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Abstract

Changes in the pathway and timescale of magma ascent can be responsible for

variations in eruptive style during long-lived eruptions, but are only documented

at a small number of well-instrumented systems. Here we integrate PS-InSAR

from high resolution TerraSAR-X radar imagery with continuous GPS data

from 4 sites at Tungurahua volcano, Ecuador. Our results show long-term uplift

between 2011-2014 associated with a continuously inflating prolate reservoir at a

depth of ∼ 10 km beneath the summit. Comparisons with eruptive flux, taking

compressibility into account, suggest that during this time period slightly over

half the magma supplied to the system was erupted. The observations span three

distinct phases of eruption and in 2012-2013, an increase in eruptive activity was

accompanied by uplift on the volcano’s western flank. Similar episodes have

previously been observed during large Vulcanian eruptions and we attribute

them to intrusions into an area of mechanical weakness. A localised patch of

subsidence mid-way up the Tungurahua’s western flank is co-located with a

swarm of shallow long-period seismicity and may represent a potential site for
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a development of a lateral vent. This study demonstrates that satellite geodetic

techniques are capable of characterising the geodetic signature of transitions in

eruptive style during long-lived andesitic eruptions although the deformation is

cm-scale of steep volcanic edifices.

Keywords: Tungurahua, volcano, InSAR, GPS, statistical

integration

1. Introduction

The nature of volcanic eruptions is controlled by the supply rate and compo-

sition of the magma, and the geometry of the plumbing system (Sparks, 2003).

Geophysical and geochemical observations, such as seismicity, surface deforma-

tion and SO2 flux can be used to study the patterns of magma ascent and5

storage and hence forecast eruptive activity (Sparks, 2003; Biggs et al., 2014;

Phillipson et al., 2013). During long-lived andesitic eruptions, a major chal-

lenge is to forecast changes in behaviour, and in particular, the transition from

a open system, characterised by semi-continuous eruptions and low explosivity,

to a closed system, which can generate larger explosive eruptions.10

Tungurahua volcano in Ecuador has been erupting since 1999 (Mothes et al.,

2015), with activity varying from Strombolian to sub-Plinian. Continuous erup-

tive phases last from several weeks to more than a year (Hidalgo et al., 2015),

with hiatuses lasting weeks to months. In this study, we use geodetic data from

GPS (Global Positioning System) and InSAR (Interferometric Synthetic Aper-15

ture Radar) to detect long term and transient deformation. We apply stacking

and Persistent Scatterer methods to high-resolution InSAR images acquired by

the TerrSAR-X satellite between May 2011 and April 2014. We then combine

this with GPS total displacements to produce a 3D velocity map. The inte-

gration of the geodetic data provides a unique insight into the temporal and20

spatial characteristics of the deformation processes, allowing us to identify a

continuously-inflating deep reservoir and an intrusion event into the edifice.
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2. Tungurahua volcano

2.1. Geological background and current activity25

Tungurahua volcano in Ecuador is a 3000m relief, active andesite stratovol-

cano with a summit at 5016 m above mean sea level (a.m.s.l.). It is located in

the eastern Cordillera of the Ecuadorian Andes, which is bordered to the west

by the ∼30-50 km wide inter-Andean valley and to the east by the Amazonian

rear-arc lowlands. The edifice was built in three main constructive periods, in-30

terrupted by two flank failure events (Hall et al., 1999). The large amphitheatre

on the western flank was created by the last collapse, 3000 years ago and is now

filled with weak unconsolidated material (Molina et al., 2005).

The ongoing eruption started in 1999, after eight decades of inactivity. The35

activity is extremely variable, alternating between short hiatuses, forceful gas

explosions, ash emissions and lava fountaining (Mothes et al., 2004), with 4

VEI2 events and one VEI3. The VEI3 eruption in August 2006 generated a

column which rose over 16 km above sea level, pyroclastic flows that covered

half of the western cone, reaching the surrounding drainages (Kelfoun et al.,40

2009) (Fig. 1) and ash fall of more than 10 cm on the south-western part of the

edifice (Eychenne et al., 2013) (Fig. 1).

Between July 2009 and July 2014, the volcano experienced 3 distinct phases

of behaviour (Hidalgo et al., 2015) (Fig. 2 and Fig. 3). The first phase, from45

July 2009 to November 2011, was characterized by highly explosive eruptions

with well-defined starts and ends. The eruptive episodes were spaced 4 to 6

months apart, and each lasted between a month and two months. The second

phase, between December 2011 and August 2012, was characterised by continu-

ous, low-level Strombolian explosions and ended with a Vulcanian explosion on50

August 21st (Mothes et al., 2015). This phase lasted 9 months and only a few

days of hiatus. The third phase, from September 2012 to July 2014, was again

a period with well-defined explosions and at least 5 Vulcanian eruptions. The
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eruptions lasted between 2 weeks and a month with only one or two months

between them.55

2.2. Geophysical and Geochemical Monitoring

Tungurahua is monitored by the Instituto Geof́ısico de la Escuela Politécnica

Nacional (IG-EPN), which runs seismic, tilt and GPS networks as well as a scan-

ning differential optical absorption spectrometers (mini-DOAS) (Kumagai et al.,60

2007; Palacios et al., 2015; Hidalgo et al., 2015; ?). SAR images are made freely

available through the GEO Ecuadorian Volcano Supersite (http://supersites.earthobservations.org/ecuador.php).

The seimsicity is dominated by swarms of Long Period (LP) and explosion

events, which are generally correlated with eruptions (Fig. 2). Few volcano-

tectonic (VT) earthquakes are recorded, but those that do occur are mainly65

located on the western flank (Palacios et al., 2015). An increase in VT events

between mid-2012 and early 2013 corresponds to the transition between the sec-

ond and third phases. (Molina et al., 2005). SO2 flux correlates with eruption

explosivity (Hidalgo et al., 2015), with 95% of the total emissions occurring dur-

ing eruptive phases and fluxes of <100 tons per day (t/d) otherwise (Hidalgo70

et al., 2015). During periods of low explosivity (e.g. November 2011 to Septem-

ber 2012) the average SO2 flux was 700 t/d and during high explosivity phases

the flux averaged 1400 t/d. Prior to 2008, long periods of low explosivity were

the norm and the system was considered open, but after 2008, more explosive,

episodic eruptions and eruptive phases have been attributed to closed-system75

behaviour (Hidalgo et al., 2015).

In 2008, InSAR detected uplift of up to 17.5 cm on the upper western flank of

Tungurahua, attributed to a sill-like intrusion within the volcanic edifice coinci-

dent with a Vulcanian eruption (Biggs et al., 2010b). Subsequently, a Persistent

Scatterer (PS) study using ENVISAT SAR data between 2003 and 2009 found80

continuous uplift over a 25 km-radius area, centered on Tungurahua (Champ-

enois et al., 2014). The deformation of up to 8 mm·y−1 is best modelled by a

continuously replenishing reservoir seated at 11.5 km below m.s.l., or 16.5 km
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Figure 1: The location and geological setting of Tungurahua volcano. a) the location of Tun-

gurahua in the western South American continent. b) Tungurahua volcano edifice, including

2006 surge deposits described by Kelfoun et al. (2009), which are indicated by the brown

hatched areas. The dashed red contours are the InSAR deformation detected by Biggs et al.

(2010b) in centimetres. The thick black dashed line is the surface expression of interface of

the last flank failure from Hall et al. (1999). The contours of the ash fall thickness from the

August 2006 eruption from Eychenne et al. (2013) are in yellow. The red and orange arrows

shows the average horizontal and vertical velocities, respectively, of the GPS sites between

May 2011 and March 2014 (when the TerraSAR-X imagery was acquired).
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Figure 2: Daily number of Volcano-Tectonic (VT), Long Period (LP) and explosive events

detected by the Instituto Geofisico seismic network. A centred moving average with a window

of 50 days has been applied to the VT (blue line) and LP (red line) counts. The green line

shows the number of explosions per day while the grey bars indicate days on which at least one

sub-aerial explosion occurred. The three different periods with different eruptive behaviour

identified by Hidalgo et al. (2015).

beneath the active crater. In contrast, petrological data from the 2006 eruption

indicates a magma source at 8 to 10 km below the summit, equivalent to 3 to85

5 km below sea level (Samaniego et al., 2011). Champenois et al. (2014) found

no persistent scatterers on the edifice itself, so is insensitive to shallow sources

of deformation. Short-term cycles of inflation/delfation preceding eruptions are

also detected by a single tiltmeter, RETU, located within 1 km of the volcano’s

summit (?).90

3. Methods

3.1. InSAR and StaMPS

TerraSAR-X is a right-looking X-band SAR satellite operated by the Deutsches

Zentrum für Luft- und Raumfahrt (DLR). We use 41 images from May 13th 201195

to March 1st 2014. The satellite has a wavelength of 31 mm, and high spatial
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Figure 3: GPS time series from Mid-2009 to mid-2014. The black dots are the daily GPS

solutions for the North, East and up components. The red lines show the trend of each time

series. At the end of the second period, the vertical time series of BILB, CHON and MAZO

GPS sites show a >4 mm·y−1 change in the trend (see Results section). The East subplot, the

grey rectangles denote eruptive periods from Hidalgo et al. (2015). The North subplot, the

light orange rectangle show the period of InSAR acquisition while the darker orange rectangle

show the period when +22 mm InSAR deformation have been detected. The Up subplot, the

three different periods with different eruptive behaviour identified by Hidalgo et al. (2015).

7

medm06
Cross-Out

medm06
Inserted Text
m

medm06
Cross-Out

medm06
Inserted Text
vertical

medm06
Cross-Out

medm06
Inserted Text
vertical

medm06
Cross-Out

medm06
Inserted Text
 shows the



resolution of 1 m, but coherence is rapidly lost in vegetated areas (e.g. Ebmeier

et al., 2013). Tungurahua is a steep-sided stratovolcano, so, the western flank is

better imaged by descending satellite passes and the eastern flank by ascending

passes. Recent eruptive deposits cover the western flank, which is consequently100

less vegetated than the eastern flank. TerraSAR-X has a repeat orbit of 11 days,

but intervals between successive acquisitions vary between 11 days and months

depending on the satellite acquisition schedule. Interferograms were processed

using the ROI-PAC software (Rosen et al., 2004) and topography was removed

with a 5 m resolution Digital Elevation Model acquired from an airborne LiDAR105

(Light Detection And Ranging) mission ordered by IG-EPN.

Individual interferograms are dominated by stratified tropospheric noise as-

sociated with the high relief edifice (3-5 cm) (e.g. Parker et al., 2015; Ebmeier

et al., 2013) so we combine interferograms to improve the signal-to-noise ratio110

(Biggs et al., 2010a; Berardino et al., 2002; Hooper et al., 2007). First, we stack

the common coherent parts of each interferogram using the assumption that

noise is random but this results in very limited spatial coverage ( Fig. 4a).

Next, we apply the Persistent Scatterer (PS) method (Hooper et al., 2007),115

which uses amplitude dispersion (Ferretti et al., 2001) and the stability of the

phase of each pixel to select persistent scatterers which are then used for further

analysis (Hooper et al., 2009; Riddick et al., 2012; Pinel et al., 2011). Firstly,

the raw images and interferograms are computed relative to a common master

image, and then in a series of iterations, the algorithm identifies the candidate120

pixels that have persistent scattering characteristics through time. The spatial

correlation characteristics of the signal are then used to reduce the noise due

to orbital and atmospheric errors. We chose the January 29th 2013 acquisition

as the master image because it is in the middle of our period of study. The

spatial coverage is limited by the DEM rather than the SAR images. We obtain125

24,541 persistent scatterers mainly located at the foot of the volcano, although

a significant number are situated on the edifice itself. The root mean square

8



Figure 4: InSAR observations from TerraSAR-X track 142. a) displacement from stacked

interferograms between November 2nd 2012 and May 19th 2013. The orange dashed contours

show the early 2008 co-eruptive displacements in cm from Biggs et al. (2010b). Within the

white box, the arrows with a value in degrees are the orbital heading and incidence angle of

track 142 used for both insets. The pink dots are the 4 permanent GPS sites. b) velocities

from InSAR Persistent Scatterers analysis using StaMPS for the May 2011-March 2014 period.

error (RMSE) on velocity is between 0.4 and 2.1 mm·y−1 ( Fig. 4b).

3.2. Integration of GPS and InSAR130

InSAR has a high spatial coverage but low temporal resolution and measures

velocity only in the line-of-sight (LOS) of the satellite, while GPS measures 3

components of displacement in an absolute reference frame, but at a sparse

network of sites. Combining InSAR and GPS takes advantage of the benefits of

each approach, and can be used to produce a 3-D displacement or velocity field135

(Samsonov and Tiampo, 2006; Guglielmino et al., 2011; Muller et al., 2015).

In 2009-2010, four permanent GPS stations were installed at Tungurahua.

RETU on the northern flank is at 3900 m above mean sea level (m.s.l.); MAZO

and CHON on the south-western and north-western flank are at elevations of

2900 and 2800 m above m.s.l. respectively and BILB is located on the foot of140

the western flank at 2300 m above m.s.l.(Fig. 1). Daily positions of the GPS

sites are computed with GAMIT/GLOBK software (Herring et al., 2010). The

fiducial site, RIOP, located 39 km south-west of the volcano, is used to remove
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the tectonic signal and most of the atmospheric artefacts (Fig. 3). The RMSE

of the vertical and horizontal GPS velocities is below 2 millimetre per year for145

all the sites at 95% confidence.

We use the continuous medium method of Guglielmino et al. (2011) to com-

bine InSAR and GPS measurements (Guglielmino et al., 2011; Muller et al.,

2015). The 3D velocity vector, vP , and gradient tensor, H, are computed for150

each pixel P using: 1) the InSAR velocities vm at the pixel P ; 2) its 3D posi-

tion, xp from a DEM and 3) the velocities vn of the n surrounding GPS sites.

The stochastic model accounts for the accuracies of each observation, weighted

according to the distance between the computed pixel P and the n GPS sites

as necessary.155

GPS velocities are available from July 2009 whereas TerraSAR-X images

are only available from May 2011. Therefore, we use the mean velocity of

both GPS and InSAR over the May 2011-March 2014 period to generate a

integrated deformation field (Fig. 5). To downsample the InSAR, we create a160

100 m x 100 m grid and compute the velocity for each pixel that contains at

least one PS. When several PS were available in the same pixel, we use their

accuracy to calculate a weighted average of the deformation rate. The InSAR

data are shifted to agree with the GPS velocities projected in the LOS velocity

to make use of the absolute reference frame provided by the GPS network,165

following Muller et al. (2015). Using the average velocity from both GPS and

InSAR observations results in a temporal smoothing of the deformation which

is adequate for investigating a long-term process (e.g. replenishment of a crustal

reservoir) but not for pre-eruptive or transient processes. The root mean square

error of the integrated velocity field is <2 mm·y−1.170
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Table 1: Averaged velocities for the GPS sites for the mid-2009 to mid-2014 period and when

InSAR data were acquired from May 2011 to March 2014. RMS velocity errors <2 mm at

95% confidence.

July 2009 - July 2014 May 2011- March 2014

Site East North Up East North Up

[mm·y−1]

BILB -4.1 2.4 4.2 -4.0 1.9 3.2

CHON 0.4 2.2 5.7 -0.5 1.2 4.3

MAZO 0.4 -1.0 0.5 0.3 -1.2 -1.3

RETU 0.7 1.0 1.9 0.3 2.0 3.1

4. Results

4.1. Long-term deformation (¿ 3 years)

The GPS displacement and velocity time series of all four GPS sites show

both long-term trends and transient changes. The long term velocities make a

radially outward pattern, with uplift at all the sites (Fig. 1) and larger rates at175

the base of the edifice than at the top (Tab 1, Fig. 3). The largest magnitude

deformation in the StaMPS velocity field occurs at the base of the western flank

and at a sharp-edged area of subsidence located on the western flank (Fig. 4b).

A long wavelength gradient from motion away from the satellite on the eastern

flank and movement towards the satellite on the western flank could be associ-180

ated with orbital errors in the InSAR. However, GPS vertical velocities reveal

the same trend and we conclude this signal is a displacement of the volcano

surface.

The integrated velocity field between May 2011 and March 2014 shows i) ra-185

dially outward displacement vectors across the entire edifice, which are centred

2 km to the west of the crater, ii) the northwestern third of the edifice is domi-

nantly uplifting with larger rates at the base of the edifice than at the summit

and iii) subsidence on the eastern flank (Fig. 5). The maximum uplift of 10

11



mm·y−1 is located at the base of the edifice, close to the BILB GPS site. There190

are no GPS sites located on the other side of the drainage which surrounds the

volcano, so the velocities in the far field have high uncertainties (label 4 in Fig

5) and we do not consider this area further.

In addition to this general pattern, we detected several deformation areas of195

smaller spatial coverage: on the northwestern flank, we detect a small area of

subsidence (labeled 1 in Fig 5); the upper 900 m of the edifice shows subsidence

of several millimetres per year (2 on Fig 5) and we observe subsidence on the

eastern flank from Baños to an altitude of 4000 m (3a,b on Fig 5). The area

of subsidence on the northwestern flank (labeled 1) is approximately 900m by200

600 m in extent and has a sharp boundary with the surrounding area. The

boundary is sharpest in the east consistent with a trap door style motion (e.g.

Amelung et al., 2000).

We investigate the source parameters responsible for the large-scale, long-205

term uplift and radial deformation. First, we forward model the best-fit pa-

rameters from the 2003-2009 InSAR study (Champenois et al., 2014): a point

source at 14.5 km below the average surface with a continuous rate of volume

change of around 7 million m3·y−1 (Table 2). The original model assumed the

source was located directly beneath the active crater, however, our data, which210

include more PS points on the edifice suggests the centre of the radial pattern

is 2 km further west and we adapt the model accordingly (Fig. 6). Subtracting

the adapted model from our observations shows only minor residuals in the hori-

zontal components (<2 mm·y−1), but vertical residuals of >5 mm·y−1 (Fig. 6b).

215

Prolate source geometries generate a greater horizontal to vertical displace-

ments than a spherical or point source and are regarded as more physically re-

alistic for a stratovolcano (Odbert et al., 2014). Using the programme dModels

(Battaglia et al., 2013), the best-fitting prolate source has a 2 km long axis and

200 m short axis, inclined at an angle of 25 ◦ degrees toward the west-northwest220
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Figure 5: Integrated velocity field and its accuracy between May 2011 and March 2014 at

Tungurahua volcano. The color map shows the vertical velocities while the black arrows

display the horizontal velocity and their ellipse of accuracy. Dark green arrows represent the

horizontal velocities for the 4 GPS sites. The black dashed line is the avalanche caldera scar

from Hall et al. (1999).The pink and white numbers show the significant residual areas on the

prolate model.
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(azimuth φ = 300◦). The depth of 7.4 km beneath the mean elevation or 9.9 km

beneath the summit (Table 2) and volume change of ∼2 M m3·y−1, are discussed

further in section 5. The prolate shape can reproduce both the horizontal and

vertical patterns of deformation: the residuals of this model are <2 mm·y−1 in

the horizontal and mainly <1 mm·y−1 across the edifice. This model cannot225

account for the small areas of subsidence described previously (1, 2, 3a and 3b

in Fig. 5).

None of these models account for topography or anisotropy and need to be

interpreted carefully when applied to steep-sided volcanoes such as Tungurahua230

which has relief of 3000 m. The half-space assumption can cause an underes-

timate of volume change by a factor of up to 50% (Cayol and Cornet, 1998),

corresponding to an increase of 1 Mm3·y−1 for our data. Anisotropy and in-

elastic effects may have even greater impact on the modelled volume, depth

and shape of the reservoir (Trasatti et al., 2003; Gottsmann and Odbert, 2014),235

but few constraints exist on these parameters at Tungurahua. Therefore, we

consider the modelling to be an initial first-order approach at explaining the

complex displacement field.

Table 2: Parameters of the tested models. Elastic parameters of these models are 4·109 GPa

for the 1st Lame constant and 6.25·109GPa for the shear modulus. χ2 is the overall misfit,

unitless. The depth is measured from average elevation, 2.5 km above sea level, which is 2̃.5

km from the summit. The center of the source is at -78.47E and -1.46N, at 2 km West from

the crater.

Parameters Models

Mogi Prolate

Depth [km] 14.5 7.4

∆Volume [Mm3·y−1] 7 2

Semi-major, minor axes [km] - 2 by 0.2

Dip (0 = vertical prolate) [◦] - 25

Strike [◦] - 300

χ2 [-] 0.7 0.5
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4.2. Medium time scale deformation (6-24 months)

We define medium time scale deformation as transient events that occur over240

6 to 24 months. By stacking the InSAR data, we detect uplift of ∼2 cm high

on the south-western flank during the period between November 2nd 2012 and

May 19th 2013 (Fig. 4a); with an average rate of 4 cm·y−1. To investigate this

signal further, we look for transients in both the InSAR and GPS data (Fig.

7 and Tab 3), by subtracting the long-term deformation associated with the245

best-fitting prolate source and subdividing the data into the three periods iden-

tified by (Hidalgo et al., 2015): a) May 13th 2011-November 2nd 2012 (16 SAR

images); b) November 2nd 2012-May 19th 2013 (8 SAR images); c) May 19th

2013-March 1st 2014 (17 SAR images). PS points with non-linear velocities, de-

fined as RMSE to the linear regression greater than 1 cm LOS, are disregarded.250

We use the GPS velocities to define the absolute reference frame for the InSAR

observations, but over such short time periods it is not appropriate to formally

integrate GPS and InSAR datasets.

From May 2011 to November 2012, the dominant feature is the ‘trap door’255

on the western flank, which moved away from the satellite at a rate of ∼10

mm·y−1 (label a, Fig. 7a). During the second period, November 2012 to May

2013, there was deformation of ∼40 mm·y−1 towards the satellite, correspond-

ing to a total of 22 mm in 6.5 months (label d, Fig. 7b). The deformation is

centered on the western flank, mainly between 2800 m and 3600 m above sea260

level, consistent with that observed in the stacked InSAR but better charac-

terised by the PS analysis (Fig. 4a). Deformation toward the satellite is also

visible on the northern flank (label e, Fig. 7b) but with velocity <30 mm·y−1.

During the last period, May 2013 to March 2014, the deformation pattern is

similar to the first period: with the ‘trap door’ moving at a rate of ∼10 mm·y−1
265

(label f, Fig. 7c) and subsidence of ∼6 mm·y−1on the southeastern flank (label

h, Fig. 7c) .

Although located outside the deforming area, the GPS sites BILB, CHON

15



Figure 6: Results of the analytical modeling. Panels a) and b) present the predicted deforma-

tion from a Mogi model and the residual with our data. We use Champenois et al. (2014)’s

parameters, but move the centre of the source westward to better fit our data. Panels c)

and d) show the Yang model resulting from our best inversion. The blue arrows show the

deformation implied by the models while the grey arrows show the residuals velocity vectors.

The colored map shows the vertical velocities. The letter C within the green circle shows

the position of the centres of the deformation source. The pink and white numbers show the

significant residual areas on the prolate model.

16



Table 3: Average vertical velocities of the GPS sites and their respective RMSE for the July

2009 to July 2012 and from July 2012 then to July 2014. The trend due to the inflating

prolate was subtracted from these velocities.

Site July 2009-July 2012 July 2012-July 2014 Velocity change

[mm·y−1]

BILB 1.3 ±2.0 -3.7 ±4.0 -4.6 ±4.5

CHON 1.1 ±2.8 -5.3 ±6.3 -6.4 ±6.4

MAZO 2.0 ±5.9 -7.3 ±7.6 -9.3 ±9.6

RETU -5.9 ±13.2 -2.7 ±15.4 +3.2 ±20.3

Figure 7: PS-InSAR LOS velocities for the 3 sub-periods as defined by Hidalgo et al. (2015).

Positive values are deformation toward the satellite. The letters correspond to the features

described in the text. The LOS velocities are referenced to the GPS sites as described by

Muller et al. (2015).

and MAZO all show velocity changes in July 2012 (Fig. 3). After the long-term270

trend associated with the inflating prolate source is removed, the change in ver-

tical velocity at BILB is -4.6 ±4.5 mm·y−1, at CHON is -6.4±6.4 and at MAZO

is 9.3±9.6 mm·y−1 (Tab. 3). These changes are close to the level of signifi-

cance and well below the centimetric accuracy of the PS analysis. However, the

velocity change coresponds with a change in the eruptive activity reported by275

Hidalgo et al. (2015), and occurs shortly before the rapid uplift of the western

flank seen in the InSAR (label d, Fig. 7e).
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5. Discussion

By combining InSAR and GPS data from Tungurahua volcano, Ecuador,280

we have identified both long-term magma flux into a mid-crustal reservoir and

episodic endogenous growth within the edifice. Our results agree with previ-

ous studies (Biggs et al., 2010a; Champenois et al., 2014; Hidalgo et al., 2015)

but provide a more detailed view of the temporal and spatial behaviour of the

plumbing system (Fig. 8). In this section, we discuss the implications of these285

results for the evolution of the magmatic system at Tungurahua, and for long-

lived andesitic eruptions in general.

5.1. Mid-crustal magma supply and storage

InSAR data from 2003-2009 detected inflation of a mid-crustal reservoir290

(Champenois et al., 2014), and our GPS-InSAR velocity field from 2011-2014

shows a similar displacement pattern. However, the inferred source models dif-

fer, with a depth of 16 km beneath the crater (14.5 km beneath the average

surface) in 2003-2009 (Champenois et al., 2014) and 9.9 km beneath the crater

in 2011-2014 (this study with prolate model). Petrological methods estimate a295

source depth of ∼10 km for the 2006 eruption (Samaniego et al., 2011). Sev-

eral plausible physical explanations exist for the inferred difference, including a

change in deformation source or subsidence of the thick pyroclastic flows and fall

deposits from the 2006 eruption (e.g. Borgia, 1994; Stevens et al., 2001; Ebmeier

et al., 2010; Odbert et al., 2015). However, there are also significant differences300

in processing strategy and coverage. The 2003-2009 study used Envisat data

which has a greater spatial extent but found few permanent scatterers on the

edifice (Champenois et al., 2014), whereas our 2011-2014 study uses higher res-

olution TerraSAR-X data which covers a smaller area (∼7km) but produced PS

points on the edifice itself. Furthermore, integrating the InSAR results with305

GPS produces a 3D velocity field rather than a measurement in a single line-

of-sight, enabling us to estimate the ratio of horizontal and vertical motion,

diagnostic of different source geometries.
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Figure 8: Proposed Tungurahua plumbing system and the time scale of its eruptive processes.

a) oblique view of the volcano edifice and a global view of the current magma pathway.

b) Possible mechanisms for generating the trap door subsidence c) detailed West-East cross

section of the plumbing system.
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The difference in modelled depth trades-off against volume change, with a

flux of 7 Mm3·y−1 in 2003-2009 (Champenois et al., 2014) but only 2 Mm3·y−1
310

in 2011-2014 (this study). However, the eruptive flux was also larger in 2003-

2009 at 33 Mm3·y−1 Dense Rock Equivalent (DRE) compared to 5 Mm3·y−1

DRE in 2011-2014 (Mothes et al., 2015). Although Champenois et al. (2014)

compared eruptive flux with volume change, they do not take into account

compressibility, which can cause differences in volumes of more than a factor315

of 10 for large explosive eruptions (Kilbride et al., 2016). The ratio between

erupted volume and volume change at depth is:

Ve

∆V = −(1 + Km

Kc
) (1)

where Ve is the erupted volume, ∆V the corresponding volume loss in the

crustal reservoir, Km is the magma compressibility and Kc is the compressibility320

of the magma reservoir (Mastin et al., 2008; Cervelli et al., 2010; Kilbride et al.,

2016). Assuming a shear modulus of 3 GPa, the chamber compressibility, Kc,

is 3.3 × 10−10 Pa−1 for a spherical chamber and 4 × 10−9 Pa−1 for a prolate

chamber (e.g. Kilbride et al., 2016).

To estimate the magma compressibility, Km, we follow the approach of Kil-325

bride et al. (2016) using values of 3 wt% H2O and an oxidation state of NNO+1

based on petrological observations from the 2006 eruption (Samaniego et al.,

2011). For 1000 ppm CO2, andesitic magma would be vapour undersaturated

at 10 km depth, giving Km = 1.5 × 10−10 Pa−1, whereas, for 5000 ppm CO2,

the exsolved vapour would increase the value of Km to 2.5 × 10−10 Pa−1. This330

gives volume ratios from 1.5 to 2, consistent with other observations from deeply

sourced, large explosive eruptions (Kilbride et al., 2016).

Table 4 gives the equivalent subsurface and erupted volumes and rates once

compressibility has been taken into account. From global observations of long-335

term fluxes, the ratio of intruded to extruded magma ranges between 1 to 10,

with a mode of 2-3 and median of 5 (White et al., 2006). On shorter timescales,

this ratio will vary through the eruption cycle, with high eruptive fluxes dur-
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Table 4: Volume balance based on observations from estimates of eruptive volume at the

surface (adjusted to Dense Rock Equivalent, DRE) and reservoir volume changes from surface

deformation. The values in bold are based on the observations, while values in italics are the

converted values using a compensating factor for compressibility. Magma supply rate/volume

is the sum of the accumulated and the erupted values. The 2003-2009 values are from Cham-

penois et al. (2014) and Mothes et al. (2015).

In the crust (i.e.

compressed)

At the surface

(DRE)

2011-2014 rates

Accumulation rate (this study) 2±0.5 Mm3·y−1 3.5±0.7 Mm3·y−1

Eruption rate (Mothes et al.,

2015)

2.9±0.7 Mm3·y−1 5±2.9 Mm3·y−1

Supply rate 4.9±0.9Mm3·y−1 8.5±3.0 Mm3·y−1

2011-2014 volumes

Accumulation 6±0.9 Mm3 10.5±1.3 Mm3

Eruption 8.6±3.7 Mm3 15±5 Mm3

Supply 14.6±3.8 Mm3 26 ± 5.1 Mm3

2003-2009 volumes

Accumulation 47±? Mm3 82±? Mm3

Eruption 52.5±7.4 Mm3 105±10 Mm3

Supply 100±7.4 Mm3 187±10 Mm3

ing eruptive periods balanced by intrusion during non-eruptive periods. During

the eruption at Tungurahua, we find ratios ranging from 1.7 (2011-2014) to 1.8340

(2003-2009) accounting for compressibility. The magma supply rate varies be-

tween 8.5 Mm3·y−1 (2011-2014) and 27 Mm3·y−1 (2003-2009) which is 6 to 18

time higher than the long term rate of Tungurahua edifice growth (1.5 Mm3·y−1

(Hall et al., 1999)). Assuming all the magma remains eruptible, the current

supply rate (8.5 Mm3·y−1) would accumulate the volume of the August 2006345

sub-Plinian eruption (50-100 Mm3 (Eychenne et al., 2012; Mothes et al., 2015))

after 6-12 years.
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The S02 loss during 1999-2006 period required a degassed volume of 150

Mm3 DRE (Arellano et al., 2008; Hidalgo et al., 2015), which is roughly two350

to three times greater than predicted by extrapolating the 2011-2014 rate of

magma supply over 7 years (60 Mm3 DRE). Excess SO2 emission is a common

feature of active volcanoes, and several processes are invoked to explain this,

including degassing of large bodies lying at shallow level; remobilisation of sul-

phur deposits and mixing between reduced and oxidized magmas (Rose et al.,355

1982; Witter et al., 2005; Kress, 1997). However, it is also possible that the rate

of magma supply is decreasing as the eruption continues, and rates were higher

for the 1999-2006 period.

5.2. Temporal changes in magmatic pathways360

The eruption at Tungurahua is long-lived, but the pattern and characteris-

tics of eruption are continually changing. Hidalgo et al. (2015) use the pattern

of explosivity and gas flux to identify distinct phases of eruption, and here we

use geodetic observations to investigate the differences in subsurface processes

associated with changes in eruptive behaviour.365

During period 1 (July 2009-Nov 2011), the eruptions were explosive, with high

gas flux and short durations (Hidalgo et al., 2015) and the western flank sub-

sided slowly suggesting some of the erupted magma and/or gas was sourced

from within the edifice. During period 2 (Nov 2011 to Sept 2012), the eruptive

activity was characterised by low explosivity (Strombolian) and low S02 flux370

(Mothes et al., 2015; Hidalgo et al., 2015). However, the subsidence continued,

suggesting that the change in behaviour was associated with a change in flux

from deeper in the system.

Between July and December 2012, a clear transition in behavior occurred with

1) the resumption of strong episodic eruptions associated with high S02 flux and375

Vulcanian eruptions; 2) uplift of the western flank by 2 cm, 3) an increase in the

number of VT events on the western flank (Fig 2) and 4) a decrease in vertical
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velocity at the GPS sites. These observations are consistent with an intrusion

into the western flank.

380

From December 2012 to July 2014, the volcanic activity was characterized

by strong, short eruptions including 5 Vulcanian eruptions, separated by very

short hiatuses showing low SO2 flux Hidalgo et al. (2015). Both VT activity

and co-eruptive S02 flux were high (Fig. 2) and the western flank was again

subsiding. We conclude that magma and/or gas from the earlier intrusion may385

have helped feed the eruption which is also supported by tilt meter observations

(?).

5.3. Growth and deformation of the edifice

Although an order of magnitude smaller, the 2012 flank intrusion had a sim-390

ilar pattern to one that accompanied the 2008 eruption (Biggs et al., 2010b).

The repeated intrusions are likely exploiting a 3000 year old collapse scar on

the western flank (Hall et al., 1999), which now presents a mechanical contrast

between pre-collapse consolidated volcanic rock and recent deposits. Further-

more, the unconsolidated deposits above are characterized by low P-wave veloc-395

ities Molina et al. (2005)) and likely amplify the signal further. We speculate

that similar intrusions may have taken place during past periods of activity (e.g.

2003-2004, 2006), although geodetic measurements do not exist.

Both 2008 and 2012 intrusions followed long period of low but continuous activ-

ity, and culminated in a Vulcanian eruption (Biggs et al., 2010b; Mothes et al.,400

2015). In many ways, they are small-scale analogues of the cryptodome that

formed prior to the eruption of Mt St Helens in 1980 (Dzurisin (2006), sub-

section 1.1.4). The geodetic observations alone cannot determine whether the

intrusion represents shallow magma storage prior to a large eruption, or merely

reflects an overall increase in magma pressure within the system. The edifice is405

likely to be heavily fractured and will behave inelastically (Fig. 8c) (Hildreth

and Wilson, 2007; Wotzlaw et al., 2014) suggesting permanent intrusion rather
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than temporary magma storage. In either scenario, the deformation generated

has significant value from a monitoring perspective, but whether an intrusion

into Tungurahua’s western flank could cause a collapse similar to that observed410

in the 1980 eruption of Mt St Helens remains to be seen.

Shallow deformation occurs on three other parts of Tungurahua’s edifice, la-

belled 1, 2, 3a and 3b on Figure 5 and 6. The localised ‘trap door’ deformation

pattern in the centre of the western flank (label 1 on Figure 5 and 6) occurs in a

remote area, where no in situ observations have yet been made. However, during415

the August 2006 eruption, several LP events, traditionally considered to indi-

cate fluid movement, were located at a depth of just 500 m immediately beneath

this area (Palacios et al., 2015). Fluids, whether magmatic or hydrothermal,

can generate trap door-like deformation by applying differential stresses during

restricted circulation or emptying (e.g. Amelung et al., 2000) (Fig. 8b). Alter-420

natively, LP events can be caused by creep within an inelastic medium (Bean

et al., 2014) and the ‘trap-door’ deformation could be the surface expression of

a rotational detachment (e.g. Ruch et al., 2010). We estimate the depth of the

listric failure plane to be on the order of hundreds of meters (Dula Jr, 1991),

corresponding to the depth of the LP events. In either case, this feature may425

indicate a potential site for lateral eruptions and hence future hazards for the

downstream communities.

Subsidence NW of the active crater (label 2 in Fig 5) affects the top 900 m of

Tungurahua’s edifice and may be associated with the surface response to the

loading of the recently erupted material, as observed elsewhere (e.g. Lu and430

Dzurisin, 2014; Ebmeier et al., 2014; Muller et al., 2015). Subsidence on the

north-eastern and the southern flank (label 3a and 3b), is constrained by a few

PS, and may be related to localised slope instabilities in unvegetated area.

6. Conclusion

This study combines high-resolution InSAR and GPS at Tungurahua Vol-435

cano Ecuador between 2011 and 2014. The combination of InSAR and GPS
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produces a 3-D displacement field in an absolute reference frame which en-

ables us to investigate the source geometry of the deep reservoir in more detail

than previous studies. An asymmetric deformation pattern with a high ratio

of horizontal to vertical motion favours a tilted prolate ellipsoid located ∼7.5440

km beneath the average surface. We compare the rate of accumulation within

the edifice to that of eruption, accounting for magma compressibility, and find

that during this period, slightly more than half of the magma supplied to the

reservoir reached the surface.

The use of high resolution TerraSAR-X data with Persistent Scatterer methods445

enables us to study deformation of the edifice itself, and we detect an intrusion

into the western flank, similar to the one that occurred during the 2008 eruption

(Biggs et al., 2010b), but smaller in magnitude. The intrusions occur within

the edifice, likely along the collapse scar between consolidated volcanic rock and

recent deposits. Both intrusions accompanied Vulcanian eruptions and changes450

in eruptive behaviour, suggesting they may be useful indicators of changes in

the magmatic system. We also detect a localised area of subsidence around

3300 m above sea level, that corresponds to the location of shallow long period

seismicity, and may represent a potential lateral vent site.

These observations have implications for the understanding of the plumbing sys-455

tems of long-lived stratovolcano eruptions such as Tungurahua, Ecuador, with

consequences for short-term hazard assessments. In particular, we demonstrate

the advantages of statistical methods for improving the signal to noise ratio of

both InSAR and GPS data, integration of multiple geodetic datasets and com-

parisons with other monitoring information.460
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