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Abstract: 

Athina Markou spent a research period in my laboratory, then in the Department of Anatomy 

in Cambridge University, in 1991 to help us establish a cocaine-seeking procedure. Thus we 

embarked on developing a second-order schedule of intravenous cocaine reinforcement in 

order to investigate the neural basis of the pronounced effects of cocaine-associated 

conditioned stimuli on cocaine seeking.  This brief review summarizes the fundamental 

aspects of cocaine seeking measured using this approach and the importance of the 

methodology in enabling us to define the neural mechanisms and circuitry underlying 

conditioned reinforcement and cocaine, heroin and alcohol seeking.  The shift over time and 

experience of control over drug seeking from a limbic cortical-ventral striatal circuit 

underlying goal directed drug seeking to a dorsal striatal system mediating habitual drug 

seeking are also summarised. The theoretical implications of these data are discussed, 

thereby revealing the ways in which the outcomes of a collaboration can endure.  
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Athina Markou was a highly motivated, energetic and inspiring researcher with whom I not 

only collaborated, but who also became a close friend. I am honored to have this opportunity 

to summarize what we did together in Cambridge and how this laid the foundations for 

advances made in the 25 years since she first spent time in Cambridge. It was at the Society 

for Neuroscience meeting in St Louis that I first met Athina and she discussed with me her 

emerging interest in the mechanisms by which environmental stimuli become associated with 

the effects of addictive drugs to influence drug seeking and relapse.  Her interest had been 

sparked by the seminal paper by Gawin and Kleber (1) that established a link to what she had 

been studying in her outstanding PhD research with George Koob, namely withdrawal 

mechanisms and the associated elevated reward thresholds in rats having self-administered 

cocaine for long periods. This aversive state was argued to model the anhedonia or dysphoria 

in cocaine-addicted humans in withdrawal that may drive persistent drug taking through 

negative reinforcement. Gawin and Kleber had described a recognizable withdrawal 

syndrome in cocaine addiction – something not acknowledged before 1980 – that was not 

characterized by aversive physical symptoms, but instead by psychological symptoms 

including depression, anhedonia, anxiety and fatigue (1). However, they also suggested that as 

these early withdrawal signs begin to dissipate, drug cues become progressively more 

important in eliciting craving and relapse the longer abstinence is maintained.  

Two areas of research that might seem unrelated, but in fact were not, were being undertaken 

at the time in the Cambridge laboratory.  In the first, following Taylor and Robbins’ (2, 3) 

demonstration that the potentiative effects of amphetamine on conditioned reinforcement 

depended on dopamine in the nucleus accumbens, we went on to show that conditioned 

reinforcement itself depended upon the basolateral amygdala (BLA) (4) and, later, its 

functional interaction with the nucleus accumbens core (NAcb) (5). In the second, I had been 

investigating the neural mechanisms of sexual motivation and had developed a second-order 

schedule of sexual reinforcement in which male rats would seek access to a female rat in heat 

and once having gained access, would copulate to ejaculation (6, 7).  This enabled a measure 

of sexual incentive motivation to be obtained without relying on the measurement of 

performance, or consummatory, variables such as mounting and intromission.  The prolonged 

period of instrumental responding for a female depended on the presentation of sex-

associated conditioned reinforcers (8) and this also depended on the BLA and not the 

preoptic area, which controls sexual performance in male rats (9). 

The plan that Athina Markou and I discussed in St Louis and then corresponded about was to 
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establish a second-order schedule of cocaine reinforcement in rats so as to be able to measure 

(i) the motivation for cocaine without the confound of cocaine’s effects on instrumental 

behavior, and (ii) the impact of drug cues established by Pavlovian association between 

cocaine’s effects and an otherwise neutral stimulus to support seeking behavior by acting as 

conditioned reinforcers (10). We had no track record in intravenous drug self-administration 

in Cambridge and so the stage was set for an ideal collaboration and a starting point from 

which we have never looked back. 

Addictive drug-associated conditioned stimuli (CSs) can influence behavior in animals and 

humans in a number of ways. For example they can elicit automatic approach behavior, 

thereby bringing the individual into the location of the conditioned stimulus (CS) where drug 

taking had occurred. This Pavlovian approach behavior – or ‘sign-tracking’ – elicited by non-

contingent presentation of drug cues to rats perhaps resembles the way that drug CSs are 

presented to addicted individuals in functional imaging experiments, although subjective 

states (e.g. craving), or sustained attention to, and vigilance for, drug cues, rather than 

behavioral responses, are more frequently measured in such studies (11-14). While sign 

tracking of alcohol cues has been demonstrated in rats, especially when the cue is located 

close to or at the site of alcohol delivery or the response location (15), there are still relatively 

few demonstrations of sign tracking to cues associated with intravenously self-administered 

drugs such as cocaine (reviewed in 16).  

Conditioned stimuli can also potentiate instrumental seeking responses through a process 

now referred to as pavlovian-instrumental transfer (PIT), but long known previously as 

Pavlovian (or conditioned) motivation. The great majority of PIT demonstrations have been in 

animals responding for ingestive rewards, including alcohol (17, 18), but there are only 

isolated demonstrations of PIT in rats responding for intravenous cocaine, where a modest 

effect was seen in highly specific circumstances that depended on prior bouts of CS and 

instrumental extinction (19). PIT has, however, been demonstrated in human subjects in 

response to a variety of drug and high incentive food CSs with a shift from specific to general 

PIT in those addicted to drugs (20). In a key demonstration, CS-potentiated smoking in 

humans was unaffected by satiety and therefore independent of the current incentive value of 

the drug (cigarette puffs; i.e. no specific PIT), and instead was expressed as a general 

motivational enhancement (i.e. a general PIT effect), providing evidence therefore of habitual 

drug use (21, and discussed fully in 22). The neural mechanisms underlying sign-tracking and 

PIT are dissociable and involve the amygdala, nucleus accumbens core and shell and their 
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dopaminergic innervation, as well as related limbic cortical structures. This circuitry has been 

revealed primarily in studies of rodents responding for ingestive, rather than drug, rewards 

(and reviewed extensively elsewhere 16, 23, 24, 25). 

However, it is the conditioned reinforcing properties of drug-associated CSs that exert the 

most powerful impact on drug seeking regardless of the procedure used to measure it.  The 

important distinction between conditioned reinforcement and the processes (sign-tracking 

and PIT) discussed above is that the CS is presented response-contingently; it reinforces the 

instrumental response, acts as a sub-goal of seeking behavior and thereby enables an animal 

or human to tolerate and mediate delays to reinforcement (26). A cocaine-associated CS will 

in fact support the learning of a completely new instrumental seeking response in the absence 

of any history of primary reinforcement of that response (27) – a canonical test, and  measure 

of the potency, of conditioned reinforcement (28) .  Once acquired in such an ‘acquisition of a 

new response’ procedure, seeking behavior by rats will persist for many weeks being 

reinforced only by the CS, the animal never having received the primary reinforcer (e.g. 

cocaine) for making those responses (27, 29). In widely used ‘extinction-reinstatement’ (30), 

or increasingly used ‘incubation of craving’ (31) procedures, it is the conditioned reinforcing 

properties of the CS that underlie ‘relapse’ – i.e. rats learn instrumentally to respond for the 

CS, acting as a conditioned reinforcer, in the absence of the self-administered drug after either 

a period of instrumental (not CS) extinction (i.e. extinction-reinstatement) or a period of 

abstinence when the behavioral impact of the conditioned reinforcer increases with time in 

abstinence (i.e. incubation of craving).  

In our own studies we have focused on the seeking of drugs under second-order schedules of 

cocaine (following our earliest experiments with Markou on cocaine 32, 33), heroin, alcohol 

and high-incentive food reinforcement (see for example 34, 35-38). It should be emphasized 

that we were far from the first to identify the utility and explore the use of second-order 

schedules of drug reinforcement in rats. Pioneering studies in the 1970s by the late Steve 

Goldberg and colleagues at NIDA (39-41) should be acknowledged for that advance (reviewed 

in 10). These procedures capture many of the features of foraging for natural or drug rewards 

in the real world since they incorporate delays to primary drug reinforcement that an animal 

is able to bridge through the mediating effects of drug conditioned reinforcers. Human 

subjects seeking cocaine under a second-order schedule of reinforcement in the laboratory 

also revealed that response-contingent cocaine-associated CSs could maintain behavior even 

when placebo was ultimately infused rather than the drug (42).  
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In the procedure established in our lab by graduate student Mercedes Arroyo and Markou 

(32), which has changed little ever since, rats are initially trained to make instrumental 

responses for i.v. infusions of cocaine under a continuous reinforcement schedule (Fixed Ratio 

(FR) 1). We refer to this as drug taking, to emphasise the low demand simplicity of 

responding for constantly available drug with no requirement to forage (seek), and that the 

drug is on-board after the first response and therefore affects all subsequent responses. Each 

infusion is paired with the presentation of a neutral environmental stimulus (usually a light) 

such that pavlovian association between drug effect and this increasingly salient stimulus 

occurs. Subsequently, the now light CS is used to reinforce instrumental responses under high 

ratio demands and the drug is only actually self-administered after, usually, a fixed interval of 

15 minutes. Hence there is a tight relationship between responses and CS presentation, but a 

weaker relationship between responding and drug infusion. This captures the essence of drug 

seeking: vigorous responding over delays to reinforcement mediated by the contingent 

presentation of the CS acting as a conditioned reinforcer (Figure 1A); this is what conditioned 

reinforcers do in the real world. Each day, rats will work avidly for the CS (usually delivered 

after every 10 lever presses) and will earn the drug only on completion of the first ratio of 10 

responses after the Fixed Interval (usually 15 mins) has elapsed; rats accelerate their 

responding as the interval progresses and the time of infusion becomes imminent (10) 

(Figure 1). In the original studies, monkeys were shown to work for 1 hour to receive a single 

infusion of heroin (43) and in our own studies rats have been shown to work for up to 2hrs 

for a single cocaine infusion (while measuring extracellular dopamine in the dorsal and 

ventral striatum by microdialysis) (44, 45). The key here is that behavior in the first interval 

is a measure of responding for the drug while not under its influence, providing therefore a 

measure of motivation for the drug and the control over seeking by the drug CS, 

uncontaminated by the post-administration effects of the drug itself. A particular challenge of 

the procedure, which may explain why it has not been widely adopted, is that intravenous 

catheter patency must be maintained for several weeks, up to 3 or 4 months in some of our 

recent experiments.  Markou had faced similar challenges in her thesis work and was key in 

helping us establish optimal catheterization skills. 

Markou and Arroyo made fundamentally important observations in their initial work when 

considering separately first interval responding, i.e. prior to cocaine infusion, and responding 

in all subsequent intervals (usually 4 more) in a session. This also marks a distinction 

between the approach by Goldberg and colleagues who did not treat this first, drug-

unaffected seeking interval separately from subsequent intervals after the drug had been self-
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administered. Thus, Markou and Arroyo showed the impact of conditioned reinforcement on 

seeking (Figure 1B) and most importantly that omitting CS presentations resulted in a 

collapse of seeking responses (Figure 1B,C) - they are still made, but at a very low level – 

thereby providing a direct measure of the impact of drug cues on drug seeking (32, 46). They 

showed a linear relationship between seeking responses and dose of drug in the first interval 

– the higher the self-administered dose of cocaine, the higher the responding (Figure 1D), but 

an inverse relationship in later intervals (as in cocaine self-administration under FR:1, as 

blood drug concentrations are titrated) (32). Further, they showed that self-administered 

cocaine greatly increased cocaine seeking (Figure 1E,F), reflecting the well-established effects 

of stimulant drugs to potentiate conditioned reinforcement – an effect mediated by the 

nucleus accumbens shell (47). Self-administered heroin or alcohol do not have the latter effect 

and may even depress responding (heroin) (34), providing further support for the desirability 

of dissociating seeking responses for the drug from instrumental responses under the 

influence of the drug (10). In a later study it was shown that while self-administered cocaine 

increased cocaine seeking in second and subsequent intervals, non-contingently administered 

cocaine had the opposite effect and actually suppressed seeking, perhaps indicating an effect 

akin to specific satiety, further emphasizing the marked differences in effect of stimulants 

when self-administered as opposed to when not (33). 

At about the time of her visit to Cambridge, Markou had speculated that responding under a 

second-order schedule might provide a measure of craving induced by drug CSs (48), 

although she viewed craving as involving not just a subjective state, but also behavioral and 

physiological responses to drug cues, whereas craving in human studies rarely if ever 

measures a behavioral variable. It is of course impossible to know whether the drug seeking 

maintained by conditioned reinforcers presented under a second-order schedule is in any 

way accompanied by a subjective state of craving or drug ‘wanting’ (49). It is equally unclear 

whether the ‘incubation craving’ measured as increased responding with conditioned 

reinforcement after abstinence (31, 50, 51), is in fact accompanied by a subjective craving 

state that underlies the motivation to seek drugs.   

While it may be difficult to appreciate that when a rat presses a lever for a conditioned or 

primary reinforcer it may not be doing so because it ‘wants’ or ‘craves’ it, i.e. it may not be the 

expression of a goal-directed behavior. Contemporary analysis of instrumental behavior has 

shown emphatically that this is not the case under circumstances of extended training (52).  

Conditioned stimuli can elicit and maintain instrumental behavior directly, independent of the 
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representation of the value of the goal, through the formation of stimulus-response (S-R) 

associations that underlie habits.  The nature and importance of habits remains a matter of 

controversy to some authors, who confuse habits (which involve the initiation of a cognitive 

or behavioral sequence) with skills (which pertain to the performance of a behavioral 

sequence) (53). However, it has been shown in rats responding for ingestive and drug 

reinforcers that instrumental seeking responses persist when the reward has been devalued, 

providing direct evidence that the behavior is at that stage, and prior to the devaluation test, 

not goal-directed, but habitual (food 52, 54, drug 55, 56). As will be discussed below, a 

transition from goal-directed to habitual instrumental behavior is accompanied by a shift to 

control over that behavior by the dorsolateral striatum (35, 57). Moreover, using the 

acquisition of a new response procedure that isolates and measures conditioned 

reinforcement, it has been shown that responding persists after reinforcer devaluation, i.e. the 

conditioned reinforcing properties of the CS are resistant to devaluation of the associated 

primary reinforcer, whereas sign-tracking elicited by the same CS is not (58). Indeed, when 

rats have been responding for a cocaine-associated CS in the acquisition of new response 

procedure for 4-8 weeks, responding becomes sensitive to dorsolateral striatal inactivation 

(59), further evidencing S-R control after initial acquisition.  There is considerable evidence 

that automatic processes underlying seeking habits emerge in humans relapsing to drug use, 

and that in humans, post-hoc rationalization of such behavior may underlie subjective craving 

(60).  

Having established the methodology when Markou and Arroyo worked together in Cambridge, 

we have gone on to use it to explore the neural basis of the impact of conditioned 

reinforcement on drug seeking (Figure 1G) (reviewed in detail in (61-63). We initially showed 

that the BLA is required for the acquisition of cocaine seeking, as we had predicted from our 

earlier demonstration of its key role in conditioned reinforcement (4); rats without a BLA 

acquired cocaine (and heroin) self-administration – hence it had no effect on primary cocaine 

reinforcement processes – but severely impaired cocaine seeking acquisition (64).  Lesions or 

inactivation of the nucleus accumbens core (NAcbC) also impaired the acquisition of cocaine 

seeking, whereas lesions of the shell (NAcbS) did not (47), but instead abolished the 

potentiative effects of cocaine on conditioned reinforcement (shown in Figure 1D). The NAcb 

was later shown to be a critical site for mediating other amygdala-dependent Pavlovian 

influences on appetitive behavior (23, 65) and also for enabling animals to tolerate delays to 

reinforcement in an immediate versus delayed reward task; lesions of the NAcbC resulting in 

impulsive choice and intolerance of delays to reinforcement (66). We then showed that 
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dopamine and glutamate-dependent functional interactions between the BLA and NAcbC are 

required for cocaine seeking using an asymmetric disconnection procedure (67). This has 

recently been confirmed by showing that the selective DREADD-mediated inhibition of this 

pathway prevents the seeking response-enhancing effects of contingent presentation of 

cocaine CSs on introduction of a second-order schedule of reinforcement (Higueras Matas, 

Puaud, Belin and Everitt, unpublished observations). 

An important later realization was that although ventral striatal circuitry is required for the 

acquisition of cocaine seeking, it actually recruits and then becomes subordinate to dorsal 

striatal circuitry when the behavior is well established. We had initially hypothesised that 

while drug seeking is initiated as a goal-directed behavior, after time and multiple daily 

repetitions of performance of the behavior it eventually becomes controlled by S-R 

associative processes in the dorsal striatum, and hence our hypothesis of a transition from the 

ventral to the dorsal striatum of CS-controlled drug seeking over time (68, 69). Having 

initially shown that extracellular dopamine was increased in the NAcbC when cocaine CSs 

were presented unexpectedly and not response-contingently, but not during well established 

cocaine seeking under a second-order schedule, we went on to show that it was instead 

increased in the anterior dorsolateral striatum (aDLS) (45). This increased aDLS dopamine 

was shown to be causally involved, since dopamine receptor antagonism in the aDLS, but not 

in the NAcbC, dose-dependently reduced well-established cocaine seeking (70).  In retrospect, 

these data were not as surprising as they seemed at the time, since the aDLS had by then been 

shown to be essential for S-R habit acquisition and performance of instrumental responding 

for ingestive rewards (57, 71). In addition, we demonstrated that dopamine in the 

dorsomedial striatum was required for the early acquisition of cocaine seeking (36), 

consistent with its established role in action-outcome (goal-directed) instrumental behavior 

(72), but that this dependence becomes subordinate to aDLS control when the behavior is 

well-established (36).  

In investigating the mechanisms by which the transition from ventral to dorsal striatal control 

over behavior might occur, we tested the hypothesis that it might be mediated by the circuitry 

that links the nucleus accumbens with the dorsal striatum via recurrent, or spiraling, loops 

linking progressively more dorsal domains of the striatum through connectivity with 

midbrain dopamine neurons (Figure 1G) initially revealed in primates (73), but later in the 

rat brain (74).  To demonstrate this, we employed a disconnection procedure in which a 

unilateral lesion of the NAcbC was combined with contralateral dopamine receptor 
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antagonism in the aDLS. This manipulation, which disconnects the circuitry bilaterally, only 

impaired cocaine seeking when it was well-established; the same manipulation had no effect 

on instrumental reward seeking soon after acquisition, when goal-directed (35). 

Subsequently, using in vivo voltammetry CS-elicited cocaine seeking was shown to be 

associated with dopamine transients in the aDLS, but only after 3 weeks of training, whereas 

they are present in the NAcb from the outset. Moreover, a unilateral lesion of the NAcbC 

prevented the late-emerging increase in aDLS dopamine transients only on the side of the 

brain ipsilateral to the lesion, confirming the dependence of aDLS dopamine release on 

antecedent ventral striatal processing in animals responding for cocaine (75).  

We have explored further the neural circuits that orchestrate these intrastriatal shifts and the 

associated establishment of cocaine seeking habits by using a combination of asymmetric 

pharmacological manipulations of the amygdala and aDLS and in vivo extracellular 

electrophysiological recordings (76). First, it is clear that the CS influence on drug seeking 

(conditioned reinforcement) initially depends on processing in the amygdala and its 

interactions with the NAcbC, yet ultimately depends on the aDLS to which the amygdala does 

not directly project.  The functional recruitment of dopamine-dependent aDLS control over 

cocaine seeking initially depends upon the BLA, but the maintenance of the cocaine seeking 

habit was shown to depend on the central amygdala (CeN) and its dopamine-dependent 

interaction with the aDLS (76).  Thus, disconnection of the BLA and aDLS impaired cocaine 

seeking as habitual seeking emerged, but was without effect when well established, while a 

CeN-aDLS disconnection had no effect early on, but resulted in disruption of cocaine seeking 

when well established (76). How is the underlying circuitry organized, given the absence of 

amygdala-aDLS connectivity? The answer is that the NAcbC is the key interface between the 

BLA and aDLS (Figure 1G).  Thus, while stimulation of the BLA did not drive aDLS medium 

spiny neurons, it both up- and down-regulated the activity of these neurons driven directly by 

electrical stimulation of the topographically appropriate glutamatergic input from the motor 

cortex (M1) (76). Coincident glutamate receptor blockade in the NAcbC completely abolished 

the ability of the BLA to modulate aDLS neuronal activity. The latency of the gating effects of 

the BLA on aDLS medium spiny neuron firing (76) suggests a polysynaptic pathway involving 

serial connections between the ventral striatum and midbrain dopamine neurons innervating 

the dorsal striatum, but this circuit has yet to be mapped using pathway specific 

manipulations.  Similarly the route via which the CeN influences aDLS function has not been 

demonstrated, but there is a well-established projection from the CeN to the substantia nigra 

that has previously been shown to have a functional role in conditioned orienting (77), while 
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CeN interactions with the aDLS have been shown to play a key role in habitual responding for 

food (78). Thus, both CeN interactions with the aDLS and BLA interactions with the aDLS (the 

latter being mediated by the NAcbC) likely both depend on engagement of nigral 

dopaminergic projections to the dorsal striatum, emphasizing again an important role for 

dopaminergic mechanisms in addictive behavior, but not restricted to mechanisms of reward. 

The underlying neural mechanisms and circuitry that have been revealed in the experiments 

summarized briefly above are consistent with our underlying hypotheses that there is a 

transition from goal-directed to habitual drug seeking and a shift from ventral to dorsal 

striatal control over drug seeking during the emergence of drug addiction (22, 61, 62, 69).  It 

has been very interesting and affirming to see the extent to which functional and structural 

imaging data in human and clinical studies have supported these hypotheses as we have 

reviewed recently (22, 79). In heroin, alcohol and cocaine addiction there is clear evidence of 

engagement of dorsal striatal mechanisms and functional coupling between ventral and 

dorsal striatum (80-82), as well as in a behavioral addiction, compulsive gambling (83).  

These data are further complemented by those demonstrating the dominant engagement of S-

R habit processes in addicted individuals (84-86). However, in no sense are rats seeking and 

self-administering limited numbers of cocaine infusions each day for several weeks 

considered to be addicted. Rats with this controlled drug intake history have developed 

strong, dorsal striatum, dopamine-dependent habitual behavior, but they are not compulsive.  

In a recent study, Leyton and colleagues (87) have explicitly tested this premise by measuring 

dopamine release in response to cocaine-associated CSs in recreational cocaine users who 

explicitly did not meet DSM criteria for severe substance use disorder (i.e. addiction). They 

showed significantly increased extracellular dopamine in the dorsal striatum, whereas in an 

early study with volunteers who had received just three doses of amphetamine, presentation 

of the associated CS increased dopamine in the ventral striatum. These data very closely 

resemble those from our earlier experiments in rats (44, 45). In the addicted state, cocaine 

cues continue to be associated with increased activation of the dorsal striatum (88), further 

indicating that the shift to dorsal striatal involvement in addictive behavior is associated with 

the emergence of S-R habits and that this precedes the development of compulsive drug use, 

as we have hypothesised (22, 69), but this has yet to be explicitly been demonstrated. 

Concluding remarks 

This brief review I hope reveals how a brief series of visits of Athina Markou to the Cambridge 
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laboratory to immerse herself in the way we – Trevor Robbins, Tony Dickinson and I - had 

begun to study the neural basis of learning and memory mechanisms in addiction, and to 

share with us her extensive skills in drug self-administration procedures and a different 

theoretical approach, enabled considerable progress to be made in the more or less 25 years 

since.  Athina was a highly enthusiastic, energetic, intelligent and committed addiction 

researcher who went on to make very significant contributions to the field, especially in 

nicotine addiction. She was also a most treasured friend who will always be missed. 
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Figure 1. Behavioral characteristics of cocaine seeking under a second-order schedule 

of reinforcement and the underlying limbic corticostriatal circuitry 

1A. Schematic illustration of rats responding for a cocaine-associated light conditioned 

reinforcer (under a FR10 schedule; i.e.10 active lever presses, ALP) prior to receiving an i.v. 

infusion of cocaine after a 15 minute fixed interval. 1B The effects of introducing a cocaine CS 

contingent on every 10 lever presses. In the initial 3 sessions, rats are responding under a 

Fixed Interval 15 minutes schedule (FI15).  On introduction of the CS (sessions 5-10) under 

FR 10 there is a near quadrupling of seeking responses per 15 minutes (FI15:FR10S second-

order schedule).  Omitting the CS (CSO) results in a marked decrease in seeking responses 

(session 11). 1C. The decrease in seeking responses over 3 days of CS omission from a Pre-CS 

omission baseline.  Seeking responses increase promptly on reintroduction of the cocaine CS. 

1D In the first (pre-cocaine infusion) interval of a FI15:FR10S second order schedule is 

linearly related to drug dose. 1E & F.  An individual cumulative response record in a rat 

responding under FI15:FR10S.  Each Fixed Ratio 10 responses results in illumination of the 

light CS, which early in the 15 minute interval is followed by a post-stimulus pause in 

responding (i.e. a post conditioned reinforcement pause).  As the interval progresses, 

responding becomes more or less continuous until cocaine is infused on completion of a FR10 

of responses after the Fixed Interval has timed out.  After the cocaine infusion, in the 2nd 15 

minute interval, seeking responses are greatly increased, reflecting the effect of cocaine to 

enhance conditioned reinforcement, an effect that depends on the integrity of the nucleus 

accumbens shell. 1G. Summary of the circuitry underlying cocaine seeking.  Illustrated are 

basolateral amygdala (BLA) projections to the nucleus accumbens core (AcbC), required for 

acquisition of  cocaine seeking through the mediation of conditioned reinforcement and 

tolerance of delays to reinforcement.  The spiraling circuitry linking nucleus accumbens with 

more dorsal striatal zones – dorsomedial striatum (DMS) with its afferents from the 

orbitofrontal cortex (OFc) and the dorsolateral striatum (DLS) is shown as alternating arrows.  

The DMS is required for the early acquisition of cocaine seeking when goal-directed; the DLS 

is required for well-established cocaine seeking when under stimulus-response (habitual) 

control. 
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Abstract: 

Athina Markou spent a research period in my laboratory, then in the Department of Anatomy 

in Cambridge University, in 1991 to help us establish a cocaine-seeking procedure. Thus we 

embarked on developing a second-order schedule of intravenous cocaine reinforcement in 

order to investigate the neural basis of the pronounced effects of cocaine-associated 

conditioned stimuli on cocaine seeking.  This brief review summarizes the fundamental 

aspects of cocaine seeking measured using this approach and the importance of the 

methodology in enabling us to define the neural mechanisms and circuitry underlying 

conditioned reinforcement and cocaine, heroin and alcohol seeking.  The shift over time and 

experience of control over drug seeking from a limbic cortical-ventral striatal circuit 

underlying goal directed drug seeking to a dorsal striatal system mediating habitual drug 

seeking are also summarised. The theoretical implications of these data are discussed, 

thereby revealing the ways in which the outcomes of a collaboration can endure.  
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Athina Markou was a highly motivated, energetic and inspiring researcher with whom I not 

only collaborated, but who also became a close friend. I am honored to have this opportunity 

to summarize what we did together in Cambridge and how this laid the foundations for 

advances made in the 25 years since she first spent time in Cambridge. It was at the Society 

for Neuroscience meeting in St Louis that I first met Athina and she discussed with me her 

emerging interest in the mechanisms by which environmental stimuli become associated with 

the effects of addictive drugs to influence drug seeking and relapse.  Her interest had been 

sparked by the seminal paper by Gawin and Kleber (1) that established a link to what she had 

been studying in her outstanding PhD research with George Koob, namely withdrawal 

mechanisms and the associated elevated reward thresholds in rats having self-administered 

cocaine for long periods. This aversive state was argued to model the anhedonia or dysphoria 

in cocaine-addicted humans in withdrawal that may drive persistent drug taking through 

negative reinforcement. Gawin and Kleber had described a recognizable withdrawal 

syndrome in cocaine addiction – something not acknowledged before 1980 – that was not 

characterized by aversive physical symptoms, but instead by psychological symptoms 

including depression, anhedonia, anxiety and fatigue (1). However, they also suggested that as 

these early withdrawal signs begin to dissipate, drug cues become progressively more 

important in eliciting craving and relapse the longer abstinence is maintained.  

Two areas of research that might seem unrelated, but in fact were not, were being undertaken 

at the time in the Cambridge laboratory.  In the first, following Taylor and Robbins’ (2, 3) 

demonstration that the potentiative effects of amphetamine on conditioned reinforcement 

depended on dopamine in the nucleus accumbens, we went on to show that conditioned 

reinforcement itself depended upon the basolateral amygdala (BLA) (4) and, later, its 

functional interaction with the nucleus accumbens core (NAcb) (5). In the second, I had been 

investigating the neural mechanisms of sexual motivation and had developed a second-order 

schedule of sexual reinforcement in which male rats would seek access to a female rat in heat 

and once having gained access, would copulate to ejaculation (6, 7).  This enabled a measure 

of sexual incentive motivation to be obtained without relying on the measurement of 

performance, or consummatory, variables such as mounting and intromission.  The prolonged 

period of instrumental responding for a female depended on the presentation of sex-

associated conditioned reinforcers (8) and this also depended on the BLA and not the 

preoptic area, which controls sexual performance in male rats (9). 

The plan that Athina Markou and I discussed in St Louis and then corresponded about was to 
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establish a second-order schedule of cocaine reinforcement in rats so as to be able to measure 

(i) the motivation for cocaine without the confound of cocaine’s effects on instrumental 

behavior, and (ii) the impact of drug cues established by Pavlovian association between 

cocaine’s effects and an otherwise neutral stimulus to support seeking behavior by acting as 

conditioned reinforcers (10). We had no track record in intravenous drug self-administration 

in Cambridge and so the stage was set for an ideal collaboration and a starting point from 

which we have never looked back. 

Addictive drug-associated conditioned stimuli (CSs) can influence behavior in animals and 

humans in a number of ways. For example they can elicit automatic approach behavior, 

thereby bringing the individual into the location of the conditioned stimulus (CS) where drug 

taking had occurred. This Pavlovian approach behavior – or ‘sign-tracking’ – elicited by non-

contingent presentation of drug cues to rats perhaps resembles the way that drug CSs are 

presented to addicted individuals in functional imaging experiments, although subjective 

states (e.g. craving), or sustained attention to, and vigilance for, drug cues, rather than 

behavioral responses, are more frequently measured in such studies (11-14). While sign 

tracking of alcohol cues has been demonstrated in rats, especially when the cue is located 

close to or at the site of alcohol delivery or the response location (15), there are still relatively 

few demonstrations of sign tracking to cues associated with intravenously self-administered 

drugs such as cocaine (reviewed in 16).  

Conditioned stimuli can also potentiate instrumental seeking responses through a process 

now referred to as pavlovian-instrumental transfer (PIT), but long known previously as 

Pavlovian (or conditioned) motivation. The great majority of PIT demonstrations have been in 

animals responding for ingestive rewards, including alcohol (17, 18), but there are only 

isolated demonstrations of PIT in rats responding for intravenous cocaine, where a modest 

effect was seen in highly specific circumstances that depended on prior bouts of CS and 

instrumental extinction (19). PIT has, however, been demonstrated in human subjects in 

response to a variety of drug and high incentive food CSs with a shift from specific to general 

PIT in those addicted to drugs (20). In a key demonstration, CS-potentiated smoking in 

humans was unaffected by satiety and therefore independent of the current incentive value of 

the drug (cigarette puffs; i.e. no specific PIT), and instead was expressed as a general 

motivational enhancement (i.e. a general PIT effect), providing evidence therefore of habitual 

drug use (21, and discussed fully in 22). The neural mechanisms underlying sign-tracking and 

PIT are dissociable and involve the amygdala, nucleus accumbens core and shell and their 
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dopaminergic innervation, as well as related limbic cortical structures. This circuitry has been 

revealed primarily in studies of rodents responding for ingestive, rather than drug, rewards 

(and reviewed extensively elsewhere 16, 23, 24, 25). 

However, it is the conditioned reinforcing properties of drug-associated CSs that exert the 

most powerful impact on drug seeking regardless of the procedure used to measure it.  The 

important distinction between conditioned reinforcement and the processes (sign-tracking 

and PIT) discussed above is that the CS is presented response-contingently; it reinforces the 

instrumental response, acts as a sub-goal of seeking behavior and thereby enables an animal 

or human to tolerate and mediate delays to reinforcement (26). A cocaine-associated CS will 

in fact support the learning of a completely new instrumental seeking response in the absence 

of any history of primary reinforcement of that response (27) – a canonical test, and  measure 

of the potency, of conditioned reinforcement (28) .  Once acquired in such an ‘acquisition of a 

new response’ procedure, seeking behavior by rats will persist for many weeks being 

reinforced only by the CS, the animal never having received the primary reinforcer (e.g. 

cocaine) for making those responses (27, 29). In widely used ‘extinction-reinstatement’ (30), 

or increasingly used ‘incubation of craving’ (31) procedures, it is the conditioned reinforcing 

properties of the CS that underlie ‘relapse’ – i.e. rats learn instrumentally to respond for the 

CS, acting as a conditioned reinforcer, in the absence of the self-administered drug after either 

a period of instrumental (not CS) extinction (i.e. extinction-reinstatement) or a period of 

abstinence when the behavioral impact of the conditioned reinforcer increases with time in 

abstinence (i.e. incubation of craving).  

In our own studies we have focused on the seeking of drugs under second-order schedules of 

cocaine (following our earliest experiments with Markou on cocaine 32, 33), heroin, alcohol 

and high-incentive food reinforcement (see for example 34, 35-38). It should be emphasized 

that we were far from the first to identify the utility and explore the use of second-order 

schedules of drug reinforcement in rats. Pioneering studies in the 1970s by the late Steve 

Goldberg and colleagues at NIDA (39-41) should be acknowledged for that advance (reviewed 

in 10). These procedures capture many of the features of foraging for natural or drug rewards 

in the real world since they incorporate delays to primary drug reinforcement that an animal 

is able to bridge through the mediating effects of drug conditioned reinforcers. Human 

subjects seeking cocaine under a second-order schedule of reinforcement in the laboratory 

also revealed that response-contingent cocaine-associated CSs could maintain behavior even 

when placebo was ultimately infused rather than the drug (42).  
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In the procedure established in our lab by graduate student Mercedes Arroyo and Markou 

(32), which has changed little ever since, rats are initially trained to make instrumental 

responses for i.v. infusions of cocaine under a continuous reinforcement schedule (Fixed Ratio 

(FR) 1). We refer to this as drug taking, to emphasise the low demand simplicity of 

responding for constantly available drug with no requirement to forage (seek), and that the 

drug is on-board after the first response and therefore affects all subsequent responses. Each 

infusion is paired with the presentation of a neutral environmental stimulus (usually a light) 

such that pavlovian association between drug effect and this increasingly salient stimulus 

occurs. Subsequently, the now light CS is used to reinforce instrumental responses under high 

ratio demands and the drug is only actually self-administered after, usually, a fixed interval of 

15 minutes. Hence there is a tight relationship between responses and CS presentation, but a 

weaker relationship between responding and drug infusion. This captures the essence of drug 

seeking: vigorous responding over delays to reinforcement mediated by the contingent 

presentation of the CS acting as a conditioned reinforcer (Figure 1A); this is what conditioned 

reinforcers do in the real world. Each day, rats will work avidly for the CS (usually delivered 

after every 10 lever presses) and will earn the drug only on completion of the first ratio of 10 

responses after the Fixed Interval (usually 15 mins) has elapsed; rats accelerate their 

responding as the interval progresses and the time of infusion becomes imminent (10) 

(Figure 1). In the original studies, monkeys were shown to work for 1 hour to receive a single 

infusion of heroin (43) and in our own studies rats have been shown to work for up to 2hrs 

for a single cocaine infusion (while measuring extracellular dopamine in the dorsal and 

ventral striatum by microdialysis) (44, 45). The key here is that behavior in the first interval 

is a measure of responding for the drug while not under its influence, providing therefore a 

measure of motivation for the drug and the control over seeking by the drug CS, 

uncontaminated by the post-administration effects of the drug itself. A particular challenge of 

the procedure, which may explain why it has not been widely adopted, is that intravenous 

catheter patency must be maintained for several weeks, up to 3 or 4 months in some of our 

recent experiments.  Markou had faced similar challenges in her thesis work and was key in 

helping us establish optimal catheterization skills. 

Markou and Arroyo made fundamentally important observations in their initial work when 

considering separately first interval responding, i.e. prior to cocaine infusion, and responding 

in all subsequent intervals (usually 4 more) in a session. This also marks a distinction 

between the approach by Goldberg and colleagues who did not treat this first, drug-

unaffected seeking interval separately from subsequent intervals after the drug had been self-
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administered. Thus, Markou and Arroyo showed the impact of conditioned reinforcement on 

seeking (Figure 1B) and most importantly that omitting CS presentations resulted in a 

collapse of seeking responses (Figure 1B,C) - they are still made, but at a very low level – 

thereby providing a direct measure of the impact of drug cues on drug seeking (32, 46). They 

showed a linear relationship between seeking responses and dose of drug in the first interval 

– the higher the self-administered dose of cocaine, the higher the responding (Figure 1D), but 

an inverse relationship in later intervals (as in cocaine self-administration under FR:1, as 

blood drug concentrations are titrated) (32). Further, they showed that self-administered 

cocaine greatly increased cocaine seeking (Figure 1E,F), reflecting the well-established effects 

of stimulant drugs to potentiate conditioned reinforcement – an effect mediated by the 

nucleus accumbens shell (47). Self-administered heroin or alcohol do not have the latter effect 

and may even depress responding (heroin) (34), providing further support for the desirability 

of dissociating seeking responses for the drug from instrumental responses under the 

influence of the drug (10). In a later study it was shown that while self-administered cocaine 

increased cocaine seeking in second and subsequent intervals, non-contingently administered 

cocaine had the opposite effect and actually suppressed seeking, perhaps indicating an effect 

akin to specific satiety, further emphasizing the marked differences in effect of stimulants 

when self-administered as opposed to when not (33). 

At about the time of her visit to Cambridge, Markou had speculated that responding under a 

second-order schedule might provide a measure of craving induced by drug CSs (48), 

although she viewed craving as involving not just a subjective state, but also behavioral and 

physiological responses to drug cues, whereas craving in human studies rarely if ever 

measures a behavioral variable. It is of course impossible to know whether the drug seeking 

maintained by conditioned reinforcers presented under a second-order schedule is in any 

way accompanied by a subjective state of craving or drug ‘wanting’ (49). It is equally unclear 

whether the ‘incubation craving’ measured as increased responding with conditioned 

reinforcement after abstinence (31, 50, 51), is in fact accompanied by a subjective craving 

state that underlies the motivation to seek drugs.   

While it may be difficult to appreciate that when a rat presses a lever for a conditioned or 

primary reinforcer it may not be doing so because it ‘wants’ or ‘craves’ it, i.e. it may not be the 

expression of a goal-directed behavior. Contemporary analysis of instrumental behavior has 

shown emphatically that this is not the case under circumstances of extended training (52).  

Conditioned stimuli can elicit and maintain instrumental behavior directly, independent of the 
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representation of the value of the goal, through the formation of stimulus-response (S-R) 

associations that underlie habits.  The nature and importance of habits remains a matter of 

controversy to some authors, who confuse habits (which involve the initiation of a cognitive 

or behavioral sequence) with skills (which pertain to the performance of a behavioral 

sequence) (53). However, it has been shown in rats responding for ingestive and drug 

reinforcers that instrumental seeking responses persist when the reward has been devalued, 

providing direct evidence that the behavior is at that stage, and prior to the devaluation test, 

not goal-directed, but habitual (food 52, 54, drug 55, 56). As will be discussed below, a 

transition from goal-directed to habitual instrumental behavior is accompanied by a shift to 

control over that behavior by the dorsolateral striatum (35, 57). Moreover, using the 

acquisition of a new response procedure that isolates and measures conditioned 

reinforcement, it has been shown that responding persists after reinforcer devaluation, i.e. the 

conditioned reinforcing properties of the CS are resistant to devaluation of the associated 

primary reinforcer, whereas sign-tracking elicited by the same CS is not (58). Indeed, when 

rats have been responding for a cocaine-associated CS in the acquisition of new response 

procedure for 4-8 weeks, responding becomes sensitive to dorsolateral striatal inactivation 

(59), further evidencing S-R control after initial acquisition.  There is considerable evidence 

that automatic processes underlying seeking habits emerge in humans relapsing to drug use, 

and that in humans, post-hoc rationalization of such behavior may underlie subjective craving 

(60).  

Having established the methodology when Markou and Arroyo worked together in Cambridge, 

we have gone on to use it to explore the neural basis of the impact of conditioned 

reinforcement on drug seeking (Figure 1G) (reviewed in detail in (61-63). We initially showed 

that the BLA is required for the acquisition of cocaine seeking, as we had predicted from our 

earlier demonstration of its key role in conditioned reinforcement (4); rats without a BLA 

acquired cocaine (and heroin) self-administration – hence it had no effect on primary cocaine 

reinforcement processes – but severely impaired cocaine seeking acquisition (64).  Lesions or 

inactivation of the nucleus accumbens core (NAcbC) also impaired the acquisition of cocaine 

seeking, whereas lesions of the shell (NAcbS) did not (47), but instead abolished the 

potentiative effects of cocaine on conditioned reinforcement (shown in Figure 1D). The NAcb 

was later shown to be a critical site for mediating other amygdala-dependent Pavlovian 

influences on appetitive behavior (23, 65) and also for enabling animals to tolerate delays to 

reinforcement in an immediate versus delayed reward task; lesions of the NAcbC resulting in 

impulsive choice and intolerance of delays to reinforcement (66). We then showed that 
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dopamine and glutamate-dependent functional interactions between the BLA and NAcbC are 

required for cocaine seeking using an asymmetric disconnection procedure (67). This has 

recently been confirmed by showing that the selective DREADD-mediated inhibition of this 

pathway prevents the seeking response-enhancing effects of contingent presentation of 

cocaine CSs on introduction of a second-order schedule of reinforcement (Higueras Matas, 

Puaud, Belin and Everitt, unpublished observations). 

An important later realization was that although ventral striatal circuitry is required for the 

acquisition of cocaine seeking, it actually recruits and then becomes subordinate to dorsal 

striatal circuitry when the behavior is well established. We had initially hypothesised that 

while drug seeking is initiated as a goal-directed behavior, after time and multiple daily 

repetitions of performance of the behavior it eventually becomes controlled by S-R 

associative processes in the dorsal striatum, and hence our hypothesis of a transition from the 

ventral to the dorsal striatum of CS-controlled drug seeking over time (68, 69). Having 

initially shown that extracellular dopamine was increased in the NAcbC when cocaine CSs 

were presented unexpectedly and not response-contingently, but not during well established 

cocaine seeking under a second-order schedule, we went on to show that it was instead 

increased in the anterior dorsolateral striatum (aDLS) (45). This increased aDLS dopamine 

was shown to be causally involved, since dopamine receptor antagonism in the aDLS, but not 

in the NAcbC, dose-dependently reduced well-established cocaine seeking (70).  In retrospect, 

these data were not as surprising as they seemed at the time, since the aDLS had by then been 

shown to be essential for S-R habit acquisition and performance of instrumental responding 

for ingestive rewards (57, 71). In addition, we demonstrated that dopamine in the 

dorsomedial striatum was required for the early acquisition of cocaine seeking (36), 

consistent with its established role in action-outcome (goal-directed) instrumental behavior 

(72), but that this dependence becomes subordinate to aDLS control when the behavior is 

well-established (36).  

In investigating the mechanisms by which the transition from ventral to dorsal striatal control 

over behavior might occur, we tested the hypothesis that it might be mediated by the circuitry 

that links the nucleus accumbens with the dorsal striatum via recurrent, or spiraling, loops 

linking progressively more dorsal domains of the striatum through connectivity with 

midbrain dopamine neurons (Figure 1G) initially revealed in primates (73), but later in the 

rat brain (74).  To demonstrate this, we employed a disconnection procedure in which a 

unilateral lesion of the NAcbC was combined with contralateral dopamine receptor 
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antagonism in the aDLS. This manipulation, which disconnects the circuitry bilaterally, only 

impaired cocaine seeking when it was well-established; the same manipulation had no effect 

on instrumental reward seeking soon after acquisition, when goal-directed (35). 

Subsequently, using in vivo voltammetry CS-elicited cocaine seeking was shown to be 

associated with dopamine transients in the aDLS, but only after 3 weeks of training, whereas 

they are present in the NAcb from the outset. Moreover, a unilateral lesion of the NAcbC 

prevented the late-emerging increase in aDLS dopamine transients only on the side of the 

brain ipsilateral to the lesion, confirming the dependence of aDLS dopamine release on 

antecedent ventral striatal processing in animals responding for cocaine (75).  

We have explored further the neural circuits that orchestrate these intrastriatal shifts and the 

associated establishment of cocaine seeking habits by using a combination of asymmetric 

pharmacological manipulations of the amygdala and aDLS and in vivo extracellular 

electrophysiological recordings (76). First, it is clear that the CS influence on drug seeking 

(conditioned reinforcement) initially depends on processing in the amygdala and its 

interactions with the NAcbC, yet ultimately depends on the aDLS to which the amygdala does 

not directly project.  The functional recruitment of dopamine-dependent aDLS control over 

cocaine seeking initially depends upon the BLA, but the maintenance of the cocaine seeking 

habit was shown to depend on the central amygdala (CeN) and its dopamine-dependent 

interaction with the aDLS (76).  Thus, disconnection of the BLA and aDLS impaired cocaine 

seeking as habitual seeking emerged, but was without effect when well established, while a 

CeN-aDLS disconnection had no effect early on, but resulted in disruption of cocaine seeking 

when well established (76). How is the underlying circuitry organized, given the absence of 

amygdala-aDLS connectivity? The answer is that the NAcbC is the key interface between the 

BLA and aDLS (Figure 1G).  Thus, while stimulation of the BLA did not drive aDLS medium 

spiny neurons, it both up- and down-regulated the activity of these neurons driven directly by 

electrical stimulation of the topographically appropriate glutamatergic input from the motor 

cortex (M1) (76). Coincident glutamate receptor blockade in the NAcbC completely abolished 

the ability of the BLA to modulate aDLS neuronal activity. The latency of the gating effects of 

the BLA on aDLS medium spiny neuron firing (76) suggests a polysynaptic pathway involving 

serial connections between the ventral striatum and midbrain dopamine neurons innervating 

the dorsal striatum, but this circuit has yet to be mapped using pathway specific 

manipulations.  Similarly the route via which the CeN influences aDLS function has not been 

demonstrated, but there is a well-established projection from the CeN to the substantia nigra 

that has previously been shown to have a functional role in conditioned orienting (77), while 
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CeN interactions with the aDLS have been shown to play a key role in habitual responding for 

food (78). Thus, both CeN interactions with the aDLS and BLA interactions with the aDLS (the 

latter being mediated by the NAcbC) likely both depend on engagement of nigral 

dopaminergic projections to the dorsal striatum, emphasizing again an important role for 

dopaminergic mechanisms in addictive behavior, but not restricted to mechanisms of reward. 

The underlying neural mechanisms and circuitry that have been revealed in the experiments 

summarized briefly above are consistent with our underlying hypotheses that there is a 

transition from goal-directed to habitual drug seeking and a shift from ventral to dorsal 

striatal control over drug seeking during the emergence of drug addiction (22, 61, 62, 69).  It 

has been very interesting and affirming to see the extent to which functional and structural 

imaging data in human and clinical studies have supported these hypotheses as we have 

reviewed recently (22, 79). In heroin, alcohol and cocaine addiction there is clear evidence of 

engagement of dorsal striatal mechanisms and functional coupling between ventral and 

dorsal striatum (80-82), as well as in a behavioral addiction, compulsive gambling (83).  

These data are further complemented by those demonstrating the dominant engagement of S-

R habit processes in addicted individuals (84-86). However, in no sense are rats seeking and 

self-administering limited numbers of cocaine infusions each day for several weeks 

considered to be addicted. Rats with this controlled drug intake history have developed 

strong, dorsal striatum, dopamine-dependent habitual behavior, but they are not compulsive.  

In a recent study, Leyton and colleagues (87) have explicitly tested this premise by measuring 

dopamine release in response to cocaine-associated CSs in recreational cocaine users who 

explicitly did not meet DSM criteria for severe substance use disorder (i.e. addiction). They 

showed significantly increased extracellular dopamine in the dorsal striatum, whereas in an 

early study with volunteers who had received just three doses of amphetamine, presentation 

of the associated CS increased dopamine in the ventral striatum. These data very closely 

resemble those from our earlier experiments in rats (44, 45). In the addicted state, cocaine 

cues continue to be associated with increased activation of the dorsal striatum (88), further 

indicating that the shift to dorsal striatal involvement in addictive behavior is associated with 

the emergence of S-R habits and that this precedes the development of compulsive drug use, 

as we have hypothesised (22, 69), but this has yet to be explicitly been demonstrated. 

Concluding remarks 

This brief review I hope reveals how a brief series of visits of Athina Markou to the Cambridge 
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laboratory to immerse herself in the way we – Trevor Robbins, Tony Dickinson and I - had 

begun to study the neural basis of learning and memory mechanisms in addiction, and to 

share with us her extensive skills in drug self-administration procedures and a different 

theoretical approach, enabled considerable progress to be made in the more or less 25 years 

since.  Athina was a highly enthusiastic, energetic, intelligent and committed addiction 

researcher who went on to make very significant contributions to the field, especially in 

nicotine addiction. She was also a most treasured friend who will always be missed. 
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Figure 1. Behavioral characteristics of cocaine seeking under a second-order schedule 

of reinforcement and the underlying limbic corticostriatal circuitry 

1A. Schematic illustration of rats responding for a cocaine-associated light conditioned 

reinforcer (under a FR10 schedule; i.e.10 active lever presses, ALP) prior to receiving an i.v. 

infusion of cocaine after a 15 minute fixed interval. 1B The effects of introducing a cocaine CS 

contingent on every 10 lever presses. In the initial 3 sessions, rats are responding under a 

Fixed Interval 15 minutes schedule (FI15).  On introduction of the CS (sessions 5-10) under 

FR 10 there is a near quadrupling of seeking responses per 15 minutes (FI15:FR10S second-

order schedule).  Omitting the CS (CSO) results in a marked decrease in seeking responses 

(session 11). 1C. The decrease in seeking responses over 3 days of CS omission from a Pre-CS 

omission baseline.  Seeking responses increase promptly on reintroduction of the cocaine CS. 

1D In the first (pre-cocaine infusion) interval of a FI15:FR10S second order schedule is 

linearly related to drug dose. 1E & F.  An individual cumulative response record in a rat 

responding under FI15:FR10S.  Each Fixed Ratio 10 responses results in illumination of the 

light CS, which early in the 15 minute interval is followed by a post-stimulus pause in 

responding (i.e. a post conditioned reinforcement pause).  As the interval progresses, 

responding becomes more or less continuous until cocaine is infused on completion of a FR10 

of responses after the Fixed Interval has timed out.  After the cocaine infusion, in the 2nd 15 

minute interval, seeking responses are greatly increased, reflecting the effect of cocaine to 

enhance conditioned reinforcement, an effect that depends on the integrity of the nucleus 

accumbens shell. 1G. Summary of the circuitry underlying cocaine seeking.  Illustrated are 

basolateral amygdala (BLA) projections to the nucleus accumbens core (AcbC), required for 

acquisition of  cocaine seeking through the mediation of conditioned reinforcement and 

tolerance of delays to reinforcement.  The spiraling circuitry linking nucleus accumbens with 

more dorsal striatal zones – dorsomedial striatum (DMS) with its afferents from the 

orbitofrontal cortex (OFc) and the dorsolateral striatum (DLS) is shown as alternating arrows.  

The DMS is required for the early acquisition of cocaine seeking when goal-directed; the DLS 

is required for well-established cocaine seeking when under stimulus-response (habitual) 

control. 
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In this issue statement. 
 
This review pays tribute to a collaboration with Athina Markou 25 years ago and the fruits of 
that collaboration in research carried out subsequently and up to the present day. This 
research established a method of measuring drug seeking and the impact of drug-associated 
stimuli acting as conditioned reinforcers. This methodology has enabled the elucidation of the 
neural mechanisms underlying drug seeking and the transitions from goal-directed to 
habitual behavior. 
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