Perhaps a more appropiate definition of
topolozy than the average numbers of n-meaxbered rings passing through
%
an atom is the wrong bond concentralion; for a~Ge we estimate therefore
a wrong bond concentration £ of 5 or 6 %.

We would expect further calculations aimed at improving this estimate
ct f to be hampered by the imperfections of our Hamiltonian. Indeed, the
noticeable dip between s- and p-like states in the XPS data is absent
in the CRN results of Figure 6.4 because the L1 peak in the crystalline

case i3 too close to the VB maximum. (See Figure 6.3%a). This deficiency

remeved by the adjustment of Bullett's parameters to give better

"wrong bond' is defined as a bond between like atoms when we try to

form the CRN from two atomlc species such that each atom is bonded to

four neighbours of the other spcciese.
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asrecment with the EPM results for the diamond-cubic case. The VBDOS
calculated with the modified interpolation formulae are shown in Figure 6.5
wherse it 15 noticeable that an s-p~like winimum is evident in both the
C-~T D and E results. Given the retention of this small dip in the CRN
reculits, we may expect it to be amplified to the extent shown in the XPS
daota due to the different scattering cross-sections for s and p electrons.
The results of Figures 6.4 and 6.5 also illustrate that a surprisingly
large number of odd rings are required before the resulting VBDOS is
noticeably different from that of a purely even-membered ring structure.
Thore is very little gualitative difference betwecen the results for the
oripinal C-T and the C-T D models, yet the latter already contains a
sipgnificant proportion of wrong bonds (f=4.2%). This result may be of
use in considerations of the topological depend%nce of electronic structure
in other disordered sysiems, For example, Shevechik (1977) has measured

&

Lhe densities of states of crystalline and amorphous As and sugpests one
of his results cay be evidenc2 of a purely even-ringed structure. Our
recults indicate that, should this result apply to an amorphous sample
a signilicant proportion of odd rings may in fact be present,; but in
insufficient quantity to noticeably effect the electronic energy level
structure.

Decpite our systematic appfoach to the inter-dependfnce of topological
and electronic structure, have we learned anything worthwhile about a-Ge?
Certainly the wrong bond fraction consistent with the model calculation
@ud the XPS data is known more closely, but no sighificant improvement
over the contribution of Kelly and Bullett has been achieved. Indeed,
trom comparing the RDF's of theirs and the Polk model with the experimental
duta, Cornell and Temkin (1974) suggested that the real structure is an

average of the two. We are fortunate in having the series of CRN's

zencrated by Beeman and Bobbs (1975) as a basis for calculations relevant
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to a-01i/a-Ge. No such series exist for other systems such as a--As or

any of the oxide glasses; but do we really need them? Comparing our
recults with those of Kelly and Bullett illustrates the law of diminishing
returns. It seems that identifying the topological structure of an
amorphous solid by comparison of detailed electronic structure calculations
with XPS/UPS and optical data is very fruitful. However, calculations

for only two or three models of very different topologies should be
sufficient to identify a typical topological structure. We therefore

hone our results will lead to some labour saving in the modelling studies
of other disordered systems.

Do our results bear any relevance to the structure of amorphous
11I-V compounds? The band structure of c-GaAs shown in Figure 6.3%c is
noticeably different from that of ¢-Ge in that a gap exists between the
L2 nnd L1 praks as a result of the non-equivalence of the matrix elements
V14 and V1B (see Equation 6.2.3). XPS data on the valence bands of
amorphous ITI-V compounds reported by Shevchik et al (1974) revezl two
important differences from the %esults for a-8i/a-Ge. The deep s-like
dip 1s retained and the p-peak is less skewed over to higher cnergiess
Trns, the topological implications of previous work and the results of
cur more realistic model calculations are consistent with a negligabie
froction of wrong bonds in amofphous ITT-V compounds. The s-state dip
is retained by virtue of the splitting present in the crystal and the
cimple s-band argument of Joannopoulos and Cohen (1973). The reduced
modification of the p-peak is consistent with there being fewer eclipsed
sccond neighbour bonds; as expected in an even-membered ring structure
(Connell and Temkin 1974). Full network Recursion calculations for
1~Gals =re certainly feasible, given Bullett's technique for calculating

matrix elements, but the results are unlikely to reveal anything that has

not already been inferred. (See also Joannopoulos and Cohen 1976).
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CHAPTER SEVEN OPTICAL PHONONS IN TIN DICHALCOGENIDES

7 INTRCDUCTTION

In this somewhat parenthetic chapter we describe the use of simple
force constant models, of the type so far applied to amorphous semiconductors,
in determining which forces are chiefly responsible for the cbserved
optical phonon anisotropies in the layer compounds Sn52 and SnSuz. The
Raman=- and IR-active zone-centre modes of these materials have been found
Lo exhibit very different frequencies for atomic motions parallel and
perpendicular to the layers (Smith et al 1977, Lucovsky et al 1976). This-
may be vaively attributed to strong ionic/covalent bonding within the
layers, whieh interact only weakly via Van der Waal's forces. A more
fundamental understanding of this beuaviour, however, would be preferred.

Since no measurement of the phonon dispersion in either SnS, or

2

5nSe., has yet been reported, we are restricted as to the rumber of force
'

constnuts that can be used to describe the lattice dynamics and subsequently
cvaiuated by fitting to experimental data. The task we set ourselves,
‘itorefore,y, is to obtain a satisfactory least-squares fit to four optically-
ac’. ive zone-centre modes using a maximum of three short-range force
conatants. In this way some iandication of the more important forces in
{hese materials can be obtained.

ir the next section the structure and polytypism of the tin

dichalcogenides is described. Our calculations and conclusions are

wou3ented subsequently.
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7«2  STRUCTURE AND POLYTYPKS

Sh82 and Sn862 occur in the cadmium iodide structure; Figure 7.7a
illustrates the two-dimensional ligand-metal-ligand (L-M-L) sandwich
structure in which the M atoms are octahedrally coordinated to six
neavcest-neighbour L atoms. The hexagonal lattice and a single unit cell
containing three basis atoms are depicted in Figure 7.71b. Throughout
the following,the L-M-L sandwiches are assumed to be stacked so that there
ic only ore sandwich per unit cell - this is known as the 2H structure.
Tius the basis and lattice of 2H—Cd12 are completely defined by Figure 7.7
anrd it Iollows that the corresponding Brillouin zone is the same as that
uced for triponal Se and Te (see Figure 4.4).

If the L-M-L sadwiches are stacked so that more than one sandwich
lies within the unit cell, various polytypes of Sn32 and Sn502 result.

Lese higher polytypes are interesting in that they exhibit optically-

active rigid-layer shear modes with characteristically low frequencies,
reflecting the weak inter-sandwich interactions. The structures and
cigid dyer modes of the 4H and 6H polytypes of SnSe/SnSeg, which have
two and three sandwiches per unit cell respectively, have been discussed

by Smith et al (1977). Our simple treatment of the 2H structure naturally

precludes any discussion of these modes, our present interest lies more

with the important intra-sandwich forces.
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Figure 7.1 a) The octahedral coordination and sandwich structure of

the CdI2 crystal.

Fipure 7.7 b) The hexagonal lattice and three-atom basis of the

Cd12 crystal.
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73 OPTTICAL ACTIVITY

The three-atom basis of the 2H~CdI2 structure gives rise to nine
vibrational modes at any point in the zone. At the zone-centre there
~re three doubly-degenerate modes in the basal plane (denoted E) and
tiree non-degenerate modes parallel to the c-axis (denoted A). These
modes decompose into the irreducible representations (Lucovsky et al)

F= N, +E, +2A, + 2E, (7.3.7)
g

'
ey arce separated into acoustical, Raman-active optical and IR-active
cntical modes by their transformation properties; for instance Raman-

~ b

act

ive (TR-active) modes are symmetric (anti-symmetric) under inversion.
The results of the analysis provide the following assignments; E and
g

A, nre Raman-asctive, Eu and A2u are IR-active. The results of the

g
Group Theory are indispensible in correctly assigning the experimentally
ocbserved frequencies to the corresponding vibrations but they are not
critical to this discussion. Once the dynamical matrix is constructed
and diagmnal%ed at the zone-centre, the eigenvectors, effective masses
ant degeneracies of the modes leave no doubts as to which ejigenfrequencies
to compare with the experimental data (see bélow). Experimentally, of
course, the mode assignments are made by observation of their depolarisation

behaviours



Vel CALCULATTONS

Using force constants defired as sugpgested by Keating, several
combiuations of forces between tﬁe metal and ligand atoms were tried
before muldng the final choice. The potential expressions were set up
a6 in previous applications and the corresponding dynamical matrices were
dorived.  Since we required to fit only zone-centre modes, once a
ccmbiration of forces was chosen it was possible to assess whether or
not it reproduced the observed anisotropies without the need for
detailed calculatione.

first attempts involved intra-sandwich foces only; using M-M, M-L
and L-L central forces produced a poor fit, as did using a M-L central
force with both L-M-L and M-L~M bond hending forces. The latter model,
howcvery became no worse on omitting the L-M-L bond bending contribution,
thws allowing us to choose the third force to act vetween the sandwiches.
Choosing the inter-sandwich force to be a L-L central force significantly
improved the fit to the zone-centre modes.

e potential expression for the final model is

M-

r - ) §2
szm%;_ éHL.[ﬁn“%L>2

(7.4.1)

snere o 1s the intra-sandwich M-I central force, B is the inter-sandwich

L-L central force and y is the intra-sandwich M-L-M bond bending force.

Tre dynamical matrix corresponding to a general point k in the hexagonal




Brillouin zone is given in Appendix 7.4. The effective masses and
dereneracies of the non-zero zone-centre mode frequerncies make the

fcllowing zone-centre mode assignments for the CdI? structure obvious;

wlilig): _r\_"\._ (6’41— g r ’)f) R Amaans (xy_\
(ML(ﬁ.ﬂ: ﬁ: “ﬁr32ﬂng> RAmMAN (x|)

( gd-rar> LR (xl) e

[F ]
wr (A,): [{éﬁ;‘:] (gwcfa) IR (x1)

where M is the metal atom mass and m is the ligand atom mass.
The results of the least-squares fits to the experimental data for

Snﬂg and SnSe2 are presented in Table 7.7, where they arc compared with
the measured Raman and IR frequencies Tor the 2H forms. The corresponding
cigenvectors are depicted in terms of the L-M-L 'molecule' displacements.
Tre Rouan modes parallel and perpendicular to the basal plane clearly
display inversion symmetry and why the metal atom mass does not enter
tie corresponding frequency expression. The IR active modes are clearly

¢ dipolar character. All of the experimental frequencies are fitted with
loos than 8% error, the fit being noticeably better for the selenide.
Tt 5 the quality of fit obtained with the present model which sugpgests
Lhot some of the most important forces in these materials have been
imolated. The values of the force constants obtained are

SnS

2
¢.=0:3725 B=0.181 y=2472 (Nmﬂq) (7e44%)
¢‘Se2
-1

a:Oo2275 B:O;154 "(:2-43 (Nm ) (704-4)




! Frequencies (cm
|
Symmetry 7 Activity Displacements SnSp SnSep
Theory Expt. Theory Expt.
o> a a
Eg Raman g ¢ 194.6 205 107.9 113.5
8 . a a
ATg Raman . o 322.6 | 315 187.0 187.5
3 IR o O 215.7 | 205? 145.6 1440
|
l
A | IR & g 336.2 | 3ko° 239.8 241P
2u | e
l |
a) Smith et a1 (1977) b) Lucovsky et al (1976)
Table 7.1 Comparison of experimental and fitted opticeally-active zone-centre mode

freguencies 1in SnS, and SnSe

25

7oL



The phonon dispersion for SnS_ along the principle symmetry directions

2
of the hexagonal zone are presented in Figure 7.2; the results for SnSe2
differ only in that the bands are less well separated into regions of
acoustic and optic character. The zero-frequency mode at the K-point
corresponds to a shearing motion of adjacent sandwiches; since only
contral inter-sandwich forces are used in the final model, therc are no
rentoring forces for such vibrations. The results show reasonable general
ioreemenrt withh the available axperimental data on the dispersion in CdI2
cported by Dornery Ghosh and Harbeke (1976),which does not include any
oolbic mede branches. The DOVS for Sn82 and SnSe2 calculated by sampling
4720 points in the irreducble zone and smoothing the resultant histograms
are chown in Figure 7.%. Since the model parameters were fitted at the

zonc—-contre onlyy, it is unlikely that these spectra will bear more than

@ gpereral resemblance to the corresponding DOVS for the real materials.
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Figure 7.2 Phonon dispersion along some principal symmetry directions
of the hexagonal zone for SnSz; the frequencies of the

IR~ and Raman-active zone-centre modes are also indicated.
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Pipgure 7.%  Vibrational spectra for Sn52 and SnSe2 calculated by sampling

over the irreducible part of the Brillouin zone.
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7.4  DISCUSSION

The observation that the final dynamical model gives poorer results
for SnS2 than SnSe2 is consistent with the suggestion of Lucovsky et al
(1976) that Coulomb forces are important in the lattice dynamics of these
materials. We may naively expect the Coulomb interaction to be more
important in the sulphide than the selenide due to its greater ionicity.
Considering short-range forces together with effective charges on the
metal and ligand atoms would no doubt improve the fit to experiment but
such a calculation lies outside our approache The trend of smaller
force constants for the selenide, as revealed by our fitting proceedure,
5 consistent with the stronger bonding expected in the sulphide.

Having fitted the zone-centre modes of the tin dichalcogenides,
can we now identify which forces arc responsible for the observed phonon
anisotropies in these materials? Ve may expect the M-L central force to
determine the gross features of the dipersion but it does not contribute
to the differences in frequency between the modes parallel and perpendicular
to tne basal plane. Equations 7.4.2 indicate that the M-L-M bond bending
forces produce the anisotropy whereas the L-L inter-sandwich forces
contribute to the difference between the Raman and IR frequencies, acting
in the opposite sense to the differing effective masses for the
vibrationse. The greater importénce of the M-L-M bond bending forces
conpared te the corresponding L-M-L force can be gualitatively justified
by censidering the bond-charges of the M-L bonds. These will be nearer
“the more electronegative ligands, producing compafétively.large restoring
forces when the M-L-M bond angles are modified.

A more sophisticated calculation of the vibrational properties of
these materials awaits the experimental measurement of their phonon

dispersion relations.
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CHAPTER EIGHT CONCLUSION

8.1  SUMMARY

We have seen how the vibrational spectra of model structures
approﬁﬁate Lo disordered solids such as a-Ge, a-As and a-Se can be
calculated using the Recursion method. Calculations using simple force
constant schemes revealed depend%nce of the DOVS on topological disorder,
angular distortions and inter-molecular secparations. The resulls
provided information on the structures and characteristic vibrational
properties of these materials and the predictions of earlier workers were
verified and extended. Comparison of the calculated spectra with
experimental data also indicated that the effects of force cénstant
variations and anharmonicity are negligable if only intra-moleccular forces
are considered. The most important effects arise from variations in the
direcltions of the inter-atomic forces, the connectivity and the inter-
molacular distances. The principal result is a smoothing of the
corresponding crystalliné density of states, the general form of the DOVS
being preserved in the disordered phase along with the characteristic
local order. Similar short-range force constant models also proved useful
in identifying those forces chiefly responsible for the observed
anisotropies in the optically-active zone-centre modes of the layer
compounds SnS2 and SnSe2.

Tn Chapters 5 and 6 we considered rather more realistic models of
both the vibrational and electronic behaviour of a-Ge. Figures 5.7 and
6.5 respectively show how the modifications to the crytalline DOVS are
determined by the angular distortions of the model structure whereas the
modifications to the crystalline VBDOS are determined by the topology
of the CRN. This very important distinction can be naively attributed

to the vector nature of interatomic forces compared to the scalar nature
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of Hamiltonian matrix elements. The differences between the results
of the Born and BCM dynamical model calculations for a-Ge have important
consequences for further applications of the method. It appears that

in future we must be very cautious in interpreting the results of simple

model calculations of the vibrational spectra of disordered solids.




8.2 VALIDITY OF OUR APPROACH

The comparisons of our Recursion results with those of reciprocal
space  calculations have generally been rather good, sce for example
Mipure Y.4. The standard of agreement can be improved by increasing
the rnumber of moments of the vibrational spectra calculated exactly,
in other words calculating more levels of the continued fraction expansion
in larger clusters. The computational effort, however, increases in
proportion to both the number of Jevels and the cluster size. Our
exporience suggests that CRN models of about 500 atoms are likely to
rive the best results for the computational effort required.

Our policy of neglecting force consbant variations with changes in
bond lengths and angles has been successful so far, however we would expect

this to become a major problem in some future appliacations. For cexample,

more recliable calculations of the DOVS appropiate to a-As and a-Se will

require realistic modelling of the variations of inter-molecular forces
wvith varying layer and chain separations respectively.

Lonpg~range Coulomb forces canrot be incorporated into our scheme.
In YWoeber's BCM for c-Ge, however, the important Coulomb forces can be
aosoroed into the short-range forces and so the model can be incorporated
into our calculation. This may or may not carry over into the realistic
models of the pheonon dispersiorn in other such crystals. The dangers
of making do with simple dynamical models have been highlipghted by our
celculations for a-Ge.

In summary then, our approach has been successful so far; it remains
to be seen whether or not it can be satisfactorily applied to more

complex systems such as a-As or a-Se with equal success.
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.5  YURTHER WORK

Our calculations of the vibrational séectra of disordered solids
are entirely depend%xt on the availability of suitable dynamical and
structural models. A suitable dynamical model consists of only short-
ranre interactions and gives a reliable description of the phonon
dicpersion in the corresponding crystalline material; simple Boru-like
schemes are to be avoided, as illustrated by our experience with a-Ge.
Thus, more detailed calculations for structural models of a-As and a-Se
should be prececded by the development of dynamical models as successful
for rhombohedral As and trigonal Se as the adiabatic BCM has been for
Group IV and ITT-V crystals. It is frustrating that the phonon dispersion
ol rhambohiedral As has not been measured, although results for Sb
{"Wacp and Warming 1971) and Bi (Macfarlane 1971) have appeared in the
litorature. In contrast, the dispersion in trigonal Se and Te has bcen
measured yet no dynamical model has been devised to reproduce the more

untle features of the vibrational behaviour. We would exvect a

suceensfal model to rcflect the distortions from the simple cubic

icture in the Group VI elements (S-Se-Te-Po) and to incorporate the
= cete of the lone-palr orbitals, which seem Lo have significant bearing
on the aroperties of the lighter elements ofvthe Group (sec Robertson
1976) . Only when such models are available can definitive calculations
of the vibrational spectra appropiate to the amorphous forms be attempted
using the Recursion method.

Amorphous compounds and alloy systems present further problems in

that their crystalline counterparts may not exist and approﬁiate dynamical
models are far less likely to have been developed. From our experience

with a-Ge, Recursion DOVS calculations with Born-like forces may well

be very misleading. In such cases it seems that the 'molecular' approach

of Lucovsky et al (see Lucovsky and Martin 1972, Lucovsky and Xnights
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1974, Nemanich,Solin and Lucovslky 1977) will prove the most economical.
This approach involves the consideration of the normal modes of typical
structural units or 'molecules', such as G05 and GeSe4 molecules in the

cases of a-Ge and a-GeSe2 respectively. Assuming the DOVS to be a
broadened normal mode spectrum of the appropiate molecule(s) provides
insisht into the typical normal mode character within the DOVS and is
cqually applicable to elemental, compound and alloy systems.

As for experimental data, more vibrational spectra necd to be
measured directly by inelastic neutron scattering experiments. These
cxperiments are very difficult to perform in that the results are
complicated by multiple scattering effects. At large transfer wave-vectors,
however, the scattering spectrum corresponds to the DOVS without the
complications of matrix element effects present in IR and Raman spectra
(see Axe et al 1974, Alben et al 1975). Results for a-Ge and a-Se
noy be available soon. IR and Raman spectra are simpler to measure
and are correspondingly more plentiful. However they are complicated
by the frequency—dependgnce of the radiation/vibration coupling, so
the development of a suitable dynamical model must preceed that of a
reliable description of the coupling mechanisms. IR and Raman spectra
are discussed further in Section 8.4.

Although reliable vibrational spectra of amorphous solids are
atbt present difficult to both calculate and measure, this is not the
case for electronic densities of states. Electronic spectra can be
comparatively easily measured by UPS/XPS and optical means and reliably
cilculated for different structures using the tight-binding approach
{see Chapter 6 and Robertson 1975a). Our experience therefore suggests
that more structural information can be deduced from the comparison

of electronic caiculations with experimental data, particularly in

viecw of the topological dependance of the VBDOS seen in Chapter 6.




1974, Nemanich,Solin and Lucovsly 1977) will prove the mest cconomical.
This approach involves the consideration of the normal modes of typical
structural units or 'molecules', such as Ge5 and GeSe4 molecules in the

cases of a-Ge and a-GeSe2 respectively. Assuming the DOVS to be a
broadened normal mode spectrum of the appropiate molecnle(s) provides
insicht into the typical normal mode character within the DOVS and is
equally applicable to elemental, compound and alloy systems.

As for experimental data, more vibrational spectra necd to be
measured directly by inelastic neutron scattering experiments. These
zaperiments are very difficult to perform in that the results are
complicated by multiple scattering effeccts. At large transfer wave-vectors,
however, the scattering spectrum corresponds to the DOVS without the
complications of matrix element effects present in IR and Raman spectra
(sen Axe et al 1974, Alben et al 1975). Results for a-Ge and a-Se
may be avallable soon. IR and Raman spechtra are simpler to measure
and are corresgpondingly more plentiful. However they are complicated
oy the frequency—depend%nce of the radiation/vibration coupling, so
tin. development of a suitable dynamical model must preceed that of a
reliable description of the coupling mechanisms. IR and Raman spectra
~re discussed further in Section 8.4.

Although reliable vibrational spectra of amorphous solids are
at precent difficult to both calculate and measure, this is not the
case for electronic densities of states. Electronic spectra can be
comparatively easily measured by UPS/XPS and optical means and reliably
calculated for different structures using the tight-binding approach
(sce Chapter 6 and Robertson 1975a). Our experience therefore suggests
that more structural information can be deduced from the comparison

of electronic calculations with experimental data, particularly in

view of the topological dependance of the VBDOS seen in Chapter 6.
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8.4 IR AND RAMAN SPECTRA

Although no calculations of IR and Raman spectra have been
presented in this thesis, such calculations are possible with the
Recursion method. In this final section we outline the required
modifications to the DOVS calculation and briefly discuss the viability
of the calculation of IR and Raman spectra.

To evaluate the vibrational spectrum of a cljker projected onto
the displacement of atom i in the direction a, we have used the identity

1.4.7 to compute the local DOVS defined by

v>lg<’\'\*j (8.4.1)

V)= e

Wiere %nand ‘n> are the eigenvalue and eigenvector of the nth normal
mode respectively and \V> is the iritial vector of the tridiagonal
brois (=]ic) in the notation of Section 1.4). IR and Raman spectra
can also be generated by choosing the starting vector |V) in the
sppropiate mannere.

The first-order IR spectrum is generated by choosing ]V> such that
- ¥ )
Vi = ) ele! (8.4.2)

where ¢ 15 the polarisation vector of the light and €.,is the dipole
moment associated with the displacement of atom i in direction a. Thus
inj}g gives the relative contribution of each mode to the IR spectrum
and TIR(A)e N(\). Choosing a model of the IR coupling determines the
dependance of the dipole moment on the atomic motions. Ideally this
should be derived from the electron density response to the atom motions,
but such a caiculation is prohibitive. Simple models of the IR activity

muct be devised; for example Alben et al (1975) and Beeman and Alben

B it
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{1977) have assumed IR coupling to the dipole arising from the motion
charge from compressed to extended bonds.
To generate a first-order Raman spectrum 'V> is chosen to be the

vector of displacement induced polarisability;

Vig T efe® D (8.4.3)

e L LA

y.0

where é‘and £ are the polarisation vectors of the incident and
scattered light and Qia is the change in the polarisability ten;or
due to a displacement of i along o. Thus the Raman intensity is
proportional to N(A). (See Beeman and Alben 1977). Agairn the form
of the induced polarisability tensor Qia is model dependant; Alben et al
used a combination of contributions from individual bonds in their
CRIN calculations.

Thus,y calculations of IR and Raman spectra are in prirciple possible
#lth the Recursion method but suitable models for both the dynamiecs and
the coupling mechanisms must be developed. Calculations for a~Ge, a-As
nnd a-3e presented by Alben and co-workers for simple dynamical and
TR and Raman coupling schemes have been reasonably successful but
they must be very carefully interpreted in view of the»results presented
i this thesis. Perhaps a more economical approach in view of the
complexities of the problem is that of deriving the coupling as a
function of frequency by comparison of the experimental IR or Raman

dals with the DOVS ontained either by experiment (see Lannin 1976) or

by calculation (see Chapter 5).
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APPENﬁIX 1.4

In this Appendix we present a flow-diagram of the Recursion method
computer calculations. Specifications and listings of FORTRAN programs
and subroutines designed for gereral use canbe obtained from C.M.M. Nex,

TCH Group, Cavendish Laborotary.

STAGE 1

IwPUT=> Cluster coordinates & Neighbour map
Compute blocks of Dynamical matrix;
i index in interaction map

Set up initial vector of tridiagonal basis
Compute continued fraction cozfficients using
N Recursion algorithnm

-
-

OUTPUT=> Continued fraction coefficients

STAGE 2

INPUT=> N sets of continued fraction coefficients

OUTPUT=> Compute resultant set of coefficients

STAGE 3

INPUT=> Resultant set of coefficients

Compute DOVS on grid of 100-200 points

OUTPUT=> Tabulate and/or plot DOVS
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APPENDIX 3%.2
Th: 6x6 dynamical matrix D at the point_5=(kx,ky) for a single
layer of rhombohedral As with bond stretching and bending force constants
a and b is listed below. The real and imaginary parts of the element
D, . are given by DR(i,j) and DI(i,3j) respectively; since D is Hermitian

only the non-zero elements of the lower triangle are given. A,B and C

are given by equation 3.2.4 ; KX=AkX y KY=BBky.
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APPENDIX 4.2

The non-zero elements of the lower triangle of the Hermitian matrix
D at the @ow:w.mnnxx.x%.wmv for the trigonal Se structure are listed
below. The real and imaginary parts of Uwu are DR(i,j) and DI(i,j)
respectively. The force constants are denoted by a,b,c and d; the cell

dimensions are A,B and C; B is the radius of the chain spiral; xxnwbxx.
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APPENDIX 5.2

The matrices A(6x6), B(12x12) and C(6x12) of the SR BCM eigenproblem
are listed belowe. The real and imaginary parts are AR/AT, BR/BI and
CR/CI respectively; since A and B are Hermitian only their lower triangles
are given, € is given in full. Only non-zero elements are given. The

force constants are denoted by a,b,c and d; Ki=2ak , K{=2ak , K7=2ak .

b4 Y Z
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Ck .
Z

X

KY=4/3Ak , KZ

X

structure are listed below in the usual manner.

The non-zero elements of the lower triangle of the Hermitian matrix
2

force constants are a,b . and c¢; AMASS and BMASS are the metal and ligand

atom masses respectively; KX:}AK 9

D for the 2H-CdI
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