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The independent and repeated adaptation of populations to similar environments often results in the evolution of similar forms.

This phenomenon creates a strong correlation between phenotype and environment and is referred to as parallel evolution. How-

ever, we are still largely unaware of the dynamics of parallel evolution, as well as the interplay between phenotype and genotype

within natural systems. Here, we examined phenotypic and genotypic parallel evolution in multiple parapatric Dune-Headland

coastal ecotypes of an Australian wildflower, Senecio lautus. We observed a clear trait-environment association in the system,

with all replicate populations having evolved along the same phenotypic evolutionary trajectory. Similar phenotypes have arisen

via mutational changes occurring in different genes, although many share the same biological functions. Our results shed light on

how replicated adaptation manifests at the phenotypic and genotypic levels within populations, and highlight S. lautus as one of

the most striking cases of phenotypic parallel evolution in nature.

KEY WORDS: Adaptation, multivariate divergence, natural selection, plant architecture, population genetics, replicated evolu-

tion.

When separate populations are faced with similar selective pres-

sures, they often evolve similar phenotypes (Schluter 2000).

When these independent populations evolve from similar initial

conditions, this phenomenon is referred to as “parallel evolu-

tion” (Schluter and Nagel 1995). The correlation that arises be-

tween phenotype and environment during parallel evolution pro-

vides strong evidence for the role of natural selection in creating

new forms. This is because it is unlikely that similar phenotypes

would have evolved multiple times purely by chance (Lenormand

et al. 2009, but see Losos 2011). Systems of parallel evolution are

unique as they provide natural replicates of the evolutionary pro-

cess, enabling researchers to examine the genetic architectures

that modulate repeatability and determinism in nature. Although

parallel evolution has been observed in a variety of animals (e.g.,

Nosil et al. 2002; Colosimo et al. 2005; Elmer et al. 2010; Butlin

et al. 2014; Soria-Carrasco et al. 2014) and in some plants (e.g.,

Foster et al. 2007; Trucchi et al. 2017; Cai et al. 2019; Konečná

et al. 2019; Knotek et al. 2020; Bohutínská et al. 2021), we are

still largely ignorant of how the repeated adaptation to similar en-

vironments manifests at the level of the phenotype and genotype

across empirical systems.

Researchers of phenotypic parallelism traditionally ask to

what extent replicate populations adapted to similar environments

(collectively referred to as an ‘ecotype’) are phenotypically dis-

tinct from other such ecotypes, and which traits contribute to

these differences (see Bolnick et al. 2018 for a detailed review
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of approaches). Yet, even in some of the most classic cases of

parallel evolution, such as the threespine stickleback, there can

be a large degree of within-ecotype phenotypic variability be-

tween populations (Stuart et al. 2017). This has prompted a re-

cent shift to multivariate geometric approaches (see Collyer and

Adams 2007; Adams and Collyer 2009; Collyer et al. 2015;

Bolnick et al. 2018; De Lisle and Bolnick 2020), which quan-

tify how evolution proceeds in multivariate trait space and how

this differs between pairs of contrasting ecotypes (as undertaken

in Elmer et al. 2014; Kusche et al. 2015; Oke et al. 2017; Stuart

et al. 2017; Paccard et al. 2019; Jacobs et al. 2020). The phe-

notypic heterogeneity observed within natural systems highlights

that evolution does not necessarily favor the exact same pheno-

typic features during replicated adaptation. This may be driven by

a number of forces including the demographic history of popula-

tions, within-habitat environmental variation, and the relationship

of the phenotype to fitness landscapes and is likely highly depen-

dent on the underlying genetic architecture of adaptive traits (see

Rosenblum et al. 2014, Lenormand et al. 2016; Blount et al. 2018

for reviews).

At the genetic level, similar phenotypes within the same

environment can evolve via independent and repeated selection

on the same nucleotide site or gene (reviewed in Wood et al.

2005; Christin et al. 2010; Stern 2013). For instance, replicate

populations of threespine stickleback show reduction of pelvic

armor due to repeated selection of alleles within the Eda gene

(Colosimo et al. 2005). Similar phenotypes can also arise by

selection on entirely different alleles and genes, although often

from the same functional pathway (e.g., the parallel evolution

of red flowers in Iochroma; Smith and Rausher 2011). In these

cases, different genetic routes can produce similar phenotypic

outcomes across populations, suggesting that evolution can be

somewhat flexible and redundant at the level of the allele or gene.

This may be especially common in systems of polygenic adapta-

tion, where many alleles of small effect contribute additively to

the adaptive phenotype (Chevin et al. 2010; Yeaman 2015; Barghi

et al. 2020). Understanding the dynamics of parallel evolution

will therefore allow us to gain insight into the interplay between

phenotype and genotype, and will further shed light on the levels

of organization at which evolution is repeatable and predictable

within nature (Stern and Orgogozo 2009; Blount et al. 2018).

We must note that in the literature, the term parallel evo-

lution or parallelism has been used quite fluidly to refer to dif-

ferent components of parallel evolution, including the phenotype

and/or the genotype. It is perhaps not surprising that there has

been a longstanding debate on the use of the term “parallel evo-

lution” when describing natural systems (see Haas and Simpson

1946; Arendt and Reznick 2008; Stern 2013; Lenormand et al.

2016; Stuart 2019). To reduce confusion, we hereafter avoid us-

ing “parallel evolution” in isolation and are explicit when refer-

ring to patterns of replication that arise either at the phenotypic

or genotypic levels (as suggested by Elmer and Meyer 2011). We

also acknowledge that genotypic parallelism encompasses differ-

ent levels of biological organization (the nucleotide site, gene, or

biological function).

Here, we examine the extent of phenotypic and genotypic

parallel evolution in an Australian wildflower species complex,

Senecio lautus. The S. lautus species complex contains a variety

of ecotypes adapted to contrasting environments (see Roda et al.

2013a for a taxonomic description of the complex). The Dune

and Headland ecotypes are of particular interest as they consist

of multiple parapatric Dune-Headland population pairs along the

Australian coastline (Fig. 1A) that are often sister groups in the

phylogeny (Fig. 1B; Roda et al. 2013a; Melo et al. 2019; James

et al. 2021). Despite the close geographic proximity between pop-

ulations of a pair (i.e., ecotypes within each locality), there is little

to no gene flow between populations within each locality, as well

as between populations within each ecotype (James et al. 2021).

Previous coalescent modeling suggests that these low levels of

gene flow are not high enough to create a false picture of parallel

evolution, suggesting a large number of independent and repeated

origins within the system (see James et al. 2021 for details). There

is a strong association between overall morphology and habitat in

this coastal system: Dune plants, colonizing the sandy dunes, are

erect with few branches, whereas Headland individuals grow on

rocky headlands and are prostrate with many branches (Fig. 1C;

Walter et al. 2018a). Populations maintain their phenotypes when

grown in common garden conditions (Walter et al. 2016, 2018a;

Wilkinson et al. 2021), suggesting that phenotypic plasticity in

the system is weak. Previous work with S. lautus in common gar-

den conditions has identified a suite of divergent traits between

Dune and Headland populations, which include characteristics

related to plant architecture and leaf morphology (Walter et al.

2018a). However, we lack a comprehensive characterization of

how parallel the phenotypes and genotypes are within S. lautus

natural populations, and how this affects divergence at the level

of the ecotype and across replicate populations.

To assess the extent of phenotypic and genotypic parallelism

in S. lautus, we use nine replicate Dune-Headland population

pairs, two allopatric Dune populations, and two allopatric Head-

land populations, for a total of 22 populations. We first quantify

how phenotypically distinct the Dune and Headland ecotypes are,

and how this varies across the replicate population pairs at each

locality. We then ask whether similar genetic mechanisms under-

lie these repeated phenotypes, that is, repeated selection on the

same nucleotide site (also referred to as a single nucleotide poly-

morphism), gene, or biological function. This builds on previ-

ous work using pooled sequencing of six natural Dune-Headland

pairs (Roda et al. 2013b). In addition, we ask whether the varia-

tion in the extent of parallelism can be attributed to nonstochastic
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Figure 1. Senecio lautus distribution, phylogeny, and ecotypes. (A) Sampling locations of the 22 Dune (orange) and Headland (green)

S. lautus populations along the coast of Australia. (B) Maximum likelihood phylogeny of Dune and Headland populations implemented

in IQ-TREE. Numbers on each node represent the SH-alRT support (%), followed by the ultrafast bootstrap support (%). Modified with

permission from James et al. (2021). Population H12A is not included in this study. (C) Schematic diagram of Dune and Headland ecotypes

based on mean trait values from linear discriminant analysis (LDA) shown in Fig. 2A.

factors, including levels of gene flow and within-ecotypic envi-

ronmental variation. Overall, our work sheds light on the dynam-

ics of parallel evolution within plants, and highlights that strik-

ingly similar phenotypes can repeatedly evolve via different ge-

netic routes.

Methods
PHENOTYPIC PARALLELISM

To quantify the extent of phenotypic parallelism in S. lautus,

we measured a suite of plant architecture and leaf morphology

traits from 20 Dune and Headland populations along the coast

of Australia (nmean = 30 individuals, ntotal = 605; Fig. 1A, B;

Table S1). These populations include nine Dune-Headland pairs

(eight which are parapatric, of which five are sister taxa; Roda

et al. 2013b; Melo et al. 2019; James et al. 2021), as well as

two allopatric populations that do not belong to a pair. Popula-

tion pairs are based upon their geographic distribution, where a

pair consists of a Dune and Headland population that are clos-

est geographically (i.e., at the same locality). We note this is the

case for all pairs, except for population D02 that we paired with

H04, which are not geographic neighbors, but both reside within

the eastern clade. Each S. lautus natural population occupies a

distinct geographic range. We sampled mature (flowering) plants

evenly across the range of each population, ensuring that each

plant was more than 1 m apart. We measured six plant archi-

tecture traits (vegetative height, widest width, narrowest width,

main stem angle, main stem diameter, and primary branch an-

gle) and eight leaf traits (area, perimeter, width, height, elon-

gation, compactness, dissection, and circularity; defined in Ta-

ble S2). All plant architectural traits were measured in the field,

and we sampled three primary branch leaves per plant for leaf

morphometric analysis in ImageJ version 1.51 (Schneider et al.

2012). Leaves were scanned at 600 dpi on a CanoScan 9000F

scanner and ImageJ was used to automatically extract leaf shape

characteristics. Overall, these phenotypes in the wild are highly
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correlated with those measured under controlled conditions

(Wilkinson et al. 2021).

In ∼11% of individuals, we were unable to measure the

main stem diameter and main stem angle. In these cases, we

took the average of the population to impute the trait value for

that individual. We ran the analyses below with and without

these individuals and obtained consistent results. We report the

analyses undertaken using the population means for the missing

data. All phenotypic analyses were undertaken in R version 3.4.2

(R Core Team 2017). Traits were log transformed and standard-

ized to have a mean of 0 and standard deviation of 1. We cal-

culated pairwise correlations between all traits and removed five

traits with high correlations across all populations (such that our

final set of traits contained correlations <0.8; Table S2), leaving

nine traits total. These correlated traits added minimal additional

phenotypic information and are thus effectively redundant.

To investigate whether the Dune and Headland ecotypes are

phenotypically distinct within multivariate space, we performed

a one-way MANOVA (traits = ecotype) across the 20 Dune and

Headland populations, where the term traits denotes the multi-

variate response variable of all traits, and ecotype is a fixed effect

of Dune or Headland. We also split traits into a plant architec-

ture and a leaf trait-set to ask whether phenotypic differences be-

tween ecotypes depend on the trait category. Using all traits, we

also performed a two-way MANOVA including pair as a fixed

effect (traits = ecotype + pair + ecotype × pair), and calculated

Wilk’s partial η2 (Langerhans and DeWitt 2004) for each term in

the model using the etasq function in the heplots package (Fox

et al. 2018) in R. As this model requires population pairs, we ex-

cluded two Headland allopatric populations (H03 and H07) and

two Dune allopatric populations (D09 and D35). For the two-way

MANOVA, the partial effect size of the ecotype term denotes how

much of the phenotypic variation is explained by the overall dif-

ferences between ecotypes (parallel evolution), whereas the pair

and interaction terms indicate how much variation is unique to

replicate pairs (non-parallel evolution).

To ask whether we can predict the ecotype each individual

belongs to, based on their multivariate phenotype, we performed

K-means clustering with the Hartigan-Wong algorithm (Hartigan

and Wong 1979). We used 25 random initial configurations and

retained the run with the smallest sums of squares of the indi-

viduals to their assigned cluster center, and then calculated the

proportion of individuals assigned to their correct ecotype. We

also performed a linear discriminant analysis across all traits to

ask which linear trait combination best explains the phenotypic

differences between Dune and Headland ecotypes.

We further explored the phenotypic differences between the

Dune and Headland ecotypes at a univariate trait level. We first

undertook vote-counting by calculating the mean trait value for

the Dune and Headland of each replicate pair and asking whether

there was a consistent increase or decrease in the trait value for all

replicate pairs (two-sided dependent-samples sign tests). As this

approach requires population pairs, we again excluded the four

allopatric populations (H03, H07, D09, and D35). However, this

vote-counting approach ignores trait effect size, and has low sta-

tistical power when the sample size (number of replicate pairs) is

small. Therefore, we used trait-by-trait linear models (ANOVAs:

trait = ecotype + pair + ecotype × pair) to ask whether there

was a significant main effect of ecotype for each trait. We also

extracted the partial effect sizes (partial η2; Langerhans and De-

Witt 2004) for each term in the model using the etasq function in

the heplots package (Fox et al. 2018) in R.

We quantified the direction and magnitude of phenotypic di-

vergence of each replicate Dune-Headland population pair using

Phenotypic Change Vector Analysis (PCVA; Collyer and Adams

2007; Adams and Collyer 2009; Collyer et al. 2015). Within mul-

tivariate phenotypic space, PCVA quantifies both (1) the magni-

tude of divergence and (2) the contribution of traits to divergence

between replicate pairs. The procedure is as follows: the pheno-

typic centroid (multivariate mean) is calculated per population.

For each population pair (i.e., the Dune and Headland at each

locality), their centroids are connected with a vector. The length

(L) of this vector quantifies how divergent the two populations

are—the greater the length, the more divergent. The difference in

length (�L) between vectors thus denotes the difference in the

magnitude of divergence between two replicate population pairs.

The two pairs are considered parallel with regard to the magni-

tude of their divergence if �L is not statistically different from

zero (�L ≈ 0; Bolnick et al. 2018).

The contribution of traits to divergence is measured by the

angle between vectors (θ). A large angle between two pairs

(θ � 0°) suggests the traits contributing to population divergence

are quite different between the pairs. The contribution of traits

is considered parallel when the angle is not statistically differ-

ent from zero (θ ≈ 0°). Using R code modified from Collyer and

Adams (2007), we calculated �L and θ for all pairwise compar-

isons between localities and performed permutations to test for

statistical significance. To ensure this analysis was robust and not

dominated by a single trait, we repeated the calculations of �L

and θ nine times, removing a single trait each time. We observed

consistent results across all calculations, suggesting our results

are not dominated by a single trait (Table S3).

Although the above pairwise comparisons can inform us

about whether the phenotypic divergence between ecotypes

is similar across pairwise localities, it does not adequately

assess whether evolutionary change has been more parallel than

expected by chance (De Lisle and Bolnick 2020). For instance,

many pairwise angles may be statistically different from zero

(θ ≈ 0°; i.e., non-parallel), yet the divergence between ecotypes

across localities may share a common axis of evolutionary change
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(De Lisle and Bolnick 2020). These common axes of divergence

are not captured by PCVA, so interpreting the individual pairwise

comparisons between localities can give a false impression of

the extent of phenotypic parallel evolution. We therefore used

a complementary approach by De Lisle and Bolnick (2020) to

identify the major axes of shared evolutionary change across

replicate populations, and to assess the extent of multivariate

parallel evolution in the system. More specifically, we used a

modified approach from De Lisle and Bolnick (2020) to calculate

the correlation matrix of the matrix of individual pairwise angles

between Dune-Headland replicate populations at each locality

(after first normalizing the angles to radians). We then used

analyses of linear transformation (eigenanalysis) to calculate the

major axes of shared evolutionary change. To identify significant

axes, we generated a null distribution by sampling from an eight-

dimensional Wishart distribution with nine degrees of freedom.

The null expectation of no shared axes of evolutionary change

was represented by an identity matrix. For each eigenvector, we

sampled from this distribution 100 times. We then calculated

the strength of parallelism, which is the proportion of variance

that is explained by the significant eigenvectors (as identified

above). We examined the loadings of the significant eigenvectors

to understand how each of the population pairs contribute to

parallel evolution.

GENOTYPIC PARALLELISM

To quantify the extent of genotypic parallelism in S. lautus,

we used nine Dune-Headland population pairs from a previous

Genotyping-by-Sequencing dataset generated from James et al.

(2021) (nmean = 56 individuals, ntotal = 1009; Figs. 1A, B; Ta-

ble S1). See James et al. (2021) for details on DNA extraction,

library preparation, and bioinformatics. We filtered for an overall

minor allele count of five, retaining 9269 single nucleotide poly-

morphisms (SNPs) across all populations. We note that our data

are likely to sample many genic regions: our restriction enzymes

(Pst1 and Msp1) are GC rich and insensitive to methylation, and

a large proportion (typically >70%) of reads from S. lautus RAD

datasets map to the S. lautus transcriptome (Roda et al. 2013b).

We also note that linkage disequilibrium decays quickly in the

system, where the mean size of a haploblock is 359 bp, and the

median is 42 bp. Therefore, the SNPs we sampled can be largely

treated as independent (see Fig. S1 for more details).

Identifying parallel nucleotide polymorphisms
We first characterized how much genotypic variation of each of

the 9269 sequenced SNPs is explained by the overall differences

between ecotypes compared to the individual replicate pairs at

each locality. More specifically, we used PLINK version 1.9

(Purcell et al. 2007) to normalize each SNP by conducting a PCA

and extracting the loadings of the first eigenvector across all indi-

viduals. For each SNP, we used these loadings to perform linear

models in R (ANOVA: SNP = ecotype + pair + ecotype × pair)

and extracted the partial effect sizes (partial η2) for each term in

the model. To plot these data as a frequency distribution, we cal-

culated each SNP’s distance from a 1:1 line by subtracting the

effect size for either the pair or interaction term from the eco-

type term in the model. Positive values indicate more parallel evo-

lution (as the Dune-Headland evolutionary divergence is shared

across replicate localities), whereas negative values indicate more

non-parallel evolution, as the divergence is more unique to indi-

vidual replicate localities.

We further explored the detailed patterns of parallelism at

the level of the nucleotide site by undertaking three comple-

mentary approaches. Approach 1: we detected overall outliers

comparing all Dune populations versus all Headland populations

(using a combination of top FST values, top cluster separation

scores [CSS; Jones et al. 2012], and BayeScan [Foll and Gaggiotti

2008]). Approach 2: we detected outliers separately for the Dune-

Headland pairs at each locality (again using a combination of top

FST values, top CSS, and BayeScan) and asked which SNPs were

shared outliers in multiple replicate pairs. We also calculated the

number of shared outlier SNPs between all pairwise comparisons

across localities, and asked whether the number of shared outliers

was greater than expected by chance by using a hypergeometric

distribution function, phyper, in R. Approach 3: if a nucleotide

site was detected as highly differentiated in at least one pair from

Approach 2, we compared allele frequencies across all pairs for

the site, and we asked whether the �p for each replicate pair was

in the same direction across all nine or eight localities. Our over-

all best candidate SNPs for parallelism at the nucleotide site are

loci that overlap between the three methods, that is, they show

high differentiation between ecotypes (Approach 1), high differ-

entiation within each replicate pair (Approach 2), and have con-

cordant allele frequency changes across replicate pairs (Approach

3). See Methods S1 for the specific details of each approach.

To ask whether the candidate outliers from any of the ap-

proaches above fall within genic or nongenic regions, we used

the first version of the S. lautus transcriptome (see Methods S2).

We mapped the transcriptome to the reference PacBio genome

version 1.0 (James et al. 2021) with minimap2 version 2.17

(Li 2018) using default parameters. We considered each tran-

script a separate gene, which included all isoforms. As the tran-

scriptome excludes introns, we still considered SNPs mapped to

the reference genome that fall between two segments of the same

transcript as a genic SNP. All other SNPs were considered non-

genic, which are expected to include variants in regulatory and

repetitive regions as well as in genic regions with unknown ho-

mologous genes in other plants. We excluded SNPs that had >1

gene mapping to it.
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Identifying parallel genic polymorphisms
As with the nucleotide sites, we assessed the extent to which

genic variation captured with protein-coding sites is explained

by the differences between ecotypes compared to the individual

replicate pairs at each locality. We again normalized the data, re-

taining the loadings of the first eigenvector for each gene. For

each gene, we performed linear models (ANOVA: gene = eco-

type + pair + ecotype × pair) and extracted the partial effect

sizes (partial η2) for each term in the model. We plotted this as a

frequency distribution (see above for details).

For the SNPs detected above as overall best candidates for

the SNP parallelism, we explored how many genes they fall in,

and what their functions are. We also did this for SNPs detected

as outliers in Approach 1 and Approach 3 separately. We note

that we do not consider Approach 2 as we did not detect any out-

liers across all nine or eight replicate pairs in Approach 2 (see

Results below). To assign orthologous genes, we obtained a Ref-

Seq code per gene (Pruitt 2004) by using BLASTx (Altschul et al.

1990) with the S. lautus transcript in which the outlier SNP fell

within. We searched the RefSeq protein database for Arabidop-

sis thaliana proteins that match our target genes using an E-value

threshold of <10−6. We used the web-based version of DAVID

version 6.8 (Huang et al. 2009a,b) to obtain the predicted func-

tional annotation of each S. lautus gene sequenced in this work.

We further examined patterns of gene parallel evolution be-

tween pairwise localities by calculating the number of shared out-

lier genes between all pairwise comparisons across localities, and

assessed whether the number of shared genes were greater than

expected by chance by using a hypergeometric distribution func-

tion, phyper, in R. We considered a gene an outlier per replicate

pair if it harbored at least one differentiated SNP according to

Approach 2 above.

Identifying enriched biological functions
To understand whether the outliers per population pair were

enriched for any functional categories, we conducted a gene-

enrichment analysis for the outlier genes for each replicate pair

using functional annotation clustering in DAVID, using the Ara-

bidopsis orthologues for our outlier genes. Functional annotation

clustering groups similar functional terms into clusters to avoid

redundant annotations. We considered a cluster as enriched if at

least one category within the cluster had a P-value < 0.05 (the

EASE score, calculated using a modification of Fisher’s exact

test; Huang et al. 2009a,b). See Methods S3 for details. We com-

pared these enriched clusters across localities to ask whether any

biological functions were repeatedly enriched across the entire

system. We then used a two-sided dependent-samples sign test

to ask if the number of enriched pairs per predicted functional

category differed from chance. For these enrichment analyses,

the Arabidopsis thaliana genome was used as a genetic back-

ground, as done with previous work within S. lautus (Roda et al.

2013b; Wilkinson et al. 2021). We currently lack an annotated

reference genome, precluding us from using S. lautus as a refer-

ence genome. Finally, we compared the distributions of the pro-

portions of shared outlier nucleotide sites, outlier genes, and en-

riched biological functions across pairs using a two-sided χ2-test

with continuity correction in R using the prop.test function.

DEMOGRAPHIC EFFECTS ON PHENOTYPIC

PARALLELISM

Next, we tested whether the variation in phenotypic parallelism

within the system (i.e., differences in divergence [�L] and the

contribution of traits [θ] between replicate pairs) could be ex-

plained by demographic factors. We used gene flow estimates

from James et al. (2021) (which were estimated from the same

dataset used within this study) to ask whether gene flow con-

strains divergence (linear model: phenotypic length (L) = gene

flow; Table S4). We also used divergence time estimates from

James et al. (2021) to ask whether older pairs show more phe-

notypic divergence than younger pairs as they have experienced

more genetic drift over time (linear model: phenotypic length

(L) = divergence time; Table S4). We also reasoned that popu-

lations adapting to more contrasting environments should have

greater phenotypic differences (linear model: phenotypic length

(L) = environmental distance; Table S4). We used environmental

distances from previous work in S. lautus (see Roda et al. 2013b),

which consisted of 38 variables of soil composition of the natural

populations. In addition, we asked whether pairs that were more

phenotypically similar (�L and θ) shared more outlier nucleotide

sites, genes, and biological functions using Mantel tests (Mantel

1967) with 999 permutations.

Results
PHENOTYPIC PARALLELISM

We found striking differences between the mean Dune and Head-

land phenotypes for both plant architecture and leaf character-

istics (illustrated in Fig. 1C). In multivariate space, Dune and

Headland ecotypes clustered into two distinct groups (Fig. 2A;

Pillai’s Trace = 0.73, F1,603 = 175.13, P < 2.2 × 10−16). This

pattern held true when traits were separated into plant architec-

ture (Fig. S2A; Pillai’s Trace = 0.63, F1,603 = 202.42, P < 2.2 ×
10−16) and leaf categories (Fig. S2B; Pillai’s Trace = 0.61, F1,603

= 233.15, P < 2.2 × 10−16). Considering all traits together, the

partial effect size of the ecotype term (Wilks partial η2 = 0.86)

was larger than both the pair (Wilks partial η2 = 0.23; Fig. S3)

and the interaction term (Wilks partial η2 = 0.19; Fig. 2B). This

suggests that the phenotypic variation within the system is mainly
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Figure 2. Ecotype and trait phenotypic parallelism. (A) Principal component analysis of Dune (orange) and Headland (green) phenotypes

(five plant architecture and four leaf traits) across 20 populations. Ecotypes are delimited by 70% probability ellipses. (B) Partial effect

sizes (partial η2) for the ecotype and the interaction (ecotype × pair) for the trait-by-trait linear models, each dot representing a single

trait. The blue dot represents Wilk’s partial effect size for all traits combined in the MANOVA. Dashed line is a 1:1 ratio, where points

above the line represent a larger contribution of parallel evolution (shared Dune-Headland divergence across localities) than non-parallel

evolution (unique Dune-Headland divergence across localities). See Table S6 for exact values. (C) Vote-counting for five plant architecture

and four leaf traits across eight replicate pairs. Dots represent the mean trait value for each population (N = 30). Lines connect the Dune

(orange) populations to their Headland (green) pair at each locality. Dashed lines represent pairs whose Dune-Headland trait value is in

the opposite direction from the majority of pairs. Asterisks denote significance (∗∗S-statistic = 8, P = 0.0078; ∗S-statistic = 7, P = 0.035).

explained by differences between ecotypes rather than replicate

pairs.

Across all traits, K-means clustering analysis correctly as-

signed 95% of Dune individuals, and 87% of Headland indi-

viduals into the correct cluster, further suggesting most indi-

viduals within an ecotype are more phenotypically similar than

between ecotypes. When plant architecture and leaf traits were

measured separately, these numbers were slightly reduced. For

plant architecture traits alone, 91% of Dunes and 82% of Head-

lands were assigned to the correct cluster. For leaf traits, 93% of

Dunes and 78% of Headlands were correctly assigned. We per-

formed a linear discriminant analysis (LDA) on all traits to ask

which linear combination of traits best explains the phenotypic

differences between Dune and Headland ecotypes. The LDA was

strongly loaded by leaf area and primary branch angle, followed

by leaf dissection, leaf circularity, and widest width of the plant

(Table S5). All traits were loaded in the same direction, except for

widest width of the plant, leaf dissection, and leaf circularity. The

LDA suggests that divergence between ecotypes is multivariate

and has occurred on most measured traits, and that a single trait

does not dominate the phenotypic differences between ecotypes.

We also explored the phenotypic differences between the

Dune and Headland ecotypes at a univariate trait level. We first

used vote-counting to quantify whether the traits in the Dune and

Headland populations of each pair have evolved in the same di-

rection. For all traits, at least six of the eight pairs evolved in par-

allel (Fig. 2C). Four of the nine traits had all eight pairs evolving

in the same direction (i.e., there was a consistent increase or de-

crease in the Dune versus Headland mean trait value across repli-

cate pairs; S-statistic = 8, P = 0.0078), and three traits had seven

pairs evolving in the same direction (S-statistic = 7, P = 0.035).

Trait-by-trait linear models revealed a significant main effect of

ecotype for each trait (Table S6), suggesting there are differences

between Dune and Headland populations for all traits. Extracting

the effect size for these linear models, the ecotype effect size was

larger than both the pair (Fig. S3) and interaction term (Fig. 2B)

for most traits (i.e., more data points above the dotted line than

below; see Table S6 for details). As observed at the multivariate
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Figure 3. Replicate pair phenotypic parallelism. (A) Phenotypic change vector analysis for five plant architecture and four leaf traits

across eight replicate Dune-Headland pairs. Each dot represents the population centroid (multivariate phenotypic mean) ± SE. The Dune

(orange) and Headland (green) populations of a replicate pair are connected with a line. (B) Frequency distribution of the 28 pairwise

phenotypic divergences (�L) between Dune-Headland replicate pairs (Table S7). (C) Frequency distribution of the 28 pairwise contribution

of traits (θ) betweenDune-Headland replicate pairs (Table S10). (D) Proportion of variance across the eight eigenvectors from eigenanalysis

of the correlation matrix of the individual pairwise angles between Dune-Headland replicate populations at each locality. Gray boxplots

represent the null distribution of no shared axes of evolutionary change. (E) Loadings of each replicate pair onto the first eigenvector

of (D).

level, the larger effect sizes for the ecotype terms suggest that the

phenotypic variation within the system is mainly explained by

differences between ecotypes rather than replicate pairs.

Next, we investigated whether the phenotypic differences

between the Dune and Headland of each replicate population pair

were consistent across localities using PCVA. Within multivari-

ate phenotypic space, there were different levels of divergence

(�L) between replicate pairs (Figs. 3A, B). Considering all traits,

the mean �L (±SE) between pairs was 1.7 ± 0.15, and out of

the 28 pairwise comparisons, we only observed nine statistically

parallel comparisons (i.e., �L ≈ 0; 32.1% of pairwise compar-

isons; Table S7). Therefore, most population pairs have differ-

ent amounts of divergence between the Dune and Headland pop-

ulations. When we separately analyzed traits as two categories

(plant architecture and leaf shape), we captured a signal of par-

allel divergence across a greater number of replicate pairs (Figs.

S4 and S5). We observed 10 statistically parallel comparisons for

plant architecture traits (35.7% of pairwise comparisons; mean

�L 1.0 ± 0.12; Table S8), and 13 statistically parallel compar-

isons for leaf traits (46.4% of pairwise comparisons; mean �L

0.93 ± 0.14; Table S9).

The contribution of traits to divergence (θ) was quite variable

across pairs (Figs. 3A, C). Out of the 28 pairwise comparisons,

only one angle was parallel, that is, θ ≈ 0° (3.6% of pairwise

comparisons; Table S10), indicating that traits weigh differently

in the Dune-Headland divergence across localities. The mean an-

gle (±SE) between population pairs was 39.5 ± 2.1°; all angles

were acute, with a maximum of 62.8°. When traits were split

into plant architecture and leaf categories, we again captured a

stronger signal of phenotypic parallelism for both categories. We

observed nine statistically parallel angles for plant architecture

traits (mean angle 29.8 ± 3.0°; Table S11) and four statistically

parallel angles for leaf traits (42.6 ± 3.4°; Table S12).

We then asked whether there was a shared axis of evolu-

tionary change across replicate pairs by undertaking eigenanaly-

sis on the pairwise angles across localities. We observed that the
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Figure 4. Relative contributions of genotypic parallel and non-parallel evolution. Partial effect sizes (partial η2) for the ecotype and the

interaction (ecotype × pair) from linear models for all sequenced nucleotide sites (A) and genes (B). Each dot represents either a single

nucleotide site (A) or gene (B). Most points fall below the dashed 1:1 ratio line, indicating that the variation in Dune-Headland divergence

is largely unique to replicate pairs (non-parallel), rather than shared across localities (parallel). The blue dots denote the best candidates

for parallel evolution (those in Fig. 5A) at the level of the nucleotide site (A) and gene (B). The data in (A) and (B) are plotted as frequency

distributions for the nucleotide sites (C) and genes (D). Values represent the distance of the nucleotide site or gene from the 1:1 dashed

line of equal effect. Positive values indicate more parallel evolution, whereas negative values indicate more non-parallel evolution. As

most values fall below zero, between-ecotype variation at the level of the nucleotide site and gene is mainly unique to replicate pairs.

first eigenvector was the only significant axis, explaining 79% of

the phenotypic variance in the direction of divergence (Fig. 3D).

All replicate pairs loaded positively and with similar magnitudes

on this first eigenvector, revealing that each replicate pair has

evolved in the same direction in multivariate trait space (Fig. 3E).

GENOTYPIC PARALLELISM

Parallel nucleotide polymorphisms
Very few sampled SNPs explained more variance between eco-

types than between replicate pairs (Figs. 4A, 4C, S6A, and S6C).

Specifically, only 6.3% of sampled SNPs (607 out of 9687 SNPs)

contained a partial effect size of the ecotype term that was larger

than the interaction term (i.e., those above the dashed line in

Fig. 4A that are also >0 in Fig. 4C). This suggests that, in the

dataset presented here, parallel evolution at the level of the nu-

cleotide site within the system is largely predominated by differ-

ences between replicate pairs.

We identified 93 highly differentiated sites between all Dune

and all Headland populations (Approach 1; ∼1% of sequenced

SNPs), with 54 SNPs falling within genic regions and 39 in
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Figure 5. Genotypic parallelism: nucleotide site, gene, and biological function. (A) Candidate outlier nucleotide sites showing high

differentiation between the Dune-Headland ecotypes aswell as concordant allele frequency changes across replicate pairs. Dots represent

the allele frequency value (of the reference allele) for each population. Lines connect the Dune (orange) populations to their Headland

(green) pair at each locality. Dashed lines represent pairs whose Dune-Headland change in allele frequency is in the opposite direction

from the majority of pairs. �p denotes the overall change in allele frequency between the ecotypes. G denotes nucleotide sites that occur

within genic regions. (B) Proportion of outlier nucleotide sites, outlier genes, and enriched biological functions shared across the nine

replicate pairs. (C) Enriched biological functions shared across five or more replicate population pairs.

nongenic regions. For outliers detected separately for the Dune-

Headland pairs at each locality (Approach 2), there were no out-

lier SNPs common to all nine pairs. The highest number of pairs

with common outlier SNPs was seven pairs, where we detected

six SNPs that were outliers (Fig. 5B). On average, 157 outlier

SNPs (SD = 74.5) were shared between any two localities, and

for each of these pairwise comparisons, the shared SNPs were

greater than expected by chance (Table S13). We detected 15

nucleotide sites (0.16% of sequenced SNPs; Fig. S7) that con-

tained concordant allele frequency differences across localities

(Approach 3) in either all nine (S-statistic = 9, P = 0.004) or

eight (S-statistic = 8, P = 0.04) replicate pairs. Nine of these

SNPs fall within genic regions, whereas six are in nongenic re-

gions.

As we did not detect any outliers across all nine or eight

replicate pairs in Approach 2, we consider our best parallel SNP

candidates across the S. lautus system using only Approaches 1

and 3. Five SNPs were detected as outliers in Approaches 1 and 3

(three genic, two nongenic; Fig. 5A; blue dots in Fig. 4A), show-

ing high differentiation between ecotypes, with concordant allele

frequency changes across localities. The average difference in al-

lele frequency between Dune and Headlands for the three genic

SNPs was 0.55 (SD = 0.096), whereas the average for the two

nongenic SNPs was 0.57 (SD = 0.107).

Parallel genic polymorphisms
Very few genes explained more variance between ecotypes than

between pairs (Figs. 4B, 4D, S6B, and S6D). More specifically,

only 5.6% of genes (148 out of 2320 genes) contained a partial

effect size of the ecotype term that was larger than the interaction

term (i.e., those above the dashed line in Fig. 4B that are >0 in

Fig. 4D). This indicates that there is more parallel evolution at the
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level of the gene than the SNP, and that parallelism at the level of

the gene is largely predominated by differences between replicate

pairs.

Of the five candidate outlier SNPs identified above using

the outlier approach (i.e., those showing high differentiation be-

tween ecotypes in Approach 1 and concordant allele frequency

changes across replicate pairs in Approach 3), the three genic

SNPs fall within three separate genes, two of which have ho-

mologs within Arabidopsis (Table S14; blue dots in Fig. 4B).

These two genes encode a galactose oxidase/kelch repeat super-

family protein (AT5G04420; Fig. 5A first panel) and a basic sali-

vary proline-rich-like protein (AT5G14540; Fig. 5A last panel).

The proteins are both located in the cytosol and are both ex-

pressed in a wide variety of tissue types (Klepikova et al. 2016).

Considering Approaches 1 and 3 separately, the 54 outlier genic

SNPs detected in Approach 1 fall in 49 separate genes, of which

44 have homologs within Arabidopsis. The majority of these

genes are involved in processes including ion transport, transcrip-

tion, response to heat, response to water deprivation, DNA repair,

and embryo development (see Table S14 for details of each gene).

For Approach 3, the nine outlier genic SNPs fall in nine separate

genes, of which seven have homologs within Arabidopsis. These

genes are involved in processes including ion transport, aminoa-

cylation, embryo development, and DNA repair (see Table S14

for details of each gene).

We detected highly differentiated genes between the Dune

and Headland of each locality (Approach 2), and compared how

many of these outlier genes were common between all pairwise

comparisons of replicate pairs. On average, 124 outlier genes

(SD = 54.6) were shared between any two replicate pairs. The

shared outlier genes between all pairwise comparisons were

greater than expected by chance, except for one comparison

(D14-H15 vs. D32-H12; Table S15). Thirty-nine genes were out-

liers in at least eight or nine replicate pairs (Fig. 5B), of which

36 contained homologs in Arabidopsis. These genes are involved

in processes including ion transport, transcription, seed develop-

ment, response to auxin, response to heat, response to salt stress,

embryo development, and cell growth (see Table S14 for details

of each gene).

Enriched biological functions
For each replicate pair, we conducted a gene-enrichment analysis

using outlier genes to ask whether any biological functions were

enriched. Examining individual replicate pairs, we detected a to-

tal of 17 enriched functions (Fig. 5C; Table S16). However, no

function was repeatedly enriched in all nine replicate pairs, al-

though two functions (chloroplast and nucleotide-binding/ATP-

binding; UniProtKB keywords) were repeatedly enriched across

eight replicate pairs (S-statistic = 8, P = 0.04). In the chloroplast

category, most outlier genes across pairs are involved in processes

including oxidation reduction, response to light, translation, pro-

teolysis, protein phosphorylation, and protein folding. See Table

S17 for details on each gene in the chloroplast category and the

number of replicate pairs the genes were detected as an outlier. In

the nucleotide-binding/ATP-binding category, most outlier genes

across pairs are involved in processes including protein phospho-

rylation, protein folding, transcription, aminoacylation, ion trans-

port, and response to stress. See Table S18 for details on each

gene in the nucleotide/ATP-binding category and the number of

replicate pairs the genes were detected as an outlier.

Finally, we examined the distributions of the shared outlier

nucleotide sites, outlier genes, and enriched biological functions

across the nine replicate pairs (Fig. 5B). The nucleotide site and

gene distributions were skewed to the left, revealing that most

outlier SNPs or genes were unique to a single locality, or shared

across a few localities. The biological function distribution

was more skewed to the right, revealing that certain biological

functions were repeatedly enriched across the majority of pairs.

This suggests there is more parallelism at the level of the bio-

logical function compared to the nucleotide site or gene. The

distribution of the proportion of shared outlier nucleotide sites

was significantly different to the outlier genes (χ2 = 279.65,

df = 8, P < 2.2 × 10−16) and biological functions (χ2 = 361.95,

df = 8, P < 2.2 × 10−16). The distributions of the genes and

biological functions were not significantly different across the

nine replicate pairs (χ2 = 14.52, df = 8, P = 0.069).

VARIATION IN PHENOTYPIC PARALLELISM

Gene flow did not constrain phenotypic divergence. There was

no relationship between levels of gene flow and the lengths

of phenotypic vectors (L) between ecotypes within a locality

when considering (i) Dune to Headland gene flow (F1,5 = 1.67,

P = 0.25, R2 = 0.25), (ii) Headland to Dune gene flow

(F1,5 = 3.44, P = 0.12, R2 = 0.41), or (iii) average gene flow

(F1,5 = 2.29, P = 0.19, R2 = 0.31). Moreover, we did not

find a relationship between divergence time between eco-

types and L within a locality (F1,5 = 1.04, P = 0.35, R2

= 0.17). Environmental distance did not relate to how phe-

notypically divergent (L) a population pair was (F1,3 =
0.046, P = 0.84, R2 = 0.015), although we treat these data

with caution as environmental data were only available for

five localities. Population pairs that were more phenotypi-

cally similar (i.e., smaller �L) did not share more outlier

SNPs, genes, or biological functions than those with large �L

(Mantel test SNPs: r = −0.215, P = 0.894; Mantel test genes:

r = −0.164, P = 0.835; Mantel test biological functions: r =
−0.179, P = 0.837). Population pairs with similar contribu-

tion of traits to divergence (i.e., smaller θ) also did not share

more outlier SNPs, genes, or biological functions (Mantel test

SNPs: r = −0.493, P = 0.989; Mantel test genes: r = −0.347,
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P = 0.865; Mantel test biological functions: r = −0.337, P =
0.93). These results imply that, with the current genetic data,

the extent of phenotypic parallelism in the system is not largely

driven by the underlying genetics or demographic history.

Discussion
Understanding the way in which independent populations adapt

to their environment when faced with similar selective pressures

allows us to gain insight into the repeatability and predictabil-

ity of evolution. Here, we have demonstrated striking phenotypic

parallel evolution in the highly replicated Senecio lautus system.

Multiple instances of adaptation to parapatric Dune and Head-

land environments have consistently resulted in the repeated evo-

lution of ecotypes with contrasting morphologies. Although there

is some variation between ecotypic divergences across localities,

all replicate pairs follow a common evolutionary trajectory within

phenotypic space. Across replicate localities, Dune and Headland

ecotypes have diverged mainly via mutational changes in differ-

ent genes, although some of these belong to the same predicted

biological function. This implies that evolution within the S. lau-

tus system may be somewhat flexible at lower levels of biological

organization, yet more constrained at the functional level. Given

the evolutionary independence among populations with similar

phenotypes (James et al. 2021), our current work positions S.

lautus as an ideal candidate to examine how adaptive replicated

evolution arises in nature.

PHENOTYPIC PARALLELISM

Phenotypic variance in the S. lautus system is explained mostly

by the differences between ecotypes rather than the replicate

pairs, indicating that the phenotypic differences between eco-

types are consistent across localities. There is also clear phe-

notypic separation between Dune and Headland S. lautus eco-

types in the first two dimensions of multivariate trait space.

This distinct separation of ecotypes is seen in other empirical

parallel evolution systems such as lake-stream stickleback on

Haida Gwaii in Canada (Deagle et al. 2012) and dwarf-normal

lake whitefish (Laporte et al. 2015). In contrast, systems such

as benthivorous-planktivorous Arctic charr (Jacobs et al. 2020),

benthic-limnetic cichlid fishes (Elmer et al. 2014), and lake-

stream threespine stickleback on Vancouver Island in Canada

(Stuart et al. 2017) have a large overlap between ecotypes in phe-

notypic space, revealing that the between-ecotypic divergences

are variable across replicate pairs, that is, that evolution is to some

degree non-parallel. In contrast, the phenotypically distinct Dune

and Headland S. lautus ecotypes position the system as highly

parallel and repeatable at the multivariate trait level.

At the univariate level, most traits show consistent differ-

ences between Dune and Headland ecotypes across replicate lo-

calities. The trait that displayed the greatest non-parallelism was

leaf dissection, which varied more between replicate pairs than

between ecotypes, though this trait still showed consistent dif-

ferences between ecotypes in six out of eight pairs. Thus, even

though there is some Dune-Headland trait variation between lo-

calities, all S. lautus traits are highly parallel. This pattern is

rather different to other systems such as the threespine stickle-

back. Here, Stuart et al. (2017) found that most trait variance was

explained by differences between replicate pairs rather than be-

tween ecotypes, suggesting little parallelism at the level of in-

dividual traits. Although this pattern might occur in S. lautus if

more traits are measured, the phenotypic dimensionality of the

system does not seem to be very high: of the 14 traits we mea-

sured, we discarded five highly correlated traits. In other studies

of S. lautus (Walter et al. 2018a), strong genetic correlations exist

among a variety of vegetative traits suggesting strong interdepen-

dence between morphological modules such as leaf and plant ar-

chitecture and high genetic constraint in the system. In the current

work although we lack the ability to make inferences of the exact

traits under the direct target of selection, we have likely measured

these and correlated traits that together reveal the overall pheno-

typic differences of populations and ecotypes in the system. It

will be interesting for future work to further explore the effect of

correlated selection on our ability to measure replicated evolution

and its contribution to differences among replicates.

Pairwise comparisons of Dune-Headland phenotypic diver-

gence (PCVA) revealed different magnitudes of divergence and

different contribution of traits to divergence for most pairs. Yet,

phenotypic divergence shares a common multivariate evolution-

ary trajectory in the system: there was only one significant axis of

evolutionary change that explained 79% of the phenotypic vari-

ance across the system. All S. lautus replicate pairs have the same

shared evolutionary trajectory in this single dimension of multi-

variate space (i.e., they all load with the same direction and sim-

ilar magnitude on this first eigenvector). This is in contrast to the

classic lake-stream stickleback system, where multiple dimen-

sions of evolutionary change are significant, and replicate lin-

eages have not all evolved along the same trajectory (i.e., load

with opposing signs onto the significant eigenvectors; De Lisle

and Bolnick 2020). Phenotypic parallel evolution in S. lautus is

therefore considered “complete,” as the Dune-Headland pheno-

typic divergence at each locality has evolved in the same way

(De Lisle and Bolnick 2020).

GENOTYPIC PARALLELISM

In S. lautus, genotypic parallelism was strongest at the level of the

biological function. Although there were some shared SNP and

gene outliers between pairwise localities, we only detected five

candidate outlier nucleotide sites that were parallel across the en-

tire system. These results suggest that adaptation in S. lautus is
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flexible at lower levels of organization (the nucleotide site and

gene) and more constrained at the level of the biological func-

tion. Non-parallelism at the level of the SNP and gene suggests

there is a large amount of genetic redundancy in the S. lautus

system (Barghi et al. 2020), where adaptation occurs via dif-

ferent combinations of adaptive alleles in separate populations

that followed largely unique adaptive walks to reach the optimal

phenotype (Láruson et al. 2020). Furthermore, parallelism at the

level of the biological function might be common in both plants

and animals (e.g., Smith and Rausher 2011; Kowalko et al. 2013;

Roda et al. 2013b; Laporte et al. 2015; Perreault-Payette et al.

2017; Cassin-Sackett et al. 2019). This could be because there are

fewer biological functions than there are genes or nucleotide sites

(Tenaillon et al. 2012; Tiffin and Ross-Ibarra 2014), and the evo-

lution of complex phenotypes might rely on signaling molecules

(e.g., hormones) that affect many genes and multiple traits (see

Li et al. 2017 for a recent review in plants).

Recent studies in S. lautus have demonstrated that hormone

signaling, specifically the auxin pathway, is divergent between

Dune and Headland populations (Roda et al. 2013b; Wilkinson

et al. 2021). Auxin plays a key role in a plant’s ability to respond

to gravity (Strohm et al. 2012), and is strongly correlated with

the prostrate and erect growth forms within the system (Wilkin-

son et al. 2021). We therefore expected to find highly differenti-

ated auxin-related genes within our current study. Consistent with

this prediction, we detected divergent genes involved in the auxin

pathway that are differentiated across multiple population pairs,

including GH3.1 (Staswick et al. 2005), NPH4 (Harper et al.

2000), and genes from the ABCB family (Cho and Cho 2013; see

Table S19 and Methods S4 for more details). This gives further

evidence that chemical signals such as the auxin hormone and its

associated pathways could play a key role in creating the contrast-

ing growth habits in S. lautus. Future studies on the molecular

basis of adaptation should focus on the concomitant contribution

of many genes to phenotypic variation and to their shared cellular

and physiological roles, as it is likely that variation in regulatory

networks might underlie a large fraction of the adaptive space in

organisms (Boyle et al. 2017; VanWallendael et al. 2019).

THE NATURE OF PARALLEL EVOLUTION IN S. lautus

Empirical systems of parallel evolution allow us to address

how repeatable and predictable evolution is within nature, yet

many factors can cause deviations between replicate populations.

For instance, demographic history, environmental heterogeneity

within each habitat, the interplay between the genotype, pheno-

type, and fitness landscapes, genetic constraints, and stochastic

forces such as genetic drift can all impact the likelihood of par-

allel evolution across replicate localities (Lenormand et al. 2009,

2016; Conte et al. 2012; Rosenblum et al. 2014; Ord and Sum-

mers 2015; Fraïsse and Welch 2019). The clear trait-environment

association observed within the S. lautus system is quite remark-

able, despite varying levels of gene flow, divergence times (James

et al. 2021), environmental distances (Roda et al. 2013b), and se-

lection largely acting upon different SNPs and genes between

parapatric ecotypes across localities. As every instance of re-

peated Dune-Headland evolution has resulted in extremely simi-

lar phenotypic adaptations, we can adopt the simple, binary clas-

sification of “Dune” and “Headland” to describe the ecotypes

(De Lisle and Bolnick 2020). This is surprisingly not the case

for some other systems of parallel evolution including one of

the most famous cases in nature, the threespine stickleback (De

Lisle and Bolnick 2020). Replicate lake-stream stickleback pop-

ulations show a large amount of non-parallel evolution, implying

that categorical terms of “lake” and “stream” might misrepresent

the large degree of phenotypic overlap between ecotypes.

Although our current work has revealed that the Dunes and

Headlands are quite phenotypically distinct, there are still pheno-

typic differences between the populations within each ecotype.

This seems to be more pronounced in the Headlands (the pheno-

typic centroids of Dune populations cluster, but Headland popu-

lations are somewhat more scattered in multivariate space). This

might be explained by the nature of selection in each ecotype

that can lead to different phenotypic and fitness landscapes in S.

lautus. Previous reciprocal transplant experiments have demon-

strated that ecotypes are locally adapted and exhibit a strong re-

duction in fitness when grown in foreign habitats (Melo et al.

2014; Richards and Ortiz-Barrientos 2016; Richards et al. 2016;

Walter et al. 2016, 2018b; Wilkinson et al. 2021). However, dif-

ferent to Dune individuals that are equally fit across other nonlo-

cal sand dune habitats, Headland individuals have reduced fitness

in nonlocal headland habitats (Walter et al. 2016). These obser-

vations suggest some environmental heterogeneity within rocky

headlands; the fitness landscape for Headlands might therefore

be broad and rugged, or with multiple optima, with each Head-

land population residing on a different local optimum. Overall,

differences in fitness landscapes within each ecotype may reflect

why we see some phenotypic variation between Dune-Headland

pairs across localities, yet stabilized within specific multivariate

trajectories.

THE EFFECTS OF SAMPLING ON PARALLELISM

The ability to detect genotypic parallelism is impacted by sam-

pling. Reduced representation libraries, such as those used in the

current work, sparsely sample the genome and will likely fail to

detect many loci involved in adaptation (Tiffin and Ross-Ibarra

2014; Lowry et al. 2017). This is of particular concern when

adaptation occurs via few genes of large effect (e.g., the Eda

gene in sticklebacks; Colosimo et al. 2005), as these genes will

likely not be sampled in the absence of whole genome sequenc-

ing. In contrast, adaptation within S. lautus seems to be polygenic
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(Yeaman 2015), being underpinned by the frequency shift of

many different alleles and genes across replicate localities (also

see Roda et al. 2013b; Wilkinson et al. 2021). Our reduced rep-

resentation libraries will still likely capture a proportion of the

many variants involved in adaptation, although we acknowledge

that our current work focuses on highly divergent alleles and we

have disregarded alleles with subtle changes in allele frequen-

cies. Rather than placing an emphasis on the specific genes in-

volved in parallel evolution, our current work has demonstrated

that genotypic evolution is likely more parallel at higher levels

of biological organization. Future whole genome sequencing will

help elucidate the relative contributions of all variants to adaptive

evolution, including those with small effects (Barghi et al. 2020),

which will aid ongoing work in S. lautus that aims to directly link

genetic variation to adaptive traits that have been repeatedly fa-

vored via natural selection (Wilkinson et al. 2021). Furthermore,

it will allow us to gain insight into the extent of determinism and

repeatability of polygenic evolution in plant systems, which have

been relatively understudied compared to animals.

Local variation in genetic divergence is impacted by genome

features including recombination rates (Booker et al. 2020), back-

ground selection, linkage, and demography (see Hoban et al.

2016 for a review). This impacts our ability to detect regions

involved in replicated divergence. For instance, linked selection

in regions of low recombination could increase divergence rela-

tive to neutral expectations in all populations examined and not

only in a specific parapatric pair. In other words, evolutionary

constraints might lead to signals of replicated evolution, when in

fact they inexorably arise as a consequence of selection interact-

ing with conserved genomic features and unrelated to adaptive

divergence. Additionally, within this study we have not exam-

ined other aspects of the genome that can be involved in adapta-

tion including copy number variation (Schrider et al. 2016; Nel-

son et al. 2019), inversions (Kirkpatrick and Barton 2006; Lowry

and Willis 2010; Faria et al. 2019), transposons (González and

Petrov 2009; Schrader and Schmitz 2019), and variation in gene

expression levels (Rivas et al. 2018; Verta and Jones 2019). Fu-

ture work examining these aspects of parallel evolution will help

us gain a more complete picture of the dynamics of parallelism

within S. lautus. Nevertheless, our current genetic dataset reveals

that highly parallel phenotypes need not arise due to the exact

same underlying genetic mechanisms, which supports the find-

ings of other reduced representation datasets in the S. lautus sys-

tem (Roda et al. 2013b; Wilkinson et al. 2021).

Finally, we must be aware that researchers of replicated evo-

lution often implement different statistical approaches to measure

parallelism across systems. These different approaches can lead

to different interpretations of parallel evolution both at the level

of the phenotype and genotype (Bolnick et al. 2018). It is thus

evident that the field requires progress toward a common frame-

work to allow researchers to quantify and compare the exact ex-

tent of parallelism across systems, considering that parallelism

can manifest at different scales as well as different levels of bi-

ological organization. For instance, further work needs to enrich

current theories of multi-trait evolution so we can develop better

null hypotheses for parallel evolution while accounting for corre-

lations between traits, including those that are highly pleiotropic

(Yeaman 2015; De Lisle and Bolnick 2020). Furthermore, to have

a more complete understanding of the dynamics and link between

genotypic and phenotypic parallel evolution, studies should aim

to identify causal mutations across replicate populations and ask

whether any shared variants have arisen via de novo mutations,

standing genetic variation, or adaptive introgression. It is neces-

sary to then directly link variants to adaptive traits and further

demonstrate that the traits confer a fitness advantage to popula-

tions in the wild.

Conclusions
Overall, we have demonstrated that the highly replicated Dune-

Headland S. lautus system is a remarkable case of parallel

phenotypic evolution in nature. Independent populations have re-

peatedly evolved extremely similar phenotypes during the adap-

tation to coastal environments. Genotypic divergence has largely

occurred via many different mutations in different genes across

replicate populations, implying that evolution in the system is

polygenic. The enrichment of similar biological functions across

replicate localities suggests that genotypic adaptation may be

constrained at higher levels of biological organization. The S.

lautus system allows us to examine the repeatability and pre-

dictability of evolution, and understand how genetic redundancy

and functional constraint impact the likelihood of parallel evolu-

tion within natural systems.
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