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Abstract
The nitric oxide (NO)–protein kinase G (PKG) pathway has been known for some time to be an important target for cardio-
protection against ischaemia/reperfusion injury and heart failure. While many approaches for reducing infarct size in patients 
have failed in the past, the advent of novel drugs that modulate cGMP and its downstream targets shows very promising 
results in recent preclinical and clinical studies. Here, we review main aspects of the NO–PKG pathway in light of recent 
drug development and summarise potential cardioprotective strategies in which cGMP is the main player.
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Introduction

Since the initial discovery that nitric oxide (NO) is the 
endothelial-derived relaxing factor, the last few decades 
have seen intensive research directed toward understanding 
this signal molecule and its intracellular signalling cascades. 
Numerous preclinical studies have shown promising results 
suggesting a cardioprotective role of NO signalling and 
revealed the NO–cGMP–PKG cascade as the responsible 
signalling pathway [6, 27, 28, 30, 39, 63]. Indeed numerous 
studies have demonstrated that disruption of this pathway 
leads to various pathological changes in the heart, including 
vascular and ventricular dysfunction, fibrosis and hypertro-
phy. Although not all studies are in accordance with this 
optimistic view on the NO–cGMP–PKG system, targeting 
this pathway has gained much attention, particularly from 
scientists keen to develop an efficient drug to treat heart 
failure. In this brief review, we will focus on pharmacologi-
cal aspects of the cGMP–PKG pathway with updates from 
recent preclinical and clinical studies in relation to its direct 
effect on the heart. We also refer readers to excellent recent 

reviews providing in-depth overview of NO–cGMP–PKG 
pathway such as [40].

Cardioprotective cGMP–PKG pathway

NO and natriuretic peptides (NPs) are the two known classes 
of upstream molecules that can trigger the cGMP–PKG 
pathway. NO initiates the signalling pathway by activating 
soluble guanylate cyclase (sGC), a heterodimeric enzyme 
consisting of α- and β-subunits with a prosthetic heme moi-
ety, which catalyses cGMP synthesis. On the other hand, 
NPs, such as ANP (atrial NP), BNP (brain NP) and CNP 
(C-type NP), activate particulate GC (pGC) present in the 
plasma membrane to produce cGMP. Both sGC and pGC 
generate the same second messenger cGMP, but the down-
stream effects of cGMP can be strikingly different depend-
ing on its subcellular localization. The elevated intracellular 
level of cGMP exerts its physiological actions largely by 
targeting cGMP-dependent protein kinase (PKG). In mam-
mals PKG-I is the primary kinase responsible for transduc-
ing the physiological effects in the cardiovascular system. 
PKG-Iα and PKG-1β have different N-termini derived from 
alternative splicing. It is reported that PKG-Iα is ten times 
more sensitive to cGMP than PKG-1β. Also, due to a unique 
cysteine residue (Cys 42) in PKG-Iα, it can be activated 
by thiol-oxidation independently of cGMP [4]. This cGMP-
independent form of PKG-1α activation is able to lower 
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blood pressure through vasodilation, but its effect in cardio-
myocytes is unknown.

A number of studies have suggested that there are mul-
tiple downstream effectors of cGMP-PKG-I in the cardio-
vascular system. For example, an elevated level of cytosolic 
 Ca2+ can result in increased cardiomyocyte inotropy but 
it is also known to be a lethal cause of reperfusion injury 
to cardiomyocytes. Several targets have been proposed as 
downstream PKG effectors regulating  Ca2+ homeostasis in 
cardiomyocytes [11]. One of the proposed mechanisms is 
that PKG-I phosphorylates phospholamban at Ser16, which 
subsequently activates SR  Ca2+-ATPase (SERCA). Acti-
vated SERCA increases re-uptake of  Ca2+ into the sarco-
plasmic reticulum (SR) and attenuates the cytosolic  Ca2+ 
during systole [31]. Also, it was demonstrated that cGMP-
mediated PKG-I activation induces opening of  mitoKATP 
channels residing on the inner membrane of mitochondria, 
and the subsequent increased  K+ influx causes alkalinisa-
tion of the matrix which increases  H2O2 production from 
complex I. The increased  H2O2 activates PKC-ε and conse-
quently protects cardiomyocytes from cell death by inhib-
iting the opening of mitochondrial permeability transition 
pores (MPTP) [11, 12, 47]. A more recent study showed 
that opening of cardiomyocyte  Ca2+-activated  K+ channels 
of the BK type (CMBK) is a critical modulator in remod-
elling following myocardial infarction (MI) using CMBK-
knockout (KO) mice [24]. The study showed that more 
severe myocardial damage observed in the CMBK-deficient 
hearts after ischaemia/reperfusion (I/R) is accompanied by a 
significantly increased production of reactive oxygen species 
(ROS). Furthermore, the study showed that pharmacological 
agents that elevate intracellular cGMP no longer exhibited 
cardioprotective effects in CMBK-KO mice. Collectively, 
the authors proposed the GC–cGMP–CMBK pathway as 
a novel therapeutic target for preventing post-MI cardiac 
remodelling.

Although the precise mechanistic details how the 
cGMP–PKG pathway signals and interacts with downstream 
effectors to protect the heart remain to be characterised, a 
large number of preclinical studies have revealed the cardio-
protective potency of the cGMP–PKG pathway by employ-
ing pharmacological tools or by manipulating relevant genes. 
Based on our limited understanding, the current therapeutic 
strategy for targeting this pathway is either by increasing 
cGMP biosynthesis (i.e. sGC activators or stimulators) or 
reducing cGMP’s catabolism (i.e. PDE inhibitors).

Nitric oxide

Nitric oxide (NO) is a key upstream molecule able to 
increase intracellular cGMP. NO is generated as a by-product 
of the enzymatic conversion of l-arginine to l-citrulline by 

nitric oxide synthases (NOS) [60]. These include endothelial 
NOS (eNOS), neuronal NOS (nNOS) and inducible NOS 
(iNOS). All three isoforms are expressed in the cardiovas-
cular system but have distinct subcellular localizations. 
eNOS and nNOS are constitutively expressed and work 
in a  Ca2+-calmodulin-dependent manner, whereas iNOS 
is only expressed in response to inflammatory stimuli [7]. 
Although the cell-specific function of each isoform has not 
yet been fully elucidated, deletion of all three isoforms in 
mice resulted in the severe pathological phenotypes such as 
MI, spontaneous coronary artery disease and sudden car-
diac death, demonstrating the cardioprotective importance 
of NOS in the cardiovascular system [45]. While l-arginine 
is the major substrate for endogenous NO production, nitrite, 
which can be elevated in the circulation by dietary intake, 
is another important source of NO [17, 51]. Nitrite can be 
converted non-enzymatically to NO via protonation at the 
low pH of the stomach [3]. Nitrite absorbed in blood and 
other tissues can be reduced to NO by xanthine oxidoreduc-
tase (XOR) or by a nitrite reductase activity of deoxygenated 
heme proteins such as deoxyhemoglobin. It is interesting to 
note that the rate of NO generation from nitrite is linearly 
dependent on reductions in oxygen and pH levels. Indeed 
exogenous nitrite reduced cardiac infarct size in mice sub-
jected to myocardial I/R injury by upregulating NO [17, 
29]. Due to nitrite’s high stability in the circulation, it is an 
important endocrine reservoir of NO. The beneficial effect of 
NO, at least in rodent models, has been widely reported, but 
there have also been discrepant results in some models. Sev-
eral studies reported that NOS inhibition protects the hearts 
from I/R injury [21, 58, 66] and in one report exogenous 
NO administration actually worsened the functional recov-
ery following I/R [57]. Furthermore, it has been shown that 
the infarct modulating effect of nitrite against myocardial I/R 
injury was very dose-dependent in mice [17]. Collectively, 
those studies suggest that the therapeutic effect of NO during 
I/R depends on dose, source, schedule and species.

Organic nitrates have been used as short-term treatment 
for acute MI, decompensated heart failure, and hypertensive 
crisis but their value in chronic treatment has been limited 
due to unfavourable hemodynamic effects, short plasma 
half-life, and the development of clinical tolerance. Much 
research has been devoted to overcoming these drawbacks of 
organic nitrates by developing a novel class of NO-releasing 
drugs. NO-releasing Aspirin (NCX4016), has been devel-
oped with a timed NO-releasing property [33] and has been 
extensively studied in various animal models. In addition 
to aspirin-related inhibition of platelet aggregation, chronic 
treatment with NCX4016 exerted an infarct-limiting effect 
in rabbits, pigs, and both normal and diabetic rats during 
myocardial I/R while native aspirin failed to protect against 
infarction [5, 53, 64]. Another class of novel NO-releasing 
drugs is the NO-statins such as NCX 6550 which showed 
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anti-inflammatory, anti-proliferative and antiplatelet effects 
beyond the actions of statins alone [16, 48].

The cardioprotective properties of NO are not limited to 
the cGMP–PKG-dependent pathway. It has been shown that 
NO can directly modify proteins through protein S-nitros-
ylation (SNO), which has recently emerged as an important 
post-translational protein modification and may offer great 
therapeutic potential in cardiovascular diseases [9, 10, 61]. 
Interestingly, mitochondria-selective S-nitrosylation by 
mitochondrial-targeted S-nitosothiol (MitoSNO) showed an 
infarct-reducing effect and improved cardiac function with 
myocardial I/R injury when it was administered 5 min before 
the onset of reperfusion. Complex I generates an excessive 
amount of ROS early in reperfusion due to succinate-driven 
reverse electron transport (RET) in mitochondria during 
I/R [49]. A cysteine residue (Cys39) in complex I becomes 
susceptible to S-nitrosylation in the ischemic heart muscle 
whenever the absence of respiration leads to low complex 
I activity. S-nitrosylation of the Cys39 in the ischemic cells 
by MitoSNO attenuated the reactivation of Complex I with 
reperfusion and the resulting lethal burst of ROS [10, 43]. 
The cardioprotective action of MitoSNO persisted in cardi-
omyocyte-specific PKG-I KO mice, indicating its independ-
ence of the cGMP–PKG pathway [10] (Fig. 1).

sGC activators or stimulators

One major strategy to increase the intracellular pool of 
cGMP is to activate sGC [18]. NO can induce sGC’s activ-
ity upon its binding to the reduced  Fe2+ heme moiety on its 
β-subunit. However, oxidation of the heme moiety under 
pathological conditions during oxidative stress, such as 
diabetes, can result in reduced sensitivity of sGC to NO. 
Also the reduced bioavailability of NO associated with 
endothelial dysfunction is another factor that can limit the 
activity of sGC. Two classes of small molecule compounds 
have been developed to directly target sGC. sGC stimula-
tors increase the catalytic activity of sGC with a reduced 
 Fe2+ heme moiety. These compounds work synergistically 
with NO. On the other hand, sGC activators can activate the 
enzyme when the heme moiety is oxidised or missing. sGC 
activators can also trigger cGMP synthesis independently of 
NO [18]. Both classes of drugs, sGC activators (e.g. BAY58-
2667—Cinaciguat and HMR-1766—Ataciguat) [23, 36, 56] 
and stimulators (e.g. BAY63-6521—Riociguat, BAY60-
4552, and BAY1021189—Vericiguat) [2, 42], have shown 
promising results in preclinical and clinical studies. Among 
them, Vericiguat has a dual mode of action. It sensitises 
sGC to endogenous NO by promoting NO–sGC binding and 

Fig. 1  Hypothetical nitric oxide (NO)–protein kinase G (PKG) pathway. Abbreviations see text
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it also activates sGC independently of NO. Vericiguat has 
been structurally optimised for chronic use in heart failure 
(HF) patients, allowing once-a-day dosage with low pharma-
cokinetic variability [22]. In a Phase IIb dose-finding study, 
the SOCRATES-REDUCED trial, an exploratory analysis 
showed that Vericiguat improved left ventricular ejection 
fraction (EF) and reduced NT-proBNP (biomarker for heart 
failure) at the highest dose in subjects with reduced ejection 
fraction heart failure (HFrEF) [25]. Vericiguat entered into 
a phase III clinical trial, the VICTORIA trial, in 2016 in 
HFrEF patients [1].

Natriuretic peptides

Natriuretic peptides (NPs) augment the intracellular level 
of cGMP via pGC [46]. NPs such as ANP and BNP are 
upregulated to compensate loss of function in failing hearts. 
Their elevated plasma levels also serve as well-established 
biomarkers for heart failure. NPs have shown multiple phar-
macological effects including diuresis, natriuresis, vasodila-
tion and inhibition of the renin-angiotensin and aldosterone 
systems. There are a number of preclinical studies showing 
that elevating NPs results in cardioprotection against I/R 
injury and in hypertrophy models [8, 13, 46, 55]. Clini-
cally, less data are available, however, the J-WIND-ANP 
trial showed promising results [35]. A continuous infusion 
of ANP for 3 days following reperfusion led to a 14.7% 
reduction in infarct size with reduced total creatine kinase 
(CK) release (66,459.9 IU/ml per h in the treated group vs. 
77,878.9 IU/ml per h in controls) and a small but significant 
improvement in EF compared to the control group. In 2014, 
the PARADIGM-HF trial has shown that administration of 
Sacubitril, a first-in-class neprilysin inhibitor that interferes 
with NP degradation, resulted in a significant improvement 
in patients with HFrEF when it was given together with the 
angiotensin II receptor blocker, Valsartan [32, 41]. Fol-
lowing the successful clinical trials, Sacubitril/Valsartan 
(Entresto™) was approved for the treatment of HFrEF.

PDE inhibitors

The intracellular pool of cGMP is tightly regulated by 
PDEs, enzymes degrading cGMP, as an important part of 
cGMP–PKG pathway. There are 6 different PDE isoforms, 
PDE 1, 2, 3, 4, 5 and 9, that are expressed in the heart and 
are responsible for cGMP catabolism in the cardiovascular 
system. It is reported that PDE5 is predominantly respon-
sible for hydrolysis of cGMP produced by sGC [63, 65]. 
PKG-I phosphorylates and activates PDE-5 by increasing 
its affinity to cGMP, thereby enhancing cGMP hydrolysis. 
This cGMP–PKG–PDE-5 signalling works efficiently as a 

negative feedback regulation maintaining the physiological 
cGMP homeostasis. The expression of PDE 5 is very low 
and mainly confined to smooth muscle cells under physi-
ological conditions but it was found to be upregulated in 
ischemic and failing myocardium [44, 50, 59]. With such 
pathological changes, use of a PDE-5 inhibitor such as silde-
nafil, which is widely prescribed for the treatment of erectile 
dysfunction, has shown promising results against I/R injury, 
cardiac hypertrophy and heart failure in both preclinical and 
clinical settings [14, 20, 26, 38, 62]. A recent study has also 
demonstrated that co-treatment of a PDE-5 inhibitor, tada-
lafil, has a synergistic effect with the protection afforded by 
inhaled NO starting 30 min before reperfusion and contin-
ued for 20 min during reperfusion. This additional protec-
tion against infarction was accompanied with a significant 
increase of cardiac cGMP levels [40]. Although the mecha-
nism of its protection is not fully elucidated yet, multiple 
studies have demonstrated that the cardioprotective effect of 
PDE-5 inhibitors is PKG pathway-dependent using pharma-
cological PKG inhibitors or selectively knocking down PKG 
in cardiomyocytes [15, 54]. A number of small scale clinical 
studies have shown favourable effects of PDE-5 inhibitors 
such as improved hemodynamics, left ventricular (LV) dias-
tolic function and right ventricular (RV) systolic function in 
patients with heart failure with preserved ejection fraction 
(HFpEF). However, a recent multicentre, double-blinded, 
randomised, controlled trial, RELAX, failed to confirm a 
beneficial effect of sildenafil against HFpEF [52]. Based on 
evidence from prior clinical studies and the limitations of the 
RELAX trial, the authors suggested that only HF patients 
with reactive pulmonary hypertension are likely to benefit 
[34].

Apart from PDE-5, Lee et al. recently suggested PDE9A 
as a novel therapeutic target against heart failure [37]. 
PDE9A is expressed in cardiomyocytes and further upreg-
ulated by hypertrophy and heart failure. Interestingly, the 
study showed that PDE9A regulates cGMP produced by 
the NP–pGC pathway rather than the NO–sGC pathway. 
Genetic or pharmacological inhibition of PDE9A activity 
improved cardiac function in mice subjected to pressure 
overload hypertrophy by severe transverse aortic constriction 
(TAC). The authors proposed that PDE9A as an alternative 
therapeutic approach which might be effective alone or in 
combination with other drugs for treatment of heart failure.

Summary

Despite promising results from many preclinical studies 
suggesting a cardioprotective effect of cGMP–PKG signal-
ling, a number of clinical studies evaluating GC modulators 
and PDE 5 inhibitors have failed to show the efficacy in 
large cohorts. The current difficulty in translating preclinical 
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observation to clinical efficacy might be due to the distinct 
disease states derived from differences between preclini-
cal animal models and humans [19]. For instance, subjects 
enrolled in clinical studies evaluating potential therapeutic 
tools against heart failure are likely complicated with other 
age-related diseases such as metabolic syndrome and other 
cardiovascular problems, which are often absent in preclini-
cal animal models. Under such complex pathological con-
dition, the efficacy of GC modulators or PDE-5 inhibitor 
could be limited due to the reduced sensitivity of GC to NO 
or the limited availability of NO, as discussed above. Based 
on our current understanding the complexity of such age-
related diseases, employing combination therapy strategy 
targeting multiple mechanisms involved in the cGMP–PKG 
pathway, for example, targeting both NO-independent 
NP–pGC–cGMP and NO-dependent sCG–cGMP pathways, 
might be able to shed some light in the quest for new thera-
peutic tools against heart failure.
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