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1. Introduction
In Part I of this study [1], we outlined a matched asymptotic-multipole treatment for determining
the band structure of thin- and moderately thick-walled Helmholtz resonator arrays. However,
this formulation implicitly assumed that the wall thickness was not too large as compared with
the aperture width; an assumption that prevents us from achieving very low Helmholtz resonance
frequencies, or equivalently, very low first-band gaps. Here we consider an important extension
to the results derived in Part I by examining arrays of extremely thick-walled resonators (i.e. those
with very high aspect ratios of neck length to neck width) to achieve a low frequency resonance,
see figure 1. We also discuss a homogenization procedure for all wall thickness configurations.
For reference, the nomenclature split-ring resonator is often used for the design considered here, as
well as loop-gap resonator or split-tube resonator from across the literature.

On the topic of homogenization, the literature on two- and three-dimensional Helmholtz
resonator arrays is extensive, particularly since the resonator can exhibit (1) singular
behaviour with respect to its geometry, as well as (2) singular behaviour with respect to
a constitutive quantity (e.g. a high-contrast conductivity). We do not attempt to conduct
an exhaustive literature review here but will instead highlight key works of interest. To
clarify by means of example, a geometrically singular medium could include an array of
resonators where the aperture width of each resonator contracts much more rapidly than
some other geometric parameter, as wavelengths become long relative to the period of the
unit cell. Interestingly, existing works in acoustics [2,3] suggest that for the extremely thick-
walled Helmholtz resonator array problem, the effective density is not frequency dependent,
whereas the effective bulk modulus is indeed frequency dependent and takes negative values
for a fixed frequency interval. This very same behaviour is observed in two-scale asymptotic
treatments of high contrast arrays of cylinders for the Helmholtz equation [4]. The observation
that frequency dependence emerges only in the effective bulk modulus is consistent with
the assertion in Haberman & Guild [5] that a dynamic compressibility is observed near the
Helmholtz resonance frequency for Helmholtz resonator arrays, and not a dynamic density
response.

The outline of this paper is as follows. First, we briefly restate the governing equations
offered in Part I in the following section. We then determine the leading-order outer and inner
solutions within the neck region in §2, where asymptotic matching is also conducted. In §3, we
construct the regularized system for extremely thick-walled resonator arrays before constructing
asymptotic dispersion equations in §4. In §5, we present closed-form representations for the
Helmholtz resonance/cutoff frequency. Numerical examples are then considered in §7, and finally
an extended discussion is given in §8, which highlights the differences of the model results
presented here to those presented in Part I.

(a) Governing wave equation
We consider wave propagation in an acoustic medium satisfying the scalar wave equation

(∂2
x + ∂2

y ) φ + k2φ = 0, (1.1)

where x denotes dimensional Cartesian coordinates, k2 = ρω2/B is the square of the wavenumber,
B is the bulk modulus, ρ is the mass density of the medium, φ is the velocity potential, and ∂x
denotes a partial derivative with respect to x, for example (see Part I for further details). Within
this acoustic medium, we immerse a two-dimensional square array of rigid resonators as shown
in figure 1, spaced a distance d apart, satisfying Neumann conditions on the wall faces, and
Bloch conditions throughout the cell. Implicitly we examine time-harmonic solutions of the form
exp(−iωt) where ω is the angular frequency, but this factor is suppressed throughout for ease of
exposition.
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Figure 1. (a) Representative fundamental unit cell in non-dimensional coordinates for a square array of Helmholtz resonators
with high aspect ratios (i.e. extremely thick-walled Helmholtz resonators), where a and b denote the inner and outer radii,
respectively, and d is the periodicity; (b) close-up of neck region showing central aperture angle θ0 and aperture half-width
angle θap. (Online version in colour.)

2. Helmholtz resonators in the extremely thick-walled limit
We shall now employ the method of matched asymptotic expansions [6,7] as outlined in Part I,
where through non-dimensional rescaling we introduced inner and outer regions of the unit cell.
However, in contrast to the treatment of thick-walled resonators in Part I, where we partitioned
the unit cell for the outer problem into two domains, we now partition the unit cell for the outer
problem into three domains: the interior, neck and exterior regions, and consider the solution
in each domain. The outer solutions for the interior and exterior regions are identical to those
presented in Part I (except that the interior region now has a different radius to the exterior
region), whose results we restate for reference below. For the outer domains, we use coordinates
scaled on the wavenumber

x = kx and y = ky, (2.1)

with the inner and outer radii of the resonator, a and b, scaled as a = ka and b = kb, respectively,
the lattice period d is scaled as d = kd, the non-dimensional cylinder thickness is 2m = b − a, and
the aperture half-width � is scaled as ε = k�. In all that follows we take the asymptotic limit ε → 0.
We now examine the outer solution in the neck region in detail.

(a) Outer solution in the neck region
Note that from the unit cell configuration shown in figure 1, we first rotate and translate the lattice
as (̃x, ỹ) �→ (x sin θ0 − y cos θ0, x cos θ0 + y sin θ0 − b), where θ0 is the central aperture angle, so that
the exterior mouth of the resonator is located at (̃x, ỹ) = (0, 0). In this coordinate setting, we solve

(∂2
x̃ + ∂2

ỹ + 1)φneck = 0 for (̃x, ỹ) ∈ SN , with ∂̃xφneck
∣∣̃
x=±ε

= 0, (2.2)

in the neck region of the resonator SN = {(̃x, ỹ) : (−ε, ε) × (−2m, 0)} as illustrated in figure 2, in the
limit as ε → 0. Away from the aperture mouths, (2.2) admits the complete general solution

φneck =
∞∑

n=0

{pneiλnỹ + qne−iλnỹ} cos
(

nπ (̃x + ε)
2ε

)
,

where λn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

1 −
(nπ

2ε

)2
,

nπ

2ε
< 1,

i

√(nπ

2ε

)2
− 1,

nπ

2ε
> 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.3)

In the closing aperture limit, the dominant contribution comes from the n = 0 term and so the
solution takes the form lim

ε→0
φneck ∼ p0eĩy + q0e−ĩy. Accordingly, the outer solution asymptotics
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Figure 2. (a) Outer problem inside the thick-walled resonator neck of width 2ε and length 2m (not to scale) where (̃x, ỹ)
denotes the centre of the exterior mouth and (x̌, y̌) the centre of the interior mouth. (b)(i) Inner problem geometry at the
exterior neck entrance and (b)(ii) Inner problem geometry after applying the Schwartz–Christoffel mapping (2.7); the capital
letters A, . . . , D and A′, . . . , D′ denote points of correspondence between the two complex planes. (Online version in colour.)

near the entrance and exit to the neck are given by

lim
x̃→0

lim
ỹ→0

φneck ∼ (p0 + q0) + ĩy(p0 − q0), (2.4a)

and

lim
x̌→0

lim
y̌→0

φneck ∼ (p0e−2im + q0e2im) + iy̌(p0e−2im − q0e2im), (2.4b)

respectively, where we express (2.4b) in terms of the shifted origin (x̌, y̌) = (̃x, ỹ + 2m). We note that
for the inner solutions that follow, we use the same rotated and translated frame (̃x, ỹ), and so we
do not need to express the representations (2.4) above in terms of (x, y).

(b) Outer solution in the interior and exterior regions
We now restate results for the outer solution in the interior and exterior domains (see equation
(6.11) of Part I) as we approach the mouths in the form

lim
θ→θ0

lim
r→b

φext ∼ 2iA
π

[
γe − iπ

2
+ log

(
r̃
2

)]
+

∞∑
n=−∞

bnYn(b)einθ0 −
∞∑

n=−∞

{
AQn

2
+ bnY′

n(b)einθ0

}
Jn(b)
J′n(b)

,

(2.5a)
and

lim
θ→θ0

lim
r→a

φint ∼ 2iB
π

[
γe − iπ

2
+ log

(
ř
2

)]
− B

2

∞∑
n=−∞

Q̌n

J′n(a)
Jn(a), (2.5b)

where Qn = Jn(b)H(1)′
n (b) + J′n(b)H(1)

n (b) and Q̌n = Jn(a)H(1)′
n (a) + J′n(a)H(1)

n (a), along with r̃ =√
(x − b cos θ0)2 + (y − b sin θ0)2, ř =

√
(x − a cos θ0)2 + (y − a sin θ0)2, and a = b − 2m. Also, A, bn,

and B are as yet unknown coefficients. In the above, Jn(z) and Yn(z) are Bessel functions of the
first and second kind, respectively, H(1)

n (z) are Hankel functions of the first kind, and a prime
denotes a derivative with respect to argument, i.e. J′n(b) = ∂zJn(z)|z=b. Having obtained asymptotic
forms for the outer solution in the interior, neck and exterior regions, we now consider the task of
determining inner solutions at the junctions to the resonator neck.
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(c) Inner solutions and asymptotic matching procedure
As before, we first rotate and translate the lattice so that the exterior mouth of the resonator is
located at the origin in (̃x, ỹ) coordinates. We now introduce the inner scaling X̃ = x̃/ε and Ỹ = ỹ/ε

along with a regular expansion for φ as in Part I; substituting these into the system we obtain the
leading-order inner boundary value problem

(∂2
X̃

+ ∂2
Ỹ

)Φ = 0 for (X̃, Ỹ) ∈ S̃M, with ∂ÑΦ = 0 for (X̃, Ỹ) ∈ ∂S̃M, (2.6)

where ∂Ñ denotes the normal derivative, S̃M = {(X̃, Ỹ) : |X̃| ≤ 1, −∞ < Ỹ < 0} ∪ {(X̃, Ỹ) : Ỹ > 0} is
the exterior mouth domain shown in figure 2, and for clarity we omit the subscript for Φ0, which
denotes the leading term in the inner expansion as ε → 0. To obtain a solution, we map the exterior
mouth region S̃M to the upper-half plane via the Schwartz–Christoffel mapping

Z̃(W) = 2
π

[(W2 − 1)1/2 − i log((W2 − 1)1/2 + i) + i log W], (2.7)

where Z̃ = X̃ + iỸ and W = U + iV, which exhibits the asymptotic behaviours

lim
W→0

Z̃(W) ∼ 1 + 2i
π

(1 − log 2) + 2i
π

log W and lim
W→∞

Z̃(W) ∼ 2W
π

. (2.8a)

The appropriate solution to Laplace’s equation in the upper-half plane satisfying Neumann
conditions along V = 0 is given by Φ = C1Re(log W) + C2, where C1 and C2 are as yet unknown
and from (2.8) it follows that

lim
Z̃→∞
(UHP)

Φ = C1 log

(
π R̃
2

)
+ C2 and lim

Ỹ→−∞
|X̃|<1

Φ = C1

[
π Ỹ
2

− 1 + log 2

]
+ C2. (2.9a)

For the interior mouth region, the inner solution Ψ , say, is obtained by a treatment analogous
to that outlined above, but now expressed in terms of the inner transformation X̌ = x̌/ε and Y̌ =
y̌/ε = (̃y + 2m)/ε, where for clarity we also omit the subscript for Ψ0. Accordingly, in this region,
from (2.7), we expect the asymptotic behaviour

lim
Ž→∞
(LHP)

Ψ = C3 log

(
π Ř
2

)
+ C4 and lim

Y̌→∞
|X̌|<1

Ψ = C3

[
−π Y̌

2
− 1 + log 2

]
+ C4, (2.9b)

where Ž = X̌ + iY̌ = Ř exp(iΘ̌) and both C3 and C4 are as yet unknown constants. Subsequently,
the matching procedure [6], at leading order, gives rise to the relations

lim
R̃→∞
(UHP)

Φ

∣∣∣∣
R̃=̃r/ε

= lim
r̃→0

lim
θ→θ0

φext and lim
Ỹ→−∞

Φ

∣∣∣∣
X̃=̃x/ε,Ỹ=̃y/ε

= lim
x̃→0

lim
ỹ→0

φneck (2.10a)

and

lim
Ř→∞
(LHP)

Ψ

∣∣∣∣
Ř=ř/ε

= lim
ř→0

lim
θ→θ0

φint and lim
Y̌→∞

Ψ

∣∣∣∣
X̌=x̌/ε,Y̌=y̌/ε

= lim
x̌→0

lim
y̌→0

φneck. (2.10b)

Thus, matching polynomial orders between (2.4) and (2.9), in addition to logarithmic and non-
logarithmic terms between (2.5) and (2.9), allows us to determine, after significant algebra, all
coefficients Cj, as well as the monopole amplitudes B = 2iA (2iτ1/π + τ2τ5)−1/π and

A = 2

πb ¯̄hε

∞∑
n=−∞

gn, (2.11)

where gn = bneinθ0/J′n(b), and

¯̄hε = 2i
π

[
γe − iπ

2
− log

(π

ε

)
−

(
2i
π

τ3 + τ4τ5

)(
2i
π

τ1 + τ2τ5

)−1
]

− 1
2

∞∑
n=−∞

QnJn(b)
J′n(b)

, (2.12)
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along with

τ1 = 2ε

π
(1 − log 2) sin(2m) − cos(2m), τ4 = −2ε

π
(1 − log 2) sin(2m) + cos(2m), (2.13a)

τ2 = −2ε

π
sin(2m), τ5 = 2i

π

[
γe − iπ

2
− log

(π

ε

)]
− 1

2

∞∑
n=−∞

Q̌n

J′n(a)
Jn(a) (2.13b)

and τ3 =
[

2ε

π
(1 − log 2)2 − π

2ε

]
sin(2m) − 2(1 − log 2) cos(2m). (2.13c)

Hence we obtain the same multipole eigensystem as in equation (4.13) of Part I, which we express
as

iA
2

(
J′n(b)Yn(b) + Y′

n(b)Jn(b)
J′n(b)Y′

n(b)
+ 2

∞∑
m=−∞

(−1)n+mSY
m−n(kB)

Jm(b)
Y′

n(b)
e−i(m−n)θ0

)

+ gn +
∞∑

m=−∞
(−1)m+nSY

m−n(kB)
J′m(b)
Y′

n(b)
e−i(m−n)θ0 gm = 0, (2.14)

but with the replacement hε �→ ¯̄hε as written in (2.12). Thus, it would appear that we have a
suitable system of equations for examining arrays of extremely thick-walled resonators; however,

it turns out that the above formulation exhibits pathological behaviour at frequencies near ¯̄hε = 0
which occurs at much lower frequencies than for the wall thickness values discussed in Part I.
This behaviour is an artefact of the formulation, and not related to any physical resonance, and
so we now present a regularization procedure for resolving this issue.

3. Regularized multipole system formulation
As indicated in the previous section, although the system in Part I with the replacement hε �→ ¯̄hε is
indeed formally correct, it can return spurious spectral behaviours upon truncating for numerical
evaluation (i.e. we may observe incorrect folded bands, and flat band surfaces, that are not part of

the genuine spectrum in a neighbourhood around frequencies corresponding to ¯̄hε = 0). We easily
resolve this issue by summing (2.14) over all n to obtain a more numerically stable yet formally
equivalent representation for A (cf., to the form (2.11) above) as

A = 2i

(
E + 2

[ ∞∑
v=−∞

Jv(b)Fv

]
− iπb ¯̄hε

)−1 ∞∑
m=−∞

J′m(b)Fmgm, (3.1)

where

E =
∞∑

u=−∞
Eu and Fm =

∞∑
p=−∞

(−1)p−mSY
m−p(kB)ei(p−m)θ0

Y′
p(b)

, (3.2)

with Eu = [J′u(b)Yu(b) + Y′
u(b)Ju(b)]/[J′u(b)Y′

u(b)]. Substituting the representation for A in (3.1) into
(2.14) admits the regularized system

gn +
∞∑

m=−∞
(−1)m+nSY

m−n(kB)
J′m(b)
Y′

n(b)
e−i(m−n)θ0 gm − χn

Hε

∞∑
m=−∞

J′m(b)Fmgm = 0, (3.3)

for all n, where

χn = En + 2
∞∑

p=−∞
(−1)n+pSY

p−n(kB)
Jp(b)
Y′

n(b)
e−i(p−n)θ0 , (3.4a)

and

Hε = E + 2

[ ∞∑
v=−∞

Jv(b)Fv

]
− iπb ¯̄hε . (3.4b)

On examining the system (3.3) numerically, we find that spurious effects are removed and the
genuine spectrum is observed, see for example figure 3 which is discussed in further detail below.
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Figure 3. Comparison of band diagrams (near the Γ point) for a two-dimensional square array of extremely thick-walled
Helmholtz resonators obtained using multipole methods. Figure (a) shows a spurious result obtained using the system (2.14)
with the updated ¯̄hε , (2.12), and (b) shows the correct result obtained using the regularized system (3.3). Inset: corresponding
fundamental unit cells. Results are given for a dipole truncation L= 1 and truncations Lχn = LFm = LHε

= 13with d̄ = 1,θ0 =
0, b̄= 0.3, h= 100 and θap = π/1024.

In order for the regularization to be effective, the known expressions E, χn, Fm and Hε must
be suitably converged with appropriately chosen truncation numbers for the sums, which we
represent by LE, Lχn , LFm and LHε

, respectively.

4. Asymptotic representations for the dispersion equation
In this section, we construct an asymptotic representation of the dispersion equation for the
regularized system (3.3) at low frequencies. We begin by observing that the lattice sums SY

m, which
feature in (3.3) as well as in the functions Fm (3.2), χn (3.4a) and Hε (3.4b), can be expressed as

SY
m ≈

∞∑
r=−Ωm

β
(m)
r br, (4.1)

where Ωm = 2[Floor{(m − 3)/4} + Floor{(m − 4)/4} + 2] for m ≥ 4, denotes the first non-zero order
of the lattice sum (i.e. Ω4 = 4 and Ω7 = 6), along with Ω0 = Ω1 = Ω2 = Ω3 = 2 [8]. Closed-form
expressions for the first few lattice sums, i.e. the values β

(m)
r for small m, are derived and presented

in appendix A for reference. Note that these terms may contain logarithmic behaviour in the
lattice spacing d and therefore in b should the area fraction f = πb2/d2 be fixed. With the lattice
sum expansions (4.1), we examine the system (3.3) in the limit of vanishing b and to within a
dipole truncation in n, which admits the matrix form

(HεC − P − Q)g ≈ 0, (4.2)

where C is the matrix representation of the system for an array of Neumann cylinders (obtained
by setting χn = 0 in (3.3), see [9, eqn (3.120)]), P and Q are perturbation matrices due to the
aperture, and g is the vector of gm coefficients. These matrices take the forms

C ≈

⎡⎢⎢⎢⎣
1 + π

4 β
(0)
−2

πb
4 eiθ0 (β(1)

−2)∗ −π
4 e2iθ0 (β(2)

−2)∗

− π
4b e−iθ0β

(1)
−2 1 − π

4 β
(0)
−2

π
4b eiθ0 (β(1)

−2)∗

−π
4 e−2iθ0β

(2)
−2 −πb

4 e−iθ0β
(1)
−2 1 + π

4 β
(0)
−2

⎤⎥⎥⎥⎦ , (4.3a)

P ≈

⎡⎢⎢⎢⎢⎢⎣
π2|β(1)

−2|2
4b

π2eiθ0 (β(1)
−2)∗β(0)

−2
4 −π2e2iθ0 ((β(1)

−2)∗)2

4b

−π(πβ
(0)
−2−2)e−iθ0 β

(1)
−2

4b2 −πβ
(0)
−2(πβ

(0)
−2−2)

4b
π(πβ

(0)
−2−2)eiθ0 (β(1)

−2)∗

4b2

−π2e−2iθ0 (β(1)
−2)2

4b −π2e−iθ0 β
(0)
−2β

(1)
−2

4
π2|β(1)

−2|2
4b

⎤⎥⎥⎥⎥⎥⎦ , (4.3b)
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and Q ≈

⎡⎢⎢⎢⎢⎣
π2e−iθ0 β

(1)
−2

2 η∗+eiθ0π2(β(1)
−2)∗η π2b

2 β
(0)
−2η

∗ eiθ0 π2(β(1)
−2)∗

2 η∗

πη
b (2 − πβ

(0)
−2) 0 πη∗

b (2 − πβ
(0)
−2)

−π2e−iθ0 β
(1)
−2

2 η π2b
2 β

(0)
−2η −π2eiθ0 (β(1)

−2)∗

2 η − e−iθ0π2β
(1)
−2η

∗

⎤⎥⎥⎥⎥⎦ , (4.3c)

where second-order terms are taken in most matrix entries above for our analysis in the following
section, but are omitted here for compactness, and

η = −β
(0)
−2

4
+ 1

4
e−2iθ0β

(2)
−2 +

∞∑
q=1

⎧⎨⎩β
(2q+2)
−2q−2e−(2q+2)iθ0

4q+1(2q + 1)!

⎫⎬⎭ , (4.4)

with ∗ denoting the complex conjugate operation. In addition, we have

Hε ≈ −2 + 4¯̄fε + πβ
(0)
−2

b
− π

2

[
eiθ0 (β(1)

−2)∗−β
(1)
−2e−iθ0

]
+ O(b), (4.5)

where we take an analogous scaling to that found in Part I in the form ¯̄fε = πb2 ¯̄hε/(4i), as well as a

dipole truncation for ¯̄hε in (2.12) to obtain the asymptotic representation

lim
b→0

lim
a→0

lim
m→0

¯̄hε ∼ 2i
π

{
1
b2 − 1

8
− log

(
πb
2ε

)
+

[
1
a2 − mπ

ε
− 17

8
− log

(πa
8ε

)]

×
[

1 + 4εm

π

(
1
a2 − 1

8
− log

(πa
2ε

))]−1
}

. (4.6a)

With the above expansions, we are now able to construct closed-form representations for the
dispersion equation of extremely thick-walled resonators, however before proceeding to this task,
we comment that certain β

(2n)
−2n terms in (4.4) are vanishing for square lattices, such as β

(6)
−6, β

(10)
−10

and β
(14)
−14 and that many terms are readily extracted from the explicit forms in appendix A.

(a) Dispersion equation forms along selected symmetry directions
It is instructive to consider cases where the resonator geometry has natural symmetry. Thus, with
the asymptotic system (4.2) in mind, we now take θ0 = 0 and consider Bloch coordinates located
on the high symmetry planes of the Brillouin zone, where (kB, θB) denotes the polar form of the
dimensionless Bloch vector kB.

For reference, an outline of the symmetry planes for the fundamental cell in reciprocal
space (Brillouin zone) is presented in figure 1 of Part I, showing the paths between the high
symmetry Bloch vector coordinates Γ = (0, 0), X = (π/d, 0), M = (π/d, π/d) and Y = (0, π/d). In
the first instance, we evaluate the determinant of the system (4.2) along the Γ X (i.e. θB = 0)
direction, which to leading order, returns the isotropic result from Part I (equation (4.19)) with

the replacement fε �→ ¯̄fε in the form

k2
B = 1 + f

1 − f

(
1 − 2f (1 − ¯̄fε)

1 − 2¯̄fε

)
, (4.7)

where f = πb2/d2 denotes the area ratio and ¯̄fε is defined via (4.6a). By contrast, along the
Γ Y direction (θB = π/2) we observe a much more complicated form, which emerges from the
symmetries of the system matrices

C =

⎡⎢⎣ • 
� �
� � −�
� −
� •

⎤⎥⎦ , P =

⎡⎢⎣ • 
� −•
� � −�

−• −
� •

⎤⎥⎦ and Q =

⎡⎢⎣ • 
� −�
� 0 �
� 
� −•

⎤⎥⎦ ,

where symbols are used to represent the symmetry of each matrix independently (and does not
imply equivalence of values between matrices).
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Subsequently, after a significant amount of algebra, we obtain a representation for the
dispersion equation along Γ Y that appears to be intractable and hence does not provide any
useful insight, despite its high symmetry setting (θ0 = 0 and θB = π/2). For the purposes of
compactness, we do not include the explicit form here, however we conclude that incorporating
anisotropy to the dispersion equation for Helmholtz resonator arrays in the extremely thick-
walled limit is a much more formidable task than for the (moderately) thin-walled case, as
shown in Part I. The unexpected complexity of the dispersion equation along Γ Y can be
understood by considering the geometry of the resonator: in the extremely thick-walled limit,
the neck of each resonator is so thin and long that the resonator is almost invariant under
all rotation and reflection operations for the square lattice. Subsequently, the metamaterial
may be considered almost-isotropic, even as we approach the resonance frequency, and so next-
order asymptotic corrections take on much more complicated forms. Numerical investigations
confirm much smaller anisotropy in this scaled setting, to the point where the medium may
be essentially regarded as isotropic for practical applications. Accordingly, the low-frequency
dispersion equation for extremely thick-walled resonators may be taken to be the isotropic form
(4.7) (which in fact holds for all values of θ0) over the entire Brillouin cell. The effectiveness of this
approximation is examined numerically in §7.

5. Helmholtz resonance (cut-off) condition
As determined in Part I and from the denominator of (4.7) above, the Helmholtz resonance
condition in the extremely thick-walled limit is given by 1 − 2¯̄fε ≈ 0 and requires careful
examination, as such resonators are capable of achieving very low-frequency resonances.

Accordingly, we return to the asymptotic form of ¯̄hε in (4.6a) and subsequently write 1 − 2¯̄fε ≈ 0
in the form

1
8

+ log
(

πb
2ε

)
−

[
1
a2 − mπ

ε
− 17

8
− log

(πa
8ε

)] [
1 + 4εm

π

(
1
a2

)]−1
≈ 0, (5.1)

where τ5 in (2.13) is taken to O(1) in the numerator and to leading order in the denominator. For
the purposes of analysis, we do not advise directly solving (5.1) above to determine the conditions
for resonance, as it is unclear which terms play a leading role in the small ε limit; instead, we seek
the preferred scalings between ε, a (or b), and m that give the lowest frequency resonance.

It is helpful to introduce the scalings m = κmεμ (i.e. where 0 < μ < 1, ε → 0, and κm = O(1)),
and a = κaε

γ (i.e. where 0 < γ < 1, ε → 0 and κa = O(1)) which admits

1
8

+ log

(
π [κaε

γ−1 + 2κmεμ−1]
2

)
− [(1/κ2

a )ε−2γ − κmεμ−1π − 17/8 − log(πκaε
γ−1/8)]

[1 + 4κmε1+μ−2γ /(πκ2
a )]

≈ 0.

(5.2)
The radii a = κaε

γ and b = κaε
γ + 2κmεμ must be of the same order, requiring μ ≥ γ . We now

examine the different dominant balance scalings that are possible for the representation (5.2).

(i) Dominant balance in all three numerator terms

From the form (5.2), we take the scaling 1 + μ − 2γ > 0, where to ensure that the O(ε−2γ ), O(εμ−1)
and O(1) terms balance in the numerator, we require γ = 0 and μ = 1. Accordingly, the Helmholtz
resonance condition then takes the form

9
4

+ 2 log
(πκa

4ε

)
≈

[
1

κ2
a

− πκm

]
, (5.3a)

as ε → 0. Expressing the above in dimensional terms we find

kmax ≈ 1
ā

[
9
4

+ 2 log
(

π ā
4�̄

)
+ πm̄

�̄

]−1/2
, (5.3b)

as the Helmholtz resonance condition under this dominant balance scaling.
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(ii) Dominant balance in numerator pairs

Another relationship emerges by considering (5.2) in the 1 + μ − 2γ > 0 regime again, which gives

9
4

+ log

(
π2κaε

γ−1[κaε
γ−1 + 2κmεμ−1]
16

)
≈

[
1

κ2
a
ε−2γ − πκmεμ−1

]
, (5.4)

where balance on the right-hand side is achieved with the scaling γ = 1
2 (1 − μ), which, as μ ≥ γ ,

means that μ ≥ 1/3. Turning to the logarithmic argument we see that for μ > 1/3, the resonance
condition (5.4) takes the form

9
4

+ log

(
π2κ2

a ε−1−μ

16

)
≈

[
1

κ2
a

− πκm

]
εμ−1, (5.5a)

whereas for μ = 1/3 we observe

9
4

+ log

(
π2κaε

−4/3[κa + 2κm]
16

)
≈

[
1

κ2
a

− πκm

]
ε−2/3. (5.5b)

Expressing these resonance conditions in terms of dimensional parameters we again find for μ >

1/3 the form in (5.3b), and for μ = 1/3 the slightly different form

kmax ≈ 1
ā

[
9
4

+ log

(
π2āb̄
16�̄2

)
+ πm̄

�̄

]−1/2

, (5.6)

with numerical investigations suggesting that only minor differences are found between (5.3b)
and (5.6), since a and b must be the same order. For reference, under the dominant balance scaling
μ + 1 − 2γ > 0, we may write

¯̄fε ≈ b2

2

[
1
a2 + 1

b2 − 9
4

− πm

ε
− log

(
π2ab
16ε2

)]
, (5.7)

which is identical to the result obtained by considering f̌ε for moderately thick-walled resonators
in equation (6.13) of Part I in the limit as h = m̄/�̄ → ∞, where q ≈ 4 exp(−2 − πh) and C ≈
2/π . Note however that we have previously taken m → 0 to obtain (4.6a), and so such a limit
corresponds to a regime where the aperture width 2ε contracts much more rapidly than the
aperture length 2m.

6. Homogenization of Helmholtz resonator arrays

(a) Classical homogenization results for arrays of ideal cylinders
For an isotropic fluid medium of density ρ and bulk modulus B, structured with a two-
dimensional array of isotropic fluid cylinders, of density ρc and bulk modulus Bc, the effective
density and bulk modulus are given explicitly in the quasi-static limit by [10,11]

ρ−1
eff = 1

ρ

ρc(1 − f ) + ρ(1 + f )
ρc(1 + f ) + ρ(1 − f )

and B−1
eff = 1 − f

B
+ f

Bc
, (6.1)

where f = πb2/d2, as defined previously, denotes the filling fraction. Subsequently, results
corresponding to a two-dimensional array of cylinders with Neumann boundary conditions on
the walls take the form

ρ−1
eff = 1 − f

ρ(1 + f )
and B−1

eff = 1 − f
B

, (6.2a)

which are obtained via the limits Bc → ∞ and ρc → ∞ in (6.1) above. Substituting (6.2a) into the
(dimensional) dispersion equation for plane waves in an unbounded isotropic medium

k̄Bρ−1
eff k̄B − ω2B−1

eff = 0, (6.2b)
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we obtain the (dimensionless) dispersion equation for an array of Neumann cylinders in the form
k2

B = 1 + f , as seen from our analysis in Part I and from Movchan et al. [9, Eq. (3.158)], and where
k̄B = kkB is the nondimensional Bloch vector. Similarly, if we return to the two-phase fluid array
results (6.1) and take the limits Bc → B and ρc → ∞ we obtain

ρ−1
eff = 1 − f

ρ(1 + f )
and B−1

eff = 1
B

, (6.3a)

which on substitution in (6.2b) returns the dispersion relation

k2
B = 1 + f

1 − f
, (6.3b)

and is identical to the lowest-order (isotropic) approximation for an array of thin-walled
Helmholtz resonators at quasi-static frequencies (i.e. ω → 0), as given in eqn (4.22) of Part
I and in Llewellyn Smith & Davis [12]. That is, the lowest-order (isotropic) approximation
for the dispersion equation of a Helmholtz resonator array (6.3b) at very low frequencies is
indistinguishable from an array of fluid cylinders that do not possess a contrast in bulk modulus
but are much denser than the background fluid. On comparing (6.2a) and (6.3a) we see that the
impact of introducing a small gap into the wall of a perfect Neumann cylinder has the leading-
order effect of modifying the effective bulk modulus but not the effective density. As such, we
may expect to recover the same expressions for the bulk modulus and density in (6.3a) at low
frequencies from any isotropic descriptions for resonator arrays.

(b) Isotropic descriptions for thin-walled Helmholtz resonator arrays
Having discussed the behaviour of the isotropic description at zero frequency, we now restate the
result obtained in Part I (equation (4.19))

k2
B = 1 + f

1 − f

(
1 − 2f (1 − fε)

1 − 2fε

)
, (6.4)

which is valid for frequencies across the range of the first band surface, where

fε ∼ 1 − b2

8
+ b2 log

(
θap

2

)
, (6.5)

and θap denotes the aperture half-width angle. Here, we emphasize that there are infinitely many
ways in which this dispersion equation may be decomposed into the form (6.2b). For example, we
may extract from (6.4) the response functions

ρ−1
eff = (1 − f )

ρ(1 + f )
and B−1

eff = 1
B

(1 − 2fε − 2f (1 − fε))
(1 − 2fε)

, (6.6)

as candidates for the behaviour of the resonator array, within an isotropic approximation. Such
expressions are consistent with the two-phase fluid results (6.3a) as ω → 0, vanishing filling
fraction results f → 0, and the expressions for Neumann cylinders (6.2a) as the aperture is closed
(i.e. as fε → ∞). The absence of dispersion in the density response is also consistent with existing
literature on the topic [2,3]. Thus, we consider (6.6) as the effective (homogenized) quantities of
the medium for frequencies spanning the first band surface, within an isotropic approximation.

(c) Anisotropic descriptions for thin-walled Helmholtz resonator arrays
As established in Part I, thin-walled resonator arrays generally exhibit strong anisotropy at low
frequencies, and so isotropic descriptions are insufficient to accurately describe the first band
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surface. Accordingly, we restate the anisotropic result for the first spectral band from Part I
(equation (4.25a)):

k2
B = (f + 1)[b2f (2f − 1) + fε(f + 1)(2fεf − 2fε − 2f + 1)]

b2f cos(2[θ0 − θB]) + b2f 2 + fε(2fε − 1)(f 2 − 1)
, (6.7)

and emphasize once more that the assignment of the effective density and bulk modulus is non-
unique in the dispersion equation for plane waves in an anisotropic medium [13]

k̄Bi(ρ
−1
eff )ijk̄Bj − ω2B−1

eff = 0. (6.8)

For example, we may propose the candidate forms

ρ−1
eff = (1 − f )

ρ(1 + f )

{[
1 0
0 1

]
+ b2f

H

[
−[1 − cos(2θ0)] sin(2θ0)

sin(2θ0) −[1 + cos(2θ0)]

]}
(6.9a)

and

B−1
eff = (1 − f )

BH [b2f (2f − 1) + (f + 1)fε(2(f − 1)fε − 2f + 1)], (6.9b)

where
H= b2f 2 + b2f + (f 2 − 1)fε(2fε − 1). (6.10)

These expressions are consistent with both the isotropic results (6.6) and the two-phase fluid
results (6.3a) as ω → 0, as well as with the closed aperture (Neumann cylinder) results (6.2a) as
fε → ∞ and the vanishing fill fraction limit f → 0. Note that the expression H emerges from the
anisotropic approximation to the Helmholtz resonance condition det{ρ−1

eff } =H= 0.

(d) Descriptions for moderately thick-walled Helmholtz resonator arrays
For moderately thick-walled resonators, the analysis proceeds as in §6b and 6c but with the
replacement fε �→ f̌ε , where the definition for f̌ε is given in Part I (equation (6.9)).

(e) Descriptions for extremely thick-walled Helmholtz resonator arrays
To obtain an isotropic description for the extremely thick-walled resonator configuration discussed

in this Part II, the analysis proceeds as in §6b with the replacement fε �→ ¯̄fε where ¯̄fε is defined in
(5.7). As shown in §4a earlier, anisotropic descriptions derived from the regularized system for
extremely thick-walled resonators are generally intractable. That said, it should be possible to obtain

an anisotropic description of the first spectral band alone using (6.7) with the replacement fε �→ ¯̄fε .

7. Numerical results
In this section, we compute a broad selection of band diagrams, comparing results from our
regularized system (3.3) and asymptotic dispersion equation (4.7) against a full finite-element
treatment. We examine the impact of varying the aspect ratio h = 2m/2� = (b̄ − ā)/2�̄, varying the
aperture width θap, and varying the filling fraction f , upon the spectral behaviour of the array,
as well as its impact on the Helmholtz resonance frequency. We also evaluate expressions for the
effective inverse density and effective inverse bulk modulus (compressibility) for a selection of
thin-walled, moderately thick-walled, and extremely thick-walled Helmholtz resonator arrays in
figures 8 and 9, within the isotropic (6.6) and anisotropic (6.9) approximations given earlier. For
reference we consider an air background where B = 141.83 KPa and ρ = 1.2041 kg m−3.

In figure 3, we examine the band diagram for an array of extremely thick-walled resonators
near the Γ symmetry point, comparing the result obtained from the system in Part I (with the

replacement hε �→ ¯̄hε) against that obtained from the regularized system (3.3) directly. In the
former case, figure 3a demonstrates unexpected spectral behaviour in the form of band folding

effects near k values corresponding to ¯̄hε ≈ 0. At the cusps of the folded bands, the group velocity
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Figure 4. Band diagrams for two-dimensional square arrays of extremely thick-walled Helmholtz resonators comparing the
finite-element solution (blue curves) against results obtained using the regularized system (3.3) for dipole L= 1 (dashed black
curves) and quadrupole L= 3 (green curves) truncations. Inset: corresponding fundamental unit cells. Figure (a) corresponds
to h= 100 (ā≈ 0.116) and θap = π/1024 and (b) corresponds to ā= 0.1 and θap = π/64. In both figures, we use the
truncations Lχn = LFm = LHε

= 13 with d̄ = 1, θ0 = 0 and b̄= 0.3. (Online version in colour.)

∂ω/∂ k̄Bi is in principle infinite [14], although as shown in figure 3b, such features are in fact
spurious and are not a feature of the genuine system. Such behaviour demonstrates the need to
exercise appropriate caution when calculating band diagrams using multipole methods, although
spurious spectral behaviour can be overcome using numerical techniques: by searching for both
the zero determinant and vanishing minimum singular value of the matrix system and only
considering those values which satisfy both measures.

In figure 4, we examine the band diagram for two extremely thick-walled resonator
configurations, comparing results for the regularized system (3.3) under different truncations
against those obtained using finite-element methods. In general, we find that a dipole
approximation (dashed black lines) works quite well up to the saddle point frequency of the
second band surface, with quadrupole corrections required only for higher frequencies. Hence,
in the figures that follow (figures 5–7) we consider a quadrupole system truncation (L = 3) for
overall accuracy and a dipole system truncations to derive asymptotic descriptions. A significant
change is observed in the Helmholtz resonance frequency (equivalently, the maximum frequency
of the first band surface) between the two configurations in figure 4, which is attributable to the
change in aperture angle. The impact of this parameter is discussed further in figure 10.

In figure 5, we compute the band diagrams for a extremely thick-walled Helmholtz resonator
array as the channel aspect ratio h is varied. Here we observe that the multipole system, within a
quadrupole approximation, is likewise able to recover the spectral behaviour to excellent accuracy
and that the isotropic approximation (4.7) is able to recover the first band, determine the width
of the first band gap and describe the second band surface at low frequencies, provided that h is
not too large. For all values of h, we find that the isotropic approximation works surprisingly well
over the range of the first band surface.

Similarly, figure 6 examines the impact of varying the aperture half-angle θap on the band
diagram for a square array of extremely thick-walled resonators. Once more, we find that the
multipole system exhibits excellent performance, and that the isotropic approximation (4.7) also
performs surprisingly well, provided that the aperture half-angle is not too large. In fact, for
θap = π/16 we observe that the first and second band surfaces are degenerate along MY (i.e. a band
crossing is observed). It is clear that the Helmholtz resonance/cut-off frequency is considerably
sensitive to varying aperture angle, which we discuss further in figure 10.

In figure 7, we determine the band diagrams for a extremely thick-walled Helmholtz resonator
array, as the filling fraction is varied. As in the preceding figures, the multipole treatment works
remarkably well, even as the outer resonator wall almost touches the boundaries of the unit cell.
This is quite surprising given that an ever-increasing number of multipole orders are required
to compute the band diagram for ideal cylinders in the same limit [9]. As before, the isotropic
approximation (4.7) is able to recover the first band surface to exceptional accuracy, and is able
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Figure 5. Band diagrams for a two-dimensional square array of extremely thick-walled Helmholtz resonators as the channel
aspect ratio h= m/ε is increased: (a) h= 10, (b) h= 50, (c) h= 100 and (d) h= 150, with fundamental unit cells inset.
Multipole results from the regularized system (3.3) are given (green lines) for a system truncation L= 3 and truncations Lχn =
LFm = LHε

= 13with the isotropic approximation (4.7) (dashed red lines) superposed, in addition to finite-element results (blue
lines). In the above figures, we use d̄ = 1, θ0 = 0, b̄= 0.3 and θap = π/1024. (Online version in colour.)
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Figure 6. Band diagrams for a two-dimensional square array of extremely thick-walled Helmholtz resonators as the aperture
half-angle θap is increased: (a) θap = π/1024, (b) θap = π/256, (c) θap = π/64 and (d) θap = π/16, with fundamental
unit cells inset. Figure legends and truncation values are identical to those in figure 5; here we use d̄ = 1, θ0 = 0, b̄= 0.3 and
ā= 0.1. (Online version in colour.)
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Figure 7. Band diagrams for a two-dimensional square array of extremely thick-walled Helmholtz resonators as the filling
fraction f is increased: (a) f = 0.1, (b) f = 0.3, (c) f = 0.5 and (d) f = 0.7, with fundamental unit cells inset. Figure legends
and truncation values are identical to those infigure 5; hereweuse d̄ = 1,θ0 = 0,h= 100 andθap = π/1024. (Online version
in colour.)

to extend into the second band surface for moderate filling fractions. Even as the filling fraction
approaches the wall-touching limit, the approximation (4.7) is still able to determine the width of
the first band gap to suitable accuracy.

In figure 8, we examine the effective inverse density and effective inverse bulk modulus for
an array of thin-walled Helmholtz resonators, specifically the anisotropic expression (6.9). In
figure 8a,b, we observe an expected frequency dependence in one component of the effective
inverse density matrix as well as for the inverse bulk modulus, when anisotropy is considered,
see (6.9). Here, (ρeff)

−1
yy also diverges at the Helmholtz resonance frequency, i.e. at the vanishing

of H defined in (6.10). Results for the isotropic approximation are qualitatively similar to those
presented here, where ρ−1

eff /ρ−1 is given by (ρeff)
−1
xx /ρ−1 since frequency dependence is not

observed. Similarly, in figure 8c,d, we observe frequency dependence and divergence at the
resonance frequency (6.10) for all entries in (ρeff)

−1
ij as well as for the inverse bulk modulus,

when θ0 = π/6. By rotating the resonator we have reduced the symmetry of the medium, allowing
for stronger anisotropy and dispersion. In any case, despite the emergence of anisotropy in the
effective inverse density, no changes in sign are observed in the coefficients over the range of the
first band surface (i.e. (ρeff)

−1
xy is either zero or negative). This suggests that exotic effects such as

negative refraction are not supported on the first band surface for Helmholtz resonator arrays,
however we expect that negative refraction is supported at higher frequencies where the correct
band curvature is exhibited [15].

In figure 9a,b we consider the effective inverse density and inverse bulk modulus functions,
within an anisotropic description, corresponding to a moderately thick-walled resonator array.
These curves are obtained via (6.9) with the replacement fε �→ f̌ε (results for the isotropic
descriptions are not included here as these are qualitatively similar ). As observed in the thin-
walled case, we see frequency dependence in both material tensors over the frequency range
of the first band surface, which is accompanied by unexpected singular behaviour above the
Helmholtz resonance frequency. No firm conclusions may be drawn from this, however, as this
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Figure 8. The effective inverse density and effective inverse bulk modulus for a two-dimensional array of thin-walled
Helmholtz resonators within an anisotropic approximation (6.9) for (a,b) θ0 = 0 and (c,d) θ0 = π/6. The shaded red
regions denote all k-values above the Helmholtz resonance/cut-off frequency given by vanishing (6.10). Inset: corresponding
fundamental unit cells. In the above figures, we use d̄ = 1, θap = π/12 and b̄= 0.3. (Online version in colour.)

behaviour lies outside the region of validity for the expressions. In figure 9c,d, we consider an

extremely thick-walled resonator array (i.e. (6.6) with the replacement fε �→ ¯̄fε) which exhibits much
more interesting behaviour. In particular, we observe a pole in B−1

eff at low frequencies, where
the width of the first band gap may be defined as the interval between the Helmholtz resonance

frequency given by 1 − 2¯̄fε ≈ 0 and the zero of B−1
eff ; that is, the first band gap corresponds to the

interval where the effective bulk modulus is negative. Once this physical parameter returns to
positive values (i.e. upon exiting the band gap) we find that these isotropic descriptions extend
well into the range of the second band surface, as seen in figure 5c. For reference, we estimate our
descriptions (6.6) to hold over the approximate range 0 ≤ k ≤ 1.5 for this example, which supports
the assertion that the isotropic description for extremely thick-walled resonator arrays appears to be
valid over a significantly broader frequency range than for the resonators discussed in Part I.

Finally, in figure 10, to complement the band diagram figures outlined in figures 5 and 6, we

solve 2¯̄fε − 1 ≈ 0 to track the Helmholtz resonance/cut-off frequency as the aspect ratio h and
aperture half-angle θap are varied. In figure 10a, we observe that the cut-off frequency for the
first band surface is able to achieve a minimum of k ≈ 0.369 at h ≈ 52 for a fixed θap = π/1024,
and that as the aspect ratio h becomes large, the cut-off frequency grows larger with polynomial
scaling. The possibility of achieving a cutoff frequency minimum, by tuning the wall thickness,
may prove useful for those involved in the design of acoustic metamaterials. Likewise, figure 10b
demonstrates that the resonant frequency decreases with decreasing aperture half-angle, as
expected, and scales as kmax ∝ θ

1/2
ap as θap → 0.
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Figure 9. The effective inverse density and effective inverse bulk modulus (a,b) for a two-dimensional array of moderately
thick-walled Helmholtz resonators within an anisotropic approximation (6.9); (c,d) for an array of extremely thick-walled
Helmholtz resonators within an isotropic approximation (6.6). Inset: corresponding fundamental unit cells. In (a,b) the shaded
red region denotes all k-values above the Helmholtz resonance/cut-off frequency (6.10), where we use d̄ = 1, θ0 = 0, θap =
π/48, h= 3, and b̄= 0.3. In (c,d) the shaded red region denotes the width of the first band gap as shown in figure 5c, where
we use d̄ = 1, θ0 = 0, θap = π/1024, h= 100 and b̄= 0.3. (Online version in colour.)
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Figure 10. Evaluating the cut-off/Helmholtz resonance frequency (by solving 2¯̄fε − 1≈ 0) in the extremely thick-walled
setting as (a) the aspect ratio of the resonator neck h= m/� is varied, as shown in figure 5, and as (b) the aperture half-angle
θap is varied, as demonstrated in figure 6.
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8. Discussion
In this paper, we have presented a matched asymptotic-multipole expansion procedure for
determining the band structure of an acoustic metamaterial comprising a two-dimensional array
of Helmholtz resonators that possess large wall thicknesses and narrow neck widths (i.e. high
aspect ratios of neck length to neck width). We have also derived a compact dispersion equation
which is able to describe the first band surface, first band gap, and frequencies well into the second
band surface, over a range of practical settings. In addition, we have outlined a homogenization
procedure for thin-walled, moderately thick-walled, and extremely thick-walled resonator arrays,
presenting analytical forms for the effective inverse density tensor and the effective inverse bulk
modulus. The effective response functions derived here extend well beyond the quasi-static limit
to higher frequencies, depending on the resonator geometry. Furthermore, we have also derived
closed-form representations for the Helmholtz resonance frequency in the extremely thick-walled
setting.

We demonstrate that the extremely thick-walled resonators are able to achieve extremely low
Helmholtz resonance frequencies, in contrast to thin- and moderately thick-walled resonators
presented in Part I, which has a marked impact on the performance of the array. By incorporating
long neck lengths 2m into the formulation we provide an additional degree of freedom for
controlling the frequency range of the first band surface, indirectly controlling features such as
the low-frequency phase and group velocity. Incidentally, the Helmholtz resonance frequency is
often approximated in the literature via the form [16, eqn (5.3.12)]

ωmax ≈
√

B
ρ

√
A

LV
, or equivalently, kmax ≈ 1

ā

(
πm̄

�̄

)−1/2
, (8.1)

where A is the total aperture width 2�̄, L denotes the length of the resonator neck 2m̄, and V
denotes the enclosed resonator area π ā2. The major disadvantage of (8.1) is that the approximation
is quite crude, as it treats the neck as distinct from the enclosed volume, and as a result frequently
requires correction factors and an ’effective’ neck length to recover accuracy. We stress that our
Helmholtz resonance expressions in (5.3b), (5.6), and in Part I do not require any such corrections.

On comparing results from Parts I and II, we find that anisotropy in both the band structure
and in the effective tensors is greatest for thin-walled resonators, with anisotropic effects
considerably reduced as we approach the extremely thick-walled limit. In fact, we find that
extremely thick-walled resonators may be treated as almost-isotropic media. A core advantage of
our matched asymptotic-multipole expansion treatment is that it avoids the need for extensive
fully numerical procedures, such a finite-element methods, for determining the low-frequency
band structure of acoustic metamaterials. Fully numerical procedures require intensive meshing
inside the neck region as it becomes increasingly thin, and although the computational domain
is two-dimensional, such requirements can massively increase computation times and resource
requirements. By contrast, our asymptotic dispersion equations provide rapidly evaluable closed-
form representations for band surfaces over a wide frequency range. It is of interest to extend the
methods outlined here to related geometries, such as resonators with long maze-like channels
[17] or resonators nested within resonators [18], which is presently under investigation by
the authors.

In relation to our homogenization treatment, we emphasize that composite materials and
metamaterials have the potential to exhibit generalized constitutive relations [19]. Such behaviour
occurs widely across the acoustics and elasticity literature, where these materials are known
as Willis media [20–22] (or bi-anisotropic media in the electromagnetics literature [23]). It would
certainly be of interest to investigate, and possibly classify, the existence of Willis coupling effects
in resonator arrays in further detail, see [24]. Finally, there are points regarding passivity and
causality in resonator arrays, and the behaviour of matched asymptotic expansion solutions,
which are worth investigating and this will be reported on by the authors in a forthcoming
article.
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Appendix A. Asymptotic forms of the lattice sums
As discussed in the appendix of Part I, the lattice sums SY

m emerge frequently in the study
of periodic media, but are conditionally convergent in their most direct form and so must be
regularized in order to retrieve physically meaningful results. The convergent expressions given
in Part I are used in all relevant numerical computations, whereas for the asymptotic analysis we
follow the procedures outlined in [25,26], to derive forms in the limit as b → 0, for example:

SY
0 ∼ − 4f

πb2(k2
B − 1)

+ 1
π

[
−2γe + log

(
fΓ (1/4)4

π2b2

)]
, SY

4 ∼ − f 2Γ ( 1
4 )8

10π5b4 ,

SY
1 ∼ − 4ifkB

πb2(k2
B − 1)

eiθB +
(

ikB

π

)
eiθB , SY

6 ∼ 1
b4

[
f 2k2

BΓ (1/4)8

π5 e2iθB + 5f 2k2
BΓ (1/4)16

960π9 e−2iθB

]
,

and SY
2 ∼ 4fk2

B

πb2(k2
B − 1)

e2iθB +
[

k2
BΓ ( 1

4 )8

384π5 e−2iθB − k2
B

2π
e2iθB

]
, SY

8 ∼ −3f 4Γ (1/4)16

5π9b8 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A 1)

where Γ (z) denotes the Gamma function. Although these sums are defined in terms of the lattice
period d, we introduce f = πb2/d2, the cylinder area fraction, here, since the limit of b → 0 (with f
fixed) is considered in our analysis.

References
1. Smith MJA, Abrahams ID. 2022 Tailored acoustic metamaterials. Part I. Thin- and thick-walled

Helmholtz resonator arrays. Proc. R. Soc. A 478, 20220124. (doi:10.1098/rspa.2022.0124)
2. Schweizer B. 2017 Resonance meets homogenization. J. Dtsch. Math.-Verein. 119, 31–51.

(doi:10.1365/s13291-016-0153-2)
3. Lamacz A, Schweizer B. 2016 Effective acoustic properties of a meta-material consisting of

small Helmholtz resonators. Preprint. (https://arxiv.org/abs/1603.05395)
4. Zhikov V. 2005 On spectrum gaps of some divergent elliptic operators with periodic

coefficients. St. Petersb. Math. J. 16, 773–790. (doi:10.1090/S1061-0022-05-00878-2)
5. Haberman MR, Guild MD. 2016 Acoustic metamaterials. Phys. Today 69, 42–48. (doi:10.1063/

PT.3.3198)
6. Crighton DG, Dowling AP, Ffowcs Williams JE, Heckl M, Leppington FG. 1992 Modern

methods in analytical acoustics lecture notes. Berlin, Germany: Springer.
7. Cotterill PA, Parnell WJ, Abrahams ID, Miller R, Thorpe M. 2015 The time-harmonic

antiplane elastic response of a constrained layer. J. Sound Vib. 348, 167–184. (doi:10.1016/
j.jsv.2015.03.014)

8. OEIS Foundation Inc. 2022 Entry A004524 in The On-Line Encyclopedia of Integer Sequences.
(http://oeis.org/A004524)

9. Movchan AB, Movchan NV, Poulton CG. 2002 Asymptotic models of fields in dilute and densely
packed composites. London, UK: Imperial College Press.

10. Torrent D, Sánchez-Dehesa J. 2006 Effective parameters of clusters of cylinders embedded in
a nonviscous fluid or gas. Phys. Rev. B 74, 224305. (doi:10.1103/PhysRevB.74.224305)

http://dx.doi.org/10.1098/rspa.2022.0124
http://dx.doi.org/10.1365/s13291-016-0153-2
https://arxiv.org/abs/1603.05395
http://dx.doi.org/10.1090/S1061-0022-05-00878-2
http://dx.doi.org/10.1063/PT.3.3198
http://dx.doi.org/10.1063/PT.3.3198
http://dx.doi.org/10.1016/j.jsv.2015.03.014
http://dx.doi.org/10.1016/j.jsv.2015.03.014
http://oeis.org/A004524
http://dx.doi.org/10.1103/PhysRevB.74.224305


20

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220125

..........................................................

11. Martin P, Maurel A, Parnell W. 2010 Estimating the dynamic effective mass density of random
composites. J. Acoust. Soc. Am. 128, 571–577. (doi:10.1121/1.3458849)

12. Llewellyn Smith SG, Davis AMJ. 2010 The split ring resonator. Proc. R. Soc. A 466, 3117–3134.
(doi:10.1098/rspa.2010.0047)

13. Norris AN. 2015 Acoustic cloaking. Acoust. Today 11, 38–46.
14. Chen PY, Poulton C, Asatryan A, Steel M, Botten LC, De Sterke CM, McPhedran R. 2011

Folded bands in metamaterial photonic crystals. New J. Phys. 13, 053007. (doi:10.1088/
1367-2630/13/5/053007)

15. Smith MJA, McPhedran RC, Poulton CG, Meylan MH. 2012 Negative refraction and
dispersion phenomena in platonic clusters. Waves Rand. Comp. Media 22, 435–458.
(doi:10.1080/17455030.2012.711495)

16. Howe MS. 1998 Acoustics of fluid-structure interactions. Cambridge, UK: Cambridge University
Press.

17. Quan L, Ra’di Y, Sounas DL, Alù A. 2018 Maximum Willis coupling in acoustic scatterers.
Phys. Rev. Lett. 120, 254301. (doi:10.1103/PhysRevLett.120.254301)

18. Elford DP, Chalmers L, Kusmartsev FV, Swallowe GM. 2011 Matryoshka locally resonant
sonic crystal. J. Acoust. Soc. Am. 130, 2746–2755. (doi:10.1121/1.3643818)

19. Willis JR. 2011 Effective constitutive relations for waves in composites and metamaterials.
Proc. R. Soc. A 467, 1865–1879. (doi:10.1098/rspa.2010.0620)

20. Norris AN, Shuvalov A, Kutsenko A. 2012 Analytical formulation of three-dimensional
dynamic homogenization for periodic elastic systems. Proc. R. Soc. A 468, 1629–1651.
(doi:10.1098/rspa.2011.0698)

21. Torrent D, Pennec Y, Djafari-Rouhani B. 2015 Resonant and nonlocal properties of phononic
metasolids. Phys. Rev. B 92, 174110. (doi:10.1103/PhysRevB.92.174110)

22. Muhlestein MB, Sieck CF, Wilson PS, Haberman MR. 2017 Experimental evidence of
Willis coupling in a one-dimensional effective material element. Nat. Comm. 8, 1–9.
(doi:10.1038/ncomms15625)

23. Lindell IV, Sihvola A, Viitanen A, Tretyakov S. 1994 Electromagnetic waves in chiral and
bi-isotropic media. Norwood, MA: Artech House.

24. Smith MJA, Cotterill PA, Nigro D, Parnell WJ, Abrahams ID. 2022 Asymptotics of the meta-
atom: plane wave scattering by a single Helmholtz resonator. Preprint. (https://arxiv.org/
abs/2204.02840)

25. McPhedran R, Poulton C, Nicorovici N, Movchan A. 1996 Low frequency corrections to the
static effective dielectric constant of a two-dimensional composite material. Proc. R. Soc. Lond.
A 452, 2231–2245. (doi:10.1098/rspa.1996.0119)

26. Chen PY, Smith MJA, McPhedran RC. 2018 Evaluation and regularization of phase-
modulated Eisenstein series and application to double Schlömilch-type sums. J. Math. Phys.
59, 072902. (doi:10.1063/1.5026567)

http://dx.doi.org/10.1121/1.3458849
http://dx.doi.org/10.1098/rspa.2010.0047
http://dx.doi.org/10.1088/1367-2630/13/5/053007
http://dx.doi.org/10.1088/1367-2630/13/5/053007
http://dx.doi.org/10.1080/17455030.2012.711495
http://dx.doi.org/10.1103/PhysRevLett.120.254301
http://dx.doi.org/10.1121/1.3643818
http://dx.doi.org/10.1098/rspa.2010.0620
http://dx.doi.org/10.1098/rspa.2011.0698
http://dx.doi.org/10.1103/PhysRevB.92.174110
http://dx.doi.org/10.1038/ncomms15625
https://arxiv.org/abs/2204.02840
https://arxiv.org/abs/2204.02840
http://dx.doi.org/10.1098/rspa.1996.0119
http://dx.doi.org/10.1063/1.5026567

	Introduction
	Governing wave equation

	Helmholtz resonators in the extremely thick-walled limit
	Outer solution in the neck region
	Outer solution in the interior and exterior regions
	Inner solutions and asymptotic matching procedure

	Regularized multipole system formulation
	Asymptotic representations for the dispersion equation
	Dispersion equation forms along selected symmetry directions

	Helmholtz resonance (cut-off) condition
	Homogenization of Helmholtz resonator arrays
	Classical homogenization results for arrays of ideal cylinders
	Isotropic descriptions for thin-walled Helmholtz resonator arrays
	Anisotropic descriptions for thin-walled Helmholtz resonator arrays
	Descriptions for moderately thick-walled Helmholtz resonator arrays
	Descriptions for extremely thick-walled Helmholtz resonator arrays

	Numerical results
	Discussion
	References

